
LINUX IN-MEMORY ELF 
EXECUTION



Fileless malware

1) Hard to detect.

2) Easily avoids AV-

detection. 

3) Stealthy for forensics.

4) Weak Persistence.

Source:https://blog.barkly.com/fileless-attack-statistics-2017



Windows filleless attacks

• Powershell, VBScript, macro, etc

• Implemented in tools:

Metasploit, Empire, Cobalt Strike, PowerSploit

https://www.metasploit.com/
https://www.powershellempire.com/
https://www.cobaltstrike.com/
https://github.com/PowerShellMafia/PowerSploit


Our Goal:

1. Get the ELF-binary executed directly in memory without 

touching the HDD

2. Create scripts for most of the common Linux 

programming environments

3. Automate all the things!



Linux in-memory 
execution options:

• Memory filesystems

• Gdb

• Kernel modules

• Syscalls



/proc/ pseudo-filesystem

The /proc/self/ directory is a link to the currently running process. This 
allows a process to look at itself without having to know its process ID

/proc/self/maps 

A file containing the currently mapped memory regions and their access permissions.

/proc/self/fd/ 

This is a subdirectory containing one entry for each file which the process has 
open, named by its file descriptor, and which is a symbolic link to the actual file.

/proc/self/exe 
Under Linux 2.2 and later, this file is a symbolic link containing the actual pathname of 
the executed command.  This symbolic link can be dereferenced normally; attempting 
to open it will open the executable.



Syscalls

• memfd_create()  #Creates anonymous file and returns it’s 

file descriptor

• execve() #executes file given by path

• fork() #Creates child process

• setsid() # Needed to make a parent process from child.



What about linux?

Most of linux distro’s comes with preinstalled programming 
languages and libraries:

• Bash

• Python

• Perl

• PHP



Summary

• We have common preinstalled programming languages on most 
of linux distro’s.

• With memfd_create() we can create file directly in memory 
without mounting any tmpfs or using /dev/shm shared 
memory.

So we just need to write an ELF to anonymous file without 
touching the disk. 



Instructions:

1. Create anonymous file via memfd_create()

2. Write ELF to it

3. Execute via execve() & fork()

4. ???

5. PROFIT!



memfd_create() example

memfd_create syntax
Included in libc

Generic syscall wrapper



execve() & fork() & setsid()

execve() 

fork() setsid()



Starting with Perl

Step one:

Create anonymous file using 
syscall() function.

319 - x64 number code for 
memfd_create() syscall



Starting with Perl

Step two: 

Write binary to anonymous file



Starting with Perl
Perl’s fork(): once it’s called, there 
are now two nearly identical 
processes running.We don’t actually 
have to spawn a new process to run 
our ELF binary, but if we want to do 
more than just run it and exit, it’s 
the way to go. In general, using 
fork() to spawn multiple children 
looks something like:



Starting with Perl

Next we’ll call setsid(2)(call’s number -
112) in the middle to spawn a 
disassociated child and let the parent 
terminate.

Remember how process hierarchy works:
Session (SID) → Process Group (PGID) → 
Process (PID)
That’s why to create a daemon we need 
double fork() calling



Starting with Perl

Executing payload: 
We pass to exec() two things: our in-memory ELF binary and a list of arguments, of which the 
first element is usually taken as the process name.

And nc runs from memory as we expect:

We can find our process by fancy process name. In the wild you should name your processes more legit.



Python

Requirements:

ctypes - required to use system calls 
and C -lang functions.

os  - allows to interact with 
filesystem and OS commands.

Binascii - needed to convert binary 
to ASCII



Python

Writing binary to RAM:

Using ctypes calling the 
memfd_create() (number - 319) to 
get file descriptor of the anonymous 
file

Then write binary through /proc/ 
filesystem



Python

Calling fork() to run 
processes with the setsid() in 
the middle.



Python

Finally executing the ELF
By os.execl() function.



PHP?

• One of the most popular programming languages for web apps.

• Installed on ton of linux web servers

• ELF delivery with php can be pretty handy during web app pen testing

• PHP can’t into system calls :(

But lucky finding post on some web-board saves the day.



PHP? 

We need to go deeper.



PHP?

Originally @beched’s post on rdot uses tricky technique to bypass 
disable_functions restrictions.

disable_functions - directive in PHP conf file php.ini that allow user to disable 
certain PHP functions for security reasons.

So! We find out that we can use that technique with some modifications to solve our 
case. 



PHP: The technique

• Each program can reach itself memory allocations, 
executables and other info by accessing /proc/self/ pseudo 
filesystem

• Functions used by the PHP interpreter also allocated on 
memory 

• Program can access it’s own memory to manipulate data

Can program rewrite it’s own functions addresses to call foreign 
functions ? Or can we replace function code already allocated in 
memory by pushing our code to the stack?



PHP: The technique

Function’s code on the memory stores in machine code when loaded.

So our goal:

1. Find current PHP process memory addresses.

2. Locate open() function’s address

3. Replace code with our prepared memfd_create() machine code

4. Using syscall, create anonymous file, write ELF to it, execute & fork



PHP: The memory

Virtual memory (also virtual storage) 
is a memory management technique 
that provides an "idealized 
abstraction of the storage resources 
that are actually available on a given 
machine» which "creates the illusion 
to users of a very large (main) 
memory.



PHP: The memory

offset usually denotes the number of 
address locations added to a base 
address in order to get to a 
specific absolute address. In this 
(original) meaning of offset, only the 
basic address unit, usually the 8-
bit byte, is used to specify the offset's 
size. In this context an offset is 
sometimes called a relative address.



PHP: /proc/self/maps

Structure: address | perms | offset | dev | inode | pathname



PHP: Preparation

Libc version

libc’s system() offset and open() func offset



PHP: Put all together

Now we can use this info to 
create an PHP function that will 
unpack and analyze running PHP 
interpreter binary to find out 
addresses of allocated in memory 
functions that we needed.
That’s how looks the entire 
function coded by @beched.
Don’t be scared! It’s just something 
like «readelf» utility.



PHP: open & system

Now we can use this function to 
get offsets, and rewrite function.



PHP: getting offsets

Using parself() function, getting 
actual offsets.



PHP: Rewritting open function

Using access to /self/mem
Rewriting open function



PHP: shellcodes

Next we’ll call memfd_create() syscall as a shellcode.

- 0x13f = 319 - memfd_create number in decimal 

- calling a syscall



PHP: creating anonymous file

Writing ELF to anonymous file
And finding file descriptor 
number.



PHP: arguments and path

Writing arguments and path to the 
stack.



PHP: execution

To execute and fork our ELF we need to use system calls again.

<— This part does the «fork()» thing

<— The decimal 57, fork()’s number.

<— calling syscall

<— 0x70 is the decimal 112 - setsid()

<— calling setsid()

<— second fork()

<— calling second fork()

<— This one calling execve()

<— pushing execve().

<— calling execve().

<— exit().

<— calling exit().

<— Arrgs and filename



One more thing…



Metasploit

We automated all mentioned techniques to 
provide you easy to use MSF module.

Get it on github: 

Install and have fun.



Inspired by
@MagisterQuis

@Beched

@0x00pico

Special Thanks to:

0x00sec.org
rdot.org

https://twitter.com/MagisterQuis
http://0x00sec.org
http://rdot.org


THANKS FOR ATTENTION
Michail Firstov @cyberpunkych
Yaroslav Moskvin @p1nk_pwny
Sergey Migalin @migalin
Skuratov Andrey @progandr
Anonymous :)


