

Whitepaper

NVIDIA GF100

World’s Fastest GPU Delivering Great Gaming

Performance with True Geometric Realism

V1.1

Dedicated to the World’s PC Gamers

Table of Contents

Introducing GF100... 4

Exceptional Gaming Performance .. 4

First-rate image quality .. 4

Film-like Geometric Realism... 5

Revolutionary Compute Architecture for Gaming ... 5

Geometric Realism .. 7

Tessellation and Displacement Mapping Overview ... 7

Benefits of Tessellation with Displacement Mapping .. 8

GF100 Architecture In-Depth ... 11

GPC Architecture ... 12

Parallel Geometry Processing .. 13

The PolyMorph Engine ... 13

Raster Engine ... 14

Third Generation Streaming Multiprocessor ... 16

512 High Performance CUDA cores.. 16

16 Load/Store Units ... 16

Four Special Function Units .. 16

Dual Warp Scheduler .. 17

Texture Units .. 17

64 KB Configurable Shared Memory and L1 Cache .. 19

L2 Cache ... 20

New ROP Units with Improved Antialiasing .. 21

Compute Architecture for Graphics ... 23

Next Generation Effects using GPU Computing ... 24

Ray tracing .. 25

Smoothed Particle Hydrodynamics (SPH) .. 26

NVIDIA 3D Vision Surround ... 28

Bezel Correction ... 29

Conclusion .. 30

4

Introducing GF100Introducing GF100Introducing GF100Introducing GF100

Over the years, the continuing and insatiable demand for high quality 3D graphics has driven NVIDIA to

create significant GPU architectural innovations. In 1999, the GeForce 256 enabled hardware transform

and lighting. In 2001, GeForce 3 introduced programmable shading. Later, GeForce FX provided full 32-

bit floating point precision throughout the GPU. And in 2006, GeForce 8 introduced a powerful and

efficient unified, scalar shader design. Each GPU we designed was intended to take graphics closer to

reality, and to distinguish the PC as the most dynamic and technologically advanced gaming platform.

NVIDIA’s latest GPU, codenamed GF1001, is the first GPU based on the Fermi architecture. GF100

implements all DirectX 11 hardware features, including tessellation and DirectCompute, among others.

GF100 brings forward a vastly improved compute architecture designed specifically to support next

generation gaming effects such as raytracing, order-independent transparency, and fluid simulations.

Game performance and image quality receive a tremendous boost, and GF100 enables film-like

geometric realism for game characters and objects. Geometric realism is central to the GF100

architectural enhancements for graphics, In addition, PhysX simulations are much faster, and developers

can utilize GPU computing features in games most effectively with GF100.

In designing GF100, our goals were to deliver:

• Exceptional Gaming Performance

• First-rate image quality

• Film-like Geometric Realism

• A Revolutionary Compute Architecture for Gaming

Exceptional Gaming Performance

First and foremost, GF100 is designed for gaming performance leadership. Based on Fermi’s third

generation Streaming Multiprocessor (SM) architecture, GF100 doubles the number of CUDA cores over

the previous architecture.

The geometry pipeline is significantly revamped, with vastly improved performance in geometry shading,

stream out, and culling. The number of ROP (Render Output) units per ROP partition is doubled and

fillrate is greatly improved, enabling multiple displays to be driven with ease. 8xMSAA performance is

vastly improved through enhanced ROP compression. The additional ROP units also better balance

overall GPU throughput even for portions of the scene that cannot be compressed.

First-rate image quality

GF100 implements a new 32xCSAA antialiasing mode based on eight multisamples and 24 coverage

samples. CSAA has also been extended to support alpha-to-coverage on all samples, enabling

smoother rendering of foliage and transparent textures. GF100 produces the highest quality antialiasing

for both polygon edges and alpha textures with minimal performance penalty. Shadow mapping

performance is greatly increased with hardware accelerated DirectX 11 four-offset Gather4.

1 “GF” denotes that the chip is a Graphics solution based on the Fermi architecture. “100” denotes that this is the high end part of

the “GF” family of GPUs.

5

Film-like Geometric Realism

While programmable shading has allowed PC games to mimic film in per-pixel effects, geometric realism

has lagged behind. The most advanced PC games today use one to two million polygons per frame. By

contrast, a typical frame in a computer generated film uses hundreds of millions of polygons. This

disparity can be partly traced to hardware—while the number of pixel shaders has grown from one to

many hundreds, the triangle setup engine has remained a singular unit, greatly affecting the relative pixel

versus geometry processing capabilities of today’s GPUs. For example, the GeForce GTX 285 has more

than 150× the shading horsepower of the GeForce FX, but less than 3× the geometry processing rate.

The outcome is such that pixels are shaded meticulously, but geometric detail is comparatively modest.

In tackling geometric realism, we looked to movies for inspiration. The intimately detailed characters in

films are made possible by two key techniques: tessellation and displacement mapping. Tessellation

refines large triangles into collections of smaller triangles, while displacement mapping changes their

relative position. In conjunction, these two techniques allow arbitrarily complex models to be formed

from relatively simple descriptions. Some of our favorite movie characters, such as Davy Jones from

Pirates of the Caribbean were created using these techniques.

GF100’s entire graphics pipeline is designed to deliver high performance in tessellation and geometry

throughput. GF100 replaces the traditional geometry processing architecture at the front end of the

graphics pipeline with an entirely new distributed geometry processing architecture that is implemented

using multiple “PolyMorph Engines” . Each PolyMorph Engine includes a tessellation unit, an attribute

setup unit, and other geometry processing units. Each SM has its own dedicated PolyMorph Engine (we

provide more details on the Polymorph Engine in the GF100 architecture sections below). Newly

generated primitives are converted to pixels by four Raster Engines that operate in parallel (compared to

a single Raster Engine in prior generation GPUs). On-chip L1 and L2 caches enable high bandwidth

transfer of primitive attributes between the SM and the tessellation unit as well as between different SMs.

Tessellation and all its supporting stages are performed in parallel on GF100, enabling breathtaking

geometry throughput.

While GF100 includes many enhancements and performance improvements over past GPU

architectures, the ability to perform parallel geometry processing is possibly the single most important

GF100 architectural improvement. The ability to deliver setup rates exceeding one primitive per clock

while maintaining correct rendering order is a significant technical achievement never before done in a

GPU.

Revolutionary Compute Architecture for Gaming

The rasterization pipeline has come a long way, but as games aspire to film quality, graphics is moving

toward advanced algorithms that require the GPU to perform general computation along with

programmable shading. G80 was the first NVIDIA GPU to include compute features. GF100 benefits

from what we learned on G80 in order to significantly improve compute features for gaming.

GF100 leverages Fermi’s revolutionary compute architecture for gaming applications. In graphics,

threads operate independently, with a predetermined pipeline, and exhibit good memory access locality.

Compute threads on the other hand often communicate with each other, work in no predetermined

fashion, and often read and write to different parts of memory. Major compute features improved on

GF100 that will be useful in games include faster context switching between graphics and PhysX,

concurrent compute kernel execution and an enhanced caching architecture which is good for irregular

6

algorithms such as ray tracing, and AI algorithms. We will discuss these features in more detail in

subsequent sections of this paper.

Vastly improved atomic operations performance allows threads to safely cooperate through work

queues, accelerating novel rendering algorithms. For example, fast atomic operations allow transparent

objects to be rendered without presorting (order independent transparency) enabling developers to

create levels with complex glass environments.

For seamless interoperation with graphics, GF100’s GigaThread engine reduces context switch time to

about 20 microseconds, making it possible to execute multiple compute and physics kernels for each

frame. For example, a game may use DirectX 11 to render the scene, switch to CUDA for selective ray

tracing, call a Direct Compute kernel for post processing, and perform fluid simulations using PhysX.

7

Geometric RealismGeometric RealismGeometric RealismGeometric Realism

Tessellation and Displacement Mapping Overview

While tessellation and displacement mapping are not new rendering techniques, up until now, they have

mostly been used in films. With the introduction of DirectX 11 and NVIDIA’s GF100, developers will be

able to harness these powerful techniques for gaming applications. In this section we will discuss some

of the characteristics and benefits of tessellation and displacement mapping in the context of game

development and high-quality, realtime rendering.

Game assets such as objects and characters are typically created using software modeling packages

like Mudbox, ZBrush, 3D Studio Max, Maya, or SoftImage. These packages provide tools based on

surfaces with displacement mapping to aid the artist in creating detailed characters and environments.

Today, the artist must manually create polygonal models at various levels of detail as required by the

various rendering scenarios in the game, required to maintain playable frame-rates. These models are

meshes of triangles with associated texture maps needed for proper shading. When used in a game, the

model information is sent per frame to the GPU through its host interface. Game developers tend to use

relatively simple geometric models due to the limited bandwidth of the PCI Express bus and the modest

geometry throughput of current GPUs.

Even in the best of game titles, there are geometric artifacts due to limitations of existing graphics APIs

and GPUs. The result of compromising geometric complexity can be seen in the images below, from

FarCry® 2. The holster has a heavily faceted or segmented strap. The corrugated roof, which should look

wavy, is in fact a flat surface with a striped texture. Finally, like most characters in games, this person

wears a hat, carefully sidestepping the complexity of rendering hair.

Due to limitations in existing graphics APIs and GPUs, even graphically advanced games like

FarCry 2® (above) are forced to make concessions in geometric detail. © Ubisoft 2008.

Using GPU-based tessellation, a game developer can send a compact geometric representation of an

object or character and the tessellator unit can produce the correct geometric complexity for the specific

scene. We’ll now go into greater detail discussing the characteristics and benefits of tessellation in

combination with displacement mapping.

8

Consider the character below. On the left we see the quad mesh used to model the general outline of

the figure. This representation is quite compact, even when compared to typical game assets. The

image of the character in the middle was created by finely tessellating the description on the left. The

result is a very smooth appearance, free of any of the faceting that resulted from limited geometry.

Unfortunately this character, while smooth, is no more detailed than the coarse mesh. The image on the

right was created by applying a displacement map to the smoothly tessellated character in the middle.

This character has a richness of geometric detail that you might associate with film production.

The “Imp” © Kenneth Scott, id Software 2008

Benefits of Tessellation with Displacement Mapping

There are a number of benefits to using tessellation with displacement mapping. The representation is

compact, scalable and leads to efficient storage and computation. The compactness of the description

means that the memory footprint is small and little bandwidth is consumed pulling the constituent

vertices on to the GPU. Because animation is performed on the compact description, more compute

intensive, sophisticated, realistic movement is possible. The on-demand synthesis of triangles creates

the ability to match the geometric complexity and the number of triangles generated to the situation for

the specific character as it appears in a given frame.

This ability to control geometric level of detail (LOD) is very powerful. Because it is on-demand and the

data is all kept on-chip, precious

memory bandwidth is preserved. Also,

because one model may produce

many LODs, the same game assets

may be used on a variety of platforms,

from a modest notebook to a Quad SLI

system for example.

The character can also be tailored to

how it appears in the scene, if it is

small then it gets little geometry, if it is

close to the screen it is rendered with

When a displacement map (left) is applied to a flat surface, the resulting surface

(right) expresses the height information encoded in the displacement map.

9

maximum detail. Additionally, scalable assets mean that developers may be able to use the same

models on multiple generations of games and future GPUs where performance increases enable even

greater detail than was possible when initially deployed in a game. Complexity can be adjusted

dynamically to target a given frame rate. Finally, models that are rendered using tessellation with

displacement mapping much more closely resemble those used natively in the tools used by artists,

freeing artists from the overhead work of creating models with different LODs.

Displacement mapping is a very powerful modeling and rendering technique. A displacement map is a

texture that expresses height information. When applied to a model, the displacement map is used to

alter the relative position of vertices in the model. Displacement mapping allows complex geometry to

be stored in a compact map. In this way, displacement maps can be regarded as a form of geometry

compression.

Unlike emboss maps, normal maps, and parallax maps which merely alter the appearance of pixels,

displacement maps alter the position of vertices. This enables self occlusion, accurate shadows, and

robust behavior at the edges of silhouettes.

Displacement mapping is complementary to existing bump mapping techniques. For example,

displacement maps can be used to define major surface features while finer grained techniques such as

normal mapping are used for low level details such as scratches and moles.

In addition to being a simple way to create

complex geometry, displacement mapped

geometry also behaves naturally when

animated. Consider the simple example to the

right—the blunt spikes follow the base shape

as it is bent. Displacement mapped

characters behave similarly. Consider the Imp

character on the preceding page. It is

animated by manipulating the coarse control

hull (left). The displacement mapped

character (right) naturally follows the

animation of the underlying surface.

Finally, one of the most interesting aspects of displacement maps is the ability to easily modify them

during game play. In today’s games, spraying a metal door with bullets leaves a trail of bullet “decals”,

but the shape of the door will not be altered. With displacement mapping, the same decal textures can

be used to alter the displacement map, allowing a player to deform both the appearance and underlying

structure of game objects.

Displaced surfaces behave naturally with animation.

10

Today’s games employ decals to depict altered surfaces. With displacement mapping, bullet decals

can be used to alter the underlying geometry of objects.

11

GF100GF100GF100GF100 ArchitectureArchitectureArchitectureArchitecture InInInIn----DepthDepthDepthDepth

GF100 GPUs are based on a scalable array of Graphics Processing Clusters (GPCs), Streaming

Multiprocessors (SMs), and memory controllers. A full GF100 implements four GPCs, sixteen SMs and

six memory controllers. We expect to launch GF100 products with different configurations of GPCs,

SMs, and memory controllers to address different price points. For the purpose of this whitepaper, we

will focus on the full GF100 GPU.

M
e
m
o
ry
 C
o
n
tro
lle
r

M
e
m
o
ry
 C
o
n
tro
lle
r

M
e
m
o
ry
 C
o
n
tro
lle
r

M
e
m
o
ry
 C
o
n
tr
o
ll
e
r

M
e
m
o
ry
 C
o
n
tr
o
ll
e
r

M
e
m
o
ry
 C
o
n
tr
o
ll
e
r

GF100 block diagram showing the Host Interface, the GigaThread Engine, four GPCs, six Memory Controllers, six ROP partitions,

and a 768 KB L2 cache. Each GPC contains four PolyMorph engines. The ROP partitions are immediately adjacent to the L2 cache.

CPU commands are read by the GPU via the Host Interface. The GigaThread Engine fetches the

specified data from system memory and copies them to the framebuffer. GF100 implements six 64-bit

GDDR5 memory controllers (384-bit total) to facilitate high bandwidth access to the framebuffer. The

GigaThread Engine then creates and dispatches thread blocks to various SMs. Individual SMs in turn

schedules warps (groups of 32 threads) to CUDA cores and other execution units. The GigaThread

Engine also redistributes work to the SMs when work expansion occurs in the graphics pipeline, such as

after the tessellation and rasterization stages.

12

GF100 implements 512 CUDA cores, organized as 16 SMs of 32 cores each. Each SM is a highly parallel

multiprocessor supporting up to 48 warps at any given time. Each CUDA core is a unified processor

core that executes vertex, pixel, geometry, and compute kernels. A unified L2 cache architecture

services load, store, and texture operations.

GF100 has 48 ROP units for pixel blending, antialiasing, and atomic memory operations. The ROP units

are organized in six groups of eight. Each group is serviced by a 64-bit memory controller. The memory

controller, L2 cache, and ROP group are closely coupled—scaling one unit automatically scales the

others.

GPC Architecture

GF100’s graphics architecture is built from a number of hardware blocks called Graphics Processing

Clusters (GPCs). A GPC contains a Raster Engine and up to four SMs.

Graphics Processing Cluster (GPC)

The GPC is GF100’s dominant high-level hardware block. It features two key innovations—a scalable

Raster Engine for triangle setup, rasterization, and z-cull, and a scalable PolyMorph Engine for vertex

attribute fetch and tessellation. The Raster Engine resides in the GPC, whereas the PolyMorph Engine

resides in the SM.

As its name indicates, the GPC encapsulates all key graphics processing units. It represents a balanced

set of vertex, geometry, raster, texture, and pixel processing resources. With the exception of ROP

functions, a GPC can be thought of as a self contained GPU, and a GF100 has four GPCs!

On prior NVIDIA GPUs, SMs and Texture Units were grouped together in hardware blocks called Texture

Processing Clusters (TPCs). On GF100, each SM has four dedicated Texture Units, eliminating the need

for TPCs. For simplicity, we will only refer to the SM going forward.

13

Parallel Geometry Processing

Previous GPU designs have used a single monolithic frontend to fetch, assemble, and rasterize triangles.

This fixed pipeline provided a fixed amount of performance to an arbitrary number of parallel execution

cores. As applications differ in their workload, this pipeline was often bottlenecked or underutilized. The

difficulty of parallelizing rasterization while maintaining API order also discouraged major innovations in

this area. While the single frontend design has worked well in past GPU designs, it became a major

roadblock as the need for geometric complexity increased.

The use of tessellation fundamentally changes the GPU’s graphics workload balance. With tessellation,

the triangle density of a given frame can increase by multiple orders of magnitude, putting enormous

strain on serial resources such as the setup and rasterization units. To sustain high tessellation

performance, it is necessary to rebalance the graphics pipeline.

To facilitate high triangle rates, we designed a scalable geometry engine called the PolyMorph Engine.

Each of the 16 PolyMorph engines has its own dedicated vertex fetch unit and tessellator, greatly

expanding geometry performance. In conjunction we also designed four parallel Raster Engines,

allowing up to four triangles to be setup per clock. Together, they enable breakthrough triangle fetch,

tessellation, and rasterization performance.

The PolyMorph Engine

The PolyMorph Engine has five stages: Vertex Fetch, Tessellation, Viewport Transform, Attribute Setup,

and Stream Output. Results calculated in each stage are passed to an SM. The SM executes the game’s

shader, returning the results to the next stage in the PolyMorph Engine. After all stages are complete,

the results are forwarded to the Raster Engines.

The first stage begins by fetching vertices from a global vertex buffer. Fetched vertices are sent to the

SM for vertex shading and hull shading. In these two stages vertices are transformed from object space

to world space, and parameters required for tessellation (such as tessellation factor) are calculated. The

tessellation factors (or LODs) are sent to the Tessellator.

In the second stage, the PolyMorph Engine reads the tessellation factors. The Tessellator dices the

patch (a smooth surface defined by a mesh of control points) and outputs a mesh of vertices. The mesh

is defined by patch (u,v) values, and how they are connected to form a mesh.

The new vertices are sent to the SM where the Domain Shader and Geometry Shader are executed. The

Domain Shader calculates the final position of each vertex based on input from the Hull Shader and

Tessellator. At this stage, a displacement map is usually applied to add detailed features to the patch.

The Geometry Shader conducts any post processing, adding and removing vertices and primitives

where needed. The results are sent back to the Tessellation Engine for the final pass.

14

In the third stage, the PolyMorph Engine performs viewport transformation and perspective correction.

Attribute setup follows, transforming post-viewport vertex attributes into plane equations for efficient

shader evaluation. Finally, vertices are optionally “streamed out” to memory making them available for

additional processing.

On prior architectures, fixed function operations were performed with a single pipeline. On GF100, both

fixed function and programmable operations are parallelized, resulting in vastly improved performance.

Raster Engine

After primitives are processed by the PolyMorph Engine, they are sent to the Raster Engines. To

achieve high triangle throughput, GF100 uses four Raster Engines in parallel.

The Raster Engine is composed of three pipeline stages. In the edge setup stage, vertex positions are

fetched and triangle edge equations are computed. Triangles not facing the screen are removed via

back face culling. Each edge setup unit processes up to one point, line, or triangle per clock.

The Rasterizer takes the edge equations for each primitive and computes pixel coverage. If antialiasing

is enabled, coverage is performed for each multisample and coverage sample. Each Rasterizer outputs

eight pixels per clock for a total of 32 rasterized pixels per clock across the chip.

Pixels produced by the rasterizer are sent to the Z-cull unit. The Z-cull unit takes a pixel tile and

compares the depth of pixels in the tile with existing pixels in the framebuffer. Pixel tiles that lie entirely

behind framebuffer pixels are culled from the pipeline, eliminating the need for further pixel shading work.

Recap of the GPC Architecture

The GPC architecture is a significant breakthrough for the geometry pipeline. Tessellation requires new

levels of triangle and rasterization performance. The PolyMorph Engine dramatically increases triangle,

tessellation, and Stream Out performance. Four parallel Raster Engines provide sustained throughout in

triangle setup and rasterization. By having a dedicated tessellator for each SM, and a Raster Engine for

each GPC, GF100 delivers up to 8× the geometry performance of GT200.

15

The left three bars in the chart show tessellated geometry performance for three directed tests that

focus exclusively on tessellation performance. As geometric complexity is increased, GF100’s

performance lead over the competition increases. The Hair and Water demos include both shading

and compute operations in addition to geometry processing. The rightmost bar shows the

performance of a tessellation state bucket (a set of draw calls from a frame) from a DirectX 11

application.

0%

100%

200%

300%

400%

500%

600%

700%

Directed Test

(low detail)

Directed Test

(med detail)

Directed Test

(high detail)

Hair Demo Water Demo DirectX 11

Application

Tessellation Performance

Radeon HD 5870 NVIDIA GF100

The Hair demo (left) uses tessellation, geometry shaders, and physical simulations. The Water demo (right) uses

tessellation in large environments.

16

Streaming Multiprocessor (SM)

CUDA Core
Dispatch Port

Result Queue

FP Unit INT Unit

Operand Collector

Third Generation Streaming Multiprocessor

The third generation SM introduces several architectural

innovations that make it not only the most powerful SM yet

built, but also the most programmable and efficient.

512 High Performance CUDA cores

Each SM features 32 CUDA

processors—a fourfold increase

over prior SM designs. GF100’s

CUDA cores are designed for

maximum performance and

efficiency across all shader

workloads. By employing a scalar

architecture, full performance is achieved irrespective of input

vector size. Operations on the z-buffer (1D) or texture access

(2D) attain full utilization of the GPU.

Each CUDA processor has a fully pipelined integer arithmetic

logic unit (ALU) and floating point unit (FPU). GF100

implements the new IEEE 754-2008 floating-point standard,

providing the fused multiply-add (FMA) instruction for both

single and double precision arithmetic. FMA improves over a

multiply-add (MAD) instruction by doing the multiplication and

addition with a single final rounding step, with no loss of

precision in the addition. FMA minimizes rendering errors in

closely overlapping triangles.

In GF100, the newly designed integer ALU supports full 32-bit

precision for all instructions, consistent with standard

programming language requirements. The integer ALU is also

optimized to efficiently support 64-bit and extended precision

operations. Various instructions are supported, including

Boolean, shift, move, compare, convert, bit-field extract, bit-

reverse insert, and population count.

16 Load/Store Units

Each SM has 16 load/store units, allowing source and destination addresses to be calculated for sixteen

threads per clock. Supporting units load and store the data at each address to cache or DRAM.

Four Special Function Units

Special Function Units (SFUs) execute transcendental instructions such as sin, cosine, reciprocal, and

square root. Graphics interpolation instructions are also performed on the SFU. Each SFU executes one

instruction per thread, per clock; a warp (32 threads) executes over eight clocks. The SFU pipeline is

decoupled from the dispatch unit, allowing the dispatch unit to issue to other execution units while the

SFU is occupied. Complex procedural shaders especially benefit from dedicated hardware for special

functions.

SM

Dispatch Unit

Warp Scheduler

Instruction Cache

Dispatch Unit

Warp Scheduler

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Register File (32,768 x 32-bit)

Texture Cache

Core

Core

Core

Core

Core

Core

Core

Core Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

PolyMorph Engine

Vertex Fetch Tessellator
Viewport

Transform

Attribute Setup Stream Output

Tex Tex Tex Tex

17

Dual Warp Scheduler

The SM schedules threads in groups of 32 parallel threads called warps. Each SM features two warp

schedulers and two instruction dispatch units, allowing two warps to be issued and executed

concurrently. GF100’s dual warp scheduler selects two warps, and issues one instruction from each

warp to a group of sixteen cores, sixteen load/store units, or four SFUs. Because warps execute

independently, GF100’s scheduler does not need to check for dependencies from within the instruction

stream. Using this elegant model of dual-issue, GF100 achieves near peak hardware performance.

Most instructions can be dual issued—two integer instructions, two floating instructions, or a mix of

integer, floating point, load, store, and SFU instructions can be issued concurrently. Double precision

instructions do not support dual dispatch with any other instruction.

Texture Units

Each SM has four texture units. Each texture unit computes a texture address and fetches four texture

samples per clock. Results can be returned filtered or unfiltered. Bilinear, trilinear, and anisotropic

filtering modes are supported.

The goal with GF100 was to improve delivered texture performance through improved efficiency. This

was achieved by moving the texture units within the SM, improving the efficiency of the texture cache,

and higher clock speed.

In the previous GT200 architecture, up to three SMs shared one texture engine containing eight texture

filtering units. In the GF100 architecture, each SM has its own dedicated texture units and a dedicated

texture cache. Also, the internal architecture of the texture units has been significantly enhanced. The

net effect is a significant improvement in the delivered texture performance in real-world use cases such

as shadow mapping and screen space ambient occlusion.

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

ti
m

e

Dual warp scheduling

18

GF100’s dedicated L1 texture cache has been redesigned for greater efficiency. Further, by having a

unified L2 cache, the maximum available cache available for texture is three times higher than GT200,

improving hit rates in texture heavy shaders.

The texture unit on previous architectures operated at the core clock of the GPU. On GF100, the texture

units run at a higher clock, leading to improved texturing performance for the same number of units.

GF100’s texture units also add support for DirectX 11’s BC6H and BC7 texture compression formats,

reducing the memory footprint of HDR textures and render targets.

The texture units also support

jittered sampling through

DirectX 11’s four-offset Gather4

feature, allowing four texels to

be fetched from a 128×128

pixel grid with a single texture

instruction. GF100 implements

DirectX 11 four-offset Gather4

in hardware, greatly

accelerating shadow mapping,

ambient occlusion, and post

processing algorithms. With

jittered sampling, games can

implement smoother soft

shadows or custom texture

filters efficiently.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Left4Dead Crysis Vantage

Lenticular

Crysis-warhead

SSAO

Texturing Performance Relative to GT200
(Application State Buckets)

While GT200 has more texture units than GF100, GF100 delivers higher real world

performance thanks to improved efficiency.

The soft shadows in 3DMark 2006 (left) are implemented through jittered sampling of a texture map (right). GF100

implements jittered sampling in hardware, delivering up to 2x the performance of GT200. © Futuremark Corporation

2006

19

64 KB Configurable Shared Memory and L1 Cache

Shared memory—a fast, programmable on-chip

memory, is one of the key architectural

innovations of the first generation CUDA

architecture. By facilitating inter-thread

communication, shared memory enabled a

broad range of applications to run efficiently on

the GPU. Shared memory has since been

adopted by all major GPU computing standards

and competing architectures.

Recognizing the crucial role played by shared

memory and the importance of maintaining data

locality, we once again extended the GPU

memory model. GF100 incorporates a dedicated

L1 cache per SM.

The L1 cache works as a counterpart to shared

memory—while shared memory improves

memory access for algorithms with well defined

memory access, the L1 cache improves

memory access for irregular algorithms where

data addressees are not known beforehand.

On GF100 GPUs, each SM has 64 KB of on-chip memory that can be configured as 48 KB of Shared

memory with 16 KB of L1 cache, or as 16 KB of Shared memory with 48 KB of L1 cache.

For graphics programs, GF100 makes use of the 16 KB L1 cache configuration. The L1 cache acts as a

buffer for register spills, allowing graceful performance scaling with register usage. For compute

programs, the L1 cache and shared memory enables threads within the same thread block to cooperate,

facilitates extensive reuse of on-chip data, and reduces off-chip traffic. Shared memory is a key enabler

for many high-performance CUDA applications.

20

L2 Cache

GF100 has a 768 KB unified L2 cache that services all load, store, and texture requests. The L2 provides

efficient, high speed data sharing across the GPU. Algorithms for which data addresses are not known

beforehand, such as physics solvers, ray tracing, and sparse data structures especially benefit from a

hardware cache. Post processing filters that require multiple SMs to read the same data require fewer

trips to memory, improving bandwidth efficiency.

A unified cache is more efficient than separate caches. In a non-unified cache design, if one cache is

oversubscribed, it cannot use the unmapped portions of other caches. Cache utilization will always be

less than the theoretical peak. GF100’s unified L2 cache dynamically load balances between different

requests, allowing full utilization of the cache. The L2 cache replaces the L2 texture cache, ROP cache,

and on-chip FIFOs on prior GPUs.

A unified cache also ensures memory

access instructions arrive in program

order. Where read and write paths are

separate (such as a read only texture

path and a write only ROP path), read

after write hazards may occur. A

unified read/write path ensures

program correctness, and is a key

feature that allows NVIDIA GPUs to

support generic C/C++ programs.

GF100 L2 cache is read/write and fully

coherent compared to GT200 L2

cache which is read-only. Evicting data out of L2 is handled by a priority algorithm that includes various

checks to help ensure needed data stays resident in the cache.

GF100’s cache architecture enables efficient communication between pipeline stages and reduces off-chip memory traffic.

 GT200 GF100 Benefits

L1 Texture Cache

(per quad)

12KB 12 KB Fast texture
filtering

Dedicated L1

LD/ST Cache

None 16 or 48
KB

Efficient physics
and

ray tracing

Total Shared

Memory

16 KB 16 or 48
KB

More data reuse
among threads

L2 Cache 256 KB
(Texture

read only)

768 KB
(all clients

read/write)

Greater texture
coverage, robust

compute
performance

GT200 and GF100 cache architectures compared

21

New ROP Units with Improved Antialiasing

GF100’s ROP subsystem has been redesigned for improved throughput and efficiency. One GF100 ROP

partition contains eight ROP units, a twofold improvement over prior architectures. Each ROP unit can

output a 32-bit integer pixel per clock, an FP16 pixel over two clocks, or an FP32 pixel over four clocks.

Atomic instruction performance is also vastly improved—atomic operations to the same address

execute up to 20 times faster than GT200, operations to contiguous memory regions execute up to 7.5

times faster.

Performance for 8xMSAA is significantly increased on GF100 due in improvements in compression

efficiency as well as additional ROP units that permit more effective rendering of smaller primitives that

cannot be compressed. Increasing geometric realism in scenes increases the requirement for ROP units

to perform well when compression is not active.

In the previous generation,

performance drop in

8xMSAA modes varied

significantly depending on

the title; Tom Clancy’s

HAWX is one example of a

game that showed low

efficiency in 8xMSAA. In

GF100 the 8xAA

performance is much

improved. In 4xAA mode,

GF100 is 1.6× faster than

GT200. Comparing in

8xAA mode, GF100 is 2.3×

faster than GT200, and

only 9% slower than the

GF100 4xAA mode.

GF100 has also invested in a new 32x Coverage Sampling Antialiasing (CSAA) mode to provide the

highest image quality and improve the level of perceived geometric realism in current games using

alpha-to-coverage.

Current games are constrained by the limitations of API and GPU horsepower in the amount of geometry

they can render. Foliage is a particular challenge. A common technique for foliage is to create an alpha

textured billboard containing many leaves, using alpha to coverage to eliminate the gaps between the

leaves. The quality of the edge is determined by the number of coverage samples. In cases with only

four coverage or even eight samples available, very objectionable aliasing and banding results,

especially when the texture is close to the screen. With 32x CSAA, the GPU has 32 total coverage

samples available, minimizing banding effects.

Transparency Multisampling (TMAA) also benefits from CSAA. TMAA benefits DirectX 9 games that are

unable to use alpha-to-coverage directly because it is not exposed in the DirectX 9 API. Instead they

use a technique called “alpha test” which produces hard edges for transparent textures. TMAA converts

the old shader code in the DirectX 9 applications to use alpha-to-coverage, which combined with CSAA,

produces greatly improved image quality.

100%

160%

233%
257%

0%

50%

100%

150%

200%

250%

300%

GTX285 8x GTX285 4x GF100 8x GF100 4x

AA Performance - Hawx

Antialiasing performance, especially 8xMSAA, is significantly improved on GF100.

22

.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GF100 8x GF100 32x CSAA

Antialiasing Performancee

8XAA vs 32xCSAA

The image on the left shows the TMAA using 16xQ antialiasing (8 multisamples, 8 coverage sample) on older GPUs. The image

on the right shows TMAA using 32x antialiasing (8 multisamples, 24 coverage samples) on GF100. Because coverage samples

are used as part of GF100’s TMAA evaluation, much smoother gradients are produced.

Because coverage samples have low memory storage requirements, 32xCSAA

performance is largely comparable to 8xMSAA. An average across a range of

games show 32xCSAA performing only 7% slower than 8xMSAA.

23

Compute Architecture for GraphicsCompute Architecture for GraphicsCompute Architecture for GraphicsCompute Architecture for Graphics

The vast improvements in per-pixel realism in recent years were made possible by programmable

shaders. Going forward, programmability will continue to be of overriding importance in allowing

developers to create next generation visual effects.

Computer graphics is a set of diverse problems with numerous approaches. Rasterization, ray tracing,

and Reyes are well recognized general rendering algorithms. Within each style of rendering, different

solutions exist for various sub-problems. Up until now, the GPU has been designed solely for

rasterization. As developers continue to search for novel ways to improve their graphics engines, the

GPU will need to excel at a diverse and growing set of graphics algorithms. Since these algorithms are

executed via general compute APIs, a robust compute architecture is fundamental to a GPU’s graphical

capabilities. In essence, one can think of compute as the new programmable shader.

G80 was NVIDIA’s first compute architecture. Its design reflected the desire to extend the GPU’s

capabilities to solve HPC style problems. For example, one of G80’s key innovations, shared memory,

was instrumental in accelerating matrix multiplication, the basis of many math and physics algorithms.

GF100’s compute architecture is designed to address a wider range of algorithms and to facilitate more

pervasive use of the GPU for solving parallel problems. Many algorithms, such as ray tracing, physics,

and AI, cannot exploit shared memory—program memory locality is only revealed at runtime. GF100’s

cache architecture was designed with these problems in mind. With up to 48 KB of L1 cache per SM

and a global L2 cache, threads that access the same memory locations at runtime automatically run

faster, irrespective of the choice of algorithm.

Another area of improvement in GF100’s compute architecture for gaming is in scheduling. G80 and

GT200 executed large kernels one at a time with relatively slow context switching. Since HPC

applications employ large data sets and are insensitive to latency, this model worked relatively well. In

gaming applications, no single kernel dominates, but various small kernels (cloth, fluid, and rigid bodies

for example) are executed. On GF100, these kernels execute in parallel, enabling maximum utilization of

CUDA cores.

In games that make use of compute, context switches occur at every frame, making their performance

highly critical to responsive framerates. GF100 reduces context switch time down to about 20

microseconds, making it possible to perform fine-grained context switching between multiple kernels

per frame. For example, a game may use DirectX 11 to render the scene, switch to CUDA for selective

ray tracing, call a Direct Compute kernel for post processing, and perform fluid simulations using PhysX.

As developers make more general use of the GPU, better language and debugging support becomes

crucial. GF100 is the first GPU to offer full C++ support, the language of choice among game developers.

To ease the transition to GPU programming, we’ve also developed Nexus—a Microsoft Visual Studio

programming environment for the GPU. Together with new hardware features that provide better

debugging support, developers will be able enjoy CPU-class application development on the GPU.

24

Next Generation Effects using GPU Computing

Because compute algorithms are general in nature, they can be used to solve a large variety of visual

computing and simulation algorithms. Some examples game developers are looking into for their

upcoming games include:

• Novel rendering algorithms

o Ray tracing for accurate reflections and refractions

o Reyes for detailed displacement mapping and high quality antialiasing

o Voxel rendering for simulation of volumetric data

• Image processing algorithms

o Custom depth of field kernels with accurate out of focus highlights (bokeh)

o Histograms for advanced HDR rendering

o Custom filters for advanced blurring and sharpened effects

• Physical simulations

o Smoothed partical hydrodynamics for advanced fluid simulation

o Turbluance for detailed smoke and fluid effects

o GPU Rigid bodies for pervasive use of physical objects

• AI pathfinding algorithms for greater number of characters in-game

In the following section, we look at two examples in depth: ray tracing, and smoothed particle

hydrodynamics.

25

Ray tracing

Ray tracing is seen by many as the future of graphics, either by itself or in conjunction with rasterization.

With GF100, interactive ray tracing becomes possible for the first time on a standard PC.

Ray tracing has typically been challenging to run efficiently on the GPU. Ray tracing operates recursively,

whereas GPUs mostly operate iteratively. Rays have unpredictable directions, requiring lots of random

memory access. GPUs typically access memory in linear blocks for efficiency.

GF100’s compute architecture was built specifically with ray tracing in mind. GF100 is the first GPU to

support recursion in hardware, enabling efficient

ray tracing and a host of other graphics

algorithms. GF100’s L1 and L2 caches greatly

improve ray tracing efficiency by improving

performance for fine-grained memory accesses.

The L1 cache enhances memory locality for

neighboring rays whereas the L2 cache amplifies

bandwidth to the framebuffer.

GF100 excels not just at standard ray tracing, but

also at advanced global illumination algorithms

such as path tracing. Path tracing uses a much

larger number of rays to collect ambient lighting

information from the scene. Early evaluations of

path tracing show GF100 performing up to four

times faster than GT200.

To sustain performance,

a game may use ray

tracing selectively. For

example, rasterization

can be used to perform a

first pass on the scene.

Pixels that are identified

as reflective may be

further processed via ray

tracing. This hybrid

model of rendering

enables fast performance

with great image quality.

0%

50%

100%

150%

200%

250%

300%

350%

400%

GT200 Pathtracing GF100 Pathtracing

GF100 Pathtracing Performance

A Bugatti Veyron rendered with path tracing using NVIDIA OptiX technology. OptiX integrates

easily with game engines, allowing racing games to leverage ray tracing for near-photorealistic

glamour shots in gallery mode.

26

-

20,000

40,000

60,000

80,000

100,000

120,000

140,000

SPH Water

Müller et al.

(2003)

SPH Water

Cryostasis

(2009)

SPH Water

GF100 (2010)

P
a

rt
ic

le
s

SPH Water—Particles Simulated

Smoothed Particle Hydrodynamics (SPH)

Realistic fluid simulations have long been used in film to create novel characters and dramatic effects. T-

1000 in Terminator 2: Judgment Day was created with computer generated “liquid metal.” Simulation of

vast bodies of water was crucial to achieving the climatic shots in 2012. While game designers aspire to

similar effects, the computational complexity of fluid simulations has prevented their use in realtime

applications.

In 2003, Müller et al 2 . adopted smoothed

particle hydrodynamics (SPH), an astrophysics

algorithm, for interactive fluid simulations. Their

initial work demonstrated 5,000 SPH particles,

enough to simulate a pouring glass of water at 5

frames per second. Muller’s SPH algorithm has

since been integrated into the PhysX API. The

first game that made use of PhysX SPH,

Cryostasis, simulated 30,000 water particles at

30 frames per second on the GT200

architecture. Although a technological

breakthrough for its time, the water in Cryostasis

lacked the particle count to achieve convincing fluidity, and the high cost of interoperating with graphics

limited real world performance.

GF100 is the first GPU to deliver the performance required for high fidelity fluid simulations, and together

with an improved SPH solver, enables games designers to incorporate high quality SPH fluid throughout

game environments. GF100 is able to simulate over 128,000 SPH particles per frame—sufficient to

support large volumes of water and a range of fluid based effects. For example, SPH can be used to

model rain, allowing the natural formation of splashes, puddles, and overflow. With different parameters,

2 M. Müller, D. Charypar, M. Gross, Particle-Based Fluid Simulation for Interactive Applications, in Proceedings of ACM SIGGRAPH

Symposium on Computer Animation (SCA) 2003, pp 154-159

0

20

40

60

80

100

120

140

160

SPH Water

Müller et al.

(2003)

SPH Water

Cryostasis

(2009)

SPH Water

GF100 (2010)

F
P

S

SPH Water—Performance

SPH based fluid simulation

GF100 excels in simulating a large number of SPH particles with exceptional performance.

27

SPH can be used for blood, which has higher viscosity and different dripping characteristics. In both

cases, fluid behavior is based on physical models, guaranteeing consistency and realism.

The SPH algorithm typically does not make use of shared memory, which has constrained performance

on last generation architectures. GF100’s robust cache architecture greatly reduces off-chip memory

traffic, allowing large number of particles to be simulated without saturating memory bandwidth. Fast

context switching further reduces simulation overhead. Thanks to these improvements, GF100 is able to

perform SPH simulation together with graphics rendering at over 140 frames per second.

28

NVIDIA 3D Vision SurroundNVIDIA 3D Vision SurroundNVIDIA 3D Vision SurroundNVIDIA 3D Vision Surround

NVIDIA 3D Vision is a combination of high-tech wireless glasses and advanced software that

automatically transforms games (400+ and counting) into full stereoscopic 3D.

Powered by GF100 GPUs in NVIDIA SLI configuration, the upcoming NVIDIA 3D Vision Surround

technology takes 3D gaming to an entirely new level by delivering fully immersive IMAX 3D-like gaming

across three monitors in full stereoscopic 3D.

NVIDIA Surround combines multiple displays to act as one larger display to allow a

panoramic view of full-screen games or your desktop. James Cameron's Avatar
TM

: The Game © Ubisoft 2009

NVIDIA 3D Vision Surround uses up to 746 million pixels per second of rendering horsepower, or 3x

greater than last generation’s extreme gaming setup. With tessellation, compute shaders, and PhysX

enabled, the demand on the GPU is tremendous. GF100 is architected to enable the highest

performance on NVIDIA 3D Vision Surround. GF100’s new ROP subsystem has twice as many ROP

units per partition, allowing multiple displays to be fed concurrently. Its parallel tessellation and raster

engines enable sustained performance in heavily tessellated scenes. And its powerful compute

architecture with fast context switching makes compute operations as lightweight as possible.

Yesterday’s Extreme Gaming requires 2560 x 1600 x 60 = 245 Million pixels/sec of rendering horsepower.

29

Next Generation 3D Vision Surround Gaming requires 1920 x 1080 x 120 x 3 = 746 Million pixels/second

GF100 supports 3D Vision Surround when two or more GPUs are paired in a SLI configuration. 3D

Vision Surround will be supported across three of the same 3D Vision capable LCDs and projectors at

resolutions up to 1920x1080. For those not ready to jump into stereoscopic gaming, NVIDIA Surround

will also be supported in non-stereoscopic 3D at resolutions up to 2560 x 1600 across displays that

share a common resolution.

Bezel Correction

NVIDIA 3D Vision Surround includes controls that allow for the adjustment of the displays to

compensate for monitor bezel gaps, allowing for a more realistic viewing of full-screen games. With

bezel correction, part of the game view is hidden behind the display bezel so that the bezel appears to

be part of the game. This produces a more continuous image across the displays and provides a more

realistic experience. It is similar to looking through a cockpit window where the window frames block

your view.

30

ConclusionConclusionConclusionConclusion

PC gaming has been NVIDIA’s core passion for sixteen years. With GF100, we continue this

commitment to the advancement of 3D graphics and PC gaming.

With up to sixteen tessellation engines and four raster engines, GF100 elevates geometric realism to

new heights. Tessellation and displacement mapping—the key techniques employed in films, becomes a

reality for the first time in PC gaming. Characters with life-like detail, game environments with

unprecedented complexity, that’s what GF100 promises to gamers.

In the pursuit of computational graphics, we have been equally ambitious. GF100 is the world’s first and

only GPU to support C/C++, recursion, and cached read and writes. Together these features enable

game developers to solve the hardest problems of graphics, including ray tracing, order independent

transparency, and physics simulations. Once gamers experience the fidelity and consistency brought by

computational graphics, the representational effects of the past will seem as aged as fixed function

graphics.

Behind all our efforts is the belief that PC gaming is unique. Today’s games are multiplatform by design,

but it is on the PC that they reach their fullest expression. With GF100, we hope to continue to push the

boundaries of PC gaming, and make it the world’s most powerful and dynamic gaming platform.

With the graphics and compute horsepower of GF100, we’ve extended NVIDIA 3D Vision to three

monitors, enabling the most immersive gaming experience possible.

With its amazing performance, groundbreaking geometry engine, and world class architecture for

computational graphics, GF100 represents a landmark for 3D graphics and PC gaming.

31

Notice

ALL INFORMATION PROVIDED IN THIS WHITE PAPER, INCLUDING COMMENTARY, OPINION, NVIDIA DESIGN SPECIFICATIONS,

REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,

“MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR

OTHERWISE WITH RESPECT TO MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF

NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the

consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its

use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications

mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information

previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or

systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, FERMI, and GeForce are trademarks or registered trademarks of NVIDIA Corporation in the

United States and other countries. Other company and product names may be trademarks of the respective companies with which

they are associated.

© 2010 NVIDIA Corporation.

All rights reserved.

