
Loops and their control variables
Discussion and proposed guidelines

Derek M. Jones
derek@knosof.co.uk

Copyright ©2006 Derek M. Jones. All rights reserved.

2 for loop constructs

1 Introduction
The implementation of many algorithms requires some set of operations to be performed a specified number
of times and also a way of maintaining and using a counter for each iteration. To support this commonly
occurring requirement support for a special kind of loop, known as a for loop, has been included in many
programming languages. The variable used to maintain the iteration count is also used to control the number
of iterations (or, from another point of view when it terminates) and is often given the name loop control
variable.
The loop control variable is often given a special status by coding guidelines, a practice that partly derives
from the behavior specified in some or the early, and widely used, programming languages (e.g., Fortran
prior to the 1977 standard). It was often the case that modifying the value of a loop control variable inside
the body of a loop resulted in undefined behavior and accessing the value of a loop control variable outside
of the loop was not guaranteed to return a particular value.
This proposal discuses for loop usage and possible recommendations that restrict the use of loop control
variables for reasons based on programming language semantics and/or developer expectations.
The material in this proposal has been distilled from that appearing in sentence 1760 of “The New C Standard:
An economic and cultural commentary” by Derek M. Jones (available via http://www.knosof.co.uk/
cbook/cbook.html).

2 for loop constructs
The functionality of loop statements in different languages varies from the spartan to the everything plus
kitchen sink.
Ada 83 requires the lower and upper bounds to be known at compile time and the loop header acts as the
definition of the variable appearing in it (this requirement was relaxed in Ada 95).

1 for v in 1 .. 10 loop -- declare v to have the discrete range 1 to 10

Pascal (and Fortran since 1977) allows the value of the increment to be specified, which along with the start
and end value may be an expression calculated at runtime (this calculation occurs prior to every first iteration
of the loop). The loop control variable must have previously been declared.

1 for v:=start_var to end_var step inc_var do (* Extended Pascal *)

Support for a comma operator in C, C++, C#, and Java makes it possible for a loop header to contain what
is effectively more than one independent expression. Both the termination increment expression and end
expression are evaluated on every iteration (ie, not just prior to the first iteration).

1 for (lcv_1=0, lcv_2=0; a1[lcv_1] < a2[lcv_2]; lcv_1++, lcv_2++) // C, C++, C#, Java

The common theme running through all of these for loop headers is the idea of a (loop control) variable that
is given an initial value which is modified by a constant amount until it reaches a value that terminates the
loop iteration.
In nearly all cases all modifications to this loop control variable occur in expressions that appear in the loop
header.

2.1 Developer usage
Developers may chose to use one kind of loop rather than another purely out of force of habit. If enough
developers follow the same usage patterns then these become idiomatic and are viewed as being part of the
culture of that language’s usage. Unless it can be shown that the cost of using a particular idiom is greater
than the benefit, there is nothing to be gained from trying to change existing, common, usage idioms.
If there is an idiom that is commonly used, is it worthwhile requiring that all developers use it? What if there
are two idioms for the achieving the same effect (e.g., in C, C++ and Java, both for (; ;) and while (1)

2 v 0.2 February 27, 2006

http://www.knosof.co.uk/cbook/cbook.html
http://www.knosof.co.uk/cbook/cbook.html

2 for loop constructs

implement a so called infinite loop and are commonly seen in code (based on measurements of C source,
2.5% of for loops and 6.2% of while loops), should the more common one be recommended over the other???

Developers who regularly use one language may regard the different ways in which loops are used in other
languages as being inappropriate. For instance, Ada developers might argue that the following loop should
be replaced by a while loop because two different variables are involved both in the termination condition
and being incremented on each iteration.

1 for (lcv_1=0, lcv_2=0; a1[lcv_1] < a2[lcv_2]; lcv_1++, lcv_2+=2) // C, C++, C#, Java

However, placing them in a for loop header has the benefit of enabling the reader to easily locate all of the
information involved in controlling the loop iteration.

The purpose of these guidelines is not to redesign a language to make it fit the design model of another
language.

2.2 Which variable is the loop control variable?

The specification of some languages makes it easy to deduce which variable should be classified as the loop
control variable. For instance, Ada defines something called a loop parameter, while Pascal actually calls the
likely candidate a control-variable.

The definition of other languages (e.g., C, C++, Java) do not include the specification of any variable that
might be suggest it is a candidate for the status of loop control variable. Also these languages have very
generalised looping constructs which can make it difficult to exactly specify which, if any, variable should be
considered to be a loop control variable (the first edition of the C Standard actually defined the for statement
in terms of the while statement).

2.3 C, C++, C# and Java

These, and other, languages support a for loop construct that is essentially a while loop with the three loop
components (initial code, termination test, and increment) appearing between a matching pair of parenthesis.
Because expressions that can occur in a for loop are not as restrictive as they are in many other languages, it
can be difficult to identify which variable, if any, plays the role of the loop control variable. In the following
example:

1 for (lcv_1=0; lcv_2 < lcv_3; lcv_4++)

any one of four different variables has some claim to being the loop control variable. It is also possible to
claim that there is more than one loop control variable. In the following example:

1 for (f_1(); /* empty */ ; f_2())

there are no obvious candidates for the status of loop control variable.

February 27, 2006 v 0.2 3

3 Possible recommendations

Table .1: Occurrence of various kinds of for statement controlling expressions (as a percentage of all such expressions), based
on the visible form of the .c files. Where object is a reference to a single object, which may be an identifier, a member (e.g.,
s.m, s->m->n, or a[expr]); assignment is an assignment expression, integer-constant is an integer constant expression, and
expression represents all other expressions.

Abstract Form of for loop header %

assignment ; object < object ; object v++ 33.2
assignment ; object < integer-constant ; object v++ 11.3

assignment ; object ; assignment 7.0
assignment ; object < expression ; object v++ 3.3

assignment ; object < object ; ++v object 2.7
; ; 2.5

assignment ; object != object ; assignment 2.5
assignment ; object <= object ; object v++ 2.2

assignment ; object >= integer-constant ; object v-- 1.6
assignment ; object < function-call ; object v++ 1.4

assignment ; object < object ; object v++ , object v++ 1.4
others 31.1

2.3.1 Deducing the loop control variable
Given a loop header the following algorithm frequently returns an answer that has been found to be acceptable
to developers. Note that the algorithm may return zero, or multiple answers; a union or structure member
selection operator and its two operands is treated as a single object, but both an array and any objects in its
subscript are treated as separate objects and therefore possible loop control variables:

1. list all objects appearing in expression-2 (the controlling expression). If this contains a single object,
it is the loop control variable (33.2% of cases in the .c files),

2. remove all objects that do not appear in expression-3 (which is evaluated on every loop iteration). If
a single object remains, that is the loop control variable (91.8% of cases in the .c files),

3. remove all objects that do not appear in clause-1 (which is only evaluated once, prior to loop iteration).
If a single object remains, that is the loop control variable (86.2% of cases in the .c files).

Unlike the example given above, in practice the same object often appears as an operand somewhere within
all three components (see
Figure .1 was obtained by measuring the visible form of a large amount of C source code. It plots the number
of possible loop control variables appearing in expression-2 (square-box) after filtering against the objects
in expression-3 (cross) and after filtering against the objects in clause-1.

3 Possible recommendations
Experience shows that developers often assume that, in a for statement, modification of a loop control
variables only occurs within the loop header (i.e., not the loop body). This leads to them forming beliefs
about properties of the loop, for instance, it loops 10 times. There tend to be fewer assumptions made about
the use of while statements (which might not even be thought to have a loop control variable associated with
them) and the following guideline is likely to cause developers to use this form of looping construct.

Cg .1
A loop control variable shall not be modified during the execution of the body of a for statement.

Some coding guideline documents recommend that loop control variables not have floating-point type. It
might be thought that such a recommendation only makes sense in languages where the loop termination
condition involves an equality test. However, in languages such as C, C++, and Java the controlling expression
of a for loop can contain relational operators, which can also have a dependence on the accuracy of floating-
point operations. For instance, it is likely that the author of the following fragment expects the loop to

4 v 0.2 February 27, 2006

3 Possible recommendations

Possible loop control variables

fo
r

lo
op

 h
ea

de
rs

0 1 3 5 10 15

1

10

100

1,000

10,000 expression-2
× × expression-3

×
×

×

×

×

• • clause-1

•
•

•

•

Figure .1: Number of possible loop control variables appearing in expression-2 (square-box) after filtering against the objects
in expression-3 (cross) and after filtering against the objects in clause-1 (bullet). Based on the visible form of the .c files.

iterate 10 times. However, it is possible that 10 increments of i result in it having the value 9.9999, and loop
termination not occurring until after the eleventh iteration.

1 for (float i=0.0; i < 10.0; i++)

A possible developer response to a guideline recommendation that loop control variables not have floating
point type is to use a while loop (which are not covered by the algorithm for deducing loop control variables).
Some of the issues associated with the finite accuracy of operations on floating-point values can be addressed
with guideline recommendations. However, the difficulty of creating wording for a recommendation dealing
with the use of floating-point values to control the number of loop iterations is such that none is attempted
here. Future work....
Should there be exactly one loop control variable per for statement?

• Why has the developer use a for loop without a loop control variable when a while loop might be more
applicable?

• Multiple loop control variables. The following example may look complicated, but is it more com-
plicated than all of the alternative ways of expressing this loop? There does not appear to be any
cost/benefit reason to limit loops to only having one loop control variable.

1 for (lcv_1=0, lcv_2=0; a1[lcv_1] < a2[lcv_2]; lcv_1++, lcv_2++) // C, C++, C#, Java

In those languages where modifying a loop control variable in the body of the loop results in undefined
behavior a recommendation needs to be specified.

LangSpec .2
In those languages where modifying a loop control variable in the body of the loop results in undefined
behavior a loop control variable shall not be modified in the body of the loop.

In those languages where accessing a loop control variable outside of the body of the loop returns an
undefined value a recommendation needs to be specified.

LangSpec .3
In those languages where accessing a loop control variable outside of the body of the loop returns an
undefined value, the value of a loop control variable shall not be accessed outside of the loop body.

February 27, 2006 v 0.2 5

References
Citations added in version 1.0b start at 1449.

6 v 0.2 February 27, 2006

