
The Change-Making Problem 

J. W. WRIGHT 

Unwers~ty of Manchester Institute of Science and Technology, Manchester, England 

ABSTRACT. A cashier has a number of coins of different denominatmns at his disposal and wishes 
to make a selection, using the least number of corns, to meet a g~ven total The solution given here 
employs dynamic programming Suggestions are made which reduce the volume of computation re- 
quired m handling the recurmve equatmns The method can be apphed to the one-dimensional cargo- 
loading and stock-cutting problem, and ~t can be extended to the two-dimensional problem. 

KEY WORDS AND PHRASES change-making, dynamic programming, knapsack problem, cargo loading 
problem 

CR CATEGORIES 5 41, 5.42 

1. Introduction 

The change-making problem may arise in the following way. A cashier has a number of 
coins of different denominations at his disposal and wishes to make a selection, using the 
least number of coins, to meet a given total. I t  is assumed that  the number of coins 
available in each denomination is not hmited. 

An algorithmic solution to this problem appeared in [1], but  an alternative method is 
proposed here which is obtained by the use of dynamic programming. The change-making 
problem is a special case of the one-dimensional cargo-loading problem [2], often referred 
to as the knapsack problem. I t  has been used with linear programming in the solution of 
the trim-loss-cutting problem. 

In the general case each item carries a utility value, but in the change-making problem 
these values are made equal to unity, which ensures that  the variable to be minimized 
will be the total number of coins. 

This paper suggests an improvement in the computational efficiency in solving the 
problem, which also may be readily extended to the more general case. 

2. Formulatzon 

An unlimited number of coins of denominations w,, w2, - . .  , w~ are made available. For 
convenience ~i thout  loss of generality, these may be ordered so that  w, < w~ < w~ < 
- '  < wn. 

Assuming that  x~ coins of denominations w~ are selected to meet a totM C, the problem 
to be solved then becomes' 

Minimize Z = ~ x,, z = 1, 2, . . .  , n, 
~=1 

subject to ~ w,x~ = C, 

x~ > 0 and integer. 

Copyright (~) 1975, Association for Computing Machinery, Inc General permission to republish, 
but not for profit, all or part of this material is granted provided that ACM's copyright notice is 
given and that reference is made to the pubhcatlon, to Its date of issue, and to the fact that reprinting 
privileges were granted by permission of the Assoclatlon for Computing Machinery. 
Author's address. Department of Management Sciences, University of Manchester Institute of Sci- 
ence and Technology, P. O Box 88, Manchester, M60, 1QD, England 

Journal of the  Assomatmn for Computing Machinery, Vol 22, No 1, January 1975, pp 125-128 



126 J . w .  WRIGHT 

3. ,Solution by Dynamic Programming 

The recursive equations for solving this problem may be written as 

f~ ( z )  = min(x~ + f~_l(z  - xN.w~)) ,  (1) 

where xN is allowed to range over the values 0, 1, 2, • • • , [z/wN], and where [Z/WN] is the 
greatest integer less than or equal to z/wN. For N = 1, f l ( z )  = [z/wl]. N is thus the num- 
ber of stages in the multistage decision process such that, in turn, N = 1, 2, . . .  , n, 
where n is the number of different types of coin. 

A~ each stage z is ranged from 0 to C in incremental steps, where C is the total  sum to 
which the change must be totaled. To illustrate the use of this and later modified equa- 
tions, values in [1] where n = 5, w, = ( 1 , 4 , 5 , 6 , 7 ) ,  and C = 352, will be employed. 

Thus the range of XN at stage N = 3 (item 3) with Wa = 5 requires at z = 18 the 
selection of the minimum value from 

0 + f2(18), 1 + J~(13), 2 + f~(8), 3 + f~(3). 

This revolves the calculation of four values and comparison of them to select the mini- 
mum value. 

The number of calculations may be reduced to one with one comparison by replacing 
eq. (1) by the following: 

f~ ( z )  = min(f~_l(z), 1 + f~(z  - wN), (2) 

provided f~(z  - WN) has previously been optimized. Since both z and w~ are positive, 
(z - w~) will be less than z, which permits the earlier optimization. 

Table I illustrates the process using the value in [1]. 
I t  will be observed that  the calculations at each stage s need not proceed beyond the 

point where z = w, X w,+~. Since w, coins of value w,+l will match, in total, W,+s coins 
of value w,, the former requires fewer coins. 

z will be allowed to range from 0 to C, which in large problems may result in a severe 
coraputational problem. I t  should be noted, however, that  a computer program could 

T A B L E  I SECTION OF TABLE SHOWING VALUES OF fN(Z) FOR FIVE ITEMS 

Item 

l 2 3 4 5 

f~(z)  i + f , ( z  - , )  f~(z) ~ + f , (~  - s )  f , ( z )  1 + f , ( z  - 6) /,(~) 1 + f ~ ( ~  - 7) fs(~) 

0 0 0 0 0 0 
1 1 1 1 1 1 
2 2 2 2 2 2 
3 3 3 3 3 3 
4 4 1 + 0 = 1  1 1 1 1 
5 1 + 1 = 2  2 1 + 0 = 1  1 1 1 
6 1 + 2 = 3  3 1 + 1 = 2  2 1 + 0 = 1  1 1 
7 1 + 3 = 4  4 1 + 2 = 3  3 1 + 1 = 2  2 1 + 0 = 1  1 
8 1 + 1 = 2  2 1 + 3 = 4  2 1 + 2 = 3  2 1 + 1 = 2  2 
9 1 + 2 = 3  3 1 + 1 = 2  2 1 + 3 = 4  2 1 + 2 = 3  2 

10 1 + 3 = 4  4 1 + 1 = 2  2 1 + 1 = 2  2 1 + 3 = 4  2 
11 1 + 4 = 5  5 1 + 2 = 3  3 1 + 1 = 2  2 1 + 1 = 2  2 
12 1 + 2 = 3  3 1 + 3 = 4  3 1 + 1 = 2  2 1 + 1 = 2  2 
13 1 + 3  = 4  4 1 + 2 = 3  3 1 + 2 = 3  3 1 + 1 = 2  2 
14 1 + 4 = 5  5 1 + 2 = 3  3 1 + 2 = 3  3 1 + 1 = 2  2 
15 1 + 5 = 6  6 1 + 2 = 3  3 1 + 2 =  3 
16 1 + 3 = 4  4 1 + 3 = 4  4 
17 1 + 4 = 5  5 1 +  
18 1 + 5 = 6  6 
19 1 + 6  



The Change-Making Problem 127 

take advantage of the fact tha t  each value of w, at  each stage can be used as an address 
modifier to extract the appropriate  value of f~. 

Again, z would range in the usual dynamic program formulation over the values 0 to C 
at  each of the n stages, resulting in n- C calculations and comparisons, the opt imum value 
off~ being stored at  each stage to be available at  the next. 

The following modification will considerably reduce the volume of computation. 

4. A n  Improved Method 

Instead of having z range from 0 to C in each of the n stages, i t  is advantageous to re- 
verse this procedure by having N range from i to n for each value of z, as Table I I  shows. 

The opt imum value of f* is obtained from the equation 

f*(z) = rain f*(z  - w,)  + 1, ~ -- 1, 2, . . .  , n. (3) 

I t  should be noted tha t  intervening values of fN need not  be stored, although for explana- 
tory purposes they are included in Table I I .  

I t  may also be observed that  the table terminates at  the value z = 17, assuming m this 
case that  al ternative optima are not required. The circled entries are those values that  
have the highest value of w~ whmh are used to determine f*(z).  Whereas in the case of 
i tem 4, the preceding w~ ( = 6) entries are not circled in this sense, it is apparent  that  
such an item can, for subsequent values of z, no longer contribute to the opt imum and the 
calculation may be terminated for that  item. When this condition arrives in the case of 
the penultimate 1tern the table may be closed. I t  is then a simple calculation to derive the 
residual number of coins required for the last item. 

5. Decoding the Result and Conclusion 

To keep t rack of the patterns, a column headed "decode" may be appended, which con- 
tains the 1tern number of the circled entry. Using this value as an address modifier, the 
pat tern  of items representing the opt imum is easily ascertained. 

Where al ternative optima are reqmred, modification of the rules requiring closure of 
an item will be necessary, but  they present no difficulty. The decode column would then 
require some listing procedure, with the address of the start ing position for each value 
of z being stored in the decode column. 

TABLE I I  DI,.RIVATION Or f*(N) 

z 1 2 3 4 5 ]*(z) Decode 

0 0 0 0 
1 1 1 1 
2 2 2 1 
3 3 3 I 
4 4 ® i 2 
5 close 2 (~) 1 3 
6 3 2 O 1 4 
7 4 3 2 O 1 5 
8 close 4 3 O 2 5 
9 Q 4 3 2 3 

10 2 (~) 4 2 4 
11 2 2 (~) 2 5 
12 2 2 Q 2 5 
13 3 2 (~) 2 5 
14 3 3 (~) 2 5 
15 close 3 (~) 3 5 
16 3 (~) 3 5 
17 close 



128 J, w .  WRIGHT 

Modification of eq. (2) to accommodate the knapsack problem requires the substitu- 
tion of v~ for the value of 1, where v, is the value of the item. This again presents no 
difficulty. 

Extension to the two-dimensional number can also be effected. 

R E F E R E N C E S  

1 CHANG, S K. ,  AND GILL, A Algori thmic  solution of the  change -making  problem. J. ACM 17, 
1 (Jan 1970), 113-122 

2 BELLMAN, R E ,  AND DREYFUS, S E AppltedDynarmc Programming Princeton  U Press,  1962. 

RECEIVED DECEMBER 1973, REVISED FEBRUARY 1974 

Journal of the Assoclahon for Con~putmg Machinery, Vol 22, No l, January 1975 


