
Nathan Egge <negge@mozilla.com>
81st JPEG Meeting - Vancouver, BC

October 14, 2018

Slides: https://xiph.org/~negge/AVIF2018.pdf

AV1 Image File Format (AVIF)

https://xiph.org/~negge/AVIF2018.pdf

North America Internet Traffic

82% of Internet traffic by 2021 Cisco Study
2

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

Goals of the Alliance:
● Produce a video codec for a broad set of industry use cases

○ Video on Demand / Streaming
○ Video Conferencing
○ Screen sharing
○ Video game streaming
○ Broadcast

● Open Source and Royalty Free
● Widely supported and adopted
● At least 30% better than current generation video codecs

Alliance for Open Media (AOM)

3

AOM Members

4

AOM Members / Browsers

5

● New high-level syntax
○ Easily parsed sequence header, frame header, tile header, etc

● New adaptive multi-symbol entropy coding
○ Up to 16 possible values per symbol

● New coefficient coder
○ LV-MAP exploits multi-symbol arithmetic coder

● More block sizes
○ Prediction blocks from 128x128 down to 4x4

■ Rectangular blocks
● 1:2 and 2:1 ratios (4x8, 8x4, etc)
● 1:4 and 4:1 ratios (4x16, 16x4, etc)

○ Transform sizes from 64x64 down to 4x4
■ Includes rectangular transforms 1:2, 2:1 and 1:4, 4:1 ratios

● More transform types
○ 16 possible transform types

■ Row and column chosen from: IDTX, DCT, DST, ADST
● More references

○ Up to 7 per frame (out of a store of 8)
● Spatial and temporal scalability
● Lossless mode
● Chroma subsampling

○ 4:4:4, 4:2:2, 4:2:0, monochrome

AV1 Coding Tools Overview
● More prediction modes

○ Intra
■ 8 main directions plus delta for up to 56 directions
■ Smooth HV modes interpolate across block
■ Palette mode with index map up to 8 colors
■ Chroma from Luma intra predictor
■ Intra Block Copy

○ Inter
■ Expanded reference list (up to 7 per frame)
■ Allow ZEROMV predictor, which isn’t always (0,0)
■ Compound mode

● Inter-Intra prediction
○ Depends on difference between pixel prediction
○ Smooth blending limited to certain intra modes

● Wedge codebook (Inter-Inter, or Inter-Intra)
■ Warped motion local affine model with neighbors
■ Global motion affine model across entire frame

● Loop filtering
○ Deblocking filter
○ Constrained Directional Enhancement Filter
○ Loop restoration

● Film grain synthesis

Full AV1 Specification: https://aomediacodec.github.io/av1-spec/ 6

https://aomediacodec.github.io/av1-spec/

Main
● 8-bit and 10-bit
● 4:0:0 and 4:2:0 chroma subsampling

High
● 8-bit and 10-bit
● 4:0:0, 4:2:0 and 4:4:4 chroma subsampling

Professional
● 8-bit, 10-bit and 12-bit
● 4:0:0, 4:2:0, 4:2:2 and 4:4:4 chroma subsampling

Profiles

7

For a given sequence, place limits on:
● frame size (width and height)
● maximum picture size (area in samples)
● maximum display rate (samples per second)
● maximum decode rate (samples per second)
● average rate (Mbits per second)
● high rate (Mbits per second)
● maximum number of tiles
● maximum number of tile columns

Levels

8

High Level Syntax

Sequence Header

Frame Header

Tile Group

Tile Tile

Tile Group

Tile Tile

9

● Colorspace, color matrix, transfer functions, etc. can be encoded directly in
the bitstream
○ Chroma siting and levels too

● HDR metadata can be added through the Metadata OBU syntax

Colors and HDR

10

Codecs 101

Prediction Transform Quantization Entropy Coding

Loop Filter

11

● Arithmetic Range Coder
● Code both binary symbols and multi-symbols

○ Alphabet sizes up to 16
● Improve EC throughput with high rate streams

○ Instead of 1 bit per cycle, decode up to 4
● Use 8x9 -> 17 bit multiples when coding

○ 15-bit CDFs shifted down before multiply
○ Adaptation still occurs with 15-bit precision

● Fast adaptation mode for first few symbols

Multi-Symbol Entropy Coder

A DB

10 N = 0.4

C

A 0/1

0/1

B 0/1

C D

0 1

0 1

0 1

12

VP9 has two types: DCT and ADST
● Chosen independently for horizontal / vertical directions
● Signaled once per prediction block

AV1 has four types:
● DCT
● ADST
● FlipADST (mirror image of ADST)
● Identity (no transform)

Still chosen independently for horizontal / vertical directions
● Total of 16 possible combinations
● Not all combinations allowed in all contexts (e.g., no FlipADST for intra)

Signaled once per transform block

Transform Types

13

10 different splitting modes

● Last (4-way) split is recursive

Prediction Block Structure

14

Signaling mostly unchanged from VP9
● One transform size per prediction block
● For rectangular prediction blocks, largest rectangular transform that fits

allowed, e.g., 1:2, 2:1, 1:4 and 4:1 ratio transform blocks
● Transform sizes go up to 64x64

○ Only upper left 32x32 region allowed to
be non-zero

Transform Block Sizes: Intra

15

Signaling completely different from VP9
● Four way quad tree splitting
● For rectangular prediction blocks, largest rectangular transform that fits also

allowed
● Available sizes same as intra

Transform Block Sizes: Inter

16

● More directional modes
○ 8 main directions plus delta for up to 56 directions
○ Not all modes available at smaller sizes

● Smooth H + V modes
○ Smoothly interpolate between values in left column (resp. above row) and last value in above

row (resp. left column)
● Intra filter modes
● Paeth predictor mode
● Palette mode

○ Color index map with up to 8 colors
○ Separate palettes for Y, U and V planes
○ Palette index coded using context model for each pixel in the block
○ Pixels predicted in ‘wavefront’ order to allow parallel computation

● Intra Block Copy
● Chroma from Luma

Intra Prediction Modes

17

● Predict chroma channel based on decoded luma
○ Encoder signals best correlation constants: αcb and αcr

● Good for screen content or scenes with fast motion

Chroma from Luma Intra Prediction

αCb-αCb

αcr

-αcr 18

Chroma from Luma Algorithm

Subsample Average

Reconstructed
Luma Pixels

Transform-Sized
Averages (Q3)

Signaled Scaling Factor α (Q3)

DC_PRED (Q0)

Scaled Values (Q0)

CfL Prediction

Contribution to the AC
(in the spatial domain)

19

20

UV Mode Selection Example (https://goo.gl/6tKaB8)

CFL_PRED 17%

DC_PRED 44.36%

SMOOTH_PRED 4.85%

TM_PRED 7.98%

Ohashi0806shield.y4m
QP = 55

https://goo.gl/6tKaB8

21

Awesome for Gaming (Twitch dataset)

https://arewecompressedyet.com/?job=no-cfl-twitch-cpu2-60frames%402017-09-18T15%3A39%3A17.543Z&job=cfl-inter-twitch-cpu2-60frames%402017-09-18T15%3A40%3A24.181Z

BD-Rate (%)

PSNR PSNR-HVS SSIM CIEDE20001 PSNR Cb PSNR Cr MS SSIM

Average -1.01 -0.93 -0.90 -5.74 -15.55 -9.88 -0.81

BD-Rate (%)

PSNR PSNR-HVS SSIM CIEDE20001 PSNR Cb PSNR Cr MS SSIM

Minecraft -3.76 -3.13 -3.68 -20.69 -31.44 -25.54 -3.28
GTA V -1.11 -1.11 -1.01 -5.88 -15.39 -5.57 -1.04

Starcraft -1.41 -1.43 -1.38 -4.15 -6.18 -6.21 -1.43

Notable Mentions

Minecraft
MINECRAFT_10_120f.y4m

GTA V
GTAV_0_120f.y4m

Starcraft
STARCRAFT_10_120f.y4m

https://arewecompressedyet.com/?job=no-cfl-twitch-cpu2-60frames%402017-09-18T15%3A39%3A17.543Z&job=cfl-inter-twitch-cpu2-60frames%402017-09-18T15%3A40%3A24.181Z

● Each frame has a list of 7 previous frames to reference (out of a pool of 8)
○ Can reference non-displayed frames, so many possible structures

● Construct list of top 4 MVs for a given reference / reference pair from
neighboring area

● Complicated entropy coding scheme

Motion Vector Coding

22

(½, ½) weights like VP9
Inter-inter compound segment
● Pixel weights depend on difference between prediction pixels

Inter-intra gradual weighting
● Smoothly blends from inter to intra prediction
● Only a limited set of intra modes allowed (DC, H, V, Smooth)

Wedge codebook (inter-inter or inter-intra)

Compound Prediction

23

● Defines up to a 6-parameter affine model for the whole frame (translation,
rotation and scaling)

● Blocks can signal to either use the global motion vector or code a motion
vector like normal
○ If global motion isn’t used, default is 0,0

Global Motion

24

● Use neighboring blocks to define same motion model within a block
○ Decomposed into two shears with limited range

■ Similar complexity to subpel interpolation

Warped Motion

25

● Up to 8 possible segment labels (3 bits)
○ Value set per label, e.g., filter strength, quantizer, reference frame, skip
○ Signaled per prediction block, down to 8x8

● Can either predict segment ID temporally or spatially (chosen per frame)
○ Spatial prediction

■ Useful to change quantizer/loop filter strength
■ Useful for adaptive quantization, e.g., for activity masking

○ Temporal prediction
■ Useful for predicting temporal properties, e.g., skip
■ Useful for temporal RDO, e.g., MB-tree

Segmentation IDs

26

● Exploit spatial prediction of segment IDs

● Use higher quantizer in regions with more activity
○ 8 possible segment IDs, each can have a different quantizer

● Can do in one-pass or two-pass over the frame (like rate control)

Activity Masking

27

● Exploit temporal prediction of segment IDs

● Run look-ahead and encode down-sampled version of input
○ Trace motion vectors to find parts of the video that are highly coherent
○ Cap rate for a GOP structure and allocate bits to improve overall quality

● Can use choices to inform search at full frame size
○ limit block size, transform type, motion search, compound modes, etc.

Temporal RDO (e.g., MB-tree)

28

● Similar to what is in VP9
● Changed the order edges are filtered to make hardware easier
● More flexible strength signaling

○ Separate H + V strength for luma
○ Separate Cb and Cr strengths for chroma
○ Can be adjusted on a per-super block basis

● NB: deblocking filter crosses tile boundaries

Deblocking Filter

29

● Merge of Daala’s directional deringing filter (DERING) and Thor’s constrained lowpass filter (CLPF)
○ Both encoder and decoder search for the direction that best matches
○ Primary filter run along direction, and secondary conditional replacement filter run orthogonally
○ Strength is signaled in the bitstream

● Results exceed both DERING and CLPF alone, as well as applying DERING + CLPF sequentially

Constrained Directional Enhancement Filter (CDEF)

30

● Enhanced and simplified loop filters from VP10
● Two filter choices per superblock

○ Separable Wiener filter with explicitly coded coefficients
○ Self-guided filter

● Runs in a separate pass after CDEF
○ Showed best metrics of any approach tested
○ Uses deblocking filter output outside of superblock boundaries to minimize

line buffers

Loop Restoration

31

● Each frame can have a spatial_id and a temporal_id
○ When spatial_id = 0 and temporal_id = 0 it is called a base layer
○ When spatial_id > 0 and temporal_id > 0 it is called an enhancement layer

● Idea is that decoder will simply display the frames from the highest layer
○ Higher layer frames can reference lower layer frames

● Designed to be used by a special “Selective Forwarding Unit” server that hands
out the appropriate scalable layer to a client

Spatial and Temporal Scalability

32

● Not actually super-resolution
● Instead

○ Code at reduced resolution
■ Run deblocking filter and CDEF, but not Loop Restoration filter

○ Upsample with simple upscaler
○ Run Loop Restoration filter at full resolution

● Only horizontal resolution reduction allowed
○ Simplifies hardware (no new line buffers)

● Allows for gradual bitrate scaling

Frame Super-Resolution

33

● Grain parameters signaled per frame
● Synthesized film grain applied after decoding (not in loop)
● Could be applied using GLSL + PRNG based texture

Film Grain Synthesis

34

AOM Members / Hardware

35

Hardware members involved from the very beginning
Feedback incorporated into a number of tools
● Per symbol probability adaptation
● Smaller multipliers in entropy coder
● Single pass bitstream writing
● Fewer line buffers in CDEF and LR
● Only allow horizontal scaling for super-resolution

Designed for Hardware Implementations

36

AOM Members / Real-Time Conferencing

37

Per symbol adaptation replaces symbol counts in VP9
Can write bitstream with subframe latency
Removed signaling from frame header that forced whole frame buffering

Designed for Low-Latency

38

http://www.compression.ru/video/codec_comparison/hevc_2017/MSU_HEVC_comparison_2017_P5_HQ_encoders.pdf

Moscow State University (SSIM - June 2017)

39

http://www.compression.ru/video/codec_comparison/hevc_2017/MSU_HEVC_comparison_2017_P5_HQ_encoders.pdf

Facebook Study (April 2018)

https://code.fb.com/video-engineering/av1-beats-x264-and-libvpx-vp9-in-practical-use-case/ 40

https://code.fb.com/video-engineering/av1-beats-x264-and-libvpx-vp9-in-practical-use-case/

● AVIF [1] describes how to put AV1 [2] into HEIF [3] using ISOBMFF [4]
● Normatively specifies:

○ Profile and Level for AVIF Baseline and AVIF Advanced
○ How to add alpha transparency

● Payload is exactly AV1 with a single bit set

[1] https://aomediacodec.github.io/av1-avif/
[2] https://aomediacodec.github.io/av1-spec/av1-spec.pdf
[3] https://www.iso.org/standard/66067.html
[4] https://aomediacodec.github.io/av1-isobmff/

AVIF High Level Syntax

41

https://aomediacodec.github.io/av1-spec/av1-spec.pdf

● AVIF [1] describes how to put AV1 [2] into HEIF [3] using ISOBMFF [4]
● Normatively specifies:

○ Profile and Level for AVIF Baseline and AVIF Advanced
○ How to add alpha transparency

● Payload is exactly AV1 with a single bit set

[1] https://aomediacodec.github.io/av1-avif/
[2] https://aomediacodec.github.io/av1-spec/av1-spec.pdf
[3] https://www.iso.org/standard/66067.html
[4] https://aomediacodec.github.io/av1-isobmff/

AVIF High Level Syntax

42

https://aomediacodec.github.io/av1-spec/av1-spec.pdf

● AVIF [1] describes how to put AV1 [2] into HEIF [3] using ISOBMFF [4]
● Normatively specifies:

○ Profile and Level for AVIF Baseline and AVIF Advanced
○ How to add alpha transparency

● Payload is exactly AV1 with a single bit set (optionally two if you want smaller files)

[1] https://aomediacodec.github.io/av1-avif/
[2] https://aomediacodec.github.io/av1-spec/av1-spec.pdf
[3] https://www.iso.org/standard/66067.html
[4] https://aomediacodec.github.io/av1-isobmff/

AVIF High Level Syntax

43

https://aomediacodec.github.io/av1-spec/av1-spec.pdf

● Image where AV1 (libaom) performed poorly

Results: FemaleStripedHorseFly_1920x1080_8b.ppm

44

● Image where AV1 (libaom) performed poorly

Results: FemaleStripedHorseFly_1920x1080_8b.ppm

45

● Image where AV1 (libaom) performed poorly
 AV1 HEVC Kakadu

Results: FemaleStripedHorseFly_1920x1080_8b.ppm

46

● Image where AV1 (libaom) performed well

Results: WOMAN_2048x2560_8b_RGB.ppm

47

● Image where AV1 (libaom) performed well

Results: WOMAN_2048x2560_8b_RGB.ppm

48

● Image where AV1 (libaom) performed well
Kakadu AV1 HEVC

Results: WOMAN_2048x2560_8b_RGB.ppm

49

AV1 (libaom-f7e0b7f3-20181012) HEVC (HM-16.18+SCM-8.7)

Target QP Time (s) BPP QP Time (s) BPP

0.06 61 42.062 0.0579089 45 38.507 0.0574730

0.12 56 63.782 0.1184683 41 46.593 0.1188580

0.25 48 102.878 0.2532291 37 60.138 0.2545640

0.5 39 158.155 0.5221064 33 68.876 0.4504398

0.75 34 212.129 0.7554861 29 75.824 0.7277777

1.0 29 231.838 1.0392554 26 77.757 0.9730671

1.5 22 271.657 1.5096682 21 87.923 1.4704976

2.0 15 300.162 2.0165663 16 102.384 2.0446952

50

Encoder Complexity:
FemaleStripedHorseFly_1920x1080_8b.ppm

AV1 (libaom-f7e0b7f3-20181012) HEVC (HM-16.18+SCM-8.7)

Target QP Time (s) BPP QP Time (s) BPP

0.06 59 128.336 0.0551818 47 238.042 0.0747238

0.12 54 185.598 0.1186187 45 256.295 0.1209228

0.25 45 314.710 0.2571548 41 290.965 0.2588790

0.5 35 549.508 0.5118804 36 366.766 0.5244338

0.75 28 723.997 0.7644210 33 406.594 0.7252929

1.0 23 910.718 1.0125549 30 445.665 0.9879150

1.5 14 1243.480 1.5892593 26 524.937 1.5374099

2.0 11 1372.122 1.9819168 24 572.788 1.9489959

51

Encoder Complexity:
WOMAN_2048x2560_8b_RGB.ppm

AV1 (libaom) Compression History

52

AV1 (libaom) Complexity History

53

● Clean room implementation
○ Avoid pitfalls of just porting libaom algorithms

● Sensible default behavior
○ Expose simple knobs for “quality” and “complexity”
○ Encoder controls for finer tuning, but keep to a minimum

● Use high level language (no C++)
○ Rust chosen because of focus on high performance systems programming

■ Memory safety, “fearless” concurrency, zero-cost abstractions, etc.
■ Optimized llvm backend, safe-ish SIMD, C calling convention to extern

○ Keep program control readable, focus on algorithms
● Cover all use cases

○ Start with VOD, but also work towards live streaming and interactive VC

[1] https://github.com/xiph/rav1e

Design Goals of Rust AV1 Encoder (rav1e)

54

https://github.com/xiph/rav1e

Shown at IBC in Sept 2018
● 640x480 @ 30 fps
● Single tile / thread
● Simplified feature set

rav1e Live Encoding

55

● Goals of dav1d project
○ Fastest software decoder possible on all platforms
○ Speed through concurrency, e.g., frame-threading, tile-threading, etc.
○ Speed through implementation, e.g., hand-written SIMD, minimum copies

● Encoder contains within it a full decoder for reconstruction
○ Re-use SIMD for inverse transforms, loop filters, intra prediction

[1] https://code.videolan.org/videolan/dav1d

dav1d AV1 decoder

56

https://code.videolan.org/videolan/dav1d

AV1 Content on Youtube
Firefox Nightly (64 beta)

● Supports AV1 in MP4 / ISOBMFF
Matroska and WebM formats

● Behind about:config flag:
media.av1.enabled = true

● General availability: 2018-Dec-11

Chrome (70)

● Enabled by default on desktop
platforms and Android

● General availability: 2018-Oct-17

AV1 software decoders on billions
of devices by the end of the week!

57

Core requirements
Significant compression efficiency improvement over coding standards in common use at equivalent subjective quality.
Hardware/software implementation-friendly encoding and decoding (parallelization, memory, complexity, power usage).
Support for alpha channel / transparency coding.
Support for animation image sequences.
Support for 8-bit and 10-bit bit depth.
Support for high dynamic range coding.
Support for wide color gamut encoding.
Support for efficient text and graphics compression.

Desirable requirements
Support for higher bit depth (e.g. 12 to 16-bit integer or floating-point HDR) images.
Support for different color representations, including Rec. BT.709, Rec. BT.2020, Rec. BT.2100, LogC.
Support for embedded preview images.
Support for very low file size image coding (e.g. <200 bytes for 64×64 pixel images).
Support for lossless alpha channel coding.
Support for a low-complexity encoding option.
Support for region-of-interest coding.

Compressed Bitstream Requirements

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✗

✔

✔

✔

✔

58

Questions?

59

