

(X) E

FLEET WEATHER CENTRAL/JOINT TYPHOON WARNING CENTER Guam, Mariana Islands

j.

Area of Responsibility - Joint Typhoon Warning Center, Guam Primary (180° West to Malay Peninsula) Secondary (Malay Peninsula West to 90°E)

U. S. FLEET WEATHER CENTRAL JOINT TYPHOON WARNING CENTER COMNAVMARIANAS BOX 17 FPO SAN FRANCISCO 96630

ALBERT T. BUCKMASTER Captain, United States Navy

COMMANDING

GARY D. ATKINSON Lieutenant Colonel, United States Air Force

DIRECTOR, JOINT TYPHOON WARNING CENTER

STAFF

LCDR Leo H. Craiglow, Jr., USN LCDR Gordon W. Safley, USN LT Stephen G. Colgan, USN LT Orlin R. Scrivener, USN CAPT Charles R. Holliday, USAF CAPT Dennis M. Koyama, USAF 1LT J. Francis Pratte, USAF MSGT Gerald E. Page, USAF SSGT Earl W. Schneider, Jr., USAF SSGT H. Ronald Wells, USAF AG3 Lawrence E. McMullen, USN SGT David A. Dow, USAF SGT Calvin L. Hyer, USAF SGT Edgar C. Riberdy, USAF AGAN Paul M. Cooper, USN AGAN Joseph Onder, USN AGAN Branko Pavlovic, USN Mrs. Judy L. Hudson

CONTRIBUTOR

CAPT Charles P. Arnold, Jr., USAF, Det 1, 1WW

1973 ANNUAL TYPHOON REPORT

FOREWORD

The body of this annual report summarizes western North Pacific tropical cyclones. Annex A summarizes tropical cyclones in the central North Pacific from 180° eastward to 140°W, and Annex B summarizes tropical cyclones in the Bay of Bengal. The eastern North Pacific tropical cyclone summary has been discontinued beginning with the 1973 season; the U.S. National Weather Service will assume responsibility for publication of this summary in <u>Mariner's Weather Log</u> and <u>Pilot Charts.</u>

Fleet Weather Central/Joint Typhoon Warning Center (FLEWEACEN/JTWC), Guam has the responsibility to:

1. Provide warnings to U.S. Government agencies for all tropical cyclones north of the equator and west of 180° longitude to the coast of Asia and the Malay Peninsula;

2. Provide warnings for the area north of the equator from the Malay Peninsula west to 90°E;

 Determine tropical cyclone reconnaissance requirements and assign priorities;

4. Conduct investigative and post-analysis programs including preparation of the Annual Typhoon Report; and

5. Conduct tropical cyclone analysis and forecasting research.

Asian Tactical Forecast Center, Fuchu (formerly Air Force Asian Weather Central), coordinating with the Naval Weather Service Environmental Detachment, Yokosuka, is designated as the alternate JTWC in case of the incapacitation of FLEWEACEN/ JTWC Guam.

The JTWC is an integral part of FLEWEACEN Guam and is manned by four officers and five enlisted men each from the Navy and Air Force. The senior Air Force officer is designated as Director, JTWC.

The western North Pacific Tropical Cyclone Warning System consists of the Joint Typhoon Warning Center and the U.S. Air Force 54th Weather Reconnaissance Squadron stationed at Andersen Air Force Base, Guam.

The Central Pacific Hurricane Center, Honolulu, is responsible for the area from 180° eastward to 140°W and north of the equator. Warnings are issued in coordination with FLEWEACEN Pearl Harbor and the Air Force Central Pacific Forecast Center, Hickam Air Force Base, Hawaii.

CINCPACFLT, CINCUSARPAC, and CINCPACAF are responsible for further dissemination and, if necessary, local modification of tropical cyclone warnings to U.S. military agencies.

TABLE OF CONTENTS

CHAPTER I	OPERATIONAL PROCEDURES	1
	2. Analyses and Data Sources	1
	3. Forecast Aids	ĩ
	4. Forecasting Procedures	2
	5. Warnings 6. Prognostic Reasoning Message	2 2
	7. Tropical Weather Summary	2
	8. Tropical Cyclone Formation Alert	2
CHAPTER II	RECONNAISSANCE AND COMMUNICATIONS 1. General	7
	 General Reconnaissance Responsibility and Scheduling 	3 3
	3. Aircraft Reconnaissance Evaluation Criteria	3
	4. Aircraft Reconnaissance Summary	4
	5. Radar Reconnaissance Summary	5
	 Satellite Reconnaissance Summary Communications 	6 7
	7. Communications	
CHAPTER III	RESEARCH SUMMARY	
	1. General	9
	2. Investigation of Gust Factors in Tropical Cyclones	9
	 Intensity Forecasting Using the TYFOON Analog Computer Program 	9
	4. Evaluation of the Extrapolation Feature of the TYFOON	5
	Analog Computer Program	9
	5. A Comparison of the Sensitivity of Two Similar Objective Forecast Techniques	• •
	6. Interannual Variability of Rainfall and Tropical Cyclone	10
	Activity in the Western North Pacific	10
CHAPTER IV	SUMMARY OF TROPICAL CYCLONES	
	1. General Resume 2. Individual Typhoons	11 19
	2. Individual Typhoons page page	19
	Typhoon ANITA 19 Typhoon LOUISE 35	
	Typhoon BILLIE 23 Typhoon MARGE 37	
	Typhoon DOT 25 Typhoon NORA 39	
	Typhoon ELLEN 29 Typhoon OPAL 43 Typhoon GEORGIA - 31 Typhoon PATSY 45	•
	Typhoon GEORGIA - 31 Typhoon PATSY 45 Typhoon IRIS 33 Typhoon RUTH 47	
	3. Tropical Cyclone Center Fix Data	48
CHAPTER V	SUMMARY OF FORECAST VERIFICATION DATA	£ 0.
	 Comparison of Objective Techniques Summary of Tropical Cyclone Formation Alerts 	69 69
	3. Annual Forecast Verification	70
	4. Summary of Individual Tropical Storm Verification	74
	5. Tropical Storm and Depression Data	75
	6. Typhoon Data	77
ANNEX A	SUMMARY OF TROPICAL CYCLONES IN THE CENTRAL NORTH PACIFIC	
		83
	2. Individual Cases	83
	3. Hurricane Tracks	84
	Hurricane DOREEN 84 Hurricane KATHERINE 85	
	4. Center Fix Data - Hurricanes	86
	5. Position and Verification Data - Hurricanes	87
	NAV OF BENGLI EDODICLI CVCLOVEC	
ANNEX B	BAY OF BENGAL TROPICAL CYCLONES 1. Summary of Data	89
	2. Tropical Cyclone Tracks	90
	page page	
	Cyclone 33-73 90 Cyclone 37-73 92	
		94
	 Center Fix Data Position and Verification Data 	94
APPENDIX	ABBREVIATIONS, DEFINITIONS, AND DISTRIBUTION	~-
	 Abbreviations Definitions 	97 07
	 Definitions Distribution 	98

1. GENERAL

Services provided by the Joint Typhoon Warning Center (JTWC) include forecasts of tropical cyclone formation, location, intensity, direction and speed of movement, and horizontal extent of critical wind speeds. This information was disseminated in 1973 by: (1) Tropical Cyclone Formation Alerts issued when formation of a tropical cyclone was anticipated; (2) Tropical Cyclone Warnings issued four times daily whenever a significant tropical cyclone was observed in the JTWC primary area; and (3) Tropical Cyclone Warnings issued twice daily whenever a significant tropical cyclone was observed in the JTWC secondary area.

FLEWEACEN Guam provides manual and computerized meteorological/oceanographic products for the JTWC. Communications support is furnished by the Nimitz Hill Message Center of the Naval Communications Station, Guam.

2. ANALYSES AND DATA SOURCES

a. FLEWEACEN GUAM ANALYSES:

(1) Surface mercator analysis, Northern and Southern Hemispheres, western Pacific and Indian Ocean areas; 0000Z, 0600Z, 1200Z, and 1800Z.

(2) Gradient streamline analysis of Asia and the western Pacific; 0000Z and 1200Z.

(3) Surface meso-analysis of the South China Sea region; 00002 and 12002.

(4) Composite surface analysis of the Indian Ocean area; twice daily.

(5) Sea surface temperature charts; daily.

b. JTWC ANALYSES:

(1) Gradient level (3,000 feet) streamline analysis (south of 20°N) and isobaric analysis (north of 20°N); 0000Z and 1200Z.

(2) 700-mb and 500-mb, contour and streamline analysis; 00002 and 12002.

(3) A composite upper tropospheric streamline analysis utilizing rawinsonde data from 250-mb to 150-mb and AIREPS at or above 29,000 feet; 00002 and 12002.

(4) Reconnaissance data. Observations from weather reconnaissance aircraft are plotted on large-scale sectional charts.

(5) Time cross sections of selected tropical stations.

(6) Additional and more frequent sectional analyses similar to those above during periods of tropical cyclone activity. c. SATELLITE DATA:

Satellite data, especially DMSP (formerly DAPP) satellite imagery, played a major role in the early detection of tropical cyclones in 1973. This aspect, as well as applications of satellite data to tropical cyclone tracking, is discussed in Chapter II.

d. RADAR:

Land radar reports, when available, were used for tracking tropical cyclones during the 1973 season. Once a storm moved within range of a land radar site, reports were usually received hourly. Use of radar during 1973 is treated in Chapter II.

e. COMPUTER PRODUCTS:

Use of the varian plotter by the FLEWEACEN Guam computer center during 1973 eliminated a significant portion of the JTWC hand plotting effort. Varian charts are produced routinely at synoptic times for the surface, 850-mb, 700-mb, and 500-mb levels. Additionally, a chart of the upper tropospheric circulation is produced. This chart uses 200-mb rawinsonde data and AIREPS above 33,000 feet and within six hours of the 00002 and 1200Z synoptic times. Data not in the proper format for the computer are hand plotted on the charts. These include pibal gradient level winds, low cloud movement, and missing or late synoptic reports necessary for a detailed analysis.

In addition, the standard array of synoptic-scale computer analyses and prognostic charts from the Fleet Numerical Weather Central at Monterey, California are available.

JTWC utilized extensively the FLEWEACEN Guam computer center for objective typhoon forecasts and for statistical post analysis.

3. FORECAST AIDS

a. CLIMATOLOGY:

Various climatological publications listed in the Annual Typhoon Report, 1972 (FWC/JTWC) were utilized in addition to those received recently which include:

(1) Tropical Cyclone Climatology for the China Seas and Western Pacific from 1884 to 1970 (Royal Observatory, Hong Kong, 1972).

(2) North Pacific Tropical Cyclone Vector Mean Charts (Crutcher, H. L., 1973).

(3) North Indian Tropical Cyclone Vector Mean Charts (Crutcher, H. L. and Nicodemus, M. L., 1973).

(4) A Climatology of Typhoon and Tropical Storm Tracks Arranged by Month and Point of Origin (Ocean Data Systems, Incorporated, 1973). (5) Tropical Cyclones of the North Indian Ocean (Sadler and Gidley, 1973) ENVPREDRSCHFAC Tech Paper No. 2-73.

(6) The Typhoon Analog Computer Program (TYFOON) described in the 1972 Typhoon Analog Program (TYFOON-72).

b. EXTRAPOLATION:

Extrapolation of storm movement using 12-hour mean speed and direction was the most reliable objective method for both 24- and 48-hour forecasts. Forecasts are determined by simple linear extrapolation using the 12-hour old best track position and the current warning position.

c. OBJECTIVE TECHNIQUES:

During 1973, the following objective forecasting methods were employed:

(1) ARAKAWA - Regression forecasts derived from surface pressure grid values.

(2) MOHATT (Modified HATRACK) -Steering by geostrophic winds derived from smoothed height fields at 850-mb and 700-mb levels modified by 12-hour history inputs.

(3) TYMOD - Program selects best steering level using global band upper air fields (GBUA) from FLENUMWEACEN Monterey modified by 12- or 24-hour history inputs.

(4) TYFOON - Analog weighted mean track.

4. FORECASTING PROCEDURES

a. TRACK FORECASTING:

An initial track based on persistence blended subjectively with climatology is developed for a 3-day period. This initial track is subjectively modified by the following:

(1) Recent steering is evaluated by considering the latest upper air analyses as representative of the average upper air flow over the past 24 hours. (The latest upper air analyses are about 12 hours old, thus roughly representing the mid-point of the last 24-hour time interval). By this technique, actual past 24hour movement serves to indicate the best steering level as well as the effectiveness of steering.

(2) Objective techniques are considered, with the techniques being ranked according to their past performance on similar storms.

(3) Twenty-four hour height change analyses are evaluated for forecast track/ speed changes (Hoover, Devices for Forecasting Movement of Hurricances, Manuscript of U.S. Weather Bureau, 1957).

(4) The prospects of recurvature are evaluated for all westward moving storms. The basic requisites for this evaluation are accurate continuity on midlatitude troughs and numerical progs to indicate changes in amplitude or movement. Relative position and strength of the subtropical ridge and northward tendency due to internal forces are also important considerations.

(5) Finally, a check is made against climatology to ascertain the likelihood of the forecast. If the forecast track is climatologically unusual, a reappraisal of the forecast rationale is conducted and adjustment made if warranted.

b. INTENSITY FORECASTING:

For intensity forecasting, heavy reliance is placed on short term trends, climatology, and the satellite interpretation model developed by Mr. Vernon Dvorak of the National Environmental Satellite Service. After these initial inputs, further factors considered are upper tropospheric evacuation and possible terrain influence.

5. WARNINGS

Tropical cyclone warnings are numbered sequentially. If warnings are discontinued and the storm reintensifies, as Typhoons Dot, Ellen, and Patsy did this year, warnings are numbered consecutively from the last warning issued. Amended or corrected warnings are given the same number as the warnings they modify plus a sequential alphabetical designator to indicate it is an amended warning. Forecast positions are issued at 00002, 06002, 12002, and 18002. The forecast periods are 12-hr and 24-hr for tropical depressions and 12-hr, 24-hr, 48-hr, and 72-hr for typhoons and tropical storms.

Forecast periods are stated with respect to warning time. Thus, a 24-hour forecast verified 26 1/2 hour after the aircraft fix data, 30 hours after the latest surface synoptic chart, and 30 or 36 hours after the latest upper air charts.

Warning forecast positions are verified against the corresponding post analysis "best track" positions. A summary of results from 1973 is presented in Chapter V.

6. PROGNOSTIC REASONING MESSAGE

Whenever warnings on typhoons and tropical storms are being issued, a prognostic reasoning message is released at 0000Z and 1200Z. This message is intended to provide the field meteorologist with the reasoning behind the latest JTWC forecasts.

7. TROPICAL WEATHER SUMMARY

This message is issued daily from 1 May through 31 December and otherwise when tropical cyclone formation is forecast or observed. It is issued at 0600Z and describes the location, intensity, and likelihood of development of all tropical low pressure areas including upper tropospheric lows and significant cloud masses detected by satellite.

8. TROPICAL CYCLONE FORMATION ALERT

Alerts are issued when the formation of a tropical cyclone is anticipated. These messages are issued as required and are valid for up to 24 hours unless cancelled, superseded, or extended.

1. GENERAL

The Tropical Cyclone Warning Service depends on reconnaissance to fix the location and determine the intensity of tropical cyclones. Due to the vastness of the warning area and the scarcity of reporting stations, land and ship reports are not sufficient for these determinations. In the past, aircraft reconnaissance was used almost exclusively to determine position and intensity. With the increasing satellite capability during the last several years, satellite derived data have assumed greater importance. During the past season Defense Meteorological Satellite Program (DMSP) data were used for positioning and intensity estimates approximately onefourth of the time.

2. RECONNAISSANCE RESPONSIBILITY AND SCHEDULING

Aircraft weather reconnaissance is performed in the JTWC area of responsibility by the 54th Weather Reconnaissance Squadron (54 WRS). The squadron, equipped with nine WC-130 aircraft, is located at Andersen Air Force Base, Guam. The JTWC reconnaissance requirements are sent daily to the Tropical Cyclone Reconnaissance Coordinator. These requirements include areas to be investigated, forecast position of cyclones to be fixed, and standard synoptic tracks to be flown.

Four fixes per day, at six-hourly intervals, are required (CINCPACINST 3140.1L) on all significant tropical cyclones in the JTWC primary area of responsibility (see inside front cover). Two fixes per day are required in the secondary area. During the past season, extensive use was made of the Selective Reconnaissance Program (SRP) to fulfill these requirements.

The SRP was implemented in 1972 to alleviate pressure on overtaxed aircraft reconnaissance assets. The SRP attempts to optimize the entire reconnaissance system by using each reconnaissance platform (aircraft, satellite, and surface radar) under optimum conditions whenever possible. Various factors are considered in selecting which reconnaissance platform to use for any warning, e.g., the cyclone's location and stage of development, the DMSP satellite times and areal coverage, availability of land radar reports, the cyclone's threat to specific U.S. interests, aircraft operational limitations (e.g., one fix versus two fix missions), etc.

Aircraft reconnaissance continues to be the best method for determining tropical cyclone position, intensity, and structure (i.e., radius of wind speeds of various intensities). Only the aircraft can provide direct measurements of height, temperature, and wind at flight altitude, sea level pressure, and other parameters. The aircraft also provides much greater flexibility in time and space compared to the other platforms. DMSP satellites provide day and night coverage of the JTWC area of responsibility. DMSP satellite imagery provides estimates of cyclone positions and, for daytime passes, estimates of intensities using the Dvorak technique (NOAA TECHNICAL MEMO-RANDUM, NESS-45). In addition, satellite data used in conjunction with conventional data can provide estimates of the radii of various wind speeds. The primary disadvantages of satellites is that the coverage is often not timely for warning purposes and the satellite provides no direct measurements of parameters closely related to tropical cyclone intensity. Land radar provides useful positioning data when tropical cyclones are located near the Republic of the Philippines, Hong Kong, Taiwan, or Japan (including the Ryukyus or other islands). It does not, however, provide measurements or estimates of tropical cyclone intensity or structure. The following sections summarize the JTWC utilization of the various reconnaissance platforms during 1973.

3. AIRCRAFT RECONNAISSANCE EVALUATION CRITERIA

The following criteria are used to evaluate aircraft reconnaissance support to the JTWC.

a. Six-Hourly fixes - To be counted as made on time, a fix must satisfy the following criteria:

(1) Made not earlier than 1/2 hour before to 1 hour after scheduled fix time.

(2) Aircraft in area requested by scheduled fix time, but unable to locate a center due to:

(a) Cyclone dissipation; or

(b) rapid acceleration of the cyclone away from the forecast position.

(3) If penetration not possible due to geographic or other flight restriction, radar fixes are acceptable.

b. Levied 6-Hourly fixes made outside the above limits are scored as follows:

(1) Early - fix made within the interval from 3 hours to 1/2 hour prior to levied fix time. No credit given for early fixes made within 1 1/2 hours of the previous fix.

(2) Late - fix made within the interval from 1 hour to 3 hours after levied fix time.

c. When 3-Hourly fixes are levied, they must satisfy the time criteria of paragraph one in order to be classified as made on time. Three-Hourly fixes made that do not meet the above criteria are classified as follows:

(1) Early - fix made within the interval from 1 1/2 hours to 1/2 hour prior to levied fix time.

(2) Late - fix made within the interval from 1 hour to 1 1/2 hours after levied fix time. d. Fixes not meeting the criteria of paragraphs one, two, and three are scored as missed. Requirements levied with less than 24 hours notification, if missed, are counted as unfulfilled. If the squadron is in an alert posture, the fix is scored as missed vice unfulfilled.

e. Levied fix time on an "as soon as possible" fix is considered to be:

(1) Sixteen hours plus estimated time enroute after an alert aircraft and crew are levied; or

(2) Four hours plus estimated time enroute after the DTG of the message levying an ASAP fix if an aircraft and crew, previously alerted, are available for duty.

f. Investigatives - To be counted as made on time, investigatives must satisfy the following criteria:

(1) Aircraft must be within 250nm of the levied investigative point by the specified time.

(2) The specified flight level must be flown.

(3) Reconnaissance observations are required every half-hour in accordance with AWSM 105-1. Turn and mid-point winds shall be reported on each full observation when within 250nm of the investigative point.

(4) Observations are required in all quadrants unless a concentrated investigation in one or more quadrants has been specified.

(5) Specified investigative track must be flown.

(6) Aircraft must contact JTWC before terminating the investigative.

g. Investigatives not meeting the time criteria of paragraph f. will be classified as follows:

(1) Late - aircraft is within 250nm of the investigative point after the specified time, but prior to the specified time plus 2 hours.

(2) Missed - aircraft fails to be within 250nm of the investigative point by the specified time plus 2 hours.

h. Requirements levied as "resources permitting" are not evaluated.

4. AIRCRAFT RECONNAISSANCE SUMMARY

There were 362 required six-hourly fixes in 1973, representing a record low since establishment of the JTWC. Of the 362 required fixes, 227 or 62.4% were levied upon aircraft. The remaining required fixes were satisfied by satellite, radar, extrapolation, or synoptic data. The SRP made it possible, when there was a choice between aircraft, radar, or satellite, to reduce the aircraft levy. By employing SRP, 45 fixes were levied upon satellite or radar, a savings of 16.5% in the use of aircraft. In addition to the 227 fixes, 28 investigatives were also levied on aircraft. This total aircraft levy is only 38% of the average levy from 1965 through 1973. The mean deviation from the best track for all aircraft fixes was 16nm. This is a 2nm decrease from the average deviation for the past 3 years.

The total of 227 fixes levied does not include intermediate fixes, which averaged 131 for the past two years. The decrease in the number of intermediate fixes -- 182 in 1971, 81 in 1972, and none in 1973 -and investigatives -- 179 in 1971, 81 in 1972, and 28 in 1973 -- during the past three years resulted from a CINCPAC request to reduce intermediate fixes and the application of the DMSP satellite data (Section 6).

Table 2-1 summarizes reconnaissance effectiveness. Using the scoring criteria in Section 3, the 13 missed plus unfulfilled fixes, or 5.7% of the total levied fixes, represent a significant decrease from the previous two year average of 13.9%. The percentage of late and early fixes rose from 10.6% in 1972 to 15.3% in 1973.

TABLE 2-1. AIRCLEFFECTIVENESS	RAFT REC	ONNAISSAI	NCE
		ER OF D FIXES	PERCENT
Completed on time	1	79	79.0
Early		4	1.7
Late	:	31	13.6
Missed	:	11	4.8
Unfulfilled		2	0.9
	2:	27	100.0
LEVIED	vs. MISSED	FIXES	
	LEVIED	MISSED	PERCENT
AVERAGE 1965 - 1970	507	10	2.0
1971	802	61	7.6
1972	624	126	20.2
1973	227	13	5.7

Figure 2-1 relates the number of fixes missed/unfulfilled to the monthly fix requirements and multiple-storm days, i.e., a day when two or more storms were active at the same time. The 82 levied fixes in October account for 36% of the total levied fixes. October also included 42% of the multiple storm days and 30% of the missed fixes as compared to August which had 22% of the storm days, but 46% of the missed fixes. August, however, had only 21% of the levied fix requirements.

12

Figure 2-2 compares the percentage of fixes and investigatives missed/late versus the number of storms per day. The 26 days with 2 or more storms represents only 35% of the calendar days of warning; however, they encompass 75% of the missed/late fixes and investigatives. This indicates, that even in a light season, concurrent storms can overtax current aircraft reconnaissance capabilities.

5. RADAR RECONNAISSANCE SUMMARY

A total of 419 radar reports of tropical cyclones were received during the 1973 season, 409 from land stations, 3 from ships, and 7 from aircraft. This is a significant decrease from 1972 when over 700 radar reports were received. There are two primary reasons for this decrease, the large decrease in tropical cyclone activity from 1972 to 1973 and the significant reduction of military activities in the western North Pacific and South China Sea areas.

To evaluate the 1973 data in terms of quality, the land radar reports received were grouped into three accuracy categories, a method provided for in the WMO code. The categories used are defined as good (less than 6nm), fair (6-20nm), and poor (greater than 20nm). Using this stratification, 32% of the reports were classified as good, 40% as fair, and 28% as poor. In addition to the above accuracy classifications which are derived from the radar operations, all land radar reports were compared to the JTWC best track positions and deviations computed. The mean deviation was 12nm, a 29% decrease from the average of 17nm for the previous three years.

The radar sites that provide some of the most significant coverage to JTWC are those whose surveillance borders within the Air Weather Service no-fly zone. The Royal Observatory at Hong Kong provided valuable positioning information on 7 tropical cycyclones during 1973 in which geographical restrictions existed to reconnaissance aircraft. Other locations which play similar roles are those situated on western Taiwan and Korea, although by the time a tropical cyclone reaches the latitude of Korea its radar presentation is often quite deteriorated. A key station for tracking tropical cyclones in the northwestern South China Sea during the Vietnam conflict was the Monkey Mountain site at Danang. The loss of observations from this site last season proved quite critical during typhoon Anita's trek into the Gulf of Tonkin this past July, adversely affecting units of the 7th Fleet.

The receipt of land radar reports from national meteorological and AC&W sites in the Republic of the Philippines was greatly improved in 1973 compared to previous years. This improvement is attributed to recent improvements in the radar network, better communications, and closer liaison between U.S. military and Philippine officials.

Of 17 tropical cyclones which came within the surveillance range of the Far East radar networks, four typhoons Ellen, Billie, Nora, and Dot accounted for the majority of radar reports. Each of these storms was characterized during periods of observation by slow movement allowing for numerous position reports. Billie while passing through the southern Ryukyus was under coverage of 6 radars simultaneously for a 12 hour period. Radars of National Meteorological Services accounted for 70% of the 419 observations received at the JTWC for tropical cyclones during 1973. AC&W sites furnished 23% and Air Weather Service radars, contributed 8%.

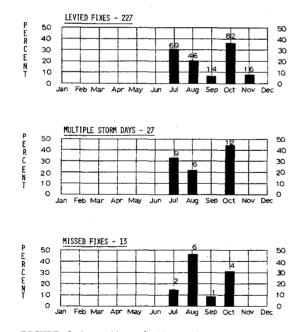


FIGURE 2-1. Missed fixes for 1973 compared to monthly fix requirements and multiple storm days.

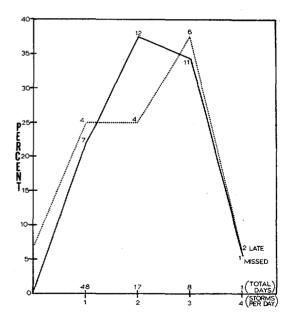


FIGURE 2-2. Percentage of fixes and investigatives missed/late vs. storms per day.

6. SATELLITE RECONNAISSANCE SUMMARY

Satellite reconnaissance information is provided to the JTWC by the Air Force Defense Meteorological Satellite Program (DMSP) site collocated with the JTWC. This site was established in May 1971. During the 1971 storm season, DMSP data were available to the JTWC forecasters but were not authorized by CINCPAC as a substitute for aircraft fixes. Coincident with the site's establishment was the implementation of a Technique Development Program (TDP) designed to determine the potential of DMSP data as an alternative reconnaissance platform. This was necessary as aircraft resources were being reduced and it was possible that the remaining reconnaissance fleet would be subject to further reductions. Hence the SRP concept was introduced. Under the SRP, the JTWC would selectively levy reconnaissance requirements on aircraft, high resolution satellites and land radar with the satellites expected to fulfill an increasingly important role.

By the end of 1971, the TDP had estab-lished the viability of satellite derived storm positions and intensity estimates. Plans were then made to implement the SRP. During 1972, techniques used to position tropical cyclones and estimate their intensities from DMSP data were further refined. An organized approach to daily decision making on the use of DMSP data in lieu of aircraft was implemented beginning with Typhoon Phyllis in July 1972. Factors such as satellite coverage of the storm, timeliness of the DMSP data, and quality of the position were considered in this decision During the remainder of 1972, saprocess. tellite fixes were levied in lieu of aircraft 12% of the time. During 1972, the Guam site provided the majority of sate1lite data used operationally by the JTWC. Data were received from other Pacific DMSP sites and the Air Force Global Weather Central (AFGWC) but there was no formal program to rely on these data.

Prior to the start of the 1973 season, an SRP network was established consisting of Guam; Fuchu, Japan; and Nakon Phanom (NKP), Thailand (primary sites); and Kadena, Okinawa; Osan, Korea; and AFGWC serving as backup sites. The network was designed to provide timely DMSP data to the JTWC through the Guam site which served as clearing house and quality control monitor. The Guam site was also responsible to the JTWC for forecasting which of the primary sites or combination of sites would receive usable fixes. Regardless of whether such fixes were levied in lieu of aircraft, the sites affected would be notified by message to pass the required information to the JTWC. As the data were received, processed, and analysed, data were first passed by phone to the Guam site and followed up by message to the JTWC.

There are six position classes referred to by Position Code Numbers (PCN). The PCN identifies the method of gridding and the type of circulation center; it also has associated with it a set of statistics related to its accuracy. Table 2-2 provides the methods of center determination and gridding for each PCN. The mean error, standard vector deviation, and sample size are given for the 3 major classes i.e. eye, well-defined circulation center, and poorlydefined circulation center. While no statistically significant difference presently exists between geographical and ephemeris gridded positions, it was decided to retain the gridding method as part of the PCN stratification to provide a check on the accuracy of ephemeris gridding and to isolate any problems growing out of either geographical or ephemeris gridding in the future.

CYC	BLE 2-2. GUAM E CLONE POSITIONIE 972)			
PCN	METHOD OF CENTER DETERMINATION/GRIDDING	MEAN ERROR (NM)	STANDARD VECTOR DEVIATION (NM)	SAMPLE SIZE
1	Eye/Geography	15.5 (14.7)	1	
2	Eye/Ephemeris	12.2 (14.7)	17.8 (17.3)	40 (157)
3	Well Defined CC/Geography	18.9 (21.0)	22 2 424 22	
4	Well Defined CC/Geography	(0.9 (21.V)	22.9 (26.3)	86 (139)
5	Poorly Defined CC/Geography	•• • ••• •		
6	Poorly Defined CC/Geography	39.8 (30.2)	54.2 (36.6)	46 (294)
	Nautical Miles Circulation Center			

The 1972 figures which serve as the standard are given in parentheses. Table 2-3 shows corresponding 1973 figures for NKP and Fuchu respectively. Only PCN's of 1 through 4 are considered as quality fixes, i.e. location accuracy comparable on the average to that expected from the aircraft. It should be noted that only 31% of the positions made during 1973 by the primary DMSP sites were of PCN's 5 or 6, a significant reduction from 1972 when 50% of the positions were classified in the poorly defined category.

With only one operational satellite during the early part of the 1973 season (July and August), satellite coverage during the period 5 1/2 hours before to 1/2 hour after warning time was available for 52% of the warnings. However, during the last part of the season (September, October, and November) with two functional satellites, 87% of the warnings had satellite coverage available during the same time

TABLE 2-3. DMSP TROPICAL CYCLONE POSITIONING STATISTICS 1973

NAKON PHANOM, THAILAND

<u>PCN</u>	MEAN ERROR (NM)	STANDARD VECTOR DEVIATION (NM)	SAMPLE SIZE
1&2	16.8	20.0	47
364	19.1	25.4	62
5&6	48.1	66.3	85

FUCHU, JAPAN

PCN	MEAN ERROR (NM)	STANDARD VECTOR DEVIATION (NM)	SAMPLE SIZE
182	15.4	17.7	37
3&4	20.9	25.0	75
586	36.2	51.4	26

period. For 24% of the 390 warnings issued by the JTWC, both satellite coverage and timeliness of the data were met simultaneously. In this context, timeliness is defined as having DMSP satellite data with nodal times of 1 1/2 to 3 hours (descending node) or 1 3/4 to 3 hours (ascending node) prior to warning time. When quality PCN's are also stipulated, it was found that for only 14% of the warnings were coverage, timeliness, and quality PCN forecast to occur. When the three criteria given above are anticipated, the forecast is referred to as SRP quality. The verification rate for SRP quality forecasts during the season was 90%. The actual use rate of satellite as the basis for warnings was considerablylarger than the 14% which were forecast to be of SRP quality. Altogether, 27% of the JTWC warnings were based on satellite data. Of the forecast SRP quality fixes, 25% were levied equating to 13% of the satellite fixes used for warnings. The remaining 87% of the satellite fixes for warnings consisted of non-SRP quality and some addi-tional SRP quality which were forecast, not levied, but subsequently used. A summary of these SRP statistics is given in Table 2-4.

There were a wide variety of satellite products available from the SRP network during the 1973 season both for real-time analysis by the individual sites and postanalysis conducted by the Guam site and the JTWC. Historically, the types of data from

TABLE 2-4. SELECTIVE PROGRAM SUMMARY	RECONNAISS	ANCE
PARAMETERS	RATIO	PERCENT
Number of cases where there was DMSP coverage of storm and timeliness for use in warning/total number of warnings issued	95/390	24
Number of cases where there was coverage of storm, timeliness of data, and PCN < 4 (SRP Quality foreCasts made)/total number of warning issued	56/390	14
Number of SRP quality forecasts levied/number of SRP quality forecasts made	14/56	25
Number of SRP quality fore- casts used as basis for warnings/number of warnings based on satellite	14/107	13
Number of warnings based on satellite/total number of warnings issued	107/390	27

PARAMETER	VISU	AL	INFR	ARED
**	VHR	HR	WHR	IR
Resolution (nautical miles)	0.33	2.0	0.5	2.0
Bandwidth (micrometers)	0.4-1.1	0.4-1.1	8.0-13.0	8.0-13.0
Equivalent blackbody				
temperature (°Kelvin)			217-307	210-310

the DMSP satellites have remained essentially unchanged during the past three years. Satellite meteorologists at the SRP network sites had available Very High Resolution daytime and nighttime infrared (WHR), and High Resolution daytime and nighttime visual (HR) and infrared (IR). Table 2-5 provides the imagery data characteristics.

During daytime, VHR along with IR are the primary data used for positioning and intensity analysis. In addition, visual and IR data enhancement techniques have been developed which often permit the analyst to locate the circulation center when the primary data alone would result in a poorly defined center. Likewise, nighttime position can often be classified as eye fixes or well defined centers as a result of having HR data from moonlight available. Marginal eye centers or well defined centers not visible on WHR can frequently be determined with as little illumination as that provided by a half-moon.

Satellite data are playing an increasingly larger role in tropical cyclone reconnaissance. For example, the operational use of DMSP data has produced a significant decrease in the number of aircraft investigative flights flown. For the two years preceeding the establishment of the SRP network (1970 - 1971), the ratio of investigative flights flown to the number of storms was 5.5:1, while for 1973 this ratio was reduced to 1.2:1.

7. COMMUNICATIONS

a. AIR TO GROUND

Aircraft reconnaissance data are normally received by the JTWC via direct phone patch through Andersen, Clark, or Fuchu aeronautical stations. Under degraded propagation conditions, data can be intercepted by a weather monitor located near these stations and relayed by AUTOVON or teletype to the JTWC.

Average communications delays for the preliminary and complete center data messages for past years are compared with 1973 delays in Figure 2-3. Delay times are defined here as the difference between the fix time and the time of message receipt at the JTWC. The preliminary fix message was introduced in 1972 to reduce delays in the receipt by the JTWC of vital position and intensity information. After two years of use, it has proved its effectiveness and permits a significant amount of extra time to be spent in forecast preparation. The 48 minute average delay in the complete center data message during 1973 shows an The increase of about 14 minutes over 1972. This increase is attributed to several circumstances which prevailed during the 1973 season: (a) more emphasis was placed upon receipt of the preliminary message during 1973, lessening the need for passing the complete center message to the JTWC as quickly as before, (b) messages were more carefully prepared, and (c) a larger share of the messages were passed through Clark aeronautical station than in previous years due to location of cyclone tracks. This routing of phone patches through Clark places more stringent requirements on radio-telephone quality and has been

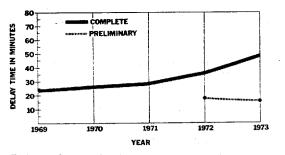


FIGURE 2-3. DELAY TIMES - Receipt of eye data message.

noted in previous years to result in longer delays than a direct phone patch through Andersen aeronautical station.

Table 2-6 depicts the complete center data messages received over one hour after fix time and after warning time. The growth of the percentages in 1973 can be partially attributed to the above mentioned reasons and the increase in the percentage of late fixes (section 4). Nevertheless, only 3% of the messages were delayed more than 80 minutes.

TABLE 2-6. 1 STATISTICS FO COMPARED WITH	DR A	IRCR	AFT I	RECO			CE
	1967	1968	1969	1970	<u>1971</u>	<u>1972</u>	<u>1973</u>
A COMPLETE FIX MESSAGES DELAYED OVER ONE HOUR	16	4	3	5	6	6	20
% COMPLETE FIX MESSAGES RECEIVED AFTER WARNING TIME	3.1	0.7	0.6	0.9	2.1	5.5	10.1

b. SELECTIVE RECONNAISSANCE PROGRAM

With the advent of the SRP, the importance of radar and satellite fix data has increased from previous years; there-fore, a review of the associated communications delays follows. A sampling of radar messages resulted in a considerable variation of receipt delays. Delay times are defined as the differences between the observation time and the time of message entry into the AWN. Several sources were consistently associated with small delay times, while the receipt time of others were highly erratic. AC&W radar site data from the Republic of the Philippines were normally received within 35 minutes. Data from nationally operated radars of the Republic of China, Hong Kong, Japan, and Republic of the Philippines were delayed 20 to 50 minutes depending on country of origin. In the worst cases, the JTWC still received the messages within 90 minutes of observation time. Tropical cyclone radar data is routed to the JTWC over the AWN through the use of a special high precedence collective indicator. Additionally, the AC&W radar messages were phoned to the JTWC from Clark AB, thus providing the in-formation somewhat earlier than indicated.

Over 750 position and intensity estimates were derived from Air Weather Service (AWS) DMSP sites and the aircraft carrier CONSTELLATION during 1973. The data from the AWS DMSP sites were immediately passed by AUTOVON followed by an AWN message. AUTOVON provided rapid communication of the essentials and a brief two-way discussion of the data (a benefit not possible with message). Average delay times of 51 minutes for telephone and 83 minutes for message resulted from a sampling of the last six storms. These delay times are the difference between satellite equator-crossing time and the time of the telephone call or entry of the message into the AWN. systematic differences in data processing time among the DMSP sites introduces small variations in the above figures which are independent of communications and analysis time. However, it is important to note, that on the average, the data were available to the JTWC within one hour after equator-crossing time.

c. OUTGOING COMMUNICATIONS

Messages originating at the JTWC are handled by the Nimitz Hill Message Center Naval Communications Station, Guam (NHMC). By special agreement, typhoon and tropical storm warnings are placed in the communications system before pending imme-diate precedence traffic. Manual processand the precedence of a though the warning had flash precedence. Tropical depression warnings are normally handled as immediate messages. Warnings were delivered to the message center an average of 23 minutes before warning time (Figure 2-4). Yearly averages of the parameters described are plotted relative to warning time. The length of the vertical bars represents the average difference between the time typhoon and tropical storm warnings were passed to the NHMC and the time of transmission. Note that the handling time decreased from 31 minutes in 1972 to 15 minutes in 1973. Handling times for tropical depression warning (not shown) were reduced from 51 minutes in 1972 to 25 minutes in 1973.

The dramatic improvement in handling time during 1973 allowed the average message to be placed in the circuits before the established warning time. This was a major improvement over the previous two years when the average message left Guam more than 10 minutes after warning time. The reduced handling time can be attributed primarily to rectification of problems within the NHMC itself. The time of receipt of a warning at a particular station depends on factors beyond the control of both the JTWC and the NHMC.

υ

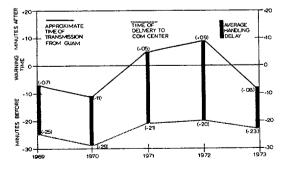


FIGURE 2-4. AUTODIN handling time data for typhoon and tropical storm warnings.

1. GENERAL

In past years, technical notes summarizing research studies made by the JTWC personnel were included in the Annual Typhoon Reports (ATRs). In this and future ATRs, however, only brief synopses of these studies will be given. The complete stud-ies will be published separately as FLEWEACEN/JTWC Technical Notes. It is felt that this procedure offers several advantages. First, it allows the administrative workload associated with publication preparation to be distributed throughout the year rather than concentrated within a few months during preparation of the ATR. Second, it allows authors to include more technical details of their studies than would be appropriate for inclusion in the ATR.

INVESTIGATION OF GUST FACTORS 2. IN TROPICAL CYCLONES

(Reference: Atkinson, G.D., FLEWEACEN/ JTWC Technical Note 74-1).

The 1972 Tropical Cyclone Confer-ence requested that FLEWEACEN/JTWC include peak gusts in the warnings when sustained surface wind speeds equal or exceed 50 kts. During 1972, a sustained wind/peak gust graph derived by former JTWC personnel was Details on how this graph was deused. rived were not available and there was a general feeling among JTWC forecasters that the gust factors derived from this graph were too high for open water conditions. Therefore, at the 1973 Tropical Cyclone Conference, FLEWEACEN/JTWC requested that all 7th Fleet ships equipped with anemometers include peak gusts as well as sustained winds in their weather reports during strong wind conditions. These ship observations and a comprehensive literature survey led to the derivation of a new sustained wind/peak gust relationship which was introduced into operational use by the JTWC during the 1973 season. This study showed that for strong wind conditions, gust factors (i.e., ratio of peak gusts to one-minute average sustained wind speeds) over open water should fall in the range of 1.20 to 1.25. Based on these results of 1.20 to 1.25. Based on these results, the sustained wind/peak gust relationships shown in Table 3-1 are now used operationally by the JTWC.

	TWC SUSTAINED OTS) RELATIONS	1-MINUTE WIND- SHIPS
WIND(GUST)	WIND(GUST)	WIND (GUST)
50(65) 55(70) 60(75) 65(80) 70(85) 75(90) 80(100) 85(105) 90(110)		140(170) 145(175) 150(180) 155(190) 160(195) 165(200) 170(205) 175(210) 180(220)

INTENSITY FORECASTING USING THE 3. TYFOON ANALOG COMPUTER PROGRAM

(Reference: Craiglow, L.H., Jr., FLEWEACEN /JTWC Technical Note 74-2).

The computerized TYFOON analog program has been used by the JTWC as an aid in forecasting tropical cyclone move-ment since 1970. This study investigated the usefulness of the TYFOON program for forecasting tropical cyclone intensities at 24-, 48-, and 72-hours. It modified and extended a previous study on this sub-ject by former JTWC personnel. Three pa-rameters which are available on the basic climatological data tape used in the TYFOON program were selected to determine their usefulness in intensity forecasting. These are the minimum sea level pressure, the 12-hour change in minimum sea level pressure, and the maximum sustained sur-face wind speed. Based on selected values of these criteria, current and analog trop-ical cyclones were separated into two classes (deepening or weakening) and analog forecasts were computed. During the testing, several changes were made to the classification criteria to obtain better results. Also, it was determined that intensity forecasts computed independently for the various time periods were not con-Therefore, the program was modisistent. fied so that each succeeding intensity forecast used the previous intensity fore-cast as an input, i.e., initial conditions for the 48-hour forecast would depend on the 24-hour forecast, etc. Verification results based on selected cases from the 1972 tropical cyclone season showed the analog program produced intensity forecasts that were slightly better than the official JTWC forecasts for the 24-hour period but were slightly worse than the official forecasts at 48 and 72 hours. Nevertheless, these preliminary results indicate that further testing of this program is warranted to provide another objective forecast aid to JTWC forecasts.

EVALUATION OF THE EXTRAPOLATION FEATURE OF THE TYFOON ANALOG

COMPUTER PROGRAM (Reference: Craiglow, L.H., Jr., FLEWEACEN /JTWC Technical Note 74-3).

The original version of the TYFOON analog program, first used operationally by the JTWC in 1970 has been modified several times to improve its performance. In the TYFOON-72 version of the program, if a se-lected analog storm had insufficient positions to provide a forecast out to 72 additional six-hourly positions. This ex-trapolation feature was necessary because of premature termination of many tropical cyclones on the original data tape (1945-1969). During 1972, tropical cyclone data for 1970 and 1971 were added to the basic climatological data tape and tracks for all tropical cyclones for the entire period of record (1945-1971) were extended. These modifications to the data tape and reductions of the basic time interval for selection of analog cases from ±50 days to ±35 days resulted in the version of the TYFOON

program known as TYFN 73. Since the original tropical cyclone tracks were subsequently extended, it was felt that the extrapolation feature of TYFOON-72 was no longer required. To test this hypothesis, 15 cases from 1972 were selected and 24-, 48-, and 72-hour position forecasts were prepared using both TYFOON-72 and TYFN 73. The overall results showed the average forecast errors for TYFN 73 were slightly lower than TYFOON-72 at all time periods. The most significant fact, however, was that TYFN 73 required 46% less computer time on the average than TYF00N-72. Con-sidering that the JTWC requires hundreds of analog forecasts each year, the savings in computer time will be significant. The JTWC will use the TYFN 73 version of the analog program during the 1974 tropical cyclone season.

5. A COMPARISON OF THE SENSITIVITY OF TWO SIMILAR OBJECTIVE FORECAST TECHNIQUES

(Reference: Craiglow, L.H., Jr., FLEWEACEN /JTWC Technical Note 74-4).

A number of computerized objective forecast techniques are available to assist the JTWC in the preparation of warnings. Of concern is the sensitivity of these techniques to errors in the warning and history positions. Two techniques; TSGLOB, developed by FLEWEACEN Pearl Harbor, and it's successor, TYMOD, developed by FLEWEACEN/ JTWC Guam, were chosen for testing. Both techniques utilize the 24-hour global band upper air progs (GBUA) provided by FLENUMWEACEN Monterey. The 03/0000 GMT Jan-uary 1973 GBUA fields were chosen and a control forecast for each technique was run on Guam's CDC 3100 computer. Errors of six and 12nm were introduced into the warning and history positions, both individually and collectively. Thirty-six cases were run for TYMOD and 20 for TSGLOB the difference being due to TYMOD having a 24-hour history position. The results showed that TYMOD was less sensitive to positioning errors than TSGLOB. In addition, the TYMOD errors tended to reach a maximum about +48 hours and then decrease in magnitude thereafter. Finally, the test results suggest that as much as 30% of the 24-hour forecast error may be caused by warning position errors.

6. INTERANNUAL VARIABILITY OF RAINFALL AND TROPICAL CYCLONE ACTIVITY IN THE WESTERN NORTH PACIFIC

(Reference: Pratte, J.F., FLEWEACEN/JTWC Technical Note 74-5).

In this study, rainfall amounts at various stations in the tropical North Pacific during the dry season (January-April) were correlated with the number of tropical cyclones occurring in the western North Pacific area during the same year. The period of record used was 1959-1973. This period was selected because the JTWC was established in 1959 and satellite coverage of the tropics was available for most of this period. Therefore, it was felt that statistics on the number of tropical cyclones would be highly reliable for this recent period. Correlations were made for each rainfall station individually and for various groups of stations. Results indicate that the best correlation was shown with rainfall on Guam (average of three Guam stations), however, the relationship was poor (correlation coefficient of 0.24) and not sufficient for long-range forecasting purposes. The study also provides a survey of various articles relating tropical circulation patterns and rainfall to sea surface temperature anomalies and other large scale influences.

et

2

1. GENERAL RESUME

The western North Pacific remained quiescent for the first six months of 1973 before the first tropical cyclone developed. Since World War II, only in 1952, when five months passed without a single tropical cyclone, has this area experienced such a late start of the tropical cyclone season (Table 4-1). According to statistics compiled by the Royal Observatory of Hong Kong, this dearth of tropical cyclone activity during the first six months of the year has not occurred since 1917. Interestingly, on the average, five tropical cyclones form during the first six months of the year of which three became typhoons.

The development of Tropical Storm Wilda on 1 July marked the beginning of the 1973 season. Within a span of 5 months, a total of only 21 named tropical cyclones developed, with 12 of these reaching typhoon intensity. Additionally, warnings were issued on two numbered tropical depressions. Typhoon frequency in 1973 was significantly lower than the yearly average of 19 since the establishment of the JTWC in 1959. Only 1969 and 1970 experienced a similar low frequency of typhoons during this period (Table 4-2).

In 1973, warnings were issued on only 77 calendar days, approximately one half of the 14-year average of 145 days. The JTWC remained in warning status 62 days less in 1973 than in 1972, an active tropical cyclone year.

Typhoon days for 1973 dipped to a record low of 42 compared to 121 in 1972 (Table 4-3). Based on the past 15 years, 1973 was 54 days below the average and 20 days below 1969 the next lowest. These facts indicate that there was not only a

TABLE 4 YEARS	,- 1 , r	.KEQUI	NCI C	IF IKC	/FICAL	. 5101	CM3 (1	INCLU	DING .	IPHO	ו נכאות	BI MON	THS AN
	JAN	FEB	MAR	APR	МАҮ	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1945	0	0	0	1	1	2	5	7	6	1	3	0	26
1946	0	0	1	0	1	2	3	2	3	1	2	0	15
1947	0	0	1	0	1	1	3	3	5	6	6	1	27
1948	1	0	0	0	2	2	2	5	5	4	3	2	26
1949	1	0	0	0	0	1	5	3	6	1	3	2	22
1950	0	0	0	0	1	2	3	2	3	3	3	1	18
1951	0.	0	1	2	1	1	1	2	2	4	1	2	17
1952	0	0	0	0	0	3	3	4	5	6	3	4	28
1953	0	1	0	0	1	2	2	6	3	4	3	1	23
1954	0	0	1	0	1	0	1	6	4.	3	3	0	19
1955	1	0	1	1	0	1	6	3	3	4	1	. 1	22
1956	0	0	1	2	0	1	2	5	5	2	3	1	22
1957	2	0	0	1	1	1	1	3	5	4	3	0	21
1958	1	0	0	0	1	3	5	3	3	3	3 2	1	22
1959	0	1	1	1	0	0	3	6	6	4	2	2	26
1960	0	0	0	1	1	3	3	10	3	4	1	1	27
1961	1	1	1	1	3	2	5	4	6	5	1	1	31
1962	0	1	0	1	2	0	6	7	3	5	3	2	30
1963	0	0	0	1	1	3	4	3	5	5	0	3	25
1964	0	0	0	0	2	2	7	9	7	6	6	1	40
1965	2	2	1	1	2	3	5	6	7	2	2	1	34
1966	0	0	0	1	2	1	5	8	7	3	2	1	30
1967	1	0	· 2	1	1	1	6	8	7	4	3	1	35
1968	0	Ó	0	1	1	1	3	8	3	6	4	0	27
1969	I	0	1	1	0	0	3	4	3	3	2	1	19
1970	0	1	0	0	0	2	2	6	4	5	4	0	24
1971	1	0	1	3	4	2	8	4	6	4	2	0	35
1972	ī	Ō	0	0	1	3	6	5	4	5	2	3	30
1973	ō	Ō	Ó	0	0	0	7	5	2	4	3	0	21
Totals	13	7	13	20	31	45	115	147	131	111	76	33	742
Average		. 24	.45	.69	1.07	1,55	3.97	5.07	4.52	3.83	2.62	1.14	25.59

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTAL
1945	0	0	0	0	0	1	2	5	3	1	1	0	13
1946	0	0	1	0	1	1	3	1	3	1	2	Ō	13
1947	0	0	0	0	1	1	0	3	4	5	4	1	19
1948	1	0	0	0	2	0	2	2	4	1	2	1	15
1949	1	0	0	0	0	1	3	3	3	1	1	1	14
1950	0	0	0	0	1	1	1	2	1	3	2	1	12
1951	0	0	1	2	1	1	1	2	2	3	1	2	16
1952	Ð	0	0	0	0	3	1	3	3	4	3	2	19
1953	0	1	0	0	1	1	2	4	2	4	1	1	17
1954	0	0	0	0	1	0	1	4	4	2	3	0	15
1955	1	0	1	1	0	1	5	3	3	2	1	1	19
1956	0	0	1	1	0	0	2	4	5	1	3	1	18
1957	1	0	0	1	1	1	1	2	5	3	3	0	18
1958	1	0	0	0	1	3	4	3	3	3	1	1	20
1959	0	0	0	1	0	0	1	5	3	3	2	2	17
1960	0	0	0	1	0	2	2	8	0	4	1	1	19
1961	Ō	Ō	1	0	2	1	3	3	5	3	1	1	20
1962	0	0	0	1	2	0	5	7	2	4	3	0	24
1963	0	0	0	1	1	2	3	3	3	4	0	2	19
1964	0	0	0	0	2	2	6	3	5	3	4	1	26
1965	1	0	0	1	2	2	4	3	5	2	1	0	21
1966	ō	ŏ	ŏ	ī	2	ī	ż	6	4	2	ō	ĩ	20
1967	Ō	õ	1	1	Ō	1	3	4	4	3	3	ō	20
1968	0	0	0	1	1	1	1	4	3 2	5	4	0	20
1969	1	0	0	1	0	0	2	3	2	3	1	0	13
1970	0	1	0	0	0	1	0	4	2	3	1	0	12
1971	ŏ	ō	ŏ	3	ĩ	2	Ğ	3	5	3.	ĩ	ŏ	24
1972	ĩ	ŏ	ŏ	õ	ī.	ī	4	ã	3	4	2	2	22
1973	0	0	Ō	0	0	0	4	2	3 2	4	0	0	12
Totals	8	2	6	17	24	31	75	103	93	84	52	22	517

short period of typhoon activity (July to October) but also the short duration of typhoons notably in August and September. The number of warnings issued totaled only 390 which is 55% of the average over the past 15 years. 1971 and 1972 could be considered "normal" years compared to 1973 since they were only slightly above the average with total number of warnings of 747 and 739, respectively. 1973 was not without multiple storm occurrences with 27 days with two or more cyclones and 9 days with three or more cyclones occurring simultaneously (Table 4-4).

There were only three super typhoons during 1973, Billie, Nora, and Patsy, which is half of the climatological mean of six based on the past 15 years. This is not surprising since most of the tropical cyclones developed outside of the favorable areas for super typhoon occurrence delineated by Holliday (1970).

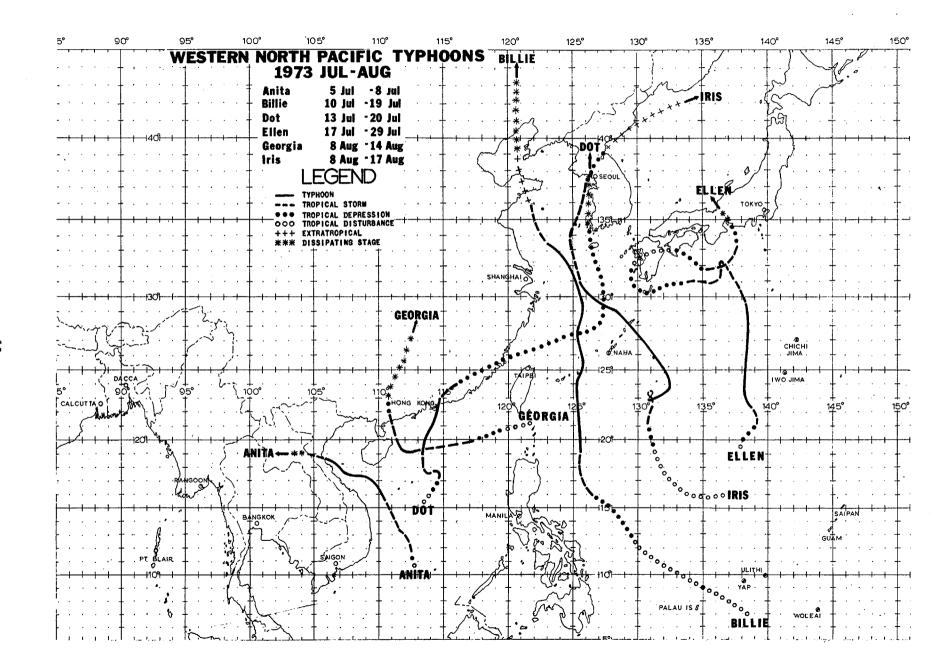
The 1973 season was marked by another peculiarity. There was a pronounced absence of tropical cyclone activity in the area south of 20°N and east of 135°E which is normally a favorable area for tropical cyclone development. Except for brief periods during the summer months, the eastward extension of the monsoon trough over the western North Pacific Ocean was noticeably missing. It was not until the latter half of the season that the monsoon trough became firmly established in the area to the south of Guam when 3 successive typhoons were spawned during the first half of October.

The Tropical Upper Tropospheric Trough (TUTT) was well established by mid-May. It initiated the development of Tropical Storm Clara in July and Tropical Storm Hope and Tropical Depression No. 11 in August. Although the TUTT was in evidence throughout the typhoon season, the near-equatorial ridge which normally forms to the south of the TUTT was absent except for brief periods. Consequently, upper level westerlies prevailed over the Caroline and Marshall Islands, an area which would normally be under deep tropospheric easterlies during the primary tropical cyclone season. The resulting strong vertical wind shear over the eastern Trust Territory was unfavorable for tropical cyclone development.

													TOTAL
													PER
YEAR	JAN	FEB	MAR	APR	MAY	JUN	$\frac{JUL}{3}$	<u>AUG</u> 18	SEP	<u>0CT</u>	NOV	DEC	YEAR
1959				-8					19	18*	10	18	94
1960				2		10	13	36*		23*	2*	12	98
1961			8		8	2	10*	15	23*	17*	6	6	95
1962				7	4		14*	37*	8	30*	19*		119
1963				4	5	15	11	23*	14*	24*		11	107
1964					7	5*	22*	18*	28*	14	11*	6	111
1965	2			2	5	12*	19*	23*	25*	14	6		108
1966				5	11	6	7*	16*	23*	11	4	3	86
1967			2	7		4	14*	10	32*	21*	21*		111
1968				6	1	7	6	8	32*	19	18*		97
1969	5			5			8	6	10	18	10*		62
1970		5				2	5	24*	16	21*	6		79
1971				4	13*	8	20*	27*	21*	11	7		111
1972	2				1	6	39*	16	16*	21	9	11	121
1973							11*	7*	4	20*			42
TOTAL	- 9	5	10	50	55	77	202	284	271	282	129	67	1441
MEAN	.6	. 3	. 7	4.0	3.7	5.1	13.5	18.9	18.1	18.8	8.6	4.5	96.1

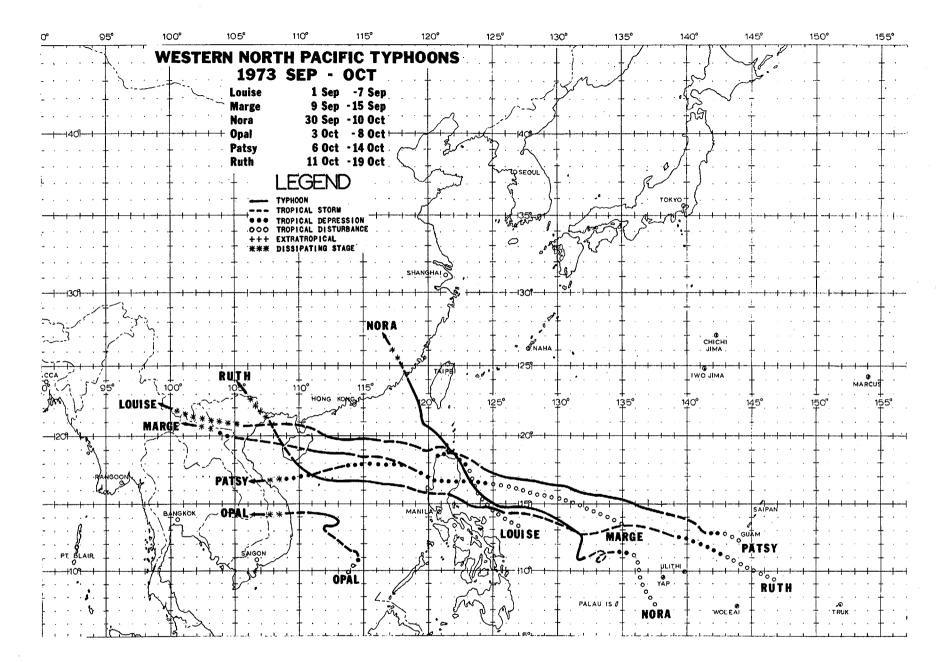
TABLE 4-4. SUMMARY OF JTWC W.	ARNINGS 1969-1	973			
	1960-1973 (AVG)	<u>1970</u>	<u>1971</u>	<u>1972</u>	<u>1973</u>
TOTAL NUMBER OF WARNINGS	707	533	747	739	390
CALENDAR DAYS OF WARNING	146	127	163	139	77
NUMBER OF WARNING DAYS WITH TWO OR MORE CYCLONES	52	29	54	46	27
NUMBER OF WARNINGS DAYS WITH THREE OR MORE CYCLONES	12	0	6	13	9

Based on available casualty reports, typhoons Nora and Ruth and tropical storms Sarah and Vera accounted for the majority of the tropical cyclone related casualties. Taiwan, South Vietnam, and the Republic of the Philippines bore the brunt of the storm damages and casualties. The Republic of the Philippines was again, as in 1972, particularly hard hit by the passage of Nora, Ruth, and Vera. The main Japanese islands, interestingly, did not experience coastal crossing of a typhoon during 1973 which is a first according to available records since 1945.


Much of the pertinent meteorological data and tropical cyclone damage statistics in this chapter were based on information received from the following sources: Weather Bureau of the Republic of China; Royal Observatory of Hong Kong; Japan Meteorological Agency; National Weather Service of the Republic of the Philippines; the Environmental Data Service, National Oceanic and Atmospheric Administration and Casualty Returns, Liverpool Underwriters Association.

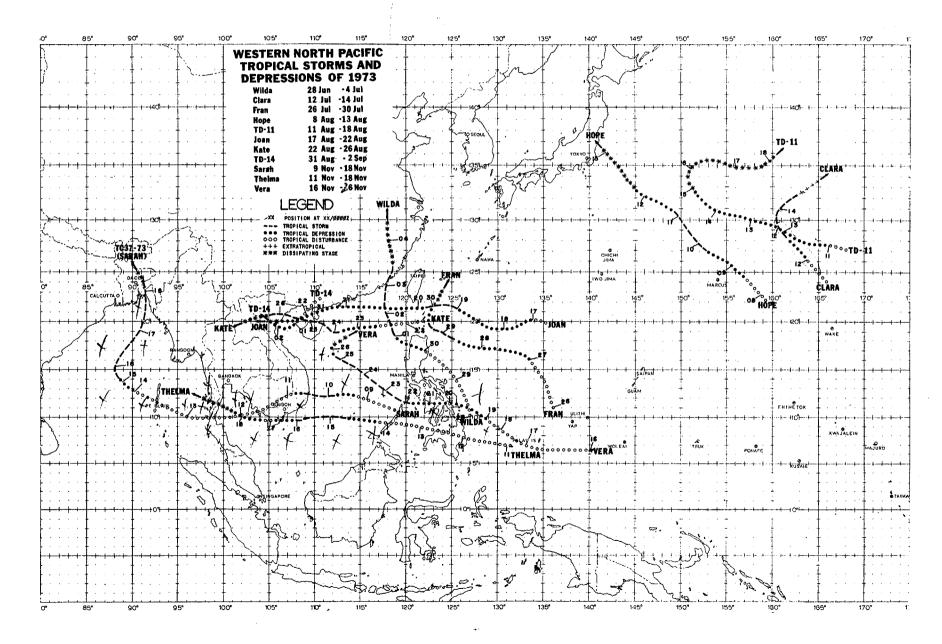
.

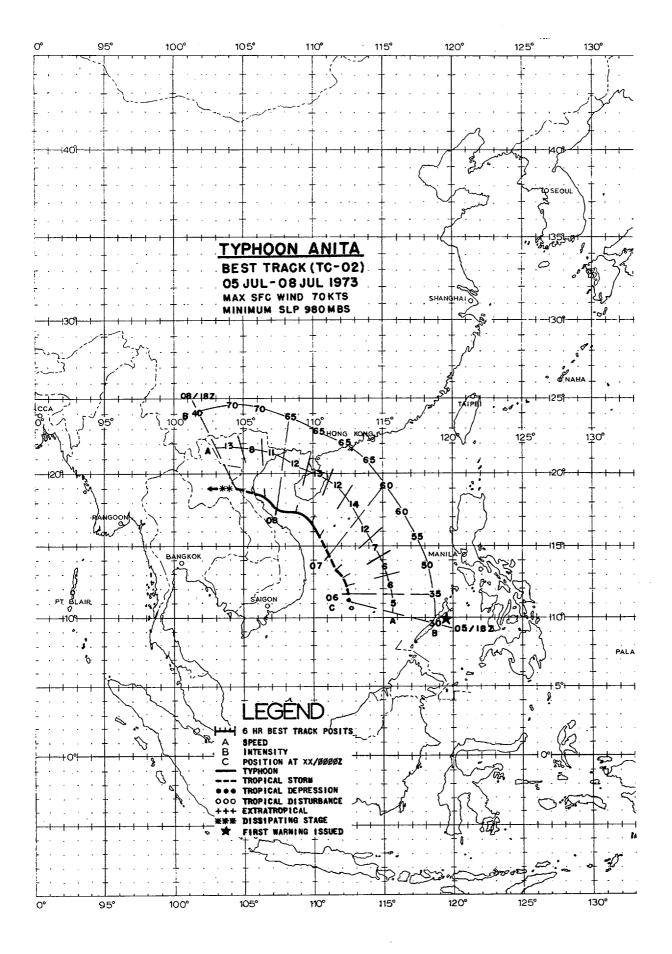
o


TABLE 4-5.			ATED CASUALTIES SEASON	
TYPE	NAME	DEATHS	5 MISSING	
Т	DOT	1		
Т	IRIS	2	3	
Т	NORA	22	48	
Т	RUTH	27	23	
TS	SARAH	50		
TS	VERA	75	58	
	total	177	132	
			for which data	
a	re avai.	Laule a	are listed.	

CYCLONE	TYPE	NAME	(PRD OF WRNG)	DAYS OF WARNING	SFC <u>WIND</u> †	OBS SLP	TOTAL	NO. AS TYPHOONS	DISTANCI TRAVELEI
01	TS	WILDA	01 JUL-03 JUL	3	60	982	9		384
02	ΤΫ́	ANITA	05 JUL-08 JUL	4	70	980	13	6	720
03	TS	CLARA	12 JUL-14 JUL	3	50	998	7		324
04	ΤY	BILLIE	13 JUL-19 JUL	7	130	916	27	18	1560
05	ΤY	DOT	*	6	85	978	19	4	1020
06	ТΥ	ELLEN	*	10	105	941	29	8	1092
07	ΤS	FRAN	29 JUL-30 JUL	2	40	1002	6		330
08	ТΥ	GEORGIA	09 AUG-12 AUG	4	70	976	15	. 9	504
09	TS	HOPE	09 AUG-12 AUG	4	45	996	15		756
10	ТΥ	IRIS	10 AUG-17 AUG	8	85	972	30	16	1218
11	TD	TD-11	13 AUG-14 AUG	2	30	1005	6		270
12	TS	JOAN	18 AUG-20 AUG	3	45	990	10		648
13	TS	KATE	24 AUG-26 AUG	2	60	983	8		294
14	TD	TD-14	01 SEP-02 SEP	2	30	NA	4		90
15	ΤY	LOUISE	03 SEP-07 SEP	5	75	974	18	6	816
16	ΤY	MARGE	12 SEP-14 SEP	3	80	964	12	4	792
17	ΤY	NORA	02 OCT-10 OCT	9	160	877	34	25	1584
18	ΤY	OPAL	04 OCT-08 OCT	5	75	968	16	9	540
19	ΤY	PATSY	*	10	140	893	34	14	1920
20	ΤY	RUTH	11 OCT-19 OCT	9	90	957	33	23	2112
21	TS	SARAH	10 NOV-10 NOV *	1	55	984	4		180 660
22	TS	THELMA		4 8	55 50	991 990	13 28		1134
23	TS	VERA	19 NOV-26 NOV TOTALS	<u> </u>	50	330	390	142	1134

.


.



16

¢

.7

Anita, the season's first typhoon developed in the monsoon trough late on 5 July under conditions quite similar to those discussed by Ramage (1971). Several days prior to the initial development of Anita, the low level southwesterly flow throughout Indochina, the Malaysian Peninsula, and southern India increased from an average of 10 to 20 knots to speeds of 25 to 35 knots. The satellite mosaic on 4 July revealed that a band of cloudiness extending from the Arabian Sea to the South China Sea had increased markedly in response to the intensifying southwesterly flow (Figure 4-1).

Of particular interest during Anita's initial development were the strong winds (25 to 30 knots) extending more than 400nm from her center to the south with lighter winds (10 to 15 knots) near the large and diffuse center. These strong winds were primarily associated with the increased monsoon flow and not the storm itself, since Anita had not intensified sufficiently to produce the necessary pressure gradient to support such winds. Anita continued to exhibit this unusual wind structure as she intensified to typhoon strength (Figure 4-2). The USNS Washoe County reported winds in excess of 35 knots and mountainous seas over 150nm to the south of Anita (06/0900 GMT). Early on the 7th, a reconnaissance aircraft reported Anita's sea level pressure had dropped to 983mb with flight level and surface winds of 50 to 80 knots within a band 30 to 60nm from the storm center, while winds within a 30nm radius of her center were 30 knots or less.

The storm initially drifted northnorthwest in response to a weakness in the subtropical ridge to the north caused by the remains of Tropical Storm Wilda. However, by 1200 GMT, 7 July, significant height rises at 500mb indicated the ridge was reforming over southern China. As a result, Anita assumed a more westerly track.

The USS OGDEN (LPD-5) reported eye passage and greater than 60 knot winds (08/0000 GMT) near 17.5N 107.4E as her barometer registered 981mb. The barograph aboard the USS TRIPOLI (LPH-10) recorded eye passage (08/0100 GMT) as the ship steamed near 17.6N 107.2E (Figure 4-3).

A reconnaissance aircraft observed a minimum sea level pressure of 980mb and a well defined closed wall cloud indicating continued intensification as the storm neared the North Vietnamese coast(08/1010 GMT). Anita reached peak intensity of 70 knots prior to going ashore near Vinh, North Vietnam and quickly dissipated over land (Figure 4-4).

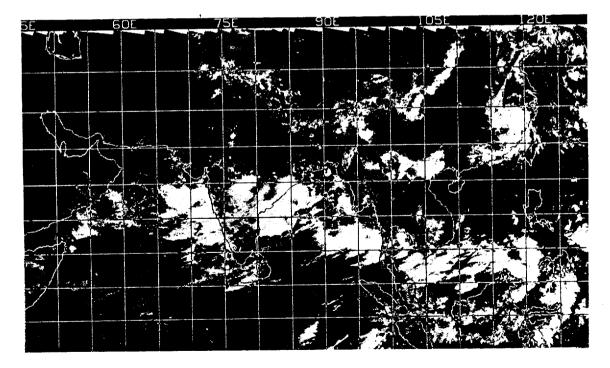


FIGURE 4-1. NOAA-2 satellite mosaic for 3 July 1973 showing cloud band associated with the southwest monsoon extending from the Arabian Sea to the South China Sea. Remnants of Wilda (A).

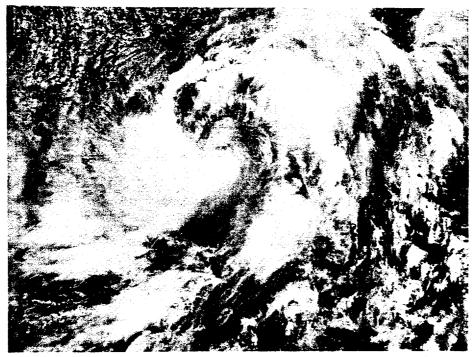


FIGURE 4-2. Tropical Storm Anita near typhoon intensity 110 nm off the coast of the Republic of Vietnam, 7 July 1973, 0444 GMT. (DMSP imagery)

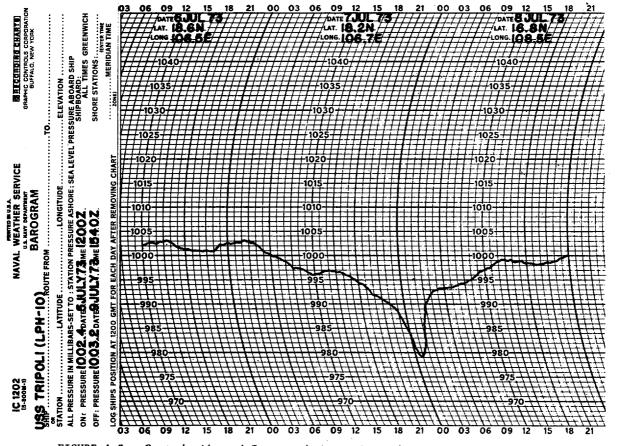


FIGURE 4-3. Reproduction of Barograph trace from the USS Tripoli (LPH-10) as she passed through the eye of Typhoon Anita.

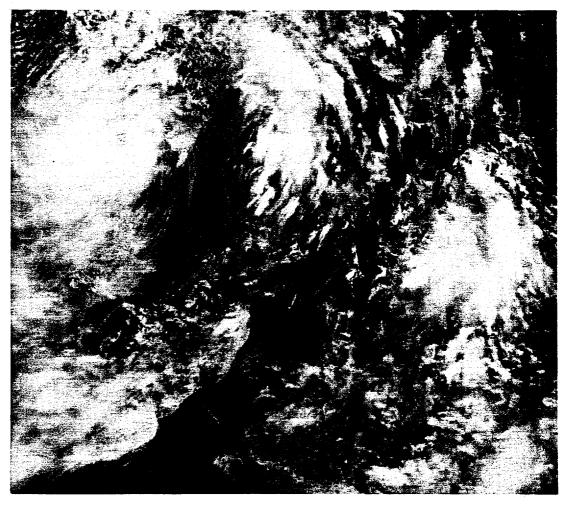
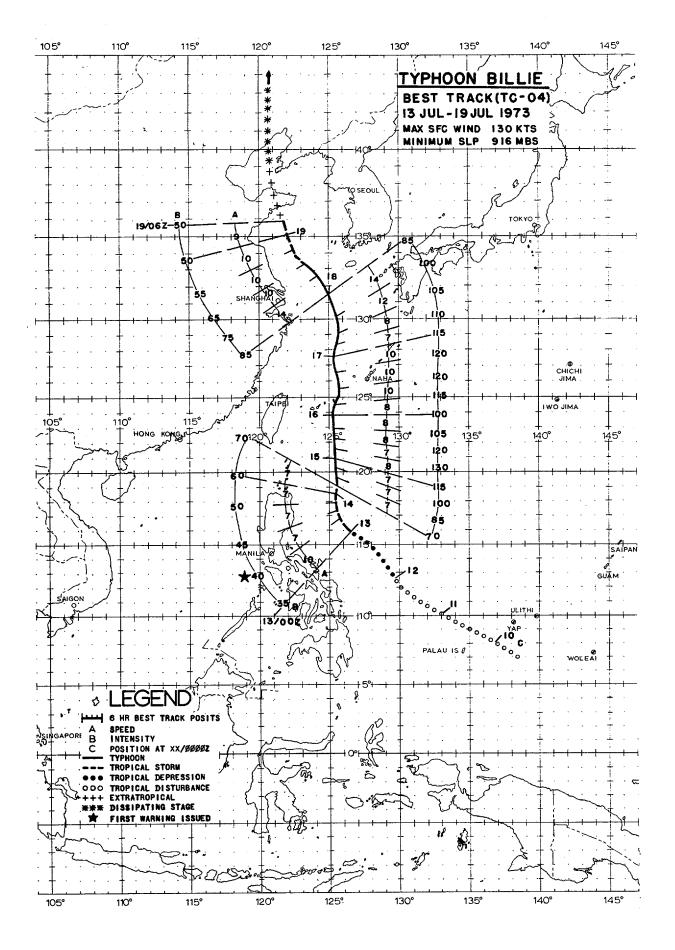



FIGURE 4-4. Typhoon Anita in the Gulf of Tonkin near peak intensity, 8 July 1973, 0432 GMT. (DMSP imagery)

Billie, the season's first super typhoon, became a tropical depression in the western Philippine Sea some 250nm east of Luzon on 12 July. Her early history can be traced to the Yap-Palau area on 10 July as a weak circulation in the monsoon trough.

Billie initially tracked westward, gradually shifting to the northwest in response to a long wave, mid-tropospheric trough over eastern China. Reaching tropical storm force late on the 13th, Billie assumed a northerly course at a speed of 7 kts.

The long wave trough remained stationary, influencing Billie to maintain a meridional track at about 8 kts. Her center never deviated more than 30nm either side of 125.5E for 4 days, covering a distance of 720nm. This steadiness in direction for such an extended period of time sets Billie apart from any other northward moving typhoon during the period 1947-1972.

Rapid deepening occurred once typhoon force was attained early on the 14th as Billie's central pressure fell 50mb in 24 hours. At 15/0330 GMT, aircraft reconnaissance indicated that the central pressure had dropped to 916mb within a tightly organized eye 8nm in diameter (Figure 4-5).

Billie's central pressure rose to 954mb during the next 18 hours as she approached the Ryukyus. Commencing an unusual second deepening as she crossed through the island chain, Billie's central pressure dropped to 917mb in the East China Sea (16/1154 GMT).

Billie passed just east of Miyako Jima, where maximum sustained winds of 65 kts with gusts to 104 kts were recorded (16/ 0700 GMT). The lowest pressure reading at the Japanese Meteorological Agency Station was 947.5mb (16/0650 GMT).

The island of Okinawa experienced gale force winds as Billie transited northward through the East China Sea. Naha registered maximum sustained winds of 35 kts with gusts to 58 kts (16/1700 GMT) while White Beach Naval Port Facility recorded 45 kts sustained with gusts to 55 kts (16/1900 GMT). Kadena AFB reported lesser winds of 28 kts (16/1640 GMT) with gusts of 43 kts (16/1354 GMT). Based on land radar, Billie's eye passed 105nm west of Okinawa at 16/1800 GMT.

On the 17th, a short wave deepened the northern portion of the long wave trough situated in the Lake Baikal region of Siberia, causing increased ridging over Manchuria and the Sea of Japan. This ridging prevented Billie from recurving. On the 18th, Billie shifted to a northwest course 120nm southsouthwest of Cheju-do Island. Satellite imagery indicated drier air off the Asian Mainland was entering Billie's circulation at this time. She weakened significantly during the 18th, dropping to tropical storm strength late that day while tracking into the Yellow Sea.

Approaching the Gulf of Chihli on the 19th, Billie acquired extratropical characteristics and accelerated to a forward speed greater than 20 kts. Billie finally moved inland near Chin-Chow China and dissipated on the 20th.

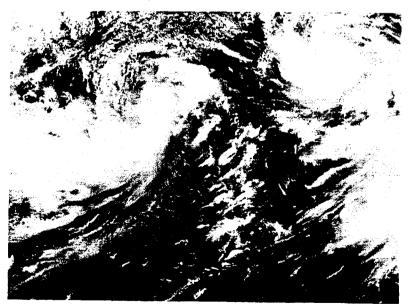
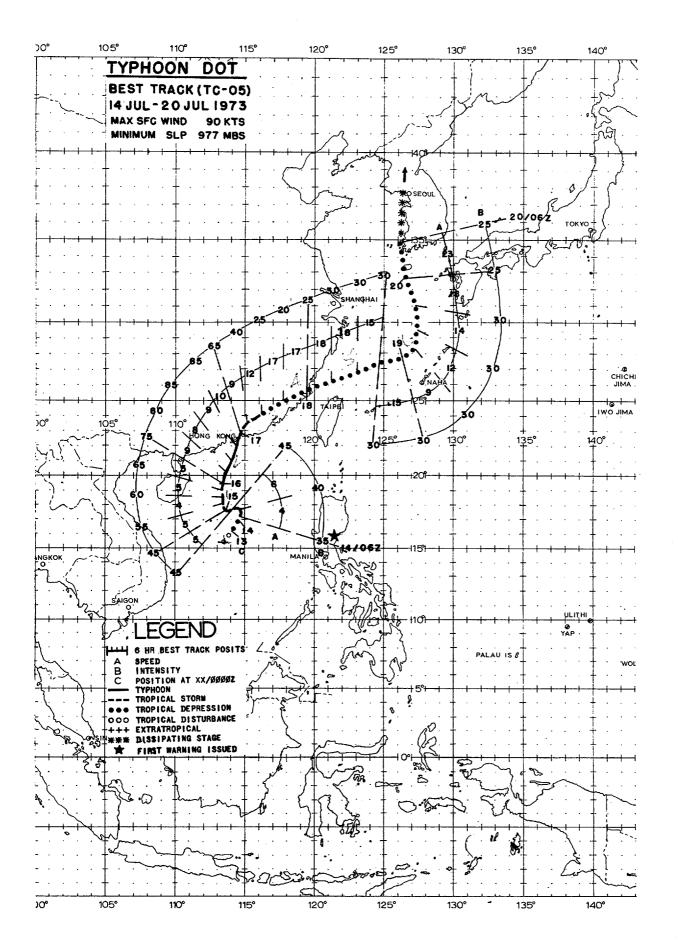



FIGURE 4-5. Typhoon Billie (right) 7 hours prior to an unusual second deepening 190 nm east of Taiwan. Typhoon Dot (left) in the South China Sea, 16 July 1973, 0416 GMT. (DMSP imagery)

Ŷ

The South China Sea spawned its second typhoon of the 1973 season on 13 July with the genesis of Dot. Her development was quite similar to Anita's. A surge in the low level southwesterlies preceded her formation in the monsoonal trough.

Dot formed a few days after Billie. While Billie intensified rapidly in the Philippine Sea to dominate the synoptic situation in the vicinity of both tropical cyclones, Dot drifted slowly northward remaining poorly organized (Figure 4-6). Billie's strong mass divergence aloft effectively blocked Dot's outflow to the subtropical westerlies leaving a good outflow channel only in the southwest semicircle. This may have been a critical factor in explaining Dot's slow rate of intensification during the first three days of her existence. Late on the 15th, Dot began to increase her rate of intensification. The United Kingdom ship HYRIA, located 60 nautical miles southeast of Dot's center, observed 55 knots of wind and a pressure of 989.3mb (15/0600 GMT). She reached typhoon strength late that evening as she accelerated to a speed of 9 knots towards Hong Kong. During this period, the separation between Dot and Billie began to increase and Billie had reached peak intensity and was starting to weaken. This apparently allowed Dot to intensify at a faster rate.

Besides intensity interaction between Dot and Billie, both storms also experienced the Fujiwhara interaction (Figure 4-7). By subtracting the steering flow from the resultant movement of both storms the interaction is quite pronounced (Brand, 1968). Throughout the period of the interaction Billie remained the stronger of the

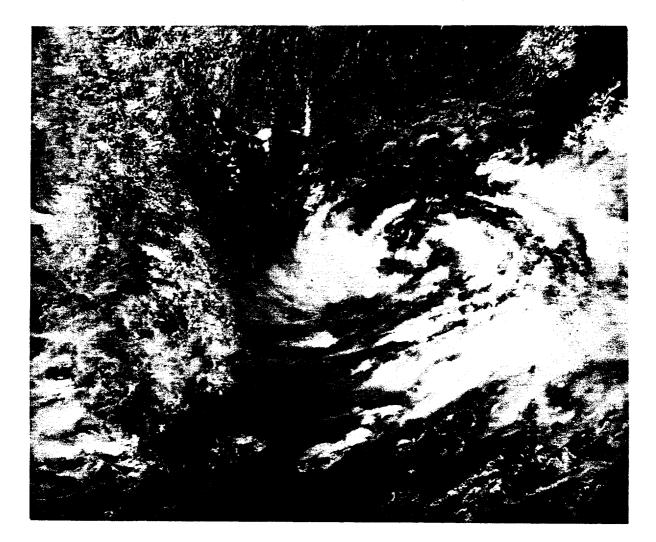


FIGURE 4-6. Dot as a tropical depression in the South China Sea, 14 July 1973, 0446 GMT. {DMSP imagery}

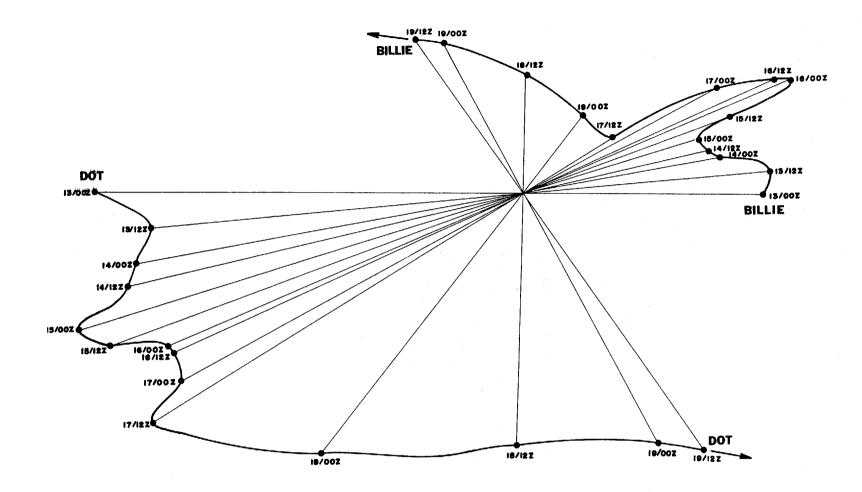
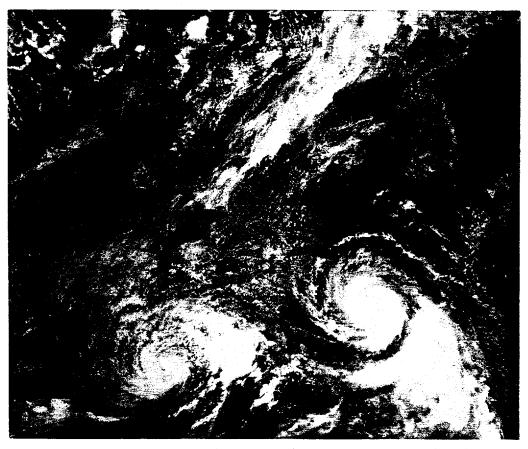
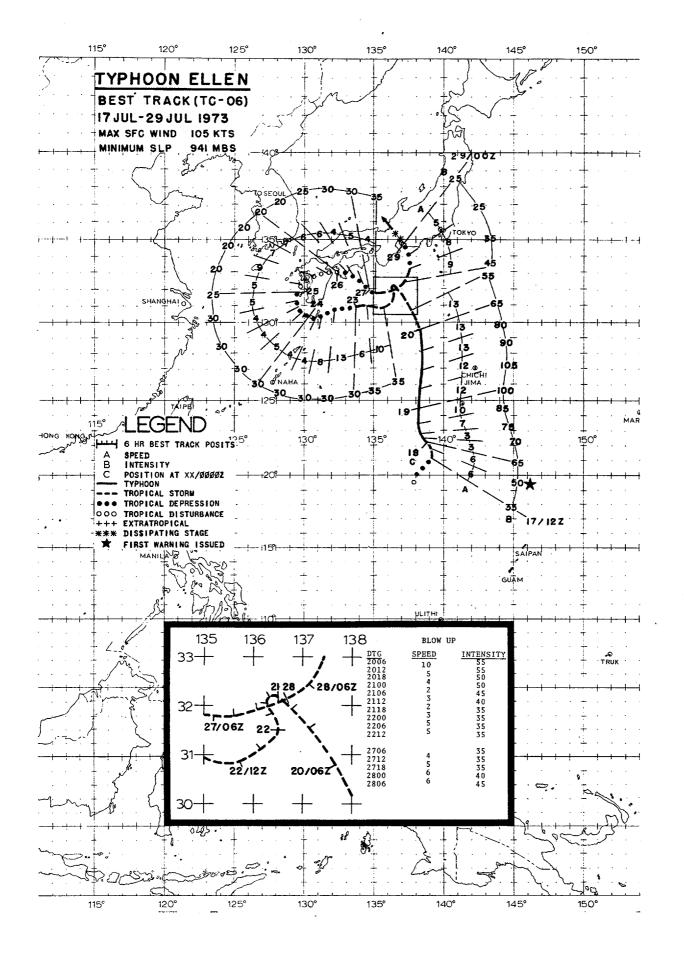


FIGURE 4-7. Depicts Fujiwhara interaction between Typhoon Dot and Typhoon Billie over a period of approximately 6 1/2 days.

,




FIGURE 4–8. Dot (left) overland 70 nm northeast of Hong Kong and Typhoon Billie (right) in the East China Sea, 17 July 1973, 0402 GMT. (DMSP imagery)

two. As a result, Dot's resultant movement was affected much more significantly. Both storms rotated 124 degrees around the common center of rotation.

Dot reached her peak intensity of 85 knots on the 16th, about 80nm south of Hong Kong. She passed within 12 miles of the Royal Observatory in Hong Kong which experienced maximum sustained winds of 32 knots with a peak gust of 76 knots. Tate's Cairn in the Colony reported the strongest sustained winds of 57 knots with peak gusts of 97 knots.

Dot weakened considerably upon making landfall on the northeastern side of Mirs Bay (Figure 4-8). She tracked toward the eastnortheast over eastern Kwangtung during the night of the 17th as a low pressure area and entered the East China Sea near Foochow as a tropical depression on the morning of the 18th. As Dot approached within 120nm northnorthwest of Okinawa, she took an abrupt change of course due north in response to a building ridge to the east and accelerated rapidly, following in the wake of Billie. Dot dissipated over the Yellow Sea on the 20th.

Damage reports from Hong Kong indicated many low-lying areas in the New Territories were flooded. Hong Kong experienced heavy losses to garden crops, fruit trees, livestock, and farm houses. A landslide killed one person and injured 38 others. Two freighters were beached and six others dragged anchor.

£

The first indication of what was to become Ellen appeared in the surface data on 15 July as an increased troughing in the extensive convergence zone southeast of Typhoon Billie. By 17 July, high resolution DMSP satellite imagery confirmed the existence of a closed circulation in the trough near 20°N 138°E (Figure 4-9).

Ellen evolved unusually far north in the trailing convergence area of Typhoon Billie. Furthermore, in the early stages of development, the upper tropospheric outflow was most obviously influenced by the TUTT. Post-analysis of 200mb synoptic charts and satellite data indicates that the formation was assisted by a small, but pronounced, ridging induced on the east side of a westward moving cell in the upper tropospheric trough.

Ellen intensified rapidly, reaching typhoon strength by the 18th. Iwo Jima (Japanese Maritime Self Defense Force) reported southeasterlies with maximum gust of 44 knots as she passed to the west within 165nm (19/0200 GMT). Ellen achieved peak intensity as a reconnaissance aircraft observed maximum winds of 105 knots and a central pressure of 941mb (19/0420 GMT).

During the early portion of her life, Ellen tracked almost due north as Billie had done. She moved to the north beneath upper tropospheric northerly flow (35-40 knots). By late on the 19th, the strong vertical shearing environment caused her to deteriorate rapidly over open water (Figure

FIGURE 4-9. Formative stages of Ellen centered 300 nm southwest of Iwo Jima, 17 July 1973, 0221 GMT. (DMSP imagery)

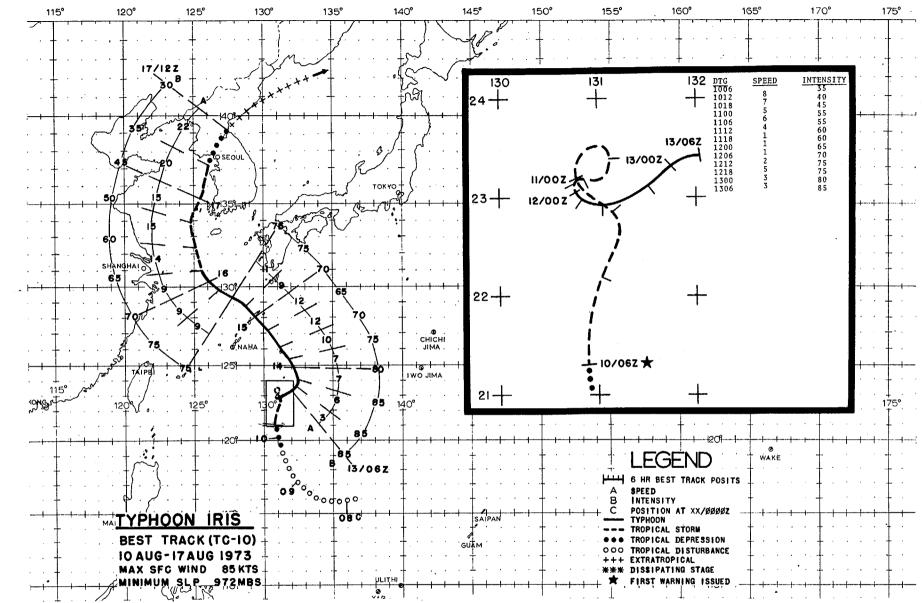
4-10). By the 20th, the upper level anticyclone over Ellen had sheared off exposing her low level circulation. Convective activity at this time was confined to convergence areas well south and southeast of the center.

As a weak low-level circulation, the remains of Ellen drifted westward under the influence of the troughing left by Billie and Dot and a quasi-stationary anticyclone over the Sea of Japan. Satellite imagery on 23 July indicated a rejuvenation of convection over the circulation which then persisted through 28 July with varying degrees of intensity. Reconnaissance aircraft on 24 July confirmed the presence of a warm core, closed circulation. As a result of the weak steering flow, Ellen's movement was erratic during the period from the 21st to the 28th.

On the 28th, she reintensified once more 90nm from the south coast of Honshu. The Japanese weather ship OJIKA and two other ships reported winds of 30 to 35 knots around Ellen (28/0000Z). She reached a peak of 45 knots as a shortwave trough over the Sea of Japan caused her to move on a northward course over south central Japan dissipating over land on the 29th.

FIGURE 4-10. Typhoon Ellen (right) at peak intensity. Dot (left) as a tropical depression, 19 July 1973, 0333 GMT. (DMSP imagery)

Ð


During early August, the tropical upper tropospheric trough (TUTT) remained to the north of and in close proximity to the monsoon trough in the South China Sea. As a result, Georgia's formation and subsequent development cannot be easily attributed to the monsoon trough or the TUTT independently, but more as an interaction between the two. Sadler (1973) suggests that westward moving cells in the TUTT provide an upper level westerly outflow channel which enhances development of disturbances in the monsoon trough. This type of influence was apparent during the development of Georgia.

Georgia reached minimum tropical storm intensity on 9 August as she transited on a westsouthwest course across the South China Sea at a moderate speed. She passed within 170nm of Hong Kong late on the 9th. Maximum sustained winds experienced at Hong Kong were 41 knots with a peak gust of 73 knots. Georgia reached typhoon intensity on 10 August (Figure 4-11).

Maintaining her westerly track at 8 knots until early on the 11th, Georgia then turned north in response to a weakness in the high cell over eastern China. She made landfall north of Hainan Island on 12 August and dissipated over China. Georgia was the third tropical cyclone originating in the South China Sea to reach typhoon intensity in 1973.

FIGURE 4-11. Typhoon Georgia in the South China Sea 140 nm east of Hainan Island, 10 August 1973, 0500 GMT. (DMSP imagery)

,

On the 8th of August, the monsoon trough extended 1500 nautical miles southeast from the Luzon Strait to a position just west of Truk with a weak surface cyclonic circulation imbedded in the trough 420 nautical miles north of Yap. Only 24 hours previously, its eastward extent had been restricted to the northern part of the South China Sea.

During the next two days, the disturbance drifted northwestward with little development. By the 10th, the disturbance had intensified to Tropical Storm Iris. She continued to move northward at 8 knots.

On the morning of the 11th, the complex upper air and weak steering flow patterns resulting from the presence of the subtropical ridge to the north and the near equatorial ridge to the south of Iris forced her to remain essentially quasi-stationary for the next 48 hours. However, she continued to intensify during this period and by early on the 12th, developed typhoon strength winds.

Early on the 13th, Iris began to move toward the northeast under the influence of the near equatorial ridge reaching her maximum intensity of 85 knots that afternoon (Figure 4-12).

As Hope dissipated to the east, the subtropical ridge returned to its climatological position and the near equatorial ridge weakened. This forced Iris to alter her course to the northwest on the 14th in response to the change in the steering flow. The Japanese meteorological station at Minami Daito Jima measured a minimum pressure of 974.7mb during the passage of Iris (14/0707 GMT). Approximately 11 1/2 hours (1830 GMT) after passage of the surface center, the station reported peak gusts of 63 knots out of the southwest. She gradually weakened to minimum typhoon intensity prior to crossing the island of Amami 0-Shima. Two fishing vessels were reported lost in the vicinity of the island during her passage.

After crossing the island she reintensified briefly to 75 knots. By the 16th, Iris weakened to tropical storm force and took a more northerly course (Figure 4-13).

On the morning of the 17th, Iris began recurving. Kunsan Air Base in the Republic of Korea experienced maximum sustained winds of 46 knots with a peak gust of 64 knots as Iris passed within 25nm (17/0646 GMT). She made landfall near Kaesong, Korea about 17/0800 GMT with maximum winds of 35 knots. Iris continued across Korea, entering the Sea of Japan near Wonsan where the maximum winds were still 30 knots. She became extrotropical over the Sea of Japan as she merged with a front moving off Manchuria.

Initial reports from Korea indicated two persons were killed, three missing and hundreds were left homeless. A barge carrying six persons sank in the sea off Kijang - Myon, Yangsangun; 3 were rescued.

FIGURE 4-12. Typhoon Iris (left) near peak intensity 285 nm southeast of Okinawa. Remnants of Hope [right] just off the coast of Honshu, 13 August 1973, 0234 GMT. [DMSP imagery]

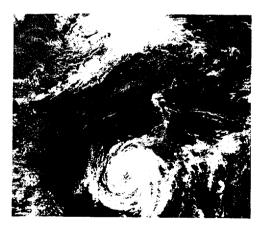
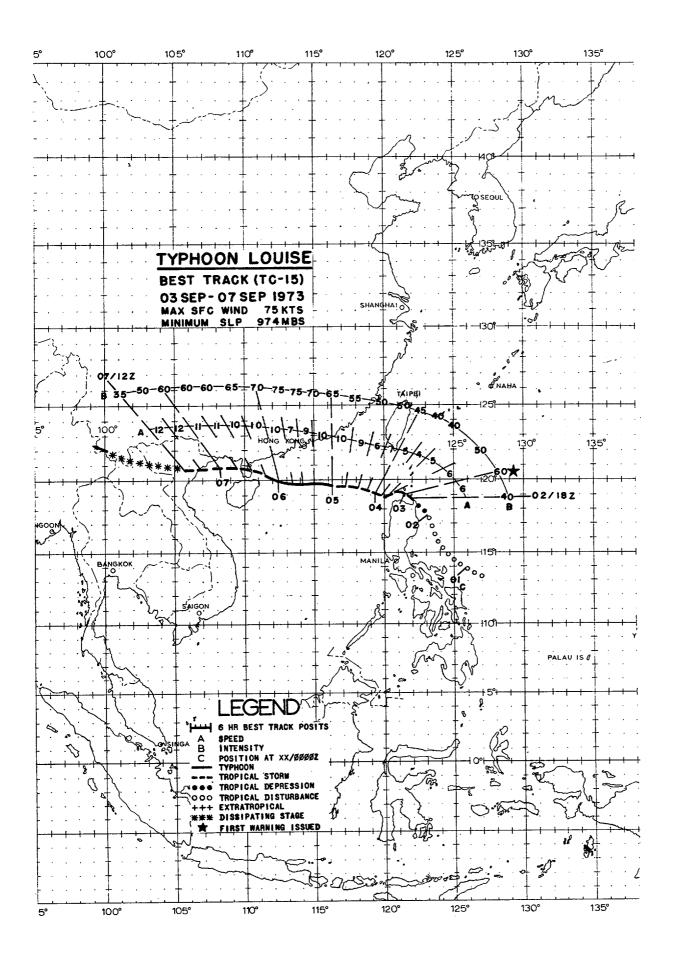



FIGURE 4–13. Typhoon Iris 165 nm south of Cheju Do, 16 August 1973, 0332 GMT. (DMSP imagery)

c

Louise began as a low level circulation in the monsoon trough first noted on 30 August in the Philippine Sea to the east of Catanduanes Island. An organized cloud pattern became apparent the next day but the surface circulation remained weak. The weak surface low drifted towards the northwest for the next 72 hours.

By 3 September, an aircraft investigative mission reported a narrow band of 65 to 75 knot surface winds north of the low center although the minimum sea level pressure was only 998mb (03/0350 GMT). A 60 knot wind report from the United Kingdom ship SHEAF TYNE 30nm to the north of Louise confirmed the aircraft observation. Satellite imagery at approximately the same time showed Louise to be poorly organized. The near-typhoon force winds appear to have been a transitory phenomenon induced by the channeling effect of the Luzon Strait. By the evening of the 3rd, a reconnaissance aircraft reported maximum winds of only 40 knots as Louise entered the South China Sea.

On the 4th, Louise had become a better organized tropical storm well on her way to becoming a typhoon (Figure 4-14). The midtropospheric ridge to the north of Louise kept her on a westerly course at 10 kts across the South China Sea.

She passed 150nm to the south of Hong Kong late on the 5th just as she reached peak intensity of 75 kts. Throughout her life, Louise remained a relatively small typhoon. Louise crossed the Luichow Peninsula during the night of the 6th. Eighteen hours later she made landfall and dissipated rapidly over North Vietnam.

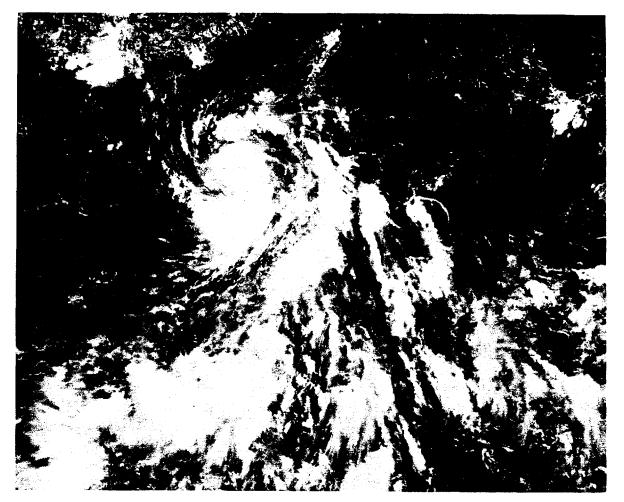
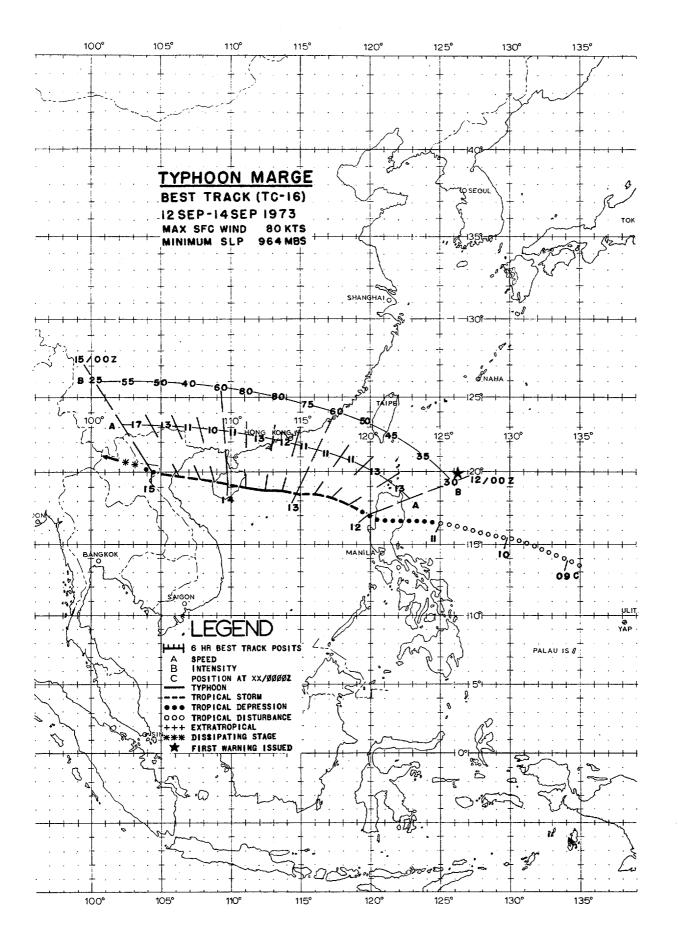



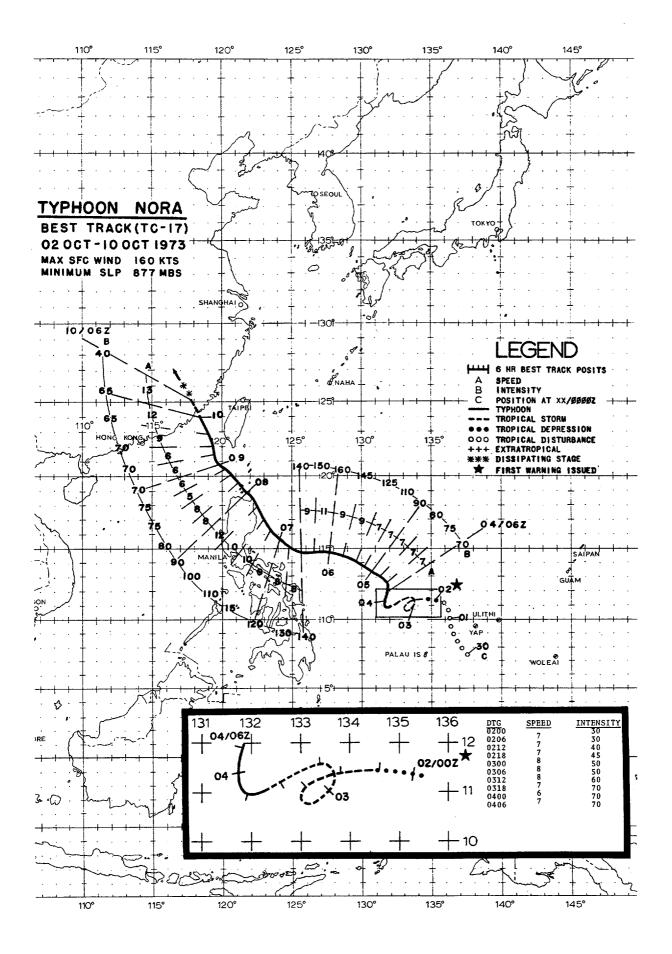
FIGURE 4-14. Tropical Storm Louise 105 nm northwest of Luzon, 4 September 1973, 0401 GMT. (DMSP imagery)

Marge entered the South China Sea on 12 September as a tropical depression, after crossing northern Luzon (Figure 4-15). She quickly developed to tropical storm strength 125 nm northwest of Cape Bolinao. The early stages of Marge can be traced to a weak circulation in the monsoon trough appearing on the synoptic surface analysis 750 miles eastsoutheast of Luzon (08/0000 GMT). This system tracked westward during the next four days as it accelerated to a speed of 11 to 12 knots before making landfall on northern Luzon.

A narrow, mid-tropospheric, subtropical ridge was positioned over southern China as Marge emerged into the South China Sea. Little change in intensity or orientation of the ridge occurred during the next few days, dictating a westerly course which eventually caused Marge to strike North Vietnam 2 1/2 days later.

Maintaining a forward speed of 11 knots, Marge intensified steadily after entering the open waters of the South China Sea, reaching typhoon force as she

FIGURE 4-15. Marge as a tropical depression 20 nm west of Luzon, 11 September 1973, 2342 GMT. (DMSP imagery)


passed 200 nm south of Hong Kong on the morning of the 13th (Figure 4-16). The minimum measured central pressure by aircraft reconnaissance, prior to the typhoon crossing the no-fly line, was 964 mb early in the evening of 13 September.

Striking central Hainan Island early on the morning of the 14th with sustained winds estimated near 80 knots, Marge emerged into the Gulf of Tonkin with tropical storm force some 12 hours later. Eventual landfall was made 60 nm north of Vinh, North Vietnam during the early morning hours of the 15th. Subsequently, Marge dissipated rapidly inland over the highlands of Laos.

One interesting feature of Marge during her transit of the South China Sea was her small size. Similar to Louise, as a typhoon, her circulation did not appear to exceed 150 miles in diameter as evidenced by ship and aircraft reconnaissance data. Typhoon strength winds were probably confined to the wall cloud region.

FIGURE 4-16. Tropical Storm Marge near typhoon strength 225 nm south of Hong Kong, 13 September 1973, 0106 GMT. (DMSP imagery)

r)

A weak surface low formed in the monsoon trough, 120 miles south of Yap, on 30 September, and drifted northwest for the next two days. By the evening of 2 October, the tropical disturbance had intensified to Tropical Storm Nora. Reconnaissance aircraft reported maximum flight level winds of 45 kts and a minimum sea level pressure of 987 mb.

Nora continued a gradual intensification until early on the afternoon of the 5th when her winds exceeded 100 kts. During the next 20 hours, as she moved westward at 9 kts toward the Republic of the Philippines, Nora's central pressure plummeted 66mb to 877mb with maximum surface winds of 160 kts (Figure 4-17). Her central pressure ranked among the lowest on record (Jordon, 1961).

On the evening of the 6th, the high resolution DMSP infrared imagery revealed the typical anticyclonic outflow pattern in the cirrus. The infrared data was then "threshholded" to display only the colder portion of the infrared spectrum sensed by the radiometer (Figure 4-18). It revealed what appeared to be a tightly wound band spiraling out from the eye wall. Nora was a super typhoon at this time with estimated maximum winds of 140 kts.

When Nora was 225 miles east of Manila on the morning of the 6th, she took a more northwesterly track in response to an

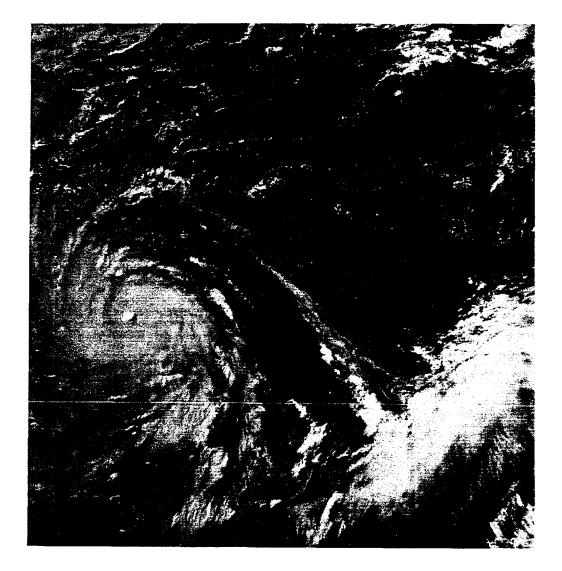


FIGURE 4-17. Super Typhoon Nora (left) at peak intensity 200 nm eastnortheast of Catanduanes Island. Formative stages of Patsy (right) with low level circulation center exposed, 5 October 1973, 2312 GNT. (DMSP imagery)

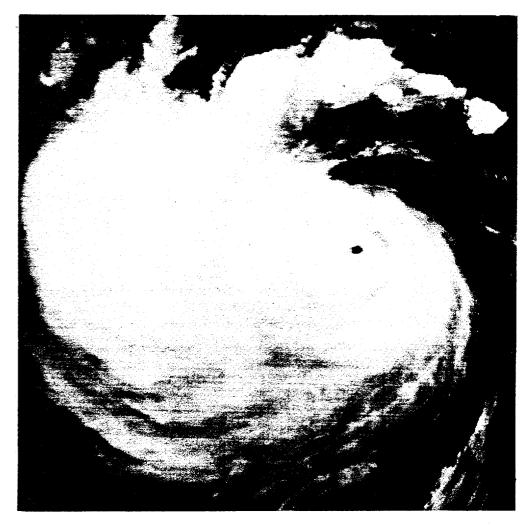
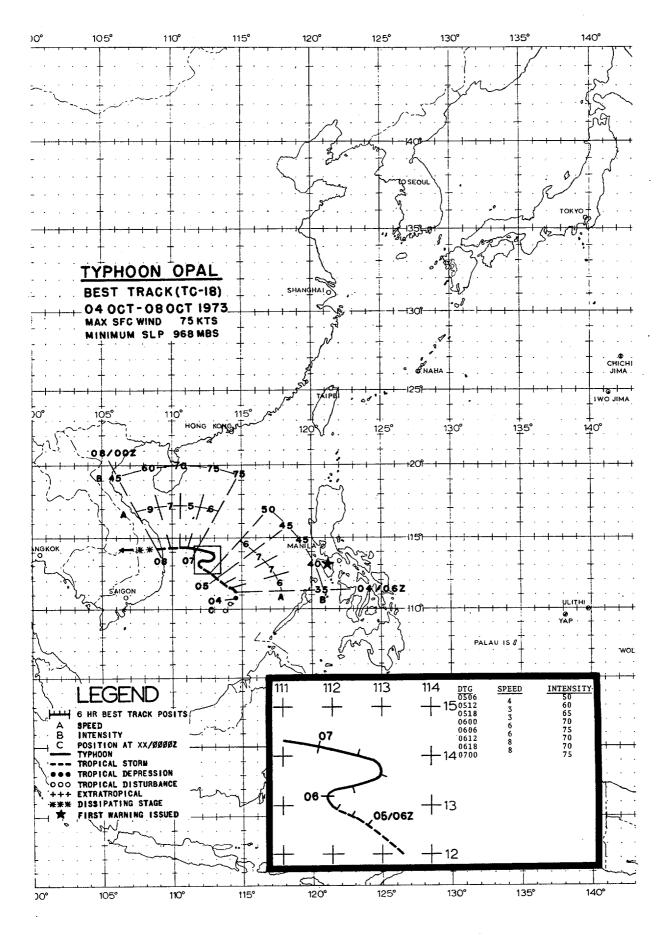


FIGURE 4-18. Thresholded infrared imagery of Nora displaying only the colder portion of the infrared spectrum sensed by the radiometer, 6 October 1973, 1153 GMT. (DMSP imagery)

approaching shortwave trough over China. Nora skirted the northeast tip of Luzon with maximum sustained winds of 100 kts and weakening.


As she transited the Luzon Strait on the 8th a dramatic rescue operation was occurring in the Taiwan Strait. In thirty foot seas and 50 kt winds, the Missile Frigate USS WORDEN rescued seven fishermen aboard the Taiwanese fishing vessel JAI TAI NR3 from the approaching typhoon. One Taiwanese crewman was lost at sea. The fishing vessel had been floundering in heavy seas with the forward section split lengthwise (Figure 4-19).

Nora passed within 60nm of Kaohsiung, Taiwan as she accelerated to a speed of 12 kts toward the northwest. She made landfall near Amoy in southern China on the morning of the 10th and degenerated into a low pressure area.

Luzon in the Republic of the Philippines suffered considerable damage. It was reported that 6 persons were killed and over a hundred thousand people were left homeless. Estimates of over \$2 million in damage to crops, public and private proper ty were reported. A Philippine freighter ASIAN MARINER was reported sunk by Typhoon Nora in the Taiwan Straits. All 38 crew members were rescued. The Greek freighter BALTIC KLIF was also capsized and sunk by Nora some 80nm southwest of the Pescadores. Three of the crew were drowned with several missing and presumed lost. Taiwan also suffered extensive damage from Nora. Twelve persons were reported dead and 28 unaccounted for. Nearly 8,000 people were left homeless with Nora destroying over a thousand houses and damaging hundreds of others.

FIGURE 4-19. Fishing trawler JAI TAI NR.3 floundering in high winds and heavy seas generated by Typhoon Nora. -- U.S. Navy photo

-2

Ð

Opal formed in an active monsoon trough in the South China Sea. The first evidence of a weak surface low appeared in the trough on the 1st of October. However, it wasn't until late on the 3rd that significant cloudiness associated with the incipient storm became apparent.

Early on 4 October, Opal reached minimal tropical storm intensity about 75 nm northwest of Nanshan Island. She moved to the northwest at 6 to 7 knots in response to the high pressure cell over eastern China. By the 5th, she had developed typhoon strength winds (Figure 4-20).

On the morning of the 6th, Opal abruptly changed her course and moved northeastward. She remained on this course for the next 12 hours before resuming a westnorthwesterly heading. A reasonable explanation for the temporary eastward movement may rest in a Fujiwhara interaction with typhoon Nora. Nora was positioned in the Philippine Sea about 750 nautical miles from Opal and reached maximum intensity almost coincidently with the eastward shift in Opal. Also, Nora turned to a more northerly track at this time. Brand (1968) reports a maximum distance for interaction of about 750 nautical miles. He demonstrates that the angularchange rate of a line connecting the storms at this distance should be very small, only 3 degrees per 12 hours. The actual change was somewhat smaller, indicating the weakness of the interaction. The short period of the interaction may be due to the terrain effects of the intervening Republic of the Philippines, among other factors, as Brand suggests that the binary rotation is due to the circulation of the inflow layer which occupies only the lowest few thousand feet.

Maximum winds of 70 to 75 knots were observed during the 6th and early on the 7th as Opal resumed her westnorthwest movement. Opal moved ashore north of Qui Nhon, Republic of Vietnam late on 7 October and rapidly dissipated.

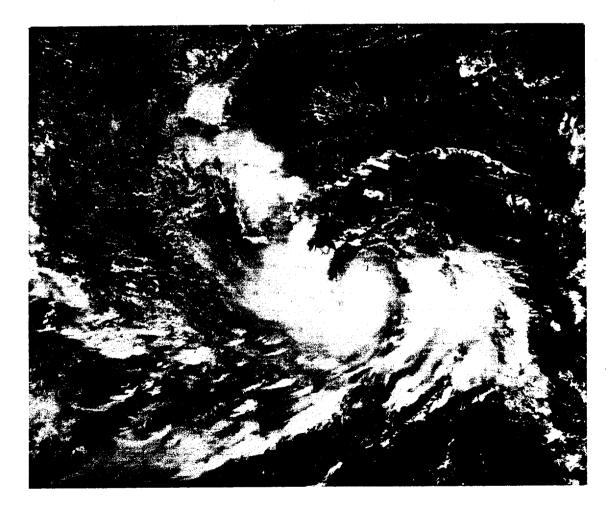
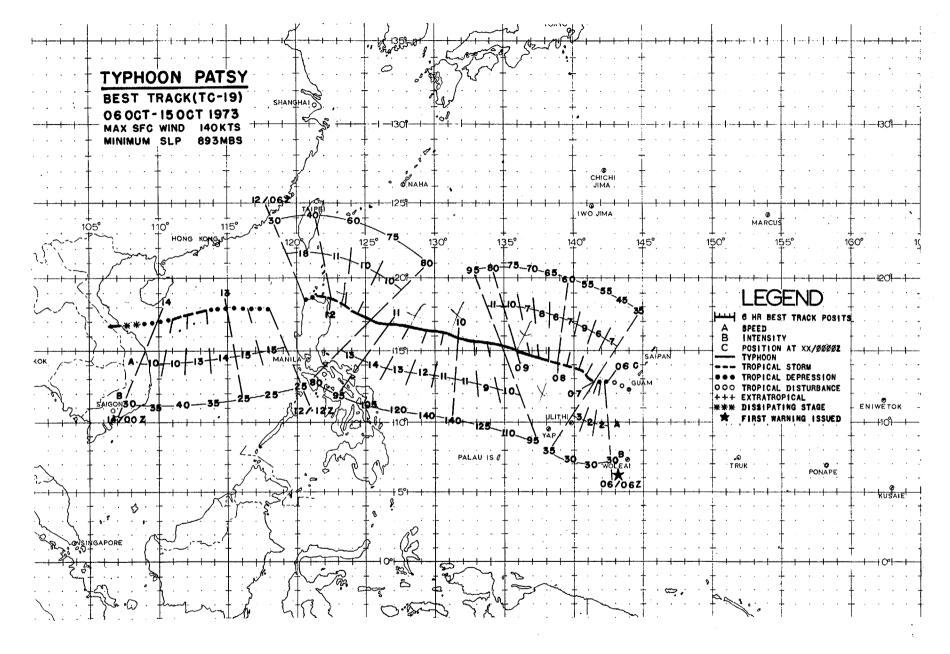



FIGURE 4-20. Tropical Storm Opal in the South China Sea 225 nm southeast of Qui Nhon, 5 October 1973, 0458 GMT. (DMSP imagery)

С

÷

.

of October. The weak vortex drifted westward in the wake of Nora. Until the 6th, it underwent only minor development due to the strong vertical shear caused by Nora's vigorous upper tropospheric outflow. Reconnaissance aircraft, investigating the disturbance on that day, reported maximum surface winds of 35 kts, heralding the arrival of Tropical Storm Patsy.

For the next two days she followed a westnorthwest course at 6-8 kts under the influence of the steering flow of the midtropospheric ridge to the north. Patsy was characteristically a small storm throughout her life. By the 8th she had developed typhoon force winds as she began to accelerate to a speed of 10-12 kts.

A reconnaissance aircraft reported that Patsy had rapidly intensified into a super typhoon with estimated maximum surface winds of 150 kts and a central pressure of 893mb (10/0020 GMT). Her central pressure had dropped 57mb in a span of 22 hours (Figure 4-21).

Patsy continued unerringly toward the northern tip of Luzon as she began to weaken late on the 10th. Interestingly, on the evening of the 11th, DMSP satellite imagery revealed that Patsy's low level circulation had separated from the upper level portion of the cyclone (Figure 4-22). The low level portion took a more northwesterly course and weakened to a tropical disturbance as it crossed the southern Luzon Strait. Meanwhile, a radar site in the Republic of the Philippines continued to follow the upper level cloudiness as it tracked due west towards Luzon. A similar situation occured with Susan in 1972.

The upper level circulation drifted over Luzon and out into the South China Sea. It apparently became superimposed over a low level vortex that had been situated in the South China Sea for several days. This system developed to tropical storm intensity as it passed to the north of the Paracel Islands. It weakened to a tropical depression just prior to making landfall in the Republic of Vietnam.

Patsy was the 3rd and final super typhoon of the year. She was only the 2nd storm to form in the western Caroline Islands area in the 1973 season.

FIGURE 4-21. Super Typhoon Patsy (right) at peak intensity. Typhoon Nora (left) in the Taiwan Strait, 9 October 1973, 2341 GMT. (DMSP imagery)

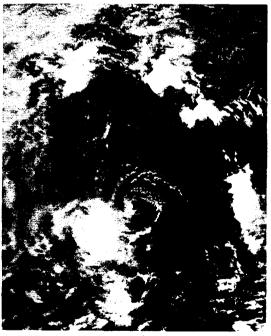
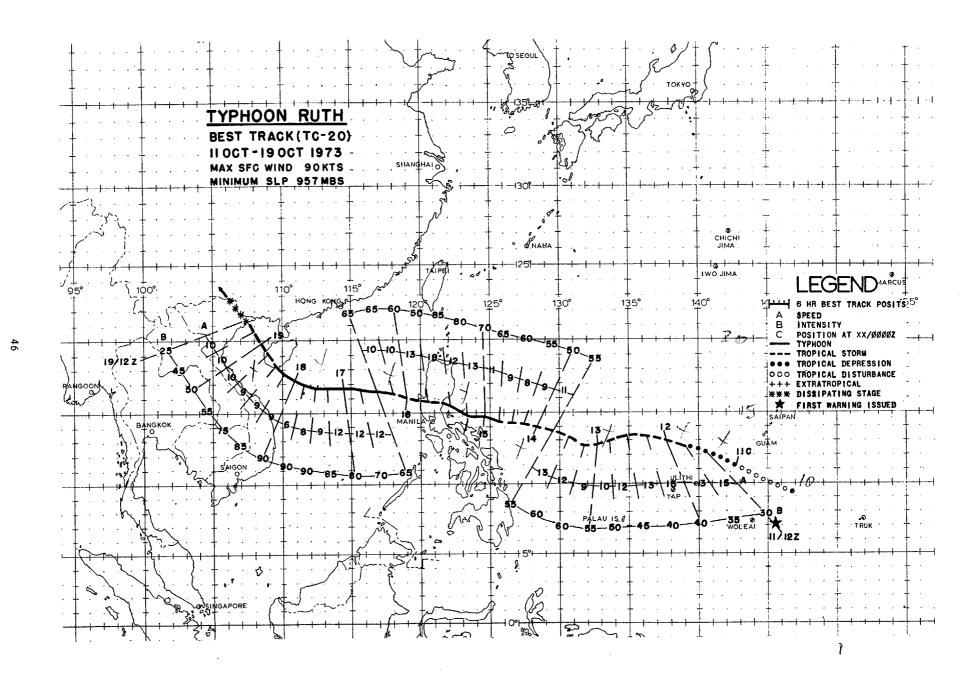



FIGURE 4-22. Moonlight visual of Tropical Storm Patsy. Spiral cumulus pattern depicts the low level circulation with the cirrus canopy displaced to the southwest, 11 October 1973, 1613 GMT. (DMSP imagery)

.

С

Storm Ruth about 250nm westsouthwest of Guam with maximum winds of 35 kts.

Ruth followed 3 days behind Patsy. She tracked approximately 120nm to the south of but parallel to Patsy's track across the Philippine Sea. It is interesting to note that although Patsy intensified rapidly to super typhoon strength, Ruth developed slowly and reached typhoon intensity three days after she became a tropical storm. (Figure 4-23). The satellite data for this period showed little or no convective activity on the north side of Ruth. The strong upper tropospheric northeast flow from the subtropical ridge may have contributed to suppressing the outflow from Ruth on the north side and thereby inhibiting her development.

She continued her westerly movement with slow intensification until landfall on Luzon on the 15th, with maximum sustained wind speeds of 85 kts. Rapid weakening then occurred as the low level inflow was disrupted by terrain effects. Her maximum sustained wind had decreased to 50 kts by the time she reached central Luzon.

Ruth passed 42 miles north of Clark AB late on the night of the 15th where maximum sustained winds of 30 kts and peak gusts of 43 kts were recorded. Only minor damage was reported at Clark AB. Baler recorded maximum peak gust of 95 kts from the north (15/1355 GMT) while Casiguran 50 nm further north on the coast experienced a gust to 98 kts three hours later (15/1700 GMT).

On the 16th Ruth entered the South China Sea and tracked westward toward the Paracel Islands, still under the steering influence of the subtropical ridge (Figure 4-24). A Japanese ship IDEMITSU MARU re-ported 50 kts of wind and a surface pressure of 995mb as she passed 90nm northwest of Ruth (16/0000 GMT). She reintensified on her sojourn across the South China Sea reaching a maximum intensity of 90 kts on the afternoon of the 17th just east of the Paracels. Shortly after attaining her maximum intensity, Ruth turned to a northwesterly course in response to a weakness in the subtropical ridge. She then crossed Hainan Island and entered the Tonkin Gulf with maximum sustained winds of 50 kts. Ruth continued to weaken rapidly as upper tropospheric support waned, and dissipated completely as she moved inland along the North Vietnam coast on the afternoon of the 19th.

Damage reports indicate that while Ruth was crossing Luzon, 27 people were killed, 30 people were injured and 23 people were missing. Property damage amounted to more than five million dollars (U.S.) with thousands of homes destroyed.

FIGURE 4-23. Tropical Storm Ruth in the Philippine Sea 225 nm east of Catanduanes Island, 14 October 1973, 0009 GMT. {DMSP imagery}

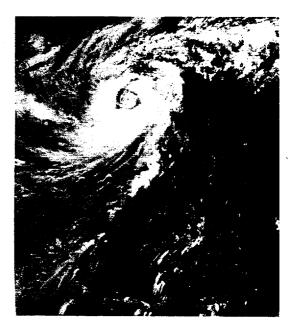


FIGURE 4-24. Tropical Storm Ruth reintensifying after crossing Luzon, 16 October 1973, 0359 GMT. [DMSP imagery]

3. TROPICAL CYCLONE CENTER FIX DATA

a. DISCUSSION OF DATA:

Fix data from all sources are included for each tropical cyclone. The first four columns of the print-out list the same information regardless of platform.

FIX NO	Fixes are numbered
	sequentially.
TIME -	GMT time in day, hour,
	and minutes of fix.
POSIT -	Position of the storm
	in degrees and tenths.
FIX CAT-	Fix platform used
	(SAT - satellite, P -
	penetration, LRDR -
	land radar, AC R -
	aircraft radar, SRDR -
	ship radar, CPA - sta-
	tion experiencing cen-
	ter passage, SCF -
	synoptic chart fix).

The format of the remainder of the print-out varies with the platform.

(1) SATELLITE - These data were derived from bulletins received from FLEWEAFAC and NESS Suitland, Maryland (NOAA-2), the APT site at U-Tapao, Thailand (ESSA-8), or DMSP (formerly DAPP) data from various sites (Chapter II). Intensity estimates (when available) are listed using the NESS classification system (NOAA Technical Memorandum NESS 45). If the source were DMSP (DAPP) data, the PCN (Position Code Number) appears followed by the name DMSP. If the platform were NOAA-2 or ESSA-8, that name will appear after the intensity information along with the site name and location confidence number (NOAA-2 only), (NHOP, 1973). NOAA-2 fixes without a site name will be assumed to be FLEWEAFAC Suitland fixes.

(2) RADAR - The latitude and longitude of land-based radars are given in the POSIT OF RADAR column. The position of mobile radar platforms are included if available. Plain language remarks appear after AC&W radar reports regarding tropical cyclone characteristics, size, and accuracy of fix (CINCPACINST 3140.1L, 1973). All other land radar reports contain a 5-digit code group identical to the WMO radar code for reporting tropical cyclone characteristics as regards to size, development, and accuracy of location of the center or the eye. A list of land-based radars providing data in the fix print-out is given in Table 4-7.

(3) CPA - If a station experiences center passage, maximum surface wind observed and minimum sea level pressure recorded are listed.

(4) SCF - If synoptic data is dense and consistent enough to provide accurate fix information, the derived storm position is listed. Maximum surface wind and minimum sea level pressure values are included, if possible.

(5) AIRCRAFT PENETRATION - These data were normally obtained at scheduled fix times. Additional reconnaissance aircraft fixes are made during the peripheral data gathering legs between scheduled fixes. These fixes normally provide date, time, and position data only.

The categories containing information from reconnaissance aircraft fixes are:

(a) ACCRY (Accuracy)

The estimated navigation (first number) and meteorological (second number) accuracies are expressed in nautical miles.

(b) FIX LVL (Fix Level)

A constant-pressure-surface flight level (listed in millibars) is normally maintained during a tropical cyclone fix mission. Low-level missions (1500 feet) are conducted at a constant, true altitude.

(c) MAX OBS FLT LVL WND

Wind speed (kt) at flight level is measured by the AN/APN-82 doppler radar system aboard the WC-130 aircraft. The values entered in this category represent the maximum wind measured prior to obtaining a scheduled fix. This measurement may not represent the maximum wind because the aircraft samples only those portions of the central core region along the flight path. For this reason, the maximum observed may be significantly lower than the true maximum wind in the circulation (i.e., penetration through weak semicircle on first fix).

A limitation of the doppler radar system occasionally prevents the measurement of the maximum wind in intense typhoons. In areas of heavy rainfall, the radar may track energy reflected from precipitation rather than the sea surface, preventing accurate wind measurement. Also, the doppler radar mount on the WC-130 restricts wind measurements to drift angles <27° if wind is normal to heading of aircraft.

(d) MAX OBS SFC WND

The maximum surface wind (kt) observed from flight level is entered in this column. The observation is an estimate based on the state of the sea (refer to 9WRWGM 105-1, Vol II, pp 2-27-28). The sampling limitation noted in paragraph (c) also exists for this category. In addition, availability of these data is dependent on the absence of undercast conditions. The position relative to the vortex center of items (c) and (d) need not coincide.

Ú

(e) OBS MIN SLP

The minimum observed sea level pressure is normally obtained from a dropsonde released in the vortex center. If the ocean surface is visible, the dropsonde will be released over the center of the area of calm seas; otherwise it is released at the flight level wind center. If the fix is made at 1500 feet, the sea level pressure is extrapolated from that level. (f) MIN 700 MB HT

The minimum height of the 700mb surface in the vortex center is recorded in decameters.

(g) FLT LVL T_i/T_o

This denotes maximum temperature measured in the center (T_1) and ambient temperature outside the center (T_0) . Ambient temperature is measured just prior to entering the wall cloud. Both temperature observations are in degrees celsius and are made at a flight level of constant pressure surface (700, 500-mb).

Reconnaissance aircraft seldom penetrate on the same azimuth from one fix to another. Thus, the position of T_0 normally varies from the center, both in bearing and range. The distance is directly dependent on radar definition of the storm.

(h) EYE FORM/ORIENTATION/DIA

The shape and diameter (nautical miles) of the eye are determined by radar. This is reported only if the center is 50% or more surrounded by wall cloud (see definition in Appendix). The orientation of the major axis is for elliptical cases. Abbreviations for the eye form are:

> CIRC - Circular ELIP - Elliptical CONC - Concentric

REFERENCES:

- Brand, S., "Interaction of Binary Tropical Cyclones of the Western North Pacific Ocean," <u>NAVWEARSCHFAC Tech. Paper</u> No. 26-68, September 1968.
- CINCPACINST 3140.1L, "Tropical Cyclone Operations Manual," June 1973.
- FLEWEACEN/JTWC, Annual Typhoon Report, Guam, Marianas Islands, 1970.
- Ramage, C.S., <u>Monsoon Meteorology</u>, Academic Press, New York and London, 1971, pp. 189-190.
- Sadler, J.C., "The Role of the Upper Tropospheric Trough (TUTT) in Early Season Development," <u>ENVPREDRSCHFAC Tech.</u> <u>Paper</u>, 1973 (in press).

U.S. Dept. of Commerce, NOAA, Federal Coordinator for Meteorological Services and Supporting Research, "National Hurricane Operations Plan," May 1973.

TABLE 4-7. LA	ND RADAR SITES	S	
Location	Station No.	ICAO	Station Name
10.3N 124.0E	98646 98440	RPMT	Mactan
14.4N 120.6E 16.4N 120.6E	98425 98328		Manila Baguio
17.4N 104.7E 26.1N 127.8E	48357 47937	VTUW	Nakhon Phanom West (USAF) Itokau
26.4N 127.8E 26.2N 127.7E		RODN ROAHJ	Kadena AB (USAF) Naha AB (JASDF)
24.3N 124.2E 28.4N 129.5E	47918 47909		Ishigakijima Naze
33.3N 134.2E 30.6N 131.0E	47899 47869		Murotomisaki Tanegashima/Naka
33.6N 130.5E 33.4N 130.4E	47806	RJFFJ	Itazuke Airport (JASDF) Fukuoka/Sefurisan
35.9N 126.6E 37.5N 127.0E	47141 47116	RKJK	Kunsan AB (USAF) Kwanaksan Myn
34.6N 135.7E 24.3N 120.6E 22.6N 120.3E	47773 46770 46744	RCMQ	Osaka/Takayasuyama CCK AB/Taiwan Kaohsiung
22.0N 120.3E 23.0N 120.2E 22.6N 120.4E	40/44	RCNN RCKH	Tainan (AC&W) Kaohsiung Int'l Airport (AC&W)
23.5N 119.6E 24.0N 121.6E	46699	RCQC	Makung (AC&W) Hwalien
22.3N 114.2E 18.1N 120.5E	45005		Hong Kong Obsr. Paredes (AC&W)
16.6N 120.3E 14.4N 122.6E			Wallace ÀS (AC&W) Paranal AS (AC&W)

			×	TROMICAL SIUNA WILDA FIA POSITIONO FUN CYCLONE NU+ I UI JUL IU UJ JUL MAA UHS MAA UBS UBS MIN FET FUSII	
FIX NO.	LIME	Pustf		ACCHY FIX FLI LVL #IND SFC #IND MIN 700MB LVL EYE DIEN- EYE OF NAV-MET LVI DIR VEL BHG NIG VEL BHG NNG SLP MGT IX/TU FORM ATION DIA HAUAN	MSk Nøde
1	2001242 2001242	11.0N 124.5E	JA I JA I	(11.5/1.5 / /24MKS) NUAA 2 (NESS) (GONF 02) (11.5/1.5 /00.5/23MKS) NUAA 2 (CONF 01)	
3	2403745	15.0N 125.0E	SA I	(11.5/1.5 / 234HS) NUAA 2 (GONF 02) (11.5/1.5 / / PHS) PON 5 UMSP	
5	2910032	16.4N 124.2E	SAI	(11+5/1+5 /D / TRS) PCN 3 UMSP PCN 5 UMSP	
78	5410035	15.8N 123./E	SAI SAI	HCN 5 UMSH Von 5 úmsh	
9	300117Z	17.3N 121.8E	ā ∧ī	([2+0/2+0 /00+5/25"R5) NUAR 2 (NESS) (CCNF 0]) ([2+0/2+0 /00+5/25"R5) NUAR 2 (LCNF 02) ([2+0/1+5 / / R5) PCN 3 UN5P	
11	300118/ 3004402 3004402	17.5N 121.5E	SA I SA I		
13	300447Z 300447Z 300447Z	17.50 121.2E	AL	PCN 5 DMSP	
14	301548Z 301548Z	16.5N 120.4E	241	5 25 7 00.5725985 - NUAR 25 100 (CCNF 02) - 20 25	2
19	0104557	18:00 117:5E	SA1 SA1	5 (1255/2.5 /00.5/25785) NUAA 3 190 100 (CCNF 02) 29 29	
15	0104322	18.50 118.3E	SAI F		3
29 23	818383Z	20:30 118:3E 20:30 118:3E	р SAI	2 2 - 198 38 <38 189 20 20 23 331 303 стис - р рск 5 шарт	,
23 25	011710Z	20.5N 118.0E	SAT	5 (1325/3.50/ULTO/230851 NUAA 32 240 20 (CCNF 01)	4
25 26 27	0201132 0201132	21+2N 117+4E 20+1N 117+1E 21+2N 117+8E	jAl ₽	(14-0/4+1 /D /24085) ESSA 8 (VIBU)	4
27 28	0203002 02041/2	31.2N 117.HL	38 38	5 5 700 220 55 90 25 50 90 *5 985 295 13 10 []3.5/3.5 /01.5/24043] ECN 3 UMSP	-
29 31	0201112 02041/Z	21.2N 117.2E	SAI SAI	(13.0/3.0/2.5/2.5/2.5/2.5/3.5) PCN 1 UHSP (13.0/3.0/2.5/2.5/2.5/3.5) PCN 3 UHSP	
33	85859922	21:4N 117:3E			E - E 5
34 35	0504551	21. UN 117. HE	AC H		_
39	8213882	22. JN 117:8E	PC H		ε
35 39	021/012 021/012	22.5N 117.7E	SAT	PCN 1 MAP	- ,
4ŭ 41	921/81Z	21:5N 117:3E	SAL	PCN 1 DMSP	
42 43	02102UZ	22. /N 117.0E 23.1N 118.UE	- LKDH	H - 30/// 22.3N 114.2 H - 30.4/ 22.3N 114.2	ε.
45	0300202	23:1N 117:1E	e KBH	A = 203516LE CENTER, 10 DEG UVERLAY, FAIN FIX 32:3N 120.2	-
46	030140Z	23.4N 110.0E	LHDH SAI	H - MUSSIBLE CENICR, 10 NEU UVERLAY, FAIN FIX 24.3N 120.66 (14.0/4-0 /00.5/250RS) NUAA 2 (CCNF 01) 24.3N	ε -
28	83831552	24:3N 117:3E	LHUH		Ε:
50 51	0304402 204060	24.3N 118.3E 24.3N 118.0E	L КUK 4К0К	- HUNSTHIE CENTER, 10 DEG UVERLAY, FAIN F1X	
52	0304032	24+2N 118.UE	jaç	(13-574+0 /W / 10RS) PCN I DROF	
53 54 55	0304032 030410Z 0304402	24.1N 118.1E 24.3N 118.0E 24.5N 118.0E	CRUH		
56	030510Z	24. DN 117.8E	LNUN	R - PUSSTBLE CENTER, TO DED OVERLAT, TAIR TA	E
57 59	8388782 0309492	24:88 118:3E	5464	24.3N ICUSE 24.3N ICUSE	5Ĕ
60	0300402 030710Z	24. /N 118. JE 24. /N 118. JE 24. 0N 110. 45	L K D F	H _ PUSSTALE CENTER, 10 CEU UVERLAY, FAIN FIX	
82 63	030/40/ 030000Z 030000Z	24.0N 118.2E 25.0N 118.2E 25.0N 118.2E 25.0N 118.2E	LRUH	PUESTHIF CENTER. 10 (160 UVERLAY, FAIN FIX 24.3N 120.00	
64	030840Z		LRUN		it.
85 67	831244Z	23:28 118:6E	SAI	PCN J NOSP	
68 69	A10600Z	14.9N 114.0F 21.8N 117.5F 27.8N 118.2F	SCF SCF SCF	413	
7ň 71	631200Z	24.84 118.55 25.64 118.75		-	

v

.

			TYPHUQN ANITA	
			FIX PUSITLUND FUN OF CYCLUNE NUA 2	
FIX			MAA UBS MAA UBS DIS MIN FLI FIA ACCHY FIX FLI LYL WIND SFC WIND MIN JOUND LYL EYE DIEN- EYE	FUSII OF MSA
NU.	1146	PUSIT	CAT NAV-MET LVE UIN VEL DRO RIG VEL DRO RNG SLP HOT TITU FURM ATION DIA	HADAN NAPH
1	1202040	10+5N 111.0E	541 (11.5/1+5 /00.5/25085) NUAA 2 (CONF 03)	
3	8282123	13:2N 113:5E	SAL (11.5/1.5 /00.5/2478) NDAA 2 (NESS) SAL (11.0/1.0 /S /2478) PCN 5 UMSP	
* 5	060105Z 060107Z	11.3N 112.5E	SAL (12.072.0700.57239RS) HUAA 2 (HESS) (UCNF 03) SAL (12.072.07700.57239RS) NUAA 2 (CCNF 03)	
9	0602302	12:30 112:25	P 4 15 700 200 40 120 20 55 140 30 996 305 14	1
ş	0605012 0609152	11.0N 111.2E 12.5N 112.3E	SAT 112-572-5-/01-57249KS) PCN 3 UMSP P 3 10 790 170 59 70 80 50 70 75 991 300 13	
19	8817432	日初出作	P 5 15 700 180 64 40 20 992 299 14 12	23
13	0021302	14.0N 111.4E 15.3N 110.2E	P 5 LU 700 100 00 50 30 983 295 14 13	3
łŝ	8182252	13:3N 110:4E	SAT (13.0/3.0 /01.0/25005) NUAA 2 (CCNF 01) SAT (14.0/4.0 /0 /24005) ESSA 6 (VIBU)	
19	0704442	15.4N 110.3E 14.5N 110.0E	P 10 20 700 230 50 140 40 80 130 30 984 295 12	4
<u>1</u> 8	8183252	12:55 113:5E	2 5 5 7 5 15 1 20 20 20 20 20 20 20 20 20 20 20 20 20	
20 21	071/3UZ 071/3UZ	17.4N 108.7E	SAT PICN 4 NOV SAT PICN 2 NOP	-
23	8762552	13:78 182:4E	SHUR	•
24 25	080331Z 080425Z	19.0N 107.2E 18.2N 106.5E	SAT (]4+0/4+0-75 /25MRS) ESSA 8 (¥]80) SAT (]3+5/3+5-70]+0/25MRS) PCN 1 UMSM	
<u></u> <u></u>	8813162	18:18 188:5E		
28 29	0012322	18.8N 105.8E 18.8N 105.5E	LKUN - PUSSTHLE EYE,15 DEG OVENLAY, GUOD FIA LKUN - PUSSTHLE EYE,15 DEG OVENLAY, GUOD FIX	17.4N 104.7E 7
39	0813352	18:4N 183:5E	LRUN - SPILAL UVENLAT EYE, GOUD EIX	17:4N 182:3E
32	Ud19392	19.00 104.7E	LEUR - CIRL EYE, GUUP FIX, SU PCT+ DIAMETER 15	17:28 182:3E
34 35	08)/402 08)0142	14.00 104.5E	LAUR - LINC EYE, FAIR FIA, FYE FILLING, DIAMETER 10 LAUR - CINC EYE, GUUP FIX, DIAMETER 10	17.4N 104.7E
39	0819332 0819102	19.1N 104.1E	LAUR - CINC EYE, GUUN FIX, DIAMETER 10 LAUR - CINC EYE, FAIR FIX, DIAMETER 10	17:2N 102:7E
36	082v10Z	18.4N 103./E	LHUR - NU FLL DETINFO EYE, PUOK FIX	17:2N 157:3E
39 40	080100Z	17.6N 107.2F 17.5N 107.5F	CPA FYF PACCAGF_UCS GGBFN(LDD=5) 40 -082 CPA 47 -084	

					Fix	POSIT	PICAL SI	CYCLU	NE NU.	e								
FIX			F I A	ACCKY	f Ix		12 90L 1	-	UL MAX U SFC #1	BS ND	OBS Min	M1N 700MB	נענ	ŁĨĿ	oltn-	£1£	FOSIC	MSA
NO.	1 THE	POSIT	LAI	NAV-MET	Lvi	υIR	VEL DHG	RNG 1	VEL BRG	HNG	SLP	HG T	11/10	FURM	ATION	LIA	FADAH	NMEP
1 2 3 4 5 6	1201522 1201522 1214352 1214352 1214352	27.44 165./E 26.54 103./E 25.84 104.1E 27.54 102.3E 26.44 162.1E 29.24 161.4E 29.24 161.4E	541 541 541 541 541 541		2.0	01.5	(PRS) (PRS) (PRS)	PCN 2 PCN 2 PCN 4 PCN 4	D UMSP UMSP UMSP UMSP UMSP A 2 INL	\$51								
ķ	13813/2	29:58 181:3E	34				(24 ^m HS) (24開發)	KAUN POR			CCNF 02	2)						
10	13013/Z 1304552 131421Z	28.8N 100.2E	əai P əai	113.0/		ν υ ,		РСN 35 95 РСN 4	45 280 45 280	25	948	-	20 22	-		-		ł
13 15	1314217 1322432 1323232	30.00 160.4E 31.30 160.9E 31.30 159.8E	SAI		3.0	wu.5	(25785)	HCN 4	VCNÚ V		(CCNF 0) 1001	1 ⁾ 308	LJ -	-		-		,
19 18 19	1401227 1401227 1401227 1401227 1414062	31.2N 162.0E 31.0N 162.0E 31.3N 161.7E 32.6N 163.1E					(247R5) (247R5) (247R5)	PCN 4 PCN 4 PCN 5 PCN 5	S UMSP									·

	-		+ i :	POSITIONSOPUR	UTEUNE NU. 4		MIN FLT			FOSIT	
K6.	1172	P0511	CAL NAV-MET L	TH DIR VEC BAG	ND SEC WINE HNG VEL BHG A	NG SLP	78800 T1/To	Förm Pi	TON DIE	OF RADAR	NSA NMPR
1 2	1213332	13 /N 124./E	SAT (11+5/1+) SAT	o / / ^m RS)	PCN 5 DM5P PCN 4 DM5P PCN 6 DM5P						
3	1210172	15.0N 126.8E	JAI		PCN 5 DHSP						
ş	1301402	10.20 124.5E		, /01.0/25985) , /01.0/11885} , /0	NUAA 2 PCN 3 DMSP PCN 1 DMSP	(GCNF 0)	?)				
, بر	1303132	16.4N 125.7E	SAI (13.5/3.5		PCN 3 DMSP PCN 3 DMSP						
łÝ	1304004	19:22 123:52	F 3 2 70	320 40 250	ar 35 150	18 991	300 14 11	ELLP F-	-H 29715		ì
łŝ	1312832	17:20 123:4E	P 5 5 7		BEN 3 DASP .		298 1/ 12		10		2
łż	1318832		SAI		PCN J UMSP PCN J UMSP						
17	1310032 1322302	17.30 125.4E 18.40 125.3E		0 250 59 120	PCN 3 0M5P 10 65 140	8 986	294 15 11	CIRC	10		3
19	1400442 1400442	19.0N 125.0E		/81 : 5/248883	NUAA Z (NESS	D COCNE 02	3				
20	140304Z 140304Z	18.4N 125.2E		/U1+0/244R5) /# /244RS)	PCN 3 UMSP						
23	1:03252	18:4N 155:7E		0 ⁰ 250 04 120		10 976	291 la lu	CIRC	5		3
24	1410057 1415012	19.4N 125.0E	F 5 5 70	0 100 80 200 0 100 80 10	20	20 967 957	281 1a 13 272 10 -	EtRE	łs		1
29 28	1415482	20.10 125.4E	SAT SAT SAT		PEN 3 DASP						
29	1422002	50°AN 352°AE	P 5 1 7,	0	- 130 220	7 921 0 (CONF 02	240 2∠ 11	CINC	10		4
3î 32	1501392	21:3N 125:0E	SAL (15:8/3:0 SAL (15:5/5:5	/01:5/255883} +/D2:0/24585}	NUAA 2 INESS NUAA 2 PCN 1 UMSP PCN 1 UMSP	") {8enf 83	5				
33	1582322	21.10 125.0E 21.50 125.0E		/D2+0/24#R5)	PCN I UMSP 18n 1300ASP	7 916	236 21 12	CIRC	8		5
35 39	1504322 1504322 1504322	21.5N 125.0E		/D /24085	PCN J UMSP PCN J UMSP						
38 38 37	1202005	21.4N 125.4E	LHUR - 2//1		PCN 1 UMJP				,	34:3N 121:2E	
40 41	150/002	21.4N 125.4E	LHUK - 2//1 LHUK - 2//1							24.3N 124.2E	
25	1310002	22:3N 125:2E	LHUN - 2041							34:38 154:5E	
44 45	1512002	22.4N 125.2E	P 5 5 70		10 100 180	10 938	255 10 15	C1HC	7	24.3N 124.2L	6
29		22:48 123:4E	LUUA = 2441							24:3N 121:8E	
4 8		22:5N 125:2E	LRUH - 2541 LRUH - 1080							84:9N 121:2E	
50 51	1212002	22.0N 125.4E 22.0N 125.3E	LRUH - 2541 LRUR - 1080							24.0N 121.6E 24.3N 124.2E	
52 53	1212547	22.00 125.1E	P 10 5 70 SAI SAI		15 PCN 3 UMSP PCN 3 UMSP	- 947	265 1/13	CINC	8		6
54 52	1318342	22.0N 125.1E	SAI		PCN 3 DMSP					24.3N 124.2E	
57 58	151/00Z	22. NN 125.2E 22. NN 125.2E	LRUK - 1167		PCN 3 DHSP					24.3N 124.2E	
59 60	131/132				PCN 3 DMSP						
6) 62	151/502	23.24 125.3E 23.14 125.2E	LHDR - 1441 LHDR - 25//							24.0N 121.6E 24.3N 124.2E	
63	1323885	23:4N 123:2E		-						34:3N 154:5E	
65 66	1521002 1521002	23.5N 125.2E	LHUH - 1172 LHUH - 1463	2						24.3N 124.24 24.0N 121.68	
8 Z	1358192	23:7N 123:1E	LENH 10 2 1199	2 1 100 64 270	30 80 180	15 954	269 17 -	CINC	20	24.3N 124.2E	7
69 70	1000007	23.1N 125.3E 23.9N 125.2E	LRUH - 1058 LRUH - 1051							24.3N 124.2E 24.3N 124.2E	
72		24.UN 125.05 24.2N 124.85		/01.0/240HS) /01.0/230HS)	NUAA 2 INESS NUAA 2) ICONF 01 ICONF 01	;				
74	1803882					027	257 10 15	0.000		26:3N 121:2E	_
容		24.2N 125.2E 24.2N 125.3E	RUH 5 70		12 40 540	10 937	520 14 12	CIRC		24.3N 124.2E	ד
77 78 79	1004002		LKUR - 116/ LKUR - 1141		PCN I OMSP					28:3N 124:2E	
	10041/2 10041/2			/U /240K5) /U2+0/250K5) /S / NR5) /U0+5/240K5)	PCN 1 DMSP PCN 1 DMSP PCN 1 DMSP PCN 1 DMSP						
		24.3N 125.3L 24.4N 125.1L 24.0N 125.5L 24.0N 125.4L	LHUK - 1151		PCN I UMSP					26.1N 121.6E	
84 85 86	1000005	24.0N 125.4E 24.0N 125.5E 24.7N 125.5E	LNUN - 1041 LNUN - 1052 LNUN - 1041							24.3N 124.2E 26.1N 127.8E 24.3N 124.2E	
	1001002	24.00 125.5E 24.80 125.5E 24.80 125.4E	LNUN - 1041 LNUN - 1041 LNUN - 1031							26.1N 127.8E 24.3N 124.2E	
87 90	1000002	24.00 125.00 24.00 125.00	LRUR - 1042 LRUR - 1041							24.3N 124.2L 26.1N 121.8L	
81 92	1007002	25.UN 125.0E 25.UN 125.7E	LNDR - 1041 LRDN - 1041							24.3N 124.64	
32	1810802	23:28 125:7E	LRUA = 1041						:	28:38 124:2E	
95 96	1611002 1011002	25.3N 125.1E 25.3N 125.1E	LRUH - 1041 LRUH - 7045	a -						24.3N 124.2E 26.1N 127.2E	
97 98	1812002	25.5N 125./E	LRUH 1 1 70		8 8	- 917	238 25 14	CIRC		24.3N 124.2L	ç
100 94	1013002	25.5N 125.7E	LRUN - 1041 LRUN - 7041	9 9					:	26:1N 127:2E	

O

			1	POSITIONSOFOR	CYCLUNE NU. 4							
					19 JUL MAX OBS	OBS MIN	I +⊾T				*051T	
FIX NU	1105	PUSIT	FIX ACCHY FI LAT NAV-MET LV		ND STC WIND RNG VEL BRG RN			FXR#	rtton	ĒIĒ	RADAF	MSN NMPH
101	Je12005	25. (N 125./E	FRAK - 1041	3							24.3N 124.3E	
183	1814882	25.44 125.ME 26.08 125.7E	LHUR - 1041	2				-		-	34:3N 134:2E	
104 105	1010007	20.2N 125.0E	LRUR - 1141 LRUR - 2144	3							26.1N 12/.2E 26.1N 12/.2E	
£89	1818002	28:38 125:5É	LHUR 3 1 1044	8 550 FIA 150	15	929 249	23 11	CIRC		15	24.3N 124.2E	c
108 109	1614002	20.5N 125.5E	LRUR - 20/4	a.	PCN & DHSP						24+3N 124+2E	
H	1817812	26.0N 125.1E	SA Í SA Í		PCN 1 UMSP PCN 1 DMSP							
112 113	1018002	26. /N 125.5E 26. 0N 125.4E	LKUK - 25/4 LKUK - 1553								24.3N 124.2E 26.1N 127.8E	
Ht	1620002	29:0N 125:2E	LHUR - 2554	3							38:1N 131:8E	
H9	1055005	21.2N 125.1E	LRUR - 5563 LHUR - 3753	4							26.1N 127:8E	
11\$	1853882	57:38 123:7E	LHUR + 6 3/54	ę	- 130 190 1	3 944 262	2 1 Y 1 J	CIRC		10	26+1N 127+8E	10
131	1/81322	28.0N 124.5E	SAI (13:0/0:0	/Na:5/23RRS)	NUAA 2 (NESSY NUAA 2	188NF 813						
123	1 / Y ¥82Z	38:UN 123:4E	SAI 2114-015-8	/w1-5/24PRS3	PCN LUUDASP -	951 266	10 14	CINC		10		10
124	1/04022 1/04022	27.8N 125.3E 28.0N 125.1E	SAI (14.5/5.5 SAI (16.0/6.0	/#2+0/24585) /00+5/24685}	PCN 1 DMSP							
139	1 / 1 8 1 5 7	38:30 128:4E	F 18 5 76	338 123 188	38 = = =	888 <u>2</u> 98	18 12	CTHC		12		H
128	1/16402 1/16462	29.20 125.7E 29.00 125.6E	SAL		PCN 1 DMSP PCN 1 DMSP							
131	1129292	31:0N 123:3E	⇒A[P 10 5 7⊍		PCN 1 0M5P -	966 28(17 -	-		-		12
$132 \\ 133$	1800292 1800312	32.0N 124.5E 32.2N 124.7E	SA 14:0/3:5	/w1.0/c+#HS) /w1.5/23#HS)	NÚAA 2 (NESS) NÚAA 2	186NF 811						
13\$	1803482 1803482	32:5N 124:6E	3A1 113:8/3:5	/#1:8/24RRS}	een 3 dase							
136 137	1003402 1016312	32.0N 124.5E 34.0N 122.5E	5A) (12.5/3.5 5A)	/#2•0/24 ⁿ RS)	PCN 3 DMSP PCN J DMSP							
138	1818352	34.0N 122.5E	SAL		BEN 3 UMSP							
140	1901232	35.2N 121.2E 35.4N 121.8E	SAI (13.0/4.0 SAI (13.0/4.0	/00.5/2+MRS) /#1.0/246RS)	NUAA 2 (NESS) NUAA 2	(GCNF 02)						
1 4 3	202322	33.5N 121.5E	3A1 112:5/5:3	/88:3/25ARS)	PEN 3 UMSP							
1+4 145	101500S	35.0N 121.8E	5A1 (11.5/2.5 SCF	/w1.0/24nR5)	PCN 3 045P 50	084						

TYPHOON DOT FIX POSITIONS FOR CYCLUNE NU. 5 14 YUL TO 20 JUL

			14 VUL 10								
FIX	(TWF	P0511	FIX ACCHY FIX FLT LVL WI LAT NAV-MET LVL VIR VEL BRG		GUS MIN Min 700mb Slp hgt	LAL LT/10	EYL Furm	RIEN- ATION		POSIT OF FADAR	MSN NMAM
1		16.2N 114./E	SAT (11.5/1+5+/ / MRS) SAI (12.5/2.5 /01.5/24445)	PCN 5 UNSP PCN 5 DMSP							
3	1400442	16.2N 113.3E 18.3N 115.5E 17.4N 110.2E	SAI (12.0/2.0 /D1.0/24MAS) SAI (12.0/2.0 /D1.0/24MAS)	NUAA 2 (NESS) (U	CNF 02)						
5	1404402	10. /N 112.5E	SAT (11.5/1.5 /S /24MRS) SAT (11.5/1.5 /S / ARS)	PCN 5 DHSP PCN 5 DMSP							
76	14Y250Z	17:12 H4:5E	241 10 (1320/3+0 /D055/240RS)	PCN 5 DH2P -	990 303		-				,
10	1410112 1417292	17.94 114.3E 18.18 114.2E	P 5 2 - 120 c [⊅] 330 SAI	BON 3 DHSP	992 303		-		-		,
łł	121/382	14:5N 113:3E	SAL	een 3 Bast							
13	1551552	ta:ny tha:ne	AT 5 13.0/J.U /DI.0/24085)	30 40 230 30 (0		14 11	-		-		3
12	1303933	17:98 113:8E	2 13 5/3 5 /01 5/25 TRS1 240 50 190		CNF 01) _	19 14	-		-		,
17	1204357	18.14 113.4E	SAI (13.0/3.0 /D1.5/24MAS) SAI (13.5/3.5 /D / MAS)	PCN 3 DMSP PCN 3 DMSP							
20	1316562	16:48 113:68	541 (T4.0/4.0 /D1.0/240R5) P 10 10 - 210 50 90	30 65 90 30		15 -	-	- *	-		4
21	1515002	18./N 113.5E	P 10 10 - 160 60 60	PCN 3 DMSP		15 -	-		•		4
22	1320532	14:38 114:16	SAT LHUR - 15///	PCN 5 DMSP	978 292		_		_	22.3N 114.2E	-
25	1000002	19-1N 113.3E 20-0N 113.5E	P 2 2 700 240 80 130 SAT (13.5/3.5 /D0.5/240R5)	85 65 130 120 NUAA 2 (NESS)		12 13	-	• •	-		-
22	1883252	13:5N 113:4E	SAI 5(1450/4+0 /DU-5/25TRS)	-	0978 ⁰²⁾ 290	12 -	-		-		e
30 54		20.4N 113.6E	SA1 (14.5/4.5 /00.5/24085) SA1 (15.0/5.0 /0 / ANS)	PCN I DMSP							
31 33		20:3N 113:7E	SAI (13:8/3:5 /b / RRS)	fen i Busp			-	-	-	22-3N 114-25	
34	1600002	20.00 113.9E	LRDR -				-		-	22-3N 114-2E 22-3N 114-2E 22-3N 114-2E	
35 36 37	1010002	20.0N 113.0E	LRUR -			:	-		-	22.3N 14.2E	
38 39	1011002	20.0N 113.9E 20.7N 114.1E	LHUN -				-	:-	:	22.3N 114.2E	
.4U 41	1012102 1013002	21.0N 114.0E 21.1N 114.0E 21.2N 114.0E					-	::	-	22.3N 114.2E 22.3N 114.2E	
42 43	10120-5	21.4N 114.JE 21.0N 114.JE	LRDA -				-		-	22.3N 114.2E	
43 44 45	1017002	21.0N 114.2E	LKUH - JAÍ	PCN 2 UNSP			-		-	2213N 114.2E	
40	lei7ui2	21.0N 114.0E		PCN J UNSP							
47 48 49		21.0N 114.2E 21.7N 114.1E	581 LKUK -	PCN I DMSP PCN I DMSP			-		-	22.3N 114.2E	
57	18180.5	21:0N 114:3E			•		-		-	22:3N 114:2E	

•

			FIX PUSITIONS TO CYCLUNE NU. 5 14 JUL 10 20 JUL MAX UDS MAX UDS OUS MIN FLT		
FIX NO.	11ME	POSIT	MAA USS MAA USS OUS MIN FLT FIX ACCHY FIX FLILVLY WIND STC GIND MIN 70000 FLT LYE STENT EYE CAT NAV-MET LVI DIR VEL DEG NNG VEL DEG NNG SLP HOT FIXTU FUNN ATION UIA	FOSII OF FADAH	MSA Nach
51	1020002	22+2N 114.4E	LKUM	22.3N 114.2E	
23	1823882	22:3N 114:5E		22:3N 113:2E	
53	1701002	22:/N 114:8E		22.3N 114.2E	
56	1705002	23.UN 114.8E 23.JN 115.UE	LKUR	22.3N 114.2E	
58	1/04027 1/04022	23.2N 115.4E 23.4N 114.9E	SAT (13.0/3.5 /NO.5/240RS) PCN 3 UMSP SAT (12.5/3.5-/W2.0/240RS) PCN 3 DMSP	22+3N 117+2C	
60 61	170402Z	22.4N 115.1E 25.0N 116.9E	SAT (14+0/4+1) /S /247RS) PCN 3 UMSP SAT PCN 5 UMSP		
62 63	1718452	27:48 125:/E	SAI PCN 5 DMSP		
64 65	1912342	27.2N 125.0E 28.0N 126.0E	SAT PCN 5 UMSP SAT (T2.0/2.0 /00.5/24085) NUAA 2 (NESS)		
89	1981392	28 2N 127 1E	SAT (12.0/2.0 /D0.5/24785) NUAA 2 (GCAF 02)		
68 69	190333Z	28.5N 126.4E	SAL (12.0/2.0 /D1.0/240R5) PCN 5 005P SAL (12.0/2.0 /D /240R5) PCN 5 005P		
7 9	1384882	28:Ja 128:8E	EAUR (11.5/1.2 CO SPIKATORS HARVENLAVEN PATR FIX	26+4N 101+66	
72 73	190510Z 190540Z	27.8N 126.9E 28.3N 127.3E	LHUR - FAIN FIX LHUR - 20 NFG SPINAL OVENLAY LYE, PUUK FIX	26.4N 121.82 26.4N 121.22	
45	łżysłuź	38:7N 124:1E	LAUR - 20 10 59 INAL OVENLAY LYL - 994 303 1	26+4N 12/+2C	,
76	1916172	31. N 127.UE 30. DN 126.3E	SAT PCN 5 UMSP SAT PCN 3 UMSP		·
78	1328862	31:3N 127:1E	SAL PCN 5 UMOP	33=4N IJUsat	
80 81	192100Z	31.5N 127.2E 32.1N 127.UE	LHUR - 35/12 LHUR - 35/11	33.4N 130.4L 33.4N 130.4L	
82	192300Z	33.2N 127.UE	LHUR - 35/1 SAF (72.0/201/# /24DRS) NUAA 2 (NESS)	33.4N 130.4L	
84	2009292	33+8N 126.3E	341 (12-0724) /S /23085) NDAH 2 (GONE 01)		
85 86	2003192	33+0N 126.3E	SAT (11.5/2.0 /# /24085) PCN 3 UMBP SAT (11.5/2.0 /# /24085) PCN 3 UMBP		
87	162300Z	22.2N 114.3F	CPA WAGEAND TSEAND ST MAX CHST A7KY		
88 89	1712007 180002	27.84 116.4F 25.84 118.0F	SCF 30 SCF 35		

æ

TYPHYON ELLEN F1x POSITIONS FOR CYCLUNE NU. 6 17 JUL IU 29 JUL

			17 201 11	-						
FIX			LIX ACCRY FIX FLI LYLUND	U SFC NIND	aya 700mu			NIEN- ETE		MSh
NO.	I TWE	PUSII	LAT NAV-HET LVL DIR VEL BAG	HNG VEL BHG HNG	SLP HGT	11/10	FORM	TION DIA	FADAR	Nwo k
Į	1623302 1623402	20.5N 138.0E	SAI (15:0/2:0 /01:0/230RS)	NUAA 2 (NESS) (CO	erf 813					
3	1/02212	20.5N 138.3E 20.5N 138.3E	SAT (11.5/1.5 /00.5/240KS)	PCN 3 UMSP PCN 3 UMSP						
Ş	1713842	31:88 133:9E	381	een 7 Ruse						
78	1/26192	22.2N 139.0E 22.2N 138.2E	P 5 3 700 288 70 180 SAI (13.5/3.5 /DI.5/24985)	20 55 180 10 NUAA 2 (NESS)	978 290	10 Y	CINC	10		1
10	1882882	33:38 149:6E	3A1 (13:8/3:8 /82:8/22R83)	PCN 1 UNSP (CC	CNF 01)					
11 12	1802002 1802002	22.2N 138.8E	SAT (14:9/4:5 /02.0/23RS)	PCN 1 DMSP PCN 3 DMSP						
13	1803152 1803402	22.4N 138.3E	SAT (14.5/4.5/ 260 / 180 NRS)	16 63 140 10	978 288	15 9	CINC	20	•	1
15 16	180348Z 180935Z	22.5N 138.2E 22./N 138.4E	2A1 (13.5/3.5 /D2.5/24MRS) P 5 5 700 - 65 310	PCN 1 DMSP 10 50 310 30	969 284	15 11	CIRC	έU		2
17		23.0N 137.9E	145	PCN 2 DMSP PCN 2 DMSP						
19	1814502	22.4N 138.4E	SA1 SA1	PCN 2 DMSP PCN 1 DMSP						
ŝż		23:18 137:5E	341	ben i basp						
23	1829322	24.UN 138.2E 24.UN 138.UE	P 5 3 700 150 100 170 SAT (14.0/4.0 /D0.5/24PR5)	10 110 50 B	944 202	2 - 12	CINC	17		r
25	1823337 1900402	24.7N 130.0É	AC R (15.5/5.5 /D2.0/23"RS)	NUAA 2 (CC	CNF 01)					-
27 28	1901512 1901512	25+1N 138.1E 24+8N 138.UE	SAT (13.5/3.5 /02.5/24 RS) SAT (15.5/5.5 /01.0/24 RS)	PCN I ÚMSP PCN I ÚMSP						
30		28:28 138:2E	SAI (12:8/2:8 /B1:8/2:R83)	sen i omsp						
32	1383332	28:38 138:3E	SAI (13:8/3:5 /81:8/2:5783)	PCN I DMSP						
32	1312332	38:50 138:4E	565 231 825 XUF 4 7	5g 7õn 3õo " e	327 322	£?]}	ETAE '	-NE 20x15		ŧ . O
35 36	19161/2	21.0N 138.5E 27.0N 138.3E	14C 14C	PCN 1 0M24						
37	1318252		2β1 - 5 700 30 45 300	10 1 UNSP -	962 277	2 -	- .			c
39	1951055	24.8N 138.3E 24.4N 138.0E	P 3 10 700 120 55 20 SAT (12.5/3.5 /#1.5/24MRS)	30 50 300 15 NUAA 2 (NESS)	973 286	5 10				*
11	20002/2	30-20 137.4E	3AI (13:8/4:4 /#1:5/220#3)	NUAA 2 (GO	CNF U1)					
43	2083132	33:2N 137:4E	3AI (13:5/4:0_/W1:5/24BR3)	PCN 3 UMSP						
\$5	2004312		B 4 5 - 250 45 160	29 38 386 39	381 237	18 10	: :	:: :		3
\$3	2018822	32:1N 138:6E	SA I	PCN 3 UNSP						
49 50		32. UN 136.35	B B B 768 208 10 100	45 20 110 60	990 300 989 300	12 12	:	:::		р 2
-•										

			FIA POSITIONS FUN	ELLEN CYCLUNE NO. 6	
			17 JUL TO MAA 085	29 JUL MAX USS OBS MIN FLT POSIT	
NO.	11MF	PUSIT	CAT NAV-MET LUI DIR VEL URG	Rng veloungnang sip 78848 tiyto farm bits rabar 1	NPEH
51 52 53	2103042	32.00 135.0E 32.10 136.2E 31.90 136.2E		NUAA 2 (GONF 02) PCN 3 DMSP PCN 3 DMSP	
53 54 55	2103042 2103152 2113482	31.9N 136.2E 32.0N 136.5E 31.9N 130.6E		PČN 3 DNSP 33 1⊃ 340 50 994 304 1⊃ PČN 3 DNSP	c
55 57	2113482 2123242 2200222	31.9N 130.0E 32.2N 135.0E 31.2N 136.0E		NUAA 2 (NESS)	
58	2200222 2202472 2202472	31.4N 136.4E 31.4N 136.4E 31.5N 130.3E		PCN J UMSP	
59 60	2202492	JU-8N 135.3E		PCN 3 UNSP PCN 3 UNSP PCN 3 UNSP	
63 62	2301322 2301322	30.00 135.5C 31.10 133.9E 31.10 131.8E	-		10
65 65	2302352	31:18 131:22		NOA 2 (ICONF 0]) PCN 5 UNSP	
66	2306325	30. /N 132.3E		PCN J DMSP PCN 5 UMSP	
85	2383882	18:50 H12:5E		39:\$N 131:4E	
70	230400Z	30.44 132.4E		33.4N 134.4E 33.4N 134.4E	
73	2308002	30.5N 132.2E		39:4N 131-4E	
74 75	230/002	31.561 NB.06 30.561 NV.06		30.6N 131.0E 33.4N 130.4E	
39	2308052	38:111 R8:8E		33:181 131:5E	
75	2904007 2904007	30+/N 131.6E 30+5N 131./E	LRUR - 303// LRUR - 35//	30.6N 131.0E 33.4N 130.4E	
81 81	2312882	38:4N 131:2E	LRUR - 35600	33:4N 130:2E	
82 83	2313002 2313002	30+1N 130.8E 30+1N 131.4E	LRUR - 35//1 LRUR - 10101	33.4N 130.4E 30.6N 131.0E	
84 85	5313175	30+1N 130-8E	54T - 35//n	PCN 5 UNSP .33.4N 130.4E	
87	2313132	30.0N 131.2E		PCN 5 DMSP PCN 5 DMSP	
88 89	2317002	30.1N 131.2E	LADR - 101/2 LADR - 10232	30.6N 131.0E	
91 90	231 1012	30.10 131.0E 24.40 131.2E	5A1 - 20371	PCN 5 UMSP 28+4N 125+5E	
33	2314002	30.2N 130.9E	541 EKDH - 10332	PCN 5 DMSP 30.6N 131.0E	
94 95	2319002	30.14 130.4E	LKUR - 20321 LKUR - 30341	28.4N 129.5E 28.4N 129.5E	
39		38:28 138:9E	FKR4 = 18313	30:8N 131:8E	
98 99	232000Z	30.2N 130.7E 30.2N 130.0E		28.4N 129.5E 28.4N 129.5E	
100 101	2954007 2951002	30.2N 130.7E 30.JN 130.6E	LRUR - 10317 LRUR - 10317	30+6N 131+0E 30+6N 131+0E	
102 103	2322002 2323002 2323002	30.0E NE.0E 30.0E NE.0E 30.05 NE.05	LHUK - 30411	28.4N 129.5E 28.4N 129.5E 30.6N 131.6E	
104 105 106	2400002 2400002	30.4N 130.20 30.4N 130.20 30.4N 130.3E	LHUR - 20342 LHUR - 20701 LHUR - 20312	30.4N 131.0E 20.4N 123.5E 30.6N 131.0E	
182	2400112 2400102	30.1N 129.1E 30.1N 129.0E	A) (12.5/3.0 /00.5/240RS) A) (12.0/3.0 /01.0/240RS)	NUAA 2 (NESS) (CONF 01) NUAA 2 (NESS) (CONF 01)	
109	2401002 2401002	30. DN 130.1E 30. DN 130.3E	LRUK - 65/61 LRUK - 30342	28.4N 129.5E -30.6M 131.0E	
112	2406002	30.5N 129.65	LAUR - 20312 LAUR - 20871	38.44 131.0E	
113	2402242	24./N 124.5E 30.1N 130.0E	SAI (13.0/3.0 /w /24hR5) SAI (12.0/3.0 /w1.0/24hR5)	PCN 5 DMSP	
112	548558Z	38:58 153:3E	SA1 (T3.0/3.0 /00.5/240RS)	PCN 3 UNSP 33.4N 130.4L	
112	5283882	30-58 129 HE	-Boy 5 2 51 A01 520 34 180	28.4N 129.5E	12
172	2404002	30.3N 129.8E	SAT (13-073-01/1 /24085)	PCN 5 UM5P 28.4N 129.5E	
	2404022	30+3N 129.8E 30+3N 129.8E	SAT (13-5/3+5 / / DRS) SAT (12-0/3+0 /W1+0/25085)		
123	2407002	30:7N 124:7E	LRUN - 55817	38.4N 125.4E	
155	2409002	30:12 123.6	LRUK - 5//// LRUR - 55/1	38:1N 169:3E	
132	5:1:8222	30:6N 123:5E	THOM 3 2 1020 510 15 510	40 30 330 10 998 307 13 4 33.4N 130.4E	17
130	2411002	30.4N 129.0E	LHUR - 1050]	33.4N 129.5E	
131 132 133	2412002 2412002 2413002	10.14 124.55	LHUN - 55/11 LHUN - 19541	33:4N 138:2E	
134	2413002	30.4N 129.0E	LRDR - 11801 LRDR - 22911	33.4N 134.4E 28.4N 125.5E	
	5414882 2415002	30. 4N 124.0E	LROR - 55/61 - 55/41	28:4N 124:3E	
	2415002 2415002 2416007	31.1N 129.0E 31.2N 129.4E	ГЙЛК - 50115 ГЙЛЧ 3 2 50105 50 56 180		17
	2410002 2410402 2416402	31.44 124.65	JAI	РСЛ J UNSP 33.4N 130.4E	
		31.0N 129.3E	LKOK - 23935	33+4N 130+4E	
		11.4N 129.5E	LHUR - 21952 LHUR - 25710 LHUR - 21603	38:4N 124:5E	
_		31.5N 129.5E 31.6N 129.5E 31.6N 129.5E	LHUR - 11612 P - 10 Dus 210 32 120	33.4N 134.4E 33.4N 134.4E 35 13 124 20 - 437 2 - CIMC 20	14
			LHUH - 10612 LHUH - 10612 LHUH - 10412		
150	2201005	31+AN 154"2F	LKUN - 1v412	33:1N 131:1E	

					FIX PO	si Hensoro	r 24220n	ENU. 6								
						17 JUL MA ^A Un	5 10 29 Ju	MAX USS	085	. MIN	r⊾Ţ				FOSI	
F.1.2	IIPE	POSIT	EIX N	ACCAY AV-MET	£18	FLI LVL ∰ DIR VE∽ B∺	£ND € H∿G V	EL BRG KN	i SLF	700MB HGI	טלינו	FURM	ATION	EIE	FADAH	NMPH
151	250110Z	32.2N 128.4E	JA.			0.5/24785)		2 (NESS)	-							
153	2203412	32. IN 123.0E	SAI		/2.0 /5 /3.0 /8			2 กษะค	(UCNF	01)						
155	250348Z 250300Z	32.1N 129.6E	JA I LHUH	(13.5	/3.5 /5 10402	1540H21	PCN 3	UMOP							33.4N 136.4E	
139	2387882	32:3N 130:7E	LHUR	:	18223										33:48 HJU:4E	
158 159	2506002 2509002	32.5N 130.2E	LHUR	2	20312 11411										33.4N lju.46 33.4N lju.46	
128	2311852	32:8N 130:8E	LRUK		43/71										33:4N 132:4E	
162 163	251200Z	32. IN 130. HE	LRUR LRUR	-	45//1										33.4N 136.4E 33.4N 130.4E	
164	2515002	32. 4N 131.0E	LRUR		45//0										33.4N 134.2E	
189	2312002	32:3N 131:4E	LHUH		45//1							-		•	33:3N 134:2E	
168	2317882	32:3N 131:4E	LKUR	-	35//8										33:3N 134:2E	
170	251000Z	33.UN 131.HE 32.9N 131.5E	LKUH	-	55//1 52=01										33.3N 134.2E 39.6N 131.9E	
171	2212002	32:20 131.5E	LRUH		35/1/							-		-	33.3N 131.0E	
174	2004142	32.4N 132.0E	JAI	(12.5	12.5 14	10.5/23MRS)		2 (NESS)	(CCNF							
175 179	2000112	33.5N 132.5E	SAI LEUR	(12.5	/2+5 /1	0.5/23nRS)	NUAP	2	(CURP	017		:	: :	:	33.3N 134.2E	
177	260300Z	33.UN 132.7E	LRDH	-								:	- :	-	33.3N 134.2E 33.3N 134.2E	
179 180 181	26040vZ 26050vZ 26050vZ	32.94 132.9E	FKD4 FKD4 FKD4	-								-	::	:	33.3N 134.6E	
			LEDE	-								-		:	33.3N 134.2E 33.3N 134.2E	
182	2610402 2610402	32.4N 133.5E 32.6N 133.7E	LRUR	-								-	::	-	33.3N 134.2E	
185	2814552 2021002	32:20 133:9E	LKDK	2								-		-	33.3N 134.6E	
167	2623UQZ	32+UN 134.0E	LAUN	-								-		-	33.3N 134.2E	
185	5101007 5101007	31. 4N 134.7E	LHUR		3////	6		- (mr55)							33.3N 134.2E 33.3N 134.2E	
13P	2101022	32:0N 135:0E	SA I SA I			10.5/230H5)	NUAA	2 (NESS) 2	ICONF	01)					33. 3N 1.14. cE	
133	270500Z	31. YN 134.8E	LHDR		3////										33.3N 134.2E	
135	388885 <u>7</u>	38:88 F38:8E	SAL		12:2-1			2 (NESS)	LUCNF	61)					35.4N 135.1E	
139	280304Z	32.2N 136.0E	SAT			1.0/240851		UNSP							33444 139412	
138	280304Z	32.4N 136.5E	SA1 LHUH	01.5	/1+5 / 20911	/ MR5)	PCN 2	1 UM5P							35.4N 130.12 35.4N 130.12	
200 201	580 (002 580 00 1	32.5N 131.2L	L H U K		1∪8r] ∠u711										35.4N 130.7E	
202 203	280000Z	32. IN 137. JE 33. IN 137. 4E	LRUR	-	20811 20811										35.4N 132.1Ë 35.4N 136.1E	
205	2815882	33.5N 137.4E	LHUH		28322										35:4N 138./E	
289	2813882	33:27 13/:4E	LKUK		1:3/3										13:4N 138:/E	
208	2810402	33.0N 137.3E	JAI JAI		20.77		PCN -	S UNOP S UNOP								
209 210	5914005 591405	33.1N 137.2E 34.3N 137.0E	LRDH	-	11376									_	34.6N 135.7E	
₹ 1 5	3857002	31:50 137:1E	FKD4		10212							-		-	36:28 137:JE	
213 214	290102Z 290200Z	32. (N 136.UE 34.8N 136.8E	SA1 LRUH	-	21427				ICONF	01)					35.2N 13/.UE	
215 216	2402492 2402492	35.4N 137.1E	JAL	{ !! :5	1:5 /	10.5/240HS	PCN : PCN :	5 DM5P 3 DM5P								
217 218	29030vZ	34.8N 136.7L 32.1N 136.5F	SCF	-	25452			75							35.2N 13/.ut	
219	280600Z	32.7N 137.2F	SCF					50								

!

.

Ð

34

					F1;	POSIT	PICAL ST IONS FOR 29 JUL 1	CYCL	ONE NO.	7									
FIX NU.	11ME	PUSIT	-	ACCHY NAV-MET	F1x Lvi	FL	MAA DAS	ND	SPC MAX		SLI SLI			[V] 1/T0	EYÉ Fûrm	PIÉN- Ation		FOSI I	HSN NMpt
1	242322Z 25034dz	12.UN 130.UE 11.40 136.UE	JAC JAI	(1).5, (11.5)	1.5	/00.5/	(24 TRS)	PCN	AA 2 (N 5 DH5	ţss)	GONF	02)							
3	2502402	11.24 135.0E 11.54 130.5E	JAC Sai				240R5)	PCN	5 UM5	ρ	GONF	01)							
56	2003332	11:3N 138:3E	JAC JAC	{ 12:5;	1.5	180.5/	259R5)	PCN NU	AA 2 0H5	٩	GONF	01)							
ï	318318Z	16./N 132.8E 16./N 132.5E	JAC SAI	86.53	1.5	is ?	240R5)	PCN PCN	3 DHS 3 DHS	۲ ۲		-							
9 10	2408162	19:58 129:5E	SAT	(12.0/	2.0	/s /	'247RS)	PCN	AA 2 (N	Ess)	CONF	02)							
łł	2887945	17:48 127:3E	38 [{{ź:8;	3:8	/\$ /	22R83)	65 4	AA ZOMS	۲	CONF	051							
12	2803042	19:38 124:7E	SAT	(11+5/	1.2	/s /	24785)	PCN	S DWS	P									
15	2813407	18.10 124.7E	PAI	56	-	110	3¥ 30	PCN 50	5 UM3	P V 40	1004	312	2 14	• 13	-		-		4
17	5402005 2401005	19.20 123.7E	PAI	6 12.5/	2.5	/U0.5/ 220	250R51	20	40 14	U 23	(CONF	201,311		<u> </u>	-				4
20 20	2904312 2911452	13:30 122:3E	SAI	5 15 °	3700	⁽¹⁾ 140	136250	90N 20	ว_ บพ⊇	۲ -	1004	312	2 1.		-		•		5
21 22	5411125 5415185	19.3N 122.3E 20.4N 120.6E	TAC	5 10	700	60	30 340	90 PCN	รัยคริเ	<mark>ب ۱</mark>	1009	5 313	3 1.	· -	-		-		5
23 24	300000Z	19.10 122.35 22.00 124.00	SAT	- (T1+5/	100	210 /w1.0/	23 150 230R5)	15	15 55	V 10	CONF	B ₀₁ ,314	•	- •	-		-		6
22	3007002 3004102	26.1N 121.5E	SAI	3 (T1:0/	2.0	350 #2.0/	247RS)	35N	5 ¹⁰ 0MSI	y 40	1006	316	, 1,	-	-		-•		7

.

TYPHUON GLORGIA FIX PUSITIONS FOR CYCLUNE NU. B

			FIX POSITIONS FOR	O 12 AUG MAX OBS	000					.	
FIX NO.) I ME	PUSII		ND SEC WIND HNG VEL BKG RNG	OUS MIN Min 7000 SLP MG		FURM	RIEN-	EYE DIA	POSII OF Fadar	MSN Nøpe
1	0800402	20.0N 119.0E		NUAA 2 (NESS)	(CCNF 01)						
ŝ	080V412 080J102	39:48 H7:8E	SAI (H1:8/1:8 /80.5/2+988)	NUAA 2 (VIBU)	(CONF 01)						
\$	08034/2 0810312	20.28 117.78	SAT (11-5/1-5 /00-5/24NRS) SAT	PCN & UMSP PCN & DMSP							
9	0901352 0901352	20.5N 118.6E 20.UN 117.UE	SAT SAT (13+0/3+0 /D1+0/24MRS)	PCN 5 DMSP NUAA 2 (NESS)							
ę	040210Z	fy:#N 117:48	>β[10 1350/3+0 /0158/235RS10	35 30 340 35	(GONF 01) 302	12 -	-				٦
10	0904192 0903062	14.94 114.9E	SAT (12.0/2.0 /D0.5/2358)	LSSA 8 (VIBU)			-		-	19.1N 117.1E	-
13	0903322	13:3N 119:6É	SAI (13:5/3:5 /81-0/2+RRS)	PCN 3 DMSP PCN 3 DMSP							
łŝ	0703322	29:7N 110:8E	SAI (15:5/2:3 /B1.0/24RAS)	PCN 3 DASP							
19	0702142 070002	19.4N 116.6E	SA((12.0/2.0 / / HRS)	PCN 3 DMSP			-		-	22.3N 114.2E	•
18 19	07011vZ	19.8N 116.5E 19.8N 116.3E	LRUK - 25/1/							22.3N 114.2E	ş
ŝî	831200Z	18:48 115:3E		15 50 340 40	989 299	13 10	:	: -	:	00 3N 114 0F	•
22	041210X 041200X	14.0N 115.1E	-RUH - 1 1 700 230 49 150	10	980 294	15 10	CINC		5	22.3N 114.2E 22.3N 114.2E	:
25	8318182	13:30 113:1Ë	SAL	PCN 3 BMSP		•					2
29	8318183	13:5N 112:9E		PCN 4 DMSP PCN 3 DMSP							
25	031810Z	14.4N 114.4E	SAI LKUK -	FCN 5 0H5P			-		-	2.3N 114.2F	
30 31	0921002 0922142	14.4N 114.3E	P 1 3 700 130 5V 40	15 50 1+0 1u	978 291	10 -	_		-	2.3N 114.2E 2.3N 114.2E	-
32 33	1000002	19.5N 113.9E 20.0N 113.5E	LHUR - 55/// SAI (14.0/4.0 /D1.0/250RS)	NUAA Z	(GONF 02)					22+3N 114+2E	3
34 35	1002302 1003042	29:08 113:3E	SAI (14:0/4:0 /01:0/24/145)	NUAA 2 (NESS)							
30 37	1003502	14.5N 113./E 19.5N 113.4E	P 5 2 - 160 50 30 SAT (T4.0/4.0 /02.0/240RS)	PCN J UMSP 10	978 290	11 -	CINC		15		4
38	I NUSUNZ	13:50 113:1E	SAT (14.0/4.0+/01.0/25"RS) CRDR = 55///	PCN 1 UMSP						22+3N 119+2E	
40 41	1008502	19.3N 113.3E	Ρ 170 40 - LKUH - 1001/		976 288	11 -	•		-	22+3N 114+2E	4
43	1015302	13:3N 112:3E	LARR = 1881/							33:3N 11:::E	
44 45	1011442	14.0N 111.2E	3A1 3A1	PCN 5 UMSP PCN 1 DMSP							
49		13:10 112:1E	541 ERUR - 35///	PCN 2 UMSP						22.3N 114.2E	
48 49	1100002	13:18 111:5E	LRUR - 6////				-			22.3N 114.2E	
50 51	1101362 1101362	19.0N 111.8E	5A) (14.0/4.0 /S /24PH5) 5A1 (14.5/4.5 /00.5/23PR5)	NUAA 2 (NESS) NUAA 2	(CONF 01)						
52		10°IN 111°0F	3A1 (T4.5/4.5_/D0.5/240HS)	PCN 1 UMSP							
53 54	1104452	19.3N 111.8E 19.0N 111.7E	3A] (14:5/4:0 /Su-5/24RAS)	PCN 1 UMSP							
36	111/232	SS:IN HH:KE	- 241 - 241	PCN 2 UMSP FCN 2 UMSP							
56	1200002	14.4N 111.1E	ÉRÚR -		(OCNF 02)		-		-	22.3N 114.2E	
60 61		20+3N 111+0E 21+3N 111+0E	CKUR - SAI (14.5/4.5 /0 /239RS)	ESSA 8 (VIBU)	100NF 021		-		-	22+3N 114+2E	
62	1204142	21.UN 111.UL					-		•	22+3N 114+2E	
63 64		20:3N 111:1E	SA (14.5/4.5+/00.5/24085) SA (14.5/4.5-/5 /24085) SA (14.5/4.5-/5 /24085)	PCN 1 DMSP PCN 1 DMSP							
65 66	1204352	20.4N 111.1E	CROR -	PCN 1 DASP			-		-	22.3N 114.2E	
		SETAN HU: /E		PCN 3 SMSC							
		21.94 110.6E 27.04 110.7F		PCN 3 1005P 25	.090						

			TROPICAL STO Fly Positions For							
			09 AUG TU MAA 095	12 AUG MAX 08S	CHS MIN	₽LT			FOSIT	
FIX NO.	TIME	POSIT	FIX ACCRY FIX FLI LVL WIN CAT NAV-MET LVL DIR VEL BAG	ANG VEL BRG RNG	NIN 700MR SLP HGT		NEN PRIEN	ETE	FADAF	MSN Nycfi
3		23.0N 158.3E	SAT (11.0/1.0 / / PHS)	PCN 5 UNSP NUAA 2 (NESS)						
2	0023342	25+0N 156.0E	SAI (12.0/2.0 /01.0/24085)		NF 0.33					
- 2	8961512	33:47 139:4E	SAI (12:8/2:8 /B1:8/22/RB3)	PCM 3 DM2P						
56	0901512 0914392	25.8N 155.4E 27.0N 153.2E	SAI (I2+0/2+0 /U /2+nRS) SAI	HCN J UNDH						
l	091-357	20.0N 103.1E	טר כנ 180 איז ל 20 5 7 אין אד	••	AAP 382	1.2 -		-		
9 10	NA56305 NA56305	27.5N 152.0E 27.5N 152.0E	AL (13.0/3.0 /U1.0/24485) AL (13.0/3.0 /U1.0/2385)		INF 031 INF 031					
łż	1001382	到:18 出:准	SAF {13:8/3:8 /81.0/ff##8}	PCN 3 UHSP						
13	1012272	28.4N 150.4E 29.4N 150.4E	9 15 10 - 300 4V 180 SAT	4CM 3 0M34	U06 310			-		٤
1 5	1821582	33:0N 199:1E	³ β ¹ 5 5 7₀0 150 3 ⁹ 50	-		10 12		-		3
17	102332Z 1023392	30.08 149.5E 30.08 150.0E	SA1 (13.0/3.4 /5 /24985) SA1 (12.0/3.4 /#1.0/24985)	•	NF 01)					
20	1181212	30.3N 144.4E	SAL (14.0/4.0-/01.0/240HS)	HCN 4 DHSH						
21	1107232	30.9N 148.5E 31.9N 148.3E	P 5 10 ∽ 210 25 120 ŞAI	30 25 120 40 FCN 4 UMSP	949 Bus	1		-		•
22	1115872	33:1N 128:8E	SAI	FEN 3 Shaf						
22	122332	32.5N 145.0E	SAI (13:0/3:0 /S /250HS)	NUAR C (CC PCN 3 DMSP	INF 621					
32	1282332	35:5N 143:8E	381 {12:8/2:3_/8 /24F#3}	ten a bust				_		
29 3 0	1212682	32.4N 144.0E 32.8N 142.1E	P 5 10 - 200 29 140		1008 313			-		-
31	121234Z	34.1N 144.UE 34.2N 143.8E		PCN 3 UMSP PCN 3 UMSP						
32	1212322	-		PCN J UNOP						

				FIX POSITION THIS NU. 10							
				NAT UNS MAX UNS ON		PLT				FOSI	ME
FIX NO.	11ME	PUSIT	514	ACCHY FIX FLILVL WIND SPC WIND NI WAY-MET IVI DIR VEL BHG HNG VEL BHG HNG SL		11/10	FUMM	BILN-	DIA	OF FADAN	MSA NMPH
ł	090332Z	18.5N 132.0E 17.3N 132.9E	SAI	([1.5/1.5 /D0.5/24 TRS) NUAA 2 (UCNF (T1.5/1.5 /D / RS) PCN 3 UHOP	013						
3	090332Z	17.4N 132.4E 17.2N 132.3E	JAI JAI	(11.5/1.5 /D0.5/24 ⁿ H5) PCN 3 DM5P (T2.0/2+0 /D /24MR5) PCN 3 DM5P							
56	2266060	17:2N 132:0E	SAL	(12.8/2.8 /D1.0/24 RRS) PCN 3 DMSP							
78	091010Z	18.0N 131.7E	SA [SA [400 5 UM54 900 5 UM54							
10	8318 1 82	18:3N 131:8É	3A 3A	PCN 5 DHSP							
11	1000342 1003182	24.UN 130.0É 22.4N 131.HE	JAI SAI	(11.5/1.5 /5 /25HRS) NUAA 2 (GCNF (12.5/2.5 / /24HRS) PCN 5 DHSP	(60						
12	1883182	81:78 13Y:9E	SAL	{12:3/2:3 /by:3/24783}							
15 16	1003102	21.2N 131.0E 21.7N 130.9E	₹Åt	(12.0/2.0.4/00.5/24PRS) PCN 3 UH5P 3 8 700 210 55 120 300 100		10 14	-		-		4
17	1015552	22. UN 131.2E	SAI	5 10 700 240 50 150 120 5 0HOP 95	9 346	1+ -	-		-		•
19	1918855	23. JN 131.2E	SAI	PCN J UMSP PCN J UMSP							
21	1025352	23.1N 130.8E 24.0N 131.3E	SAT	113-0/3-0 /01-5/23483) NUAA 2 (OCN	-		-		-		5
22	118383ž	33:38 131:3E	SĂI	1 (14+0/4+0+/D2+0/2+MRS) 60 30 10 60 48	19 3uQ	10 12	-		-		2
35	1183832	39:20 138:3E	381	(13:8/3:5 /B1:8/22RR3) EER 1 BASE							
27 28	110303Z	23.5N 130.1E	P	(T4+0/4+0 /U1+5/24MRS) PCN 1 DMSP 2 15 700 310 40 200 40 30 200 40 90		1+ -	-		•		6
38	1113442	33:5N 131:2E	SAI	2 10 700 280 54 200 100 PCN 3 UM5P 91	2 294	10 -	-		-		•
31 32	1115472	23.1N 131.0E 22.8N 131.0E	DAT SAT	рси у Сирь Вси у Сирь							
33	1204472	32:UN 131:2E	SAL	(15:0/5+0 /0* /24MRS) PCN 3 DMSP	- 01)						
35	1202472	22.8N 130.9E	AC AC	(14.5/4.5 /Du.5/24785) BEN 3 BASP					_		
33	1289862	31:88 138:3É	ß	2 3 100 20 85 500 00 10 000 10	fg 388	1: 13	:	: F	Ξ		ē
39 40	1213332	22:3N 131:4E	SAL	РСИ З UM54 РСИ З UM54							
ね	1212332 1210402	22.0N 131.5E	≥AT P	5 5 100 210 02 150 100	/4 207		-		-		9 9
43 44	122114Z 122340Z	23. JN 131.7E 23. UN 130.0E	SAT	CT5-0/5+0 /01+0/230HS) NUAA 2 (UCN	74 286 F 021	1+ -	-	• •	-		•
45 46	130234Z	23.UN 131.7E	궔	(19:8/9:8 /bl:9/24R8) PEN 1 UMSP							
* 7	130634Z	23.5N 132.1E	SAT	E 15 100 500 0 0 0 0	72 285	4: -	-		-		10
\$ 2	1313182	23:18 132:9E	SAf	PCN 3 DN24							

Ð

			FIX	TYPHVON POSITIONS FOR 10 Aug tu									
FIX			FIX ACCRY FI	MAX'ÖRS X FLILVL HI	0 17 AUG MAX 01 ND SFC WI		MIN 700MB	H L T L VI	EYE	ORIEN-	EYF	FOSIT OF	#9k
NO. 51	TIME	POSIT 23.04 132.JE	CAT NAV-HET LV		RNG VEL BRG PCN 3 DMSP			T1/T0	FORM	TATION		FADAR	NMPR
53	1311272	24.0N 132.1E	F 18 18 -	330 ov 240 60 sp 310	30 I I	: 874	287	14 - 14 -	-		-		R
54	1400212	24.9N 132.3E 24.9N 132.1E	SAI (15.0/5.0		NUAA 2	- 974 (CONF 0)	_	14 -	•		•		h
56	1402202	25.0N 132.1E		/S /240RS) /W]+0/240RS) /W /240RS)	PCN 3 DMSP PCN 3 DMSP PCN 1 DMSP								
58	1404012	25 9N 131 BE		/wa.5/24985)	PCN 1 DMSP								
¢0 24	1404012 1404012 1404012	25.1N 132.1E 25.1N 131.2E		/\$ /250R5) /#1.0/240R5) /#1.0/240R5)	PCN 3 UMSP PCN 1 UMSP PCN 3 UMSP								
62	1404012 1409032	24. YN 132. UE 25. DN 131.5E	5AT (15+0/5+0	75 /25#RS)	PCN 3 UMSP	10. 070	~*/						
64 65	14103UZ 14103UZ	27.UN 130.6E 26.8N 131.1E		0 240 69 130 n 140 69 60	80 3 DM5P	120 972 - 979		13 13	-		-		12 13
69	1418432	27. UN 130.6E 26. di 130.9E			PCN 3 UMSP								
69 69	141045Z 141645Z	26.0N 130.9E	SA1 SA1		PCN 3 DHSP PCN 3 DHSP								
70 71	14100UZ	27.4N 131.3E 28.2N 130.8E	LRUR - 54901 LRUR - 54911	•	PC. 5 0							28.4N 129.5E 28.4N 129.5E	
15	1452102	28:2N 138:9E		220 54 130	135 60 130	135 980	291	12 12	-	-		28+4N 129+5E	14
75	150120Z	28.9N 129.8E		6000 F1x /#1.0/25PRS1	NUAA 2	(CONF D)		1-		-		33.6N 134.5E	14
79 79	1305002	24:5N 123:1E		G OVENLAT			,					38:1N 127:1E	
75	15034/2	28.2N 128.6E 28.2N 129.0E		/#0+5/24085) /# / ARS)	PCN 1 UMSP PCN 3 UMSP							201411 221-022	
80 81	15034/2	28.2N 129.0E	3A) (13.9/5.9	/0 /24MRS) /#1.5/24MRS)	PCN I UMSP PCN J UMSP								
82 83	1503472	28.3N 129.1E 28.4N 129.0E		/#0.5/247RS)	PCN 3 UMSP							28.4N 129.5E	
84 85	1306002	28.3N 129.9E		230 JV 160	90 45 150	110 978	289	14 -	:	: :	1	33.6N 130.5E	15
85 87	150/002	29. /N 129. JE	LRUH - ////2	,					-		-	33.6N 139.5E	
85	1383852	28:48 128:9E	LBUH 10 15 ///2	220 37 170	30	- 977	291	15 -	-		-	28.4N 129.5E	16
90 91	151000Z 151200Z	29.2N 128.2E 29.5N 128.0E	LRDA - ////2	· ·					-		-	28.4N 129.5E	-
<u>92</u>	1315002	29.3N 128.0E		,					-		-	33:5N 139:5E	
94 95	15130UZ	29.3N 127.9E	LRUN - ////2	•					-		-	28.4N 125.5E 33.6N 140.5E	
39	1515002	30+3N 127-3E 25+4N 127-4E	P 1 30 700	330 4¥ 240	45	- 975	288	10 -	:	::	:	33.6N 130.5E	17
98 99	1516312	29. /N 127.0E	SAL	-	PCN 3 DMSP PCN 3 DMSP								•
100	1000107 1251155	30.00 126.0E 30.10 126.5E	P 1 15 700 SAT (14.0/4.0	250 64 140 75 723mq5)	60 35 140 NUAA 2	85 977 (Conf 01		10 14	-		-		17
183	1003127	30.8N 125.8E		10280, 5% 180		120 975		10 14	-		-		18
104	1003322	31.1N 125.6E 31.1N 125.4E		/#1.0/24HHS) /#0.5/24HHS)	PCN J UMSP PCN J UMSP								
189	1883352	38:20 126:3E	SAI (12:8/2:8		PEN 3 BASE								
185	1846132	31:1N 123:4E		140 67 50	PCN 3 DMSP	- 976	287	10 -	CINC		50		16
119	1818492	14:3N 124:4E	SAL CRUH - 20 DE	G UVERLAT. FAI	R FIA DASP							35.9N 126.6E	
112	101(4(2 102640Z	14. (N 124.6E		G UVENLAT, FAI								35.9N 126.6E	
	1184462	35:30 128:1E		ENT BYESTRES	NUAA 2	COONF 01	,					35.9N 120.6E	
		35.4N 126.1E 36.3N 126.8E	- 21504 SAT (T1-0/1+0	/U /247RS)	PCN 5 UNSP							37.5N 127.0E	
		36 . IN 125.7E		/#1.5/24MRS)	PCN 3 UMSP							37.5N 127.UE	
120		34+4N 130-1E			PCN 5 UM5P							. •	

TROPICAL VEPRESSION 11 Fix Positions For Cyclone NO. 11 13 Aug To 14 Aug

FIX				ACCRY FI			OBS MIN Min 700mb	FLT LVL	EYE	Op IEN-	EYE	POSIT	NSN
NO.	TIME	POSIT	CAT	NAV-MET LI	'I DIA VE∔ BAG	RNG VEL BRG RNG	SLP HGT	T1/T0	FORM	TATION	0 I A	FADAR	NNoF
1	1051305	28.0N 167.0E	SAI	(11+5/1+5	/00.5/24PRS)	NUAA 2 (NESS)							
ŝ	1191212	27:00 107.3E	341	112:3/2:3	/00.5/240RS}	NUAA 2 PCN 6 UMSP	CCNF 01)						
4 5	1181512	27.5N 105.4E	SA I	11:5/1:5	/ / #R5) / #R5)	FCN 6 8M5P FCN 6 8M5P							
9	1114832	28.0N 102.1E	SAI			PCN 6 UMSP PCN 6 UMSP							
8 9	1126362	29.0N 161.0E 29.1N 160.1E	5A1 5A1		/D0-5/249R5) /D0-5/249R5)	NUAA 2 (NESS) (PCN 3 DM>P	CONF 01)						
łŶ	12818/2	34:48 184:3E	3A SA	112:8/2:3	/84.5/21RK3}	PCN 4 UMSP							
12 13	1221302	29.4N 158.8E	SAI	(12.0/2.0	/01+0/2+5R5)	PCN 3 UMSP NVAA 2 (CCNF 02)						
łŝ	1303552	53:18 133:1E	SAL	115:8/5:5	/bg:3/24683}	pen 3 Bhsp							
19	1303305	30.3N 156.4E 30.4N 155.0E	SAT	55-	70 Ju 360	PCN 3 DHSP	1007 311	- 11	-		-		۲
15	137592	38:52 133:1E	۱۹¢	5 d -	190 2 <u>0</u> 120	40 325 270 10	1005 312	ic -	-		-		,
20 21	19552AN	30.6N 153.6E 31.6N 153.5E	JAC JAC	(2.0/2.u (2.0/2.u	/S /25085) /# /24085)	NUAA 2 (PCN J UMSP	CCNF 01)						
23	1406202 1406202	30.8N 153.3E 31.0N 153.2E	I A C I A C	(11.5/2.5	/s / has) /#1-57244RS1	HCN J UMSP HCN J UMSP							
25	1423282	35:54 F31:3E	SAI	(11+0/2+0	/#1+0/25PRS)	PCN 3 UMSP NUAA 2 L	CCNF 01)						
26	1029112	30.04 122.2E	JAI	(11.5/1.5	/00.5/44485)	NUAA 2 C	OGNE 01)						

					T	HOPICAL S	108*	JOAN									
				,	i + POS	1110N> FC 18 AUG	H CYCL	UNE NU+	12								
FIX			674	ACCRY	F1x I	MAN OR	S	SFC #1	BS	OBS	NIN 700MB	1 L T L V L	EYE	001EN-	ETE	FOSI	MSW
NO.	1145	POSIT		NAV-MET		IR VEL HE	-			-			FORM	TATION	DIA	FADAF	NHOF
1	17041/Z	20.1N 133.1E	JAT			0/24145)	NUA	1A 6		ILCNF U	21						
2	1903165	20.UN 134.3E	JAI	(11,5/1	.5 /Du.	,5/24745)		5 UMSP									
3	1703102 1710012	19.9N 134.2E 20.3N 132.9E	SA I SA I	(11.5/1	•5 /0	/24"RS)		5 UMSP									
5	1808192	21:0N 131:0E	3A) 3A)	出:約	3 /3	/24785) /23785)	NUI	AA Z (NE AA Z	55)	LCCNF U							
7 8	1803032 1803032	19.3N 130.4E 19.3N 131.0E	SAT SAT	112.0/2	•0 /D0 •5 /D1	.5/24MHS) .0/24MHS)	PCN										
18	1815472	18.5N 130.05 18.5N 129.95	3A 3A					5 DHSP									
11	182224Z	18.4N 127.7E 22.UN 124.2E	P SAI	3 10	7un 21	70 1V 20 •5/24MH51		15 200 AA 2	35	1001 (CCNF 0		12 IV	-		- .		3
13	198438Z	81:7N 183:3E	SA SA	112:8/2	:0 /	/ 1145) / 1145)	РСN РСN	3 UMOP									
12	13] [14]	21:UN 123:7E	JA [SA [-	0 UH5P									
17	1921152	20.5N 121.3E	SAL 1			5/23MR51		AA 2 -	-	(CGNF 0	1) 305		-		-		5
28	2004162	21:3N 121:4E	SAI	11:3/3	·\$ /***	•5/24 mis) •985)	PCN PCN		\$\$)								
21	200410Z 200430Z	21.2N 120.0E 20.5N 118.8E	SAT SAT	(12.0/2 (12.0/2	-0-/#0	.5/35ARS)	PCN	5 UMSP 5 UMSP									_
33	39 873 82	20: N 173:2E	LKDH	- :			-		-	-	315			: -	Ξ	22.3N 114.2L	7
24				-									-		-	22.3N 119.2E	
25	2106002	21.4N 112.4E 21.5N 111.9E	ERDA	-									-		•	22.3N 114.2L	

.

.

	TROPICAL STURE KAIL FIX POSITIONS FOR CYCLURE NU. 13 CA AUGS 10 26 AUG MAA UBS OBS MIN FLT FOSII MAA UBS FIX NEW STOR MIN 700MB LYL EYE RIEN- EYE OF MSN.												
FIX NO.	I IME	POSIT	FIX ACCHY FIX FLILEL WIND SPC WIND MIN 700MB CAT NAV-MET LVL DIR VEL DNG HNG VEL DNG HNG SLP HGT T	11/10	FORM	ATION	DIA	ADAH	NMPH				
1	22140UZ	19.9N 116.4E	LHUH - 20701					22.3N 114.2E					
ŝ	222030Z	19.6N 115.0E	LHDR - 207//		-		-	22.3N 114.2E					
· 4	2385142	13:28 114:4E	SAI (12:0/2:4 /01.0/25085) PCN 5 CONSP (CONF 01)										
\$	2302402	13:20 113:1E	LKUR - LKUR - 65///		-	••	-	33:3N 114:5E					
8	2400232	18:00 112:5E	3AT (F3:8/3:4 /B1:8/24783) PCN 3 2000P (CONF 01)										
19	2401542	18:50 115:5E	SAT (13.0/3.0 /D1.0/24MAS) NUAA 2 (NESS) (GCNF 01) SAT (13.0/3.0 /D /24MAS) PCN 3 UMSP.										
12	240457Z 240457Z	18.5N 111.9E	SAT (12.0/2.0 /D1.0/240HS) PCN 4 UMSP SAT (13.5/3.5 /D2.0/240HS) PCN 3 UMSP										
łś	2415052	20:0N 107.3E	SAL PCN 5 DASP SAT PCN 6 DASP										
19	241/462	18.9N 109.9E	SAL PCN 6 UNSP SAT (13.5/3.5 /02.0/ PR5) PCM 3 UNSP										
18	2500022	20.0N 109.6E	3A[(13:8/3:8 /u /23783) PESSA aUNOTAU)										
20	250 30 52	20.3N 109.0E	SAL (12.0/3.0 /#1.0/27085) NUAA 2 (CONF 01) SAL (14.0/4.0 /02.0/24085) PCN 2 UNSP										
22	250445Z 251247Z	21.UN 109.UE 20.2N 107.4E	SAL (13.0/3.5-/WU.5/240AS) PCN 3 UMSP SAL PCN 3 UMSP										
24		20.5N 107.6E	DAT PCN 1 UMSP				-						

THUPICAL VERNESSION 14 FIX POSITIONS FON CYCLUME NU. 14 FIX POSITIONS FON CYCLUME NU. 14 NO. IJME POSIT EX ACCHY FIX FLIMCTL WIND STC WIND HIS JOINS CVI EYE RIEN- EYE FOSII MSN LAT NAV-MET LVI DIR VIE WHE HNG NG SLP HET LI/TU FURM ATION DIA FADAH NMPN 1 31022/2 20:3N 111:UE SAI (11:5/1:5 /00.5/2:MRS) NUMA C (NESS) (CCNF 02) 3 3102332 19:7N 110:5E SAI (11:5/1:5 /5 /25NRS) NUMA C (NESS) (CCNF 02) 5 U2043U2 19:0N 105.7E SAI (11:2/2:0.7U1.0/2*RS) PCN 3 DMSP

60

Ç

.

t

			TYPHUON LO Fix Positions For 03 Şep Iu	07 SEP	
£9¥	IIME	00017	MAA OB5	MAX UBS OBS WIN FLT POSI	Nºsk Nødf
ł	010100Z	POSIT 13.80 125.86 12.00 124.06	CAI NAV-MET LVI OIR VEL BPG SAT (11.5/1.5 /D1.0/24MRS) SAT (11.5/1.5 /DU.5/24MRS)	ANG VEL BAG ANG SLP AGI 11710 FURR TATUN DIA RADAM NUAA 2 NUAA 2 (NESS) (CCNF 02)	MADE.
2 3	0122212	11.0N 122.7E	SA((11+0/1+0 / / PRS)	PCN 5 UNOP	
2	0123212 V200332	17.4N 122.4E	SAT (11.0/1.0 / / AUS) SAT (12:8/2:8 /88:5/24FHS)	pcn 5 dapp NVAR 2 (ness) {88NF 8}}	
7	000+302	17.8N 123.0E	SAI (12+0/2+0+/0)+0/24445)	PCN 3 UMSP	
ь 10	0212032 0212032	10.0N 122.9E		PCN 5 UM5P PCN 5 UM5P	
11	U21/302	17.44 122.7E 18.74 121.4E 18.74 120.4E	ə A í	HCN 5 UMSP PCN 5 UMSP PCN 5 UMSP	
12 12	030049Z 030049Z 030049Z	18.4N 120.3E	SAT (T1.0/1.0 /S /240KS) SAT (T2.0/240+/01.0/240KS) P 1 3 700 30 49 290	PCN 5_ UNSP	
15	0300572	14.4N 120.8E	SAI (13.5/3.5 /0).5/259kS)	15 75 290 15 998 309 18 9 NGA / (CONF 01) NGA / (NESS) (CONF 01)	۲
16 17	030130Z 030350Z 030413Z	19.3N 120.5E 19.4N 120.5E 19.0N 121.6E	P 2 2 700 100 47 360	NDAA 2 (NESS) (DONF 0]) 15 70 10 15 998 310 10 10 CIRC 10 PCN 5 UNSP	i
18 19 20	0304192 0304192 0304192	19.30 120.9E	A(([2.5/2+5 /0]+0/247RS)	HCN 5 UMSP	
20 22	0304152 0300152 0300452	19.3N 120.0E 18.8N 120.0E 19.0N 120.2E	SAI (13.0/3.0 /01.0/24485) LAUR - PUSSIBLE EYE		
22 23	0308492 8315282	19.00 120.2E	LHUN - PUSSTBLE ETE, CLLIPTI LHUN - SAT		:
24 22	0313262 0313262	13.0N 120:3E 13:0N 178:4E	ا هد	PCN 5 DBSP	•
				PCN 5 DMSP	2
27 29	04022032	19:58 113:3E	SAT P 1 5 700 50 3V 320 SAT ([3+0/3+0 /01+0/2+PR5)		3
30	040020Z 040020Z	19+0N 120+5F	SAT (13.0/3.0 /01.0/24HRS) SAT (12.5/2.5+/01.5/24HRS) SAT (12.5/2.5 /00.5/24HRS)	PER J UNSP NUAA 2 (NESS) (CONF 01) NUAA 2 (NESS) (CONF 01)	
31 32 33	040v302 040v312 040v312	18.0N 119.1E	SAI (12.5/2.5 /DU.5/24 PRS) SAI (13.5/3.5 /S /24 PRS) P 2 3 Too 290 44 210		
33 34 35	040330Z 040401Z	19.4N 118.4E	P 2 3 700 240 40 210 SAT (13.0/3.0 /S /24MRS) SAT (13.5/1.5 /D1.0/24MRS)	PCN 3 DMSP	•
36	0404012 0404012	19.3N 118.8E	SAT (13.5/3.5 /D1.0/24 MRS) SAT (13.5/3.5 /D / MRS)	PCN J DNSP PCN J DNSP PCN J DNSP	
37 38 39	840735Z	13:98 118:4E		рсм з инър 50 50 330 15 993 303 10 11 – _ – ⊶ Рсм 5 инър	٠
4ú 41	0413007 0413157 0419087	19.3N 118.1E 19.4N 117.8E 19.8N 117.4E	SAI AC H - P 5 3 700 240 49 150		æ
42	0410442	19+5N 117+HE	SAI	PCN D DASP	
43 44 45	0410442 0410442 0420102	19.0N 117.4E 19.2N 117.4E	-	PCN 5 UHSP	
46 47	0421002 0421002	20+2N 116.6E	LNUK -	10 55 - 986 298 14 10 CIKC 20 22+3N 114-2E	Ĩ.
48 49	0423092	14. /N 116.0E 14. /N 110.4E	LRUR -	38:3N 114:3E	-
50 51	0423502 0500002 0500002	14.4N 110.7E	LHUR - 20011 SAI (14-5/4-5 /01-0/24PHS) SAI (14-5/4-5 /01-0/20PRS)	PCN 3 UNSP 22.3N 114.2E	-
52	0501002	19.44 112.4E	LRUR	NOAA 2 (GONF 02) .22.3N 114.2E	
55	0501232	20.4N 115.7E	DA1 (13.5/3.5 /D1.0/24TRS)	NUAA 2 (NESS) (CONF 02)	•
59	0202132	20-UN 115.4E	SAT (14.5/4.5 /0 / PRS) LRDR - 10710	ESSA 8 (VTBU) 22.3N 114.2E	•
58	050340Z 050340Z	19.88 115.26 19.88 115.26	5A1 (14.5/4+5 /01.0/ MRS) 5A1 (14.0/4+0 /01.0/24MRS)	PCN 1 UMSP 22.3N 114.2E	•
60 61	0503402	13:30 H3:3E	SAI (14.5/4.5 /D1.0/200RS) CRDH - 1071/	PCN 1 UMOP 22.3N 114.2E	
62 63	050600Z	14.4N 114.8E 14.4N 114.7E	LHDH - 1081/	28:3N 114:3E	
85	8383895	13:30 H4:9E	LRDR - 10817	20 50 360 10 974 287 15 10 CIRC 12 22.3N 114.2E	ē.
29	051180Z	13:38 114:28	LRDR -	22.3N 114.2E 22.3N 114.2E	Ě
65	US1200Z	19.8N 114.1E 19.8N 114.1E	LRUR - SAI	PCN 1 UM5P 22,3N 114,2E	-
7 U	U514502	19.8N 114.2E	AL	PCN 3 UM5P 22.3N 114.2E	_
71 73	051500Z	19.80 113.76 19.80 113.66 19.80 113.56	LHDR - 341 341	PCN 5 UNSP 2 22.5M 22.5M	
75	0510302 051800Z		SAT Chur -	PCN 5 UMSP 22.3N 114.2E	-
79	052100Z	20.0N 112.7E	LRUK - 2//// LKUK - 2////	38:3N 114:3E	:
75	0223002 0223002	20.20 112.5L	LHUR	PCN J UNSP 22.3N 114.2E	•
ទីរ	832350Z	17:00 112:4E	3A1 (13.5/4.5 /#1.0/24085) SA1 (14.0/4.0 /#1.0/24085)	PCN J UMSP PCN J UMSP	
82 83	0001002	20.2N 112.3E 20.1N 112.1E	LHUK - 1091/ LHUK -	22,3N 114,2E	-
84 85	0501322	20.1N 112.0E 20.2N 112.0E	3A1 (14.0/4.0 /01.0/240HS)	PCN 3 DHSP 22.3N 114.2E	-
86 87	0002002 0002202	20.0N 111.5E	SAI ([4.0/4.0-/D0.5/240HS) SAI (14.5/4.5-/D0.5/250RS)	NUAA 2 (NESS) (CONF 01)	
88	VENZOZ	fy:sn 111.20	LHUK (14.0/4.5 /W0.5/25"RS)	ESSA 6 (VTHU)	-
30 91	0002022 0002132 0012322	20.24 112.01 20.58 110.41	SAL (14.5/4.5 /DU.5/240RS) SAL	PCN 3 UMSP PCN 5 UMSP	
92 93	UD14132	21.0N 109.8E		PCN 1 UMSP	
94 95	0/01192	21.0N 108.0E	SAI (13.5/4.5 /W1.0/24085) SAI (13.5/4.6 /W1.5/24085)	NUAR 2 (NESS) (CONF 01) NUAR 2 (NESS) (CONF 01)	
96		20.8N 107.2E		PCN 5 UMSP	

			TYPHUON M FIX POSITIONS FOR 12 SEP TO									
FIX			TIA ACCHY FIX FLI LVL WIN	MAX UNS	085 MIN	NIN 700MU	867 646	LYL	cIcN-	EYF	FOSIT OF	MSN
NO.	11ML	POSIT	LAI NAV-MET LVL DIR VEL DRG		SLP	HĞŢ	11/10	FUHM	ATION		RADAN	NMER
1	0822552	13.8N 134.5E	SA[(11+0/1+0 / / MRS)	PCN 5 UMPM								
23	0622552 UYU2462	14.0N 134.0E	SAT (11.0/1.0 / / DHS) SAT (11.0/1.0 /S / 4MHS)	400 0 DM54 900 2 DM54								
\$	09223/Z 110001Z	15.3N 130.0E 16.9N 125.0E	SAT (11.0/1+0 / / DRS) SAT (11.5/1+5 /00.5/245HS)	PCN 5 UMSP								
9	1100012	16.1N 125.8E 16.5N 124.5E	SAI (11.0/1+1 / / DRS) SAI (11.5/1+5 /D0+5/24#ks)	NUAA 2	CONF 0	D						
8	11040vZ 11040vZ	16. /N 123.0E	SAI (11.0/1.0 / / PRS) SAI (11.5/1.5 /D0.5/2+PRS)	PCN 5 UMSP PCN 5 DMSP								
10 11	1112422	10.9N 122.3E	SAL SAL	PCN & UMSP PCN & UMSP								
12	1112422	11.4N 122.5E	2AI	PON & UNOP								
13	1118442	19:58 121:5E	SA I	pen s umst								
15	1123422	17.0N 119.5E	SAI (12.0/2.0+/00.5/24085) SAI (12.5/2.5 /01.5/24085)	4CN 3 0854 4CN 3 0854								
łš	1123862	18:30 114:0E	SAL (11.5/1.5+/S0.5/24083)		CONF 0	2)						
20	1285295	17:3N 118:8E	A 12012 120 120 110 110 110 110 110 110 1	655A 8 (VIBU) 10 35 240 18	1003	309		-		-		1
21 22	1203402	17:68 118:2E	3A1 (12.9/2.0 /D0.5/ ARS)	FCN 3 DMSP								
23	120340Z	17:8N 119:0E	CRUH (12.5/6.5 /01.0/24 PR5)	PCN 3 DMSP FUI, ELLIPTICAL	AX1S	125485						
25 26	121030Z 121224Z	16.3N 117.4E 18.1N 117.0E	P 10 B /vo 50 4⊃ 30 SAF	15	998		11 IV	-		-		2
27 28	1214242	18.4N 116.9E	1Ac 1Ac	PCN & UNSP PCN & UNSP								
29	1212002	18.2N 117.0E	P 5 3 700 130 67 20	25	99 0	299	15 <u>1</u> 1	CIRC		12		2
30 31	15105AS	18+3N 110.2E		PCN 5 UMSP								
32 33	15561AS	18.6N 116.4E	P 30 5 700 150 64 90	PCN 0 UM3P 25	987	297	- دا	CIRC		22		3
34 35 36	1223302 1300092	18.5N 114.8E	LNUR - 20577 EYE OPEN 10 S					-		•	22+3N 114+2E	
36 37		18.1N 114.7E	SAT (14.5/4.5 /03.0/230R5) SAT ([4.5/4.5 /0].5/240R5)	NUAA 2 (NESS) (CONF 0	-						
38 39	1301062 1301062	18+1N 114.7E	5A1 (12.5/2.5 /D1.0/24MRS) 3A1 (14.0/4.0+/D2.0/25MRS)	PCN 1 UMSP	•	• •						
ΨŰ	130100Z	18:68 114:4E	LRDR - 20517								22+3N 114+2E 22+3N 114+2E	
41 42	1303002	18.7N 114.3E	5A1 (13.073.0 /D1.0/25085)	ESSA 8 (NTBU)							22+3R 11++2L	
43 44	1305132 1305132	18.8N 113.8E 18.8N 113.7E	SAT (14.5/4+5/02+0/244RS) SAT (14.0/4+0+/02+0/ MHS)	PCN I DMSP PCN I DMSP								
45 46	1305005 1302072	18•4N 113°2E 18•4N 113°2E	P 5 3 700 170 80 90	30 100 AN SO	904	281	2 12	CINC		13	22+3N 119+2E	4
47 48	131500S	18°AN 115°AF 18°AN 115°AF	LRUN - LRUN -					-	22	:	22+3N 114+26	
49 50	13134/2	10.8N 111.6E 19.2N 112.4E	3A1 3A(PCN 2 UMSP PCN 2 UMSP								
51	1315102	18.9N 111.16	LRUR -					-		-	22.3N 114.6t	
53	1317382	19:28 H11:8E		PCN 2 DMSP PCN 2 DMSP								
55	1400472	18.14 104 1F	SAL (14.0/4.5 /W1.0/250R5)		CCNF 0	1)						
59	1:84332	13:3N 188:3E	381 (fs:8/s:2 /ss/24583)	teu 3 Bust								
58 59	1413222	19.1N 107.6E 19.2N 106.9E	541 541	РСМ Б ОМЭР РСМ Б ОМЭР								
60	150444Z	19+1N 102,4E	SAI (15.0/5.07 / PRS)	РСИ 5 ОМБР								

ŧ

C

				F	IX POS	TYPHUON I ITIONS FOR U2 UCT TO						-1.0				2007	
RJ.	X TIME	POSIT	618 .A	ç⊆8x÷	fly J	NAX ORS EL ^T LEL BAG	Rug			OBS MIN	NIN 78988	FLT	EXE.	9:158.	EYE	POSIT PADAR	NS1+
	1 SASASAN	7.0N 137.4E	SAT	(11.5/1	.5 /DO	5/23MRS)	NOA.	A Z		(GONF 01)			TUNH	1,110	ATA.	CAPE.	11-81
	2 2923317 3 3023012	7.UN 137.UE 10.UN 136.JE	SAT I	(11.0/1	•0 /D	.5/240RS) /240RS)		A 2 (NES 5 DHSP	55)								
	s plusiaz	10:3N 136:3E	JAI	(11+0/1	•0 /D	/ MRS)		7 B H SF									
1	6 012243Z 7 012324Z	11.0N 136.6E 11.5N 136.5E	SAT I SAT I	(12.5/2 (11.5/1	•5 /D1	•5/24HRS) •5/24HRS)	PCN	5 DHSP A∠		GONF 02	}						
. 1	8287558	H:#N 135:4E	~ ~	łŝ	: :	8 38 218	<u>88</u>	38 238	28	1001	:	£5 24	:	:-			ŧ
1		11.5N 134.9E 11.5N 135.6E	SAT SAT	(11.5/) (12.5/2	.5 /D0	5/ MRS) 5/ ARS)	PCN	5 DHSP 3 DHSP									
1	2 021125Z	12.0N 133.7E	₽ ₽ 5	5	700 1	30 47 90	PCN :	5_ DHSP	-	987	298	15 9	-		-		3
1	021501Z	17:2N 133:3E	P 5	5	700	10 4 3 350	PCN 20	5_ DHSP	-	989	299	14 13	CIRC		15		3
1	9 8223252	19:1N 133:5E	SAT 2	(13.0/3	780/01	5/24 RS	100 NOA	42 30	55) 60	CONF 01	302	14 -	• •		-		Ā.
1	8382882	11:1N 133:4E	SAT (铅:約	:3 /88	g/~~#R\$}	PCN	3 8#35									
22	0 030019Z	11.4N 133.6E 11.9N 133.8E	SAT		•0 /D1	5/24MRS) 5/24ARS)	NÚA. PCN	A 2 1 DHSP		COONF 01	3						
22		11.0N 133.5E	5A1 (113.5/3	-5 /D1	0/ MRS) 80 50 160		3 DHSP	-	978	292	10 12	CIRC		20		5
2		11:18 132:2E	SAT 5			50 45 70		1 DHSP	-	978	293	10 -			•••		6
ž	9 831828Z	11:78 133:3E	SAT				Ben	3 BMSP									-
22	8 0322002 9 0323192	11.1N 131.5E	241 S	(14.5/4	700 3	30 74 254 5/23MRS)		80 360 A 2		COMP OI.)	10 14	CIRC		20		۲
3		11:3N 131:3E				9/24 PRS) 5/24 PRS)	PCN .	A 2 (NES	55) (LOCNE 02)						
3:		12.0N 131.2E 11.3N 132.0E				0/24#RS)	PCN	3 DMSP 90 -	-	978	290		-				,
3	4 0463312	11.9N 132.0E 12.0N 131.8E		(14.5/4	·5 /01	5/240RS) 0/240RS)	PCN										'
3		12. JN 131. HE	5 5 AT 5			6 55 160		1 DHSP	-	969	284	11-14	CIRC		10		8
3		12:7N 137 JE	2A1 5	2	700 2	10 67 180		1_ DHSP	-	964	279	1/ 1+	EL IP	F-NH	;30X1		
2		12:40 131 SE	SAT				PCN	1 DMSP				-					8
2		13:3N 138 7E		(T4.5/4	•5 /S	0 ^{240RS)}		170 DHSP	20	949	267	10 12	CIRC		:20		
4	050010Z	13.4N 130.9E 13.7N 130.8E	SAT ((15.5/5	2 /81	0/24MRS) 5/24PRS)				GONF 01		_					-9
<u></u>		13:7N 138:2E				0'115R360		tee 360	10	940		11.12	CIRC		:20		
41	5 050725Z	14+UN 129.9E 14+2N 129.5E	P 5			90 6> 80	30 N	90 90 1 DMSP	5	910		52 16			12		18
50	0515202	14.4N 129.2E	P 5	5	740 0	5 <u>0 11</u> 4 30	15	1 DHSP	-	893	209	2d]4	CIRC		10		16
5		14.0N 128.8E 14.1N 127.4E	SAT SAT	(17.0/7	•u /D	/24HRS)	PCN	2 DHSP									
5.5		14.0N 120.2E				10 159 20		1 DHSP 140 20	15			3v 10	CIRC		8		1j
5	5 06010/2 6 0601002	14.9N 127.3E				0/250H5) 5/240RS)			5S)	(68NF 81	}						-
ŝ	7 0603012 8 0603012	12:1N 128:8E		112:8/2	:\$ %2	•0/240RS}	PEN					_			•		
5	8 8818282	14:9N 123:4E	\$ 3	3	700 3	50 <u>9</u> 4 270	30	82 300	160	872	<u> 291</u>	<u>i</u> 4 13	5445		12		
6	1 0611537 2 0612302	14.9N 125.4E 14.0N 125.5E	LKUR	- AP	PARENT	EYE, SULI	D PCN	1 UNSP								14.4N 122.6E	•
6. 6		14: YN 125:4E	LRDR	:							_		:	::	-	15.0N 120.5E 14.4N 122.6E	
6		14.8N 125.1E 14.9N 125.2E	5 5 SAI	2	7 ₀₀ 1	90 104 100	47 PCN	3 OMSP	•	903	224	19 15	CIRC		12	1	12
6	7 061/00Z	15.0N 125.0E 15.1N 124.8E	LRBH	2, WE	LL DEF	INCU LYE, I	020						-		-	13:8N 138:3E	:
. 9	8821882	13:28 134:5E	FRR	ះស	É; 988	PC1, 05										15.0N 120,5E	:
7:																14.4N 122.6E 14.4N 122.6E	•
7	3 010007Z	15.1N 124.5É 16.0N 124.0E	SAT I	17.8/7	U /00	-5/234RS) -0/244RS)	NUA	A Z INES	55)	CONF 03	3						-
73	8/85352	18:UN 124:6E	SAL 5	(17.0/7	· ū /02	90 120 90 •5/69 RS1	B EN	3"0M5P	10	-	•	24 16	CIRC		10		13
77		13:68 134:8E				el: Fince						-				11:1N 133:8E	:
7* 8/		15.9N 123.7E		3 • E1	£. 75 ²	\$6171£1750	LAR ⁵ OP	130 240 EN Nº D.	35 ⁶	-	-	21 12	C1RC		15	14.4N 122.6E	13
8 8	2 8/04292	18:3N 123:9E		(17.05)	E. 75	PCT. LIHCU S/69DRS)	PCN	EN N 3 DHSP	_							14.4N 122.6E	•
		18:2N 123:2E		: Pi	SS I BEE	EYE; SOLI	DNOD	EFINITE	EYE							14.4N 122.6E	•
		17:18 123:1E		:									Ξ	: -	1	15:00 120:5E 16.40 120.6E	:
8	7 071318Z	17.4N 123.0E		5	- :	20 114 300	PCN 15	6_ DH2P	-	923	244	10	CIRC		12		14
8	9 0714002 0 0714302	17.5N 122.7E	LRDH LRDH	- PL - 67	5518LE	EYE										15.0N 120,5E	1+
3.		1/:10 122.9E	P B	5			-		-	923	244	1/ 10	CIRC		12	16.4N 120.6E	14
9. 9	9 071700Z	•			Wh FIX		PCN	5 DHSP								18.2N 120,5E	•
99				: E)	E: SIR	CULAR: 015 L: 027-30										18.2N 120.5E	•
91	7 0/21002 5 0/22002	18.2N 122.2E	LKDH LKDH	: Ei	E. 0VA	L. 027-30						_				18.2N 120.5E	:
94 10	9 0/22202 0 0800172	18.4N 122.0E	SAT 2	(T+•5/9		00 65 20 •0/480RS)	130 PCN	100 310 3 DMSP	25	-	-	24 -	- C18C		:30		15

•

			FIN POSITIONE MORELUNE NO. 11				
FIX	•		U2 UCL FU }0 UUT MAA UBS OBS MIN FLT MAA URS MAA UBS OBS MIN FLT	-116-		FUSI	MŚN
F1X NO.	1175	PUSIT	TIX ACCHY TIX TELLEVE WIND SPC WIND MIN 700MB EVE EVE CAT NAV-MET EVE DIR VEG DRO MNG VEE DRO MNG SEP HGT TITTO FORM	TION	212	UF Fauar	NMEH
101 102	08001/2	18+5N 122,0E		•			
103	080059Z	18.4N 121.7E	$\frac{SAF}{15007000} = \frac{SAF}{1000000000000000000000000000000000000$				
183 189	0804142 0804142	18.9N 121.3E	A (14:8/3:5-/18:8/**18) PEN 1 PRSP		:0		15
107	0804142 0804002	14.4N 120.8E	P 5 5 - 100 70 300 70 70 30 30 9/3 287 17 14 -		-		16
119	0810002	20.3N 120.4E	LRUN - EYE P 270 54 140 50 5 DHSH - 977 289		-	14.2N 120,5E	18
112	0012502	20.0N 121.VE 20.4N 120.8E	γει 5 υπο γει 5 υπο 5Α[μεν 5 υπο °P 10 16 700 30 /ν 340 40 - -		-		
	US13572 US10572	20.0N 120.2E 20.0N 120.2E	P 3 2 - 190 4V LIU 10 976 254 LI		-		łŧ
119	0821122	50.0N 110.4E	P 8 2 - 80 50 340 40 973 287 1/ 341 (15,0/5,0-/#240/240R5) PCN 4 UNSP		-		17
118	8853332	31:4N 122:3E	SAI {12:6/2:5-/32-0/24RHS} FCN 3 UNSF				
łźł	0901552	21-UN 119.4E 21-UN 119.8E	SAT {[3.0/5.0 /51 0/250 R5] NUAA 2 (NESS) (CENF 0]]				
123	0383337Z	31:28 113:2E	3AI {14:5/5:0 /\$1.0/24 HR3} BCN 1 UNSF				
125	U90359Z U90400Z	21.2N 119.3E 21.4N 119.6E	SAF (T5.0/5+0 /0 /13/RS) PCN 3 DMSP ERUM - 35///			22.6N 120.3E	-
129	0904307 0904307	21.2N 119.0E 21.5N 119.5E	LKDH - I	: -	:	23.5N 125.6E	-
128	0900107 0900007	21.4N 119.5E	HUR 3 2 700 200 by 110 40 974 286 14 12 CIMC		ŝυ	23.0N 120.2E	19
139	838735 <u>7</u>	21:8N 113:8E		: =	:	23:5N 145:2E	-
133	U4093UZ U409UUZ	21.6N 119.5E 21.6N 119.5E	LHUR - 55///		-	23:9N 119:2E	:
135	83873¥£	21:8N 113:3E	LANK 3 1 100 140 14 80 30 50 150 30 476 283 10 13 CINC		30		19
136	09124UZ 09124UZ	22.1N 119.3E 22.2N 119.1E	SAT PCN 3 DMSP				
138	091500Z	22 IN 119 2E	541 PCN 3 UM5P ERUR - 45///	_	-	22.6N 120.3E 23.5N 115.6E	:
140	091330Z 09140UZ	22.2N 119.2E	LNDR	:-	-	23.5N 115.6E	•
143	831505Z	32:00 113:1E	LHUR I I I I I I I I I I I I I I I I I I I	: :	-	33:5N HA:EE	:
143	091843Z	23.UN 119.3E	SAT PCN D DHSP SAT PCN 2 DHSP SAT PCN 2 DHSP				
149	0917002	22:7N 119:1E	CRUH		-	23.5N 115.6E	:
148	0451002 0414882		LHUM		-	23.5N 119.6E	-
151	0922002	23./N 118.6E	LHOK		-	23.5N 115.6E	-
133	092341Z	23.9N 118.0E	SAT (14.0/5.0 /#1.0/244851 PCN 3 UMSP				
154 155	0923412	23.8N 118./L 24.8N 118.UE	SAI (13.0/4.6 / NZ.0/24 RS) PCN 3 DMSP				
139	1003452	24.4N 118.UE	3A1 {13:8/4:5 /\$1.0/**R83 BEN 3 URSP				
			FIX POSITIONS OF ON CACLUNE NO. IN UA OCT TO ON UCT MAX UDS UNS MIN FLT			FOST	
FIX			NTV ACCHY FIN FILLING WIND STOWIND NIN ZOUNG LYL EYE	ATLON	E YE	OF	MSN
NŪ.	TIME	PUSIT		P. 1 2 2 11			
5	0401132 040130Z	10.5N 114.2E	3A1 (12.072.0 /01.07247RS) NUAR 2 (NESS) (CONF 01) 3A1 (12.072.0 /01.07247RS) NUAR 2 (NESS) (CONF 01) 3A1 (11.071.0 /5 / RES) PCN 5 UNSP				
2 1		11:7N 114:1E			-		1
5	0415052	11.4N 114.0E 11.0N 113.1E			-		1
B B		13:5N 112:7E	B B 3 708 378 37 28 28 23 28 38 381 381 12 19 8148		23		2 2
łî		11.5N 113.2E					2
13		12:8N 113:8E	SAT (13:8/3.0 /01.0/25"RS) EUSA & (VIBU) (CONF 01)				
łŝ	050307Z		P 5 12 700 140 50 70 58 45 70 50 990 300 13 10 CINC SAT (13.0/3+0/22.0/24985) PCN 5 DMSP		27		2
19	851383Z	13:1N 117:8E	5 5 7 00 100 50 10 20 50 90 60 986 296 12 12 *		•		3
18 19	051510Z 051741Z	12.9N 112.2E 12.9N 112.7E	P 10 10 700 190 6V 110 25 982 293 14 9 - SAT PCN 5 UNSP		-		3
ŝî	0523532	13:42 HF:YE	SAI 114-5/4-5 /01-5/24 (KS) PCN 3 UMSP		12		4
22 23		13.8N 111.8E 13.6N 111.5E			c U		
25		13:4N 11f:9E	SAT 114-5/4-5"/01-5/24"RST PCN 1 UASP		2U 4U		4
29	88153¥Z		SAL PEN S UMSP		40		5
25 30		12:38 112:2E	P 10 5 - 210 5 120 40 J UMSP SAT (15-5/5-5 /01-0/24/0RS) 40 J UMSP				-

ŧ

¢

(CONF 02)

_ -

_ --

-

25

6

6

8

e

-

-

30 0702022 14:30 111:1E 3A1 (14:5/2:3 /00:5/24085) PCN 3 UMSP

 32
 0700532
 14.7N
 110.4E
 SAI
 (14.5/4.5 /0.05/24RRS)
 NUAA C
 (CONF 02)

 33
 0700532
 14.7N
 110.4E
 SAI
 (14.5/4.5 /0.05/24RRS)
 NUAA C
 (CONF 02)

 34
 070022
 14.1N
 110.1E
 PI
 10.10
 10.40
 PI 100
 20.75
 971
 286
 10.14

 35
 070902
 14.4N
 110.4E
 SAI
 (15.5/5.5 /01.00/24RHS)
 PCN 3 UMSP
 971
 286
 11.12

 36
 0709002
 14.4N
 110.4E
 SAI
 10.10
 700
 PCN 3 UMSP
 PCN 3 UMSP

 36
 071021
 14.4N
 110.4E
 SAI
 PCN 5 UMSP
 PCN 5 UMSP

 36
 071722
 14.4N
 110.5E
 SAI
 PCN 5 UMSP

 37
 071722
 14.4N
 110.4E
 SAI
 PCN 5 UMSP

 37
 071722
 14.4N
 110.4E
 SAI
 PCN 5 UMSP

36 0/10242 14-2M 110.0E P 5 8 700 140 43 50 50 20 2 981 292 13 14 CIMU 39 0/21052 14-4M 109.0E P 5 6 700 150 33 50 20 2 985 293 10 14 CIMU

				FIL POSITIONS FOR									
FIX	11ME	POSIT	t Ar	ACCHY FIX FLI VIS	U 15 ULT MAA DUS ND SFC BIND RNG VEL DRG RN	OUS Min G SLP	MIN 7 Homb Mgt	∊∊⊤ ∊⋎∊	ŧ ŭŔm	11107	ČIL.	FUS1 1 OF HAUAN	MSN NHPH
1		14.5N 143.0E		(T1.571.5 /D0.5/24MRS)	NUAA 2 (NESS)	(CONF 0)	2)						
Z Z	052312Z			(11.5/1.5 / / DRS) (12.0/2.0 /00.5/247RS)	PCN J UMSP NUAA 2 (NESS)								
4		13-0N 142.1E 13-0N 142.6E		(T1.5/1.5 / / MRS)	PCN 3 DMSP PCN 5 UMSP								
9		12:4N 127:3E		(T3.0/3.0 /01.5/249RS)	FEN 3 BASE								
9		12:3N 141:2E	SAT	(12.5/2.5 /01.5/24085) (13.0/3.6 /01.0/24085)	NUAA 2 (NESS)	ICCNF U	ſi						
11		12:98 148:3E	381	(13:8/3:8/1.5/ FRS)	PCN 4 UMSP 40 50 40 3	o -	-	20 -	CIRC		50		2
12 13 14		13.0N 141.0E 13.0N 140.0E		2 8 - 150 50 50 10 2 - 40 50 50	23	· -	-		CINC		2		2.
13 16		13.UN 140.9E 13.UN 139.9E 14.IN 139.9E	SAI SAI		PCN & OMSP PCN & DMSP PCN J UMSP PCN J DMSP								
17 18		14.1N 139.9E	SAI	{ 4:8/2:5 /8]:8/2088}	PCN 3 DMSP	ICUNF O	1)						
39		12:30 133:3E		114:8/2:5 /B1.0/24FRS	BEN 1 BASE								
23		13:4N 138:3E	SAI	{ 4:g/4:5 /B]:8/34RAS}	NUAA 2 (NESS)	ICCNF 0	1)						
25	080446Z	14.1N 138.3E	SAI	2 5 700 150 70 40	FCN J UMSP 50 80 40 2			10 11	CIRC		30		
26 27	060719Z	14.3N 138.16 14.6N 137.6E	PAL	5 10 700 180 5º 100	40	976		10 []			30		
28	081117Z 081919Z	14. /N 137.0E 14. 0N 137.2E	SAT		PCN 6 UMSP PCN 1 UMSP								
Зf	8827132	12:48 132:7E	SAI	5 5 7 ₀₀ 130 84 330		0 958	272	10 10	C1HC		ż0		4
33	8832113	13:00 133:3E	₹₽₽	{{\$\$;\${\$;\$}\$	PCN 3 DMSP								
34 35	0823572 0823572	15:2N 135:2E	SAI	(15.8/3.0 /B1.0/2+ MRS)	PCN I DMSP	10010 -							
39	090004Z	15.1N 135.7E	SAT	(15.0/5.0 /D1.0/26 MRS) (15.0/5.0 /D1.0/24 MRS)	NUAA 2 (NESS)	CCCNF U	B						
38	0902192	15.2N 135.5E	SAT SAT	(15.0/5.0 /D).0/ MRS) (14.5/4.5 /D).5/20085) 5 3 700 350 72 270	PCN 1 DMSP PCN 1 DMSP	5 950	265	12 15	CIRC		10		
*1 41	090300Z	15.UN 135.4E	346	(15.0/5.0 /01.0/ 085)	10 100 270 PCN 1 0MSP PCN 1 0MSP	5 550	203	19 10			10		4
43		15.1N 135.1E 15.JN 135.UE 15.6N 133.8E	AC H						-	. •	-		-
45		15.5N 133.6E 15.5N 133.6E 15.5N 133.6E 15.4N 133.8E		7 2 - 360 94 270	25 70 80	4 -	-	jo 11	CINC		7		5
47 48 49		15.4N 133.8E 15.4N 133.8E 15.5N 133.3E			PCN 1 UMSP PCN 1 UMSP PCN 1 UMSP								
49 50		15.0N 133.4E			PCN 1 DMSP								
51		16.UN 131.8E		(16+0/6+0 /01+0/24MRS) (15+0/5+0 /00+5/ PRS)	PCN 1 DMSP PCN 1 DMSP PCN 1 DMSP								
55 54	1000202	15-4N 131-6E	şât P	{#2:8/2:8 /81:5/24R8}	- 150	893	214	50 35	CIRC		5		6
55 56	100345Z 100345Z 100345Z	16.0N 131.1E 16.0N 131.0E 16.0N 130.9E		10 [16.0/6.0 /U1.0/ MRS) (16.0/6.0 /D1.0/24MRS)	PCN 1 UMSP PCN 1 UMSP	-	•		-		-		6
58 59	1003452 1003452 10090úZ	16.0N 131.2E 16.3N 130.0E	2AT	(16.5/6.5 /D1.5/24HRS) 5 3 700 120 129 50		4 911	230	23 13	C I NC		ы		7
60 61	1012227	16.2N 129.3E	SAT SAT	5 5 700 120 12- 50	PCN 5 DMSP PCN 6 DMSP		2JU	ra 12	CINC		U		,
62	1012222	16.5N 129.4E	SAT		PCN 5 DMSP PCN 5 DMSP								
65	1818282	18:3N 138:3E	SAT		BEN 3 UMBE								
66 67	10214/2	16.8N 127.1E 17.1N 126.6E	SAI	5 3 700 40 75 330 (16.5/6.5 /D1.5/24 MRS)	15 130 40 30 PCN 4 UMSP	U 962	276	20 20	ELIP	F-#	12×10		8
68	1023262	18:5N 128:5E	SAI	(#2:5/8:0 /81:5/2#R#S)	FCN 3 UMSP	ICONF 0.	2)						
70 71	110330Z	17.1N 126.2E 17.UN 126.2E	SAT SAT	(14.5/5+5 /#2.0/24PRS) (15.5/6+0 /#0.5/ ARS)	PCN 4 DHSP PCN 3 DHSP								
73	118737Z	14:18 124:5E	⇒Å((T7.0/7.0 /D1.0/270R5)		u -	246	10 -	CIRC		τo	NA 48 1 1 1 P	9
		17.5N 124.5E										14.4N LCC.EE	
		17:10 123:8E		= Senier 13 Bes spin								14:4N 122:8E	
		17:20 123:2E		-	PCN 3 UMSP				-		-	14.4N JCC+CL	
		17:28 122:5E 17:28 123:5E			L UVENLAY				-	: -	-	14.4N 122.6E 14.4N 122.6E	
		18.28 123.96 17.78 124.26 17.88 124.06			PCN 3 DMSP PCN 3 DMSP PCN 3 DMSP								
		17.88 124.0L 18.08 122.8E 18.58 123.0E		(12.5/3.5 /#2.0/130RS) (14.5/4.5 /#2.0/ PRS)	PCN 3 UMSP								
		18.5N 123.0E		{]3:8/2:8/2:8/2:8/24R83}	PCN 3 DMSP PCN 3 DMSP NUAA 2	CONF 0							
		19.04 122.0E			NUAA 2 (NESS) PCN 5 UMSP								
92 93		18.3N 121.2E 19.0N 121.0E			PCN 6 UMSP PCN 5 UMSP								
		16.4N 111.6E 17.5N 111.8E		(12.0/2.0 /01.0/24MRS) (13.0/3.0 /01.0/24MRS)	NUAA 2 (NESS)	IGONE D							
		18.UN 112.6E 17.4N 110.1E		(12.0/2.0 /01.0/ MRS)	PCN 5 UMSP PCN 5 DMSP								
98 99	1406692	17:0N 107:0E	341	(T1+0/2+0 /# / MRS)	PCN 3 UMSP								
		17.5N 106.7E 16.4N 110.0E		(12.0/2.u /01.0/ MRS) (11.5/1.5 / /24MRS)	PCN 5 UMSP NUAA 2								
183	1285027	16:38 193:3E	SAT	[[2:8/2:5 /*1.0/2+#R3]	essa 5 (vess)								
			JAT	(T2+0/2+0 /S /249RS)	PCN J UMSP								

	-	. ·	TYPHUON RUTH FIX POSITIONS FOR CYCLONE NU+ 20 11 UCT TO 19 UCT Max UBS MAX OBS OUS MIN FLT POSIT	
FIX			MAX OBS OUS WIN PLT POSIT TIX ACCHY FIX FLILVL WIND SFC WIND WIN 700MB LVL EYE RIEN- EYE OF	MSM
NO. 1	11ME 1024222	PUSII 10.2N 140.4E	AI NAV-MET LVL DIR VEL BRG RNG VEL BHG RNG SLP HGT TI/TO FORM TION DIA RADAF DAT (11.5/1.5 /D0.5/245RS) PCN 5 DMSP	NMPH
Ż	1103305	10.2N 139.1E	SAI (T1,5/1+5 /00,5/ PRS) PCN 5 DHSP	
¥ 5	111-202	12.0N 138.5E 12.1N 140.5E 12.5N 140.6E	BAI PEN B BASP AC R -	
6 7	1114362	12.2N 139.4E	ŠAT PCN 5 UMSP SAT (12.0/2+0 /D1.0/24MR5) NOAA 2	
8 9	1122042	11.0N 137.2E 12.0N 137.6E	SAT ([2.0/2.0 /D].0/24TRS) NUAA 2 (NESS) (GCNF 02) SAT ([2.5/2.5 /D].0/24TRS) NUAA 2 (NESS) (CONF 02) SAT ([2.5/2.5 /D].0/24TRS) PCN 3 DMSP SAT ([3.0/3.0 /D0.5/1]TRS) PCN 3 UMSP	
10 12	1123042 1123042 120042 1200402	12.00 137.4E 12.00 137.3E 13.30 137.4E	SAT (T3.0/3.0 /D0.5/11HRS) PCN 3 UMSP	2
12 13 14	120300Z		ਸ 8 3 1 198 33 368 52 43 49 59 888 = 33 34 = = = = SAI 172+5≠2+5 ≠01+04 MRS1 86N 3 805F	2
14 12	1211402	13:28 135:18 13:38 134:78	P 2 20 309	,
16 17 18	1213202 1213142 1213592	13.5N 134.7E	P 2 15 - 110 44 30 25 996 305 10	
18 19 20	15122AS	13.4N 134.2E 13.1N 134.2E 12.1N 132.3E		
20 21	1222402	12.0N 132.3E	541 (14-574-5 700-5724 PR5) PCN 4 DMSP	
22 23 24	1223532	12.5N 133.0E	SAI (13:5/3:5 /01:5/25MRS) NOAA 2 (NESS) (OCHF 01) SAI (13:6/3:5 /D1:6/24MRS) NOAA 2 (NESS) (CONF 02) SAI (13:6/3:5 /DU-S5/ TRS) PCN 3 DMSP	
24 33	1303012 1303012 1304202	12.7N 131.0E	SAI (13-5/3-5 /D0-5/ PRS) PCN 4 U09P	
26 27 28	130-202	12.7N 132.0E	² μ ² 10 ¹¹ 2 ²¹ 3 ² 0 ¹¹ 2 ¹¹ 2 ¹¹ 3 ¹	
28 29 30	13112/2 13112/2 1313442	13+1N 130.7E 13+5N 130.5E 13+4N 130.9E	SAI PCN 3 UNOP SAI PCN 4 OMSP- SAT PCN 3 UNOP	
30 32	131244Z	13+4N 130.0E	SAL PCN 3 DMSP	
32 33 34	131022Z 132100Z 140007Z	13.3N 130.2E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
34 35 36	1400092 1400072 1400472	13+9N 128-2E 14-0N 128-5E 14-0N 128-0E	SAT (13-53-570-570-570-570-570-570-570-570-570-570	
36 37	1400472 1400527 1402402	14.0N 128.0E	SAL (13.0/3.5 /W0.5/2018) NUAA 2 (NESS) SAL (14.0/3.5 /W0.5/2018) NUAA 2 (NESS) SAL (14.0/4.5 /DI.60/ RES) PUBP	
38 39	1402402 1403402 1409202	14.0N 128.1E	P 5 10 700 60 67 350 40 60 350 35 987 298 15 14	4
40	1404282 1407342 1412512	14.5N 127.8E	P 5 in 7nn 30 65 264 50 65 40 70 983 294 17 - CIRC 40	7
43	1412512 1412512 1414102	14.4N 120./E	SAT PCN 3 DMSP	
44 45 46	1419102 1419302 1419302	14.2N 126.0E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
47	1421302 1421302 1423302	14.0N 125.2E 14.0N 125.2E 14.0N 124.0E	SAI - LYE, 10 DEG STINAL OVERLAY, 100 PCT, ELLIPTICAL, AAIS 44X32 - 14.4N 122 LRUR - LYE, 90 PCI, FIRCULAR UPEN SW 032 - 14.4N 122	-6E
48 \$9	1423302	14.0N 124.0E	3AI {14:5/4:3 /80:5/2478\$} PEN 3 M3P	
50	1423512	14.5N 124.8E	SAT (15.5/5.5 /02.0/ MRS) PCN 1 UM5P	• 1
53	150145, 150130Z	14:80 124:3E	LRUR = Exe: 73 PSI; Eineulan Upen n; 888 14:21 128	:2E
53	1501462	14.88 124.9E	341 {15:0/3:0+102:0/25083} NUAA 2 (NESS) (CONF 01)	_
39	1505802	14:68 124:2E	LAUR - EYL, 70 PC1, LIKCULAR UPLN N, 065 PU 10 10 700 350 70 250 15 75 90 60 972 286 10 12 CIRC 130 14+4N 122	
58	15033VZ 1504142	14.88 124.0E	LHUN - LYE, 70 PCT, LIRCULAR OPEN Nº 055 Sat (14-0/4-0 /00-5/ PAS) PCN I UMSP	**6E
60 61	1509002	14. /N 123.5E	SAL ([4.5/4.5 /D].5/ TRS) PCN 1 DMSP 14.4N 120	•6E
83	1319992	15:18 188:7E	P - 5 700 110 85 20 54 65 20 40 961 277 10 13 CIRC 25 14.4N 120	
64 65	1311382	15.3N 122.5E	LRUR - 32941 14.4M 12 LRUR - LYF 14.4M 12	
86 67	1312382	13:4N 122.12	LNUK - 242 ⁷ 0 14.4N 120 14.4N 120	-6L -6L
65 69	1312322	15.3N 122.2L 15.0N 122.0L	SAT PCN L UMSP SAT PCN L UMSP	
7°	1513002 151400Z	13:78 157:8E	LHUR = 20971 14.4N 122	
73	1514302 1519002	15.8N 121.0E	LNDR - EYE, 100 PUT, CIRCULAH, 033 LHUR - 22811 14.4N 120	.0L
7 5	1313432	15.10 120.8E	LHUR - PUSSIBLE EYE, 100 PCT, CIRCULAR, DZU 18.2N 14 LHUR - 11a1	
7 9			HUK 3 15 POSSTBLE EYE, 024 35 2 1 CIRC 30 18.2N 120).5E ¹ €
 <u></u> <u></u> <u></u> <u></u>		13:18 128:7E		
81 80		15.4N 120.5E		
82 83		10.1N 120.5E	LRUR - EYE, 014 14.4N 120	Ject
84 85		-	LKUR 2 2 CENTER, 030 2 010 00 18.2N 120)-5E ¹⁰
86 87	1525332		SAL (14+0/4+0 /S /240RS) PCR S DADE	
88	-			
90 91	100402		THOR - LYE, ELCIPTICAL DIFFUSE, US2 18-2N 120	1.5E
33		18:2N 118:2E	3ÅI ([4:0/4:0/50.5/26/RS] ΡCN 3 UNSP 8ÅI ([4:0/4:0/50.5/26/RS] ΡCN 3 UNSP 2 Å 10 5.00 170 80 90 80 70 60 20 985 571 -2 -4 CINC 25	_ 13
94 95	1004102	10.14 110.35	LNUR - EYE. 50 PČT, ELLIPTIČAL OPEN W 18-20 12	0.5E 0.5E
39		18:58 119:5E	- p 7 10 - 700 30 55 320 25 60 330 55 978 290 13 11 CIRC 50	11
98 99			SAT PCN 3 DNSP	.,
100	1010425	12.4N 110.0E		

				FIX	POSITION	UON RUTH 5 FOR Cyci VCT TO 19	LONE NO. 20 Oct)							
F1. - NO		POSIT		ACCHY F1X	FLI HAA		SPC WIRD		700NB	 	EYE Form	RIEN-		POSII	MSa Nëpë
101	1021042	16.8N 115.2E	<u>ب</u> مبر		130 79	60 35		966			CIRC	-	21		17
183		18:3N 114:3E	SAI	1F3:8/3:8 /			A 20MSP	(CONF D)							
104		16.5N 114.5E	SAT	H\$:9/5:8 /			A 2 (NESS)	(CONF 0)	l)						
189		17.0N 113.8E	SAT	(14.5/4.5 / (15.0/5.0 /			5 DMSP 5 DMSP								
		16.8N 112.0E	2A1 P	(15.0/5.0 / 5 10 700 5 8 700	150 yun 130 10y		340 ^{0M5P} 10	0 957 960		10 14 10 11	CIRC CIRC		40 35		13 12
112		18:9N 112:9E	TĂĘ TĂĘ	5 5 .00		PCN	S DMSP				•••••		•-		•-
113 114		17.0N 112.2E 17.1N 111.1E 17.2N 110.8E	şât P.	5 5 700				960	276	10 11	CINC		33		14
116	1804342	17.2N 110.8E 17.2N 110.7E 18.0N 110.3E	SAI SAI	(15.0/5.0 /			1 0MSP A 6 (VTBU) A 2	GONF 02							
117		18:18 109:3E	SAT DAT DAT	(15+0/5+0-/			i BASE	10000 02	.,						
120		20.0N 107.9E 20.8N 108.0E	SAI	14.0/4.0	W0.5/24HR		A 2 DASP	(00NF 02)						
123		f8:#N 188:9E	SAI	112:8/2:8 /											
124	19045/Z	20.8N 108.0E	SAT	(13.0/4.0 /											
				FIx P	TROPICAL OSITIONS	FÖR CYCLÖ V TO 10 N DRS									
FIX NO.	TIME	POSII	FIX	ACCRY FIX		WIND	SFC WIND	OBS MIN	MIN 70048	FLT	EYE.	ONIEN-	EYE	POSIT	HSN
1			54 ((12.0/2.0 /	D0.5/24#R	S] NOA	A 2 (NESS)	CONF 02	HGI ()	11/10	FURR	TATION	DIĂ	RADAR	Nmp A
23	09004JZ 090144Z	12+UN 115.4E 11+UN 115.UE	SAT	(11.5/1.5 / (12.0/2.0 /	D0.5/ /R D1.0/24AR	S) PCN S) NUA	5 0M5P A 2	(00NF 01							
5		11.UN 115.UE 12.7N 114.5E	ŞAT	11:5/1:5 /	00.5/2.7R		A 2 (NESS) 3 DMSP	(CONF 01)						
5 8	831739Z	13:50 113:25	SAT SAT	110 A (2) A	01.5/34HD		3 0MSP 3 0MSP 3 0MSP								
ğ	1000252	12.2N 111.4E 12.0N 111.6E	ŞA1	(13.0/3.0 / (13.0/3.0 /		S) NOA	A 2	(OCNF 02	3						
11 12	1004412	12:1N 118:3E	≥Aı S¥1	10 (T3,5/3,5-/ (T3,0/3+0 /			A_2 [NESS] 45 360 [: 3_ DM5P				CINC		25		١
13 13		12:2N 109:8E 12:3N 109:1E	SAL	- 13.0/3.0 / - 5 500	-180 -49.		3500240 16 3 8838	984	572	*2 -0	CINC		25		,
16	11014dZ	12.2N 109.1E 12.2N 107.6E 13.0N 89.5E	SAT	(13-0/3-0 /	0 /2418		3 UMSP 5 UMSP A 2	100000							
17 18	1402272	13.0N 89.5E 12.5N 88.5E 13.1N 89.7E	SAT	(T1.5/1.5 /			A 2 (NESS) 5 UMSP	(CONF 0)	1						
20	1405242	13.2N 89.6E	541	(12+0/2+0 /	D1+0/ nR	S) PCN	5 DMSP								
21 22 23		14.5N 89.5E 14.1N 89.1E	5A1	(12.6/2.0 /	/ 11R / AR		3 0MSP								
23 25	150323Z	14:50 88:1E 15:10 88.0E	3AF DAT	HE:5/2:3 /	80:5/22HR		A 2 (NESS) 3 DMSP	(CONF 01	,						
26 27	151459Z	14.6N 87.4E	SAT			PCN	5 DHSP 3 DHSP A 2 (NESS)								
28 29 30	1602242	15.3N 87.4E	SAT	{ 3:8/3:5 / { 3:5/3:5 /			A 2 (NESS) A 2 1 DMSP	CONF 02	9						
30 32	1000372	15.7N 88.0E	SAT	114.0/4.0 /	/ nR:		3 BASE								
33 34	1014412 170141Z	17.4N 89.0E 19.JN 90.9E	SAT SAT	(14.0/4.0 /	/ PR	PCN									
35	1/85152	13:3N 81:4E	BAT	112:8/2:8 /			A 2DHSP								
37 38	1704142 1706222	19.JN 90.9E 20.2N 91.4E	SA1	(14.0/4.0-/ (14.0/4.0 /			3 DMSP 3 DMSP								
				FIX P	SITIONSL	STORM TH	NE NU. 22								
					15 NOV	10 18 NU	MAX 085	08S	MIN	rLT				POSIT	
NO:	T1ML	PUSIT	ĘŢ	NASCHET EIX		HG RNG	VEL BRG RNG	STE .	7000B	τίλιο	Förm	R HENN	61£	RADAR	MSN NMpt
1	100v42Z 100v447	9.1N 132.5E	SAT SAT	(11.5/1.5 /			A 2 (NESS)	(CONF 01	1						
23	1023422	8.54 132.8E 8.04 130.8E 9.58 125.5E	SAT	(11.5/1.5 / (11.5/1.5 /			A 2	(CONF 02 (CONF 02							
4 5 6	120040Z	9.5N 125.5E 9.8N 120.5E 9.3N 121.0E	SAI SAI SAI	(T2.0/2.0 / (T2.0/2.0 / (T3.0/3.0 /			A 2 (NESS)	(CONF 01							
؟ ع	1301342 1301342 1400312 1400312	3:38 131:5E 10:28 117:2E		{ 3:8/3:8 // { 3:5/3:5 //			A Z (NESS)								
9 11	1400342 1400542 1405242	10-2N 117.4E 10-2N 118.1E 10-5N 116.2E		H1:5/1:3 /		5) PCN (DMSP DMSP	TOURF 02							
11	1413357 1413357 1416262	12+UN 113.0E 12+UN 112.8E	SAI	****3*1*3 *	2044		6 DMSP 6 DMSP								
15	1500J0Z	10.3N 109.4E	SAT SAT	11.5/1.5 /	5 /25 TR	PCN	B DMSP								
16 17	1201212	10-JN 110-UE 10-UN 110-UE	⊃A⊺ Şaî	(13+5/3+5 /) (13+5/3+5 /)	5 /25MRS	S) NUA S) NUA	A 2 (NESS)	(CONF U)	3						
łş	1383185	10:0N 139:7E	באר א⊂	5(13:0/3.0 /	150/ 50RS	5° BEN :	3 ⁷⁰ 310 20	993	304	1, 12	-	• -			,
2Y	1509002	19:7N 109:7E	əği Sal	1 15 /	0145/240R		60 360 10	991	301	19-13	-		-		١
23	招担化	3:78 185:4E													
24 25 26	151/542 1609172 1609172	8.9N 104.9E 9.5N 108.0E 9.6N 108.5E	SAT SAT SAT	(T3.0/J.u /l (T2.0/2.u /			DHSP DHSP B DHSP								
29 28	10001/2 1002232 1002232 1004532	9.80 108.55 9.70 107.85 9.80 107.85	SAI SAI	(T2.5/3.5/) (T2.5/3.5/) (T1.5/2.5/)	1.0/24083 1.0/25085		A 2 (NESS)	LOONE B1	,						
28 29 30	1604532	9.80 107.8E 9.80 107.9E 9.80 107.9E 9.80 106.6E	SA (SA (SA T	(12,0/2+0 /) - 13	1.5/24085	5) PCN . 5) PCN .	S DHSP S DHSP SU			3-	_	_	_		-
31	1610122 191/372 171/242	9.0N 106.0E	3ÅI	- 10"	_		30	998 (CCNF 02		25 -	-		-		٦
33	1/01242	8:0N 183:2E	SAT	111:5/2:5 /				COCNF 02							
36 37	180419Z		-	(12.0/2.0 / (11.5/).5 /	Do.5/25085	5) NUA/	A 2 (NESS)	GONF 02	3						
			-												

			1400-1042 5101 +1. POSITION2 FOR	RM VEHA CYCLUNE NU. 23 26 NOV MAX OBS	OBS MIN	rLT					
No.	114F	POSIT		RNG VEL BRG RNG		דבאר דבארט	₽VR×	rtion	6]E	OF FADAR	NSA NADA
1	1623292	7.5N 141.9E			(CONF 01)						
ŝ	1822335	16:78 136:2E	341 (H:5/1:8 /8°·5/23AR8)	NUAA 2 (NESS)	123NF 813						
\$	1981192	11:UN 138:5E	SAT {12:5/2:5 /81.0/25HRS}		(CONF 02)						
9	13839975	18:3N 127:1E	AI (11.5/1.5 /00.5/228RS) P 10 30 - 140 228 70 2		1002 -	24 11	-		-		۲
89	191655Z	11. IN 126. JE	SAT SAT	PCN 5 DMSP PCN 5 DMSP							
łî	500050Z	12:UN 124:2E	341 (13:8/3:8 /88:8/23#R3)		(CCNF 01)						
13	200040Z 20040Z	12.UN 124.5E	SAT (12.5/2.5/02.5/ MRS) ERDH - 3310/	PCN 5 DMSP						10+3N 124+0E	
łŝ	2005572	12:58 153:3E	SAT (12.072.0 /00.5/249RS)	PCN 5 DMSP						10+3N 124+0E	
19	2003572 2011462	12.1N 124.1E 12.8N 123.0E	SAT (12+5/2+5 /02+5/ MRS) SAT	PCN 5 DMSP PCN 5 DMSP							
1 8		13:38 131:7E	145	BEN 3 BASB							
ŝ	510113X	11.3N 120.1E	SAT (13.0/3.0 /00.5/24MRS) SAT (13.0/3.0 /S /25MRS)		(CONF 01)						
23	<u>2183122</u>	11:3N 121:8E	3AT (13:8/3:8*/80.5/32FR3)	PCN 5 UNSESS)	(00NF 01)						
25	straass	H:(N I§I:3€	SAT (12+0/2+0 /S /24MRS)	pen 3 basp							
39	-	19:38 128:#E	<u>SAt</u>	BEN B BASE							
28	2200102 220011 2	11.8N 119.0E 11.3N 119.9E	SAT (12:0/2:0 /51.0/24085)	PCN 5 UMSP PCN 5 UMSP							
30	2202012	11:52 113:3E	3A1 (13:8/3:8 /86:8/3:R8)	NUAA 2 (NESS)	(88NF 83)						
32 33	2202022 2202022	12.3N 118.0E 12.5N 119.7E	SAT (14.0/4.0 /D1.0/24HRS) P = 10 700 190 35 170	PCN 5 0H5P 20 45 210 30	995 305	15 15	ELIP	N-S	£0740		4
35	3316712	13:20 119:7E	SAL	een e base							
39	22222202	13:18 119:9E		PCN 5 DMSP 145 30 140 20	995 304	10 -	-		-		£
38	2223512	13.00 117.8E	SAT {F3:8/2:8 /U1:8/24888}	PEN 3 BM3P							
40 41	Z30106Z	13.5N 117.5E 13.5N 117.5E	SAT (13.0/3.5 /N0.5/2458) SAT (13.0/3.0 /01.0/2358)		CONF 01)						
4 3	230451Z 230451Z	12.3N 117.3E	SAT (13.0/3.0 / / 185) SAT (13.0/4.0 / 1.0/24 85)	PCN 3 DMSP PCN 3 DMSP							
44 45	2302392 2312392	13:3N 117:4E	Р 2 8 700 Sat	PCN 5 0M5P 50	993 305	14 -	•		-		۴
‡ 9	231734Z	13:3N 117:8E	3A 1	PCN 5 UMSP							
\$ 8	2326372	12:3N 113:9E	SAT P 2 5 - 190 45 -	PCN 5 UM3P 20	990 302	10 -	-		-		7
50 51	2401192	14+0N 115.5E 14-7N 115.2E	5AT (T4.0/4.0 /D1.0/24HRS) 5AT (T4.0/4.0+/D1.0/20HRS)	PCN 5 DMSP PCN 3 DMSP							
52 53	2401107 240440Z	15.2N 114 7E 15.1N 114 7E	SAT (13.5/3.5 /D0.5/23MRS) SAT (14.0/4.0 /D1.0/24MRS)		(00NF 01)						
54	24044VZ	15.0N 114.2E 15.0N 113.3E	SAT (14.0/4.0 /D1.0/20HRS) P 10 10 - 220 + 130	PCN 3 DNSP	996 305	10 -	-				p
55 56	2414/Z 241213Z	15.6N 113.3E	P 10 10 - 220 47 130 SAT	25				-			
59 59	241215Z 241356Z 241356Z	15.4N 114.3L 16.UN 113.1E 15.9N 113.3E	SAT SAT	PCN 5 DHSP PCN 5 DHSP							
59 81	2413582	15.9N 113.3E		PCN & DMSP							
61 62	2411242 2500212 2500562	16.3N 113.0E 16.4N 113.0E	P 3 5 700 240 47 -	- 40 170 20	996 307	1+ 11	-		-		٢
63 85	250056Z 258059Z	16.4N 112.5E 18:0N 112.7E	SAT (12.5/3.5/W1.5/249RS) SAT (13:5/3:3 /W3:5/249RS)	PCN J DMSP PCNAS 20MSP	(CONF 02)						
66	250103Z 250104Z 250426Z	16.0N 111.7E	SAL (13+0/3+5 /W0+5/25/HS) SAT (13+0/3+5 /W0+5/24/HS) SAT (12+5/3+5 /W1+5/24/HS)	NOAA 2 (NESS) PCN 5 DMSP							
67 68	250426Z 250426Z 251338Z	17.1N 111.9E	SAT (12+5/3+5 /W]+5/24MRS) SAT (12+5/3+5 /W]+5/24MRS) SAT	PCN 3 DMSP PCN 3 DMSP PCN 5 DMSP							
68 79	251338Z 251/09Z 260038Z	17.4N 111.1E 17.4N 110.9E 17.2N 111.8E	547	PCN 3 DMSP PCN 3 DMSP							
			\$\$1 (11.5/2.5 /w1.0/24085) \$\$7 {{{}:5/?:5 /w1.0/24085}	PCN 3 DHSP PCN 3 DHSP							
73	2604J1Z	17.4N 111.9E	3AI (11.5/1.5 /W0.5/487R5)	FUN 3 DMar							

CHAPTER V ---- SUMMARY OF FORECAST VERIFICATION DATA

1. COMPARISON OF OBJECTIVE TECHNIQUES

a. GENERAL:

Objective techniques have been verified yearly since 1967. Year-to-year modifications and improvements have prevented any long period comparisons of the various objective techniques except for EXTRAPOLATION and ARAKAWA (1963). All of the dynamic objective forecast techniques used during the past season employed the simple steering concept of a point vortex in a smoothed flow field with adjustments based on past movement. None of the techniques provided intensity forecasts with their associated relationship to movement.

b. DISCUSSION OF OBJECTIVE TECHNIQUES:

(1) EXTRAPOLATION - Past 12-hour movement derived from current warning position and 12-hour old best track position is linearly extrapolated to 24 and 48 hours.

(2) ARAKAWA (1963) - Grid overlay values of surface pressure are entered into regression equations. Previously hand computed, computations were computerized during the latter half of the 1972 season.

(3) MOHATT 850/700 - A modification to the basic HATRACK program which advects a point vortex on a pre-selected analysis or prognostic SR (space mean) field at designated levels in six-hour time steps out through 84 hours. Utilizing the 12hour history position, MOHATT computes the previous 12-hour forecast error and applies a bias correction to the forecasted positions out to 72 hours.

(4) TYMOD 12/24 - A modification to FLEWEACEN Pearl Harbor's objective technique TSGLOB. TYMOD advects a weighted point source using FNWC Monterey's global band upper air progs out to 72 hours. Outputs are provided for both 12- and 24-hour history. Bias corrections are applied to the forecast positions based on the previous 12- and 24-hour forecast errors.

(5) TYFOON-72 - Modified version (Jarrell and Wagoner, 1973) of the basic TYFOON program (Jarrell and Somervell, 1970). The program outputs forecast positions as the centers of probability ellipses out to 72 hours based on a group of analog storms which occurred within a time/

					<u>s</u>	UMMA	RY					
	A	. OF LERT STEM:		WH	I CH NUMB	SYST BECA ERED CYC	ME		TOT NUMB TROP CYCL	ERED	D:	EVELOPMENT RATE
1970 1971 1972 1973		32 48 41 26			1 3 2 2	3 9			2 3 3 2	7		56% 69% 71% 85%
J 0	F	M	A	MONT M 1	HLY J 1	DIST J 6	RIBU A 6	TION S 5	0	N 3	D	

space envelope centered about the date and position of the storm being forecast. Ellipses are based on the analog population weighted according to their similarity to the existing storms.

c. TESTING AND RESULTS:

In past years only one or two objective techniques provided 72-hour forecasts. For the first time, during 1973, the JTWC had five objective techniques to assist in formulating the 72-hour outlook. Although some of the objective techniques showed certain skill at various time frames, research is continuing in an effort to improve all of the objective techniques used by the JTWC.

(1) Table 5-1 presents a comparison of all objective techniques for all forecasts. Each objective technique is compared to the best track, each of the other objective techniques, and the official JTWC forecast. A comparison of the various techniques shows EXTRAPOLATION to be superior to all other techniques at both 24 and 48 hours. When compared to the official JTWC forecast, EXTRAPOLATION was only slightly higher at 24 hours and equal at 48 hours. TYFOON-72 was the second best technique at 24 and 48 hours and superior to the other techniques at 72 hours. When compared to the official JTWC forecast at 72 hours, TYFOON-72 was only slightly higher.

(2) Table 5-2 presents a comparison of all objective techniques for all typhoons where the maximum sustained surface wind was 35 knots or greater. Once again, EXTRAPOLATION was superior to all other techniques at both 24 and 48 hours and TYFOON-72 was best at 72 hours. When compared to the official JTWC forecast, however, EXTRAPOLATION was equal at 24 hours and slightly better at 48 hours. This indicates the regular tracks most typhoons described once they became well developed plus the lack of major recurvers during the 1973 season.

2. SUMMARY OF TROPICAL CYCLONE FORMATION ALERTS

For the fourth consecutive year, the JTWC issued Tropical Cyclone Formation Alert messages as a means of alerting Department of Defense interests to potentially dangerous tropical disturbances which normally had not reached the tropical depression stage.

Of the 26 tropical disturbances in the western North Pacific during 1973 for which alerts were issued, 22 were placed in warning status. Only Tropical Storm Hope, which developed from an upper tropospheric low, was not preceeded by a formation alert. Including revisions, extensions, and regenerations a total of 43 formation alert messages were issued.

The high ratio of tropical cyclones to formation alerts, 85%, can be attributed to the improved satellite interpretation procedures employed by the JTWC. Of the 43 alerts issued, 30 were based solely on satellite data, three on aircraft investigatives, and two on synoptic data. The remaining eight alerts were based on a combination of satellite plus aircraft, synoptic data, or land radar. Thus, 88% of all alerts issued during 1973 employed satellite data as their basis.

3. ANNUAL FORECAST VERIFICATION

Forecast positions for the warning, 24-, 48-, and 72-hour forecasts are verified against the best track using two criteria:

a. Only those forecasts for tropical cyclones which reach typhoon intensity and the best track winds are 35 kts or greater are verified; and

b. All forecasts for which best track positions exist are verified.

No verification statistics are computed for the 12-hour forecast positions. However, the 12-hour forecast position errors may be estimated by adding half the difference between the warning and 24-hour forecast position errors to the warning position error.

In addition to the methods described above for verifying absolute error distance, a computation of closest distance to the best track (right angle error) is also calculated for both methods. This is used to measure the demonstrated ability of the JTWC to forecast the path of motion without regard to speed.

Unless otherwise indicated, the following tables and figures depict the distribution of the typhoon criteria forecasting errors in the JTWC forecasts.

ERROR				
		<u>24 - HR</u>	<u>48-HR</u>	<u>72-HR</u>
	1950-58	170	-	
	1959	*117	*267	
	1960	177	354	
	1961	136	274	
	1962	144	287	476
	1963	127	246	374
	1964	133	284	429
	1965	151	303	418
	1966	136	280	432
	1967	125	276	414
	1968	105	229	337
	1969	111	237	349
	1970	98	181	272
	1971	99	203	308
	1972	116	245	382
	1973	102	193	245
Foreca	st posit	ions not	rth of	35 ⁰ N were no

÷,

4. REFERENCES

- Arakawa, H., "Statistical Method to Forecast the Movement and the Central Pressure of Typhoons in the Western North Pacific," Japan Meteorological Agency, Meteorological Research Institute Final Report, October 1963.
- Jarrell, J.D., and W.L. Somervell, Jr., "A Computer Technique for Using Typhoon Analogs as a Forecast Aid," <u>NAVWEARSCHFAC Tech. Paper</u> No. 6-70, June 1970.
- Jarrell, J.D., and R.A. Wagoner, "The 1972 Typhoon Analog Program (TYFOON-72)," <u>ENVPREDRSCHFAC Tech. Paper</u> No. 1-73, January 1973.

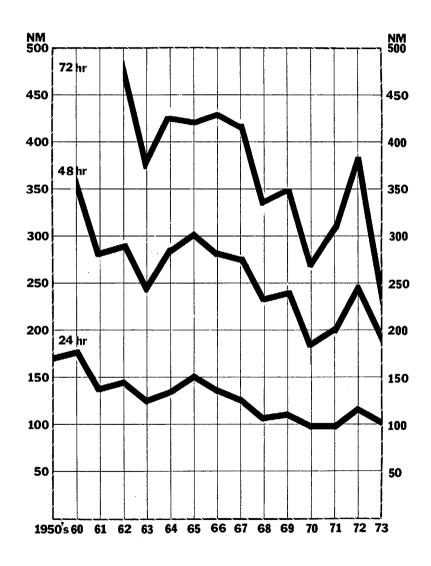
TABLE 5-2. 1973 OBJECTIVE TECHNIQUES VERIFICATION FOR TYPHOONS ONLY (see criterion a)

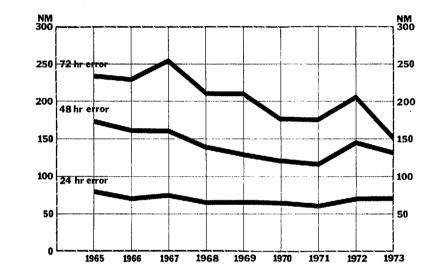
										1	24-HOUR			
	<u>J1</u>	WC	XI	RP	AB	<u>KW</u>	T)	24	D	12	<u>TYFN</u>	MH	85	MH70
JTWC	195 102	102 0									r			
XTRP	164 100	100 0	164 100	100 0							NUMBER OF CASES	T	K-AXIS ECHNIQU ERROR	IE
ARKW	42 120	92 28	40 122	102 21	42 120	120 0					Y-AXIS TECHNIQU		ERROR	E
TY24	144 216	98 118	136 220	97 123	38 195	124 71	144 216	216 0			ERROR		Y-X	
TY12	150 181	99 82	140 182	97 85	38 166	124 42	142 181	216 -36	150 181	181			/	
TY FN	170 116	99 17	154 117	98 19	41 106	121 -15	143 115	215 -101	148 115	181 -65	170 116 116 0		/	
MH85	135 147	102 44	129 146	97 49	35 131	124 8	120 146	223 -77	126 145	177 -31	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	135 147	147 0	
MH 70	125 125	101 25	119 124	95 28	34 120	126 -6	$\frac{113}{123}$	192 -69	118 123	158 -35	122 105 124 20	124 125	131 -6	125 12 125

										4	8 - HC	DUR						
	<u>JTWC XTRP ARKN TY24 TY12 TYFN MH85 MH70</u>																	
JTWC	136 193	193 0											Лт	WC -	OFFICI	AL JINC	SUBJECTIVE FORE	CAST
XTRP	120 190	192 -2	124 191	191 0									XT AR	RP - : .K₩	EXTRAP ARAKAW	OLATION A		
ARKW	33 280	187 93	31 276	191 85	33 280	280 0								12 - FN -	TYMOD TYFOON	WITH 12	-HR HISTORY TED CLIMO)	
TY24	104 389	187 202	102 395	185 210	30 360	283 77	109 392	392 0								700-MB]
TY12	108 352	186 165	106 358	183 175	30 330	283 47	107 356	393 -37	115 360	360 0								
TY FN	125 210	190 20	117 214	189 25	32 222	287 -65	108 203	391 -1 8 9	113 205	357 -152	132 215	215 0						
MH 85	98 314	196 118	96 314	188 127	27 266	264 2	91 308	400 -92	97 311	357 -46	101 308	210 98	103 312	312 0				
MH70	92 294	195 99	91 293	186 107	27 251	264 -13	87 282	399 -117	92 288	355 -67	95 288	209 79	97 291	311 -20	97 291	291 0		

JT	AC.	TY	(24	T	12	- <u>T</u> Y	FN	MH	85	MH	70
88 245	245 0										
71 516	252 364	76 618	618 D								
73 546	247 300	76 556	618 -62	80 563	563 0						
82 267	246 21			79 278	566 -288	92 291	291 0				
63 525	254 270	60 501	613 -112	64 504	532 -28	6 507	276 231	69 513	\$13 0		
61 199	254 246	58 477	605 -128	62 489	527 - 38	65 493	277 216	67 499	494 4	67 499	499 0
	88 45 71 16 73 46 82 67 63 25 61	45 0 71 252 16 364 73 247 46 300 82 246 67 21 63 254 25 270 61 254	88 245 45 0 71 252 76 16 364 618 73 247 76 446 300 556 82 246 75 67 21 271 63 254 60 252 270 501 61 254 58	AB 245 45 0 71 252 76 618 16 364 618 0 73 247 76 618 46 300 556 -62 82 246 75 615 67 21 271 -344 63 254 60 613 25 270 501 -112 61 254 86 05	JTNC TY24 Ti 88 245	JTWC TY24 TY12 88 245	Image: Constraint of the state	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JTNC TY24 TY12 TYTFN HH 88 245	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JTNC TY24 TY12 TYTEN MH85 MH 88 245

TABLE 5-3. 1973 OBJECTIVE TECHNIQUES VERIFICATION FOR ALL FORECASTS (see criterion b)

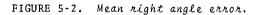

										2	4-HOUR		
	JT	WC	XT	RP	AR	Kh	ŢΥ	24	TY	12	TYFN	MH 8 5	<u>MH70</u>
JTWC	267 108	108 0									·	·	7
XTRP	218 109	104 5	218 109	109 0							NUMBER OF CASES	X-AXIS TECHNIQUE ERROR	
ARKW	45 127	97 30	43 130	110 20	45 127	127 0				1.1	Y-AXIS TECHNIQUE	ERROR DIFFERENCE	1
TY24	184 208	102 106	176 211	$105 \\ 106$	41 201	$\begin{smallmatrix}132\\69\end{smallmatrix}$	184 208	208 0			ERROR	Y-X	
TY12	192 175	103 72	1 6 2 1 7 5	105 70	41 175	132 43	182 175	208 - 34	192 175	175			
TY FN	215 120	103	198 120	106 14	44 112	128 -16	183 119	207 -89	190 119	174 -55	215 120 120 0		
MH85	161 148	106 42	155 147	105 42	37 136	130 6	143 147	218 -71	151 147	176 -29	158 124 147 23	161 148 148 0	
MH70	149 128	105 24	143 127	104 24	36 124	132	134 126	191 -65	141 126	159 -33			49 12 28

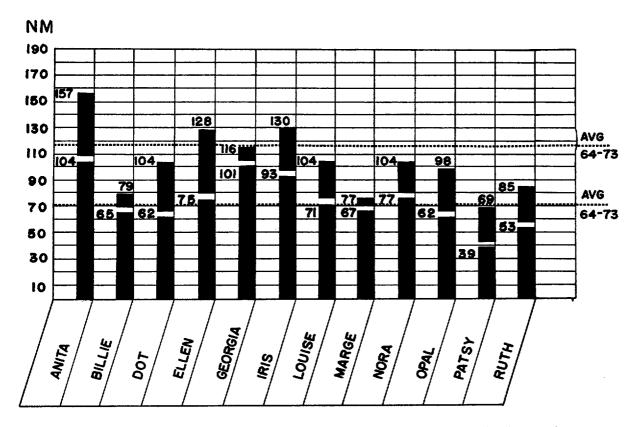

10

ę.

-											48-1	HOUI	ł				48-HOUR														
	JT	WC	<u>x</u> т	RP	AR	KW	Ţ	24	<u>TY</u>	12	TY	FN	мн	85	MH	70															
JTWC	153 197	197 0															C SUBJECTIVE F	ORECAST													
XTRP	137 197	197 0	150 201	201 0									AR TY	KW - 1 24 - 7	RAKAW.	WITH 2	4-HR HISTORY														
ARKW	33 280	187 93	31 276	191 85	33 280	280 0							TY MH	FN - 1 85 - M	IYFOON OHATT	(WEIG 850-M	2-HR HISTORY HTED CLIMO) B PROG														
TY24	116 397	192 205	120 402	192 210	30 360	283 77	128 398	398 0						70 - 1	IOHĄT J	700-М	B PROG														
TY12	120 358	192 166	125 361	190 171	30 330	283 47	126 358	399 -41	135 361	361 0																					
TYFN	137 209	195 14	136 212	194 18	32 222	287 -65	127 203	397 -194	133 204	358 -154	152 212	212 0																			
MH 85	105 311	203 108	107 313	196 117	27 266	264 2	101 308	413 -105	$ \begin{array}{r} 108 \\ 310 \end{array} $	367 -57	112 307	213 95	114 311	311 0																	
MH 70	99 293	202 91	102 293	195 98	27 251	264 -13	97 285	413 -128	103 288	366 -78	106 289	212 76	108 291	310 -19	108 291	291 0															

72 HOUR														
	JT	WC	<u>T</u>	24	TY	12	TY	FN	MH	85	MH	70		
JTWC	.97 253	253 0												
TY24	79 611	261 350	95 617	617 0										
TY12	81 550	256 294	95 570	617 -47	100 577	\$77 0								
TY FN	90 266	254 12	94 305	615 -310	99 31 3	579 - 267	112 319	319 0						
MCH 8 5	68 529	264 265	73 521	625 -104	78 526	572 -45	81 528	325 203	83 533	533 0				
MH70	66 506	264 242	70 505	617 -113	75 519	571 -52	78 522	323 199	80 526	513 12	80- 526	526 0		




FIGURE 5-1. Mean vector error.

4. SUMMARY OF INDIVIDUAL TROPICAL STORM VERIFICATION

TABLE 5-4. 1973 JTWC ERROR SUMMARY

(Average errors are given in nautical miles)

		WARNING			24 HOUR			48 HOUR			72 HOL	
CYCLONE	POSIT ERROR	RT ANGLE ERROR	WRNGS	FCST ERROR	RT ANGLE ERROR	CASES	FCST ERROR	RT ANGLE ERROR	CASES	FCST I ERROR	ERROR	E # CASES
. TS WILDA	12	7	9	63	50	5						
. TY ANITA	22	13	13	157	104	9	240	96	3			
. TY BILLIH		17	24	79	65	20	151	123	16	210	171	12
. TS CLARA	28	20	7	92	88	3						
TY DOT	25	15	19	123	79	11	256	156	2			
. TY ELLEN	17	13	28	135	90	16	201	116	6	55	53	2
TS FRAN	58	27	5	172	142	1						
TY GEORGI		12	15	114	96	11	255	225	7	279	243	1
TS HOPE	32	27	13	114	96	9	9	181	155	2		
). TY IRIS	24	15	30	138	96	26	265	153	21	328	157	17
. TD 11	23	15	6	155	88	2						
2. TS JOAN	65	43	10	191	139	б						
3. TS KATE	31	21	8	114	71	4						
I. TD 14	16	16	4									
5. TY LOUISH		14	18	104	71	14	225	180	9	294	173	3
5. TY MARGE	18	10	12	. 77	67	8	224	166	3			
'. TY NORA	17	10	34	104	77	30	192	156	24	267	218	20
3. TY OPAL	26	12	15	98	62	11	177	89	5			
. TY PATSY	21	14	29	65	37	22	212	122	21	318	170	17
). TY RUTH	19	12	33	84	51	29	126	78	24	163	90	. 21
. TS SARAH	13	10	4									
2. TS THELMA		15	10	146	35	6	263	68	2	283	283	1
3. TS VERA	39	19	28	116	78	24	172	151	8	236	221	3
L FORECASTS		15	374	108	74	267	197	134	153	253	162	97
YPHOONS	19	12	239	102	71	195	193	131	136	245	153	88
includes onl	v forecas	sts on cv	clones	that bec	ame typh	0005 200	loniv	vhen veri	fving h	est track	wind	was 35

e

FIGURE 5-3. 1973 average vector and right angle errors of 24-hr forecasts.

THUPICAL STURM WILDA

12002 1 JUL TO 12002 3 JUL

BEST FRACK	WARNING	ERRORS	24 HUUR	FORECAST ERRORS	48 HOUR FORECAST EMRORS	72 HOUR FORECASI
POSIT WIND 0112002 19.68 118.3E 45 0118002 20.38 118.0E 50	PO511 WIND 19.3N 118.VE 30 20.2N 118.VE 40	05T WIND 25 -15 6 -10	20.85 115.85 22.55 117.05	NLND DST WIND 54 128 -10 54 39 -10	FOSIT WIND USI WIND	POSIT WIND USI WIND
0200002 20.9N 117.1E 55 0206002 21.5N 117.0E 55 0212002 22.0N 117.1E 50	21.5N 117.7E 55 22.1N 117.7E 55	6 U 6 - 5	23.08 116.8E 24.38 117.5E 25.18 118.1E		••,•, ••,•, ••,•,-	·····
0218002 22+6N 11/-1E 60 0300002 23+6N 117-4E 60 0306002 24+6N 118-3E 60 0312002 25-5N 118-5E 40	23.4N 117.9E 50		,,- ,,- 52;2 2-2;2		······································	

THUPICAL STORM CLARA

18002 12 JUL TO 06002 14 JUL

BEST IRACK	WARNING	ERRORS	24 HUU	H FORECAST	RUNS	48 HOUN	FORECAST	KOKS	72 /h0u	R FGRE	CASI
PUSIT WIND	PUSII WINU	UST WIND	POSIT	WIND DST		POSIT		WIND	PCS1T	W JING	USI WINL
1218002 20.1N 161.0E 35	27.6N 161.7E 30	30 -5	30.98 159.4	⊾ 45 57	0						
1300002 28.7N 160.9E 40 1306002 29.3N 160.4E 50	28.3N 161.0E 30 29.2N 160.2E 45	24 -10 12 -5	31.4N 159.2 32.8N 159.2	£ 40 80 £ 50 138	15	=:= =:=	:: ::	== ==	: :::::	::	
1312002 50.5N 160.4E 45						=;= ==;=					
1400002 31+0N 160+7E 40 1406002 31+7N 161+6E 35						,,- ,,-					

TRUPICAL STURM FHAN

00002 29 JUL TO 00002 30 JUL

BESITA				RNÍNG	ER;	NRS		24 HOUR		E RA	łÚRS		48 HUU			PODS		72 HOU	R FGHE	CASI	20.85	
2900002 18-98 124-0E	₩1ND 35	14-30	123.SE	NN190	۶Į	₩₽₽₽	20.6N	SII 120.0E	41NU 45	171 172	WIND		·	W1ND	PSI	WIND	HC	slī	U ALL	tes j	WIRL	
2912002 19 EN 122.5E	38	17.4N	122.72	35	26	-5	==:=	===:=	==	==	22	=:=	:::::	::	::			Ξġ	::			
2914002 20-BN 122-DE	30	19.4N	155.15	32	86	2																
3000002 CI +6N 122+9E	- 25	JA•14 1	155•1F	ں ∃ر	122	5							,-									

INCPICAL STURM HUPE

160002 9 AUG 10 00002 12 AUG 00002 9 AUG 10 00002 12 AUG 24 HUUH FORECAST ERHONS 48 HOUR FORECAST BESI IRACK 72 HOLR FUNECASI WARNING FHHORS POSIT WIND POSIT WIND UST WIND POSIT WIND OST WIND OST WIND OST WIND UST WI 1000002 21.7N 152.0E 40 21.3N 152.0E 40 12 U 30.2N 150.0L 45 12 5 33.0N 149.05 45 158 15 ---- ------..... 32 10 32.3h 148.8E 30 18 25 35:4N 147.9E 40 204 10 ==== ==== ====== 1012002 29:30 130:8E 45 28:10 130:3E 30 -- -- -----1018002 29.6N 150.3E 40 29.8N 150.2E 50 13 10 33.7N 149.1E 50 147 20 ----------..... --------:: = = ----------= = -- -- --,- ---,----- -- -- --,- ---,--- -- ----- ----- -- ----.. ..

THUPICAL DEPRESSION 11

00002 13 AUG 10 00002 14 AUG

BEST TRACK WANNING 24 HOUR FORECAST 48 HOUR FORECAST 72 HOLR FORECAST ENRORS ENRORS POSIT WIND POSIT WIND POSIT WIND FOSIT WIND FUSIT WIND POSIT WI 1400002 30+84 153+8E 25 30+78 153+7E 30 لېيېد دونو بې بې بې دوند درېې پې خې خو دو دوند دومو ک 8 -- --

TROPICAL STURM JUAN

00002 18 AUG 10 14002 20 AUG

BEST TRACK	WANNING ERRURS	24 HUUH FORECAST ERH	46 HOUR FORECAST	72 HOLR FCHECASI
1800002 19+40 154+3E 30	19.20 129.3E WIND UST WIN 19.20 129.3E 30 12 0) POSIT WIND DST 19+88 126+06 45 141	LND FOSIT WIND DET WIND	RCSIT WIND US WIND
1812002 14+8N 128+0E 30	18.8N 129.3E 30 95 U 18.6N 128.4E 30 161 U	18.7N 125.9L 45 224 18.8N 124.9L 40 221	<u>6</u>	
1900002 CI-4N 125-5E 35	10.3N 127.2E 30 208 -5	18+9N 123+4E 40 195	10	
1912082 21:7N 123:3E 48	22.2N 125.06 30 41 -10 22.0N 123.5E 40 18 -5	54.8h 120.0E 35 219	8 === ==== == == ==	
1918002 21+5N 122+2E 35	22.0N 122.0E 45 32 10		,	
2000002 21.5N 121.3E 30 2006002 21.3N 119.4E 30	20.7N 120.8E 45 55 15 21.0N 119.4E 30 18 0			
2012002 21+3N 11/+4E 30	21. IN 117.5E 15 13 -15	,,		

THUPICAL STURM KATE

.

00002 24 AUG TU 00002 26 AUG

BEST TRACK	BARNING	24 HOUR FORECAST	48 HOUR FURECAST	72 HOUR FORECASE
POSII MIND	ERRORS PUSII WIND DSI WIND	ERRORS PUSIT WIND DST WIND	FUSIT WIND USF WIND	ERRORS Resit wind ost wind
2400002 19•10 111•76 45 2412002 19•40 111•36 50 2414002 19•70 110•86 55	18.3N 111.7C 30 48 -15 18.6N 111.3E 30 48 -20 18.9N 110.9E 30 48 -25	17.88 109.25 40 149 -20 18.88 108.85 25 117 -35 19.28 108.75 25 136 -35		
2500002 20+0N 107+3E 35				•
2214007 50-50 100-95 00 5215007 50-40 101-05 00 5214007 50-50 100-95 00				
2000002 20+8N 100+1E 40	21.00 106.15 35 12 -5			يو مو مو مو دومور ويوم.

÷

O.

ς.

.

.

THUPICAL DEPRESSION 14

14001 1 SEP 10 00004 2 SEP

BEST THACK	WARNING	24 HUUR FONECAS	T 48 HOU	K FORECAST	22 HOUP FORECAST
P0511 #1sp	PUSIE WIND UST WIND	POSIT WIND OS	BRONS WIND POSIT	WIND DSI WIND	
0112002 19+2N 106+8E 30 1 0114002 19+2N 100+8E 30 1	9.6N 107.5E 30 46 0 9.4N 106.5E 30 13 0				
4200442 19+4N 105+9E 30 1	7. JN 105. 95 30 6 4		,,-		
0206002 19+7N 105+5E 25 1	7. IN 105.5E 30 0 5	* *	*		

TROPICAL STORK SARAH 00002 10 NOV TO 18002 10 NOV

	BESI	HACK	#/	ARNING	,			54 HOOI	K FORE	CAST			48 HOU	H FORE	CAST			72 1400	R FGHL	CASI	
	PUSII	WIND	PUSIT	NIND	LS1	WIND WIND	PC	151T	WIND	UST	NUHS NIND	FC	SIT	WIND	DSI	NORS	BC	SIT	WIND	CS ^{ENR}	WIND WIND
1000002	12:20 111:	DE 40	12.2N 111.50 12.1N 110.40	1 30 5 50	8	-10	=::	::::	::	==	22	=;=	:::::	==			::::		::		
			12.2H 109.40		13	v												4-			
101,002	12+5N 100+5	»£ Э5	12. CN 108.80	دد .	25	U								•							

TROPICAL STORM THELMA

0000Z 15 NOV TO 0600Z 18 NOV

BEST TRACK	WARNING	ENKOHS		ST 48 HG EARDAS	UUH FURECAST ERHORS	72 HOUR FORLCAS
PUSII #140 154002 10+08 111-76 40	PUSIT WIND LU-4N LLU-VE 40					
1512002 19-9N 100-8E 55						9h 96.6E 60 284 35
1518002 5+8N 108+3E 45	4. IN 107.76 55	36 IV 9.0	6N 102.9E 55 10	os 30		e esta se se
1000002 4.4N 100.05 35	9.6N 108.3E 30 9.7N 107.3E 30	21 -5 9.4	6N 108+3E 30 14 7N 104+0E 30	89 10		,
1012002 3.00 100.45 25	9.88 106.31 30 9.88 105.41 25	19 7	: ::::: :: ::	= = =; =;		
1700002 4.7N 103.1E 20	9.0N 104.38 25	63 >		,,		,, <u></u>
1700002 9.7N 104.4E 20	9.0N 105.JE 20	68 V	,	,,		te serie en se se
18+4002 10+4N 101+4E 25	,,			,,		

TOOPICAL STORM VERA 12002 19 NOV TO 06002 26 NOV

BEST TRAUK	WANNING	ROAS	24 HUUK	FOREC	AST	48	HOUN FOR	ECAST	72 HQuF	PCRE	CASI ERR	ORS
PUSTI WIND PUST	มากม บริว	WIND	40511 . 12.UN 123.96	1ND I	UST # IA			UST WIND	ACSIT	M DHU	05	WING
1912002 10.0N 120.5E 30 10.0N 12	(6.9E 30 43		12.UN 123.96 13.58 122.56		40 5 130 5	-						
JATHONS TI+3N TS2+2E 30 11+1N TS	5.9E 30 33		12.20 155.35	35	150 5				•			
2000002 11.5N 124.02 30 12.1N 12	15+1E 25 40		13.5N 122.7L		126 -5					:=		
2016002 11-4N 124-1E 30 11-0N 12	18 vt 36.53		12.7N 118.3L		230 10							
2012002 11+4N 123+02 30 11+7N 12	23.35 Ju 25		12.48 114.75 11.68 117.95	40 40	111 10 158 10							
					100 5	-				•-		
ZIVOUUL LIOAN LECODE SO 1100N LE		, v			182 5	•	•				_	
2112002 11.4N 122.0E 30 11.0H 12 2112002 11.4N 121.4E 30 11.0N 12	21.35 30 4	Ŭ	11.50 118.9E	35	156 -10			== ==				
STINUT TION ISAOE 30 TION TO			11+6N 120+4E	30	136 -10							
					81 -5							
221.0002 11.00 120.06 35 11.00 12 221.0002 11.90 117.44 35 11.00 11	20.35.30 14 19.65.30 2:		11.6N 117.3L	40 40	109 -5							
		-	13.05 117.0E	55 50	40 g	1:4N	14.01 55	155 0	13:5: 111:5	55	183	25
2212002 12:50 118:3E 40 12:00 1	19.41 40 40 18.81 40 3	i v	13.2N 116.3E	50	55 0	12.4N 1	113.05 45	192 0	12.94 110496	0	.4.1.7	1.5
2300002 12.9N 111.1E 45 13.1N 11	17.JE 40 20	D	13.8N 114.2E	50	B0 0	14.3N 1	110.YE 45	124 0	14. LA 107.78	2 20	304	-5
		4 - Þ	13:20 114:3E	÷U	128 -18	<u> </u>	110.1E 35	191 9	=:: =::::	::		
2312002 13.20 114.3E 45 13.40 1 2312002 13.60 110.7E 50 13.40 1		3 ⇒lu						150 5				
2318002 14+1N 110+1E. 50 13+0N 11	16.Jt 4v 2	L -1V	(4.0N 113.8E	35	66 -10	1 14.EN 1	111.or 35	128 10			-	•••
2400002 14000 115035 50 14050 1	15.4£ 45	- - >	15.61 112.2E	55	118 2	17:3N 1	109.JE 45	174 20 274 30	==== ====			
2400002 14.6N 115.3E 50 14.5N 12 2400002 15.2N 114.5E 50 15.2N 1	15.42 45 1 14.22 5V 1) V						274 30	• •			
2412002 13+7N 113+0E 50 15+0N 11 2412002 13+9N 113+1E 45 10+2N 11	13.32 50 10 13.32 50 2	5 4	16.98 110.12 18.48 110.42	60 60	116 30 124 39							
2500002 10.2N 112.0E 45 10.4N 1.		5 14	18.9V 103.0F		162 19							
2512002 18:4N 112:4E 35 19:8N 1	11.76 45 4 11.56 45 5		18.7N 108.1L	30	231 10		:			==		
							,					
			• •			-						
2000002 11:20 111.9E 25 11.20 1 2005002 11:00 112:0E 20 11:40 1	High 25 L	5		==			===;= ==	== ==		-==		11
SOCONT THOM TISANE SO TISAN T						•						

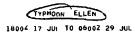
. .

TYPHOON ANITA 18004 5 JUI TO 18002 8 JUL

BEST TRAC		IN ING	24 HOUR FOR	and the second	48 HOUR FORECAST	72 ILOL R FCHECASI	
POSIT WI	INN POSIT .	IND TAST WIND	POSIT WIND	DSA HIND	FOSTT WIND UST	WIND POSIT WIND LITTER	D
0518002 11+1N 112+4E	30 11.5N 112.0E	30 42 0	12.5N 109.7E 35	128 -25			
0600002 11.6N 112.4E		5 1	12.PN 109.2E 30	i 1]]	
8819883 12:3N 118:7E	89 13:3N 113:3E	50 19 -5	13.31 110.8E 60	104 -5	14:3N 108:4E 35 295	-18 === == == == == ==	
0618002 13+4N 111+7E	6n 13.3N 111.5E	55 13 -5	14.7N 109.7E 65	168 0	16.5N 107.8E 50 244	io	
0700002 14.5N 111.1E	60 14.3N 111.0E 65 15.8N 110.1E	60 13 S	16.8% 109.5E 70 20.7% 108.5E 45	129 -25	=:====		:
8718882 19:3N 188:2E	85 19:3N 188:8E	78 23 18	\$1:0N 108:8E 50	132 -25	== == = <u> </u> =		:
080n002 17.6N 107.4E	65 17.7N 107.7E	65 18 V				₋	
8899882 18:3N 188:3E 0814002 19+1N 104-5E	78 18:3N 188:3E 40 19:2N 104:5E	65 17 -5 50 6 10		===			

T	WARNING 24-HR 48-HR	35KTS	ALI FORECASTS WARNING 24-HR 40-HR 72-HR
AVERAGE FORECAST ERROR	22NH 157NH 240NH	ONM	22NM 157NM 240NM 0NM
AVERAGE HIGHT ANGLE. ERROR AVERAGE MAGNITUDE OF WIND ERROR	13NH 104NH 96NH 5KT5 14KTS 20KTS	ON# OKTS	1364 14404 900M ONA 5KTS 14KTS 20KTS OKTS
AVERAGE BIAS OF WIND ERROR NUMBER OF FORECASTS	1875 -11875 -13815	OKTS	18 15 -118 15 -13875 0KTS

06004 13 JUI TO 18002 19 JUL


BEST TRACK	HARNING ERRORS	24 HOUR FOHECAST	A8 HOUR FORECAST	72 HOLR FCHECASL
POSIT WIND POS 1306002 16.7N 125.9E 40 16.8N	TT WIND DET WIND		IND FOSTT WIND LOSTIN	
1312882 17:3N 125:2E 45 17:9N	11	28:51 133:3E 98 183	1 1	
1400002 18.5N 125.3E 60 18.5N		- 1	-35 24.1N 123-3E 90 104-	0 27.2N 122.6E 90 140 -25
1412002 19.1N 125.5E 76 18.5N 1 1412002 20.3N 125.4E 100 20.2N 1	125.4E 75 13 -10 125.4E 80 6 -20			
1500002 20.9N 125.7E 115 21.1N	125.3E 110 12 -5	24.0N 124.6E 135 33	35 26.7N 123.8E 130 92	15 29.5N 123.7E 115 134 30
1516882 22:38 125:3E 128 22:38 1 1518002 23:18 125:2E 105 23:28 1		25:11 134:12 135 87 - 26.nn 123.7E 100 98 -		
1600007 23.9N 125.7E 100 23.6N 1 1606007 24.6N 125.5E 115 24.6N 1 1612007 25.6N 125.7E 120 25.5N 1	25.7E 100 6-20	27.8N 124.7E 95 44 - 48.8N 126.2E 90 39 -	15 32.1N 126.0E 80 156	0 32.8N 123.2E 75 164 25
1618002 26.6N 125.4E 120 26.8N 1 1782882 28:9N 125:3E 115 28:8N 1	1 I			
1712002 30.2N 125.4E 105 29.2N 125.4E 100 30.2N		33:5N 135:9E 79 195		
1802002 32:3N 124:7E 95 32:8N		36.3N 126.2E 55 216		
1812882 33:1N 133:3E 83 34:2N 1	122:1E \$8 18 -5			
1900002 35.1N 122.0E 50 34.9N 1	120.8E 50 60 V	*-,- *,*	 ·	

r	TYPHOONS WHILE WIND OVER 35KTS	ALL FORECASTS
AVERAGE FORECAST ERROR	WARNING 24-HR 48-MR 72-HR 20NH 79NH 151NM 210NH	WARNING 24-HR 48-HR 72-HR 20NM 79NM 151NM 210NM
AVERAGE RIGHT ANGLE EAROR	17NH 65NH 123NM 171NH	1714 651 12304 17104
AVERAGE MAGNITUDE OF WIND ERHOR	8KTS 18KTS 20KIS 31KTS	8815 18815 20815 31815
AVERAGE BIAS OF WIND ERROR	-6KTS -)0KTS -10KIS -16KTS	-6KTS -10KTS -10KTS -16KTS
NUMBER OF FORECASTS	24 20 16 12	24 20 16 12

TYPHOON DOT 06002 14 JUI TO 06002 20 JUL

BEST TRACK	MARNING	24 HOUR FORECAST	48 HOUR FORECAST	72 HOUR PERECAST
0011 1200 26 36+411 N2+71 200604	POSIT WIND (TST WIND 17.3N 112.8E 30 103 -5	PCSIT WIND TTS #100	POSTT WIND DET RAND	ACSIT WEND TOST MINO
	13:1N 112:2E 38 28=18	28:28 113:2E 28 158 -28		
	17:5N 113.8E 40 13 -5 18.1N 113.4E 50 6 -5	18.2N 112.7E 50 82 -25 19.7N 112.5E 60 76 -20	20.1N 110.8E 55 267 -70 21.7N 111.2E 45 245 5	
	18:3N 113:3E 88 8 -5	£8:31 112:4E 85 183-38		
1600002 19.4N 113.4E 75 1 1606002 20.3N 113.7E 80 2		20.7N 112.5E 80 171 15 43.0N 113.3E 50 108 10		
1812883 21:8N 114:9E 85 8	1:8N 113:2E 99 28-18			=======================================
	22.6N 114.4E 50 18 -15 23.7N 115.1E 35 13 -5		······································	
	18:EN 127:9E 38 93 8	38:41 137:3E 45 793 88		
1912002 29.6N 127.3E 3n 2	9.8N 127.0E 30 20 0	-2.8k 127.3c 45 1131 20		
	00.0N 127.0E 40 61 10 32.6N 127.1E 35 25 10	···· ···· ·· ·· ··		
	04.7N 126.2E 25 8 0	*		

	TYPHOONS WHILE WI WARNING 24-HR	ND DVER 35KTS 48-48 72-48	ALL FORECASTS WARNING 24-HR 48-HR	72-HR
AVERAGE FORECAST ERROR	25NM 123NM 15NM 79NM		2555 13355 25658	8NH
AVERAGE MAGNITUDE OF WIND ERHOR Average bias of wind error Number of forecasts	6KTS 18KTS -4KTS -6KTS 19 11	AKIS OKTS - JKIS OKTS 2 0	AKTS JEKTS JKTS	OKIS OKIS

BEST TRACK	WARNING	24 HOUR FORECAST	S 48 HOUR FORECAST	72 HOLA PCRECAST
1718002 21.78 139.18 50 21.1	185139.1E TND 031 -180	22.205 137.96 MINB 051 1	D FOSIT WIND DST WIN	
	DN 138.8E 55 18 -10	26.1N 137.7E 75 99-2	5 29.2N 136+9E 80 70 15	32.34 136.4E 80 8 30 Z
1806007 22:5N 138:4E 79 22:0 1812007 23:5N 138:4E 79 22:0 1819007 23:5N 138:1E 85 23:0	IN I 38.0E 95 II -5 <t< td=""><td>R3: 7N 139:3E 75 113 =1 24.3N 136.8E 80 248</td><td>8 28:20 135:0E 75 188 20 0 26:00 135:7E 75 356 25</td><td>31.44 134.5E 75 103 30 3</td></t<>	R3: 7N 139:3E 75 113 =1 24.3N 136.8E 80 248	8 28:20 135:0E 75 188 20 0 26:00 135:7E 75 356 25	31.44 134.5E 75 103 30 3
1900002 24.5N 138.2E 100 24.4 1904002 25.7N 138.7E 105 26.0	IN 138.9E 100 12 -5	\$7.4N 137.7E 110 105 4	5 34:5N 136:1E 188 159 58	=======================================
1912007 26.9N 138.4E 90 26.7 1912007 28.2N 138.4E 80 28.3	I 138.3E 95 13 5 I 138.4E 95 6 13	32:4N 137:5E 88 58	s === == = \ ± =	
200n002 29.5N 138.2E 65 29.3	3N 138.3E 75 13 10		.0' }{	
	N 137:9E 49 13 -10 *N 136.4E 45 33 -5	36.8N 138.0E 35 287-1	: = = = = = =	
210n002 J2.2N 136.5E 5n 32.6 2106002 J2.2N 136.3E 45 32.0				
	N 131:18 30 17 0 IN 130.86 30 5 0	33.4N 127.8E 35 216 22.4N 127.9E 35 143 40.9N 126.9E 35 135	\$ == == = = = = = = = = = = =	
	EN 138:2E 38 29 8	18:3N 139:8E 3B 133	8 === == == == == ==	
2412802 31:3N 129:4E 38 31:4	BN 129.5E 30 8 0 AN 129.4E 30 8 0		· ···· ····· ·····	
2504002 31.7N 129.4E 25 32.0 2504002 32.2N 129.9E 20 32.3	UN 129.5E 25 19 U AN 129.5E 25 21 5		: :::: ::::::::::::::::::::::::::::::::	
2804002 32.5N 137.1E 45 32.0 2812002 33.3N 137.5E 35 33.3	6N 137.2E 40 8 -5	*		
2819002 34+1N 137-5E 25 34+0				
2900002 34+6N 137+2E 25 34+8	8N 137.5E 30 19 5	*		
AVENAGE FORECAST ERROR	TYPHOONS WHILE WIND WARNING 24-HR 48 17NH 135NH 201	0VER 35KTS -HR 72-HR WARI NM 55NM 1	ALL FORECASIS IING 24-HR 48-HH 72-HR NM 135NM 201NM 55NM	
AVERAGE HIGHT ANGLE ERROR AVERAGE MAGNITUDE OF WIND ERH	NOA 13NM 20NM 116	NU 53NM 12 KIS 30KTS	NH 90NH 116NH 53NH KTS 19KTS 25KTS 30KTS	
AVERAGE OF THE DEANT ERAOR	28KTS 14KTS 25	KIS BOKTS 2	KTS AKTS 25KTS 30KTS	

TYPHONN GEONGIA 06002 09 AUG TO 18002 12 AUG

	BEST	RACK		WAF	RNING				2 <u>4 H011</u> R	FORE	CAST			48 HOU	FORE	CAST			72 IHQUE	POREC	ASL	
	POSTI	WIND	POS	IL 1	TND	NOST!	08S NIND	PO	SIT	WIND '	tost	N IND	PO	Sti	WIND	DST	91ND	RO	SIT	N BND	D SH4	1893 D
8312882 0918002	19:9N 119:1	E 58	13:9N 19.5N	115.8E	35 50 60	18	-5 5	19.7N	113:9E	60 60 55	88 62	-15 -15	21.0N	103.5	50 40 35	137	- <u>3</u> 9	22.8N	106,30	25	279	-25
	19.5N 114.4					- 1 - 1			110.2E		. 1						-	,-	•••• /•)::
	13:3N 112:1					3Ĭ 21			188:9E										;-			
1186882	18:3N 111:2	E 78	18:1N	111:SE	65 65	7 3	:5	13:SN	188:4E	25	łś	-25	12	==::	=		:=	=;=	:::;:	=		=
111688ž	59:88 HH:	E 25	13:1N	111:3E	65 65	37	8	29:6N 21:1N	103 : 3E	40 40	157	ið	=;:	==::	=		::	=:=	;:	=	=	≍
138888 <u>3</u>	29:5N 111:1	E \$8	39:1N	111:1E	85	٦Į	12	₽:::	===:=	::	=:	=:	::::::::::::::::::::::::::::::::::::::	===;=		==	:=	=:;=	≈÷	==		::
121800Z	22:5N 118:	E 35	21.8N 22.5N	}} } ;₩	45 40	18	10	₽::		==	=:		=:;=	::::	==	::	Ξ	=:;=	:::;:	==	-	::
				i.			_		,													

T	YPHOONS	WHILE W	END OVE	R 35KTS
AVERAGE FORECAST EPROR AVERAGE RIGHT ANGLE ERROR	WARNING 17nm 12nm			
AVERAGE MAGNITUDE OF WIND ERROR AVERAGE BIAS OF WIND ERROR NUMBER OF FORECASTS	5KTS 1KTS 15	-15KIS -12KTS 11	-17KTS 7	-25KTS 1

.

ALL FORECASTS WARNING 24-HR 49-HR 72-HR 174M 144MH 255HH 275HH 120H 960HH 225HH 245HH 5KIS -5KIS 17KIS 25KIS 1KIS -72KIS 17KIS 25KIS 15 11 7 1

TYPHOON IRIS

	BEST	RACK		4	ARNING	-			24 HQUI					48 HOUH	FORE	_			72 HOUF	PORE	CAST	
	POSIT	WIND	PO	SIT	WIND	1051	WIND	PO	SIT		105R	NDND	PO	51T	WIND	TOST	UnS VIND	Ro:	SIT	MBND	105T	NUND
1006n02 21 1012002 22			21.6N		BE 30	19		25.3N	130.16	50	126	-5	26.18	127.25	80	285	1-5	27.84	123.3		.545	
1018n0Z 22			23.UN			13	5	26.2N	129.31	5 70	202	30	28.J3N	125.56		448	Ĭ0	29.6N	121,30	ES	.678	0
1110n02 23	•2N 130.F	E 55	23.4N	130.7	E 50	13	-5	26.1N	128.98	75	207	10	28.J3N	125.8E	85	436	5	29.GN	155406	85	.613	5 4
	:1N 131.1	E 55	23.8N	138:6	E 50	36	-15	26.5N	138:7	75	238	.5 -5	38:4N	125:8	80	254	:5	31.3N	137:20	75 8 u	1:388	15
1200007 23	-14 130-6		23-6N	130.6	F 55	1.2	-10	ZA. ON	120.36	75	162	-5	26. 7N	127.1E	80	297		28.8N	12456	- :e a	261	10
1202002 23						1 ° '	=18		131:3			-10		127:15		F8 3			133:58	-	1 895	-
1312883 33	:1N 131:4	E 75	33:9N	131:5	SE 78	13	-3	24:8N	138:8	30	115	.5 .5	58:3N	137:35	35	197	38	54:8N	134:55	188	- 34	35
1300002 23 1306002 23	.3N 131.7	'E 80	23.4N 23.2N	131.6	E 75		-5	24.9N	130.66	92	87 64	10	26.7N	129.0E 129.2E	. 95	86 127	25 15	29.4N	127.2	95 100	78	25
						25	0				1 7	30									1	35
1312882 23	-2N 132:	E 83	23.5N 24.0N	135:2	E 85	28	ð	26. ON	132:2	30	128	25	28. 6N	131:36	85	265	7 8	31.3N	138:1	80	333	35 1
140000Z 24	.8N 132.7	E 80	24.8N	132.2	E 85	0	5	7.4N	131.86	90	134	20	30.2N	131.26	80	263	Ì0	33.3N	130.20	-45	265	6
1495883 33	:# 191:1	'E 33	38:2N	132:1	E 85	33	1 8	28:8N	138:3	- 38	188		32:5N			387	8	33:3N	191:30	35	383	1ġ
141R002 27	•3N 130•3	E 65	27.6N	130.6	6E 80	24	15	32.4N	130.20	60	229	+15	36.7N	131.58	40	367	-10					
150n002 28	•1N 129.4	E 70	28.4N	129.9	DE 70	32	0	33.5N	158.00	\$ 5	198	-15	38.5N	13n.6E	35	313	-10					
15 \$\$88₹ 29	:9N 139:5	E 78	38:2N	128:2	£ \$3	13	\$ }8	3]:3N	135:8	35	38	-15	37:1N	13::58	: \$9	238	ş	:::;:	722 (C	==	1=	=
1518n02 29	•BN 126.4	E 75	29.7N	127.2	E 65	17	10	32.5N	124.16	\$ 5	91	5						,-				
160n002 30	.3N 126.1		30.2N			ľ	F 10		123.00		156	٥				1		*			[]	
188\$883 32	:2N 123:1	E 88	31:3N	135:4	£ 55	18	118	35:30	133:8	48	1323	10	-	==;=			:=		≕¢	=	E	=
161P00Z 33	•9N 124.P	E 50	33.3N	125.5	δ Ε 5 5	50	5	*-,-			يتت.											
170n002 35			35.0N	126.1	E 55	39	10												••••			
178\$883 33	3N 129:2	E 38	36.5N 38.2N	138:5	SE 38	3}	ış	- :::	222;2	==		::	==;=	===:=		==	:=			::	- 22	Ξ:

	TYPHOONS WI	H71 E WI 24-HR	AB-HR	125KTS	WARNING	LL FOR	CASTS	72-HR
AVERAGE FORECAST ERROR AVERAGE RIGHT ANGLE ERROR	24NH 16NH	97NM	265NM 153NM	169NM	245M	133NM	265MH	328NM 157NH
AVERAGE MAGNITUDE OF WIND ERROR AVERAGE DIAS OF WIND ERROR NUMBER OF FORECASTS	₽ĴŔŦŝ	19818 25	116 1 8 21	1 \$ KTS	29	19KIS 25	11KFS 21	1 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

00004 3 SEP TO 00002 7 SEP

BEST TRA		NING	24 HOUR FO	HECAST	48 HOUN FORE	CAST 7	E HOUR FORECAST
	IND POSTT	IND DET NIND	POSIT WIN			DST VIND POS	IT WIND DETWIND
8388883 18:2N 133:7E	68 19:3N 139:3E	55 (2 5 - 5	22:38 118:3E 7	3 126 38	38:3N 117:8E 35	369 38 ==:=	=== = =\= '
8318883 18:8N 178:8E	18 78:3N 113:8E	33 78 IB	f8:8k 117:8E J	1 1	\$6:EN 115:5E 35	138 148 23:4N	114:7E 35 334 -75
0400002 19.1N 119.4E	45 19.1N 119.0E	50 23 5	49.6N 116.6E 6	0 29 -5	20.EN 114.0E 65	102 _5 22.4N	112.16 35 234 -25 5
8406002 19.3N 118.7E 8412002 19.5N 118.1E 8418002 19.5N 118.1E 8418002 19.7N 117.2E	5n 19.4N 118.6E 50 19.6N 118.2E 55 19.9N 117.2E	45 8 -5 50 19 0 50 12 -5	60.2A 116.4E 6 21.5A 116.3E 6 21.1A 114.2E 7	0 81 -10 5 159 -10 0 88 -5	21.EN 113.92 65 23.4N 114.2E 45 22.EN 111.7E 45	157 0 23.4N 265 15 167 15	111.0E 30 312 -20 6
8500007 19.9N 115.2E	95 79:9N 114:9E	9% 30 -5	20:40 111:2E 8	5 15 <u>9</u> -30	21. EN 108. IL 45	9n <u>-</u> 5	=== = = = %
8518882 18:8N 113:1E	73 13:3N 113:3E	80 8 5	20:21 119:9E 9	32 25		= = =:=	
8886682 28:3N 117:2E				8 183 - 18	==;= ==;= ==		=======================================
8812882 28:3N 118:3E	28 38:7N 188:8E	65 30 5		: :: ::		=======	
8706802 28:8N 108:3E	88 81:2N 189:1E	55 26 -5			=======================================	= = ==	

т	VPHOONS WARNING	HILE W	1NU 075	R 35KTS 72-HR	WARNING	ALL FOR	ECASTS	72-HR
AVERAGE FORECAST ERROR AVERAGE RIGHT ANGLE ERROR	21NM 14NM	104NM 71NM	225NM 180NM	294NM 173NM	21NM 14NM	104NM		294NM
AVERAGE MAGNITUDE OF WIND ERROR Average bias of wind error	6KTS 3KTS	16KTS	-17K S	23KTS -23KTS	6K 15 3K 15	IEKTS	_1/KTS	-23K15
NUMBER OF FORECASTS	18	14	9	3	18	14	¥	Э

00004 12 SEP TO 18002 14 SEP

BEST TRA	CK <u>WARNIN</u>	6	24 HOUR FOR	ECAST	48 HOUR FORECAS	5T 7 <u>2 iH</u> C	UR FORECAST
POSTT W	IND POSIT WIND	ERRORS	POSIT WIN	ERROAS	FOSTT WIND TOS	BRORS STATND POSIT	WIND TUST WIND
1288882 17:3N 118:2E	39 17:9N 118:3E 38	28 -5	17:3N 115:3E 5	\$7 :15	19:8N 111:6L 65 15	••]	: =\= :::
1318883 18:3N 113:3E	\$5 18:3N 113:8E \$5	8 8	20:3N 117:3E 7	1 173 -18	32:68 188:2E 28 39	<u>12 - 75 </u>	= =)= = 32
1300002 18.6N 114.7F	60 18.8N 114.7E 60	12 0	20.AN 110.8E 70	111 10			5
1312882 18:8N 113:4E 1318002 19-0N 111-0E	75 18.9N 113.5E 80 19.0N 112.4E 80 19.0N 111.1E	8 - 19 6 5	20.3N 108.3E 50		### = E		
140000Z 19.2N 109.8E 140600Z 19.4N 108.8E	60 19.4N 109.5E 65 40 19.3N 108.2E 55	21 5 34 15			<u> </u>		
1417882 13:7N 183:9E	59 20:0N 107:8E 35	33 8		: :: ::			: :: :: ::

ł

т	VPHOONS WHI WARNING 2	ILE WIND OV 24-HR 48-H	ER 35KTS R 72-HR	WARNING AL	L FORECASTS 24-HR 48-HR	72-HR
AVERAGE FORECAST ERROR AVERAGE RIGHT ANGLE ERROR AVERAGE MAGNITUDE OF WIND ERROR		7NN 224NM 7NN 166NM 11KTS 22K]			77NK 224NH 67NH 166NH 11KTS 22KTS	DNM DNM OKIS
AVERAGE BIAS OF WIND ERROR	2KTS -	3KTS -5K]	S 0KTS	2KTS	-3KTS -5KTS	OKTS

00004 2 0CT TO USOUL 10 OCT

BEST TRACK	WARNING	ORS	24 HOUR FORE	AST	48 HOUR FOR	ERROES	TE HOUR FORECASI
POSIT WIND	POSTT WIND DST	VIND	POSIT WIND	CST NIND	FOSIT WIND		POSIT WIND LST WIND
0200002 11.4N 135.3F 30 0206002 11.4N 134.6E 30	11.4N 135.3E 30 0 11.7N 134.7E 30 19	ů i	12.4N 132.7E 50 13.1N 131.5E 50	99 0 143 -5			
8318882 11:1N 133:TE :	11:SN 133:8E \$5 15	3	13:61 133:8E 78	181 18	13:7N 126:2E 85	381 18 13	Th 123:0E 188 3312.25
8382887 11:2N 133:4E 59	11:3N 133:5E 38 13		11:3N 131:5E 70	17 8	11.3N 127.05 85 11.5N 127.05 85	4 4 -	81 124:2E 53 224-95
		1	11.31 139:08 75	161 5	11:5N 127:3E 89	1 1	in 131:98 98 138 46
	11.1N 131.2E 75 34	1	11.4N 127.4E 100	227 10	11.9N 123.2E 70		7N 115.0E 60 347 -40
8419882 12:20 131:35 79 0418002 13:00 131.35 80	12:2N 131:5E 75 33		13:48 129:8E 100 13:48 129:8E 90 13:68 128.9E 95	126 -10 51 -35 56 -50	13:20 126:5E 100		81 123 28 90 202 178 91 120 96 65 202 - 75
0500002 13+4N 130+7E 90	13.4N 130.6E 80 6	10 3	13.5N 127.6E 100	72 -60	13.EN 123.VE 90	121 -30 14.	IN 119,56 65 308-75
0506002 13.8N 130.1E 110 0512002 14.2N 129.5E 129 0518002 14.5N 128.6E 145	13:2N 128:9E 135 13	-5	15:51 129:7E 125	17 -25 128 -15 88 -10	14.7N 122.2L 120 16.EN 124.7L 115 17.4N 122.7L 115		an 118-18 75 3055 75 an 121:18 65 1355 75 an 119-68 65 113,610
0600002 14.7N 127.7E 160			15.8N 124.3E 145	13 25	16.5N 120.JE 90		7h 116-8E 90 2471720
0606002 14.8N 126.5E 150 0612002 14.8N 125.4E 150 0612002 15.1N 125.4E 150	14-9N 127-2E 155 40	3	5.2h 123.5E 140 5.4h 121.7E 120 5.3h 120.2E 90	66 25 126 10 208 - 10	15.EN 119.55 90 16.2N 117.9E 80 15.EN 116.4E 90	241 10 16. 287 15 16	2A 116.1E 54 365/220 A 114.5E 34 406/220 3A 112.3E 55 5082330
0700002 15.6N 124.2E 120 0706002 16.3N 123.6E 115		20 20	17.4N 121.4E 110 17.8N 120.8E 70	85 20 104 -10	19.5N 118./L 80 20.1N 118.1L 80	96 ï0 22. 110 10 23.	SN 116.5E 90 1373425 ON 116.0E 85 1617245
8712002 12:18 133:5E 100	17:2N 122:8E 125 8	13	29:88 131:9E 188	130 25	25 ON 123 CE 85	317 15	: ==;: =: \ == ≵ ::
080000Z 18+8N 121+7E 90	18.7N 121.8E 95 8	5 1	21.1N 120.0E 80	25 10	23.3N 118.01 70	47 5	
8819882 28:5N 120:7E 99	28:5N 128:3E 75 13 20:8N 120:0E 65 26	15 10	23:28 117:28 80 23:08 117:48 45	141 -18 141 -18 88 -21	23.6N 114.2E 35	² 13 =5 ==	
0900002 20+8N 119+7E 70	20.8N 119.8E 70 6	0	¥1.9N 118.8E 75	127 10			
8895887 21:1N 118:2F 79	31:2N 118:3E 75 46		22.7N 118.0E 65	150 25			
		5	• • •				
1000002 24.0N 118.4E 65 1006002 25.2N 117.7E 40		10					· ·····
	TYPHOONS WHILE	IND O	VER 35KTS		ALL FORECASIS		

	TIPHOUNS WHILE WIND GREW SOULS				
AVERAGE FORECAST ERROR	WARNING	104NM	48-HR 192NM	267NM	WARNING
AVERAGE HIGHT ANGLE ERROR AVERAGE MAGNITUDE OF WIND ENHOR	10NN 7KTS	77NM	156NM 20K15	218NM 38KTS	10NH 7KTS
AVERAGE BIAS OF WIND ERROR NUMBER OF FORECASTS	3KTS 34	-1KTS 30	-9K !S	-22KTS	ЗКТS 34

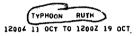
.

ALL FORECASIS

<	TYPHONN	OPAL	
	4 OCT TO		• ٥٥

BEST TRACK	WARNING	24 HOUR FORECAST	48 HOUR FORECAST	72 HOLR FCHECAST
POSIT WIND 8212882 11:58 113:28 29	POSIT WIND PSTININ 11:5N 113:8E 39 78-18		FOSIT WIND DET WIND	POSIT WANT STATE
	11	11	14:2N 107:1E 35 232 -35 16:2N 107:1E 35 291 -40	
8582882 12:3N 113:4E \$5 8512882 12:8N 112:7E \$8			and the second sec	
	13.1N 112.0E 79 38 8	13.51 111.3E 85 48 19	14.6N 108.9E 65 18 20	
0612002 13+6N 113-0E 70	13.0N 111.7E 75 76 5 14.1N 112.7E 75 13 5	45.3h 110.7E 90 60 2n 45.3h 111.7E 80 125 20		
0706002 14+3N 111-1E 75	14.3N 112.4E 75 41 0 14.2N 110.7E 75 24 0	15. Ph 110.4E 80 125 35		
	14:2N 119:3E 75 78 13	7 272 722 52 72 72 72 72		
0800002 14+3N 108+9E 45	14+2N 109+4E 65 30 20	*-,,		

1	TYPHOONS #	HTLE W1	INU OVER	35KTS	ALL FORECASTS					
AVEPAGE FORECAST ERROR AVERAGE RIGHT ANGLF ERROR AVERAGE MAGNITUDE OF WIND ERHOR AVERAGE WIAS OF WIND ERROR	WARNING 2600 1200 5KTS 1KTS	62NH	19984R 8984 2761S -1161S	72-HR 0NM 0NM 0KTS 0KTS	WARNING 265M 125M 125M 554TS 187S	82NM VZKTS	177NHR 89NM 27KTS -11KTS	72-HH ONM ONM ONM OKTS OKTS		
NUMBER OF FORECASTS	15	11	5	0	15	11	5	0		


TYPHOON PATSY 06007 6 OCT TO 06002 15 OCT

.

.

BEST TRACK	WARNING	24 HOUR FORECAST	48 HOUR FORECAST	72 HOUR PORECAST
POSIT WIND P 0606002 12+9N 142+1E 30 13+2	OSIT WIND DETINING	POSIT WIND DET WIND	FOSIT WIND 057 WIND 15.3N 137.0E 55 74 -10	16.94 135.2E 55 98 -30
0612002 12.9N 141.9E 30 13.0 0614002 12.9N 141.7E 30 13.1	N 142.6E 35 41 5	13.6h 140.8E 45 126 -10	14:2N 139:7E 55 174 -15	19:4h 139:3E 65 150 -45 3
0706002 13.4N 140.8E 45 13.0 0712002 13.8N 140.4E 55 13.5	N 141.2E 40 13 5 N 140.7E 50 25 5 N 140.2E 55 21 0 N 139.6E 55 8 0	14.1N 139.5E 60 41 0 13.5N 138.5E 70 45 5 45.0N 138.2E 70 50 0 46.1N 137.3E 70 87 -5	15.3N 137.4E 70 87 - T0 13.9N 136.4E 75 109 - 30 16.4N 136.3E 75 159 - 35 17.8N 134.4E 75 155 - 50	16.4h 135.2E 75 203 -65 4 14.8h 132.3E 80 129 -66 C 18.bh 134.0E 80 281 -66 C 19.2h 131.0E 80 282 -28 -7
0800002 14.1N 138.8E 60 14.1 0806002 14.5N 138.2E 95 14.7 0812002 14.5N 138.2E 95 14.7 0818002 14.7N 136.4E 75 15.0		45.5N 135.5E 85 33 5 45.4N 135.2E 85 128 -29 46.6N 135.1E 90 142 -35	16.8N 132.3E 95 64 - 5 16.7N 132.1E 90 251 - 50 18.2N 132.9E 90 251 - 50 18.2N 132.9E 95 288 - 10	18.4h 129.1E 100 163 5 2 18.4h 138.4E 188 398 15 7 19.4h 138.4E 188 398 15 7 19.4h 130.1E 100 382 49 11
0900002 15.1N 135.9E 80 15.2 0906002 15.3N 134.8E 95 15.2 0912002 15.5N 133.7E 110 15.6 0912002 15.5N 133.7E 125 15.7	N 133:9E 88 13 25	16.4h 132.5E 90 55 -50 16.4h 132.4E 110 70 -36 77.3h 130.2E 110 71 -10 17.0h 129.3E 110 71 5	17.6N 130.2E 100 204 5 18.0N 139.3E 100 214 5 18.0N 129.3E 100 219 5 18.7N 127.9E 110 194 50	18.9A 128.0E 195 312 50 12 19.3A 128.9E 190 412 98 13.14 20.3A 138.9E 190 412 98 13.14
100n002 15.9N 131.7E 14n 15.9 1004002 16.2N 130.4E 14n 16.2 1012002 16.4N 129.4E 12n 16.5 1012002 16.4N 129.4E 12n 16.5	N 139:5E 135 8 15	17.4N 128.1E 160 85 65 18.2N 126.8E 160 03 80 18.4N 125.3E 120 74 45 18.3N 123.5E 120 13 60	19.5N 125.6E 145 183 185 20.0N 123.5E 145 181 175 20.6N 123.7E 145 266 85	23.5h 119.6E 90 552 66 14 23.5h 119.6E 90 552 66 14 23.5h 117.9E 90 539 55 14
	IN 128:8E 138 19 28 IN 123:4E 88 19 18	18:31 131:3E 98 78 78 18:21 118:1E 65 13 40	24:11 114:8E 18 257 38	26:34 115:5E 25 631 5 6 1
1206002 18.7N 120.6E 3n 19.4	N 122.8E 45 18 5 N 120.9E 35 45 5 N 119.0E 25 57 0	·····	24 eN 117.7E 25 629 5	
1312002 17.5N 112.1E 4n 17.5	N 112.0E 30 6 -10 N 109.6E 30 82 -5	·*************************************	······································	

	TYPHOONS WHILE WIND OVER 35KTS			35KTS	ALL FORECASTS						
AVERAGE FORECAST ERROR AVERAGE KIGHT ANGLF ERROR AVERAGE MAGNITUDGING MANDERROR NUMARR OF FORECASTS	WABNING 14NN 2815 29	37NM	122NM	318nHR 170NH 42KTS 17	WABNING 146 M 8KTS 29	37NM		170NH			

BEST TRACK	WARNING.	24 HOUR FORECAST	48 HOUR FORECAST	72 HOUR PORECASI
POSIT WIND POSI	T WIND DET WIND	POSIT WIND DET WIND	POSTT WIND DST WIND	ACSIT WAND DETINING
1112882 12:2N 138:5E 32 12:3N 1	38:3E 28 38 3	13:11 133:8E 85 1133 18	12:58 137:1E 78 172 18	18:31 128:1E 88 783 76 2
1200002 13.0N 137.8E 40 12.7N 1		14.2h 133.6E 65 94 10	15.9N 130-3E 80 162 30	17.46 186.7E 90 206 24 3
1319883 13:3N 134:3E 28 13:2N 1	38:8E \$5 28 B	13:31:131:2E 88 148 8	17:2N 121:2E 98 298 98	19:31 19:35 88 39:551 10:54
1218002 13-1N 133-6E 50 13-6N 1	34.0E 45 38 -5	15.0N 129.6E 55 79 0	16.2N 126.0E 65 110 0	16.8h 122.7E 75 142 20 6.
1300002 12.9N 132.7E 55 13.0N 1		13.7N 126.9E 65 83 15	15.5N 123.2E 75 97 5	17.4h 119.7E 55 98 -# 7
1399882 13:3N 138:2E 82 12:8N	38:3E 78 33 18	13:12 139:88 88 171 35	14:3N 123:1E 38 151 TS	15:31 125:5E 88 113 75 8
1318002 13.7N 129.4E 55 13.5N	30.0E 65 37 10	45.NN 126.4E 75 5B 1N	16.0N 123./E 85 190 35	16.9h 120.3E 55 263 -14 14
1400002 14.0N 128.3E 50 14.2N	28.5E 65 17 15	46.3N 124.4E 80 102 10	17.2N 120.5E 50 116 -To	18.10 116.8E 65 152 -14 11
1285882 12:3N 122:4E 25 12:3N	27:4E 85 18 19	19:18 133:4E 88 33 -39	13:2N 118:5E \$8 182 =75	18:41 112:5E \$8 1271-35 '5
1418002 14.4N 125.6E 65 14.4N	25.4E 65 12 0	15.2N 121.4E 55 71 5	15.7N 117.JE 55 109 -15	16.9N 113.4E 60 103 -30 14
1500002 14.6N 124.6E 70 14.4N	24.7E 65 13 -5	4.9N 120.7E 50 115 -10	14.9N 116.0E 55 174 -25	15.6N 112.7E 60 141 -30 15
1506002 14.9N 123.2E 80 14.9N 1 1512002 15.5N 122.1E 85 15.4N 1		15.4N 118.8E 50 71-14 16.4N 118.1E 55 69-10	15.EN 114./E 60 100 -25 17.J9N 114.JE 65 132 -25	17.0h 110.7E 65 46 20 16 20.0h 110.9E 65 125 10 10
1514002 15.9N 120.4E 50 16.0N 1		17.2N 116.0E 65 34 -5	18 EN 112.66 65 122-25	20.8N 109.6E 50 107
1600002 15.9N 119.0E 60 15.8N	19.1E 65 8 5	46.2N 115.9E 75 88 -5	17.2N 117.2E 80 74 -TO	18-0N 108-0E .70 116 20 14
1606007 16.3N 118.9E 65 16.2N 1 1612007 16.4N 116.9E 65 16.7N 1	17:05 70 19 5	17.16 113.8E 90 34 .5 18.06 113.0E 80 82 -10	17-8N 110-14 75 13-10	18:31 109:3E 50 128 12 2
161800Z 16.7N 115.7E 70 16.7N 1	16.0E 70 17 0	17.6N 112.1E 80 46-10	18.5N 108.5E 65 46 10	19.8h 105.0E 50 128 24
170000Z 16.8N 114.5E BO 16.8N 1	14.5E 75 0 -5	17.8N 110.0E 70 63-20	18.0N 105.0E 40 186-TO	
	13:28 75 8 19	17:88 189:3E 98 173 -25	17.4N 104.8E 20 260 -25	
1712002 10-8N 112-4E 90 10-5N 1 1712002 17-0N 111-6E 90 16-9N 1		16.9N 107.3E 70 163 15		
180000Z 17.2N 110.9E 90 17.2N	10.8E 85 6 -5	17.8N 107.2E 70 143 20		
	18:3E 98 13 =3	20:41 109:3E 89 23 35		
1812002 18.3N 109.4E 74 18.5N 1 1818002 19.1N 109.0E 55 19.2N 1		40.8K 107.6E 55 30		
1900002 19-9N 108-4E 50 19-4N		*		
1916802 21:3N 107:3E 25 22:1N	107:4E 35 38 10			

.

•

	TYPHOONS W	HTIE W	IND OVE	8 35KTS		LL FORE	CASTS	
	WARNING	24-HR	48-hR	72-HR	WARNING	24-HR	40-HH	72-HR
AVERAGE LONECAST ERROR	19NH	BANM	126NH	163NM	19NM	84N#	126NH	163NH
AVERAGE RIGHT ANGLE ERROR	12NH	51NH	78NH	90NM	12NM	51N#	78NH	90NH
AVERAGE MAGNITUDE OF WIND ERHOR	7KTS	13KTS	16K S	19KTS	7KTS	13KTS	16KTS	19KTS
AVERAGE BIAS OF WIND ERROR	3KTS	2KTS	-3K 15	-0KTS	ЭкТ5	-2KTS	-3KTS	-0KTS
NUMMER OF FORECASTS	33	29	24	21	33	29		21

SUMMARY OF TROPICAL CYCLONES IN THE CENTRAL NORTH PACIFIC

1. GENERAL RESUME

Fleet Weather Central, Pearl Harbor, issued warnings on two tropical cyclones in 1973 for the Central Pacific as shown in Table A-1. Warnings were coordinated with the Central Pacific Hurricane Center, Honolulu, and the Eastern Pacific Hurricane Center, San Francisco, in accordance with the National Hurricane Operations Plan.

TABLE A-1. COMPARISON OF CENTRAL PACIFIC ANNUAL WARNING AND CLIMATOLOGY DATA								
	<u>1969</u>	<u>1970</u>	<u>1971</u>	<u>1972</u>	1973			
TOTAL NUMBER OF WARNINGS	0	27	19	76	43			
CALENDAR DAYS OF WARNING	0	8	8	21	13			
TROPICAL DEPRESSIONS	0	1	1	0	1			
TROPICAL STORMS	0	. 1	1	3	0			
HURRICANES	0	1	1	1	1			
TOTAL	0	3	3	4	2			

2. INDIVIDUAL CASES¹

Two tropical cyclones entered the Central Pacific from the east during 1973. Both Doreen and Katherine were fully devel-oped hurricanes in the Eastern North Paci-fic before crossing 140°W longitude. Only Doreen was still of hurricane intensity upon entering the Central North Pacific.

Doreen, the first hurricane of the year to invade the Central North Pacific, was first located on 16 July by weather satel-lite near 10°N 101°W over the warm waters off Panama. Throughout her life cycle, Doreen followed a path strikingly similar to that of Hurricane Celeste of August 1972.

The small storm rapidly intensified to hurricane strength as she moved westnorthwestward toward Hawaii. On the ninth day after detection, about 800 miles southeast of Hawaii, Doreen weakened to a tropical storm, turned to the southwest, and decelerated.

On the afternoon of the 27th, the 144-foot Greek ship, CORNELIA, sailed into the storm's path and sent out an emergency call for help when it lost its rudder while being lashed by 50 kt winds and 35-foot waves. A sea level pressure of 971mb was

reported. The ship managed to clear the storm and continued to Panama after deciding not to return to Honolulu with Coast Guard assistance.

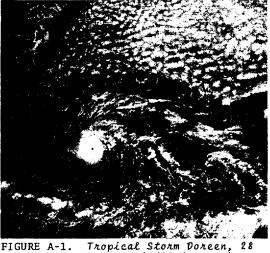
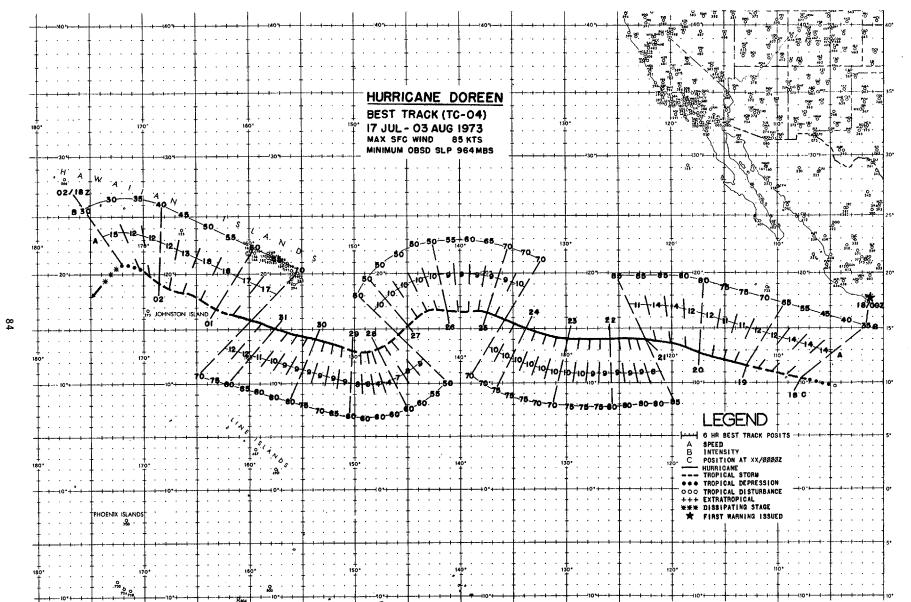
After the slowdown, Doreen accelerated toward the westnorthwest attaining 85kt winds near her center. She passed 300 miles southsouthwest of South Point, Hawaii on the afternoon of the 30th.

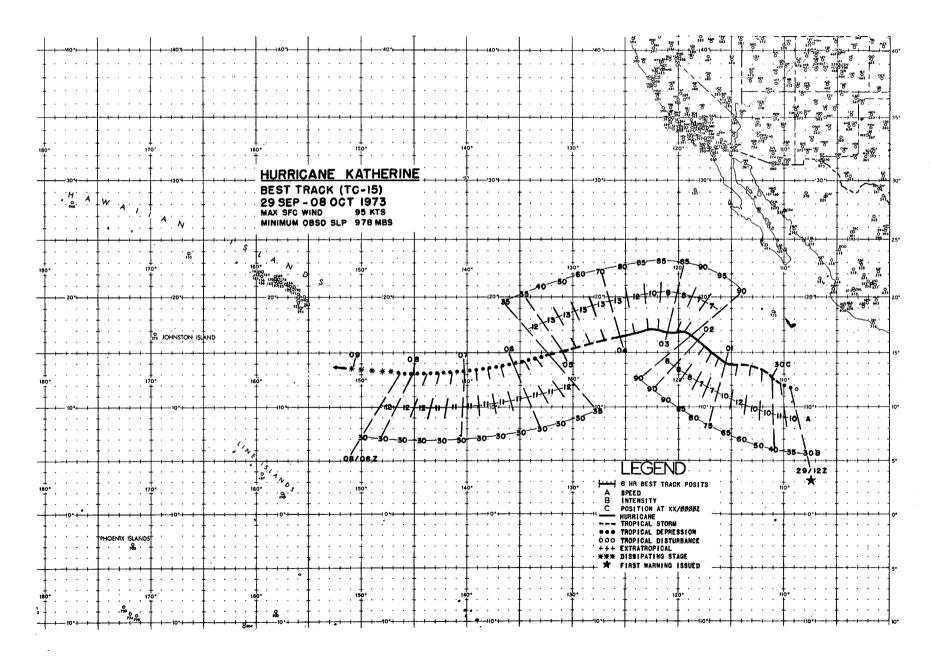
On the afternoon of the 29th, nine-foot ocean swells and three and a half foot surf generated by Doreen were observed at Kapoho, the easternmost town on the island of Hawaii.

On the afternoon of 1 August, a weak Doreen passed 100 miles north of Johnston Island. Doreen dissipated under an upper trough two days later as she crossed the International Date Line. No damage was in-curred at Hawaii or Johnston Island.

Beginning as a weak cloud circulation seen by weather satellite on 28 September, Katherine, the second and last Central North Pacific storm of 1973, developed over the warm waters off Panama in the same area as Doreen. However, Katherine did not fol-low the same path. She moved towards the northwest, intensifying to hurricane strength on 1 October, but then curved to the southwest between 120 and 125°E longitude.

Weakening to tropical storm strength, Katherine turned to the southwest on the 3rd. By the 6th, she began to follow a more westerly course near 13°N 130°W, dissipating a few days later 600 miles eastsouth-east of the island of Hawaii under a cold upper trough.


FIGURE A-1. July 1973, 2149 GMT. (DMSP imagery)

¹Report submitted by Meteorologist in Charge, NWS Forecast Office, Honolulu, Hawaii.

*

3. HURRICANE TRACKS

HURRICANE DOREEN FIX POSITIONS FOR CYCLONE NO. 4 06002 18 JUL TO 00002 03 AUG

FIX			FIX	ACCH	RY F1	¢ FL	MAX I LVI	UPS L VII	ND	MAX SFC	08: # [Ni	ŝ	085 M18	MIN 700MB	Ľ	,T	EYL	ORIEN-	£γE	FOSIT OF	MSN
NO.	TIME	POSIT	CAT	NAV-M	MET LV	DIR	VE.	RAG	RNG	VEL B	KG I	≺NG	SLP	HGT	11/	10	FORM	TATION	01A	FADAR	NNBH
i	1710592	10.MN 125.0E	SAT						NUN	AG .	PP										
3	1912533	12:20 116:38	SAT						NÚN	DA DA	FF										
\$	201/377	14:0N 121:2E	SAT	10	5 70	9 0	102	360	10 NUN	120 J	ββ	30	972	282	15	8	CINC		20		۱
ş	3928243	4:08 121:5E	SAI	15	5 70	5 10	95	330	3 0 NUN	60 3 UA	28	45	968	283	17	7	CINC		23		\$
В 9	211905Z 221741Z	14.1N 125.2E	P Sat	5	5 70	5 50	90	310	18 1400	80 3 DA		318	968	281	10	У	ELIP	Sc-Nw	15x -5		•
I	231007Z	14.4N 131.8E 14.4N 133.8E	SAT	(1 *	4.5/4.5	/00.5	/25HI	R\$)	PCN NUN	1 DA	нр НР										
12	2417372 2417372	15.7N 135.5E 15.7N 135.5E	JAC JAT						NÜN NÜN												
15	2421067 2509387 2518302	15.AN 137.0E 16.7N 134.9E 16.6N 140.2E	SAT SAT SAT		4.5/4.5 3.5/4.5		/ ні /25ні		PCN PCN NUN	1 DA	PP .										
17 18	2518307 2607232	16.6N 140.2E 16.4N 143.2E	SAT SAT	(13	3.5/4.5	/#1+0	/25HI	R\$)	NÚN PCN												
20	2622182	13:4N 144:8E	SAT	112	2 5/2 5	181.0	/25H	RS) RS)	NUN PCN	1 DA	Ë										
21	2718517	14.2N 146.2E	SAT	(T 4	+.0/4.0	/00.5	/23HF	RS)	PCN NÚN	1 DA DA	5										
23	2817332	13:48 153:4E	SAI	5 ^{(T#}	20/4+0	/ ^S 350	∕zş₩	₽\$60	NON 12	80 ^{0A}	50 50	8	967	280	10	10	CIRC		12		6
25	291824Z	13:30 188:3E	SAT	10(14	20/470	/5 +0	2報	RS1 300	12	85 ^{0A}	PP 90	3	962	278	2.	11	CIRC		10		e
27	3013147 3023002	14.4N 156.4E	SAT	(]4	::::::::::::::::::::::::::::::::::::::	浩1.0	/25H6 /24HF	RS) RS)	NUN PCN	AO AU L	FP FP										
30	311136Z 3120457	15.4N 160.0E	SAT	10	5 70	180	70	90	PCN 4	165 ^{DA}	99 90	6	994	301	10	9	CIRC		:20		4
3) 32 33	8121883	14:28 169:0E 20:38 172,5E	sat	(12	2.0/3.0 2.0/2.0		/24HI /23HI		PCN NUN NUN	0A											

.

A.

HURRICANE NATHERINE FIX POSITIONS FOR CYCLONE NO. 15 ACOUZ JO SEP TO THOUZ UB UCT

					NAX OBS		MAX 085	i i	085	MIN	rLT				FOS11	
FIX NO.	TIME	POSIT	LAT NAV-MET	FIX FL LV: DIF	T LVL WIN VEI BAG	D S R⊳G VE	FC WIND) ING	#IN SLP	700MB HGT	τίντο	EYE Form	ORIEN-	EYE DIA	FADAR	MSW NMBP
į	2915592 3000432	12.0N 110.2E 13.MN 113.0E	SAT SAT			NÛN PCN 1	DAPP									
3 4 5	3010537 3019457 3019487	13.4N 114.4E 14.0N 115.5E 14.1N 114.HE	SAT 174.5.	/4.5 /D0.5 70n 340	70 330	NUN PCN 1 ≜0 4	DAPP DAPP 0 330	20	978	290	14 12	CIRC		20		,
\$	8117533	15:28 117:28	SAT			PCN I NUN	DAPP									
ş	8217332	18:2N 128:3E	SAT (TS.n.	/5.5 /	/ HRS)	BEN F	DAPP									
10 11 12	0221037 0317072 0317377	16.44 120.5E 16.48 124.0E 16.48 124.6E	SAT (15.0. SAT SAT	/5+0 /.0+5	/ HRS)	PCN I PCN I NUN	DAPP DAPP DAPP									
13 14 15	0517367 0806067 0824597	14.1N 134.5E 13.5N 146.4E 13.5N 150.5E	- SAT (12.0.	/2.5 /W0.5 /2.0 /W0.5		NUN PCN I PCN I	DAPP DAPP DAPP									

HURRICANE DOREEN

18002 17 JUI TO 00002 3 AUG

BEST TRA	ICK W	ARNING	24 HOUR FO		48 HOUR FOR		72 HOUR FORE	CAST
POSIT + 1718002 10+1N 106+2W	VIND POSIT 30 9.0N 105.0	ERRORS WIND DST WIND W 30 97 4		ND DST WIND	POSIT WIND	ERRORS DST WIND	POSIT WINU	US WIND
1800002 10.3N 107.7W	35 18:5N 187.9				12:3N 114:3W 78	** 86 -5	13:8N 122:8W 75	 185 =18
1812002 10.6N 109.0W 1812002 10.9N 110.4W 1818002 11.2N 111.9W	45 11.1N 110.0 55 11.0N 111.3			5 63 -5 5 25 -1g	12.5N 117.5W 75 11.8N 120.0W 75 11.6N 121.6W 85	86 _5 114 -10 143 -10	13.0N 122.0W 75 12.2N 125.5W 75 11.8N 127.0W 85	105 -10 138 -5
1900007 11.6N 112.9W	65 11.6N 112.3		12.5N 117.0N 8		13.5N 127.0W 100	143 0 50 15	11.8N 127.0W 85	04 20 110 E
1906002 11.9N 114.0W 1912002 12.1N 115.1W	70 12.0N 113.5 75 12.2N 114.7	¥ 100 24 25	12.8N 118.0W 9 13.0N 119.3W 10	0 52 10 10 63 15	13.5N 123.0W 100 13.8N 124.0W 90	43 15 21 10	14.3N 128.0W 100 14.6N 128.7W BU	72 25 63 5
191800Z 12.5N 116.3W	75 12.6N 116.1		14.0N 121.4W 10		15.3N 124.0W 85		16.7N 131.8W 75	236 0
2000002 12.8N 117.5W 2006002 13.2N 118.4W	HO 13.0N 117.4 BO 13.2N 118.7		14.2N 122.7W 10		15.8N 127.5W 85		19:10 133:00 75	257 5
2012002 13-7N 121-6W	85 14:1N 121:3		14.7N 125-28 10		19:5N 139:3W 88	191 205 5	13:38 137:58 88	266 -19
2100002 14.1N 122.5W	85 14.5N 122.6	-	16.1N 127.5W 9		17.2N 135.5H 75	242 5 221 -39 233 -35	18.5N 137.5W 60 18.6N 137.5W 40 19.0N 139.0W 40	289 -15 242 -30
2112002 14.1N 124.2W 2118002 14.1N 125.1W	80 15.1N 124.9		15.0N 130.0W 6		17.5N 132.90 50 17.5N 134.00 40	233 -55 79 -15	19.0N 137.5W 40 19.0N 139.0W 40 15.5N 138.2W 30	226 -38 91 -40
2200007 14-0N 125-9W	80 14.6N 126.3		15.0N 130.6# 5		15.5N 135.5# 45	91	15.7N 139.7W 35	126 -35
2206002 14.0N 126.8W 2212002 14.0N 127.8W 2218002 14.0N 128.8W	75 14.5N 127.5 75 14.6N 128.5 75 14.8N 129.1	W 80 50 5 W 75 54 0 W 65 51 -10	14.7N 131.7H 5 14.8N 132.5H 5 15.3N 133.3W 5	0 39 -25 0 43 -25	15.0N 137.0M 40 15.5N 137.0M 40	68 -70 81 -70 55 -70	15.0N 141.5W 35 16.0N 141.5W 35	163 -30 162 -25 70 -20
2300002 14+1N 129-8W	70 15.2N 130.2	W 65 70 +5	16.4N 134.0W 5		17.6N 137.5W 50	78 -20	18.8N 141.7W 40	134 -10
2399887 12:3N 139:3N	78 15:3N 132:8		15:00 136:00 5		13:3N 123:34 28	392 =32	18:3N 122:3N 38	13 2 =38
2318002 14+7N 132+9W					15.0N 139.0W 40	121 -15	15.0N 142.5W 30	117 -20
2400007 15.0N 134.0W 2406007 15.4N 134.9W 2412007 15.7N 135.8W 2412007 15.7N 135.8W	75 14.9N 134.81 70 15.0N 134.51 70 15.0N 135.01 70 15.0N 135.01		14.9N 138.8W 6 15.0N 137.5W 6 15.0N 137.0W 6 16.6N.141.0W 4		14.9N 142.8W 55 15.0N 139.5W 60 15.0N 139.0W 60 17.0N 142.5W 40		14.9N 146.8W 45 15.0N 141.5W 60 15.0N 141.0W 60 17.0N 144.0W 35	100 -5 251 10 325 5 283 -26
2419002 16.0N 136.7W 2500802 16.3N 137.6W	70 15.8N 136.7		16.6N 141.0W 4		17.0N 145.3# 40	265 10 122 -10	17.0N 141.0W 35 17.0N 144.0W 35	
2515882 18:9N 138:3W	83 18:5N 138:8		19:3N 141:88 8		17:3N 145:5W 88	217 18	17:3N 151:7W 88	288 5 302 0 338 0
2518002 16.6N 140.7W	55 17.0N 140.1	W 55 26 0	18.5N 144.1W 4	0 156 -10	19.5N 147.8# 35	3665	20.8N 151.0W 30	479 -30
2600002 16.6N 141.2W 2606802 16.7N 142.3W 2612002 16.6N 143.3W	50 16+6N 141+10 50 16+8N 142-00 50 16+9N 143-60		17.7N 145.1W 4		18.7N 14R.8W 35 19.9N 140.2W 30 20.5N 150.7W 30	338 -j5 421 -30	20.0N 152.3W 30 22.0N 151.4W 20	433 -30 520 -45
2612007 16.6N 143.3W 2618002 15.9N 144.3W	50 16-9N 143-60 50 17-0N 144-50	50 18 0 50 25 0 45 67 -5	17.8N 145.9W 3 18.4N 147.2W 3 18.0N 148.6W 3	5 272 -20 5 286 -25	18.9N 149.2N 30 28.5N 159.4W 30 19.7N 152.4W 25	421 -10 474 -10 437 -15	23.5N 153.4U 25	539 -15
2708002 15-2N 145-1W	50 15.5N 145.2		15.5N 149.3W 4		16.3N 153.5W 35	270 -25	16.9N 157.6W 35	284 -45
2706007 14.4N 145.8X 2712002 13.9N 146.5W 2718002 13.4N 147.2W	50 15.5N 146.2H 55 14.1N 146.5H 60 13.7N 147.3H		15.8N 150.5W 4 13.4N 150.6W 4 13.3N 151.6W 4		16.5N 154.0W 35 14.3N 154.7W 35 13.3N 155.9W 40		17:1N 158.8W 35 15:4N 158.8W 35	297 -45 203 -45 201 -45
2800002 13.1N 147.9W 2806002 12.9N 148.3W	60 13.3N 148.0N 60 13.3N 149.0N	75 13 15	13.3N 152.2W 8		13.3N 156.3W 85 13.4N 157.4W 85		13.9N 160.5W 75 14.0N 161.5W 75	
2812007 12.49N 148.7W 2812007 12.48N 148.7W 2818007 12.9N 149.6W	60 12.7N 148.8N 60 12.5N 149.7N		13.3N 153.2W 8 12.5N 153.0W 8 12.5N 153.1W 8		13.4N 157.4W 85 12.8N 157.2W 85 12.7N 156.5W 85		14.0N 161.5W 75 13.5N 161.3W 75 13.3N 159.7W 85	192 -5 159 -5
290000Z 13.0N 150.3W	60 13.0N 150.3m		13.6N 153.7N 9		14.5N 157.0W 90		15.6N 160.2W 9u	185 36
2906002 13.3N 151.2W	65 13.1N 151.2M	90 12 25	13.7N 154.6W 9	0 30 10	14.8N 157.9# 90	6R 15	15.7N 151.2W 90	781 35
2012002 13:2N 152:2W 3000002 14:0N 153.7W	78 13:3N 152:5N BD 13:9N 153-2H		14:10 135:80 18		15:5N 157:8¥ 188	173 38	12:8N 129:3W 188	333 88
3006002 14.5N 155.6W	80 14.2N 154.0N 80 14.4N 155.8N		15.4N 157.1W 101 15.4N 157.1W 101 15.4N 159.8W 91		16.9N 159.9# 100 16.7N 160.2W 100 16.3N 169.6W 100		18.4N 163.5W 100 17.2N 163.3W 180 17.2N 167.8W 80	296 60 374 65 245 55
3014002 14+7N 156.6W	85 14.5N 156.8W	90 17 5	15.6N 160.9W 9	0 63 25	16.6N 164.9W 90		17.5N 169.0W 90	255 60
3100002 15.0N 157.8W 3106002 15.4N 158.9W	80 15.1N 157.8W 75 15.5N 158.9W		16.8N 162.1W 69		18.5N 166.3W 60 18.9N 167.4W 60 18.6N 168.6W 60		20.2N 170.6W 55	165 30
311800Z 15+8N 159+9W 311800Z 16+2N 161+8W	70 15.8N 160.1W 65 16.3N 161.4W		17.2N 164.3W 70 17.9N 166.2W 6		18.9N 167.4W 60 18.6N 168.6W 60 19.6N 171.0W 60	135 35 152 30 86 10	,,	
0100002 16+8N 163-7# 0106002 17+6N 164+7#	60 16.8N 163.1W 55 17.3N 164.6W	65 6 5 65 19 10	18.7N 169.1W 65 19.1N 170.6W 65	5 29 25 5 70 30	20.6N 175.2# 55	116 30		
8118882 18:3N 189:3W	79 17:3N 188:70		19:1N 172:88 50			÷ :		= =
0200002 19.0N 168.7W	40 18.7N 168.3W		20.7N 174.2W 30			•		
0206007 19.8N 169.6W 0212002 20.4N 170.5W 0218062 20.6N 172.1W	35 19.1N 169.7W 30 20.4N 170.6W 30 21.0N 172.0W	45 42 10 35 6 5 35 25 5				= =		
	25 19.6N 173.5W							
					• -•	-	•	-
AVEDARE FORECAST EDDO	WARN	NES WHILE WIND (ING 24-HR 48-	HR 35673	WARNING	ALL FORECASTS 24-HR 48-HR 7	2-HR		

AVERAGE FORECAST ERROR AVERAGE RIGHT AND FROR AVERAGE RIGHT AND FROR AVERAGE BIAS OF NIND ERROR	WARNING 24-HR 48-HR 72-HR JUNH 92NM 172NH 247NM JUNYS 16KYS 13KYS 12KYS INYS 16KYS 13KYS 12KYS 6KTS 1KTS 2KTS 16KYS	WARNING 24-HR 481-5K 30NH 92NH 169NH 246NH 210KTS 58NHS 95NHS 127NHS 6KTS 2KTS 15KTS 38KTS
AVERAGE BIAS OF NEND ERROR	68TS 18TS -28TS -68TS	66 62 57 52

HURRICANE KATHERINE

12007 29 SEP TU 10002 B OCT

BEST TRAC	K JARN	11 vG	24 HOUR FOR	CAST	48 HOUN FUR	CAST	72 HOUR FO	RECASI
POSIT WI		ERRORS	POSIT WIND	ERRORS	POSIT WIND	LRROPS DST WIND	POSIT WIN	ERRORS
2912002 11+8N 109+5W	30 11.7N 110.0W	30 30 V	13.4N 113.6W 30	33 -30		•• <u>-</u> -		
· · · ·		su 29 5	14.0N 113.98 60	47 -5	17.4N 116.0# 60	150 -30	21.2N 116.3W 5	
		45 42 5	15.0N 115.0W 65	61 -10	19.4N 114.5W 60	220 -30	23.0N 116.3W 6	
		38 17 -18	18:28 113:48 23	123 =29	28:9N 112:20 35	313 -15	22:7N 112:3W B	• - ••
3016002 13.9N 114.7W	65 13.9N 114.8W	00 6 -3	15.3N 119.5W 55	104 -35	16.5N 124.20 50	230 -40	16.8N 129.3W 4	5 292 -35
0100002 14.1N 115.5W	75 14.3N 116.0W An 14.6N 116.3W	70 ·31 -10	15.5N 120.74 75 15.8N 120.44 75	148 -15 98 -15	16.4N 125.0W 70 16.3N 124.8W 70	f71 -15	16.6N 130.5W 6	275 -5
	85 15:3N 119:3#	78 28 =H2	17:10 138:21 38	200 -25 18 -10	18:3N 123:38 95		32:8N 129:58 8	
		85 13 -5	18.5N 120.0# 75 18.0N 122.5# 80	114 -10	21.5N 121.5W 60	-	25.0N 122.0W 4	
0206002 16.6N 118.9W 0212002 16.9N 119.6W	93 16.2N 118.8#	85 83 -10	18 IN 122-54 80 18 IN 122-34 80	9 9 -5	19:1N 121:3# 85	-	22.3N 127.2W 5	
		85 19 -5	18.0N 123.0W 75	99 -5	19.3N 125./W 80		21.0N 129.0W 5	
		80 17 -5	18.5N 124.0# 55	158 -15 207 -10	20.0N 127.0W 40		21.0N 130.5W 3	
0306007 17.0N 121.9W 0312007 17.0N 122.9W	85 17.3N 121.5W 85 17.7N 122.4#	75 29 -10 75 51 -10	18.8N 124.7# 50 19.0N 125.4# 55	261 5	19.9N 12R.7W 45	424 15	20.0N 132.0W 3	518 õ
0318002 16.8N 124.7W	83 10.8N 124.7W	65 29 -15	15.9N 129.1# 55	50 15	15.2N 133.5W 50	87 20	14.6N 138.0W 4	96 15
8488882 16:2N 125:7W	70 16.6N 125.7W	65 12 -5 60 13 0	15.7N 130.0W 55	68 20 43 10	15.0N 135.0# 50 15.0N 137.0# 40	72 20	14.0N 139.0W 4	5 86 15 83 18
0412002 15.7N 128.4W	50 16.1N 128.2W	55 27 5 55 19 15	15.2N 173.3# 40	48 10 75 10	14.2N 13R.2W 30		13.5N 143.2W 3	
0418002 15+4N 129+8W	46 15.7N 129.7W	55 19 15	15.0N 135.5W 40	15 10	17.0N 141.0W 35	241 5	20.0N 140.0W 3	5 427 5
		50 73 15	15.0N 137.0W 40	92 10	17.5N 142+UW 35		20.5N 147.0W 3	
0506002 14.8N 132.2W 0512002 14.4N 133.4W		50 27 15 50 88 20	15.0N 137.5W 45 14.9N 138.7# 45	8 <u>9</u> 3 15	17.0N 142.0W 40 15.5N 143.0W 40	229 145 10	19.0N 146.0W 3	5 347 5 5 281 10
0519002 14.2N 134.5W	30 14.2N 134.5W	50 0 2V	13.0N 138-3# 40	52 10	12.0N 142.4W 40	119 <u>ì</u> 0	15.4N 162.3W 3	5 767 10
0600002 14.0N 135.9W	30 1+.1N 135.6w	45 13 15	12.5N 141.0# 35	63 5.	12.0N 146.0W 30	• •		
0606007 13.8N 136.9W		20 37 18	14:0N 142:78 30	75 -5 155 0	17:8N 145:8# 25			
		50 47 20	12.5N 143.8W 50	36 20	11.8N 147.7# 50	130 25	,,	
0700002 13-3N 140-3W	30 12.6N 141.0W 30 12.5N 142.0W	50 58 20 45 51 15	11.8N 146.5# 50 12.5N 147.0# 40	113 20 58 10		== -=		
0712002 13.2N 142.4W 0718002 13.1N 143.9W	30 13.1N 143.2W 30 12.9N 144.1W	40 24 10 35 17 5	13.9N 148.2W 35 13.0N 148.2W 35	43 10 63 10				
0800007 13.1N 145.1W 0806002 13.2N 146.3W	30 13.3N 146.3M	35 71 5				II - I		
		35 31 5 35 29 10						
081800Z 13-4N 149-7W	25 13.5N 148.0W	30 70 5	,,					•••
	HURRICANES	WHILE WIND O	WER 35KTS		ALL FORECASTS			

PI I PI	HICANSS BUILD	. MYMD DAFE	8 35NI4	AL	LL FURLEADIS	
AVERAGE FUHECAST ERROR	WARNING 24- JONM 104N	HR 276NM	72-HR 442NH	WARNING 35NM	24-HR 48-HR 7	72-HR
AVERAGE RIGHT ANGLE FIRDS ERROR	1887s 158	Hs 11984s	32684s		13KTS 157NH 30	
AVERAGE BIAS OF WIND ERROR NUMBER OF FORECASTS	-3KT5 -9K 23 20	TS -10KTS	-10KTS 11	3KTS 38	-1KTS -1KTS -	-0KTS 25

ANNEX B

BAY OF BENGAL TROPICAL CYCLONES

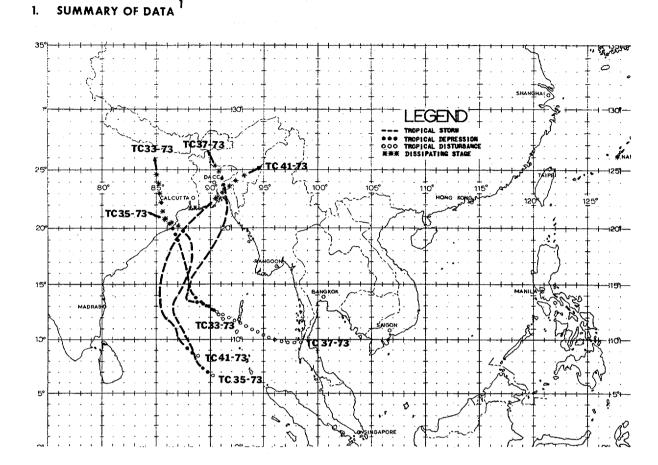


FIGURE B-1. Composite chart of best tracks for the Bay of Bengal.

TABLE B-	1. 1973 BAY OF	BENGAL 7	FROPICAL	. CYCLONES	
CYCLONE	INCLUSIVE DATES	MAX SFC WND	MIN OBS <u>SLP</u>	NO. OF WARNINGS ISSUED	REMARKS
33-73	08 OCT - 12 OC	T 40		9	
35-73	04 NOV - 09 NO	V 70	988	13	
37-73	15 NOV - 17 NO	V 55		4	FORMERLY TS SARAH
41-73	05 DEC - 09 DE	C 60		8	

¹Tropical cyclones in the Bay of Bengal are numbered consecutively from the beginning of the calendar year and are included with those developing in the South Pacific and Indian oceans. The JTWC area of responsibility in the Bay of Bengal includes the area north of the equator from the Malay Peninsula to 90°E. The JTWC issued two warnings in the Bay of Bengal during 1973 when T.C. 33-73 went ashore east of Dacca and when T.C. 35-73 was forecast to recurve and move eastward into the JTWC's area of responsibility. All other warnings were issued by FLEWEACEN Guam. All Bay of Bengal cyclones for 1973 are included in Annex B.

2. TROPICAL CYCLONE TRACKS

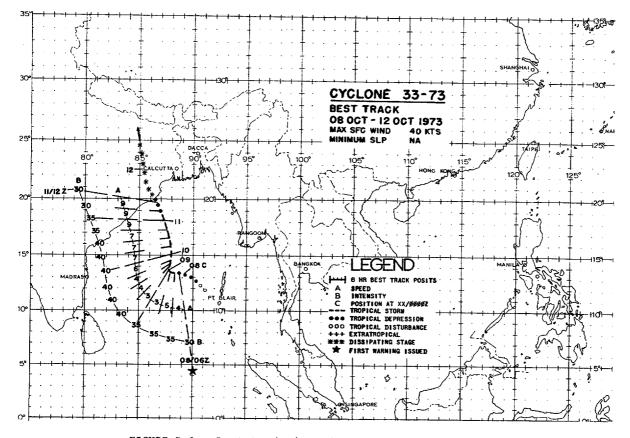


FIGURE B-2. Best track chart for Tropical Cyclone 33-73.

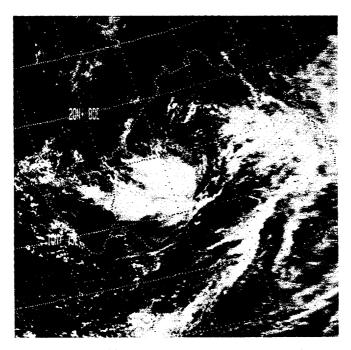


FIGURE B-3. NOAA-2 imagery of Tropical Cyclone 33-73, 9 October 1973, 0353 GMT.

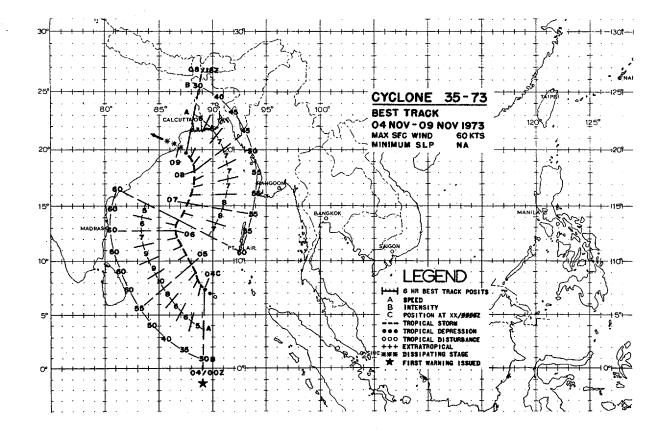


FIGURE B-4. Best track chart for Tropical Cyclone 35-73.

FIGURE B-5. DMSP imagery of Tropical Cyclone 35-73, 8 November 1973, 0243 GMT.

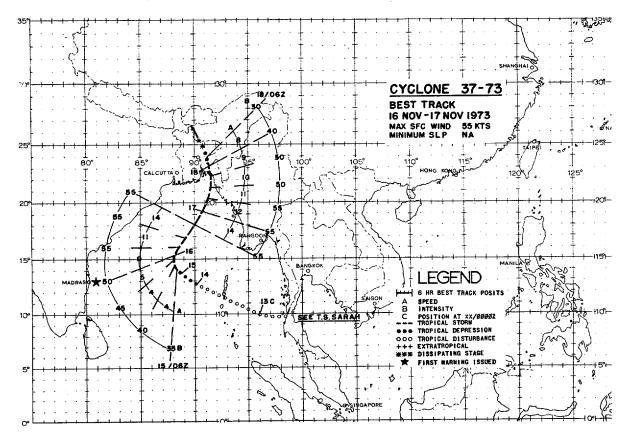


FIGURE B-6. Best track chart for Tropical Cyclone 37-73.

FIGURE B-7. DMSP imagery of Tropical Cyclone 37-73, 16 November 1973, 0159 GMT.

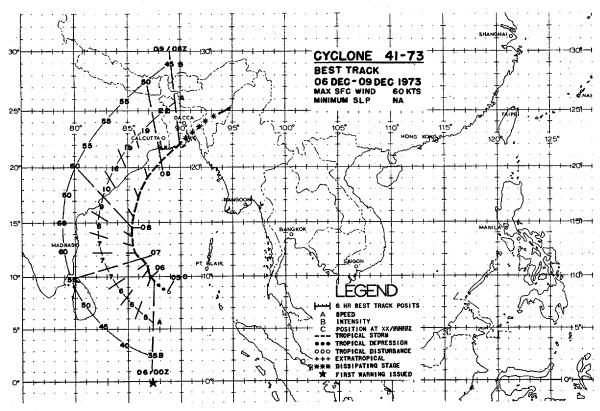


FIGURE B-8. Best track chart for Tropical Cyclone 41-73.

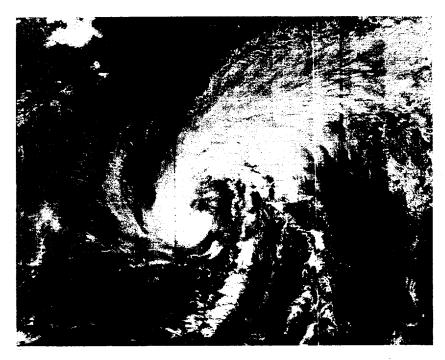


FIGURE B-9. DMSP imagery of Tropical Cyclone 41-73, 8 December 1973, 0621 GMT.

3. CENTER FIX DATA

					f		POSI1	ιīv	AL CYCL NS FOH UST TO	CYĈLI	ME	13-73 . Mu. 33-73 12 UCT								
FIX NO.	TIME	POSIT	F I X CAT	ACCHY NAV-MET	r	Ftr Lvi		LT	AA DAS LVL WIN FL BRG	MAX OBS FC WIND L BRG RNG	OBS Min Slp	MIN '700MB' HGT	+LT LVL T1/T0	EYE Form	ODIEN- TATION	EYE D]a	FOSIT OF Fadafi	MS4 Nødfi		
1	806137	18.AN 927.0E	SAT	(1)	<i>'</i>	0.	1	1	HRS)	PCN	з	DMSP								
ŝ	812137 818137	28.AN 527.5E	SAT		<i>,</i> /	0.	,	/	HRSI	PCN PCN	3	DM5P DH5P								
5	900137 906132	58.7N 833.5E 88.7N 801.5E		17 (F	2	0	;	1	HRSI	PCN PCN	3	DHSP								
7	3161 4 7	28.7N 901.5E 58.8N 100.5E	SAT SAT	(1 (/	ω,	,	1	MRS)	PCN		DMSP DMSP								
8 9 10	1000157 1006157 1012167 1012167	18.4N 136.0E 88.7N 935.0E 58.7N 835.0E	SAT SAT SAT SAT		%	8		1	HRS) HRS)	PCN PCN PCN	3 3	DHSP DHSP DHSP								
12	110018z	38.7N 634.5E 18.7N 434.0E 98.7N 33.5E		(T (0,	/	',	MRS) MRS) MRS)	PCN PCN PCN	з	DMSP DMSP DMSP								
14 15	1112197 1118202	78.6N 533.5E 98.5N 833.0E		-		5+0 A		/	HRS)	PCN	3	DHSP								
16	1200237	58.5N 234.5E	SAT	(1 (1/6	5+0. A	/	1	HRS)	PCN	3	DHSP								

e,

 ϵ

ε.

,

TROPICAL CYCLONE 35-73 FIX POSITIONS FOR CYCLUNE NO. 35-73 U0002 04 NUV TO 12002 09 NUV

						1	HAA OBS	;		MAX OBS	08S	MIN	rL₹				POSIT	
¥9.	TIME	POSIT	€¥₹	NAV-MET	EV,	oik'	VEL BAG	ND RNG	VE	FC WIND L BRG RNG	MIN SLP	700NB Hgt	τίλιο	FXEn	DRIEN-	61£	FADAR	Nºsk Nødfi
1	40007z	58.9N 131.5E	SAT	(T 0.	/6.0 /		HRS)	PCN	3	DMSP								
ŝ	406077 412087	88.8N 832.5E 38.9N 533.5E	SAT	(T 0.	/6.0 /		HRS)	PCN	3	DMSP DMSP								
\$	418087 500097	98.AN 334.0E 78.AN 33.5E	SAT	1 B	/6.0 /	1	MRS)	PCN PCN	3	DMSP DMSP								
9	05061VZ 51211Z	68.7N 533.0E 38.7N 133.0E	SAT SAT	(T 0.	/1.0 /	· /	HRS)	PCN PCN		DHSP DHSP								
89	518127 600127	18.6N 633.5E 88.6N 536.0E	SAT SAT		/1.0 /		HRS)	PCN		DMSP								
10 11	60613Z 61213Z	38.6N 602.0E 88.6N 803.0E	SAT SAT	(T a	/1.0 /		HRSI	PCN		DMSP DMSP								
12 13 14	618147 700157 706167	48.7N 303.0E 28.7N 702.5E 18.8N 2.0E	SAT SAT SAT	(Ť Ô,	1.0	· /	HRS) HRS) HRS)	PCN PCN PCN	3	DNSP DNSP DNSP								
15 16	71216Z 71817Z	78.8N 200.5E	SAT SAT	(1 0/	/1.0 /	. ,	HRS	PCN PCN	3	DHSP DMSP								
12	88818Z	88:8N 335:5E	ŝat		1:8 /		HRS)	PCN	3	DMSP								
19 20	806167 812197	98.8N 133.0E 38.7N 933.0E	SAT					PCN PCN	33	DMSP DMSP								
22	818197 900207	78.7N 531.0E 28.6N 930.0E	SAT	(† 8)	1.0	1	HRS) HRS)	PCN	33	DMSP DMSP								

							CAL CYCI UNS FUR 5 NUV 1			17-73 NO. 37-73 17 NUV								
F1X NO.	TIME	POSIT		ACCRY	Fī¥ LVi	FLT	MAX ORS LVL WI VEL BRG	ND	S	MAX OBS SFC WIND EL BHG RNG	OBS Min Slp	MIN 700MB Hgt	FLT LVL T1/T0	EYE Fûrm	OPIEN- TATION	EYE DIA	POSIT OF Radar	MSN Nwofi
1	1600152	30.8N 136.0E	SAT	(T 0,	/1+0 /	, ,	HRS)	PCN	Э.	DMSP								
23	1606167 1612162	18.8N 504.5E 98.9N 103.5E	SAT SAT	(T 0.	1.0 /	, ,	HRS)	PCN		DMSP								
\$ 67	1618187 1706197 1706202 1708202	8.9N 903.5E 29.0N 703.0E 29.1N 201.5E 49.1N 301.5E	SAT SAT SAT		(3.0 /2.5 /2.0		HRS) HRS) HRS)	PCN PCN PCN PCN	3	OMSP OMSP OMSP OMSP								
89	1712217 1718222	39.1N 401.0E 39.1N 536.0E	SAT SAT	(T 0/	/1+0 /	. ,	HR5)	PCN	3	DMSP DMSP								
19 12	1800237 1806237 1812247	19.1N 435.0E 99.1N 234.0E 69.0N 933.5E	SAT Sat	{ F 8:	1:8 2	; ;	HRS)	PCN PCN PCN		DMSP OMSP DMSP								

						P0:	51710		CACFC	INE.	1-73 NO. 41-73 Of DEC								
FIX NO.	TIME	POSIT	FIX Cat	ACCRY NAV-MET	Ft: FLVI		FLI	NAA 085 LVL NI EL BRG	ND		MAX OBS SFC WIND EL BRG RNG	08S Min Slp	MIN 700mb Hgt	FLT LVI T1/T0	EYE FQRM	OSIEN- TATION	EYE DIA	FOSIT OF FADAF	NS. Nuaf
1	60009z	78.7N 531.5E	SAT	π	0.110	1	1	HRS)	PCN	з	DM5P								
ŝ	81218 <u>7</u>	18:2N 833:8E	SAT	(1)	0/1.0	1	1	HRSI	PSN	3	OMSP								
ŧ	91811Z	28.6N 632.5E	SAT	11		1	4	MRS)	PCN	3	OMSP DMSP								
67	70612Z 71212Z	28.5N 732.5E 98.5N 534.5E	SAT	: (Т (D/1.0		1	MRSI	PCN	3	OMSP								
89	71813Z 080014Z	78.5N 336.0E 68.5N 301.0E	SAT SAT		0/1.0 0/1.0		';	HRS) HRS)	PCN PCN		DMSP DMSP								
10	0806157 0812172	68.5N 601.5E 38.6N 1.5E	SAT SAT	(† (9/2.5	1	/	HRSI	PCN PCN		DMSP DMSP								
13	0818197 0900202	28.6N 803.0E	SAT	- H - B	0/5+5	;	1	HRS)	PCN	3	DMSP DMSP								
14	0906227 0912237	18.9N 905.0E 49.1N 505.0E			1/7.0		1	HRS)	PCN PCN	33	DMSP DMSP								

94

.

TROPICAL CYCLONE 33-73 06007 08 0CT TO 00002 12 0CT

REST TRACK	WARN ING	24 HOUR FORECAST ERRORS	48 HOUR FORECAST	72 HOLR PCHECAST
POSIT WIND POSIT 0806002 13+1N 88-9E 30 13+1N 8	8.6E 35 17 5	POSIT WIND DST WIND 13.9N A6.2E 45 93 5	15.20 83.56 55 256 15	POSIT WIND OST WIND
0812007 13-2N 88-5E 35 14-0N 8 0818007 13-3N 88-6E 35	8.0E 35 56 0	16.1N 85.7E 45 170 5	18.5N 83.9E 45 252 5	
0900002 13.5N 87.8E 35 13.3N 8				
0906002 13.8N 87.8E 40 0912002 14.2N 87.9E 40 13.8N 8 0918002 14.5N 88.1E 40	7:3E 40 42 U	14.4h 86.1E 60 159 20	15.2N 85.0L 65 287 75	
	•	• • •	16.6N 89.0E 65 464 40	
1000002 15.1N 88.1E 40 14.4N 8 1004002 15.8N 87.9E 40 16.0N 8 1015002 16.5N 87.9E 40 16.0N 8				-
1014002 17-3N 87-6E 35				
1100002 18-1N 87.4E 35 17.5N 8				
1114882 18:9N 82:5E 39 18:7N B	6.5E 45 60 15			
1118002 20.9N 85.8E 25				
1200002 23.5N 85.PE 25 21.5N 8	6.8E 35 149 10			

	ALL I	ORECASTS	
	WARNING 24-	HR 40-HK	72-HP
AVERAGE FORECAST ERROR AVERAGE HIGHT ANGLE ERROR	536M 161	N 295NM	ONM ONM
AVERAGE MAGNITUDE OF WIND ERROR Average HIAS of WIND Error	4KT5 141 4KT5 141		OKTS
NUMBER OF FORECASTS	97	5	Q

TROPICAL CYCLONE 35-73

00002 04 NOV TO 12002 09 NOV

	B	EST TRA	СК		WA	RNING		IOR5	:	24 HOUR	FORE		ORS	4	8 HOUH	FORE		₹06S		72 IFOUI	R FCHE		909 e
040n002 0406002	7.5N 7.8N	17 89.1E 88.RE		7.2N	STT 89.48	WIND	n\$1 25	MIND	7.7N	SJT 87.1E	1ND 40	PSI	₹ 1 8°		611 65+1E	WIND 45		WIND -15	BC	SIT	WBND	051	WILC
8412082	8:3N	88.5E			.67.5E		69	_2	•	8E	60	197		9.8N		. 75	347	15	=;=	325	:22	:==	
050000Z 050600Z		88.0E			85.8E 87.4E			-10 -10	9.8N 14.3N	82.5E		295 110	.5 10	10.en 10.1n	79.1E 89.3t		565						
051200Z		87.1E			87.78		39	-		B.4E		129	15	19.0N		-	167	25 	=:=			::	22
060n00Z 060600Z	13+3N	86.6E	60		87.9E		89			89.1E					90.2E		194	95 77	:::		·•-		
061200Z 061800Z			-	14.4N	86.26	70	42 	10 	17.8N	86.6E	80 	112	25 	21.0N	87.65	 80	107	10 	 	·••••			
070000Z 9706993	15+2N	87.7E 翻:年			86.4E		76 57	-		A9.5E	70 40	99 319	25 - 0									==	
0719002 0719002		88.3E	50		,-				** -														
080n00Z 080n00Z 081200Z		88.3E 87:4E			90.2E		126 137	-			=	==										=	
081900Z	19.7N	87.5E	30	19.0N	88.9E	55	79	25		,-											•••		
090n00Z	20.2N	86+9E	25	19+5N	88.SE	55	99	30															

	ALI. FORECASTS
AVERAGE FORECAST ERROR AVERAGE HIGHT ANGLE ERROR	WARNING 24-MM 40-MM 72-MM 774M 1710M 25/MM 0NM 600M 1320M 184MM 0NM
AVERAGE MAGNITUDE THE FIND ERROR Aumber of Forcasts	tokts 13kts 25kts 8kts 13 5 7 0

TROPICAL CYCLONE 37-73 00007 16 NOV TO 08007 17 NOV

	в	EST TR	NCK		w.	ARNIM	3			24 HOUI	R FORE	CAST			48 HQU	A FOR	ECAST			72 ⊪OU	R FCRE	CAST	
1600002	P05		VIND		51T 87.9	WIND	nST 21	NORS WIND 10		SJT 86.85	VIND	051 274	NORIS WIAND	70 	SIT	WIND	57 57	NU NU	A(517	WIND	oSi	ROR¢ WTWC
1215882	18:3N	\$ 8: 7E	ξĘ	16:3N			63	-5		===;=	=	==	==	=;=	=====	==	==	:=	:::	===	==	::	
161900Z	18+0N	89.9E	55		,-				÷					,-	,-		*-	<u> </u>					••
1708002	28:2N	30:7E	55 55	18.6N 20.5N	89.1 91.8	60 60	23	5	=::	222;2	::		::		===:=		::	::	33	==;2	::		::
												4/	RNTN		ORECAS HR 48	IS HA	12-HA						
AVERAGE AVERAGE	FORECA RIGHT Magnit	ST ERRO ANGLE E UDE OF	RRAF	ERKO	2								148E	274	AN O	NH KTS	ONM ONM OKTS						
AVERAGE O	F FORE	F WIND Casts	EROC	R									6K T 5 4	5 201	(TS 0)	KTS	OKTS Q						

٠

ć,

TROPICAL CYCLONE 41-73 00007 06 DEC TO 12002 09 DEC

BEST TRACK	WARNING	24 HOUR FORECAST	48 HOUR FORECAST	72 HOUR PORECAST
POSIT WIND	POSIT WIND DST WIND	POSIT WIND DET WIND	POSIT WIND DET WIND	BCSIT WIND CST WIND
0600002 9.7N 87.5E 35 7	7.1N 87.0E 40 158 5	7.8N 85.2E 50 240 -5	8.5N 83.5E 60 379 0	
8619882 18:1N 87:3E 49 18		11:21 85:3E 59 117 -19	12:6N 82:3E 98 313 58	
0614002 11.2N 86.4E 50				
0700002 11.7N 86.2E 55 11	1.0N 87.1E 45 53 -10	13.95 87.1E 50 112 -10	15.7N BR.2E 65 293 15	-,,
8719882 12:3N 83:4E 68 12	2.7N 85:0E 45 31 -15	15.2N 83.9E 60 174 5	1713N 83.VE 65 560 35	::: ::::: :: :: ::
0718002 13.7N 85.3E 60	-,,		anga sanga san san gal	
0800002 14.6N 85.7E 60 14			ي به مربعه	·,- ···,· ·· ·· ·.
0806002 15.6N 85.6E 55		1010. Tot DE 20 000 000		
		19.2N 86.UE 65 396 35		
0818002 19+2N 86+8E 55				-,,
POALAR 20 40 00 15 5. 31	3			
8900002 22:1N 88:1E 50 21	1.5N 0/.0C 50 45 V			
0912002 23+4N 91+5E 30 23				

	ALL FORECASTS Warning 24-hr 48-hr 72-hr
AVERAGE LIGHTANGERPERROR	3800 °8600 75500 800
AVERAGE MAGNITUDE OF WIND ERHOR Average bias of wind error	-tkis iskis iskis okis
NUMBER OF FORECASTS	9 750

APPENDIX

ABBREVIATIONS AND DEFINITIONS

The following abbreviations and definitions apply for the purpose of this report.

- 1. ABBREVIATIONS
 - AC&W Aircraft Control and Warning
 - AIREPS Commerical and Military Aircraft Weather Report
 - AJTWC Alternate Joint Typhoon Warning Center (Asian Tactical Forecast Center, Fuchu, Japan)
 - APT Automatic Picture Transmission
 - AWN Automatic Weather Network
 - CINCPAC Commander in Chief, Pacific
 - CINCPACAF Commander in Chief, Pacific Air Forces
 - CINCPACFLT Commander in Chief, Pacific Fleet
 - CINCUSARPAC Commander in Chief, U.S. Army Pacific
 - DAPP Data Acquisition and Processing Program (Renamed DMSP)
 - DMSP Defense Meteorological Satellite Program
 - ENVPREDRSCHFAC Environmental Prediction Research Facility (Naval Postgraduate School, Monterey, California)
 - NESS National Environmental Satellite Service (Suitland, Maryland)
 - NWS/NOAA National Weather Service, National Oceanic and Atmospheric Administration
 - PACOM Pacific Command
 - SLP (MSLP) Sea Level Pressure (Minimum Sea Level Pressure)
 - TCRC Tropical Cyclone Reconnaissance Coordinator
 - WMO World Meteorological Organization
- 2. DEFINITIONS

<u>CYCLONE</u> - An atmospheric closed circulation rotating counterclockwise in the northern hemisphere.

TROPICAL CYCLONE - A non-frontal cyclone of synoptic scale, developing over tropical or sub-tropical waters and having a definite organized circulation and warm core.

TROPICAL DEPRESSION - A tropical cyclone in which the maximum sustained surface wind is 33 kt or less.

TROPICAL STORM - A tropical cyclone with maximum sustained surface winds in the range 34 to 63 kt inclusive.

<u>TYPHOON/HURRICANE</u> - A tropical cyclone with maximum sustained surface wind speeds 64 kt or greater. West of 180 degrees longitude the name TYPHOON is used and east of 180 degrees longitude the name HURRICANE is used. All descriptive references to typhoons apply equally to hurricanes.

SUPER TYPHOON - A typhoon with maximum sustained winds greater than or equal to 130 kt.

TROPICAL DISTURBANCE - A discrete system of apparently organized convection, generally 100 to 300 miles in diameter originating in the tropics or sub-tropics, having a non-frontal migratory character and having maintained its identity for 24 hours or more. It may or may not be associated with a detectable perturbation on the wind field. As such, it is the basic generic designation which, in successive stages of intensification, may be subsequently classified as a tropical depression, tropical storm or typhoon.

EYE/CENTER - EYE refers to the roughly circular central area of a well-developed tropical cyclone usually characterized by comparatively light winds and fair weather. If more than half surrounded by wall cloud, the word EYE is used; otherwise, the area is referred to as a CENTER.

WALL CLOUD - A densely organized, roughly circular structure of cumuliform clouds completely or partially surrounding the eye or center of a tropical cyclone.

MAXIMUM SUSTAINED WIND - Highest surface wind speed of a cyclone averaged over a one minute period of time.

EXTRATROPICAL - A term used in warnings and tropical summaries to indicate that a cyclone has lost its "tropical characteristics." The term implies both poleward displacement from the tropics and the conversion of the cyclone's dominant energy source from latent heat of condensation release to baroclinic processes.

TROPICAL CYCLONE RECONNAISSANCE COORDI-NATOR - A CINCPACAF representative designated to levy tropical cyclone weather reconnaissance requirements on CINCPACAF reconnaissance units within a designated area of PACOM and to function as a coordinator between CINCPACAF, weather reconnaissance units, and JTWC.

DISTRIBUTION

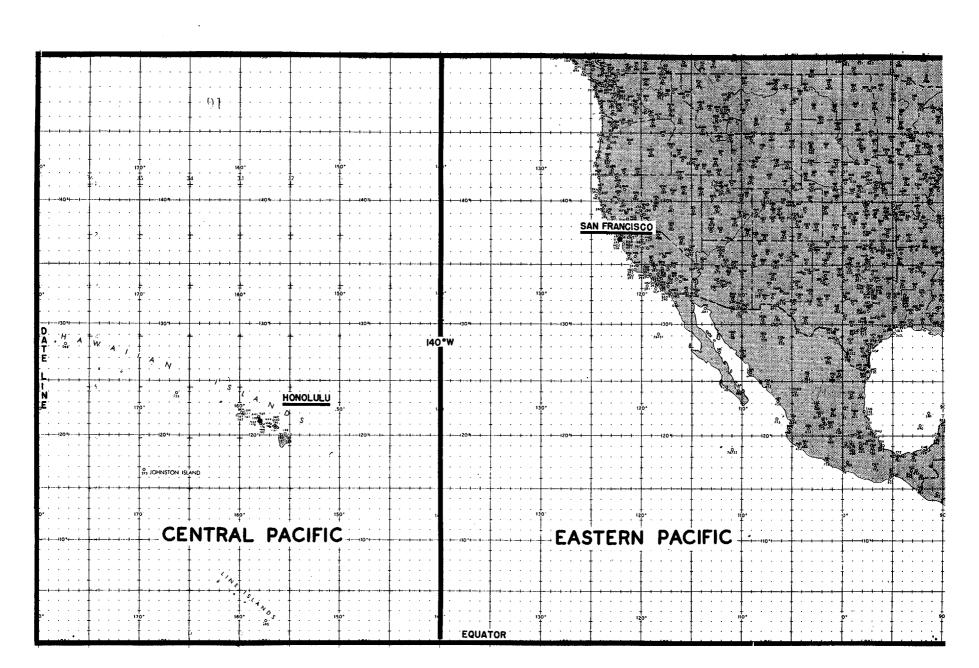
AFGWC (2) BUR OF MET, AUST (1) AMER EMB BANGKOK (1) CATH UNIV OF AMERICA (1) CENWEABUR TAIWAN (2) CHIEF, MAAG TAIWAN (1) CHINESE AF WEACEN TAIWAN (3) CHINESE NAV WEACEN TAIWAN (1) CINCPAC (2) CINCPAC (2) CINCPACAF (1) CINCPACFLT (5) CINCUSARPAC (1) CIVIL DEFENSE (GUAM) (2) CNO (2) COLORADO STATE UNIV (LIBR) (1) COLORADO STATE UNIV (MET) (1) COMCRUDESPAC (1) COMINFLOT ONE (1) COMNAVFACENGCOMPACDIV (1) COMNAVFACENGCOMPACITY COMNAVMARIANAS (1) COMNAVWEASERVCOM (10) COMPHIBPAC (1) COMSEVENTHFLT (1) COMUSTIC (1) CPF (1) CSG (1) CLSF (1) CSSF (1) CSSF (1) CACSF (1) CACSF (1) CASWF THREE (1) CGFMF (1) COMSC (1) COMTHIRDFLT (1) COMUSNAVFORJAPAN (1) COMUSNAVPHIL (1) COMUSNAVPHIL (1) DDC (10) DIA (1) DIR OF MET SAIGON (1) DIR OF MET SAIGON ECAFE (2) EDS (D54) (1) 8 AF/DOO (1) ENVPREDRSCHFAC (4) FAA (CERAP) (2) FLENEMWEACEN (1) FLEWEACEN NORFOLK (1) FLEWEACEN NORFOLK (1) FLEWEACEN REARL HARBOR (1) FLEWEACEN ROTA (1) FLEWEAFAC SUITLAND (1) CEN MET DEDT THALLAND (1) GEN MET DEPT THAILAND (1) HQ AWS (3) HQ, 1ST MARINE ACFT WG (1)

HQ, 1WWG (15) HQ, 3WWG (1) HQ, 9WRWG (2) INDIA MET DEPT (1) JAPAN MET AGENCY (1) LIBR OF CONGRESS (2) LIBR OF CONGRESS (EXCHANGE & GIFT DIV) (4) LOS ANGELES PUBL LIBR (1) MCAS IWAKINI (2) MCAS IWAKUNI (2) MCAS KANEOHE BAY (1) MUDEFASSTOFFICE JAPAN (1) MUDEFASSTOFFICE JAPAN (1) NASA (1) NATWEASERV PACREG (2) NWSFO HONOLULU (1) NAVAL ACADEMY (1) NAVOCEANO (2) NAVPGSCOL (DEPT OF MET) (2) NAVPGSCOL (LIBRARY) (1) NAVWEASERFAC ALAMEDA (1) NAVWEASERFAC JACKSONVILLE (1) NAVWEASERFAC SAN DIEGO (1) NESS (2) NESS (2) NHRL (2) NHRL (2) NHC (2) NWSED ASHEVILLE (2) NWSED ATSUGI (1) NWSED BARBERS POINT (1) NWSED CUBI POINT (1) NWSED IWAKUNI (1) NWSED NAHA (1) NWSED YOKOSUKA (1) ODDR&E (1) OKINAWA MET OBS (1) OKINAWA MET OBS (1) OL A, 10WSQ (1) OL B, 1WWG (4) PAGASA (3) ROYAL OBSERVATORY (3) TEXAS A&M (1) TYPHOON COMM SECR (1) TYPHOUN COMM SECK (1) TTPI (1) UNIV OF GUAM (1) UNIV OF HAWAII (DEPT OF MET) (2) UNIV OF HAWAII (LIBR) (1) UNIV OF MEXICO (1) UNIV OF PI (1) VQ-1 (1) WEARECONRON FOUR (1) 20WSQ (11) 53WRS (2) 54WRS (10) 55WRS (2) 3345TH TECH SCHOOL (1)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FOR
1. REPORT NUMBER 2. GOVT ACCESSION N	
Annual Typhoon Report 1973	
4. TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVE
ANNUAL TYPHOON REPORT 1973	Annual (JAN-DEC 1973
	6. PERFORMING ORG. REPORT NUMB
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TA AREA & WORK UNIT NUMBERS
FLEET WEATHER CENTRAL/JOINT TYPHOON WARNING CENTER (FLEWEACEN/JTWC), GUAM FP SAN FRANCISCO 96630	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
FLEET WEATHER CENTRAL/JOINT TYPHOON WARN	
ING CENTER (FLEWEACEN/JTWC), GUAM FPO SAN FRANCISCO 96630	13. NUMBER OF PAGES 98
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	
	UNCLASSIFIED
	15- DECLASSIEICATION (DOWNCRAD)
	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distributio	15. DECLASSIFICATION/DOWNGRAD
	unlimited.
Approved for public release; distribution	unlimited.
Approved for public release; distribution	unlimited.
Approved for public release; distribution	n unlimited.
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb	n unlimited.
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Tropical cyclones At	n unlimited. rom Report)
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Tropical cyclones Tropical cyclone forecasting T:	n unlimited. rom Report) rom forecasting ropical Cyclone Researc
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Tropical cyclones Tropical cyclone forecasting Typhoons T	n unlimited. rom Report) rom forecasting ropical Cyclone Researce ropical Storms
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Tropical cyclones Tropical cyclone forecasting Typhoons Typhoon forecasting Typhoon forecasting	n unlimited. rom Report) rom Report) rom Control (Storms) ropical Storms ropical depressions
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number Tropical cyclones Tropical cyclone forecasting Typhoons Typhoon forecasting St 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number ABSTRACT (Continue on reverse eide if necessary and identify by block number St	" n unlimited. " rom Report) " alog forecasting " opical Cyclone Researd opical Storms opical depressions per typhoons
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number Tropical cyclones Tropical cyclone forecasting Typhoons Typhoon forecasting 20. ABSTRACT (Continue on reverse side if necessary and identify by block number Annual publication summarizing the t: the western North Pacific, Bay of Bengal	n unlimited.
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number Tropical cyclones Tropical cyclone forecasting Typhoons Typhoon forecasting 20. ABSTRACT (Continue on reverse side if necessary and identify by block number Annual publication summarizing the t: the western North Pacific, Bay of Bengal	n unlimited.
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number Tropical cyclones Tropical cyclone forecasting Typhoons Typhoon forecasting 20. ABSTRACT (Continue on reverse elde if necessary and identify by block number Annual publication summarizing the to the western North Pacific, Bay of Bengal Pacific. A brief narrative is given on elements	" Tom Report) rom Report) rom Report) ropical forecasting ropical Cyclone Researd ropical Storms ropical depressions uper typhoons ropical cyclone season and the central North reach typhoon in the
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number Tropical cyclones Tropical cyclone forecasting Typhoons Typhoon forecasting 20. ABSTRACT (Continue on reverse eide If necessary and identify by block number Annual publication summarizing the t: the western North Pacific, Bay of Bengal Pacific. A brief narrative is given on of western North Pacific including the best naissance data used to construct the best	n unlimited.
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number Tropical cyclones Tropical cyclone forecasting Typhoons Typhoon forecasting 20. ABSTRACT (Continue on reverse elde if necessary and identify by block number Annual publication summarizing the to the western North Pacific, Bay of Bengal Pacific. A brief narrative is given on elements	n unlimited. Tom Report) rom Report) rom Report) ropical forecasting ropical Cyclone Researce ropical Storms ropical depressions topical depressions per typhoons ropical cyclone season and the central North rach typhoon in the track. Pertinent reco tracks are provided. for the JTWC are

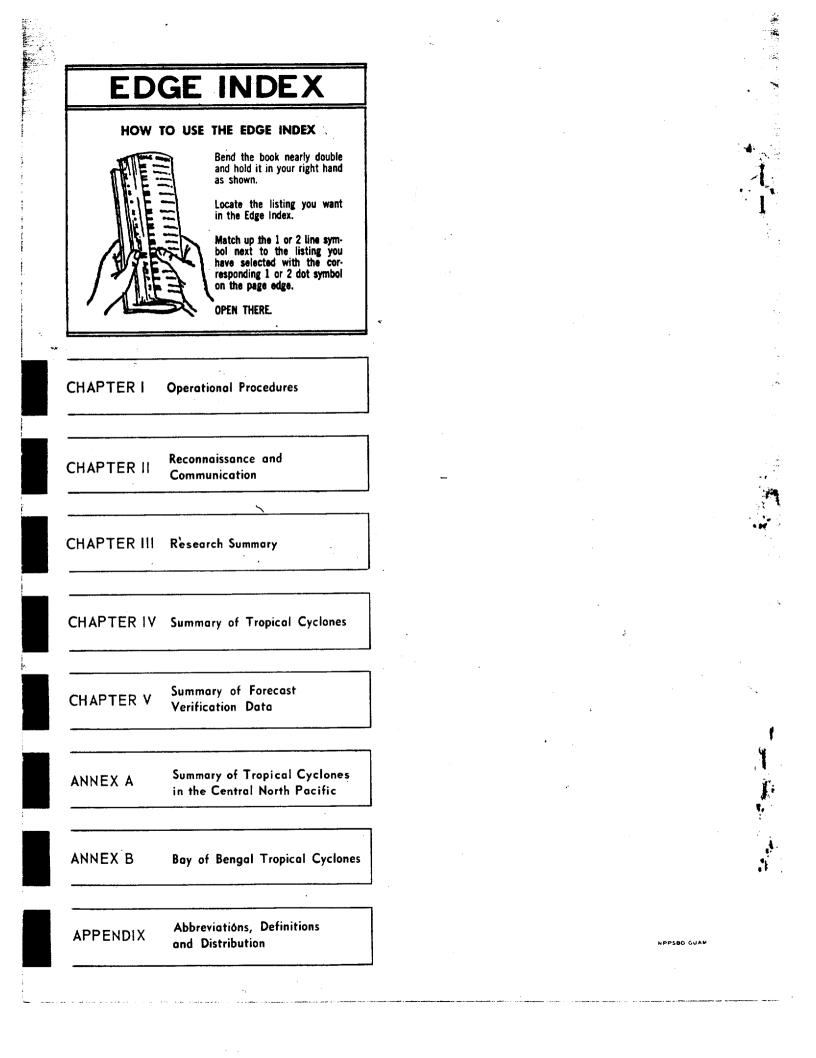
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

.


• · · · · · · · ·

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

ECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)


SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Æ

Areas of Responsibility - Central and Eastern Pacific Hurricane Centers

i

