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A New Determination of

Molecular Dimensions

(Ph.D. Dissertation, University of Zurich)

The earliest determinations of the real sizes of molecules
were made possible by the kinetic theory of gases, but thus
far the physical phenomena observed in liquids have not
helped in ascertaining molecular sizes. No doubt this is be-
cause it has not yet been possible to surmount the hurdles
that impede the development of a detailed molecular-kinetic
theory of liquids. It will be shown in this paper that the size
of molecules of substances dissolved in an undissociated di-
lute solution can be determined from the internal viscosity
of the solution and of the pure solvent, and from the diffu-
sion rate of the solute within the solvent provided that the
volume of a solute molecule is large compared to the vol-
ume of a solvent molecule. This is possible because, with
respect to its mobility within the solvent and its effect on
the viscosity of the latter, such a molecule will behave ap-
proximately like a solid body suspended in a solvent. Thus,
in the immediate vicinity of a molecule, one can apply the
equations of hydrodynamics to the motion of the solvent in
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which the liquid is treated as homogeneous and hence its
molecular structure need not be taken into consideration.
We will choose a sphere as the solid body that shall repre-
sent the solute molecules.

1. How a Very Small Sphere Suspended in a
Liquid Influences Its Motion

Let us base our discussion on an incompressible homoge-
neous liquid with a coefficient of viscosity k, whose velocity
components u, v, w are given as functions of the coordi-
nates x, y, z and of time. At an arbitrary point x0, y0, z0,
let us think of the functions u, v, w as functions of x − x0,
y−y0, z−z0 expanded in a Taylor’s series, and of a region G
around this point so small that within it only the linear terms
of this expansion need be considered. As is well known, the
motion of the liquid within G can then be regarded as a
superposition of three motions:

1. A parallel displacement of all particles of the liquid without
a change in their relative positions;

2. A rotation of the liquid without a change in the relative
positions of the particles of the liquid;

3. A dilational motion in three mutually perpendicular direc-
tions (the principal axes of dilation).

Let us now assume that in region G there is a spherical
rigid body whose center lies at the point x0, y0, z0 and whose
dimensions are very small compared with those of region G.
We further assume that the motion is so slow that the kinetic
energy of the sphere as well as that of the liquid can be ne-
glected. We also assume that the velocity components of a
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surface element of the sphere coincide with the correspond-
ing velocity components of the adjacent liquid particles, i.e.,
that the contact layer (imagined to be continuous) also dis-
plays a coefficient of viscosity that is not infinitesimally small.

It is obvious that the sphere simply takes part in the partial
motions 1 and 2 without altering the motion of neighboring
particles, since the liquid moves like a rigid body in these
partial motions and since we have neglected the effects of
inertia.

However, motion 3 does get altered by the presence of
the sphere, and our next task will be to investigate the ef-
fect of the sphere on this motion of the liquid. If we refer
motion 3 to a coordinate system whose axes are parallel to
the principal axes of dilation and set

x− x0 = ξ;
y − y0 = η;
z− z0 = ζ;

we can describe the above motion, if the sphere is not
present, by the equations

u0 = Aξ;
v0 = Bη;
w0 = Cζ�

(1)

A, B, C are constants that, because the liquid is incompress-
ible, satisfy the condition

A+ B+ C = 0: (2)

If, now, a rigid sphere of radius P is introduced at the point
x0, y0, z0, the motion of the liquid around it will change.
We will, for convenience, call P “finite,” but all the values of
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ξ, η, ζ , for which the liquid motion is no longer noticeably
altered by the sphere, we will call “infinitely large.”

Because of the symmetry of the motion of the liquid being
considered, it is clear that during this motion the sphere can
perform neither a translation nor a rotation, and we obtain
the boundary conditions

u = v = w = 0 when ρ = P ;

where

ρ =
√
ξ2 + η2 + ζ2 > 0:

Here u, v, w denote the velocity components of this motion
(changed by the sphere). If we set

u = Aξ + u1;

v = Bη + v1;

w = Cζ +w1;

(3)

the velocities u1, v1, w1 would have to vanish at infinity, since
at infinity the motion represented in equations (3) should
reduce to that represented by equations (1).

The functions u, v, w have to satisfy the equations of hy-
drodynamics, including viscosity and neglecting inertia. Thus
the following equations will hold:1

δp

δξ
= k1uδp

δη
= k1vδp

δζ
= 1w;�1�

δu
δξ
+ δv
δη
+ δw
δζ
= 0;

(4)

1 G. Kirchhoff, Vorlesungen über Mechanik, 26. Vorl. (Lectures on Me-
chanics, Lecture 26).
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where 1 denotes the operator

δ2

δξ2 + δ2

δη2 + δ2

δζ2

and p the hydrostatic pressure.
Since equations (1) are solutions of equations (4) and the

latter are linear, according to (3) the quantities u1, v1, w1

must also satisfy equations (4). I determined u1, v1, w1, and
p by a method given in section 4 of the Kirchhoff lectures
mentioned above2 and found

p = − 5
3kP

3

{
A
δ2
[ 1
ρ

]
δξ2 + B

δ2
[ 1
ρ

]
δη2 + C

δ2
[ 1
δ

]
δζ2

}
+ const.,

u = Aξ − 5
3
P 3A

ξ
ρ3 − δD

δξ
;

v = Bη − 5
3
P 3B

η
ρ3 − δD

δη
;

w = Cζ − 5
3
P 3C

ζ
ρ3 − δD

δζ
;

(5)�5�

2 “From equations (4) it follows that 1p = 0. If we take p in accordance
with this condition and determine a function V that satisfies the equation

1V = 1
k
p;

then equations (4) are satisfied if one sets

u = δV
δξ
+ u′; v = δV

δη
+ v′; w = δV

δζ
+w′;

and chooses u′, v′, w′ such that 1u′ = 0, 1v′ = 0, 1w′ = 0, and

δu′

δξ
+ δv′

δη
+ δw′

δζ
= −1

k
p:”

Now, if one sets

p

k
= 2c

δ2 1
ρ

δξ3
;�2�
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where 

D = A

{
5
6 p

3 δ
2ρ
δξ2 + 1

6P
5 δ

2
( 1
ρ

)
δξ2

}

+ B
{

5
6 p

3 δ
2ρ
δη2 + 1

6P
5 δ

2
( 1
ρ

)
δη2

}

+ C
{

5
6p

3 δ
2ρ
δζ2 + 1

6P
5 δ

2
( 1
ρ

)
δζ2

}
:

(5a)

It can easily be proved that equations (5) are solutions of
equations (4). Since

1ξ = 0; 1 1
ρ
= 0; 1ρ = 2

ρ

and

1

(
ξ
ρ3

)
= − δ

δξ

{
1

(
1
ρ

)}
= 0;

we get

k1u = −k δ
δξ
�1D�

= −k δ
δξ

{
5
3P

3A
δ2 1

ρ

δξ2 + 5
3P

3B
δ2 1

ρ

δη2 + · · ·
}
:

and, in accordance with this,

V = c δ
2ρ
δξ3
+ bδ

2 1
ρ

δξ2
+ a

2

[
ξ2 − η2

2
− ζ2

2

]�3�
and

u′ = −2c
δ 1
δ

δξ
; v′ = 0; w′ = 0;�4�

then the constants a, b, c can be determined such that u = v = w = 0
for ρ = P . By superposing three such solutions, we get the solution given
in equations (5) and (5a).
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However, according to the first of equations (5), the last of
the expressions we obtained is identical to δn

δξ .�6� In the same
way, it can be shown that the second and third of equations
(4) are satisfied. Further, we get

δu
δξ
+ δv
δη
+ δw
δξ
= �A+ B+ C�

+ 5
3P

3

{
A
δ2
( 1
ρ

)
δξ2 + B

δ2
( 1
ρ

)
δη2 + C

δ2
( 1
ρ

)
δζ2

}
− 1D:

But since according to equation (5a)

1D = 5
3AP

3

{
A
δ2
( 1
ρ

)
δξ2 + B

δ2
( 1
ρ

)
δη2 + C

δ2
( 1
ρ

)
δζ2

}
;

it follows that the last of equations (4) is satisfied as well. As
far as the boundary conditions are concerned, at infinitely
large ρ our equations for u, v, w reduce to equations (1). By
inserting the value of D from equation (5a) into the second
of equations (5), we get

u = Aξ − 5
2
P 3

ρ6 ξ�Aξ
2 + Bη2 + Cζ2��7�

+ 5
2
P 5

ρ7 ξ�Aξ
2 + Bη2 + Cζ2�− P 5

ρ5Aξ:

(6)

We see that u vanishes for ρ = P . For reasons of symmetry,
the same holds for v and w. We have now demonstrated that
equations (5) satisfy equations (4) as well as the boundary
conditions of the problem.

It can also be demonstrated that equations (5) are the
only solution of equations (4) that is compatible with the
boundary conditions of our problem. The proof will only be
outlined here. Assume that in a finite region the velocity
components u, v, w of a liquid satisfy equations (4). If there
existed yet another solution U , V , W for equations (4) in
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which U = u, V = v, W = w at the boundaries of the region
in question, then �U −u, V −v, W −w� would be a solution
for equations (4) in which the velocity components vanish at
the boundary. Thus no mechanical work is supplied to the
liquid in the region in question. Since we have neglected the
kinetic energy of the liquid, it follows that in this volume
the work converted to heat is also zero. This leads to the
conclusion that in the entire space we must have u = u1,
v = v1, w = w1 if the region is at least partly bounded by
stationary walls.�8� By passing to the limit, this result can also
be extended to a case where the region is infinite, as in the
case considered above. One can thus show that the solution
found above is the only solution to the problem.

We now draw a sphere of radius R around point x0, y0,
z0, with R infinitely large compared to P , and calculate the
energy (per unit time) that is converted to heat in the liquid
inside the sphere. This energy W is equal to the mechanical
work done on the liquid. If Xn, Yn, Zn denote the compo-
nents of the pressure exerted on the surface of the sphere
of radius R, we have

W =
∫
�Xnu+ Ynv+ Znw�ds;

where the integral is to be extended over the surface of the
sphere of radius R. We have here

Xn = −
(
Xξ

ξ
ρ
+ Xηη

ρ
+ Xζ ζ

ρ

)
;�9�

Yn = −
(
Yξ
ξ
ρ
+ Yηη

ρ
+ Yζ ζ

ρ

)
;

Zn = −
(
Zξ

ξ
ρ
+ Zηη

ρ
+ Zζ ζ

ρ

)
;

52



DETERMINATION OF MOLECULAR DIMENSIONS

where

Xξ = p− 2kδu
δξ
; Yζ = Zη = −k

(
δv
δζ
+ δw
δη

)
;

Yη = p− 2kδv
δη
; Zξ = Xζ = −k

(
δw
δξ
+ δu
δζ

)
;

Zζ = p− 2kδw
δζ
; Xη = Yξ = −k

(
δu
δη
+ δv
δξ

)
:

The expressions for u, v, w become simpler if we take into
account that for ρ = R the terms with the factor P 5/ρ5 van-
ish in comparison to those with the factor P 3/ρ3. We have
to set 

u = Aξ − 5
2P

3 ξ�Aξ
2 + Bη2 + Cζ2�

ρ5 ;

v = Bη − 5
2P

3η�Aξ
2 + Bη2 + Cζ2�

ρ5 ;

w = Cζ − 5
2P

3 ζ�Aξ
2 + Bη2 + Cζ2�

ρ5 :

(6a)�10�

For p we obtain from the first of equations (5), by similar
neglect of terms,

p = −5kP 3Aξ
2 + Bη2 + Cζ2

ρ5 + const:�11�

Now we obtain

Xξ = −2kA+ 10kP 3Aξ
2

ρ5 − 25kP 3 ξ
2�Aξ2 + Bη2 + Cζ2�

ρ7

�12�

Xη = +10kP 3Aξη
ρ5 − 25kP 3η

2�Aξ2 + Bη2 + Cζ2�
ρ7

�13�

Xζ = +10kP 3Aξζ
ρ5 + 25kP 3 ζ

2�Aξ2 + Bη2 + Cζ2�
ρ7 ;
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and from this,

Xn = 2Akξ
ρ
− 10AkP 3 ξ

ρ4 + 25kP 3 ξ�Aξ
2 + Bη2 + Cζ2�

ρ6 :�14�

With the help of the expressions for Yn and Zn derived by
cyclic permutation, and ignoring all terms that contain the
ratio P/ρ in higher than the third power, we get�15�

Xnu+ Ynv+ Znw+ 2k
ρ
�A2ξ2 + B2η2 + C2ζ2�

−10kP
3

ρ4 �A
2ξ2 + :+ :�+ 20kP

3

ρ6 �Aξ
2 + :+ :�2:

If we integrate over the sphere and take into account that∫
ds = 4R2π;∫

ξ2 ds =
∫
η2 ds =

∫
ζ2 ds = 4

3πR
4;∫

ξ4 ds =
∫
η4 ds =

∫
ζ4 ds = 4

5πR
6;∫

η2ζ2 ds =
∫
ζ2ξ2 ds =

∫
ξ2η2 ds = 4

15πR
6;�16�∫

�Aξ2 + Bη2 + Cζ2�2 ds = 4
15πR

6�A2 + B2 + C2�;�17�

we get�18�

W = 8
3πR

3kδ2 − 8
3πP

3kδ2 = 2δ2k�V −8�; (7)

where we set

δ = A2 + B2 + C2;�19�

4
3πR

3 = V

and

4
3πP

3 = 8:
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If the suspended sphere were not present �8 = 0�, we would
obtain

W0 = 2δ2kV (7a)

for the energy dissipated in volume V . Thus, the presence
of the sphere decreases the energy dissipated by 2δ2k8. It
is noteworthy that the effect of the suspended sphere on the
quantity of energy dissipated is exactly the same as it would
be if the presence of the sphere did not affect the motion
of the liquid around it at all.�20�

2. Calculation of the Coefficient of Viscosity
of a Liquid in Which Very Many

Irregularly Distributed Small Spheres
Are Suspended

In the previous section we considered the case where, in
a region G of the order of magnitude defined earlier, a
sphere is suspended that is very small compared with the
region, and we investigated how this sphere affects the mo-
tion of the liquid. We are now going to assume that region
G contains innumerably many randomly distributed spheres
of equal radius, and that this radius is so small that the com-
bined volume of all of the spheres is very small compared
to the region G. Let the number of spheres per unit vol-
ume be n, where, up to negligibly small terms, n is constant
throughout the liquid.

Again, we begin with the motion of a homogeneous liquid
without any suspended spheres and consider again the most
general dilational motion. If no spheres are present, an ap-
propriate choice of the coordinate system will permit us to
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represent the velocity components u0, v0, w0 at an arbitrary
point x, y, z of G by the equations

u0 = Ax;
v0 = By;
w0 = Cz;

where

A+ B+ C = 0:

A sphere suspended at point xν, yν, zν will affect this mo-
tion in a way that is evident from equation (6).�21� Since
we are choosing the average distance between neighboring
spheres to be large compared to their radius, and conse-
quently the additional velocity components arising from all
the suspended spheres are very small compared to u0, v0,
w0, we obtain for the velocity components u, v, w in the
liquid, after taking into account the suspended spheres and
neglecting terms of higher orders,

u = Ax−∑


5
2
P 3

ρ2
ν

ξν�Aξ
2
ν + Bη2

ν + Cζ2
ν �

ρ3
ν

− 5
2
P 5

ρ4
ν

ξν�Aξ
2
ν + Bη2

ν + Cζ2
ν �

ρ3
ν

+ P 5

ρ4
ν

Aξν
ρν

;

v = By−∑


5
2
P 3

ρ2
ν

ην�Aξ
2
ν + Bη2

ν + Cζ2
ν �

ρ3
ν

− 5
2
P 5

ρ4
ν

ην�Aξ
2
ν + Bη2

ν + Cζ2
ν �

ρ3
ν

+ P 5

ρ4
ν

Bην
ρν

;

w = Cz−∑


5
2
P 3

ρ2
ν

ζv�Aξ
2
v + Bη2

ν + Cζ2
ν �

ρ3
ν

− 5
2
P 5

ρ4
ν

ζν�Aξ
2
ν + Bη2

ν + Cζ2
ν �

ρ3
ν

+ P 5

ρ4
ν

Cζν
ρν

 ;

(8)
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where the sum is to be extended over all spheres in the
region G and where we have set

ξν = x− xν;
ην = y − yν;
ζν = z− zν;

ρν =
√
ξ2
ν + η2

ν + ζ2
ν :

xν, yν, zν are the coordinates of the centers of the spheres.
Furthermore, from equations (7) and (7a) we conclude that,
up to infinitesimally small quantities of higher order, the
presence of each sphere results in a decrease of heat pro-
duction by 2δ2k8 per unit time�22� and that the energy con-
verted to heat in region G has the value

W = 2δ2k− 2nδ2k8

per unit volume, or

W = 2δ2k�1− ϕ�; (7b)

where ϕ denotes the fraction of the volume that is occupied
by the spheres.

Equation (7b) gives the impression that the coefficient of
viscosity of the inhomogeneous mixture of liquid and sus-
pended spheres (in the following called “mixture” for short)
is smaller than the coefficient of viscosity k of the liquid.�23�

However, this is not so, since A, B, C are not the values
of the principal dilations of the liquid flow represented by
equations (8); we will call the principal dilations of the mix-
ture A∗, B∗, C∗. For reasons of symmetry, it follows that the
directions of the principal dilations of the mixture are par-
allel to the directions of the principal dilations A, B, C, i.e.,
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to the coordinate axes. If we write equations (8) in the form

u = Ax+∑uν;

v = By +∑ vν;

z = Cz+∑wν;

we get

A∗ =
(
δu
δx

)
x=0
= A+∑(

δuv
δx

)
x=0
= A−∑(

δuv
δxv

)
x=0
:

If we exclude the immediate surroundings of the individual
spheres, we can omit the second and third terms in the
expressions for u, v, w and thus obtain for x = y = z = 0:

uν = − 5
2
P 3

r 2
ν

xν�Ax
2
ν + By2

ν + Cz2
ν�

r 3
ν

;

vν = − 5
2
P 3

r 2
ν

yν�Ax
2
ν + By2

ν + Cz2
ν�

r 3
ν

;

wν = − 5
2
P 3

r 2
ν

x�Ax2
ν + By2

ν + Cz2
ν�

r 3
ν

;

(9)�24�

where we have set

rν =
√
x1
ν + y2

ν + z2
ν > 0:

We extend the summation over the volume of a sphere K
of very large radius R whose center lies at the coordinate
origin. Further, if we consider the irregularly distributed
spheres as being uniformly distributed and replace the sum
with an integral, we obtain�25�

A∗ = A− n
∫
K

δuν
δxν

dxν dyν dzν;

= A− n
∫ uνxν

rν
ds;
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where the last integral extends over the surface of the sphere
K. Taking into account (9), we find that

A∗ = A− 5
2
P 3

R6n
∫
x2

0�Ax
2
0 + By2

0 + Cz2
0� ds;

= A− n( 4
3P

3π
)
A = A�1− ϕ�:

Analogously,

B∗ = B�1− ϕ�;
C∗ = C�1− ϕ�:

If we set

δ∗2 = A∗2 + B∗2 + C∗2;�26�

then, neglecting infinitesimally small terms of higher order,

δ∗2 = δ2�1− 2ϕ�:

For the heat developed per unit time and volume, we
found�27�

W ∗ = 2δ2k�1− ϕ�:
If k∗ denotes the coefficient of viscosity of the mixture, we
have

W ∗ = 2δ∗2k∗:

The last three equations yield, neglecting infinitesimal quan-
tities of higher order,

k∗ = k�1+ ϕ�:�28�

Thus we obtain the following result:
If very small rigid spheres are suspended in a liquid, the

coefficient of viscosity increases by a fraction that is equal to
the total volume of the spheres suspended in a unit volume,
provided that this total volume is very small.�29�
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3. On the Volume of a Dissolved Substance
Whose Molecular Volume Is Large
Compared to That of the Solvent

Consider a dilute solution of a substance that does not dis-
sociate in the solution. Let a molecule of the dissolved sub-
stance be large compared to a molecule of the solvent and
be considered as a rigid sphere of radius P . We can then
apply the result obtained in section 2. If k∗ denotes the co-
efficient of viscosity of the solution and k that of the pure
solvent, we have

k∗
k
= 1+ ϕ;

where ϕ is the total volume of the molecules per unit volume
of the solution.�30�

We wish to calculate ϕ for a 1% aqueous solution of
sugar. According to Burkhard’s observations (Landolt and
Börnstein’s Tables), k∗/k = 1:0245 (at 20◦C) for a 1% aque-
ous sugar solution, hence ϕ = 0:0245 for (almost exactly)
0.01 g of sugar. Thus, one gram of sugar dissolved in water
has the same effect on the coefficient of viscosity as do small
suspended rigid spheres of a total volume of 2.45 cm3.�31�

This consideration neglects the effect exerted on the viscos-
ity of the solvent by the osmotic pressure resulting from the
dissolved sugar.

Let us remember that 1 g of solid sugar has a volume
of 0.61 cm3. This same volume is also found for the spe-
cific volume s of sugar in solution if one considers the sugar
solution as a mixture of water and sugar in dissolved form.
I.e., the density of a 1% aqueous sugar solution (relative to
water of the same temperature) at 17:5◦ is 1.00388. Hence
we have (neglecting the difference between the density of
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water at 4◦ and at 17:5◦�

1
1:00388

= 0:99+ 0:01 s;

and thus

s = 0:61:

Thus, while the sugar solution behaves like a mixture of
water and solid sugar with respect to its density, the effect on
viscosity is four times larger than what would result from the
suspension of the same amount of sugar.�32� It seems to me
that, from the point of view of molecular theory, this result
can only be interpreted by assuming that a sugar molecule in
solution impedes the mobility of the water in its immediate
vicinity, so that an amount of water whose volume is about
three times larger than the volume of the sugar molecule is
attached to the sugar molecule.�33�

Hence we may say that a dissolved molecule of sugar
(i.e:, the molecule together with the water attached to it)
behaves hydrodynamically like a sphere with a volume of
2:45 · 342/N cm3, where 342 is the molecular weight of
sugar and N is the number of actual molecules in one gram-
molecule.�34�

4. On the Diffusion of an Undissociated
Substance in a Liquid Solution

Let us consider a solution of the kind discussed in section 3.
If a force K acts upon a molecule, which we assume to be a
sphere with radius P , the molecule will move with a velocity
ω, which is determined by P and the coefficient of viscosity
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k of the solvent. Indeed, the following equation holds:3

ω = K
6πkP

: (1)

We use this relation to calculate the coefficient of diffu-
sion of an undissociated solution. If p is the osmotic pres-
sure of the dissolved substance, the only motion-producing
force in such a dilute solution, then the force acting on the
dissolved substance per unit volume of solution in the di-
rection of the X-axis equals −δp/δx. If there are ρ grams
per unit volume, and m is the molecular weight of the dis-
solved substance and N the number of actual molecules
in one gram-molecule, then �ρ/m� · N is the number of
(actual) molecules per unit volume, and the force exerted
on a molecule by virtue of the concentration gradient is

K = − m
ρN

δp

δx
: (2)

If the solution is sufficiently dilute, the osmotic pressure is
given by the equation:

p = R
m
ρT; (3)

where T is the absolute temperature and R = 8:31 · 107.
From equations (1), (2), and (3) we obtain for the migration
velocity of the dissolved substance

ω = − RT
6πk

1
NP

1
ρ
δρ
δx
: (4)

3 G. Kirchhoff, Vorlesungen über Mechanik, 26. Vorl. (Lectures on Me-
chanics, Lecture 26), equation (22).
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Finally, the amount of the substance passing per unit time
through a unit cross section in the direction of the X-axis is

ωρ = − RT
6πk
· 1
NP

δρ
δx
:

Hence, we obtain for the coefficient of diffusion D

D = RT
6nk
· 1
NP

:�35�

Thus, from the coefficients of diffusion and viscosity of the
solvent we can calculate the product of the number N of ac-
tual molecules in one gram-molecule and the hydrodynam-
ically effective molecular radius P .

In this derivation the osmotic pressure has been treated as
a force acting on the individual molecules, which obviously
does not agree with the viewpoint of the kinetic molecular
theory; since in our case—according to the latter—the os-
motic pressure must be conceived as only an apparent force.
However, this difficulty disappears when one considers that
the (apparent) osmotic forces that correspond to the concen-
tration gradients in the solution may be kept in (dynamic)
equilibrium by means of numerically equal forces acting on
the individual molecules in the opposite direction, which can
easily be seen by thermodynamic methods.

The osmotic force acting on a unit mass − 1
ρ
δp
δx can be

counterbalanced by the force −Px (exerted on the individual
dissolved molecules) if

−1
ρ

δp

δx
− Px = 0:

Thus, if one imagines that (per unit mass) the dissolved
substance is acted upon by two sets of forces Px and −Px
that mutually cancel out each other, then −Px counterbal-
ances the osmotic pressure, leaving only the force Px, which
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is numerically equal to the osmotic pressure, as the cause
of motion. The difficulty mentioned above has thus been
eliminated.4

5. Determination of Molecular
Dimensions with the Help of the

Obtained Relations

We found in section 3 that

k∗
k
= 1+ ϕ = 1+ n · 4

3πP
3;�36�

where n is the number of dissolved molecules per unit vol-
ume and P is the hydrodynamically effective radius of the
molecule. If we take into account that

n
N
= ρ
m
;

where ρ denotes the mass of the dissolved substance per
unit volume and m its molecular weight, we get

NP 3 = 3
4π

m
ρ

(
k∗
k
− 1

)
:�37�

On the other hand, we found in section 4 that

NP = RT
6πk

1
D
:

These two equations enable us to calculate separately the
quantities P and N , of which N must be independent of
the nature of the solvent, the dissolved substance, and the
temperature, if our theory agrees with the facts.

4 A detailed presentation of this line of reasoning can be found in Ann.
d. Phys. 17 (1905): 549. [See also this volume, paper 2, p. 86.]
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We will carry out the calculation for an aqueous solution
of sugar. From the data on the viscosity of the sugar solution
cited earlier, it follows that at 20◦C,

NP 3 = 200:�38�

According to the experiments of Graham (as calculated by
Stefan), the diffusion coefficient of sugar in water is 0.384 at
9:5◦C, if the day is chosen as the unit of time. The viscosity
of water at 9:5◦ is 0.0135. We will insert these data in our
formula for the diffusion coefficient, even though they have
been obtained using 10% solutions, and strict validity of our
formula cannot be expected at such high concentrations. We
obtain

NP = 2:08 · 1016:

Neglecting the differences between the values of P at 9:5◦

and 20◦, the values found for NP 3 and NP yield

P = 9:9 · 10−8 cm;
N = 2:1 · 1023:

The value found for N shows satisfactory agreement, in
order of magnitude, with values found for this quantity by
other methods.�39�

(Bern, 30 April 1905)

editorial notes
�1�A factor k is missing on the right-hand side of the last equation in this

line; this error is corrected in Albert Einstein, “Eine neue Bestimmung
der Moleküldimensionen,” Ann. d. Phys. 19 (1906), pp. 289–305, cited
hereafter as Einstein 1906. Note that δ

δ denotes partial differentiation(
modern ∂

∂

)
.
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�2�The denominator on the right-hand side should be δξ2; this error is
corrected in ibid.

�3�The denominator of the first term on the right-hand side should be
δξ2; this error is corrected in ibid. A reprint of this article in the Einstein
Archive shows marginalia and interlineations in Einstein’s hand, the first
of which refer to this and the following equation. The term “+g 1

ρ ” was
added to the right-hand side of the equations for V and then canceled.
These marginalia and interlineations are presumably part of Einstein’s
unsuccessful attempt to find a calculational error; see note 13 below.

�4�The equation for u′ should be, as corrected in ibid., u′ = −2c δ
1
ρ
δξ .

In the reprint mentioned in note 3, the first derivative with respect to
ξ was changed to a second derivative and then changed back to a first
derivative. At the bottom of the page, the following equations are written:

b = −1/12 P 5a

c = −5/12 P 3a

g = 2/3 P 3a:

�5�The numerator of the last term in the curly parentheses should be
“δ2�1/ρ�,” as corrected in ibid.

�6� δn
δξ should be δp

δξ , as corrected in Einstein, Untersuchungen über die
Theorie der ‘Brownschen Bewegung’ (ed. Reinhold Fürth. Ostwald’s Klas-
siker der exakten Wissenschaften, no. 199. Leipzig: Akademische Verlags-
gesellschaft, 1922); cited hereafter as Einstein 1922.

�7�The factor preceding the first parenthesis should be, as corrected in
Einstein 1906,

−5/2P
3

ρ5
:

�8�The equations should be u = U , v = V , w = W .
�9�Xξ, Xη, Xζ should be Xξ , etc., as corrected in Einstein 1906.
�10�In Einstein’s reprint (see note 3), the term + 5

6 P
3 Aξ
ρ3 is added to the

right-hand side of the first equation. After the last terms of the second
and third equations, series of dots are added. These interlineations are
presumably related to the marginal calculations indicated in note 3.

�11�In Einstein’s reprint (see note 3), the term +5 k P 3 1
ρ3 is added to the

right-hand side of this equation. This interlineation is presumably related
to the marginal calculations referred to in note 3.
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�12�In Einstein’s reprint (see note 3), the term − 5
3 k P

3 A
(

1
ρ3 − 9 ξ

ρ5

)
is

added to the right-hand side of this equation. This addition is presumably
related to the marginal calculations referred to in note 3.

�13�This equation and the subsequent one are incorrect. Apart from
minor errors, they contain a calculational error bearing on the numerical
factors. In Einstein 1906, +25 in front of the last term in the equation for
Xζ is changed to −25. In Einstein’s reprint (see note 3), the factor ζ2 in
the last term on the right-hand side of this equation is corrected to ξζ , and
the factor η2 in front of the parenthesis in the last term on the right-hand
side of the equation for Xη is corrected to ξη. The calculational error that
is also contained in these equations, and some of its consequences, are
corrected in “Berichtigung zu meiner Arbeit: ‘Eine Neue Bestimmung
der Moleküldimensionen,’ ” Collected Papers, vol. 3, doc. 14, pp. 416–
417. The corrections are integrated into the text of the reprint of this
paper in Einstein 1922. The correct equations are:

Xη = +5kP 3 �A+ B�ξη
ρ5

−25kP 3 ξη�Aξ
2 + Bη2 + Cζ2�

ρ7

Xζ = +5kP 3 �A+ C�ξζ
ρ5

−25kP 3 ξζ�Aξ
2 + Bη2 + Cζ2�

ρ7
:

�14�−10 should be replaced by −5 and 25 by 20 (see previous note).
�15�The third + sign should be replaced by = as corrected in Einstein

1922. −10 should be replaced by −5, and 20 by 15 (see note 13).
�16�In Einstein’s reprint (see note 3), the factor 4/15 was changed to

8/15 and then changed back to 4/15.
�17�4/15 should be replaced by 8/15 as corrected in Einstein’s reprint

(see note 3).
�18�This equation should be (see note 13):

W = 8/3πR3kδ2 + 4/3πP 3kδ2

= 2δ2k�V +8/2�:
�19�δ should be δ2. This correction is made in Einstein’s reprint (see

note 3).
�20�It follows from the correction to eq. (7) that the dissipated energy

is actually increased by half this amount. The statement in the text is only
partially corrected in Einstein 1922; the amount is correctly given but still
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described as a diminution. The final sentence of this paragraph, which no
longer applies to the corrected calculation, is omitted from Einstein 1922.

�21�The point should be denoted by xν, yν, zν, as corrected in Ein-
stein 1906.

�22�The heat production per unit time is actually increased by δ2k8.
The correct equations are thus (see note 13): W = 2δ2k + nδ2k8, and
W = 2δ2k�1+ φ/2�.

�23�The following two sentences are revised in Einstein 1922: “In order
to calculate from equation (7b) the coefficient of friction of an inhomo-
geneous mixture of fluid and suspended spheres (in the following called
‘mixture’ for short) that we are examining, we must further take into con-
sideration that A, B, C are not values of the principal dilations of the
motion of fluid represented in equation (8); we want to designate the
principal dilations of the mixture as A∗, B∗, C∗.”

�24�In this and the following two equations, the sign after = should be
+; the third equation should have zν instead of x in the numerator; the
latter correction is made in Einstein 1906.

�25�The factor in front of the second term in the first equation is 5/2
(see ibid.). In deriving the second equation, Einstein used the equations
in the middle of p. 54 and the fact that A+ B+ C = 0.

�26�In Einstein’s reprint (see note 3), = A2 + B2 + δ2�1− 2ϕ� is added
to the right-hand side of this equation and then crossed out.

�27�The correct equation is (see note 13): W ∗ = 2δ2k�1+ ϕ/2�.
�28�The correct equation is (see note 13): k∗ = k�1+ 2:5ϕ�.
�29�The fraction is actually 2.5 times the total volume of the suspended

spheres (see note 13).
�30�The correct equation is (see note 13): k∗/k = 1+ 2:5ϕ.
�31�The correct value is 0.98 cm3 (see note 13). The following sentence

is omitted in Einstein 1906.
�32�The viscosity is actually one and one-half times greater (see note 13).
�33�The quantity of water bound to a sugar molecule has a volume that

is actually one-half that of the sugar molecule (see note 13). The existence
of molecular aggregates in combination with water was debated at that
time.

�34�The volume of the sphere is actually 0:98 ·342/N cm3 (see note 13).
�35�The first denominator should be 6πk, as corrected in Einstein 1906.

This equation was obtained independently by William Sutherland in 1905
by a similar argument. The idea to use this formula for a determination
of molecular dimensions may have occurred to Einstein as early as 1903.
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�36�The correct equation is (see note 13): k∗/k = 1 + 2:5ϕ = 1 +
2:5n 4/3πP 3.

�37�The correct equation has an additional factor 2/5 on the right-hand
side (see note 13).

�38�For the experimental data, see p. 60. The correct value is 80 (see
note 13).

�39�The values obtained by using the correct equations (see Einstein
1922) are P = 6:2 10−8 cm; and N = 3:3 1023 (per mole).
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