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CHAPTER 1

Introduction to Topology

1. Introduction to Real Induction

1.1. Real Induction.

Consider for a moment “conventional” mathematical induction. To use it, one
thinks in terms of predicates – i.e., statements P (n) indexed by the natural num-
bers – but the cleanest enunciation comes from thinking in terms of subsets of N.
The same goes for real induction.

Let a < b be real numbers. We define a subset S ⊂ [a, b] to be inductive if:

(RI1) a ∈ S.
(RI2) If a ≤ x < b, then x ∈ S =⇒ [x, y] ⊂ S for some y > x.
(RI3) If a < x ≤ b and [a, x) ⊂ S, then x ∈ S.

Theorem 1.1. (Real Induction) For S ⊂ [a, b], the following are equivalent:
(i) S is inductive.
(ii) S = [a, b].

Proof. (i) =⇒ (ii): let S ⊂ [a, b] be inductive. Seeking a contradiction,
suppose S′ = [a, b] \ S is nonempty, so inf S′ exists and is finite.
Case 1: inf S′ = a. Then by (RI1), a ∈ S, so by (RI2), there exists y > a such that
[a, y] ⊂ S, and thus y is a greater lower bound for S′ then a = inf S′: contradiction.
Case 2: a < inf S′ ∈ S. If inf S′ = b, then S = [a, b]. Otherwise, by (RI2) there
exists y > inf S′ such that [inf S′, y] ⊂ S, contradicting the definition of inf S′.
Case 3: a < inf S′ ∈ S′. Then [a, inf S′) ⊂ S, so by (RI3) inf S′ ∈ S: contradiction!
(ii) =⇒ (i) is immediate. �

Theorem 1.1 is due to D. Hathaway [Ha11] and, independently, to me. But math-
ematically equivalent ideas have been around in the literature for a long time:
see [Ch19], [Kh23], [Pe26], [Kh49], [Du57], [Fo57], [MR68], [Sh72], [Be82],
[Le82], [Sa84], [Do03]. Especially, I acknowledge my indebtedness to a work of
Kalantari [Ka07]. I read this paper early in the morning of Tuesday, Septem-
ber 7, 2010 and found it fascinating. Kalantari’s formulation works with subsets
S ⊂ [a, b), replaces (RI2) and (RI3) by the single axiom

(RIK) For x ∈ [a, b), if [a, x) ⊂ S, then there exists y > x with [a, y) ⊂ S,1

and the conclusion is that a subset S ⊂ [a, b) satisfying (RI1) and (RIK) must be
equal to [a, b). Unfortunately I was a bit confused by Kalantari’s formulation, and

1One also needs the convention [x, x) = {x} here.

5



6 1. INTRODUCTION TO TOPOLOGY

I wrote to Professor Kalantari suggesting the “fix” of replacing (RIK) with (RI2)
and (RI3). He wrote back later that morning to set me straight. I was scheduled to
give a general interest talk for graduate students in the early afternoon, and I had
planned to speak about binary quadratic forms. But I found real induction to be
too intriguing to put down, and my talk at 2 pm that day was on real induction (in
the formulation of Theorem 1.1). This was, perhaps, the best received non-research
lecture I have ever given, and I was motivated to develop these ideas in more detail.

In 2011 D. Hathaway published a short note “Using Continuity Induction” [Ha11]
giving an all but identical formulation: instead of (RI2), he takes

(RI2H) If a ≤ x < b, then x ∈ S =⇒ [x, x+ δ) ⊂ S for some δ > 0.

(RI2) and (RI2H) are equivalent: [x, x + δ
2 ] ⊂ [x, x + δ) ⊂ [x, x + δ]. Hathaway

and I arrived at our formulations completely independently. Moreover, when first
formulating real induction I too used (RI2H), but soon changed it to (RI2) with an
eye to a certain more general inductive principle that we will meet later.

2. Real Induction in Calculus

We begin with the “interval theorems” from honors (i.e., theoretical) calculus: these
fundamental results all begin the same way: “Let f : [a, b] → R be a continuous
function.” Then they assert four different conclusions. One of these conclusions
is truly analytic in character, but the other three are really the source of all topology.

To be sure, let’s begin with the definition of a continuous real-valued function
f : I → R defined on a subinterval of R: let x be a point of I. Then f is continu-
ous at x if for all ε > 0, there is δ > 0 such that for all y ∈ I, if |x − y| ≤ δ then
|f(x)− f(y)| ≤ ε. f is continuous if it is continuous at every point of I.

Let us also record the following definition: f : I → R is uniformly continu-
ous if for all ε > 0, there is δ > 0 such that for all y ∈ I, if |x − y| ≤ δ then
|f(x)− f(y)| ≤ ε. Note that this is stronger than continuity in a rather subtle way:
the only difference is that in the definition of continuity, the δ is allowed to depend
on ε but also on the point x; in uniform continuity, δ is only allowed to depend on
ε: there must be one δ which works simultaneously for all x ∈ I.

Exercise 1.1. a) Show – from scratch – that each of the following functions
is continuous but not uniformly continuous.
(i) f : R→ R, f(x) = x2.
(ii) g : (0, 1)→ R, f(x) = 1

x .
b) Recall that a subset S ⊂ R is bounded if S ⊂ [−M,M ] for some M ≥ 0. Show
that if I is a bounded interval and f : I → R is uniformly continuous, then f is
bounded (i.e., f(I) is bounded). Notice: by part a), continuity is not enough.

Theorem 1.2. (Intermediate Value Theorem (IVT)) Let f : [a, b] → R be a
continuous function, and let L be any number in between f(a) and f(b). Then there
exists c ∈ [a, b] such that f(c) = L.

Proof. It is easy to reduce the theorem to the following special case: let
f : [a, b]→ R be continuous and nowhere zero. If f(a) > 0, then f(b) > 0.
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Let S = {x ∈ [a, b] | f(x) > 0}. Then f(b) > 0 iff b ∈ S. We will show
S = [a, b].
(RI1) By hypothesis, f(a) > 0, so a ∈ S.
(RI2) Let x ∈ S, x < b, so f(x) > 0. Since f is continuous at x, there exists δ > 0
such that f is positive on [x, x+ δ], and thus [x, x+ δ] ⊂ S.
(RI3) Let x ∈ (a, b] be such that [a, x) ⊂ S, i.e., f is positive on [a, x). We claim
that f(x) > 0. Indeed, since f(x) 6= 0, the only other possibility is f(x) < 0, but if
so, then by continuity there would exist δ > 0 such that f is negative on [x− δ, x],
i.e., f is both positive and negative at each point of [x− δ, x]: contradiction! �

In the first examples of mathematical induction the statement itself is of the form
“For all n ∈ N, P (n) holds”, so it is clear what the induction hypothesis should
be. However, mathematical induction is much more flexible and powerful than this
once one learns to try to find a statement P (n) whose truth for all n will give the
desired result. She who develops skill at “finding the induction hypothesis” acquires
a formidable mathematical weapon: for instance the Arithmetic-Geometric Mean
Inequality, the Fundamental Theorem of Arithmetic, and the Law of Quadratic
Reciprocity have all been proved in this way; in the last case, the first proof given
(by Gauss) was by induction.

Similarly, to get a Real Induction proof properly underway, we need to find a
subset S ⊂ [a, b] for which the conclusion S = [a, b] gives us the result we want, and
for which our given hypotheses are suitable for “pushing from left to right”. If we
can find the right set S then we are, quite often, more than halfway there: the rest
may take a little while to write out but is relatively straightforward to produce.

Theorem 1.3. (Extreme Value Theorem (EVT))
Let f : [a, b]→ R be continuous. Then:

a) f is bounded.
b) f attains a minimum and maximum value.

Proof. a) Let S = {x ∈ [a, b] | f : [a, x]→ R is bounded}.
(RI1): Evidently a ∈ S.
(RI2): Suppose x ∈ S, so that f is bounded on [a, x]. But then f is continuous
at x, so is bounded near x: for instance, there exists δ > 0 such that for all
y ∈ [x− δ, x+ δ], |f(y)| ≤ |f(x)|+ 1. So f is bounded on [a, x] and also on [x, x+ δ]
and thus on [a, x+ δ].
(RI3): Suppose x ∈ (a, b] and [a, x) ⊂ S. Now beware: this does not say that f
is bounded on [a, x): rather it says that for all a ≤ y < x, f is bounded on [a, y].
These are different statements: for instance, f(x) = 1

x−2 is bounded on [0, y] for all

y < 2 but it is not bounded on [0, 2). But of course this f is not continuous at 2.
So we can proceed almost exactly as we did above: since f is continuous at x, there
exists 0 < δ < x− a such that f is bounded on [x− δ, x]. But since a < x− δ < x
we know f is bounded on [a, x− δ], so f is bounded on [a, x].
b) Let m = inf f([a, b]) and M = sup f([a, b]). By part a) we have

−∞ < m ≤M <∞.

We want to show that there exist xm, xM ∈ [a, b] such that f(xm) = m, f(xM ) = M ,
i.e., that the infimum and supremum are actually attained as values of f . Suppose
that there does not exist x ∈ [a, b] with f(x) = m: then f(x) > m for all x ∈ [a, b]
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and the function gm : [a, b]→ R by gm(x) = 1
f(x)−m is defined and continuous. By

the result of part a), gm is bounded, but this is absurd: by definition of the infimum,
f(x)−m takes values less than 1

n for any n ∈ Z+ and thus gm takes values greater
than n for any n ∈ Z+ and is accordingly unbounded. So indeed there must exist
xm ∈ [a, b] such that f(xm) = m. Similarly, assuming that f(x) < M for all x ∈
[a, b] gives rise to an unbounded continuous function gM : [a, b]→ R, x 7→ 1

M−f(x) ,

contradicting part a). So there exists xM ∈ [a, b] with f(xM ) = M . �

Exercise 1.2. Consider the Hansen Interval Theorem (HIT): let f :
[a, b]→ R be a continuous function. Then there are real numbers m ≤M such that
f([a, b]) = [m,M ].
a) Show that HIT is equivalent to the conjunction of IVT and EVT: that is, prove
HIT using IVT and EVT and then show that HIT implies both of them.
b) Can you give a direct proof of HIT?

Let f : I → R. For ε, δ > 0, let us say that f is (ε, δ)-uniformly continuous
on I – abbreviated (ε, δ)-UC on I – if for all x1, x2 ∈ I, |x1 − x2| < δ implies
|f(x1) − f(x2)| < ε. This is a halfway unpacking of the definition of uniform
continuity: f : I → R is uniformly continuous iff for all ε > 0, there is δ > 0 such
that f is (ε, δ)-UC on I.

Lemma 1.4. (Covering Lemma) Let a < b < c < d be real numbers, and let
f : [a, d]→ R. Suppose that for real numbers ε, δ1, δ2 > 0,
• f is (ε, δ1)-UC on [a, c] and
• f is (ε, δ2)-UC on [b, d].
Then f is (ε,min(δ1, δ2, c− b))-UC on [a, b].

Proof. Suppose x1 < x2 ∈ I are such that |x1 − x2| < δ. Then it cannot be
the case that both x1 < b and c < x2: if so, x2 − x1 > c − b ≥ δ. Thus we must
have either that b ≤ x1 < x2 or x1 < x2 ≤ c. If b ≤ x1 < x2, then x1, x2 ∈ [b, d]
and |x1 − x2| < δ ≤ δ2, so |f(x1) − f(x2)| < ε. Similarly, if x1 < x2 ≤ c, then
x1, x2 ∈ [a, c] and |x1 − x2| < δ ≤ δ1, so |f(x1)− f(x2)| < ε. �

Theorem 1.5. (Uniform Continuity Theorem) Let f : [a, b] → R be continu-
ous. Then f is uniformly continuous on [a, b].

Proof. For ε > 0, let S(ε) be the set of x ∈ [a, b] such that there exists δ > 0
such that f is (ε, δ)-UC on [a, x]. To show that f is uniformly continuous on [a, b], it
suffices to show that S(ε) = [a, b] for all ε > 0. We will show this by Real Induction.
(RI1): Trivially a ∈ S(ε): f is (ε, δ)-UC on [a, a] for all δ > 0!
(RI2): Suppose x ∈ S(ε), so there exists δ1 > 0 such that f is (ε, δ1)-UC on
[a, x]. Moreover, since f is continuous at x, there exists δ2 > 0 such that for all
c ∈ [x, x+δ2], |f(c)−f(x)| < ε

2 . Why ε
2? Because then for all c1, c2 ∈ [x−δ2, x+δ2],

|f(c1)− f(c2)| = |f(c1)− f(x) + f(x)− f(c2)| ≤ |f(c1)− f(x)|+ |f(c2)− f(x)| < ε.

In other words, f is (ε, δ2)-UC on [x−δ2, x+δ2]. We apply the Covering Lemma to
f with a < x− δ2 < x < x+ δ2 to conclude that f is (ε,min(δ, δ2, x− (x− δ2))) =
(ε,min(δ1, δ2))-UC on [a, x+ δ2]. It follows that [x, x+ δ2] ⊂ S(ε).
(RI3): Suppose [a, x) ⊂ S(ε). As above, since f is continuous at x, there exists
δ1 > 0 such that f is (ε, δ1)-UC on [x−δ1, x]. Since x− δ1

2 < x, by hypothesis there

exists δ2 such that f is (ε, δ2)-UC on [a, x− δ1
2 ]. We apply the Covering Lemma to f
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with a < x−δ1 < x− δ1
2 < x to conclude that f is (ε,min(δ1, δ2, x− δ1

2 −(x−δ1))) =

(ε,min( δ12 , δ2))-UC on [a, x]. Thus x ∈ S(ε). �

Theorem 1.6. Let f : [a, b]→ R be a continuous function. Then f is Riemann
integrable.

Proof. We will use Darboux’s Integrability Criterion: we must show that for
all ε > 0, there exists a partition P of [a, b] such that U(f,P) − L(f,P) < ε. It
is convenient to prove instead the following equivalent statement: for every ε > 0,
there exists a partion P of [a, b] such that U(f,P)− L(f,P) < (b− a)ε.

Fix ε > 0, and let S(ε) be the set of x ∈ [a, b] such that there exists a partition
Px of [a, b] with U(f,Px) − L(f,Px) < ε. We want to show b ∈ S(ε), so it suffices
to show S(ε) = [a, b]. In fact it is necessary and sufficient: observe that if x ∈ S(ε)
and a ≤ y ≤ x, then also y ∈ S(ε). We will show S(ε) = [a, b] by Real Induction.
(RI1) The only partition of [a, a] is Pa = {a}, and for this partition we have
U(f,Pa) = L(f,Pa) = f(a) · 0 = 0, so U(f,Pa)− L(f,Pa) = 0 < ε.
(RI2) Suppose that for x ∈ [a, b) we have [a, x] ⊂ S(ε). We must show that there
is δ > 0 such that [a, x + δ] ⊂ S(ε), and by the above observation it is enough
to find δ > 0 such that x + δ ∈ S(ε): we must find a partition Px+δ of [a, x + δ]
such that U(f,Px+δ) − L(f,Px+δ) < (x + δ − a)ε). Since x ∈ S(ε), there is a
partition Px of [a, x] with U(f,Px) − L(f,Px) < (x − a)ε. Since f is continuous
at x, we can make the difference between the maximum value and the minimum
value of f as small as we want by taking a sufficiently small interval around x: i.e.,
there is δ > 0 such that max(f, [x, x + δ]) − min(f, [x, x + δ]) < ε. Now take the
smallest partition of [x, x+ δ], namely P′ = {x, x+ δ}. Then U(f,P′)− L(f,P′) =
(x+δ−x)(max(f, [x, x+δ])−min(f, [x, x+δ])) < δε. Thus if we put Px+δ = Px+P′
and use the fact that upper / lower sums add when split into subintervals, we have

U(f,Px+δ)− L(f,Px+δ) = U(f,Px) + U(f,P′)− L(f,Px)− L(f,P′)

= U(f,Px)− L(f,Px) + U(f,P′)− L(f,P′) < (x− a)ε+ δε = (x+ δ − a)ε.

(RI3) Suppose that for x ∈ (a, b] we have [a, x) ⊂ S(ε). We must show that x ∈ S(ε).
The argument for this is the same as for (RI2) except we use the interval [x− δ, x]
instead of [x, x+ δ]. Indeed: since f is continuous at x, there exists δ > 0 such that
max(f, [x−δ, x])−min(f, [x−δ, x]) < ε. Since x−δ < x, x−δ ∈ S(ε) and thus there
exists a partition Px−δ of [a, x−δ] such that U(f,Px−δ) = L(f,Px−δ) = (x−δ−a)ε.
Let P′ = {x− δ, x} and let Px = Px−δ ∪ P′. Then

U(f,Px)− L(f,Px) = U(f,Px−δ) + U(f,P′)− (L(f,Px−δ) + L(f,P′))

= (U(f,Px−δ)− L(f,Px−δ)) + δ(max(f, [x− δ, x])−min(f, [x− δ, x]))

< (x− δ − a)ε+ δε = (x− a)ε. �

Remark 1.7. The standard proof of Theorem 1.6 is to use Darboux’s Integra-
bility Criterion and UCT: this is a short, straightforward argument that we leave to
the interested reader. In fact this application of UCT is probably the one place in
which the concept of uniform continuity plays a critical role in calculus. (Challenge:
does your favorite – or least favorite – freshman calculus book discuss uniform con-
tinuity? In many cases the answer is “yes” but the treatment is very well hidden
from anyone who is not expressly looking for it.) Uniform continuity is hard to fake
– how do you explain it without ε’s and δ’s? – so UCT is probably destined to be the
black sheep of the interval theorems. This makes it an appealing challenge to give a
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uniform continuity-free proof of Theorem 1.6. In fact Spivak’s text does so [S, pp.
292-293]: he establishes equality of the upper and lower integrals by differentiation.
This sort of proof goes back at least to M.J. Norris [No52].

3. Real Induction in Topology

Our task is now to “find the topology” in the classic results of the last section.
In calculus, the standard moral one draws from them is that they are (except for
Theorem 1.5) properties that are satisfied by our intuitive notion of continuous
function, and the fact that they are theorems is a sign of the success of the ε, δ
definition of continuity.

I want to argue against that – not for all time, but here at least, because it will
be useful to our purposes to do so. I claim that there is something much deeper
going on in the previous results than just the formal definition of continuity. To
see this, let us suppose that we replace the closed interval [a, b] with the rational
closed interval

[a, b]Q = {x ∈ Q | a ≤ x ≤ b}.
Nothing stops us from defining continuous and uniformly continuous functions
f : [a, b]Q → Q in exactly the same way as before: namely, using the ε, δ defi-
nition. (Soon we will see that this is a case of the ε, δ definition of continuity for
functions between metric spaces.)

Here’s the punchline: by switching from the real numbers to the rationals, none of
the interval theorems are true. We will except Theorem 1.6 because it is not quite
clear what the definition of integrability of a rational function should be, and it is
not our business to try to mess with this here. But as for the others:

Example 1.1. Let

X = {x ∈ [0, 2]Q | 0 ≤ x2 < 2}, Y = {x ∈ [0, 2]Q | 2 < x2 ≤ 4}.
Define f : [0, 2]Q → Q by f(x) = −1 if x ∈ X and f(x) = 1 if x ∈ Y . The first
thing to notice is that f is indeed well-defined on [0, 2]Q: initially one worries about
the case x2 = 2, but – I hope you’ve heard! – there are in fact no such rational
numbers, so no worries. In fact f is continuous: in fact, suppose x2 < 2. Then for
any ε > 0 we can choose any δ > 0 such that (x+ δ)2 < 2. But clearly f does not
satisfy the Intermediate Value Property: it takes exactly two values!

Notice that our choice of δ has the strange property that it is independent of
ε! This means that the function f is locally constant: there is a small interval
around any point at which the function is constant. However the δ cannot be taken
independently of ε so f is not uniformly continuous. More precisely, for every
δ > 0 there are rational numbers x, y with x2 < 2 < y2 and |x − y| < δ, and then
|f(x)− f(y)| = 2.

Exercise 1.3. Construct a locally constant (hence continuous!) function f :
[0, 2]Q → Q which is unbounded. Deduce the EVT does not hold for continuous
functions on [a, b]Q. Deduce that such a function cannot be uniformly continous.

The point of these examples is that there must be some good property of [a, b] itself
that [a, b]Q lacks. Looking back at the proof of Real Induction we quickly find it:
it is the celebrated least upper bound axiom. The least upper bound axiom is
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in fact the source of all the goodness of R and [a, b], but because in analysis one
doesn’t study structures which don’t have this property, this can be a bit hard
to appreciate. Moreover, there are actually several pleasant topological properties
that are all implied by the least upper bound axiom, but become distinct in a more
general topological context.

To go further, we now introduce some rudimentary topological concepts for in-
tervals in the real line and show how real induction works nicely with these concepts.

A subset U ⊂ R is open if for all x ∈ U , there is ε > 0 such that (x− ε, x+ ε) ⊂ U .
That is, a subset is open if whenever it contains a point it contains all points
sufficient close to it. In particular the empty set ∅ and R itself are open.

Exercise 1.4. An interval is open in R iff it is of the form (a, b), (−∞, b) or
(a,∞).

We also want to define open subsets of intervals, especially of the closed bounded
interval [a, b]. In this course we will define open sets in several different contexts
before arriving at the final (for us!) level of generality of topological spaces, but
one easy common property is that when we are trying to define open subsets of a
set X, we always want to include X as an open subset of itself. Notice that if we
directly extend the above definition of open sets to [a, b] then this doesn’t work:
a ∈ [a, b] but there is no ε > 0 such that (a− ε, a+ ε) ⊂ [a, b].

For now we fix this in the kludgiest way: let I ⊂ R be an interval.2 A subset
U ⊂ I is open if:
• For every point x ∈ U which is not an endpoint of I, we have (x− ε, x+ ε) ⊂ U
for some ε > 0;
• If x ∈ U is the left endpoint of I, then there is some ε > 0 such that [x, x+ε) ⊂ I.
• If x ∈ U is the right endpoint of I, then there is some ε > 0 such that (x−ε, x] ⊂ I.

Exercise 1.5. Show: a subset U of an interval I is open iff whenever U con-
tains a point, it contains all points of I which lie sufficiently close to it.

Let A be a subset of an interval I. A point x ∈ I is a limit point of A in I if for
all ε > 0, (x− ε, x+ ε) contains a point of A other than x.

Exercise 1.6. Let I be an interval in I. Show that except in the case in which
I consists of a single point, every point of I is a limit point of I.

Theorem 1.8. (Bolzano-Weierstrass) Every infinite subset of [a, b] has a limit
point in [a, b].

Proof. Let A be an infinite subset of [a, b], and let S be the set of x in
[a, b] such that if A ∩ [a, x] is infinite, it has a limit point. It suffices to show that
S = [a, b], which we prove by Real Induction. As usual, (i) is trivial. Since A∩[a, x)
is finite iff A∩ [a, x] is finite, (iii) follows. As for (ii), suppose x ∈ S. If A∩ [a, x] is
infinite, then by hypothesis it has a limit point and hence so does [a, b]. So we may
assume that A∩ [a, x] is finite. Now either there exists δ > 0 such that A∩ [a, x+δ]
is finite – okay – or every interval [x, x+ δ] contains infinitely many points of A in
which case x itself is a limit point of A. �

2Until further notice, “interval” will always mean interval in R.
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A subset A ⊂ R is compact if given any family {Ui}i∈I of open subsets of R, if
A ⊂

⋃
i∈I Ui, then there is a finite subset J ⊂ I with A ⊂

⋃
i∈J Ui. We define

compact subsets of an interval (in R) similarly.

Lemma 1.9. Let A ⊂ R be compact. Then A is bounded and every limit point
of A is an element of A.

Proof. For n ∈ Z+, let Un = (−n, n). Then
⋃∞
n=1 Un = R, and every finite

union of the Un’s is bounded, so if A is unbounded then A ⊂
⋃∞
n=1 Un and is not

contained in
⋃
n∈J An for any finite J ⊂ Z+. Suppose that a is a limit point of A

which does not lie in A. Let Un = (−∞, a− 1
n )∪(a+ 1

n ,∞). Then
⋃∞
n=1 Un = R\A,

so A ⊂
⋃
n∈Z+ Un, but since a is a limit point of A, there is no finite subset J ⊂ Z+

with A ⊂
⋃
n∈J Un. �

Theorem 1.10. (Heine-Borel) The interval [a, b] is compact.

Proof. For an open covering U = {Ui}i∈I of [a, b], let

S = {x ∈ [a, b] | U ∩ [a, x] has a finite subcovering}.
We prove S = [a, b] by Real Induction. (RI1) is clear. (RI2): If U1, . . . , Un covers
[a, x], then some Ui contains [x, x+δ] for some δ > 0. (RI3): if [a, x) ⊂ S, let ix ∈ I
be such that x ∈ Uix , and let δ > 0 be such that [x− δ, x] ∈ Uix . Since x− δ ∈ S,
there is a finite J ⊂ I with

⋃
i∈J Ui ⊃ [a, x− δ], so {Ui}i∈J ∪ Uix covers [a, x]. �

Proposition 1.11. a) IVT implies the connectedness of [a, b]: if A,B are open
subsets of [a, b] such that A ∩ B = ∅ and A ∪ B = [a, b], then either A = ∅ or
B = ∅.
b) The connectedness of [a, b] implies IVT.

Proof. In both cases we will argue by contraposition.
a) Suppose [a, b] = A ∪ B, where A and B are nonempty open subsets such that
A ∩B = ∅. Then function f : [a, b]→ R which sends x ∈ A 7→ 0 and x ∈ B 7→ 1 is
continuous but does not have the Intermediate Value Property.
b) If IVT fails, there is a continuous function f : [a, b] → R and A < B < C such
that A,C ∈ f([a, b]) but B /∈ f([a, b]). Let

U = {x ∈ [a, b] | f(x) < B}, V = {x ∈ [a, b] | B < f(x)}.
Then U and V are open sets – the basic principle here is that if a continuous function
satisfies a strict inequality at a point, then it satisfies the same strict inequality in
some small interval around the point – which partition [a, b]. �

4. The Miracle of Sequences

Lemma 1.12. (Rising Sun [NP88]) Every infinite sequence in the real line3 has
a monotone subsequence.

Proof. Let us say that m ∈ Z+ is a peak of the sequence {an} if for all n > m
we have an < am. Suppose first that there are infinitely many peaks. Then any
sequence of peaks forms a strictly decreasing subsequence, hence we have found
a monotone subsequence. So suppose on the contrary that there are only finitely
many peaks, and let N ∈ N be such that there are no peaks n ≥ N . Since n1 = N
is not a peak, there exists n2 > n1 with an2

≥ an1
. Similarly, since n2 is not a peak,

3Or any ordered set: see §5.
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there exists n3 > n2 with an3
≥ an2

. Continuing in this way we construct an infinite
(not necessarily strictly) increasing subsequence an1 , an2 , . . . , ank , . . .. Done! �

Theorem 1.13. (Sequential Bolzano-Weierstrass) Every sequence in [a, b] ad-
mits a convergent subsequence.

Proof. Let {xn} be a sequence in [a, b]. By the Rising Sun Lemma, {xn}
admits a monotone subsequence. A bounded increasing (resp. decreasing) sequence
converges to its supremum (resp. infimum). �

Exercise 1.7. (Bolzano-Weierstrass = Sequential Bolzano-Weierstrass)
a) Suppose that every infinite subset of [a, b] has a limit point in [a, b]. Show that
every sequence in [a, b] admits a convergent subsequence.
b) Suppose that every sequence in [a, b] admits a convergent subsequence. Show that
every infinite subset of [a, b] has a limit point in [a, b].

Theorem 1.14. Sequential Bolzano-Weierstrass implies EVTa).

Proof. Seeking a contradiction, let f : [a, b]→ R be an unbounded continuous
function. Then for each n ∈ Z+ we may choose xn ∈ [a, b] such that |f(xn)| ≥ n.
By Theorem 4.1, after passing to a subsequence (which, as usual, we will suppress
from our notation) we may suppose that xn converges, say to α ∈ [a, b]. Since f is
continuous, f(xn)→ f(α), so in particular {f(xn)} is bounded...contradiction!
(With regard to the attainment of extrema, we have no improvement to offer on
the simple argument using suprema / infima given in the proof of Theorem 1.3. �

Theorem 1.15. Sequential Bolzano-Weierstrass implies UCT (Theorem 1.5).

Proof. Seeking a contradiction, let f : [a, b] → R be continuous but not
uniformly continuous. Then there is ε > 0 such that for all n ∈ Z+, there are
xn, yn ∈ [a, b] with |xn − yn| < 1

n and |f(xn)− f(yn)| ≥ ε. By Theorem 1.13, after
passing to a subsequence (notationally suppressed!) xn converges to some α ∈ [a, b],
and thus also yn → α. Since f is continuous f(xn) and f(yn) both converge to
f(α), hence for sufficiently large n, |f(xn)− f(yn)| < ε: contradiction! �

5. Induction and Completeness in Ordered Sets

5.1. Introduction to Ordered Sets.

Consider the following properties of a binary relation ≤ on a set X:
(Reflexivity) For all x ∈ X, x ≤ x.
(Anti-Symmetry) For all x, y ∈ X, if x ≤ y and y ≤ x, then x = y.
(Transitivity) For all x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z.
(Totality) For all x, y ∈ X, either x ≤ y or y ≤ x.
A relation which satisfies reflexivity and transitivity is called a quasi-ordering. A
relation which satisfies reflexivity, anti-symmetry and transitivity is called a par-
tial ordering. A relation which satisfies all four properties is called an ordering
(sometimes a total or linear ordering). An ordered set is a pair (X,≤) where
X is a set and ≤ is an ordering on X.

Rather unsurprisingly, we write x < y when x ≤ y and x 6= y. We also write
x ≥ y when y ≤ x and x > y when x ≥ y and x 6= y.
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Ordered sets are a basic kind of mathematical structure which induces a topo-
logical structure. (It is not yet supposed to be clear exactly what this means.)
Moreover they allow an inductive principle which generalizes Real Induction.

A bottom element of an ordered set is an element which is strictly less than
every other element of the set. Clearly bottom elements are unique if they exist,
and clearly they may or may not exist: the natural numbers N have 0 as a bottom
element, and the integers do not have a bottom element. We will denote the bottom
element of an ordered set, when it exists, by B.

If an ordered set does not have a bottom element, we can add one. Let X be
an ordered set without a bottom element, choose any B /∈ X, let XB = X ∪ {B},
and extend the ordering to B by taking B < x for all x ∈ X.4

There is an entirely parallel discussion for top elements T.

Example 1.2. Starting from the empty set – which is an ordered set! – and
applying the bottom element construction n times, we get a linearly ordered set with
n elements. Similarly for applying the top element construction n times.

We will generally suppress the ≤ when speaking about ordered sets and simply
refer to “the ordered set X”.

Let X and Y be ordered sets. A function f : X → Y is:
• increasing (or isotone) if for all x1 ≤ x2 ∈ X, f(x1) ≤ f(x2) in Y ;
• strictly increasing if for all x1 < x2 in X, f(x1) < f(x2);
• decreasing (or antitone) if for all x1 ≤ x2 in X, f(x1) ≥ f(x2);
• strictly decreasing if for all x1 < x2 in X, f(x1) > f(x2).

This directly generalizes the use of these terms in calculus. But now we take
the concept more seriously: we think of orderings on X and Y as giving structure
and we think of isotone maps as being the maps which preserve that structure.

Exercise 1.8. Let f : X → Y be an increasing function between ordered sets.
Show that f is strictly increasing iff it is injective.

Exercise 1.9. Let X, Y and Z be ordered sets.
a) Show that the identity map 1X : X → X is isotone.
b) Suppose that f : X → Y and g : Y → Z are isotone maps. Show that the
composition g ◦ f : X → Z is an isotone map.
c) Suppose that f : X → Y and g : Y → Z are antitone maps. Show that the
composition g : X → Z is an isotone (not antitone!) map.

Let X and Y be ordered sets. An order isomorphism is an isotone map f : X →
Y for which there exists an isotone inverse function g : Y → X.

Exercise 1.10. Let X and Y be ordered sets, and let f : X → Y be an isotone
bijection. Show that f is an order isomorphism.

4This procedure works even if X already has a bottom element, except with the minor snag
that our suggested notation now has us denoting two different elements by B. We dismiss this as

being beneath our pay grade.
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Exercise 1.11. a) Which linear functions f : R→ R are order isomorphisms?
b) Let d ∈ Z+. Show that there is a degree d polynomial order isomorphism
P : R→ R iff d is odd.

Exercise 1.12. a) Let f : R→ R be a continuous bijection. Show: f is either
increasing or decreasing.
b) Let f : R → R be a bijection which is either increasing or decreasing. Show: f
is continuous.

We say that a property of an ordered set is order-theoretic if whenever an ordered
set possesses that property, every order-isomorphic set has that property.

Example 1.3. The following are all order-theoretic properties: being nonempty,
being finite, being infinite, having a given cardinality (indeed these are all properties
preserved by bijections of sets), having a bottom element, having a top element, being
dense.

Let a < b be elements in an ordered set X. We define

[a, b] = {x ∈ X | a ≤ x ≤ b},

(a, b] = {x ∈ X | a < x ≤ b},

[a, b) = {x ∈ X | a ≤ x < b},

(a, b) = {x ∈ X | a < x < b,

(−∞, b] = {x ∈ S | x ≤ b},

(−∞, b) = {x ∈ S | x < b},

[a,∞) = {x ∈ S | a ≤ x},

(a,∞) = {x ∈ S | a < x}.
An interval in X is any of the above sets together with ∅ and X itself. We call
intervals of the form ∅, (a, b), (−∞, b), (a,∞) and X open intervals. We call
intervals of the form [a, b], (−∞, b] and [a,∞) closed intervals.

Exercise 1.13. a) Let a < b and c < d be real numbers. Show that [a, b] and
[c, d] are order-isomorphic.
b) Let a < b. Show that (a, b) is order-isomorphic to R.
c) Classify all intervals in R up to order-isomorphism.

Let x < y be elements in an ordered set. We say that y covers x if (x, y) = ∅: in
other words, y is the bottom element of the subset of all elements which are greater
than x. We say y is the successor of x and write y = x+. Similarly, we say that
x is the predecessor of y and write x = y−. Clearly an element in an ordered set
may or may not have a successor or a predecessor: in Z, every element has both;
in R, no element has either one. An element x of an ordered set is left-discrete if
x = B or x has a predecessor and right discrete x = T or x has a successor. An
ordered set is discrete if every element is left-discrete and right-discrete.

At the other extreme, an ordered set X is dense if for all a < b ∈ X, there
exists c with a < c < b.
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Exercise 1.14. Let X be an ordered set with at least two elements. Show that
the following are equivalent:
(i) No element x 6= B of X is left-discrete.
(ii) No element x 6= T of X is right-discrete.
(iii) X is dense.

Exercise 1.15. For a linearly ordered set X, we define the order dual X∨ to
be the ordered set with the same underlying set as X but with the ordering reversed:
that is, for x, y ∈ X∨, we have x ≤ y ⇐⇒ y ≤ x in X.
a) Show that X has a top element (resp. a bottom element) ⇐⇒ X∨ has a bottom
element (resp. a top element).
b) Show that X is well-ordered iff X∨ satisfies the ascending chain condition.
c) Suppose X is finite. Show that X ∼= X∨ (order-isomorphic).
d) Determine which intervals I in R are isomorphic to their order-duals.

Let (X1,≤1) and (X2,≤2) be ordered spaces. We define the lexicographic order
≤ on the Cartesian product X1 ×X2 as follows: (x1, x2) ≤ (y1, y2) iff x1 < y1 or
(x1 = y1 and x2 ≤ y2).

Exercise 1.16.
a) Show: the lexicographic ordering is indeed an ordering on X1 ×X2.
b) Show: if X1 and X2 are both well-ordered, so is X1 ×X2.
c) Extend the lexicographic ordering to finite products X1 ×Xn.
(N.B.: It can be extended to infinite products as well...)

5.2. Completeness and Dedekind Completeness.

The characteristic property of the real numbers among ordered fields is the least
upper bound axiom: every nonempty subset which is bounded above has a least
upper bound. But this axiom says nothing about the algebraic operations + and
·: it is purely order-theoretic. In fact, by pursuing its analogue in an arbitrary
ordered set we will get an interesting and useful generalization of Real Induction.

For a subset S of a linearly ordered set X, a supremum supS of S is a least
element which is greater than or equal to every element of S, and an infimum
inf S of S is a greatest element which is less than or equal to every element of S.
X is complete if every subset has a supremum; equivalently, if every subset has
an infimum. If X is complete, it has a least element B = sup∅ and a greatest
element T = inf ∅. X is Dedekind complete if every nonempty bounded above
subset has a supremum; equivalently, if every nonempty bounded below subset has
an infimum. X is complete iff it is Dedekind complete and has B and T.

Exercise 1.17. Show that an ordered set X is Dedekind complete iff the set
obtained by adjoining top and bottom elements to X is complete.

Exercise 1.18. Let X be an ordered set with order-dual X∨.
a) Show that X is complete iff X∨ is complete.
b) Show that X is Dedekind complete iff X∨ is Dedekind complete.

Exercise 1.19. In the following problem, X and Y are nonempty ordered sets,
and Cartesian products are given the lexicographic ordering.
a) Show: if X and Y are complete, then X × Y is complete.
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b) Show: R× R in the lexicographic ordering is not Dedekind complete.
c) Show: if X × Y is complete, then X and Y are complete.
d) Suppose X × Y is Dedekind complete. What can be said about X and Y ?

5.3. Principle of Ordered Induction.

We give an inductive characterization of Dedekind completeness in linearly ordered
sets, and apply it to prove three topological characterizations of completeness which
generalize familiar results from elementary analysis.

Let X be an ordered set. A set S ⊂ X is inductive if it satisfies:
(IS1) There exists a ∈ X such that (−∞, a] ⊂ S.
(IS2) For all x ∈ S, either x = T or there exists y > x such that [x, y] ⊂ S.
(IS3) For all x ∈ X, if (−∞, x) ⊂ S, then x ∈ S.

Exercise 1.20. Let X be an ordered set with a bottom element B. Show that
(IS3) =⇒ (IS1).

Theorem 1.16. (Principle of Ordered Induction) For a linearly ordered set X,
the following are equivalent:
(i) X is Dedekind complete.
(ii) The only inductive subset of X is X itself.

Proof. (i) =⇒ (ii): Let S ⊂ X be inductive. Seeking a contradiction, we
suppose S′ = X \ S is nonempty. Fix a ∈ X satisfying (IS1). Then a is a lower
bound for S′, so by hypothesis S′ has an infimum, say y. Any element less than y
is strictly less than every element of S′, so (−∞, y) ⊂ S. By (IS3), y ∈ S. If y = 1,
then S′ = {1} or S′ = ∅: both are contradictions. So y < 1, and then by (IS2)
there exists z > y such that [y, z] ⊂ S and thus (−∞, z] ⊂ S. Thus z is a lower
bound for S′ which is strictly larger than y, contradiction.
(ii) =⇒ (i): Let T ⊂ X be nonempty and bounded below by a. Let S be the set
of lower bounds for T . Then (−∞, a] ⊂ S, so S satisfies (IS1).
Case 1: Suppose S does not satisfy (IS2): there is x ∈ S with no y ∈ X such that
[x, y] ⊂ S. Since S is downward closed, x is the top element of S and x = inf(T ).
Case 2: Suppose S does not satisfy (IS3): there is x ∈ X such that (−∞, x) ∈ S
but x 6∈ S, i.e., there exists t ∈ T such that t < x. Then also t ∈ S, so t is the least
element of T : in particular t = inf T .
Case 3: If S satisfies (IS2) and (IS3), then S = X, so T = {1} and inf T = 1. �

Exercise 1.21. Use the fact that an ordered set X is Dedekind complete iff its
order dual is to state a downward version of Theorem 1.16.

Exercise 1.22. a) Show that when X is well-ordered, Theorem 1.16 becomes
the principle of transfinite induction.
b) Show that when X = [a, b], we recover Real Induction.

6. Dedekind Cuts

Let S be a nonempty ordered set.

A quasi-cut in S is an ordered pair (S1, S2) of subsets S1, S2 ⊂ S with S1 ≤ S2

and S = S1 ∪ S2. It follows immediately that S1 is initial, S2 is final and S1 and
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S2 intersect at at most one point.

A cut Λ = (ΛL,ΛR) is a quasi-cut with ΛL ∩ ΛR = ∅; Λ is a Dedekind cut
if ΛL and ΛR are both nonempty. We call ΛL and ΛR the initial part and final
part of the cut, respectively. Any initial (resp. final) subset T ⊂ S is the initial
part of a unique cut: the final (resp. initial) part is S \ T .

For any subset M ⊂ S, we define the downward closure

D(M) = {x ∈ S | x ≤ m for some m ∈M}
and the upward closure

U(M) = {x ∈ S | m ≤ x for some m ∈M}.

Exercise 1.23. Let M ⊂ S.
a) Show that D(M) is the intersection of all initial subsets of S containing M and
thus the unique minimal initial subset containing M .
b) Show that U(M) is the intersection of all final subsets of S containing M and
thus the unique minimal final subset containing M .

Thus any subset of M determines two (not necessarily distinct) cuts: a cut M+

with initial part D(M) and a cut M− with final part U(M). For α ∈ S, we write
α+ for {α}+ and α− for {α}−.

Exercise 1.24. Let α ∈ S. Show that α+ is the unique cut in which α is
the maximum of the initial part and that α− is the unique cut in which α is the
minimum of the final part.

We call cuts of the form α+ and α− principal. Thus a cut fails to be principal iff
its initial part has no maximum and its final part has no minimum.

Example 1.4. Let S be a nonempty ordered set.
a) The cut (S,∅) is principal iff S has a top element. The cut (∅, S) is principal
iff S has a bottom element.
b) Let S = R. Then the above two cuts are not principal, but let Λ = (ΛL,ΛR) be a
Dedekind cut. Then ΛL is bounded above (by any element of ΛR), so let α = sup ΛL.
Then either α ∈ ΛL and Λ = α+ or α ∈ ΛR and Λ = α−. Thus every Dedekind cut
in R is principal.
c) Let S = Q. Then {(−∞,

√
2) ∩Q, (

√
2,∞)} is a nonprincipal Dedekind cut.

One swiftly draws the following moral.

Theorem 1.17. Let S be an ordered set. Then:
a) Every cut in S is principal iff S is complete.
b) Every Dedekind cut in S is principal iff S is Dedekind complete.

Exercise 1.25. Prove it.

Now let T be an ordered set, let S ⊂ T be nonempty, and let Λ = (ΛL,ΛR) be a
cut in S. We say that γ ∈ T realizes Λ in T if ΛL ≤ γ ≤ ΛR. Conversely, to each
γ ∈ T we associate the cut

Λ(γ) = ({x ∈ S | x ≤ γ}, (x ∈ S | x > γ})
in S. This is a sinister definition: if γ ∈ S we get Λ(γ) = γ+. (We could have
set things up the other way, but we do need to make a choice one way or the
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other.) The cuts in S which are realized by some element of S are precisely the
principal cuts, and a principal cut is realized by either one or two elements of S
(the latter cannot happen if S is order-dense). Conversely, every element γ ∈ S
realizes precisely two cuts, γ+ and γ−.

Example 1.5. Let S = Q and T = R. The cut {(−∞,
√

2) ∩ Q, (
√

2,∞)},
which is non-principal in S, is realized in T by

√
2.

If in an ordered set S we have a nonprincipal cut Λ = (ΛL,ΛR), up to order-
isomorphism there is a unique way to add a point γ to S which realizes Λ: namely
we adjoin γ with ΛL < γ < ΛR.

For an ordered set S, we denote by S̃ the set of all cuts in S. We equip S̃ with the
following binary relation: for Λ1, Λ2 ∈ S̃, we put Λ1 ≤ Λ2 if ΛL1 ⊂ ΛL2 .

Proposition 1.18. Let S be an ordered set, and let S̃ be the set of cuts of S.
a) The relation ≤ on S is an ordering.
b) Each of the maps

ι+ : S → S̃, x 7→ x+

ι− : S → S̃, x 7→ x−

is an isotone injection.

Proof. a) The inclusion relation ⊂ is a partial ordering on the power set 2S ;
restricting to initial sets we still get a partial ordering. A cut is determined by its
initial set, so ≤ is certainly a partial ordering on S̃. The matter of it is to show
that we have a total ordering: equivalently, given any two initial subsets ΛL1 and
ΛL2 of an ordered set, one is contained in the other. Well, suppose not: if neither is
contained in the other, there is x1 ∈ ΛL1 \ ΛL2 and x2 ∈ ΛL2 \ ΛL1 . We may assume
without loss of generality that x1 < x2 (otherwise, switch ΛL1 and ΛL2 ): but since
ΛL2 is initial and contains x2, it also contains x1: contradiction.
b) This is a matter of unpacking the definitions, and we leave it to the reader. �

Theorem 1.19. Let S be a totally ordered set. The map ι+ : S ↪→ S̃ gives an
order completion of S. That is:
a) S̃ is complete: every subset has a supremum and an infimum.
b) If X is a complete ordered set and f : S → X is an isotone map, there is an

isotone map f̃ : S̃ → X such that f = f̃ ◦ ι+.

Proof. It will be convenient to identify a cut Λ with its initial set ΛL.
a) Let {Λi}i∈I ⊂ S̃. Put ΛL1 =

⋃
i∈I ΛLi and ΛL2 =

⋂
i∈I ΛLi . Since unions and

intersections of initial subsets are initial, ΛL1 and ΛL2 are cuts in S, and clearly

ΛL1 = inf{Λi}i∈I , ΛL2 = sup{Λi}i∈I .
b) For ΛL ∈ S̃, we define

f̃(ΛL) = sup
x∈ΛL

f(x).

It is easy to see that defining f̃ in this way gives an isotone map with f̃ ◦ι+ = f . �

Theorem 1.20. Let F be an ordered field, and let D(F ) be the Dedekind com-
pletion of F . Then D(F ) can be given the structure of a field compatible with its
ordering iff the ordering on F is Archimedean.





CHAPTER 2

Metric Spaces

1. Metric Geometry

A metric on a set X is a function d : X ×X → [0,∞) satisfying:

(M1) (Definiteness) For all xmy ∈ X, d(x, y) = 0 ⇐⇒ x = y.
(M2) (Symmetry) For all x, y ∈ X, d(x, y) = d(y, x).
(M3) (Triangle Inequality) For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

A metric space is a pair (X, d) consisting of a set X and a metric d on X.
By the usual abuse of notation, when only one metric on X is under discussion we
will typically refer to “the metric space X.”

Example 2.1. (Discrete Metric) Let X be a set, and for any x, y ∈ X, put

d(x, y) =

{
0, x = y

1, x 6= y
.

This is a metric on X which we call the discrete metric. We warn the reader
that we will later study a property of metric spaces called discreteness. A set
endowed with the discrete metric is a discrete space, but there are discrete metric
spaces which are not endowed with the discrete metric.

In general showing that a given function d : X ×X → R is a metric is nontrivial.
More precisely verifying the Triangle Inequality is often nontrivial; (M1) and (M2)
are usually very easy to check.

Example 2.2.
a) Let X = R and take d(x, y) = |x− y|.
b) More generally, let N ≥ 1, let X = RN , and take d(x, y) = ||x − y|| =√∑N

i=1(xi − yi)2. It is very well known but not very obvious that d satisfies the

triangle inequality. This is a special case of Minkowski’s Inequality, which will
be studied later.
c) More generally let p ∈ [1,∞), let N ≥ 1, let X = RN and take

dp(x, y) = ||x− y||p =

(
N∑
i=1

(xi − yi)p
) 1
p

.

The assertion that dp satisfies the triangle inequality is Minkowski’s Inequality.

Example 2.3. Let (X, d) be a metric space, and let Y ⊂ X be any subset.
Show that the restricted function d : Y × Y → R is a metric function on Y .

21
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Example 2.4. Let a ≤ b ∈ R. Let C[a, b] be the set of all continuous functions
f : [a, b]→ R. For f ∈ C[a, b], let

||f || = sup
x∈[a,b]

|f(x)|.

Then d(f, g) = ||f − g|| is a metric function on C[a, b].

Proposition 2.1. (Reverse Triangle Inequality) Let (X, d) be a metric space,
and let x, y, z ∈ X. Then we have

(1) |d(x, y)− d(x, z)| ≤ d(y, z).

Proof. The triangle inequality gives

d(x, y) ≤ d(x, z) + d(z, y)

and thus

d(x, y)− d(x, z) ≤ d(y, z).

Similarly, we have

d(x, z) ≤ d(x, y) + d(y, z)

and thus

d(x, z)− d(x, y) ≤ d(y, z). �

1.1. Exercises.

Exercise 2.1.
a) Let (X, dx) and (Y, dy) be metric spaces. Show that the function

dX×Y : (X × Y )× (X × Y )→ R, ((x1, y1), (x2, y2)) 7→ max(dX(x1, x2), dY (y1, y2))

is a metric on X × Y .
b) Extend the result of part a) to finitely many metric spaces (X1, dX1

), . . . , (Xn, dXn).
c) Let N ≥ 1, let X = RN and take d∞(x, y) = max1≤i≤N |xi − yi|. Show that d∞
is a metric.
d) For each fixed x, y ∈ RN , show

d∞(x, y) = lim
p→∞

dp(x, y).

Use this to give a second (more complicated) proof of part c).

Let (X, dx) and (Y, dY ) be metric spaces. A function f : X → Y is an isometric
embedding if for all x1, x2 ∈ X, dY (f(x1), f(x2)) = dX(x1, x2). That is, the
distance between any two points in X is the same as the distance between their
images under f . An isometry is a surjective isometric embedding.

Exercise 2.2. a) Show that every isometric embedding is injective.
b) Show that every isometry is bijective and thus admits an inverse function.
c) Show that if f : (X, dX)→ (Y, dY ) is an isometry, so is f−1 : (Y, dY )→ (X, dX).

For metric spaces X and Y , let Iso(X,Y ) denote the set of all isometries from X
to Y . Put Iso(X) = Iso(X,X), the isometries from X to itself. According to more
general mathematical usage we ought to call elements of Iso(X) “autometries” of
X...but almost no one does.
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Exercise 2.3. a) Let f : X → Y and g : Y → Z be isometric embeddings.
Show that g ◦ f : X → Z is an isometric embedding.
b) Show that IsoX forms a group under composition.
c) Let X be a set endowed with the discrete metric. Show that IsoX = SymX is
the group of all bijections f : X → X.
d) Can you identify the isometry group of R? Of Eucliedean N -space?

Exercise 2.4. a) Let X be a set with N ≥ 1 elements endowed with the discrete
metric. Find an isometric embedding X ↪→ RN−1.
b)* Show that there is no isometric embedding X ↪→ RN−2.
c) Deduce that an infinite set endowed with the discrete metric is not isometric to
any subset of a Euclidean space.

Exercise 2.5. a) Let G be a finite group. Show that there is a finite metric
space X such that IsoX ∼= G (isomorphism of groups).
b) Prove or disprove: for every group G, there is a metric space X with IsoX ∼= G?

Let A be a nonempty subset of a metric space X. The diameter of A is

diam(A) = sup{d(x, y) | x, y ∈ A}.

Exercise 2.6. a) Show that diamA = 0 iff A consists of a single point.
b) Show that A is bounded iff diamA <∞.
c) Show that For any x ∈ X and ε > 0, diamB(x, ε) ≤ 2ε.

Exercise 2.7. Recall: for sets X,Y we have the symmetric difference

X∆Y = (X \ Y )
∐

(Y \X),

the set of elements belonging to exactly one of X and Y (“exclusive or”). Let S be
a finite set, and let 2S be the set of all subsets of S. Show that

d : 2S × 2S → N, d(X,Y ) = X∆Y

is a metric function on 2S, called the Hamming metric.

Exercise 2.8. Let X be a metric space.
a) Suppose #X ≤ 2. Show that there is an isometric embedding X ↪→ R.
b) Let d be a metric function on the set X = {a, b, c}. Show that up to relabelling
the points we may assume

d1 = d(a, b) ≤ d2 = d(b, c) ≤ d3 = d(a, c).

Find necessary and sufficient conditions on d1, d2, d3 such that there is an isometric
embedding X ↪→ R. Show that there is always an isometric embedding X ↪→ R2.
c) Let X = {•, a, b, c} be a set with four elements. Show that

d(•, a) = d(•, b) = d(•, c) = 1, d(a, b) = d(a, c) = d(b, c) = 2

gives a metric function on X. Show that there is no isometric embedding of X into
any Euclidean space.

Exercise 2.9. Let G = (V,E) be a connected graph. Define d : V × V → R by
taking d(P,Q) to be the length of the shortest path connecting P to Q.
a) Show that d is a metric function on V .
b) Show that the metric of Exercise 2.8c) arises in this way.
c) Find necessary and/or sufficient conditions for the metric induced by a finite
connected graph to be isometric to a subspace of some Euclidean space.
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Exercise 2.10. Let d1, d2 : X ×X → R be metric functions.
a) Show that d1 + d2 : X ×X → R is a metric function.
b) Show that max(d1, d2) : X ×X → R is a metric function.

Exercise 2.11.
a) Show that for any x, y ∈ R there is f ∈ IsoR such that f(x) = y.
b) Show that for any x ∈ R, there are exactly two isometries f of R such that
f(x) = x.
c) Show that every isometric embedding f : R→ R is an isometry.
d) Find a metric space X and an isometric embedding f : X → X which is not
surjective.

Exercise 2.12.
Consider the following property of a function d : X ×X → [0,∞):
(M1′) For all x ∈ X, d(x, x) = 0.
A pseudometric function is a function d : X × X → [0,∞) satisfying (M1′),
(M2) and (M3), and a pseudometric space is a pair (X, d) consisting of a set X
and a pseudometric function d on X.
a) Show that every set X admits a pseudometric function.
b) Let (X, d) be a pseudometric space. Define a relation ∼ on X by x ∼ y iff
d(x, y) = 0. Show that ∼ is an equivalence relation.
c) Show that the pseudometric function is well-defined on the set X/ ∼ of ∼-
equivalence classes: that is, if x ∼ x′ and y ∼ y′ then d(x, y) = d(x′, y′). Show that
d is a metric function on X/ ∼.

1.2. Constructing Metrics.

Proposition 2.2. Let (X, d) be a metric space, and let Y be a subset of X.
Let dY : Y × Y → R be the restriction of the metric function d : X × X → R to
Y × Y . Then (Y, dY ) is a metric space.

Proof. Because the three properties (M1), (M2) and (M3) are all universally
quantified statements, since they hold for all (x1, x2) ∈ X ×X or all (x1, x2, x3) ∈
X × X × X, they necessarily hold for all (y1, y2) ∈ Y × Y or all (y1, y2, y3) ∈
Y × Y × Y . �

The set Y endowed with its restricted metric dY is called a subspace of the metric
space X. We also say that the metric dY is induced from the metric d on Y .

Exercise 2.13. a) Let (X, d) be a metric space, let Y be a subset of X, and
let dY : Y × Y → R be the induced metric, as above. Show that inclusion of Y into
X gives an isometric embedding (Y, dY ) ↪→ (X, dX).
b) Conversely, let (X ′, d′) be a metric space and ι : (X ′, d′)→ (X, d) be an isometric
embedding. Show that ι induces an isometry (X ′, d′)→ (ι(X ′), d).

Lemma 2.3. Let (X, d) be a metric space, and let f : R≥0 → R≥0 be an
increasing, concave function – i.e., −f is convex – with f(0) = 0. Then df = f ◦ d
is a metric on X.

Proof. The only nontrivial verification is the triangle inequality. Let x, y, z ∈
X. Since d is a metric, we have

d(x, z) ≤ d(x, y) + d(y, z).
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Since f is increasing, we have

(2) df (x, z) = f(d(x, z)) ≤ f(d(x, y) + d(y, z)).

Since −f is convex and f(0) = 0, by the Generalized Two Secant Inequality or the
Interlaced Secant Inequality, we have for all a ≥ 0 and all t > 0 that

f(a+ t)− f(a)

(a+ t)− a
≤ f(t)

t− 0

and thus

(3) f(a+ t) ≤ f(a) + f(t).

Taking a = d(x, y) and t = d(y, z) and combining (2) and (3), we get

df (x, z) ≤ f(d(x, y) + d(y, z)) ≤ df (x, y) + df (y, z). �

Corollary 2.4. Let (X, d) be a metric space, and let α > 0. Let dα : X×X →
R be given by

dα(x, y) =
αd(x, y)

d(x, y) + 1
.

Then dα is a metric on X and diam(X, dα) ≤ α.

Exercise 2.14. Prove it.

2. Metric Topology

Let X be a metric space.

For x ∈ X and ε ≥ 0 we define the open ball

B◦(x, ε) = {y ∈ X | d(x, y) < ε}.
and the closed ball

B•(x, ε) = {y ∈ X | d(x, y) ≤ ε}.
Notice that

B◦(x, 0) = ∅,
B•(x, 0) = {x}.

A subset Y of a metric space X is open if for all y ∈ Y , there is ε > 0 such that

B◦(y, ε) ⊂ Y.
A subset Y of a metric space X is closed if its complement

X \ Y = {x ∈ X | x /∈ Y }
is open.

Exercise 2.15. Find a subset X ⊂ R which is:
(i) both open and closed.
(ii) open and not closed.
(iii) closed and not open.
(iv) neither open nor closed.

Proposition 2.5. Let X be a metric space, and let {Yi}i∈I be subsets of X.
a) The union Y =

⋃
i∈I Yi is an open subset of X.

b) If I is nonempty and finite, then the intersection Z =
⋂
i∈I Yi is an open subset

of X.
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Proof. a) If y ∈ Y , then y ∈ Yi for at least one i. So there is ε > 0 such that

B◦(y, ε) ⊂ Yi ⊂ Y.
b) We may assume that I = {1, . . . , n} for some n ∈ Z+. Let y ∈ Z. Then for
1 ≤ i ≤ n, there is εi > 0 such that B◦(y, εi) ⊂ Yi. Then ε = min1≤i≤n εi > 0 and
B◦(y, ε) ⊂ B◦(y, εi) ⊂ Yi for all 1 ≤ i ≤ n, so B◦(y, ε) ⊂

⋂n
i=1 Yi = Z. �

Let X be a set and τ ⊂ 2X be family of subets of X. We say τ is a topology if:
(T1) ∅, X ∈ τ ;
(T2) For any set I, if Yi ∈ τ for all i ∈ I then

⋃
i∈I Yi ∈ τ ;

(T3) For any nonempty finite set I, if Yi ∈ τ for all i ∈ I, then
⋃
i∈I Yi ∈ τ .

The axioms (T2) and (T3) are usually referred to as “arbitrary unions of open
sets are open” and “finite intersections of open sets are open”, respectively.

In this language, Proposition 2.5 may be rephrased as follows.

Proposition 2.6. The open sets of a metric space (X, d) form a topology on
X.

We say that two metrics d1 and d2 on the same set X are topologically equivalent
if they determine the same topology: that is, ever set which is open with respect
to d1 is open with respect to d2.

Example 2.5. In R, for n ∈ Z+, let Yn = (−1
n ,

1
n ). Then each Yn is open but⋂∞

n=1 Yn = {0} is not. This shows that infinite intersections of open subsets need
not be open.

Exercise 2.16. In any metric space:
a) Show that finite unions of closed sets are closed.
b) Show that arbitrary intersections of closed sets are closed.
c) Exhibit an infinite union of closed subsets that is not closed.

Exercise 2.17. A metric space X is discrete if every subset Y ⊂ X is open.
a) Show that any set endowed with the discrete metric is a discrete metric space.
b) A metric space X is uniformly discrete if there is ε > 0 such that for all
x 6= y ∈ X, d(x, y) ≥ ε. Show: every uniformly discrete metric space is discrete.
c) Let X = { 1

n}
∞
n=1 as a subspace of R. Show that X is discrete but not uniformly

discrete.

Proposition 2.7. a) Open balls are open sets.
b) A subset Y of a metric space X is open iff it is a union of open balls.

Proof. a) Let x ∈ X, let ε > 0, and let y ∈ B◦(x, ε). We claim that B◦(y, ε−
d(x, y)) ⊂ B◦(x, ε). Indeed, if z ∈ B◦(y, ε− d(x, y)), then d(y, z) < ε− d(x, y), so

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + (ε− d(x, y)) = ε.

b) If Y is open, then for all y ∈ Y , there is εy > 0 such that B◦(ε, y) ⊂ Y . It follows
that Y =

⋃
y∈Y B

◦(y, εy). The fact that a union of open balls is open follows from

part a) and the previous result. �

Lemma 2.8. Let Y be a subset of a metric space X. Then the map U 7→ U ∩Y
is a surjective map from the open subsets of X to the open subsets of Y .
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Exercise 2.18. Prove it.
(Hint: for any y ∈ Y and ε > 0, let B◦X(y, ε) = {x ∈ X | d(x, y) < ε} and let
B◦Y (y, ε) = {x ∈ Y | d(x, y) < ε}. Then B◦X(y, ε) = B◦Y (y, ε).)

Let X be a metric space, and let Y ⊂ X. We define the interior of Y as

Y ◦ = {y ∈ Y | ∃ε > 0 such that B◦(y, ε) ⊂ Y }.
In words, the interior of a set is the collection of points that not only belong to the
set, but for which some open ball around the point is entirely contained in the set.

Lemma 2.9. Let Y, Z be subsets of a metric space X.
a) All of the following hold:
(i) Y ◦ ⊂ Y .
(ii) If Y ⊂ Z, then Y ◦ ⊂ Z◦.
(iii) (Y ◦)◦ = Y ◦.
b) The interior Y ◦ is the largest open subset of Y : that is, Y ◦ is an open subset of
Y and if U ⊂ Y is open, then U ⊂ Y ◦.
c) Y is open iff Y = Y ◦.

Exercise 2.19. Prove it.

We say that a subset Y is a neighborhood of x ∈ X if x ∈ Y ◦. In particular,
a subset is open precisely when it is a neighborhood of each of its points. (This
terminology introduces nothing essentially new. Nevertheless the situation it en-
capsulates it ubiquitous in this subject, so we will find the term quite useful.)

Let X be a metric space, and let Y ⊂ X. A point x ∈ X is an adherent point of
Y if every neighborhood N of x intersects Y : i.e., N ∩ Y 6= ∅. Equivalently, for
all ε > 0, we have B(x, ε) ∩ Y 6= ∅.

We follow up this definition with another, rather subtly different one, that we
will fully explore later, but it seems helpful to point out the distinction now. For
Y ⊂ X, a point x ∈ X is an limit point of Y if every neighborhood N of x contains
a point of Y \ {x}. Equivalently, for all ε > 0, we have

(B◦(x, ε) \ {x}) ∩ Y 6= ∅.

Exercise 2.20. Let X be a metric space, let Y be a subset of X, and let x be
a point of X. Show: x is a limit point of Y iff every neighborhood of x contains
infinitely many points of Y .

Every y ∈ Y is an adherent point of Y but not necessarily a limit point. For in-
stance, if Y is finite then it has no limit points.

The following is the most basic and important result of the entire section.

Proposition 2.10.
For a subset Y of a metric space X, the following are equivalent:
(i) Y is closed: i.e., X \ Y is open.
(ii) Y contains all of its adherent points.
(iii) Y contains all of its limit points.

Proof. (i) =⇒ (ii): Suppose that X \ Y is open, and let x ∈ X \ Y . Then
there is ε > 0 such that B◦(x, ε) ⊂ X \ Y , and thus B◦(x, ε) does not intersect Y ,
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i.e., x is not an adherent point of Y .
(ii) =⇒ (iii): Since every limit point is an adherent point, this is immediate.
(iii) =⇒ (i): Suppose Y contains all its limit points, and let x ∈ X \ Y . Then
x is not a limit point of Y , so there is ε > 0 such that (B◦(x, ε) \ {x}) ∩ Y = ∅.
Since x /∈ Y this implies B◦(x, ε) ∩ Y = ∅ and thus B◦(x, ε) ⊂ X \ Y . Thus X \ Y
contains an open ball around each of its points, so is open, so Y is closed. �

For a subset Y of a metric space X, we define its closure of Y as

Y = Y ∪ {all adherent points of Y } = Y ∪ {all limit points of Y }.

Lemma 2.11. Let Y,Z be subsets of a metric space X.
a) All of the following hold:
(KC1) Y ⊂ Y .
(KC2) If Y ⊂ Z, then Y ⊂ Z.

(KC3) Y = Y .
b) The closure Y is the smallest closed set containing Y : that is, Y is closed,
contains Y , and if Y ⊂ Z is closed, then Y ⊂ Z.

Exercise 2.21. Prove it.

Lemma 2.12. Let Y,Z be subsets of a metric space X. Then:
a) Y ∪ Z = Y ∪ Z.
b) (Y ∩ Z)◦ = Y ◦ ∩ Z◦.

Proof. a) Since Y ∪ Z is a finite union of closed sets, it is closed. Clearly
Y ∪ Z ⊃ Y ⊃ Z. So

Y ∪ Z ⊂ Y ∪ Z.
Conversely, since Y ⊂ Y ∪ Z we have Y ⊂ Y ∪ Z; similarly Z ⊂ Y ∪ Z. So

Y ∪ Z ⊂ Y ∪ Z.
b) Y ◦∩Z◦ is a finite intersection of open sets, hence open. Clearly Y ◦∩Z◦ ⊂ Y ∩Z.
So

Y ◦ ∩ Z◦ ⊂ (Y ∩ Z)◦.

Conversely, since Y ∩Z ⊂ Y , we have (Y ∩Z)◦ ⊂ Y ◦; similarly (Y ∩Z)◦ ⊂ Z◦. So

(Y ∩ Z)◦ ⊂ Y ◦ ∩ Z◦. �

The similarity between the proofs of parts a) and b) of the preceding result is meant
to drive home the point that just as open and closed are “dual notions” – one gets
from one to the other via taking complements – so are interiors and closures.

Proposition 2.13. Let Y be a subset of a metric space Z. Then

Y ◦ = X \X \ Y
and

Y = X \ (X \ Y )◦.

Proof. We will prove the first identity and leave the second to the reader.
Our strategy is to show that X \X \ Y is the largest open subset of Y and apply

X.X. Since X \ X \ Y is the complement of a closed set, it is open. Moreover, if

x ∈ X \X \ Y , then x /∈ X \ Y ⊃ X \ Y , so x ∈ Y . Now let U ⊂ Y be open. Then

X \ U is closed and contains X \ Y , so it contains X \ Y . Taking complements

again we get U ⊂ X \X \ Y . �
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Proposition 2.14. For a subset Y of a metric space X, consider the following:
(i) B1(Y ) = Y \ Y ◦.
(ii) B2(Y ) = Y ∩X \ Y .
(iii) B3(Y ) = {x ∈ X | every neighborhood N of x intersects both Y and X \ Y }.
Then B1(Y ) = B2(Y ) = B3(Y ) is a closed subset of X, called the boundary of Y
and denoted ∂Y .

Exercise 2.22. Prove it.

Exercise 2.23. Let Y be a subset of a metric space X.
a) Show X = X◦

∐
∂X (disjoint union).

b) Show (∂X)◦ = ∅.
c) Show that ∂(∂Y ) = ∂Y .

Exercise 2.24. Show: for all closed subsets B of RN , there is a subset Y of
RN with B = ∂Y .

Example 2.6. Let X = R, A = (−∞, 0) and B = [0,∞). Then ∂A = ∂B =
{0}, and

∂(A ∪B) = ∂R = ∅ 6= {0} = (∂A) ∪ (∂B);

∂(A ∩B) = ∂∅ = ∅ 6= {0} = (∂A) ∩ (∂B).

Thus the boundary is not as well-behaved as either the closure or interior.

A subset Y of a metric space X is dense if Y = X: explicitly, if for all x ∈ X and
all ε > 0, B◦(x, ε) intersects Y .

Example 2.7. Let X be a discrete metric space. The only dense subset of X
is X itself.

Example 2.8. The subset QN = (x1, . . . , xN ) is dense in RN .

Exercise 2.25. Let X be a metric space, and let Z ⊂ Y ⊂ X. Suppose that Z
is dense in Y (we give Y the induced metric) and that Y is dense in X. Show: Z
is dense in X.

The weight of a metric space is the least cardinality of a dense subspace.

Exercise 2.26.
a) Show that the weight of any discrete metric space is its cardinality.
b) Show that the weight of any finite metric space is its cardinality.
c) Show that every cardinal number arises as the weight of a metric space.

Explicit use of cardinal arithmetic is popular in some circles but not in others. Much
more commonly used is the following special case: a metric space is separable
if it admits a countable dense subspace. Thus the previous example shows that
Euclidean N -space is separable, and a discrete space is separable iff it is countable.

2.1. Further Exercises.

Exercise 2.27. Let Y be a subset of a metric space X. Show:

(Y ◦)◦ = Y ◦

and

Y
◦

= Y .
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Exercise 2.28. A subset Y of a metric space X is regularly closed if Y = Y ◦

and regularly open if Y = (Y )◦.
a) Show that every regularly closed set is closed, every regularly open set is open,
and a set is regularly closed iff its complement is regularly open.
b) Show that a subset of R is regularly closed iff it is a disjoint union of closed
intervals.
c) Show that for any subset Y of a metric space X, Y ◦ is regularly closed and Y

◦

is regularly open.

Exercise 2.29. A metric space is a door space if every subset is either open
or closed (or both). In a topologically discrete space, every subset is both open and
closed, so such spaces are door spaces, however of a rather uninteresting type. Show
that there is a subset of R which, with the induced metric, is a door space which is
not topologically discrete.

3. Convergence

In any set X, a sequence in X is just a mapping a mapping x : Z+ → X, n 7→ xn.
If X is endowed with a metric d, a sequence x in X is said to converge to an
element x of X if for all ε > 0, there exists an N = N(ε) such that for all n ≥ N ,
d(x, xn) < ε. We denote this by x→ x or xn → x.

Exercise 2.30. Let x be a sequence in the metric space X, and let L ∈ X.
Show that the following are equivalent.
a) The x→ L.
b) Every neighbhorhood N of x contains all but finitely many terms of the sequence.
More formally, there is N ∈ Z+ such that for all n ≥ N , xn ∈ N .

Proposition 2.15. In any metric space, the limit of a convergent sequence is
unique: if L,M ∈ X are such that x→ L and x→M , then L = M .

Proof. Seeking a contradiction, we suppose L 6= M and put d = d(L,M) > 0.
Let B1 = B◦(L, d2 ) and B2 = B◦(M, d2 ), so B1 and B2 are disjoint. Let N1 be such
that if n ≥ N1, xn ∈ B1, let N2 be such that if n ≥ N2, xn ∈ B2, and let
N = max(N1, N2). Then for all n ≥ N , xn ∈ B1 ∩B2 = ∅: contradiction! �

A subsequence of x is obtained by choosing an infinite subset of Z+, writing the
elements in increasing order as n1, n2, . . . and then restricting the sequence to this
subset, getting a new sequence y, k 7→ yk = xnk .

Exercise 2.31. Let n : Z+ → Z+ be strictly increasing: for all k1 < k2,
nk1 < nk2 . Let x : Z+ → X be a sequence in a set X. Interpret the composite
sequence x ◦ n : Z+ → X as a subsequence of x. Show that every subsequence
arises in this way, i.e., by precomposing the given sequence with a unique strictly
increasing function n : Z+ → Z+.

Exercise 2.32. Let x be a sequence in a metric space.
a) Show that if x is convergent, so is every subsequence, and to the same limit.
b) Show that conversely, if every subsequence converges, then x converges. (Hint:
in fact this is not a very interesting statement. Why?)
c) A more interesting converse would be: suppose that there is L ∈ X such that:
every subsequence of x which is convergent converges to L. Then x → L. Show
that this fails in R. Show however that it holds in [a, b] ⊂ R.
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Let x be a sequence in a metric space X. A point L ∈ X is a partial limit of x if
every neighborhood N of L contains infinitely many terms of the sequence: more
formally, for all N ∈ Z+, there is n ≥ N such that xn ∈ N .

Lemma 2.16. For a sequence x in a metric space X and L ∈ X, the following
are equivalent:
(i) L is a partial limit of x.
(ii) There is a subsequence xnk converging to L.

Proof. (i) Suppose L is a partial limit. Choose n1 ∈ Z+ such that d(xn1
, L) <

1. Having chosen nk ∈ Z+, choose nk+1 > nk such that d(xnk+1
, L) < 1

k+1 . Then
xnk → L.
(ii) Let N be any neighborhood of L, so there is ε > 0 such that L ⊂ B◦(L, ε) ⊂ N .
If xnk → L, then for every ε > 0 and all sufficiently large k, we have d(xnk , L) < ε,
so infinitely many terms of the sequence lie in N . �

The following basic result shows that closures in a metric space can be understood
in terms of convergent sequences.

Proposition 2.17. Let Y be a subset of (X, d). For x ∈ X, the following are
equivalent:
(i) x ∈ Y .
(ii) There exists a sequence x : Z+ → Y such that xn → x.

Proof. (i) =⇒ (ii): Suppose y ∈ Y , and let n ∈ Z+. There is xn ∈ Y such
that d(y, xn) < ε. Then xn → y.
¬ (i) =⇒ ¬ (ii): Suppose y /∈ Y : then there is ε > 0 such that B◦(y, ε) ∩ Y = ∅.
Then no sequence in Y can converge to y. �

Corollary 2.18. Let X be a set, and let d1, d2 : X ×X → X be two metrics.

Suppose that for every sequence x ∈ X and every point x ∈ X, we have x
d1→ x ⇐⇒

x
d2→ x: that is, the sequence x converges to the point x with respect to the metric

d1 it converges to the point x with respect to the metric d2. Then d1 and d2 are
topologically equivalent: they have the same open sets.

Proof. Since the closed sets are precisely the complements of the open sets,
it suffices to show that the closed sets with respect to d1 are the same as the closed
sets with respect to d2. So let Y ⊂ X, and suppose that Y is closed with respect
to d1. Then, still with respect to d1, Y is its own closure, so by Proposition 2.17
for x ∈ X we have that x lies in Y iff there is a sequence y in Y such that y → x
with respect to d1. But by assumption this latter characterization is also valid with
respect to d2, so Y is closed with respect to d2. And conversely, of course. �

4. Continuity

Let f : X → Y be metric spaces, and let x ∈ x. We say f is continuous at
x if for all ε > 0, there is δ > 0 such that for all x′ ∈ X, if d(x, x′) < δ then
d(f(x), f(x′)) < ε. We say f is continuous if it is continuous at every x ∈ X.

Let f : X → Y be a map between metric spaces. A real number C ≥ 0 is a
Lipschitz constant for f if for all x, y ∈ X, d(f(x), f(y)) ≤ Cd(x, y). A map f
is Lipschitz if some C ≥ 0 is a Lipschitz constant for f .
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A map f : X → Y between metric spaces is a contraction if it is Lipschitz
with a Lipschitz constant C < 1, is weakly contractive if for all x1 6= x2 ∈ X
we have d(f(x1), f(x2)) < d(x1, x2), and is a short map if it is Lipschitz with a
Lipschitz constant C ≤ 1. (Thus contractive =⇒ weakly contractive =⇒ short.)

Exercise 2.33. Exhibit a map of metric spaces f : X → Y that is short but is
neither a contraction nor an isometric embedding.

Exercise 2.34. Let I be an interval in R, and let f : I → I.
a) Show: if f ′ exists and is bounded, then f is Lipschitz.
b) Deduce: if I = [a, b] and f has a continuous derivative, then f is Lipschitz.

Exercise 2.35. a) Show that a Lipschitz function is continuous.
b) Show that if f is Lipschitz, the infimum of all Lipschitz constants for f is a
Lipschitz constant for f .
c) Show that an isometry is Lipschitz.

Lemma 2.19. For a map f : X → Y of metric spaces, the following are equiv-
alent:
(i) f is continuous.
(ii) For every open subset V ⊂ Y , f−1(V ) is open in X.

Proof. (i) =⇒ (ii): Let x ∈ f−1(V ), and choose ε > 0 such thatB◦(f(x), ε) ⊂
V . Since f is continuous at x, there is δ > 0 such that for all x′ ∈ B◦(x, δ),
f(x′) ∈ B◦(f(x), ε) ⊂ V : that is, B◦(x, δ) ⊂ f−1(V ).
(ii) =⇒ (i): Let x ∈ X, let ε > 0, and let V = B◦(f(x), ε). Then f−1(V ) is open
and contains x, so there is δ > 0 such that

B◦(x, δ) ⊂ f−1(V ).

That is: for all x′ with d(x, x′) < δ, d(f(x), f(x′)) < ε. �

A map f : X → Y between metric spaces is open if for all open subsets U ⊂ X,
f(U) is open in Y . A map f : X → Y is a homeomorphism if it is continuous, is
bijective, and the inverse function f−1 : Y → X is continuous. A map f : X → Y
is a topological embedding if it is continuous, injective and open.

Exercise 2.36. For a metric space X, let XD be the same underlying set
endowed with the discrete metric.
a) Show that the identity map 1 : XD → X is continuous.
b) Show that the identity map 1 : X → XD is continuous iff X is discrete (in the
topological sense: every point of x is an isolated point).

Example 2.9. a) Let X be a metric space which is not discrete. Then (c.f.
Exercise X.X) the identity map 1 : XD → X is bijective and continuous but not
open. The identity map 1 : X → XD is bijective and open but not continuous.
b) The map f : R → R by x 7→ |x| is continuous – indeed, Lipschitz with C = 1 –
but not open: f(R) = [0,∞).

Exercise 2.37. Let f : R→ R.
a) Show that at least one of the following holds:
(i) f is increasing: for all x1 ≤ x2, f(x1) ≤ f(x2).
(ii) f is decreasing: for all x1 ≤ x2, f(x1) ≥ f(x2).
(iii) f is of “Λ-type”: there are a < b < c such that f(a) < f(b) > f(c).
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(iv) f is of “V -type”: there are a < b < c such that f(a) > f(b) < f(c).
b) Suppose f is a continuous injection. Show that f is strictly increasing or strictly
decreasing.
c) Let f : R→ R be increasing. Show that for all x ∈ R

sup
y<x

f(y) ≤ f(x) ≤ inf
y>x

f(y).

Show that
sup
y<x

f(y) = f(x) = inf
y>x

f(y)

iff f is continuous at x.
d) Suppose f is bijective and strictly increasing. Show that f−1 is strictly increasing.
e) Show that if f is strictly increasing and surjective, it is a homeomorphism.
Deduce that every continuous bijection f : R→ R is a homeomorphism.

Lemma 2.20. For a map f : X → Y between metric spaces, the following are
equivalent:
(i) f is a homeomorphism.
(ii) f is continuous, bijective and open.

Exercise 2.38. Prove it.

Proposition 2.21. Let X,Y, Z be metric spaces and f : X → Y , g : Y → Z
be continuous maps. Then g ◦ f : X → Z is continuous.

Proof. Let W be open in Z. Since g is continuous, g−1(W ) is open in Y .
Since f is continuous, f−1(g−1(W )) = (g ◦ f)−1(W ) is open in X. �

g

Proposition 2.22. For a map f : X → Y of metric spaces, the following are
equivalent:
(i) f is continuous.
(ii) If xn → x in X, then f(xn)→ f(x) in Y .

Proof. (i) =⇒ (ii) Let ε > 0. Since f is continuous, by Lemma 2.19 there is
δ > 0 such that if x′ ∈ B◦(x, δ), f(x′) ∈ B◦(x, ε). Since xn → x, there is N ∈ Z+

such that for all n ≥ N , xn ∈ B◦(x, δ), and thus for all n ≥ N , f(xn) ∈ B◦(x, ε).
¬ (i) =⇒ ¬ (ii): Suppose that f is not continuous: then there is x ∈ X and ε > 0
such that for all n ∈ Z+, there is xn ∈ X with d(xn, x) < 1

n and d(f(xn), f(x)) ≥ ε.
Then xn → x and f(xn) does not converge to f(x). �

In other words, continuous functions between metric spaces are precisely the func-
tions which preserve limits of convergent sequences.

Exercise 2.39. a) Let f : X → Y , g : Y → Z be maps of topological spaces.
Let x ∈ X. Use ε’s and δ’s to show that if f is continuous at x and g is continuous
at f(x) then g ◦ f is continuous at x. Deduce another proof of Proposition 2.21
using the (ε, δ)-definition of continuity.
b) Give (yet) another proof of Proposition 2.21 using Proposition 2.22.

In higher mathematics, one often meets the phenomenon of rival definitions which
are equivalent in a given context (but may not be in other contexts of interest).
Often a key part of learning a new subject is learning which versions of definitions
give rise to the shortest, most transparent proofs of basic facts. When one definition
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makes a certain proposition harder to prove than another definition, it may be a sign
that in some other context these definitions are not equivalent and the proposition
is true using one but not the other definition. We will see this kind of phenomenon
often in the transition from metric spaces to topological spaces. However, in the
present context, all definintions in sight lead to immediate, straightforward proofs
of “compositions of continuous functions are continuous”. And indeed, though the
concept of a continuous function can be made in many different general contexts
(we will meet some, but not all, of these later), to the best of my knowledge it is
always clear that compositions of continuous functions are continuous.

4.1. Further Exercises.

Exercise 2.40. Let X be a metric space, and let f, g : X → R be continuous
functions. Show that {x ∈ X | f(x) < g(x)} is open and {x ∈ X | f(x) ≤ g(x)} is
closed.

Exercise 2.41. a) Let X be a metric space, and let Y ⊂ X. Let 1Y : X → R
be the characteristic function of Y : for x ∈ X, 1Y (x) = 1 if x ∈ Y and 0
otherwise. Show that 1Y is not continuous at x ∈ X iff x ∈ ∂Y .
b) Let Y ⊂ RN be a bounded subset. Deduce that 1Y is Riemann integrable iff ∂Y
has measure zero. (Such sets Y are called Jordan measurable.)

Exercise 2.42. Show that for a metric space X, the following are equivalent:
(i) Every function f : X → X is continuous.
(ii) X is topologically discrete.

5. Equivalent Metrics

It often happens in geometry and analysis that there is more than one natural
metric on a set X and one wants to compare properties of these different metrics.
Thus we are led to study equivalence relations on the class of metrics on a given
set...but in fact it is part of the natural richness of the subject that there is more
than one natural equivalence relation. We have already met the coarsest one we
will consider here: two metrics d1 and d2 on X are topologically equivalent if
they determine the same topology; equivalently, in view of X.X, for all sequences

x in X and points x of X, we have x
d1→ x ⇐⇒ x

d2→ x. Since continuity is
characterized in terms of open sets, equivalent metrics on X give rise to the same
class of continuous functions on X (with values in any metric space Y ).

Lemma 2.23. Two metrics d1 and d2 on a set X are topologically equivalent iff
the identity function 1X : (X, d1)→ (X, d2) is a homeomorphism.

Proof. To say that 1X is a homeomorphism is to say that 1X is continuous
from (X, d1) to (X, d2) and that its inverse – which also happens to be 1X ! – is
continuous from (X, d2) to (X, d1). This means that every d2-open set is d1-open
and every d1-open set is d2-open. �

The above simple reformulation of topological equivalence suggests other, more
stringent notions of equivalence of metrics d1 and d2, in terms of requiring 1X :
(X, d1)→ (X, d2) to have stronger continuity properties. Namely, we say that two
metrics d1 and d2 are uniformly equivalent (resp. Lipschitz equivalent) if 1X
is uniformly continuous with a uniformly continuous inverse (resp. Lipschitz and
with a Lipschitz inverse).
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Lemma 2.24. Let d1 and d2 be metrics on a set X.
a) The metrics d1 and d2 ae uniformly equivalent iff for all ε > 0 there are δ1, δ2 > 0
such that for all x1, x2 ∈ X we have

d1(x1, x2) ≤ δ1 =⇒ d2(x1, x2) ≤ ε and d2(x1, x2) ≤ δ2 =⇒ d1(x1, x2) ≤ ε.

b) The metrics d1 and d2 are Lipschitz equivalent iff there are constants C1, C2 ∈
(0,∞) such that for all x1, x2 in X we have

C1d2(x1, x2) ≤ d1(x1, x2) ≤ C2d2(x1, x2).

Exercise 2.43. Prove it.

Remark 2.25. The typical textbook treatment of metric topology is not so care-
ful on this point: one must read carefully to see which of these equivalence relations
is meant by “equivalent metrics”.

Exercise 2.44. a) Explain how the existence of a homeomorphism of metric
spaces f : X → Y which is not uniformly continuous can be used to construct two
topologically equivalent metrics on X which are not uniformly equivalent. Then
construct such an example, e.g. with X = R and Y = (0, 1).
b) Explain how the existence of a uniformeomorphism of metric spaces f : X → Y
which is not a Lipschitzeomorphism can be used two construct two uniformly equiv-
alent metrics on X which are not Lipschitz equivalent.
c) Exhibit a uniformeomorphism f : R→ R which is not a Lipschitzeomorphism.
d) Show that

√
x : [0, 1] → [0, 1] is a uniformeomorphism and not a Lipschitzeo-

morphism.1

Proposition 2.26. Let (X, d) be a metric space. Let f : [0,∞) → [0,∞) be
a continuous strictly increasing function with f(0) = 0, and suppose that f ◦ d :
X × X → R is a metric function. Then the metrics d and f ◦ d are uniformly
equivalent.

Proof. Let A = f(1). The function f : [0, 1] → [0, A] is continuous and
strictly increasing, hence it has a continuous and strictly increasing inverse function
f−1 : [0, A] → [0, 1]. Since [0, 1] and [0, A] are compact metric spaces, f and f−1

are in fact uniformly continuous. The result follows easily from this, as we leave to
the reader to check. �

In particular that for any metric d on a set X and any α > 0, the metric dα(x, y) =
d(x,y)
αd(x,y) of Corollary 2.4 is uniformly equivalent to d. In particular, every metric is

uniformly equivalent to a metric with diameter at most α. The following exercise
gives a second, convexity-free approach to this.

Exercise 2.45. Let (X, d) be a metric space, and let db : X ×X → R be given
by db(x, y) = min d(x, y), 1.
a) Show that db is a bounded metric on X that is uniformly equivalent to d.
b) Show that db is Lipschitz equivalent to d iff (X, d) is bounded.

1In particular, compactness does not force continuous maps to be Lipschitz!
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6. Product Metrics

6.1. Minkowski’s Inequality.

Theorem 2.27. (Jensen’s Inequality) Let f : I → R be continuous and convex.
For any x1, . . . , xn ∈ I and any λ1, . . . , λn ∈ [0, 1] with λ1 + . . .+ λn = 1, we have

f(λ1x1 + . . .+ λnxn) ≤ λ1f(x1) + . . .+ λnf(xn).

Proof. We go by induction on n, the base case n = 1 being trivial. So
suppose Jensen’s Inequality holds for some n ∈ Z+, and consider x1, . . . , xn+1 ∈ I
and λ1, . . . , λn+1 ∈ [0, 1] with λ1 + . . . + λn+1 = 1. If λn+1 = 0 we are reduced
to the case of n variables which holds by induction. Similarly if λn+1 = 1 then
λ1 = . . . = λn = 0 and we have, trivially, equality. So we may assume λn+1 ∈ (0, 1)
and thus also that 1− λn+1 ∈ (0, 1). Now for the big trick: we write

λ1x1+. . .+λn+1xn+1 = (1−λn+1)

(
λ1

1− λn+1
x1 + . . .+

λn
1− λn+1

xn

)
+λn+1xn+1,

so that

f (λ1x1 + . . .+ λnxn) = f((1−λn+1)(
λ1

1− λn+1
x1 + . . .+

λn
1− λn+1

xn)+λn+1xn+1)

≤ (1− λn+1)f

(
λ1

1− λn+1
x1 + . . .+

λn
1− λn+1

xn

)
+ λn+1f(xn+1).

Since λ1

1−λn+1
, . . . , λn

1−λn+1
are non-negative numbers that sum to 1, by induction

the n variable case of Jensen’s Inequality can be applied to give that the above
expression is less than or equal to

(1− λn+1)

(
λ1

1− λn+1
f(x1) + . . .+

λn
1− λn+1

f(xn)

)
+ λn+1f(xn+1)

= λ1f(x1) + . . .+ λnf(xn) + λn+1f(xn+1). �

Theorem 2.28. (Weighted Arithmetic Geometric Mean Inequality) Let x1, . . . , xn ∈
[0,∞) and λ1, . . . , λn ∈ [0, 1] be such that λ1 + . . .+ λn = 1. Then:

(4) xλ1
1 · · ·xλnn ≤ λ1x1 + . . .+ λnxn.

Taking λ1 = . . . = λn = 1
n , we get the arithmetic geometric mean inequality:

(x1 · · ·xn)
1
n ≤ x1 + . . .+ xn

n
.

Proof. We may assume x1, . . . , xn > 0. For 1 ≤ i ≤ n, put yi = log xi. Then

xλ1
1 · · ·xλnn = elog(x

λ1
1 ···x

λn
n ) = eλ1y1+...+λnyn ≤ λ1e

y1+. . .+λne
yn = λ1x1+. . .+λnxn.

�

Theorem 2.29. (Young’s Inequality)
Let x, y ∈ [0,∞) and let p, q ∈ (1,∞) satisfy 1

p + 1
q = 1. Then

(5) xy ≤ xp

p
+
yq

q
.
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Proof. When either x = 0 or y = 0 the left hand side is zero and the right hand
side is non-negative, so the inequality holds and we may thus assume x, y > 0. Now
apply the Weighted Arithmetic-Geometric Mean Inequality with n = 2, x1 = xp,
x2 = yq, λ1 = 1

p , λ2 = 1
q . We get

xy = (xp)
1
p (yq)

1
q = xλ1

1 xλ2
2 ≤ λ1x1 + λ2x2 =

xp

p
+
yq

q
. �

Theorem 2.30. (Hölder’s Inequality)
Let x1, . . . , xn, y1, . . . , yn ∈ R and let p, q ∈ (1,∞) satisfy 1

p + 1
q = 1. Then

(6) |x1y1|+ . . .+ |xnyn| ≤ (|x1|p + . . .+ |xn|p)
1
p (|y1|q + . . .+ |yn|q)

1
q .

Proof. Again the result is clear if x1 = . . . = xn = 0 or y1 = . . . = yn = 0,
so we may assume that neither of these is the case. For 1 ≤ i ≤ n, apply Young’s
Inequality with

x =
|xi|

(|x1|p + . . .+ |xn|p)
1
p

, y =
|yi|

(|y1|q + . . .+ |yn|q)
1
q

,

and sum the resulting inequalities from i = 1 to n, getting∑n
i=1 |xiyi|

(|x1|p + . . .+ |xn|p)
1
p (|y1|q + . . .+ |yn|q)

1
q

≤ 1

p
+

1

q
= 1. �

Theorem 2.31. (Minkowski’s Inequality)
For x1, . . . , xn, y1, . . . , yn ∈ R and p ≥ 1, we have

(7) (|x1 + y1|p + . . .+ |xn + yn|p)
1
p ≤ (|x1|p + . . .+ |xn|p)

1
p + (|y1|p + . . . |yn|p)

1
p

Proof. When p = 1, the inequality reads

|x1 + y1|+ . . .+ |xn + yn| ≤ |x1|+ |y1|+ . . .+ |xn|+ |yn|
and this holds just by applying the triangle inequality: for all 1 ≤ i ≤ n, |xi+yi| ≤
|xi| + |yi. So we may assume p > 1. Let q be such that 1

p + 1
q = 1, and note that

then (p− 1)q = p. We have

|x1 + y1|p + . . .+ |xn + yn|p

≤ |x1||x1 +y1|p−1 + . . .+ |xn||xn+yn|p−1 + |y1||x1 +y1|p−1 + . . .+ |yn||xn+yn|p−1
HI
≤

(|x1|p+. . .+|xn|p)
1
p (|x1+y1|p+. . .+|xn+yn|p)

1
q +(|y1|p+. . .+|yn|p)

1
p (|x1+y1|p+. . .+|xn+yn|p)

1
q

=
(

(|x1|p + . . .+ |xn|p)
1
p + (|y1|p + . . . |yn|p)

1
p

)
(|x1 + y1|p + . . .+ |xn + yn|p)

1
q .

Dividing both sides by (|x1 + y1|p + . . .+ |xn + yn|p)
1
q and using 1− 1

q = 1
p , we get

the desired result. �

For p ∈ [1,∞) and x ∈ RN , we put

||x||p =

(
N∑
i=1

|xi|p
)

and
dp : RN × RN → R, dp(x, y) = ||x− y||p.

We also put
||x||∞ = max

1≤i≤N
|xi|
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and
d∞ : RN × RN → R, d∞(x, y) = ||x− y||∞.

Lemma 2.32. a) For each fixed nonzero x ∈ RN , the function p 7→ ||x||p is
decreasing and limp→∞ ||x||p = ||x||∞.
b) For all 1 ≤ p ≤ ∞ and x ∈ RN we have

||x||∞ ≤ ||x||p ≤ ||x||1 = |x1|+ . . .+ |xN | ≤ N ||x||∞.

Proof. a) Let 1 ≤ p ≤ p′ < ∞, and let 0 6= x = (x1, . . . , xN ) ∈ RN . For any
α ≥ 0 we have ||αx||p = |α|||x||p, so we are allowed to rescale: put y = ( 1

||x||p′
)x,

so ||y||p′ ≤ 1. Then |yi| ≤ 1 for all i, so |yi|p
′ ≤ |yi|p for all i, so ||y||p ≥ 1 and thus

||x||p ≥ ||x||p′ .
Similarly, by scaling we reduce to the case in which the maximum of the |xi|’s

is equal to 1. Then in limp→∞ |x1|p+ . . .+ |xN |p, all of the terms |xi|p with |xi| < 1
converge to 0 as p→∞; the others converge to 1; so the given limit is the number
of terms with absolute value 1, which lies between 1 and N : that is, it is always at
least one and it is bounded independently of p. Raising this to the 1/p power and
taking the limit we get 1.
b) The inequalities ||x||∞ ≤ ||x||p ≤ ||x||1 follow from part a). For the latter
inequality, let x = (x1, . . . , xN ) ∈ RN and suppose that i is such that |xi| =
max1≤i≤N |xi|. Then

|x1|+ . . .+ |xN | ≤ |xi|+ . . . |xi| = N ||x||∞. �

Theorem 2.33. For each p ∈ [1,∞), dp is a metric on RN , and all of these
metrics are Lipschitz equivalent.

Proof. For any 1 ≤ p ≤ ∞ and x, y, z ∈ RN , Minkowski’s Inequality gives

dp(x, z) = ||x−z||p = ||(x−y)+(y−z)||p ≤ ||x−y||p+||y−z||p = dp(x, y)+dp(x, z).

Thus dp satisfies the triangle inequality; that dp(x, y) = dp(y, x) and dp(x, y) =
0 ⇐⇒ x = y is immediate. So each dp is a metric on RN . Lemma 2.32 shows that
for all 1 ≤ p ≤ ∞, dp is Lipschitz equivalent to d∞. Since Lipschitz equivalence
is indeed an equivalence relation, this implies that all the metrics dp are Lipschitz
equivalent. �

The metric d2 on RN is called the Euclidean metric. The topology that it
generates is called the Euclidean topology. The point of the above discussion is
that all metrics dp are close enough to the Euclidean metric so as to generate the
Euclidean topology.

6.2. Product Metrics.

Let (Xi, di)i∈I be an indexed family of metric spaces. Our task is to put a metric
on the Cartesian product X =

∏
i∈I Xi.

2

Well, but that can’t be right: we have already put some metric on an arbitrary
set, namely the discrete metric. Rather we want to put a metric on the product

2trivial remark: We have X = ∅ iff Xi = ∅ for some i ∈ I. When this holds, there is a

unique metric on X – evidently this is a trivial case. From now until the end of this section, when
we consider an indexed family {(Xi, di)}i∈I of metric spaces, we will tacitly assume that Xi 6= ∅
for all i ∈ I (and also that I 6= ∅!)
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which usefully incorporates the metrics on the factors, in a way which generalizes
the metrics dp on RN .

This is still not precise enough. We are lingering over this point a bit to emphasize
the fundamental perspective of general topological spaces that we currently lack:
eventually we will discuss the product topology, which is a canonically defined
topology on any Cartesian product of topological spaces. With this perspective, the
problem can then be gracefully phrased as that of finding a metric on a Cartesian
product of metric spaces that induces the product topology. For now we bring out
again our most treasured tool: sequences. Namely, convergence in the Euclidean
metric on RN has the fundamental property that a sequence x in RN converges iff
for all 1 ≤ i ≤ N , its ith component sequence x(i) converges in R.

In general, let us say that a metric on X =
∏
i∈I Xi is good if for any sequence

x in X and point x ∈ X, we have x → x in X iff for all i ∈ I, the component
sequence x(i) converges to the ith component x(i) of x.

In the case of finite products, we have already done almost all of the work.

Lemma 2.34. For 1 ≤ i ≤ N , let {x(i)
n } be a sequence of non-negative real

numbers, and for n ∈ Z+ let mn = max1≤i≤N x
(i)
n . Then mn → 0 ⇐⇒ x

(i)
n → 0

for all 1 ≤ i ≤ N .

Exercise 2.46. Prove it.

Theorem 2.35. Let (X1, d1), . . . , (XN , dN ) be a finite sequence of metric spaces,

and put X =
∏N
i=1Xi. Fix p ∈ [1,∞], and consider the function

dp : X ×X → R, dp((x1, . . . , xN ), (y1, . . . , yN )) =

(
N∑
i=1

|di(xi, yi)|p
) 1
p

.

a) The function dp is a metric function on X.
b) For p, p′ ∈ [1,∞], the metrics dp and dp′ are Lipschitz equivalent.
c) The function dp is a good metric on X.

Proof. If each Xi is R with the standard Euclidean metric, then parts a) and
b) reduce to Theorem 2.33 and part c) is a familiar (and easy) fact from basic real
analysis: a sequence in RN converges iff each of its component sequences converge.
The proofs of parts a) and b) in the general case are almost identical and are left
to the reader as a straightforward but important exercise.

In view of part b), it suffices to establish part c) for any one value of p, and
the easiest is probably p = ∞, since d∞(x, y) = maxi di(xi, yi). If x is a sequence
in X and x is a point of X, we are trying to show that

d∞(xn, x) = max di(x
(i)
n , x(i))→ 0 ⇐⇒ ∀1 ≤ i ≤ N, di(x(i)

n , x(i))→ 0.

This follows from Lemma 2.34. �

Here is one simple but useful application.

Proposition 2.36. Let (X, d) be a metric space. Endowing X × X with the
good metric d∞, the metric function d : X ×X → R is Lipschitz continuous.
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Proof. Fix ε > 0. Let (x1, x2), (y1, y2) ∈ X×X, and suppose that d∞((x1, x2), (y1, y2)) ≤
ε. In other words, we have d(x1, x2), d(y1, y2) ≤ ε. Then

|d(x1, x2)− d(y1, y2)| ≤ ε. �

Exercise 2.47. Let N ∈ Z+.
a) Show that the standard maps + : R × R → R, (x, y) 7→ x + y and · : R × R →
R, (x, y) 7→ xy are continuous. (Here we may take any good metric on R× R.)
b) Show that the standard maps + : RN×RN → RN , ((x1, . . . , xN ), (y1, . . . , yN )) 7→
(x1 + y1, . . . , xN + yN ), · : R × RN , (α, (x1, . . . , xN )) 7→ (αx1, . . . , αxN )) are con-
tinuous.

For infinite families of metric spaces, things get more interesting. The following is
a variant of [Du, Thm. IX.7.2].

Theorem 2.37. Let I be an infinite set, let (Xi, di)i∈I be an indexed family of
metric spaces, let X =

∏
i∈I Xi, and let

d : X ×X → [0,∞], d(x, y) = sup
i∈I

di(xi, yi).

a) The following are equivalent:
(i) There is a finite subset J ⊂ I and D < ∞ such that for all i ∈ I \ J we have
diamXi ≤ D.
(ii) We have d(x, y) <∞ for all x, y ∈ X.
(iii) The function d is a metric on X.
b) The following are equivalent:
(i) d is a good metric.
(ii) For all δ > 0, {i ∈ I | diamXi ≥ δ} is finite.

Proof. a) (i) ⇐⇒ (ii): If (i) holds, then for all x, y ∈ X, supi di(xi, yi) is the
supremum over the union of a finite set and a bounded set of real numbers, hence
it is finite. If (i) fails, then there is an injective function i• : Z+ → I such that for
all n ∈ Z+ there are points xin , yin ∈ Xin with d(xin , yin) ≥ n. Then if x (resp. y)
is any elements of X with in coordinate equal to xin (resp. yin), then d(x, y) =∞.
(ii) =⇒ (iii): This is quite straightforward. We will show the least trivial (M3):
let x = {xi}, y = {yi}, z = {zi} be three points of X. Then

d(x, z) = sup
i
di(xi, zi) ≤ sup

i
di(xi, yi) + di(yi, zi)

≤ sup
i
di(xi, yi) + sup

i
di(yi, zi) = d(x, y) + d(y, z).

(iii) =⇒ (ii): In order to be a metric, d must be finite-valued.
b) ¬ (ii) =⇒ ¬ (i): If (ii) fails, then there is δ > 0 and an injection i• : Z+ ↪→ I
and for all n ∈ Z+ points xin , yin ∈ Xin such that din(xin), yin) ≥ δ. For every
i ∈ J := I \ x•(Z+), fix a point zi ∈ Xi. We build a sequence {x(n)} in X as
follows: for each j ∈ J , we let (x(n))j = zj for all n ∈ Z+; that is, the jth
component sequence is constant. For m,n ∈ Z+, we put

x
(n)
im

=

{
xin n ≤ m
yin n > m.

That is, the im-component sequence has xim as its first m values and yim for all
subsequent values; in particular it converges to yin . However, the sequence {x(n)}
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does not converge to the element x with in-component yin for all n ∈ Z+ and
j-component zj for all j ∈ J , since for all n ∈ Z+, we have

d(x(n), x) ≥ din(x
(n)
in
, xin) = din(xin , yin) ≥ δ.

(ii) =⇒ (i): Let {x(n)} be a sequence in X such that for all i ∈ I, the ith

component sequence {x(n)
i } converges to xi ∈ Xi. Put x := {xi}i∈I ; we will show

that x(n) → x. Fix ε > 0, and let J be the finite subset of i such that for j ∈ J
we have diam(Xj) > ε. For each j ∈ J , choose Nj ∈ Z+ such that for all n ≥ Nj

we have dj(x
(n)
j , xj) ≤ ε. Then for all n ≥ N := maxj∈J Nj and all i ∈ I, we have

di(x
(n)
i , xi) ≤ ε an thus d(x(n), x) = supi∈I di(x

(n)
i , xi) ≤ ε. �

Corollary 2.38. Let {Xn, dn}∞n=1 be an infinite sequence of metric spaces.
Then there is a good metric on the Cartesian product X =

∏∞
i=1Xn.

Proof. The sequence of metrics need not satisfy the hypotheses of Theorem
2.37, but we can replace each dn with a topologically equivalent metric so that the
hypotheses hold. Indeed, the metric d′n = dn

2n(dn+1) of Corollary 2.4 is topologically

equivalent to dn and has diameter at most 1
2n . The family (Xn, d

′
n) satisfies the

hypotheses of Theorem 2.37b), so d = supn d
′
n is a good metric on X. �

Corollary 2.38 shows in particular that
∏∞
i=1 R and

∏∞
i=1[a, b] can be given metrics

so that convergence amounts to convergence in each factor. These are highly inter-
esting and important examples in the further study of analysis and topology. The
latter space is often called the Hilbert cube.

Proposition 2.39. Let {Xn}∞n=1 be a sequence of nonempty metric spaces, and
let X =

∏∞
n=1Xn, endowed with a good metric via Corollary 2.38. For n ∈ Z+, let

πn : X → Xn be the projection map {x(n)} 7→ xn.
a) The map πn : X → Xn is continuous.
b) Let M be a metric space, and let f : M → X be a function. The following are
equivalent:
(i) The map f : M → X is continuous.
(ii) For all n ∈ Z+, the map πn ◦ f : M → Xn is continuous.

Proof. The key is Proposition 2.22, which characterizes continuous maps be-
tween metric spaces as those that preserve limits of sequences.
a) By definition of a good metric, if x(m) → x, then for all n ∈ Z+ we have

πn(x(m)) = x
(m)
n → xn = πn(x), so πn is continuous.

b) (i) =⇒ (ii): The composition of continuous functions is continuous.
(ii) =⇒ (i): Let {m•} be a sequence in M that converges to M . By our assump-
tion, for all n ∈ Z+, the sequence πn(f(m•) converges to πn(f(m)). Then, by the
definition of a good metric, f(m•)→ f(m), so f is continuous. �

There is a case left over: what happens when we have a family of metrics indexed by
an uncountable set I? In this case the condition that all but finitely many factors
have diameter less than any given positive constant turns out to be prohibitively
strict.
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Exercise 2.48. Let {Xi, di}i∈I be a family of metric spaces indexed by an
uncountable set I. Suppose that diamXi > 0 for uncountably many i ∈ I – equiv-
alently, uncountably many Xi contains more than one point. Show that there is
δ > 0 such that {i ∈ I | diamXi ≥ δ} is uncountable.

Thus Theorem 2.38 can never be used to put a good metric on an uncountable
product except in the trivial case that all but countably many of the spaces Xi

consist of a single point. (Nothing is gained by taking Cartesian products with
one-point sets: this is the multiplicative equivalent of repeatedly adding zero!) At
the moment this seems like a weakness of the result. Later we will see that is is
essential: the Cartesian product of an uncountable family of metric spaces each
consisting of more than a single point cannot in fact be given any good metric. In
later terminology, this is an instance of nonmetrizability of large Cartesian products.

Exercise 2.49. Let X and Y be metric spaces, and let X×Y be endowed with
any good metric. Let f : X → Y be a function.
a) Show that if f is continuous, its graph G(f) = {(x, f(x) | x ∈ X} is a closed
subset of X × Y .
b) Give an example of a function f : [0,∞) → [0,∞) which is discontinuous at 0
but for which G(f) is closed in [0,∞)× [0,∞).

7. Compactness

7.1. Basic Properties of Compactness.

Let X be a metric space, and let A ⊂ X. A family {Yi}i∈I of subsets of X is
a covering of A if A ⊂

⋃
i∈I Yi. A subset A ⊂ X is compact if for every open

covering {Ui}i∈I of A there is a finite subset J ⊂ I such that {Ui}i∈J covers A.

Exercise 2.50. Show (directly) that A = {0} ∪ { 1
n}
∞
n=1 ⊂ R is compact.

Exercise 2.51. Let X be a metric space, and let A ⊂ X be a finite subset.
Show that A is compact.

Lemma 2.40. Let X be a metric space, and let K ⊂ Y ⊂ X. Then K is
compact as a subset of Y if and only if K is compact as a subset of X.

Proof. Suppose K is compact as a subset of Y , and let {Ui}i∈I be a family
of open subsets of X such that K ⊂

⋃
i∈I Ui. Then {Ui ∩ Y }i∈I is a covering of

K by open subsets of Y , and since K is compact as a subset of Y , there is a finite
subset J ⊂ I such that K ⊂

⋃
i∈J Ui ∩ Y ⊂

⋃
i∈J Ui.

Suppose K is compact as a subset of X, and let {Vi}i∈I be a family of open
subsets of Y such that K ⊂

⋃
i∈I Vi. By X.X we may write Vi = Ui ∩ Y for some

open subset of X. Then K ⊂
⋃
i∈I Vi ⊂

⋃
i∈I Ui, so there is a finite subset J ⊂ I

such that K ⊂
⋃
i∈J Ui. Intersecting with Y gives

K = K ∩ Y ⊂

(⋃
i∈J

Ui

)
∩ Y =

⋃
i∈J

Vi. �

A sequence {An}∞n=1 of subsets of X is expanding if An ⊂ An+1 for all n ≥ 1.
We say the sequence is properly expanding if An ( An+1 for all n ≥ 1. An
expanding open cover is an expanding sequence of open subsets with X =⋃∞
n=1Ai; we define a properly expanding open covering similarly.
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Exercise 2.52. Let {An}∞n=1 be a properly expanding open covering of X.
a) Let J ⊂ Z+ be finite, with largest element N . Show that

⋃
i∈J Ai = AN .

b) Suppose that an expanding open covering {An}∞n=1 admits a finite subcovering.
Show that there is N ∈ Z+ such that X = AN .
c) Show that a properly expanding open covering has no finite subcovering, and thus
if X admits a properly expanding open covering it is not compact.

An open covering {Ui}i∈I is disjoint if for all i 6= j, Ui ∩ Uj = ∅.

Exercise 2.53. a) Let {Ui}i∈I be a disjoint open covering of X. Show that
the covering admits no proper subcovering.
b) Show: if X admits an infinite disjoint open covering, it is not compact.
c) Show: a discrete space is compact iff it is finite.

Any property of a metric space formulated in terms of open sets may, by taking
complements, also be formulated in terms of closed sets. Doing this for compactness
we get the following simple but useful criterion.

Proposition 2.41. For a metric space X, the following are equivalent:
(i) X is compact.
(ii) X satisfies the finite intersection property: if {Ai}i∈I is a family of closed
subsets of X such that for all finite subsets J ⊂ I we have

⋂
i∈J Ai 6= ∅, then⋂

i∈I Ai 6= ∅.

Exercise 2.54. Prove it.

Another easy but crucial observation is that compactness is somehow antithetical
to discreteness. More precisely, we have the following result.

Proposition 2.42. For a metric space X, the following are equivalent:
(i) X is both compact and topologically discrete.
(ii) X is finite.

Exercise 2.55. Prove it.

Lemma 2.43. Let X be a metric space and A ⊂ X.
a) If X is compact and A is closed in X, then A is compact.
b) If A is compact, then A is closed in X.
c) If X is compact, then X is bounded.

Proof. a) Let {Ui}i∈I be a family of open subsets of X that covers A: i.e.,
A ⊂

⋃
i∈I Ui. Then the family {Ui}i∈I ∪ {X \ A} is an open covering of X. Since

X is compact, there is a finite subset J ⊂ I such that X =
⋃
i∈J Ui ∪ (X \A), and

it follows that A ⊂
⋃
i∈J Ui.

b) Let U = X \ A. For each p ∈ U and q ∈ A, let Vq = B(p, d(p,q)
2 ) and Wq =

B(p, d(p,q)
2 ), so Vq∩Wq = ∅. Moreover, {Wq}q∈A is an open covering of the compact

set A, so there are finitely many points q1, . . . , qn ∈ A such that

A ⊂
n⋃
i=1

Wi =: W,

say. Put V =
⋂n
i=1 Vi. Then V is a neighborhood of p which does not intersect W ,

hence lies in X \A = U . This shows that U = X \A is open, so A is closed.
c) Let x ∈ X. Then {B◦(x, n)}∞n=1 is an expanding open covering of X; since X is
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compact, we have a finite subcovering. By Exercise 2, we have X = B◦(x,N) for
some N ∈ Z+, and thus X is bounded. �

Example 2.10. Let X = [0, 10] ∩ Q be the set of rational points on the unit
interval. As a subset of itself, X is closed and bounded. For n ∈ Z+, let

Un = {x ∈ X | d(x,
√

2) >
1

n
}.

Then {Un}∞n=1 is a properly expanding open covering of X, so X is not compact.

Proposition 2.44. Let f : X → Y be a surjective continuous map of topolog-
ical spaces. If X is compact, so is Y .

Proof. Let {Vi}i∈I be an open cover of Y . For i ∈ I, put Ui = f−1(Vi). Then
{Ui}i∈I is an open cover of X. Since X is compact, there is a finite J ⊂ I such
that

⋃
i∈J Ui = X, and then Y = f(X) = f(

⋃
i∈J Ui) =

⋃
i∈J f(Ui) =

⋃
i∈J Vi. �

Theorem 2.45. (Extreme Value Theorem) Let X be a compact metric space. A
continuous function f : X → R is bounded and attains its maximum and minimum:
there are xm, xM ∈ X such that for all x ∈ X, f(xm) ≤ f(x) ≤ f(xM ).

Proof. Since f(X) ⊂ R is compact, it is closed and bounded. Thus inf f(X)
is a finite limit point of f(X), so it is the minimum; similarly sup f(X) is the
maximum. �

7.2. Heine-Borel.

When one meets a new metric space X, it is natural to ask: which subsets A
of X are compact? Lemma 2.43 gives the necessary condition that A must be
closed and bounded. In an arbitrary metric space this is nowhere near sufficient,
and one need look no farther than an infinite set endowed with the discrete metric:
every subset is closed and bounded, but the only compact subsets are the finite
subsets. In fact, compactness is a topological property whereas we saw in §6 that
given any metric space there is a topologically equivalent bounded metric.

Nevertheless in some metric spaces it is indeed the case that every closed, bounded
set is compact. In this section we give a concrete treatment that Euclidean space
RN has this property: this is meant to be a reminder of certain ideas from honors
calculus / elementary real analysis that we will shortly want to abstract and gen-
eralize.

A sequence {An}∞n=1 of subsets of X is nested if An+1 ⊃ An for all n ≥ 1.

Let a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn be real numbers. We put

n∏
i=1

[ai, bi] = {x = (x1, . . . , xn) ∈ Rn | ∀1 ≤ i ≤ n, ai ≤ xi ≤ bi}.

We will call such sets closed boxes.

Exercise 2.56.
a) Show: a subset A ⊂ Rn is bounded iff it is contained in some closed box.
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b) Show that

diam

(
n∏
i=1

[ai, bi]

)
=

√√√√ n∑
i=1

(ai − bi)2.

Lemma 2.46. (Lion-Hunting Lemma) Let {Bm}∞m=1 be a nested sequence of
closed boxes in Rn. Then there is x ∈

⋂∞
m=1 Bm.

b) If limm→∞ diamBm = 0, then
⋂∞
m=1 Bm consists of a single point.

Proof. Write Bm =
∏n
i=1[ai(m), bi(m)]. Since the sequence is nested, we have

ai(m) ≤ ai(m+ 1) ≤ bi(m+ 1) ≤ bi(m)

for all i and m. Then xm = (xm(1), . . . , xm(n)) ∈
⋂∞
m=1 Bm iff for all 1 ≤ i ≤ n we

have am(i)) ≤ xm ≤ bm(i). For 1 ≤ i ≤ n, put

Ai = sup
m
am(i), Bi = inf

m
bm(i).

It then follows that
∞⋂
m=1

Bm =

n∏
i=1

[Ai, Bi],

which is nonempty. �

Exercise 2.57. In the above proof it is implicit that Ai ≤ Bi for all 1 ≤ i ≤ n.
Convince yourself that you could write down a careful proof of this (e.g. by writing
down a careful proof!).

Exercise 2.58. Under the hypotheses of the Lion-Hunting Lemma, show that
the following are equivalent:
(i) inf{diamBm}∞m=1 = 0.
(ii)

⋂∞
m=1 Bm consists of a single point.

Theorem 2.47. (Heine-Borel) A closed, bounded subset of Rn is compact.

Proof. Because every closed bounded subset is a subset of a closed box and
closed subsets of compact sets are compact, it is sufficient to show the compactness
of every closed box B =

∏n
i=1[ai, bi]. Let U = {Ui}i∈I be an open covering of B.

Seeking a contradiction we suppose U admits no finite subcovering. We bisect
B into 2n closed subboxes of equal size, so that e.g. the bottom leftmost one is∏n
i=1[ai,

ai+bi
2 ]. It must be that at least one of the subboxes cannot be covered by

any finite number of sets in U : if all 2n of them have finite subcoverings, taking
the union of 2n finite subcoverings, we get a finite subcovering of B. Identify one
such subbox B1, and notice that diamB1 = 1

2 diamB. Now bisect B1 and repeat
the argument: we get a nested sequence {Bm}∞m=1 of closed boxes with

diamBm =
diamB

2m
.

By the Lion-Hunting Lemma there is x ∈
⋂∞
m=1 Bm.3 Choose U0 ∈ U such that

x ∈ U0. Since U0 is open, for some ε > 0 we have

x ∈ B◦(x, ε) ⊂ U0.

3Though we don’t need it, it follows from Exercise 1.9 that the intersection point x is unique.
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For sufficiently large m we have – formally, by the Archimedean property of R –
that diamBm < ε. Thus every point in Bm has distance less than ε from x so

Bm ⊂ B◦(x, ε) ⊂ U0.

This contradicts the heck out of the fact that Bm admits no finite subcovering. �

Proposition 2.48. Let X be a compact metric space, and let A ⊂ X be an
infinite subset. Then A has a limit point in X.

Proof. Seeking a contradiction we suppose that A has no limit point in X.
Then also no subset A′ ⊂ A has any limit points in X. Since a set is closed if it
contains all of its limit points, every subset of A is closed in X. In particular A is
closed in X, hence A is compact. But since for all x ∈ A, A \ {x} is closed in A, we
have that{x} is open in A. (In other words, A is discrete.) Thus {{x}}x∈A is an
infinite cover of A without a finite subcover, so A is not compact: contradiction. �

Theorem 2.49. (Bolzano-Weierstrass for Sequences) Every bounded sequence
in RN admits a convergent subsequence.

Proof. Step 1: Let N = 1. I leave it to you to carry over the proof of Bolzano-
Weierstrass in R given in § 2.2 to our current sequential situation: replacing the
Monotonicity Lemma with the Rising Sun Lemma, the endgame is almost identical.
Step 2: Let N ≥ 2, and let {xn}∞n=1 be a bounded sequence in RN . Then each
coordinate sequence {xn(i)}∞n=1is bounded, so Step 1 applies to each of them.

However, if we just extract subsequences for each component separately, we
will have N different subsequences, and it will in general not be possible to get one
subsequence out of all of them. So we proceed in order: first we extract a subse-
quence such that the first coordinates converge. Then we extract a subsequence
of the subsequence such that the second coordinates converge. This does not dis-
turb what we’ve already done, since every subsequence of a convergent sequence is
convergent (we’re applying this in the familiar context of real sequences, but it is
equally true in any metric space). Thus we extract a sub-sub-sub...subsequence (N
“subs” altogether) which converges in every coordinate and thus converges. But a
sub-sub....subsequence is just a subsequence, so we’re done. �

A metric space is sequentially compact if every sequence admits a convergent
subsequence.

A metric space X is limit point compact if every infinite subset A ⊂ X has
a limit point in X.

8. Completeness

8.1. Lion Hunting In a Metric Space.

Recall the Lion-Hunting Lemma: any nested sequence of closed boxes in RN has a
common intersection point; if the diameters approach zero, then there is a unique
intersection point. This was the key to the proof of the Heine-Borel Theorem.

Suppose we want to hunt lions in an arbitrary metric space: what should we replace
“closed box” with? The following exercise shows that we should at least keep the
“closed” part in order to get something interesting.



8. COMPLETENESS 47

Exercise 2.59. Find a nested sequence A1 ⊃ A2 ⊃ . . . ⊃ An . . . of nonempty
subsets of [0, 1] with

⋂∞
n=1Ai = ∅.

So perhaps we should replace “closed box” with “closed subset”? Well...we could.
However, even in R, if we replace “closed box” with “closed set”, then lion hunting
need not succeed: for n ∈ Z+, let An = [n,∞). Then {An}∞n=1 is a nested sequence
of closed subsets with

⋂∞
n=1An = ∅.

Suppose however that we consider nested covers of nonempty closed subsets with
the additional property that diamAn → 0. In particular, all but finitely many An’s
are bounded, so the previous problem is solved. Indeed, Lion-Hunting works under
these hypothesis in RN because of Heine-Borel: some An is closed and bounded,
hence compact, so we revisit the previous case.

A metric space is complete if for every nested sequence {An} of nonempty closed
subsets with diameter tending to 0 we have

⋂
nAn 6= ∅.

The following result shows that completeness, like compactness, is a kind of in-
trinsic closedness property.

Lemma 2.50. Let Y be a subset of a metric space X.
a) If X is complete and Y is closed, then Y is complete.
b) If Y is complete, then Y is closed.

Proof. a) If Y is closed in X, then a nested sequence {An}∞n=1 of nonempty
closed subsets of Y with diameter approaching 0 is also a nested sequence of
nonempty closed subsets of X with diameter approaching 0. Since X is complete,
there is x ∈

⋂
nAn.

b) If Y is not closed, let y be a sequence in Y converging to an element x ∈ X \ Y .
Put An = {yk | k ≥ n}. Then {An}∞n=1 is a nested sequence of nonempty closed
subsets of Y of diameter approaching 0 and with empty intersection. �

8.2. Cauchy Sequences.

Our Lion Hunting definition of completeness is conceptually pleasant, but it seems
like it could be a lot of work to check in practice. It is also – we now admit – not
the standard one. We now make the transition to the standard definition.

Lemma 2.51. A metric space in which each sequence of closed balls with diam-
eters tending to zero has nonempty intersection is complete.

Proof. Let {An}∞n=1 be a nested sequence of nonempty closed subsets with
diameter tending to zero. We may assume without loss of generality that each An
has finite diameter, and we may choose for all n ∈ Z+, xn ∈ An and a positive
real number rn such that An ⊂ B•(xn, rn) and rn → 0. By assumption, there is a
unique point x ∈

⋂
nB
•(xn, rn). Then xn → x. Fix n ∈ Z+. Then x is the limit of

the sequence xn, xn+1, . . . in An, and since An is closed, x ∈ An. �

Let us nail down which sequences of closed balls we can use for lion hunting.

Lemma 2.52. Let {B•(xn, rn)}∞n=1 be a nested sequence of closed balls in a
metric space X with rn → 0. Then for all ε > 0, there is N = N(ε) such that for
all m,n ≥ N , we have d(xm, xn) ≤ ε.
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Proof. Fix ε > 0, and choose N such that rN ≤ ε
2 . Then if m,n ≥ N we have

xn, xm ∈ B•(xN , rN ), so d(xn, xm) ≤ 2rN ≤ ε. �

At last, we have motivated the following definition. A sequence {xn} in am metric
space X is Cauchy if for all ε > 0, there is N = N(ε) such that for all m,n ≥ N ,
d(xm, xn) < ε. Thus in a nested sequence of closed balls with diameter tending to
zero, the centers of the balls form a Cauchy sequence. Moreover:

Lemma 2.53. Let {xn} be a sequence in a metric space X, and for n ∈ Z+ put
An = {xk | k ≥ n}. The following are equivalent:
(i) The sequence {xn} is Cauchy.
(ii) We have diamAn → 0.

Exercise 2.60. Prove it.

Exercise 2.61. Show that every convergent sequence is Cauchy.

Lemma 2.54. Every partial limit of a Cauchy sequence is a limit.

Proof. Let {xn} be a Cauchy sequence, and let x ∈ X be such that some
subsequence xnk → x. Fix ε > 0, and choose N such that for all m,n ≥ N ,
d(xm, xn) < ε

2 . Choose K such that nK ≥ N and for all k ≥ K, d(xnk , x) < ε
2 .

Then for all n ≥ N ,

d(xn, x) ≤ d(xn, xnK ) + d(xnK , x) <
ε

2
+
ε

2
= ε. �

Proposition 2.55. For a metric space X, the following are equivalent:
(i) X is complete.
(ii) Every Cauchy sequence in X is convergent.

Proof. ¬ (ii) =⇒ ¬ (i): Suppose {xn} is a Cauchy sequence which does
not converge. By Lemma 2.54, the sequence {xn} has no partial limit, so An =
{xk | k ≥ n} is a nested sequence of closed subsets with diameter tending to 0 and⋂
nAn = ∅, so X is not complete.

(ii) =⇒ (i): By Lemma 2.51, it is enough to show that any nested sequence of closed
balls with diameters tending to zero has nonempty intersection. By Lemma 2.52,
the sequence of centers {xn} is Cauchy, hence converge to x ∈ X by assumption.
For each n ∈ Z+, the sequence xn, xn+1, . . . lies in B•(xn, rn), hence the limit, x,
lies in B•(xn, rn). �

8.3. Slow sequences.

Let (X, d) be a metric space. A sequence x in X is slow if limn→∞ d(xn+1,xn)→ 0.

Every Cauchy sequence is slow, but the converse is not true. For instance, if {an}
is any real sequence such that an → 0 and

∑
n an diverges, then the sequence of

partial sums Sn =
∑n
i=1 ai is slow but not convergent (thus not Cauchy, since R is

complete).

We are interested in the set of partial limits of a slow sequence.

Proposition 2.56. Let x be a slow sequence in R. Then the set of partial
limits of x in R is connected.
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Proof. In view of our characterization of connected subsets of R as intervals,
we must show: if x < z are partial limits of x, and y ∈ (x, z), then y is also a partial
limit. Let ε > 0. A slow sequence with only finitely many terms in (y − ε, y + ε)
must eventually have all its terms at least y + ε or at most y − ε, since otherwise
{n ∈ Z+ | xn ≤ y − ε and xn+1 ≥ y + ε} is infinite, but for sufficiently large n this
is impossible. Thus x has infinitely many terms in (y − ε, y + ε). �

Exercise 2.62. a) Let Y ⊂ R, and let x be a slow sequence in Y . Show that
the set of partial limits of x in Y is convex.
b) Investigate generalizations of part a) to suitable ordered topological spaces: e.g.
ordered fields, ordered commutative groups...

Proposition 2.57. Let X be a compact metric space, and let x be a slow
sequence in X. Then the set of partial limits of x in R is connected.

Proof. As we know, the set L of partial limits of x is closed in X and thus
compact. Seeking a contradiction, let L = U

∐
V be a separation. Then the set

distance d := d(U, V ) is strictly positive. Let CU be the set of x ∈ X that have
distance at most d

3 from U , and let CV be the set of x ∈ X that have distance at

most d
3 from V . Then CU , CV are disjoint open sets and d(CU , CV ) ≥ d

3 . There
are infinitely many terms of the sequence that lie in CU and infinitely many that
lie in CV , and thus there must be infinitely many n ∈ Z+ such that xn ∈ CU and
xn+1 ∈ CV , contradicting the slowness of x. �

Let x be a sequence in Rd, and let L be the set of partial limits of x. If x is bounded,
then L is connected by Proposition 2.57. If d = 1, then even if x is unbounded, L
is connected by Proposition 2.56. However this need not hold when d ≥ 2.

Example 2.11. For n ∈ Z+, let Rn be the rectangle centered at the origin with
sides parallel to the coordinate axes, of width 2 and height 2n. Consider the finite
sequence a1, . . . , aN1

starting at (1, 0) and proceeding counterclockwise around R1

in steps of length 1. Now consider the finite sequence aN1+1, . . . , aN2 starting at
(1, 0) and proceeding counterclockwise around R2 in steps of length 1

2 . We continue
on in this manner for all n ∈ Z+. The resulting sequence has as its set of partial
limits the union of the two lines x = −1 and x = 1.

Theorem 2.58. (Azouzi [Az18])
For a closed subset L ⊂ Rd, the following are equivalent:
(i) L is the set of all partial limits of a slow sequence x in Rd.
(ii) At least one of the following holds:
(a) L is connected.
(b) d ≥ 2 and every connected component of L is unbounded.

The proof of Theorem 2.58 requires some preliminaries.

Let x, y be points of a metric space X. For ε > 0, an ε-chain from x to y is a finite
sequence x0 = x, x1, . . . , xn = y such that d(xi, xi+1) < ε for all 0 ≤ i ≤ n − 1.
We define x ∼ε y if there is an ε-chain from x to y. This is an equivalence relation
on X, and the equivalence classes are clopen subsets. It follows that a connected
metric space has the property that for all ε > 0, there is an ε-chain between any two
pairs of points: such a metric space is called well-chained. The rational numbers
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in the Euclidean topology are well-chained but not connected. However, a com-
pact well-chained metric space is connected: if X = U

∐
V is a separation, then as

above we have d := d(U, V ) > 0, and then for all ε < d no point in U can be ε-chain
connected to a point in V .

8.4. Baire’s Theorem.

A subset A of a metric space X is nowhere dense if A contains no nonempty

open subset, or in other (fewer) words, if A
◦

= ∅.

Exercise 2.63. Let x be a point of a metric space X. Show that x is a limit
point of X iff {x} is nowhere dense.

Theorem 2.59. (Baire) Let X be a complete metric space.
a) Let {Un}∞n=1 be a sequence of dense open subsets of X. Then U =

⋂∞
n=1 Un is

also dense in X.
b) Let {An}∞n=1 be a countable collection of nowhere dense subsets of X. Then
A =

⋃∞
n=1An has empty interior.

Proof. a) We must show that for every nonempty open subset W of X we
have W ∩ U 6= ∅. Since U1 is open and dense, W ∩ U1 is nonempty and open
and thus contains some closed ball B•(x1, r1) with 0 < r1 ≤ 1. For n ≥ 1, having
chosen xn and rn ≤ 1

n , since Un+1 is open and dense, B(xn, rn)∩Un+1 is nonempty

and open and thus contains some closed ball B•(xn+1, rn+1) with 0 < rn+1 ≤ 1
n+1 .

Since X is complete, there is a (unique)

x ∈
∞⋂
n=2

B•(xn, rn) ⊂
∞⋂
n=1

B(xn, rn) ∩ Un ⊂
∞⋂
n=1

Un = U.

Moreover

x ∈ B•(x1, r1) ⊂W ∩ U1 ⊂W,
so

x ∈ U ∩W.
b) Without loss of generality we may assume that each An is closed, because An
is nowhere dense iff An is nowhere dense, and a subset of a nowhere dense set is
certainly nowhere dense. For n ∈ Z+, let Un = X \An. Each Un is open; moreover,
since An contains no nonempty open subset, every nonempty open subset must
intersect Un and thus Un is dense. By part a),

⋂∞
n=1 Un =

⋂∞
n=1X \ An = X \ A

is dense. Again, this means that every nonempty open subset of X meets the
complement of A so no nonempty open subset of X is contained in A. �

Corollary 2.60. Let X be a nonempty complete metric space in which every
point is a limit point. Then X is uncountable.

Proof. Let A = {an | n ∈ Z+} be a countably infinite subset of X. Then each
{an} is nowhere dense, so by Theorem 2.59, A =

⋃∞
n=1{an} has empty interior. In

particular, A ( X. �

Corollary 2.60 applies to R and gives a purely topological proof of its uncountability!

Corollary 2.61. A countably infinite complete metric space has infinitely
many isolated points.
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Proof. Let X be a complete metric space with only finitely many isolated
points, say A = {a1, . . . , an}. We will show that X is uncountable. Let Y = X \A,
let y ∈ Y , and let V be an open neighborhood of y in Y , so V = U∩Y for some open
neighborhood of y in X. By definition of Y , V is infinite. However, intersecting
with Y only involves removing finitely many points, so V must also be infinite! It
follows that every point of the metric space Y is a limit point. As in any metric
space, the subset of all isolated points is open, so its complement Y is closed in
the complete space X, so it too is complete. Thus by Corollary 2.60 Y must be
uncountably infinite, hence so is X. �

One interesting consequence of these results is that we can deduce purely topological
consequences of the metric condition of completeness.

Example 2.12. Let Q be the rational numbers, equipped with the usual Eu-
clidean metric d(x, y) = |x− y|. As we well know, (Q, d) is not complete. But here
is a more profound question: is there some topologically equivalent metric d′ on Q
which is complete? Now in general a complete metric can be topologically equivalent
to an incomplete metric: e.g. this happens on R. But that does not happen here:
any topologically equivalent metric is a metric on a countable set in which no point
is isolated (the key observation being that the latter depends only on the topology),
so by Corollary 2.60 cannot be complete.

This example motivates the following definition: a metric space (X, d) is topo-
logically complete if there is a complete metric d′ on X which is topologically
equivalent to d.

Exercise 2.64. Show that the space of irrational numbers R \Q (still with the
standard Euclidean metric d(x, y) = |x− y|) is topologically complete.

9. Total Boundedness

We saw above that the property of boundedness is not only not preserved by home-
omorphisms of metric spaces, it is not even preserved by uniformeomorphisms of
metric spaces (and also that it is preserved by Lipschitzeomorphisms). Though this
was as simple as replacing any unbounded metric by the standard bounded metric
db(x, y) = min d(x, y), 1, intuitively it is still a bit strange: e.g. playing around a
bit with examples, one soon suspects that for subspaces of Euclidean space RN , the
property of boundedness is preserved by uniformeomorphisms.

The answer to this puzzle lies in identifying a property of metric spaces: perhaps
the most important property that does not get “compactness level PR”.

A metric space X is totally bounded if for all ε > 0, it admits a finite cover

by open ε-balls: there is N ∈ Z+ and x1, . . . , xN ∈ X such that X =
⋃N
i=1B(xi, ε).

Since any finite union of bounded sets is bounded, certainly total boundedness
implies boundedness (thank goodness).

Notice that we could require the balls to be closed without changing the defini-
tion: just slightly increase or decrease ε. (And indeed, sometimes we will want to
use one form of the definition and sometimes the other.) In fact we don’t really
need balls at all: consider the following reformulation.
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Lemma 2.62. For a metric space X, the following are equivalent:
(i) For all ε > 0, there exists a finite family S1, . . . , SN of subsets of X such that

diamSi ≤ ε for all i and X =
⋃N
i=1 Si.

(ii) X is totally bounded.

Proof. (i) =⇒ (ii): We may assume each Si is nonempty, and choose xi ∈ Si.
Since diamSi ≤ ε, Si ⊂ B•(xi, ε) and thus X =

⋃N
i=1B

•(xi, ε).

(ii) =⇒ (i): For every ε > 0, choose x1, . . . , xN such that
⋃N
i=1B

•(xi,
ε
2 ) = X.

We have covered X by finitely many sets each of diameter at most ε. �

Corollary 2.63.
a) Every subset of a totally bounded metric space is totally bounded.
b) Let f : X → Y be a uniformeomorphism of metric spaces. Then X is totally
bounded iff Y is totally bounded.

Proof. a) Suppose that X is totally bounded, and let Y ⊂ X. Since X is
totally bounded, for each ε > 0 there exist S1, . . . , SN ⊂ X such that diamSi < ε

for all i and X =
⋃N
i=1 Si. Then diam(Si ∩ Y ) < ε for all i and Y =

⋃N
i=1(Si ∩ Y ).

b) Suppose X is totally bounded. Let ε > 0, and choose δ > 0 such that f is
(ε, δ)-uniformly continuous. Since X is totally bounded there are finitely many

sets S1, . . . , SN ⊂ X with diamSi ≤ δ for all 1 ≤ i ≤ N and X =
⋃N
i=1 Si. For

1 ≤ i ≤ N , let Ti = f(Si). Then diamTi ≤ ε for all i and Y =
⋃N
i=1 Ti. It

follows that Y is uniformly bounded. Using the uniformly continuous function
f−1 : Y → X gives the converse implication. �

Lemma 2.64. (Archimedes) A subset of RN is bounded iff it is totally bounded.

Proof. Total boundedness always implies boundedness. Moreover any bounded
subset of RN lies in some cube Cn = [−n, n]N for some n ∈ Z+, so by Corollary
2.63 it is enough to show that Cn is totally bounded. But Cn can be written as the
union of finitely many subcubes with arbitrarily small side length and thus arbi-
trarily small diameter. Provide more details if you like, but this case is closed. �

Let ε > 0. An ε-net in a metric space X is a subset N ⊂ X such that for all x ∈ X,
there is n ∈ N with d(x, n) < ε. An ε-packing in a metric space X is a subset
P ⊂ X such that d(p, p′) ≥ ε for all p, p′ ∈ P .

These concepts give rise to a deep duality in discrete geometry between pack-
ing – namely, placing objects in a space without overlap – and covering – namely,
placing objects in a space so as to cover the entire space. Notice that already we
can cover the plane with closed unit balls or we can pack the plane with closed unit
balls but we cannot do both at once. The following is surely the simplest possible
duality principle along these lines.

Proposition 2.65. Let X be a metric space, and let ε > 0.
a) The space X admits either a finite ε-net or an infinite ε-packing.
b) If X admits a finite ε-net then it does not admit an infinite (2ε)-packing.
c) Thus X is totally bounded iff for all ε > 0, there is no infinite ε-packing.

Proof. a) First suppose that we do not have a finite ε-net in X. Then X
is nonempty, so we may choose p1 ∈ X. Since X 6= B(p1, ε), there is p2 ∈ X
with d(p1, p2) ≥ ε. Inductively, having constructed an n element ε-packing Pn =
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{p1, . . . , pn}, since Pn is not a finite ε-net there is pn+1 ∈ X such that d(pi, pn+1) ≥ ε
for all 1 ≤ i ≤ n, so Pn+1 = Pn ∪ {pn+1} is an n + 1 element ε-packing. Then
P =

⋃
n∈Z+ Pn is an infinite ε-packing.

b) Seeking a contradiction, suppose that we have both an infinite (2ε)-packing P
and a finite ε-net N . Since P is infinite, N is finite and X =

⋃
n∈N B(n, ε), there

must be distinct points p 6= p′ ∈ P each lying in B(n, ε) for some n ∈ N , and then
by the triangle inequality d(p, p′) ≤ d(p, n) + d(n, p′) < 2ε.
c) To say that N ⊂ X is an ε-net means precisely that if we place an open ball of
radius ε centered at each point of N , then the union of these balls covers X. Thus
total boundedness means precisely the existence of a finite ε-net for all ε > 0. The
result then follows immediately from part a). �

Theorem 2.66. A metric space X is totally bounded iff each sequence x in X
admits a Cauchy subsequence.

Proof. If X is not totally bounded, then by Proposition 2.65 there is an
infinite ε-packing for some ε > 0. Passing to a countably infinite subset P =
{pn}∞n=1, we get a sequence such that for all m 6= n, d(pm, pn) ≥ ε. This sequence
has no Cauchy subsequence.

Now suppose that X is totally bounded, and let x be a sequence in X. By
total boundedness, for all n ∈ Z+, we can write X as a union of finitely many
closed subsets Y1, . . . , YN each of diameter at most 1

n (here N is of course allowed
to depend on n). An application of the Pigeonhole Principle gives us a subsequence
all of whose terms lie in Yi for some i, and thus we get a subsequence each of whose
terms have distance at most ε. Unfortunately this is not quite what we want: we
need one subsequence each of whose sufficiently large terms differ by at most 1

n .
We attain this via a diagonal construction: namely, let

x1,1, x1,2, . . . , x1,n, . . .

be a subsequence each of whose terms have distance at most 1. Since subspaces
of totally bounded spaces are totally bounded, we can apply the argument again
inside the smaller metric space Yi to get a subsubsequence

x2,1, x2,2, . . . , x2,n, . . .

each of whose terms differ by at most 1
2 and each x2,n is selected from the subse-

quence {x1,n}; and so on; for all m ∈ Z+ we get a subsub...subsequence

xm,1, xm,2, . . . , xm,n, . . .

each of whose terms differ by at most 1
n . Now we choose the diagonal subse-

quence: put yn = xn,n for all n ∈ Z+. We allow the reader to check that this is
a subsequence of the original sequence x.. This sequence satisfies d(yn, yn+k) ≤ 1

n
for all k ≥ 0, so we get a Cauchy subsequence. �

10. Separability

We remind the reader that we are an ardent fan of [Ka]. The flattery becomes
especially sincere at this point: c.f. [Ka, §5.2].

Recall that a metric space is separable if it admits a countable dense subset.

Exercise 2.65. Let f : X → Y be a continuous surjective map between metric
spaces. Show that if X is separable, so is Y .
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We want to compare this property with two others that we have not yet introduced.

A base B = {Bi} for the topology of a metric space X is a collection of open
subsets of X such that every open subset U of X is a union of elements of B: pre-
cisely, there is a subset J ⊂ B such that

⋃
i∈J Bi = U . (We remark that taking

J = ∅ we get the empty union and thus the empty set.)

The example par excellence of a base for the topology of a metric space X is
to take B to be the family of all open balls in X. In this case, the fact that B is a
base for the topology is in fact the very definition of the metric topology: the open
sets are precisely the unions of open balls.

A countable base is just what it sounds like: a base which, as a set, is countable
(either finite or countably infinite).

Proposition 2.67. a) Let X be a metric space, let B = {Bi} be a base for the
topology of X, and let Y ⊂ X be a subset. Then B ∩ Y := {Bi ∩ Y } is a base for
the topology of Y .
b) If X admits a countable base, then so does all of its subsets.

Proof. a) This follows from the fact that the open subsets of Y are precisely
those of the form U ∩ Y for U open in X. We leave the details to the reader.
b) This is truly immediate. �

Theorem 2.68. For a metric space X, the following are equivalent:
(i) X is separable.
(ii) X admits a countable base.
(iii) X is Lindelöf.

Proof. (i) =⇒ (ii): Let Z be a countable dense subset. The family of open
balls with center at some point of Z and radius 1

n is then also countable (because
a product of two countable sets is countable). So there is a sequence {Un}∞n=1 in
which every such ball appears at least once. I claim that every open set of X is a
union of such balls. Indeed, let U be a nonempty subset (we are allowed to take
the empty union to get the empty set!), let p ∈ U , and let ε > 0 be such that
B(p, ε) ⊂ U . Choose n sufficiently large such that 1

n < ε
2 and choose z ∈ Z such

that d(z, p) < 1
2n . Then p ∈ B(z, 1

n ) ⊂ B(p, ε) ⊂ U . It follows that U is a union of
balls as claimed.
(ii) =⇒ (iii): Let B = {Bn}∞n=1 be a countable base for X, and let {Ui}i∈I be an
open covering of X. For each p ∈ X, we have p ∈ Ui for some i. Since Ui is a union
of elements of B and p ∈ Ui, we must have p ∈ Bn(p) ⊂ Ui for some n(p) depending
on p. Thus we have all the essential content for a countable subcovering, and we
formalize this as follows: let J be the set of all positive integers n such that Bn lies
in Ui for some i: notice that J is countable! For each n ∈ J , choose in ∈ I such
that Bn ⊂ Uin . It then follows that X =

⋃
n∈J Uin .

(iii) =⇒ (i): For each n ∈ Z+, the collection {B(p, 1
n )}p∈X certainly covers X.

Since X is Lindelöf, there is a countable subcover. Let Zn be the set of centers of the
elements of this countable subcover, so Zn is a countable 1

n -net. Put Z =
⋃
n∈Z+ Zn.

Then Z is a countable dense subset. �
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We now get to play the good properties of separability, existence of countable bases,
and Lindelöfness off against one another. For instance, we get:

Corollary 2.69. a) Every subset of a separable metric space is separable.
b) Every subset of a Lindelöf metric space is Lindelöf.
c) If f : X → Y is a continuous surjective map of metric spaces and X has a
countable base, so does Y .

We suggest that the reader pause and try to give a proof of Corollary 2.69 directly
from the definition.

Corollary 2.70. A compact metric space is separable.

Proof. Since X is compact, it is certainly Lindelöf, so by Theorem 2.68 X is
separable. (Alternately, we can rerun the proof of (iii) =⇒ (i) in Theorem 2.68
in this context: for each n ∈ Z+, X has a finite covering by open balls of radius
1
n ; taking the union of the centers of these balls over all n ∈ Z+ gives a countable
dense subset.) �

Exercise 2.66. Let X be a separable metric space, and let E ⊂ X be a discrete
subset: every point of E is an isolated point. Show that E is countable.

Recall that point p in a metric space is isolated if {p} is an open set. If we like,
we can rephrase this by saying that p admits a neighborhood of cardinality 1. Oth-
erwise p is a limit point: every neighborhood of p contains points other than p.
Because finite metric spaces are discrete, we can rephrase this by saying that every
neighborhood of p is infinite. This little discussion perhaps prepares us for the
following more technical definition.

A point p of a metric space X is an ω-limit point if every neighborhood of p
in X is uncountable.

Theorem 2.71. A separable metric space has at most continuum cardinality.

Exercise 2.67. Prove it. (Hint: think about limits of sequences.)

Theorem 2.72. Let X be an uncountable separable metric space. Then all but
countably many points of X are ω-limit points.

Proof. Step 1: We show that X at at least one ω-limit point. Seeking a
contradiction we suppose this is not the case. Then, for every x ∈ X, let Ux be a
countable neighborhood of X. By Theorem 2.68 X is Lindelöf, so the open covering
{Ux}x∈X has a countable subcovering. Thus X is countable, a contradiction.
Step 2: Let Z be the set of all ω-limit points of X. Seeking a contradiction, we
suppose that X \ Z is uncountable. Then by Corollary 2.69 and Step 1, there is
x ∈ X \ Z that is an ω-limit point. But then a fortiori x is an ω-limit point of X,
so x ∈ Z, a contradiction. �

Theorem 2.73. Let X be an uncountable, complete separable metric space.
Then X has continuum cardinality.

Proof. By Theorem 2.71, X has at most continuum cardinality, so it will
suffice to exhibit continuum-many points of X.
Step 1: We claim that for all δ > 0, there is 0 ≤ ε ≤ δ and x, y ∈ X such that
the closed ε-balls B•(x, ε) and B•(y, ε) are disjoint and each contain uncountably
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many points. Indeed, by Theorem 2.72, X has uncountably many ω-limit points.
Choose two of them x 6= y and take any ε < d(x, y).
Step 2: Applying the above construction with δ = 1 we get uncountable disjoint
closed subsets A0 and A1 each of diameter at most 1. Each of A0 and A1 is itself
uncountable, complete and separable, so we can run the construction in A0 and
in A1 to get uncountable disjoint closed subsets A0,0, A0,1 in A1 and A1,0, A1,1 in
A2, each of diameter at most 1

2 . Continuing in this way we get for each n ∈ Z+ a
pairwise disjoint family of 2n uncountable closed subsets Ai1,...,in (with i1, . . . , in ∈
{0, 1}) each of diameter at most 2−n. Any infinite binary sequence ε ∈ {0, 1}Z+

yields a nested sequence of nonempty closed subsets of diameter approaching zero,
so by completeness each such sequence has a unique intersection point pε. If ε 6= ε′

are distinct binary sequences, then for some n, εn 6= ε′n, so pε and p′ε are contained

in disjoint subsets and are thus distinct. This gives 2#Z+

= #R points of X. �

Theorem 2.73 applies in particular to show the uncountability of R.

10.1. Further exercises.

Exercise 2.68. a) (S. Ivanov) Let X be a complete metric space without iso-
lated points. Show that X has at least continuum cardinality.
(Suggestion: the lack of isolated points implies that every closed ball of positive ra-
dius is infinite. Now run the argument of Step 2 of the proof of Theorem 2.73.)
b) Explain why the assertion that every uncountable complete metric space has at
least continuum cardinality is equivalent to the Continuum Hypothesis: i.e., that
every uncountable set has at least continuum cardinality.4

Exercise 2.69. [MO] Show: a metric space X is separable if and only if every
open set in X is a countable union of open balls.

11. Compactness Revisited

11.1. Characterization of compactness in metric spaces.

The following is perhaps the single most important theorem in metric topology.

Theorem 2.74. Let X be a metric space. The following are equivalent:
(i) X is compact: every open covering of X has a finite subcovering.
(ii) X is sequentially compact: every sequence in X has a convergent subsequence.
(iii) X is limit point compact: every infinite subset of X has a limit point in X.
(iv) X is complete and totally bounded.

Proof. We will show (i) =⇒ (iii) ⇐⇒ (ii) ⇐⇒ (iv) =⇒ (i).
(i) =⇒ (iii): Suppose X is compact, and let A ⊂ X have no limit point in X. We
must show that A is finite. Recall that A is obtained by adjoining the set A′ of
limit points of A, so in our case we have A = A ∪A′ = A ∪∅ = A, i.e., A is closed
in the compact space X, so A is itself compact. On the other hand, no point of A
is a limit point, so A is discrete. Thus {{a}a∈A} is an open covering of A, which
certainly has no proper subcovering: we need all the points of A to cover A! So the
given covering must itself be finite: i.e., A is finite.

4Exercise 8 in §5.2 of [Ka] reads “Prove that every uncountable complete metric space has at
least the cardinal number c”. So it asks for a proof of the Continuum Hypothesis! But presumably

Kaplansky meant to ask part a) and the absence of “without isolated points” is a typo.
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(iii) =⇒ (ii): Let x be a sequence in X; we must find a convergent subsequence.
If some element occurs infinitely many times in the sequence, we have a constant
subsequence, which is convergent. Otherwise A = {xn | n ∈ Z+} is infinite, so it
has a limit point x ∈ X and thus we get a subsequence of x converging to x.
(ii) =⇒ (iii): Let A ⊂ X be infinite; we must show that A has a limit point in X.
The infinite set A contains a countably infinite subset; enumerating these elements
gives us a sequence {an}∞n=1. By assumption, we have a subsequence converging to
some x ∈ X, and this x is a limit point of A.
(ii) =⇒ (iv): Let x be a Cauchy sequence in X. By assumption x has a convergent
subsequence, which by Lemma 2.54 implies that x converges: X is complete. Let
x be a sequence in X. Then x has a convergent, hence Cauchy, subsequence. By
Theorem 2.66, the space X is totally bounded.
(iv) =⇒ (ii): Let x be a sequence in X. By total boundedness x admits a Cauchy
subsequence, which by completeness is convergent. So X is sequentially compact.
(iv) =⇒ (i): Seeking a contradiction, we suppose that there is an open covering
{Ui}i∈I of X without a finite subcovering. Since X is totally bounded, it admits
a finite covering by closed balls of radius 1. It must be the case that for at least
one of these balls, say A1, the open covering {Ui ∩ A1}i∈I of A1 does not have a
finite subcovering – for if each had a finite subcovering, by taking the finite union
of these finite subcoverings we would get a finite subcovering of {Ui}i∈I . Since A1

is a closed subset of a complete, totally bounded space, it is itself complete and
totally bounded. So we can cover A1 by finitely many closed balls of radius 1

2 and
run the same argument, getting at least one such ball, say A2 ⊂ A1, for which the
open covering {Ui ∩ A2}i∈I has no finite subcovering. Continuing in this way we
build a nested sequence of closed balls {An}∞n=1 of radii tending to 0, and thus also
diamAn → 0. By completeness there is a point p ∈

⋂∞
n=1An. Since

⋃
i∈I Ui = X,

certainly we have p ∈ Ui for at least one i ∈ I. Since Ui is open, there is some
ε > 0 such that B(p, ε) ⊂ Ui. Choose N ∈ Z+ such that diamAN < ε. Then since
p ∈ AN , we have AN ⊂ B(p, ε) ⊂ Ui. But this means that AN = Ui ∩ AN is a one
element subcovering of AN : contradiction. �

Exercise 2.70. A metric space is countably compact if every countable open
cover admits a finite subcover.
a) Show that for a metric space X, the following are equivalent:
(i) X is countably compact.
(ii) For any sequence {An}∞n=1 of closed subsets, if for all finite nonempty subsets
J ⊂ Z+ we have

⋂
n∈J An 6= ∅, then

⋂∞
n=1An 6= ∅.

(iii) For any nested sequence A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . of nonempty closed subsets
of X, we have

⋂∞
n=1An 6= ∅.

b) Show that a metric space is compact iff it is countably compact.
(Suggestion: use the assumption that X is not limit-point compact to build a count-
able open covering without a finite subcovering.)

Exercise 2.71. Let X be a metric space.
a) Show: every finite subset of X is compact. In particular, if X is finite, then
every subset is compact.
b) Suppose X is topologically discrete. Show: every compact subset of X is finite.
c) Suppose X is infinite and not topologically discrete. Show: X has infinitely many
compact subsets.
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d) Show: for a subset Y of X, Y is closed iff the intersection of Y with every
compact subset of X is closed.

11.2. Partial Limits.

Let x be a sequence in a metric space X. Recall that a p ∈ X is a partial
limit of x if some subsequence of x converges to p.

Though this concept has come up before, we have not given it much attention.
This section is devoted to a more detailed analysis.

Exercise 2.72. Show that the partial limits of {(−1)n}∞n=1 are precisely −1
and 1.

Exercise 2.73. Let {xn} be a real sequence which diverges to ∞ or to −∞.
Show that there are no partial limits.

Exercise 2.74. In R2, let xn = (n cosn, n sinn). Show that there are no partial
limits.

Exercise 2.75. In R, consider the sequence

0, 1,
1

2
, 0,
−1

2
,−1,

−3

2
,−2,

−5

3
,
−4

3
, . . . , 3,

11

4
. . .

Show that every real number is a partial limit.

Exercise 2.76. a) Let {xn} be a sequence in a metric space such that every
bounded subset of the space contains only finitely many terms of the sequence. Then
there are no partial limits.
b) Show that a metric space admits a sequence as in part a) if and only if it is
unbounded.

Proposition 2.75. In any compact metric space, every sequence has at least
one partial limit.

Proof. This is a rephrasing of “compact metric spaces are sequentially com-
pact.” �

Exercise 2.77. Show that a convergent sequence in a metric space has a unique
partial limit: namely, the limit of the sequence.

In general, the converse is not true: e.g. the sequence 1
2 , 2,

1
3 , 3,

1
4 , 4, . . . ,

1
n , n, . . .

has 0 as its only partial limit, but it does not converge.

Proposition 2.76. In a compact metric space X, a sequence with exactly one
partial limit converges.

Proof. Let L be a partial limit of a sequence {xn}, and suppose that the
sequence does not converge to L. Then there is some ε > 0 such that B◦(L, ε)
misses infinitely many terms of the sequence. Therefore some subsequence lies in
Y = X \B◦(L, ε). This is a closed subset of a compact space, so it is compact, and
therefore this subsequence has a partial limit L′ ∈ Y , which is then a partial limit
of the original sequence. Since L /∈ Y , L′ 6= L. �

Proposition 2.77. Let {xn} be a sequence in a metric space X. Then the set
L of partial limits of {xn} is a closed subset.
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Proof. We will show that the complement of L is open: let y ∈ X \ L. Then
there is ε > 0 such that B◦(y, ε) contains only finitely many terms of the sequence.
Now for any z ∈ B◦(y, ε),

B◦(z, ε− d(y, z)) ⊂ B◦(y, ε)
so B◦(z, ε−d(y, z)) also contains only finitely many points of the sequence and thus
z is not a partial limit of the sequence. It follows that B◦(y, ε) ⊂ X \ L. �

Now let {xn} be a bounded sequence in R: say xn ∈ [a, b] for all n. Since [a, b] is
closed, the set L of partial limits is contained in [a, b], so it is bounded. By the
previous result, L is closed. So L has a minimum and maximum element, say L
and L. The sequence converges iff L = L.

We claim that L can be characterized as follows: for any ε > 0, only finitely
many terms of the sequence lie in [L+ε, b]; and for any ε > 0, infinitely many terms
of the sequence lie in [L − ε, b]. Indeed, if infinitely many terms of the sequence
lay in [L+ ε, b], then by Bolzano-Weierstrass there would be a partial limit in this
interval, contradicting the definition of L. The second implication is even easier:
since L is a partial limit, then for all ε > 0, the interval [L − ε, L + ε] contains
infinitely many terms of the sequence.

We can now relate L to the limit supremum. Namely, put

Xn = {xk | k ≥ n}
and put

lim sup sn = lim
n→∞

supXn.

Let us first observe that this limit exists: indeed, each Xn is a subset of [a, b],
hence bounded, hence supXn ∈ [a, b]. Since Xn+1 ⊂ Xn, supXn+1 ≤ supXn,
so {supXn} forms a bounded decreasing sequence and thus converges to its least
upper bound, which we call the limit superior of the sequence xn.

We claim that lim supxn = L. We will show this by showing that lim supxn has the
characteristic property of L. Let ε > 0. Then since (lim supxn) + ε > lim supxn,
then for some (and indeed all sufficiently large) N we have

xn ≤ supXN < (lim supxn) + ε,

showing the first part of the property: there are only finitely many terms of the
sequence to the right of (lim supxn) + ε). For the second part, fix N ∈ Z+; then

(lim supxn)− ε < (lim supxn) ≤ supXN ,

so that (lim supxn − ε) is not an upper bound for XN : there is some n ≥ N with
(lim supxn − ε) < xn. Since N is arbitrary, this shows that there are infinitely
many terms to the right of (lim supxn − ε).

We deduce that L = lim supxn.

Theorem 2.78. Let X be a metric space. For a nonempty subset Y ⊂ X, the
following are equivalent:
(i) There is a sequence {xn} in X whose set of partial limits is precisely Y .
(ii) There is a countable subset Z ⊂ Y such that Y = Z.
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Proof. Step 1: First suppose Y = Z for a countable, nonempty subset Z. If
Z is finite then it is closed and Y = Z. In this case suppose the elements of Z are
z1, . . . , zN , and take the sequence

z1, . . . , zN , z1, . . . , zN , . . .

On the other hand, if Z is countably infinite then we may enumerate its elements
{zn}∞n=1. We take the sequence

z1, z1, z2, z1, z2, z3, . . . , z1, . . . , zN , . . . .

In either case: since each element z ∈ Z appears infinitely many times as a term of
the sequence, there is a constant subsequence converging to z ∈ Z. Since the set L
of partial limits is closed and contains Z, we must have

L ⊃ Z = Y.

Finally, every term of the sequence lies in the closed set Y , hence so does every
term of every subsequence, and so the limit of any convergent subsequence must
also lie in Y . Thus L = Y .
Step 2: Now let {xn} be any sequence in X and consider the set L of partial limits
of the sequence. We may assume that L 6= ∅. We know that L is closed, so it
remains to show that there is a countable subset Z ⊂ L such that L = Z: in other
words, we must show that L is a separable metric space. Let W = {xn | n ∈ Z+}
be the set of terms of the sequence. Then W is countable, and arguing as above we
find L ⊂ W . Therefore L is a subset of a separable metric space, so by Corollary
2.69, L is itself separable. �

Though Theorem 2.78 must have been well known for many years, I have not been
able to find it in print (in either texts or articles). In fact two recent articles address
the collection of partial limits of a sequence in a metric space: [Si08] and [HM09].
The results that they prove are along the lines of Theorem 2.78 but not quite as
general: the main result of the latter article is that in a separable metric space
every nonempty closed subset is the set of partial limits of a sequence. Moreover
the proof that they give is significantly more complicated.

11.3. Lebesgue Numbers.

Lemma 2.79. Let (X, d) be a compact metric space, and let U = {Ui}i∈I be an
open cover of X. Then U admits a Lebesgue number: a δ > 0 such that for every
nonempty A ⊂ X of diameter less than δ, we have A ⊂ Ui for at least one i ∈ I.

Proof. If δ is a Lebesgue number, so is any 0 < δ′ < δ. It follows that if
Lebesgue numbers exist, then 1

n is a Lebesgue number for some n ∈ Z+. So, seeking

a contradiction we suppose that for all n ∈ Z+, 1
n is not a Lebesgue number. This

implies that for all n ∈ Z+ there is xn ∈ X such that B•(xn,
1
n ) is not contained

in Ui for any i ∈ I. Since X is sequentially compact, there is a subsequence
xnk → x ∈ X. Choose i ∈ I such that x ∈ Ui. Then for some ε > 0, B•(x, ε) ⊂ Ui,
and when 1

nk
< ε

2 we get

B•(xnk ,
1

nk
) ⊂ B•(x, ε) ⊂ Ui,

a contradiction. �
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Proposition 2.80. Let f : X → Y be a continuous map between metric spaces.
For ε > 0, suppose that the open cover Uε = {f−1(B(y, ε2 )}y∈Y of X admits a
Lebesgue number δ. Then f is (ε, δ)-UC.

Proof. If d(x, x′) < δ, x, x′ ∈ B(x, δ). Since δ is a Lebesgue number for Uε,
there is y ∈ Y such that f(B(x, δ)) ⊂ B(y, ε2 ) and thus

d(f(x), f(x′)) < d(f(x), y)) + d(y, f(x′)) <
ε

2
+
ε

2
= ε. �

Theorem 2.81. Let X be a compact metric space and f : X → R a continuous
function. Then f is uniformly continuous.

Proof. Let ε > 0. By Lemma 2.79, the covering {f−1(B(y, ε2 ))}y∈R of [a, b]
has a Lebesgue number δ > 0, and then by Proposition 2.80, f is (ε, δ)-UC. Thus
f is uniformly continuous. �

12. Extension Theorems

Let X and Y be metric spaces, let A ⊂ X be a subset, and let

f : A→ Y

be a continuous function. We say f extends to X if there is a continuous map

F : X → Y

such that

∀x ∈ A,F (x) = f(x).

We also say that F extends f and write F |A = f . (That F must be continuous
is suppressed from the terminology: this is supposed to be understood.) We are
interested in both the uniqueness and the existence of the extension.

Proposition 2.82. Let X and Y be metric spaces, let A ⊂ X and let f : A ⊂ Y
be a continuous function. If A is dense in X, then there is at most one continuous
function F : X → Y such that F |A = f .

Proof. Suppose F1, F2 : X → Y both extend f : A → Y , and let x ∈ X.
Since A is dense, there is a sequence a in A which converges to x. Then

F1(x) = F1( lim
n→∞

an) = lim
n→∞

F1(an) = lim
n→∞

f(an)

= lim
n→∞

F2(an) = F2( lim
n→∞

an) = F2(x). �

Exercise 2.78. Let A ⊂ X, and let f : A → Y be a continuous map. Show
that f has at most one continuous extension to F : A→ Y .

Proposition 2.83. Let f : X → Y be a uniformly continuous map of metric
spaces. Let x be a Cauchy sequence in X. Then f(x) is a Cauchy sequence in Y .

Proof. Let ε > 0. By uniform continuity, there is δ > 0 such that for all y, z ∈
X, if d(y, z) ≤ δ then d(f(y), f(z)) ≤ ε. Since x is Cauchy, there is N ∈ Z+ such
that if m,n ≥ N then d(xm,xn) ≤ δ. For all m,n ≥ N , d(f(xm), f(xn)) ≤ ε. �
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Theorem 2.84. Let X be a metric space, Y a complete metric space, A ⊂ X
a dense subset, and let f : A→ Y be uniformly continuous.
a) There is a unique continuous map F : X → Y extending f (i.e., such that
F |A = f).
b) The map F : X → Y is uniformly continuous.
c) If f is an isometric embedding, then so is F .

Proof. a) Exercise 2.78 shows that if F : A→ Y is any continuous extension,
then F (x) must be limn→∞ f(an) for any sequence a → x. It remains to show
that this limit actually exists and does not depend upon the choice of sequence a
which converges to x. But we are well prepared for this: since a → x in X, as a
sequence in A, a is Cauchy. Since f is uniformly continuous, f(a) is Cauchy. Since
Y is complete, f(a) converges. If b is another sequence in A converging to x, then
d(an,bn)→ 0, so by uniform continuity, d(f(an), f(bn))→ 0.
b) Fix ε > 0, and choose δ > 0 such that f is ( ε2 , δ)-uniformly continuous. We
claim that F is (ε, δ)-uniformly continuous. Let x, y ∈ X with d(x, y) ≤ δ. Choose
sequences a and b in A converging to x and y respectively. Then d(x, y) =
limn→∞ d(an,bn), so by our choice of δ for all sufficiently large n we have d(an,bn) ≤
δ. For such n we have d(f(an), f(bn)) ≤ ε, so

d(f(x), f(y)) = lim
n→∞

d(f(an), f(bn)) ≤ ε.

c) Suppose f is an isometric embedding, let x, y ∈ X and choose sequences a, b in
A converging to x and y respectively. Then

d(f(x), f(y)) = d(f( lim
n→∞

an), f( lim
n→∞

bn)) = lim
n→∞

d(f(an), f(bn))

= lim
n→∞

d(an,bn) = d(x, y). �

Exercise 2.79. The proof of Theorem 2.84 does not quite show the simpler-
looking statement that if f : A → Y is (ε, δ)-uniformly continuous then so is the
extended function F : X → Y . Show that this is in fact true. (Suggestion: this
follows from what was proved via a limiting argument.)

Exercise 2.80. Maintain the setting of Theorem 2.84.
a) Show: if f : A→ Y is contractive, so is F .
b) Show: if f : A→ Y is Lipschitz, so is F . Show in fact that the optimal Lipschitz
constants are equal: L(F ) = L(f).

Exercise 2.81. Let P : R → R be a polynomial function, i.e., there are
a0, . . . , ad ∈ R such that P (x) = adx

d + . . .+ a1x+ a0.
a) Show that P is uniformly continuous iff its degree d is at most 1.
b) Taking A = Q, X = Y = R, use part a) to show that uniform continuity is not
a necessary condition for the existence of a continuous extension.

Exercise 2.82. Say that a function f : X → Y between metric spaces is
Cauchy continuous if for every Cauchy sequence x in X, f(x) is Cauchy in Y .
a) Show: uniform continuity implies Cauchy continuity implies continuity.
b) Show: Theorem 2.84 holds if “uniform continuity” is replaced everywhere by
“Cauchy continuity”.
c) Let X be totally bounded. Show: Cauchy continuity implies uniform continuity.
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Theorem 2.85. (Tietze Extension Theorem) Let X be a metric space, Y ⊂ X
a closed subset, and let f : Y → R be a continuous function. Then there is a
continuous function F : X → R with F |Y = f . If f(Y ) ⊂ [a, b], we may choose F
so as to have F (X) ⊂ [a, b].

Proof. We will give a proof of a more general version of this result later on
in these notes: Theorem 6.4. �

Corollary 2.86. For a metric space X, the following are equivalent:
(i) X is compact.
(ii) Every continuous function f : X → R is bounded.

Proof. (i) =⇒ (ii): this is the Extreme Value Theorem.
(ii) =⇒ (i): By contraposition and using Theorem 2.74 it suffices to assume that X
is not limit point compact – thus admits a countably infinite, discrete closed subset
Y – and from this build an unbounded continuous real-valued function. Namely,
write Y = {xn}∞n=1 and define f on A by f(n) = xn. By the Tietze Extension
Theorem, there is a continuous function F : X → R with F |Y = f . Since F takes
on all positive integer values, it is unbounded. �

Lemma 2.87. (Transport of Structure) Let (X, dX) and (Y, dY ) be metric spaces,
and let Φ : X → Y be a homeomorphism. Then

d′ : (x1, x2) 7→ dY (Φ(x1),Φ(x2))

is a metric on X that is topologically equivalent to d. Moreover Φ : (X, d′)→ (Y, dY )
is an isometry.

Exercise 2.83. Prove Lemma 2.87.

Corollary 2.88. For a metric space (X, d), the following are equivalent:
(i) X is compact.
(ii) Every metric d′ on X that is topologically equivalent to d is totally bounded.
(iii) Every metric d′ on X that is topologically equivalent to d is bounded.

Proof. (i) =⇒ (ii): Compactness is a topological property and compact
metric spaces are totally bounded.
(ii) =⇒ (iii) is immediate.
¬ (i) =⇒ ¬ (iii): Suppose X is not compact. Then by Corollary 2.86 there is an
unbounded continuous map f : X → R. We define a function

Φ : X → X × R, x 7→ (x, f(x)).

Endow X × R with the maximum metric

d̃((x1, y1), (x2, y2)) = max(d(x1, x2), |y1 − y2|)

and let Y = Φ(X). Since f is unbounded, so is (Y, d̃). Moreover, Φ : X → Y is a
homeomorphism: we leave this as an exercise. Apply Lemma 2.87: we get that

d′ = Φ−1 ◦ d̃ ◦ Φ

is a metric on X which is topologically equivalent to d. Moreover (X, d′) is isometric

to (Y, d̃), hence unbounded. �

Exercise 2.84. Show that the map Φ appearing in the proof of Corollary 2.88
is a homeomorphism.
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13. The function space Cb(X,Y )

Let X be a nonempty set, and let Y be a nonempty metric space. Put

Map(X,Y ) := {f : X → Y },

i.e., the set of all functions from X to Y . A function f : X → Y is bounded
if f(X) is a bounded subset of Y . We denote by Mapb(X,Y ) ⊂ Map(X,Y ) the
subset of all bounded functiosn f : X → Y .

We can endow Mapb(X,Y ) with a natural metric, namely,

d : f, g ∈ Mapb(X,Y ) 7→ sup
x∈X

d(f(x), g(x)).

Here the boundedness of f and g ensures that the supremum is finite; notice that
e.g. we could not do this with f : R→ R, x 7→ x and g : R→ R, x 7→ x2.

Let {fn}∞n=1 be a sequence in Map(X,Y ), and let f ∈ Map(X,Y ). We say that

fn converges uniformly to f on X and write fn
u→ f if for all ε > 0, there is

N ∈ Z+ such that for all ε > 0, we have supx∈X d(fn(x), f(x)) < ε. Now we make
some observations:

Lemma 2.89. Suppose fn
u→ f and that each fn is bounded. Then f is bounded

and fn → f in Mapb(X,Y ).

Proof. Choose N ∈ Z+ such that for all x ∈ X, we have d(fN (x), f(x)) ≤ 1.
Let D := diam(fN (X)), and fix ? ∈ fN (X). Then for all x ∈ X, we have

d(f(x), ?) ≤ d(f(x), fN (x)) + d(fN (x), ?) ≤ D + 1,

so f(X) ⊂ B•(?)(D + 1) and thus f is bounded. The fact that fn converges to f
with respect to the given metric on Mapb(X,Y ) is immediate. �

Now we suppose that X is also a metric space. Let

C(X,Y ) := {continuous functions f : X → Y },

Cb(X,Y ) := C(X,Y )∩Mapb(X,Y ) = {bounded continuous functions f : X → Y }.
In particular, Cb(X,Y ) is a subset of the metric space Mapb(X,Y ) hence a metric
space in its own right.

Lemma 2.90. Let X and Y be metric spaces.
a) Let {fn : X → Y } be a sequence of continuous functions converging uniformly
on X to a function f : X → Y . Then f is continuous.
b) The subset Cb(X,Y ) is closed in Mapb(X,Y ).

Proof. a) Fix ε > 0. Choose N ∈ Z+ such that for all x ∈ X, we have
d(f(x), fN (x)) ≤ ε

3 . Choose δ > 0 such that if d(x, x′) ≤ δ then d(fN (x), fN (x′)) ≤
ε
3 . Then, if d(x, x′) ≤ δ we have

d(f(x), f(x′)) ≤ d(f(x), fN (x))+d(fN (x), fN (x′))+d(fN (x′), f(x′)) ≤ ε

3
+
ε

3
+
ε

3
= ε.

b) The assertion is equivalent to the fact that a uniform limit of bounded continuous
functions from X to Y is a bounded continuous function from X to Y , which is
immediate from part a) and Lemma 2.89. �
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Theorem 2.91. Let X and Y be metric spaces. The following are equivalent:
(i) The space Y is complete.
(ii) The space Mapb(X,Y ) is complete.
(iii) The space Cb(X,Y ) is complete.

Proof. (i) =⇒ (ii): Let {fn : X → Y }∞n=1 be a Cauchy sequence in
Mapb(X,Y ). Then for all x ∈ X and all m,n ∈ Z+ we have d(fm(x), fn(y)) ≤
d(fm, fn), so the sequence {fn(x)} is Cauchy in the complete metric space Y and
thus is convergent; call the limit f(x). This of course defines a function f : X → Y .

By Lemma 2.89, it is sufficient to show that fn
u→ f .

To see this, fix ε > 0, and choose N ∈ Z+ such that for all m,n ≥ N we have
d(fm, fn) < ε

2 . Let x ∈ X, and choose m(x) ∈ Z+ such that d(fm(x)(x), f(x)) < ε
2 .

Then, for all n ≥ N we have

d(fn(x), f(x)) ≤ d(fn(x), d(fm(x)(x)) + d(fm(x)(x), f(x)) <
ε

2
+
ε

2
= ε.

(ii) =⇒ (iii): If Mapb(X,Y ) is complete, then by Lemma 2.90b), we have that
Cb(X,Y ) is a closed subset of a complete metric space, hence itself complete.
¬ (i) =⇒ ¬ (iii): Suppose Y is not complete, and let {yn} be a sequence in Y that
is Cauchy but not convergent. For n ∈ Z+, let fn map every x ∈ X to yn; clearly fn
is bounded and continuous. Then for all m,n ∈ Z+ we have d(fm, fn) = d(ym, yn),
so {fn} is Cauchy in Cb(X,Y ). Suppose there is a function f : X → Y such that

fn
u→ f , and fix ? ∈ X. Then yn = fn(?)→ f(?), a contradiction. �

Exercise 2.85. Let X be a set, and let Y be a bounded metric space. Then we
have

Mapb(X,Y ) = Map(X,Y ) = Y X .

Suppose X is infinite and #Y ≥ 2. Show that our metric d on Mapb(X,Y ), viewed
as a metric on the Cartesian product Y X , is not good. More precisely, show that
there is a sequence {fn} in Y X such that fn(x) converges for all x ∈ X but fn is
not convergent in Mapb(X,Y ). In other words, the sequence converges pointwise
but not uniformly.5

14. Completion

Completeness is such a desirable property that given a metric space which is not
complete we would like to fix it by adding in the missing limits of Cauchy sequences.
Of course, the above description is purely intuitive: although we may visualize R
as being constructed from Q by “filling in the irrational holes”, it is much less clear
that something like this can be done for an arbitrary metric space.

The matter of the problem is this: given a metric space X, we want to find a
complete metric space Y and an isometric embedding

ι : X ↪→ Y.

However this can clearly be done in many ways: e.g. we can isometrically embed
Q in R but also in RN for any N (in many ways, but e.g. as r 7→ (r, 0, . . . , 0)). In-
tuitively, the embedding Q ↪→ R feels natural while (e.g.) the embedding Q ↪→ R17

feels wasteful. If we reflect on this for a bit, we see that we can essentially recover

5One can use Theorem 2.37 here, but that is not needed: one can also argue directly.
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the good case from the bad case by passing from Y to the closure of ι(X) in Y . We
then get R× 016, which is evidently isometric to R (and even compatibly with the
embedding of Q: more on this shortly).

In general: if ι : X → Y is an isometric embedding into a complete metric space,
then (because closed subsets of complete metric spaces are complete), ι : X → ι(X)
is an isometric embedding into a complete metric space with dense image, or for
short a dense isometric embedding. Remarkably, adding the density condition
gives us a uniqueness result.

Lemma 2.92. Let X be a metric space, and for i = 1, 2, let ιi : X → Yi be
dense isometric embeddings into a complete metric space. Then there is a unique
isometry Φ : Y1 → Y2 such that ι2 = Φ ◦ ι1.

Proof. Applying Theorem 2.84 with A = X, X = Y1 and Y2 = Y we get
an isometric embedding Φ : Y1 → Y2. Similarly, we get an isometric embedding
Φ′ : Y2 → Y1. The compositions Φ′ ◦ Φ and Φ′ ◦ Φ are continuous maps restricting
to 1X on the dense subspace X, so by Proposition 2.82 we must have

Φ′ ◦ Φ = 1X1 , Φ ◦ Φ′ = 1X2 .

So Φ is an isometry and Φ′ = Φ−1. Proposition 2.82. gives the uniqueness of Φ. �

This motivates the following key definition: a completion of a metric space X
is a complete metric space X̂ and a dense isometric embedding ι : X ↪→ X̂. It
follows from Lemma 2.92 that if a metric space admits a completion then any two
completions are isometric (and even more: the embedding into the completion is
essentially unique). Thus for any metric space X we have associated a new met-

ric space X̂. Well, not quite: there is the small matter of proving the existence of X̂!

To know “everything but existence” perhaps seems bizarre (even Anselmian?). In
fact it is quite common in modern mathematics to define an object by a character-
istic property and then be left with the task of “constructing” the object, which
can generally be done in several different ways. In this particular instance there
are two standard constructions of “the” completion X̂ of a metric space X.

Lemma 2.93. Let Y be a dense subset of a metric space X. If every Cauchy
sequence in Y converges to an element of X, then X is complete.

Proof. Let x• be a Cauchy sequence in X. Beacuse Y is dense in X, for each
n ∈ Z+, we may choose yn ∈ Y such that d(xn, yn) < 2−n. Let ε > 0, and choose
N ∈ Z+ such that d(xm, xn) < ε

2 for all m,n ≥ N and 2−N < ε
4 . Then

d(ym, yn) ≤ d(ym, xm) + d(xm, xn) + d(xn, yn) ≤ 2−N +
ε

2
+ 2−N < ε.

Thus y• is a Cauchy sequence, hence by hypothesis it converges to some x ∈ X.
Let ε > 0, and choose N ∈ Z+ such that d(yn, x) < ε

2 for all n ≥ N and 2−N < ε
2 .

Then for all n ≥ N we have

d(xn, x) ≤ d(xn, yn) + d(yn, x) ≤ 2−N +
ε

2
< ε,

so x• → x. Thus X is complete. �
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First Construction of the Completion:

We will give a detailed sketch of the proof, leaving some “claims” for the reader to
verify as exercises. Let (X, d) be a metric space. Put X∞ =

∏∞
i=1X, the set of all

sequences in X. Inside X∞, we define X to be the set of all Cauchy sequences. For
x•, y• ∈ X , we define

d(x•, y•) := lim
n→∞

d(xn, yn).

We need to check that this limit exists. Here is one slick argument for it: the
sequence x• × y• is Cauchy in X × X and the metric function d : X × X → R
is uniformly continuous, so the sequence n 7→ d(xn, yn) is Cauchy in R, hence
convergent since R is complete. It is also possible (indeed, straightforward) to
check this directly: let ε > 0. For n ∈ Z+, let

Sx,N := {xn | n ≥ N}, Sy,N := {yn | n ≥ N}.
Since x• and y• are Cauchy, there is N ∈ Z+ such that

diamSx,N ,diamSy,N <
ε

2
.

But given bounded subsets S and T of a metric space, for any x1, x2 ∈ S and
y1, y2 ∈ S we have

|d(x1, y1)− d(x2, y2)| ≤ diamS + diamT.

It follows that for all m,n ≥ N we have

|d(xm, ym)− d(xn, yn)| < ε,

so the sequence n 7→ d(xn, yn) is Cauchy in R and thus convergent.
We would like d : X×X → R to be a metric function. Unforunately it isn’t for a

rather shallow reason: there will in general be distinct Cauchy sequences that have
distance zero from each other.6 We fix this as follows: we introduce an equivalence
relation on X by x• ∼ y• if ρ(xn, yn)→ 0. Put X̂ = X/ ∼. For a Cauchy sequence

x• in X, we denote its class in X̂ by [x•].
first claim: d descends to a well-defined function

d : X̂ × X̂ → R;

in other words, it makes sense to define

d([x•], [y•]) := lim
n→∞

d(xn, yn).

It is now straightforward to check the second claim: d : X̂ × X̂ → R is a metric
function.

Now we define a map ι : X → X → X̂ by

x 7→ [(x, x, . . .)],

i.e., the equivalence class of the constant sequence at x. Then ι : X → X̂ is an
isometric embedding. Moreover, ι(X) is dense in X̂: given [x•] ∈ X̂.
third claim: the sequence ι(x•) (i.e., each term is the equivalence class of the

constant Cauchy sequence xn) converges to [x•] in X̂.
fourth claim: If x• is a Cauchy sequence in X, then the sequence ι(xn) (in

which the nth term is the class of the constant sequence xn) converges in X̂ to

6In fact this always happens when X consists of more than one point!
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[x•]. Assuming this, Lemma 2.93 now shows that X̂ is complete and thus that

ι : X ↪→ X̂ is a completion of X.

Exercise 2.86. Supply proofs of the four claims made above.

Exercise 2.87. Show that X̂ is complete without using Lemma 2.93 but rather
by a direct diagonalization-type argument.

Second Construction of the Completion:
By Theorem 2.91, the set Cb(X,R) of bounded continuous functions f : X → R is
a complete metric space under d(f, g) = supx∈X d(f(x), g(x)). Fix a point ? ∈ X.
For x ∈ X, let Dx : X → R be given by

Dx(y) := d(?, y)− d(x, y).

By the Reverse Triangle Inequality (Proposition 1) we have

Dx(y) ≤ |d(?, y)− d(x, y)| ≤ d(?, x),

so Dx is bounded. Moreover Dx is continuous: e.g. one may apply Proposition
2.36 and Exercise 2.47. Thus Dx ∈ Cb(X,R), and we get a map

D : X → Cb(X,R), x 7→ Dx.

Moreover, for x, x′ ∈ X, we have one the one hand that

d(Dx, Dx′) = sup
y∈X
|Dx(y)−Dx′(y)| = sup

y∈X
|d(x, y)− d(x′, y)| ≤ d(x, x′)

and on the other that

d(Dx, Dx′) = sup
y∈X
|d(x, y)− d(x′, y)| ≥ |d(x, x)− d(x′, x)| = d(x, x′).

Thus we have

d(Dx, Dx′) = d(x, x′)

i.e., D : X ↪→ Cb(X,R) is an isometric embedding of X into a complete metric

space. Therefore the map X ↪→ D(X) is a completion of X.

Corollary 2.94. (Functoriality of completion)
a) Let f : X → Y be a uniformly continuous map between metric spaces. Then

there exists a unique map F : X̂ → Ŷ making the following diagram commute:

X
f→ Y

X̂
F→ Ŷ .

b) If f is an isometric embedding, so is F .
c) If f is an isometry, so is F .

Proof. a) The map f ′ : X → Y ↪→ Ŷ , being a composition of uniformly
continuous maps, is uniformly continuous. Applying the universal property of com-
pletion to f ′ gives a unique extension X̂ → Ŷ .
Part b) follows from Theorem 2.84c). As for part c), if f is an isometry, so is its

inverse f−1. The extension of f−1 to a mapping from Ŷ to X̂ is easily seen to be
the inverse function of F . �
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14.1. Total Boundedness Revisited.

Lemma 2.95. Let Y be a dense subspace of a metric space X. Then X is totally
bounded iff Y is totally bounded.

Proof. If X is totally bounded, then every subspace of X is totally bounded,
so we do not need the density of Y for this direction. Conversely, suppose Y is
totally bounded, and let ε > 0. Then there is a finite ε-net N in Y . I claim that
for any ε′ > ε, we have that N is a finite ε′-net in X. Indeed, let x ∈ X. Since
Y is dense in X, there is y ∈ Y with d(x, y) < ε′ − ε, and there is n ∈ N with
d(y, n) < ε, so d(x, n) < ε′. It follows that X is totally bounded. �

Theorem 2.96. For a metric space X, the following are equivalent:
(i) X is totally bounded.
(ii) The completion of X is compact.

Proof. Let ι : X ↪→ X̂ be “the” isometric embedding of X into its completion.

(i) =⇒ (ii): By Lemma 2.95, since X is totally bounded and dense in X̂, also X̂

is totally bounded. Of course X̂ is complete, so by Theorem 2.74 X̂ is compact.

(ii) =⇒ (i): If X̂ is compact, then X̂ is totally bounded by Theorem 2.74, hence
so is its subspace X. �

We deduce the following interesting characterization of total boundedness.

Corollary 2.97. A metric space X can be isometrically embedded in a com-
pact metric space iff it is totally bounded.

Exercise 2.88. a) Prove it.
b) Let X be a metric space. Suppose there is a compact metric space C and a uni-
form embedding f : X → C – i.e., the map f : X → f(X) is a uniformeomorphism.
Show that X is totally bounded.

The previous exercise shows that “isometric embedding” can be weakened to “uni-
form embedding” without changing the result. What about topological embed-
dings? This time the answer must be different, as e.g. R can be topologically
embedded in a compact space: e.g. the arctangent function is a homeomorphism
from R to (−π2 , π2 ) and thus a topological embedding from R to [−π2 , π2 ]. Here is
something in the other direction.

Lemma 2.98. A metric space that can be topologically embedded in a compact
metric space is separable.

Proof. Indeed, let f : X ↪→ C be a topological embedding into a compact
metric space C. In particular C is separable. Moreover X is homeomorphic to
f(X), which is a subspace of C, hence also separable by Corollary 2.69. �

Much more interestingly, the converse of Lemma 2.98 holds: every separable metric
space can be topologically embedded in a compact metric space. This is quite a
striking result. In particular implies that separability is precisely the topologically
invariant part of the metrically stronger property of total boundedness, in the sense
that for a metric space (X, d), there is a topologically equivalent totally bounded
metric d′ on X iff X is separable.

Unfortunately this result lies beyond our present means. Well, in truth it is not
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really so unfortunate: we take it as a motivation to develop more purely topological
tools. In fact we will later quickly deduce this result from one of the most important
theorems in all of general topology: Theorem 6.14.

15. Cantor Space

15.1. Defining the Cantor Set.

We begin with the most classical definition of the “middle thirds Cantor set.”
We will define C as the intersection of a nested family {Cn}∞n=0 of closed subsets
of the unit interval [0, 1]. We define

C0 := [0, 1]

and

C1 := C0 \ (
1

3
,

2

3
) = [0,

1

3
] ∪ [

2

3
, 1].

Observe that C1 is obtained from the line segment C0 by removing the “open middle
third.” Since C1 is now a disjoint union of two closed line segments, it makes sense
to iterate this process by removing the middle third of each one:

C2 = C1 \
(

(
1

9
,

2

9
) ∪ (

7

9
,

8

9
)

)
.

And we may continue in this manner: having defined Cn as a disjoint union of 2n

closed subintervals of [0, 1], each of length 1
3n , we define Cn+1 by removing the open

middle third of each of these line segments, so that Cn+1 is a disjoint union of 2n+1

closed subintervals of [0, 1], each of length 1
3n+1 . Finally, we define the Cantor set

C :=

∞⋂
n=0

Cn.

Let us make some observations about the Cantor set C:
(i) C is a closed subset of [0, 1] – indeed, it is the intersection of a family of closed
subsets – hence a compact metric space.
(ii) C is nonempty. It has some obvious points: e.g. 0 ∈ C and 1 ∈ C. Indeed,
because we remove only elements of the interior of each subinterval at each stage,
all of the elements that are endpoints of any of the subintervals Cn remain in C:
this is a countably infinite set of points.
(iiii) C has continuum cardinality. In fact, let s : Z+ → {0, 2} be any function.
Then we may use s to define a nested sequence of nonempty closed subintervals
inside C: namely, C1 consists of two closed subintervals; if s(1) = 0, we choose the
left subinterval, wheras if s(1) = 2 we choose the right subinterval. Either way, the
intersection of the chosen closed subinterval with C2 is a union of two subintervals;
if s(2) = 0 we choose the left one, and if s(2) = 2 we choose the right one. And
so forth. By the Cantor Intersection Theorem, this sequence of subintervals has a
(unique, since the diameters approach 0) common intersection point, which gives
rise to a point of C. It is easy to see that this process of assigning to each element

of C an element of {0, 2}Z+

is a bijection. This shows, in particular, that C has
continuum cardinality (though it has more profound consequences as well).

Exercise 2.89. a) Show that the sequence s : Z+ → {0, 2} associated to an
element of the Cantor set C is a trinary (i.e., base 3) expansion of C as an element
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of R. This explains why we used 2 and not 1.
b) In this way we can define C as the elements of [0, 1] admtiting a trinary expansion
in which 1 does not appear. Note though that there may also be a trinary expansion
in which 1 appears, e.g.

.1222 · · · = .2000 · · · = 2

3
.

Characterize all points of C admitting a trinary expansion in which 1 does appear.

%endexc (iv) C is a perfect subset of R: i.e., it is closed and every point is a
limit point. For this, observe that in the canonical sequence representation of C
given above, if x, y ∈ C are such that the first n terms of the sequence agree, then
x and y lie in a common closed subinterval of length 1

2n so have distance at most
2n. From this it follows easily that every element x ∈ C is the limit of a sequence
in C \ {x}: e.g. choose xn so as to have the first n coordinates agree with x and to
have the n+ 1st coordinate disagree with x.

(v) C is not connected. In fact, it has the following property, which lies at the
other extreme: given any x 6= y ∈ C, then for some n ∈ Z+, x and y do not lie in
the same closed subinterval of [0, 1] (equivalently, it is not the case that they agree
in their first n coordinates). Let In be such a closed subinterval containing x but
not y, and put U = In ∩ C, V = C \ U . Then U and V are disjoint open subets of
C such that x ∈ U and v ∈ V .

Lemma 2.99. Endow {0, 1} with the discrete metric and {0, 1}∞ =
∏∞
n=1{0, 1}

with a good metric as in Corollary 2.38. Then the map T : C → {0, 1}∞ that maps
the

∑∞
n=1

an
3n ∈ C to {an2 }

∞
n=1 is a homeomorphism.

Proof. In (iii) above we observed that T is a bijection. For n ∈ Z+, let

Tn : C → {0, 1},
∞∑
n=1

an
3n
7→ an

2
.

The map Tn is locally constant, hence continuous. By Proposition 2.39, T is con-
tinuous. To show that T−1 is continuous is equivalent to showing that for every
open subset U of C, its image T (C) = (T−1)−1(C) is open in {0, 1}∞. Since U is
open, C \ U is closed in the compact space C, hence compact, hence T (C \ U) is
compact in the metric space {0, 1}∞, hence T (C \U) = {0, 1}∞ \ T (U) is closed in
{0, 1}∞, hence T (U) is open in {0, 1}∞. �

15.2. The Alexandroff-Hausdorff Theorem.

Theorem 2.100. (Alexandroff-Hausdorff)
For a metric space X, the following are equivalent:
(i) There is a continuous surjective map f : C → X.
(ii) X is nonempty and compact.

Proof. In this proof, for a metric space X, we denote
∏∞
i=1X by X∞ and

endow it with a good metric using Corollary 2.38.
(i) =⇒ (ii): Since C is compact, if f is continuous then X = f(C) is compact
(and nonempty since C is).
(ii) =⇒ (i): Here lies the content, of course. Our proof closely follows a lovely
short note of I. Rosenholtz [Ro76]. Note first that the result is actually topological
rather than metric: i.e., it depends only on the underlying topological spaces.
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Without changing the underlying topology on X we may (and shall) assume that
diamX ≤ 1. We break the argument up into several steps.
Step 1: Since X is compact metric, it is separable by Corollary 2.70. For every
separable metric space X, we will construct a continuous injection f : X → [0, 1]∞.

Replacing the metric on X by a topologically equivalent one, we may assume
that diamX ≤ 1. Let {xn}∞n=1 be a countable dense subset, and put f(x) =
{d(x, xn)}∞n=1: that is, the nth component is the function d(·, xn). We know that
each distance function d(·, xn) is continuous, so by Proposition 2.39, the function
f iscontinuous. Suppose that x, y ∈ X are such that f(x) = f(y). We may choose
a subsequence {xnk} converging to x, so that

0 = lim
k→∞

d(x, xnk) = lim
k→∞

d(y, xnk)

and thus {xnk} also converges to y. Since the limit of a sequence in a metric space
is unique, we conclude x = y.
Step 2: There is a continuous surjection f : C → [0, 1].
As above, we may write an element of C uniquely as

∑∞
n=1

an
3n with an ∈ {0, 2},

and then the ternary-to-binary expansion map

∞∑
n=1

an
3n
7→

∞∑
n=1

an/2

2n

works.
Step 3: There is a homeomorphism C ∼= C∞.
Indeed, since Z+ × Z+ is countably infinite, by Lemma 2.99 we have

C∞ ∼= ({0, 1}∞)∞ ∼= {0, 1}∞ ∼= C.

Step 4: There is a continuous surjection C → [0, 1]∞.
By Step 2, there is a surjection f : C → [0, 1], which induces a surjection f∞ :
C∞ → [0, 1]∞, {xn}∞n=1 7→ {f(xn)}∞n=1. Precomposing this with a homemorphism
C → C∞ from Step 3 gives the result.
Step 5: If K ⊂ C is nonempty and closed, there is a continuous surjection C → K.
Let C ′ be the set of x ∈ [0, 1] of the form

∑∞
n=1

bn
6n with bn ∈ {0, 5}. (C ′ is

constructed much as is C but by iteratively removing the open middle two thirds of
each subinterval.) The proof of Lemma 2.99 immediately adapts to show that C ′

is homeomorphic to {0, 1}∞ and thus also to C So we may work with C ′ instead of
C. However C ′ has the following property: if x 6= y ∈ C ′, then x+y

2 /∈ C ′. It follows
that for every nonempty closed subset K ′ of C ′ and every x′ ∈ C ′, there is a unique
element k′ ∈ K ′ such that d(k′, x′) = d(K ′, x′). The map x′ ∈ C ′ 7→ k′ ∈ K ′ is
continuous; moreover it restricts to the identity on K ′, so is surjective.
Step 6: By Step 1, there is a continuous injection ι : X ↪→ [0, 1]∞, and by Step
4 there is a continuous surjection F : C → [0, 1]∞. Let K = F−1(X), which is a
closed subset of C. By Step 5, there is a continuous surjection f : C → K. Then
F ◦ f : C → [0, 1]∞ is continuous and

(F ◦ f)(C) = F (f(C)) = F (K) = X. �

15.3. Space Filling Curves.

Corollary 2.101. (Peano) For all N ∈ Z+ there is a continuous surjection
f : [0, 1]→ [0, 1]N .
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Proof. Step 1: Indeed [0, 1]N is a nonempty compact metric space, so there
is a continuous surjective map f : C → [0, 1]N .
Step 2: The complement of C in [0, 1] is a countable disjoint union of open intervals.
On each such interval we may extend f linearly. A little thought shows that this
gives a continuous surjective map f : [0, 1]→ [0, 1]N .
Step 3: Alternately to Step 2, let f = (f1, . . . , fn) : C → [0, 1]N and apply the
Tietze Extension Theorem (Theorem 2.85) to fi for all 1 ≤ i ≤ N . We get a
continuous function F : [0, 1]→ [0, 1]N which extends f , so is surjective. �

Exercise 2.90. Let N ≥ 2.
a) Show that there is no continuous surjection f : [0, 1]→ RN .
b) Show that there is a continuous surjection f : R→ RN .
c) If X and Y are sets such that there are surjections f : X → Y and g : Y →
X, then there is a bijection (“isomorphism of sets”) Φ : X → Y : this is one
formulation of the Schröder-Bernstein Theorem. Deduce that this is far from the
case for topological spaces: e.g. we have continuous surjections R → RN and
RN → R, but R is not homeomorphic to RN .

16. Contractions and Attractions

Let X,Y be metric spaces. A map f : X → Y is a contraction if there is α ∈ (0, 1)
such that for all x, x′ ∈ X we have

d(f(x), f(x′)) ≤ αd(x, x′).

We say (somewhat clumsily) that α is a “contractive constant” for f . We say that
f : X → Y is a weak contraction (or weakly contractive) if for all x, x′ ∈ X,
we have

d(f(x), f(x′)) < d(x, x′).

Let X be a set, and let f : X → X be a map. A fixed point of f is a point x ∈ X
such that f(x) = x. For n ∈ Z+, let f◦n denote f ◦ f ◦ · · · ◦ f (n− 1 ◦’s in all). We
put f◦0 = 1X . We say that ? ∈ X is attracting if for all x ∈ X, the sequence of
iterates f◦n(x) converges to ?. Clearly there is at most one attracting point.

Lemma 2.102. Let X be a metric space, let f : X → X be a continuous
function, and let x ∈ X. If the sequence of iterates f◦n(x) converges to L ∈ X,
then L is a fixed point of f .

Proof. Since f◦n(x)→ L and f is continuous, we have

f◦n+1(x) = f(f◦n(x))→ f(L).

Since a sequence in a metric space has at most one limit, we conclude f(L) = L. �

Exercise 2.91. Let X be a metric space, and let f : X → X be map. Let
? ∈ X be an attracting point.
a) Suppose f is continuous. Show: ? is the unique fixed point of f .
b) Exhibit a discontinuous map f : X → X with an attracting point that is not a
fixed point.

Let f : X → X be a map of metric spaces. A fixed point x for f is locally
attracting if there is δ > 0 such that for all y ∈ B(x, δ), the sequence of iterates
f◦n(y) converges to x.
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Exercise 2.92. Let f : [0, 1] → [0, 1] by f(x) = x2. Show: 0 is a locally
attracting fixed point of f , and 1 is a fixed point of f that is not locally attracting.

Lemma 2.103. Let X be a metric space, and let f : X → X be weakly attractive.
Then f has at most one fixed point.

Proof. Seeking a contradiction, suppose that x 6= x′ are two fixed points of
f . Then we have

d(x, x′) = d(f(x), f(x′)) < d(x, x′),

a contradiction. �

16.1. Banach’s Fixed Point Theorem.

Exercise 2.93. Let X be a metric space, let f : X → X be a contraction,
and let n ∈ Z+. Show: f◦n : X → X is also a contraction. Moreover, if C is a
contractive constant for f , show: Cn is a contractive constant for f◦n.

Theorem 2.104. (Banach Fixed Point Theorem [Ba22]) Let (X, d) be a com-
plete metric space, and let f : X → X be a contraction mapping with contractive
constant C ∈ (0, 1). Then:
a) The point ? is an attracting point for f .
b) Let x ∈ X. Then for all n ∈ Z+, we have:

(8) d(f◦n(x), ?) ≤ Cn

1− C
d(f(x), x),

(9) d(f◦n(x), ?) ≤ Cd(f◦(n−1)(x), ?),

(10) d(f◦n(x), ?) ≤ C

1− C
d(f◦n(x), f◦(n−1)(x)).

Proof. a) Let x ∈ X. We abbreviate x0 := x, xn := f◦n(x) for n ∈ Z+. For
integers n ≥ N ≥ 1 and k ≥ 0, we have

d(xn+k, xn) ≤ d(xn+k, xn+k−1) + d(xn+k−1, xn+k−2) + . . .+ d(xn+1, xn)

≤ Cn+k−1d(x1, x0) + Cn+k−2d(x1, x0) + . . .+ Cnd(x1, x0)

= d(x1, x0)Cn
(
1 + C + . . .+ Ck−1

)
= d(x1, x0)Cn

(
1− Ck

1− C

)
<

(
d(x1, x0)

1− C

)
Cn.

Since |C| < 1, Cn → 0, and it follows that the sequence of iterates {xn} is Cauchy.
Since X is complete, this sequence converges, say to ?. By Lemma 2.102, ? is a fixed
point of f , and by Exercise 2.89, it is the unique fixed point. So every sequence of
iterates converges to the same point ?, and thus ? is an attracting point for f .
b) Let x ∈ X. Above we showed that

d(f◦n(x), f◦(n+k)(x)) <
Cn

1− C
d(f(x), x).

Taking the limit as k →∞ gives (8). Moreover we have

d(f◦n(x), ?) = d(f(f◦(n−1)(x)), f(?)) ≤ Cd(f◦(n−1)(x), ?),

which is (9). Using (9) and the triangle inequality, we get

d(f◦n, ?) ≤ Cd(f◦(n−1)(x), f◦n(x)) + Cd(f◦n(x), ?),

which gives (10). �
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For the last century, Banach’s Fixed Point Theorem has been one of the most impor-
tant and useful results in mathematical analysis: it gives a very general condition
for the existence of fixed points, and a remarkable number of “existence theorems”
can be reduced to the existence of a fixed point of some function on some metric
space. For instance, if you continue on in your study of mathematics you will surely
learn about systems of differential equations, and the most important result in this
area is that – with suitable hypotheses and precisions, of course – every system of
differential equations has a unique solution. The now standard proof of this seminal
result uses Banach’s Fixed Point Theorem!7

16.2. Refinements and Variations on Banach’s Fixed Point Theorem.

Corollary 2.105. Let X be a complete metric space, and let f : X → X be
a map such that f◦N : X → X is a contraction for some N ∈ Z+. Then f has an
attracting fixed point.

Proof. Let ? be the unique fixed point of f◦N .
Step 1: Since

f(?) = f(f◦N (?)) = f◦N (f(?)),

we have that f(?) is a fixed point of f◦N . By Lemma 2.103 we get f(?) = ?.
Step 2: Let x ∈ X. Fix 0 ≤ r ≤ N − 1 and consider the sequence of points
{f◦Nk+r(xx}∞k=1. We have

f◦(Nk+r)(x) = f◦NK(f◦r(x)) = (f◦N )◦k(f◦r(x).

Since f◦N is a contraction, so is (f◦N )◦k, so it has a unique fixed point which is
moreover attracting, and clearly this unique fixed point is ?, so

f◦(Nk+r)(x)→ ?.

We have thus partitioned the sequence of iterates f◦n(x) into finitely many subse-
quences, each of which converges to ?. So we have f◦n(x) → ? and thus ? is an
attracting fixed point for f . �

In Corollary 2.105 we say “attracting fixed point” rather than “attracting point”
because f need not be continuous, so a priori an attracting point of f need not be
a fixed point.

Example 2.13. Let X be a metric space.
• If X is topologically discrete, then every function f : X → X is continuous,

and an attracting point for f is necessarily a fixed point.
• If X is not topologically discrete, it has a nonisolated point x and a sequence of
distinct points xn 6= x converging to x. Define f : X → X as follows: for each
n ∈ Z+, let f(xn) = xn+1; for all other points y ∈ X, we put f(y) = x1. Then
x is an attracting point for f that is not a fixed point. It follows that f is not
continuous.

Example 2.14. Let X be a metric space, and let x 6= y be distinct points of X.
Define a function f : X → X as follows: f(y) = f(x) = x, and for all z /∈ {x, y},
f(z) = y.

Then x is an attracting point for f : indeed, for all z ∈ X, we have f◦n(z) = x

7In fact the title of [Ba22] indicates that applications to integral equations are being explicitly
considered. An “integral equation” is very similar in spirit to a differential equation: it is an

equating relating an unknown function to its integral(s).
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for all n ≥ 2. Moreover f◦2 is constant (hence a contraction!).
The function f is continuous iff x and y are isolated points of X.

Exercise 2.94. a) Let f : (0,∞) → (0,∞) by f(x) = x
2 . Show that f is

contractive, but has no fixed point. Since (0,∞) is not complete, this does not
contradict Theorem 2.104.
b) But it is hard not to notice that f extends continuously to [0,∞) and 0 is a
fixed point of the extension. Generalize this as follows: let X be a metric space,
and let f : X → X be a Lipschitz map, with Lipschitz constant C. Let X̃ be
“the” completion of X. Show that there is a unique continuous extension of f to
f̃ : X̃ → X̃, and moreover C is a Lipschitz contant for f̃ . Deduce that if f is a
contraction, then after extending to the completion X̃ there is a unique fixed point.

Theorem 2.104 can fail for weakly contractive maps:

Exercise 2.95. (Conrad [CdC]) Let f : R→ R by f(x) = log(1 + ex).
a) Show: f is weakly contractive.
b) Show: f has no fixed point.

However, a weakly contractive map on a compact space must have a fixed point.

Theorem 2.106. (Edelstein [Ed62]) Let X be a compact metric space, and let
f : X → X be a weakly contractive mapping. Then f has an attacting point.

Proof. We follow [CdC].
Step 1: We claim f has a fixed point. To see this, let

g : X → R, x 7→ d(x, f(x)).

Since f is continuous, so is g. By Corollary 2.45, g attains a minimum value: there
is ? ∈ X such that for all x ∈ X, we have d(?, f(?)) ≤ d(x, f(x)). But if f(?) 6= ?,
then

g(f(?)) = d(f(?), f(f(?))) < d(?, f(?)) = g(?),

a contradiction. So ? is a fixed point for f .
Step 2: Let x ∈ X. If for some N ∈ Z+ we have f◦N (x) = ?, then for all
n ≥ N we have f◦n(x) = ?, and certainly we have f◦n(x) → ?. So we may
assume that f◦n(x) 6= ? for all n ∈ Z+. Put dn := d(f◦n(x), ?). Since f is
weakly contractive and f(?) = ?, we have that {dn}∞n=1 is a strictly decreasing
sequence of positive numbers, hence convergent to its infimum d ≥ 0. We have
d = 0 iff f◦n(x) → ?, so seeking a contradiction we assume that d is positive.
Since compact metric spaces are sequentially compact, there is a strictly increasing
sequence {nk} of positive integers such that f◦nk(x) converges to some y ∈ X.
The continuity of the metric function gives d(xnk , ?) → d(y, ?). On the one hand,
continuity of f and d gives d(f(xnk), ?) → d(f(y), ?); while on the other hand,
d(f(xnk), ?) = d(xnk + 1, ?) = dnk+1 → d, and thus

d(f(y), f(?)) = d(f(y), ?) = d = d(y, ?).

Thus y = ? and d = d(y, ?) = 0, a contradiction. �

As Conrad writes in [CdC], “It is natural to wonder if the compactness of X might
force f in Theorem 2.106 to be a contraction after all, so [Theorem 2.104] would

apply. For instance, the ratios d(f(x),f(x′))
d(x,x′) for x 6= x′ are always less than 1, so they

should be less than or equal to some definitive constant C < 1 by compactness.
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But this reasoning is bogus, because d(f(x),f(x′))
d(x,x′) is not defined on [the diagonal

∆ = {(x, x) | x ∈ X}, and X ×X \∆ is open in the compact metric space X ×X
and hence not compact. There is no way to show [that the] f in [Theorem 2.106]
has to be a contraction, since there are examples where it isn’t.”

Example 2.15. (Conrad) Let f : [0, 1]→ [0, 1] by f(x) = 1
1+x .

a) Show: f is weakly contractive but not a contraction.

b) Show: −1+
√

5
2 is the unique fixed point of f .

c) Show that f([ 1
2 , 1]) ⊂ [ 1

2 , 1] and that f : [ 1
2 , 1] → [ 1

2 , 1] is a contraction. Deduce
that f has a fixed point.
d) Show that f◦2 is a contraction. Deduce that f has a fixed point.

We now wish to pursue fixed point / attraction theorems for continuous functions
f : I → I, where I is a subinterval of the real line. However, notice that f : R→ R
by f(x) = x+ 1 is continuous (indeed, an isometry) and has no fixed points. More-
over the map f :→ R by f(x) = log(1 + ex) of Example 2.93 is weakly contractive
and has no fixed points. So we must expand our horizons a bit. In these examples,
the sequences of iterates still exhibit a simple limiting behavior: for all x ∈ R, we
have f◦n(x) < f◦n+1(x) and f◦n(x)→∞.

To ease the statement of the result, we introduce the following notation: for a
sequence of real numbers {xn} and L ∈ R ∪ {±∞}, we write xn ↑ L if xn < xn+1

for all n and xn → L. For a sequence {xn} in R and L ∈ R ∪ {−∞}, we write
xn ↓ L if xn > xn+1 for all n and xn → L in the extended real numbers.

Theorem 2.107. Let I ⊂ R be an interval, and let f : I → I be continuous.
a) Exactly one the following holds:
(i) The function f has a fixed point in I.
(ii) We have that sup I /∈ I and for all x ∈ I, f◦n(x) ↑ sup I.
(iiii) We have that inf I /∈ I and for all x ∈ I, f◦n(x) ↓ inf I.
b) If I = [a, b], then f has a fixed point in I.

Proof. a) Define g : I → R by x 7→ f(x) − x. Then ? ∈ I is a fixed point of
f iff it is a root of g, so we may assume g has no root in I and show that either
(ii) or (iii) holds. Since g has no roots, by the Intermediate Value Theorem, since g
has no roots we either have (I) f(x) > x for all x ∈ I or (II) f(x) < x for all x ∈ I.
If (I) holds, then if sup I ∈ I we would have f(sup I) > sup I, a contradiction. For
x ∈ I, the sequence {f◦n(x)} is strictly increasing so converges to its supremum
S. If S < sup I, then S ∈ I and thus S is a fixed point of f by Lemma 2.102,
contradiction. If (II) holds, the argument is very similar and is left to the reader.
b) If I = [a, b] then inf I, sup I ∈ I, so the result follows from part a). �

In case (ii) of Theorem 2.107, it is reasonable to call sup I an attracting point of f .
If sup I <∞ then I ∪{sup I} is still a metric space, and it is not hard to show that
when f(x) > x for all x ∈ I, the function f has a unique continuous extension to
I∪{sup I}. If sup I =∞ then we can still give I∪{sup I} the order topology, and as
soon as we discuss continuous functions on arbitrary topological spaces, the reader
can check that again f(x) > x implies that f has a unique continuous extension to
I ∪ {sup I}. Of course the analogous discussion holds for case (iii).

We employ this terminology in the following result.
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Theorem 2.108. Let I ⊂ R be an interval, and let f : I → I be weakly
contractive. Then f has an attracting point in [inf I, sup I].

Proof. In partciular f is continuous. We may assume that neither inf I nor
sup I is an attracting point for f , so by Theorem 2.107 there is a fixed point
? ∈ I for f . For x ∈ I, put d = d(x, ?). Then the sequence of iterates f◦n(x)
lies in the closed bounded interval [? − d, ? + d]. By Bolzano-Weierstrass, there
is a subsequence xnk converging to y ∈ [? − d, ? + d]. Since each xnk lies in I, y
lies in I ∪ {inf I, sup I}. If y = sup I and sup I /∈ I then there must be k such
that ? < xnk < xnk+1

, contradicting weak contractivity, so sup I ∈ I; similarly, if
y = inf I then inf I ∈ I. We can thus argue exactly as in the proof of Theorem
2.106: let d = limn→∞ d(xn, ?), and suppose d > 0. Then

|xnk − ?| → |y − ?|,
|f(xnk)− ?| → |f(y)− ?|,

|f(xnk)− ?| = |xnk+1 − ?| → d,

so
|f(y)− f(?)| = |f(y)− ?| = d = |y − ?|.

Thus y = ? and d = d(y, ?) = 0, a contradiction. �

When I = R, Theorem 2.108 is due to A. Beardon [Be06]. When I is closed and
bounded, Theorem 2.108 is a special case of Theorem 2.106. As we have seen, the
ideas of Conrad’s proof of Theorem 2.106 also work to prove Theorem 2.108.

Exercise 2.96. Let X be a nonempty metric space in which all closed, bounded
subsets are compact. Let f : X → X be weakly contractive. Show: if ? is a fixed
point of f , then it is an attracting point for f .



CHAPTER 3

Introducing Topological Spaces

1. In Which We Meet the Object of Our Affections

Part of the rigorization of analysis in the 19th century was the realization that no-
tions like continuity of functions and convergence of sequences (e.g. f : Rn → Rm)
were most naturally formulated by paying close attention to the mapping proper-
ties between subsets U of the domain and codomain with the property that when
x ∈ U , there exists ε > 0 such that ||y− x|| < ε implies y ∈ U . Such sets are called
open. In the early twentieth century it was realized that many of the constructions
formerly regarded as “analytic” in nature could be carried out in a very general
context of sets and maps between them, provided only that the sets are endowed
with a distinguished family of subsets, decreed to be open, and satisfying some very
mild axioms. This led to the notion of an abstract topological space, as follows.

Let X be a set. A topology on X is a family τ = {Ui}i∈I is a of subsets of
X satisfying the following axioms:

(T1) ∅, X ∈ τ .
(T2) U1, U2 ∈ τ =⇒ U1 ∩ U2 ∈ τ .
(T3) For any subset J ⊂ I,

⋃
i∈J Ui ∈ τ .

It is pleasant to also be able to refer to axioms by a descriptive name. So in-
stead of “Axiom (T2)” one generally speaks of a family τ ⊂ 2X being closed under
binary intersections. Similarly, instead of “Axiom (T3)”, one says that the family
τ is closed under arbitrary unions.

Remark 3.1. Consider the following variant of (T2):

(T2′) For any finite subset J ⊂ I,
⋂
i∈J Ui ∈ τ .

Evidently (T2′) =⇒ (T2), and at first glance the converse seems to hold. This
is almost, but not quite, true: (T2′) also allows the empty intersection, which is
– by convention – defined as

⋂
Y ∈∅ Y = X. Since we also have that

⋃
Y ∈∅ Y = ∅,

it follows that (T2′) + (T3) =⇒ (T1). None of this is of any particular impor-
tance, but the reader should be aware of it because this alternative (“more efficient”)
axiomatization appears in some texts, e.g. [Bo].

A topological space (X, τ) consists of a set X and a topology τ on X. The ele-
ments of τ are called open sets.

If (X, τX) and (Y, τY ) are topological spaces, a map f : X → Y is continuous
if for all V ∈ τY , f−1(V ) ∈ τX . A function f : X → Y between topological spaces

79
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is a homeomorphism if it is bijective, continuous, and has a continuous inverse.
A function f is open if for all U ∈ τX , f(U) ∈ τY .

Exercise 3.1. For a function f : X → Y between topological spaces (X, τX)
and (Y, τY ), show that the following are equivalent:
(i) f is a homeomorphism.
(ii) f is bijective and for all V ⊂ Y , V ∈ τY ⇐⇒ f−1(V ) ∈ τX .
(iii) f is bijective and for all U ⊂ X, U ∈ τX ⇐⇒ f(U) ∈ τY .
(iv) f is bijective, continuous and open.

Tournant dangereuse: A continuous bijection need not be a homeomorphism!

Exercise 3.2. Let (X, τX), (Y, τY ), (Z, τZ be topological spaces, and f : X →
Y , g : Y → Z be continuous functions. Show: g ◦ f : X → Z is continuous.

Those who are familiar with the basic notions of category theory will recog-
nize that we have verified that we get a category Top with objects the topological
spaces and morphisms the continuous functions between them. Our definition of
homeomorphism is chosen so as to coincide with the notion of isomorphism in the
categorical sense.

We hasten to add that we by no means expect readers to have prior familiarity
with this terminology. On the contrary, some of the material presented in these
notes will provide readers with much of the experience and examples necessary to
facilitate a later learning of this material.

The previous chapter was devoted to the following example.

Example 3.1. Let (X, d) be a metric space. We define τ to be the set of unions
of open balls in X. Then τ is a topology on X, called the metric topology on X.
We also say that τ is induced from the metric d.

The following definition is all-important in the interface between metric spaces and
topological spaces: a topological space (X, τ) is metrizable if there is some metric
d on X such that τ is induced from d.

Exercise 3.3. Let (X, τ) be a metrizable topological space. Show: if #X ≥ 2,
then the set of metrics d on X which induce τ is uncountably infinite.

The above exercise makes clear that passing from a metric space to its associated
metric topology involves a great loss of information: in all nontrivial cases there
will be many, many metrics inducing the topology. From this perspective a metric
looks “better” than a topology. However, it turns out when studying continu-
ous functions – which one naturally does in many branches of mathematics – the
topology is sufficient and the extra information of the metric can be awkward or
distracting. A good example of this comes up in the discussion of products. We
previously explored this in the case of metric spaces and found the phenomenon
of embarrassment of riches: there is simply not one preferred product metric
but a whole class of them. Built into our discussion of “good product metrics” was
that they should satisfy a simple property of convergent sequences which uniquely
characterizes the resulting topology. We will revisit the discussion of products of
topological spaces and see that it is decidedly simpler : on any product of topo-
logical spaces there is a canonically defined product topology, which in the case of
finite or countably infinite products of metric spaces is metrizable via any one of the
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“good product metrics” we constructed before, but if all we want to see is that this
product topology is metrizable then we can just concentrate on the p =∞ case and
most of the difficulty evaporates. Moreover the product topology is defined also on
uncountable products, for which we did not succeed in constructing a good metric.
In fact we will show that an uncountable product of metrizable spaces (each with
at least two points) is not metrizable. Thus such products provide an example of
a construction that can be performed in the class of topological spaces and not in
the class of metric spaces. Of course one can ask why we want to consider uncount-
able products of spaces. This has a good answer but a remarkably deep one: it
involves Tychonoff’s Theorem and the Stone-Cech compactification, which
are probably the most important results in the entire subject.

Another key construction in the class of topological spaces which we have not met
yet because it has absolutely no analogue in metric spaces is the identification
or quotient construction. In geometric applications – especially, in the study of
manifolds – this construction is all-important.

On the other hand, there are times when having a metric is more convenient than
just a topology: it cannot be denied that a metrizable space is in many respects
much more tractable than an arbitrary topological space, and certain purely topo-
logical constructions are considerably streamlined by making use of a metric – any
metric! – that induces the given topology. For this and other reasons it is of
interest to have sufficient (or ideally, necessary and sufficient) conditions for the
metrizability of a topological space. This is in fact one of the main problems in
general topology and will be addressed later, though, we warn, not in as much de-
tail as most classical texts: we do not discuss the general metrization theorems of
Nagata-Smirnov or Bing – each of which gives necessary and sufficient conditions
for an arbitrary topological space to be metrizable – but only the easier Urysohn
Theorem which gives conditions for a space to be metrizable and separable.

The following is the most important example of a property which is possessed
by all metrizable spaces but not by all topological spaces.

A topological space X is Hausdorff if given distinct points x, y in X, there
exist open sets U 3 x, V 3 y such that U ∩ Y = ∅.

Exercise 3.4. Show that metrizable topologies are Hausdorff.

The task of giving an example of a non-Hausdorff topologies brings us to the more
general problem of amassing a repertoire of topological spaces sufficiently rich so as
to be able to use to see that any number of plausible-sounding implications among
properties of topological spaces do not hold. It turns out that the concept of a
topological space is – even by the standards of abstract mathematical structure –
remarkably inclusive. There are some strange topological spaces out there, and it
will be useful to our later study to amass a repertoire of them. This turns out to
be a cottage industry in its own right, for which the canonical text is [SS]. But let
us meet some of the more interesting specimens.
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2. A Topological Bestiary

Example 3.2. (Indiscrete Topology) For a set X, τ = {∅, X} is a topology on
X, called the indiscrete topology (and also the trivial topology). If X has more
than one element, this topology is not Hausdorff.

Example 3.3. (Discrete Topology) For a set X, τ = 2X , the collection of all
subsets of X, forms a topology, called the discrete topology.

The discrete and indiscrete topologies coincide iff X has at most one element.
Otherwise they are distinct and indeed give rise to non-homeomorphic spaces.

Exercise 3.5.
a) Show: a topological space is discrete iff for all x ∈ X, {x} is open.
b) Show: discrete topologies are metrizable.

Exercise 3.6. Suppose X is a finite topological space: by this we mean that
the underlying set X is finite. It then follows that 2X is finite hence τ ⊂ 2X is
finite. (On the other hand there are topological spaces (X, τ) with X infinite and τ
is still finite: e.g. indiscrete topologies.) Show: if X Hausdorff, then it is discrete.
In particular, finite metrizable spaces are discrete.

On the other hand, as soon as n ≥ 2, an n-point set carries non-Hausdorff topolo-
gies: e.g. the indiscrete topology. In fact it carries other topologies as well. Here
is the first example.

Example 3.4. (Sierpinski Space) Consider the two element set X = {◦, •}.
We take τ = {∅, {◦}, X}. This gives a topology on X in which the point ◦ is open
but the point • is not, so X is finite and nondiscrete, hence nonmetrizable.

Exercise 3.7. Let X a set.
a) Show that, up to homeomorphism, there are precisely three topologies on a two-
element set.
bc) For n ∈ Z+, let T (n) denote the number of homeomorphism classes of topolo-
gies on {1, . . . , n}. Show that limn→∞ T (n) = ∞. (Note that only one of these
topologies, the discrete topology, is metrizable.)
c)* Can you describe the asymptotics of T (n), or even give reasonable lower and/or
upper bounds?1

That the the number T (n) of homeomorphism classes of n-point topological spaces
approaches infinity with n has surely been known for some time. The realization
that non-Hausdorff finite topological spaces are in fact natural and important and
not just a curiosity permitted by a very general definition is more recent. Later
we will study a bit about such spaces as an important subclass of Alexandroff
spaces (these are spaces in which arbitrary intersections of closed sets qualify; this
is a very strong and unusual property for an infinite topological space to have, but
of course it holds automatically on all finite topological spaces).

Example 3.5. (Particular Point Topology) Let X be a set with more than one
element, and let x ∈ X. We take τ to be empty set together with all subsets Y of
X containing x.

1This question has received a lot of attention but is, to the best of my knowledge, open in
general.
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Example 3.6. (Cofinite Topology) Let X be an infinite set, and let τ consist
of ∅ together with subsets whose complement is finite (or, for short, “cofinite sub-
sets”). This is easily seen to form a topology, in which any two nonempty open sets
intersect2, hence a non-Hausdorff topology.

Exercise 3.8. (Sorgenfrey Line)
On R, show that intervals of the form [a, b) form a base for a topology τS which is
strictly finer than the standard (metric) topology on R. The space (R, τS) is called
the Sorgenfrey line after Robert Sorgenfrey.3

Example 3.7. (Moore Plane) Let X be the subset of R2 consisting of pairs
(x, y) with y ≥ 0, endowed with the following “exotic” topology: a subset U of X is
open if: whenever it contains a point P = (x, y) with y > 0 it contains some open
Euclidean disk B(P, ε); and whenever it contains a point P = (x, 0) it contains
P ∪B((x, ε), ε) for some ε > 0, i.e., an open disk in the upper-half plane tangent to
the x-axis at P . The Moore plane satisfies several properties shared by all metrizable
spaces – it is first countable and Tychonoff – but not the property of normality.
More on these properties later, of course.

Example 3.8. (Arens-Fort Space) Let X = N×N. We define a topology τ on
X by declaring a subset U ⊂ X to be open if:
(i) (0, 0) /∈ U , or
(ii) (0, 0) ∈ U and ∃M ∈ N such that ∀m ≥M , {n ∈ N | (m,n) /∈ U} is finite.
In other words, a set not containing the origin is open precisely when it contains
all but finitely many elements of all but finitely many column of the array N× N.

Exercise 3.9. Show that the Arens-Fort space is a Hausdorff topological space.
(Don’t forget to check that τ is actually a topology: this is not completely obvious.)

Exercise 3.10. (Zariski Topology): Let R be a commutative ring, and let
SpecR be the set of prime ideals of R. For any subset S of R (including ∅, let
C(S) be the set of prime ideals containing S.
a) Show that C(S1) ∪ C(S2) = C(S1 ∩ S2).
b) Show that, for any collection {Si}i∈I of subsets of R,

⋂
i C(Si) = C(

⋃
i Si).

c) Note that C(∅) = SpecR, C(R) = ∅.
Thus the C(S)’s form the closed sets for a topology, called the Zariski topology on
SpecR.
d) If ϕ : R → R′ is a homomorphism of commutative rings, show that ϕ∗ :
SpecR′ → SpecR, P 7→ ϕ−1(P ) is a continuous map.
e) Let rad(R) be the radical of R. Show that the natural map Spec(R/ rad(R)) →
Spec(R) is a homeomorphism.
f) Let R be a discrete valuation ring. Show that SpecR is the topological space of
Example X.X above.
g) Let k be an algebraically closed field and R = k[t]. Show that Spec(R) can, as a
topological space, be identified with k itself with the cofinite topology.

2When we say that two subsets intersect, we mean of course that their intersection is

nonempty.
3The merit of this “weird” topology is that it is often a source of counterexamples.
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3. Alternative Characterizations of Topological Spaces

3.1. Closed sets.

In a topological space (X, τ), define a closed subset to be a subset whose com-
plement is open. Evidently if we know the open sets we also know the closed sets
and conversely: just take complements. The closed subsets of a topological space
satsify the following properties:

(CTS1) ∅, X are closed.
(CTS2) Finite unions of closed sets are closed.
(CTS3) Arbitrary intersections of clsoed sets are closed.

Conversely, given such a family of subsets of X, then taking the open sets as the
complements of each element in this family, we get a topology.

3.2. Closure.

If S is a subset of a topological space, we define its closure S to be the inter-
section of all closed subsets containing S. Since X itself is closed containing S,
this intersection is nonempty, and a moment’s thought reveals it to be the minimal
closed subset containing S.

Viewing closure as a mapping c from 2X to itself, it satisfies the following proper-
ties, the Kuratowski closure axioms:

(KC1) c(∅) = ∅.
(KC2) For A ∈ 2X , A ⊂ c(A).
(KC3) For A ∈ 2X , c(c(A)) = c(A).
(KC4) For A,B ∈ 2X , c(A ∪B) = c(A) ∪ c(B).

Note that (KC4) implies the following axiom:

(KC5) If B ⊂ A, c(B) ⊂ c(A).

Indeed, c(A) = c((A \B) ∪B) = c(A \B) ∪ c(B).

A function c : 2X → 2X satisfying (KC1)-(KC4) is called an “abstract closure
operator.” Kuratowski noted that any such operator is indeed the closure operator
for a topology on X:

Theorem 3.2. (Kuratowski) Let X be a set, and let c : 2X → 2X be an operator
satisfying axioms (KC1), (KC2) and (KC4).
a) The subsets A ∈ 2X satisfying A = c(A) obey they axioms (CTS1)-(CTS3) and
hence are the closed subsets for a unique topology τc on X.
b) If c also satisfies (KC3), then closure in τc corresponds to closure with respect
to c: for all A ⊂ X we have A = c(A).

Proof. a) Call a set c-closed if A = c(A). By (KC1) the empty set is c-closed;
by (KC2) X is c-closed. By (KC2) finite unions of c-closed sets are closed. Now let
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{Aα}α∈I be a family of c−closed sets, and put A = ∩Aα. Then for all α, A ⊂ Aα,
so by (KC5), c(A) ⊂ c(Aα) for all α, so

c(A) ⊂ ∩ c(Aα) = ∩Aα = A.

Thus the c-closed sets satisfy (CTS1)-(CTS3), so that the family τc of complements
of c-closed sets form a topology on X.

Now assume (KC3); we wish to show that for all A ⊂ X, c(A) = A. We have
A = ∩C=c(C)⊃AC, the intersection extending over all closed subsets containing A.

By (KC3), c(A) = c(c(A)) is a closed subset containing A we have A ⊂ c(A).
Conversely, since A ⊂ ∩CC, c(A) ⊂ ∩Cc(C) = ∩CC = A. So c(A) = A. �

Later we will see an interesting example of an operator which satisfies (KC1), (KC2),
(KC4) but not necessarily (KC3): the sequential closure.

The following result characterizes continuous functions in terms of closure.

Theorem 3.3. Let f : X → Y be a map of topological spaces. The following
are equivalent:
(a) f is continuous.

(b) For every subset S of X, f(S) ⊂ f(S).

Proof. Suppose f is continuous, S is a subset of X and A = A ⊃ f(S). If
x ∈ X is such that f(x) ∈ Y \ A, then, since f is continuous and Y \ A is open in
Y , f−1(Y \A) is an open subset of X containing x and disjoint from S. Therefore
x is not in the closure of S.

Conversely, if f is not continuous, then there exists some open V ⊂ Y such
that U := f−1(V ) is not open in X. Thus, there exists a point x ∈ U such that
every open set containing x meets S := X \ U . Thus x ∈ S but f(x) is in V hence
not in Y \ V , which is a closed set containing f(S). �

3.3. Interior operator.

The dual notion to closure is the interior of a subset A in a topological space:
A◦ is equal to the union of all open subsets of A. In particular a subset is open iff
it is equal to its interior. We have

A◦ = X \X \A,
and applying this formula we can mimic the discussion of the previous subsection
in terms of axioms for an “abstract interior operator” A 7→ i(A), which one could
take to be the basic notion for a topological space. But this is so similar to the
characterization using the closure operator as to be essentially redundant.

3.4. Boundary operator.

For a subset A of a topological space, one defines the boundary4

∂A = A \A◦ = A ∩X \A.
Evidently ∂A is a closed subset of A, and, since A = A∪∂A, A is closed iff A ⊃ ∂A.
A set has empty boundary iff it is both open and closed, a notion which is important
in connectedness and in dimension theory.

4Alternate terminology: frontier.
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Example 3.9. Let X be the real line, A = (−∞, 0) and B = [0,∞). Then
∂A = ∂B = {0}, and

∂(A ∪B) = ∂R = ∅ 6= {0} = (∂A) ∪ (∂B);

∂(A ∩B) = ∂∅ = ∅ 6= {0} = (∂A) ∩ (∂B).

Thus the boundary operator is not as well-behaved as either the closure or inte-
rior operators. We quote from [Wi, p. 28]: “It is possible, but unrewarding, to
characterize a topology completely by its frontier [boundary] operation.”

3.5. Neighborhoods.

Let x be a point of a topological space, and let N be a subset of X. We say
that N is a neighborhood of x if x ∈ N◦. Open sets are characterized as being
neighborhoods of each point they contain.

Let Nx be the set of all neighborhoods of x. It enjoys the following properties:

(NS1) N ∈ Nx =⇒ x ∈ N .
(NS2) N, N ′ ∈ Nx =⇒ N ∩N ′ ∈ Nx.
(NS3) N ∈ Nx, N ′ ⊃ N =⇒ N ′ ∈ Nx.
(NS4) For N ∈ Nx, there exists U ∈ Nx, U ⊂ N , such that y ∈ V =⇒ V ∈ Ny.

Suppose we are given a set X and a function which assigns to each x ∈ X a
family N (x) of subsets of X satisfying (NS1)-(NS3). Then the collection of subsets
U such that x ∈ U =⇒ U ∈ N (x) form a topology on X. If we moreover impose
(NS4), then N (x) = Nx for all x.

4. The Set of All Topologies on X

Let X be a set, and let Top(X) ⊂ 22X be the collection of all topologies on X.

Exercise 3.11. Suppose X is infinite. Show that # Top(X) = 22X .

As a subset of 22X , Top(X) inherits a partial ordering: we define τ1 ≤ τ2 if τ1 ⊂ τ2,
i.e., if every τ1-open set is also τ2-open.

If τ1 ≤ τ2 we say that τ1 is coarser than τ2 and also that τ2 is finer than τ1.5 We
say that two topologies on X are comparable if one of them is coarser than the
other. Comparability is an equivalence relation.

Exercise 3.12. Let T ⊂ 22X be any family of topologies on X. Then
⋂
τ∈T τ

is a topology on X. (By convention,
⋂
∅ = 2X is the discrete topology.)

Let F ∈ 22X be any family of subsets of X. Then among all topologies τ on
X containing F there is a coarsest topology τ(F), namely the intersection of all
topologies containing F . (Tournant dangereuse: here τ(∅) = {∅, X} is the in-
discrete topology.) We call τ(F) the topology generated by F .

5One sometimes also says, especially in functional analysis, that τ1 is weaker than τ2 and
that τ2 is stronger than τ1. Unfortunately some of the older literature uses the terms “weaker”

and “stronger” in exactly the opposite way! So the coarser/finer terminology is preferred.
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In fact (Top(X),≤) is a complete lattice. We recall what this means:

(i) There is a “top element” in Top(X), i.e., a topology which is finer than any
other topology on X: namely the discrete topology.
(ii) There is a “bottom element” in >(X), i.e., a topology which is coarser than
any other topology on X: namely the indiscrete topology.
(iii∧) If T ⊂ Top(X) is any family of topologies on X, then the meet ∧T (or infi-
umum) exists in Top(X): there is a unique topology τ∧T on X such that for any
τ ∈ Top(X), τ ≤ τ∧T iff τ ≤ T for all T ∈ T : namely we just take the intersection
∩T∈T T , as in Exercise X.X above.
(iii∨) If T ⊂ Top(X) is any family of topologies on X, then the join ∨T (or
supremum) exists in Top(X): there is a unique topology τ∨T such that for any
τ ∈ Top(X), τ ≥ τ∨T iff τ ≥ T for all T ∈ T : we first take F(T ) =

⋃
T∈T T and

then ∨T = τ(F) is the intersection of all topologies containing F .

Let us now look a bit more carefully at the structure of the topology τ(F) generated
by an arbitrary family F of subsets of X. The above description is a “top down”
or an “extrinsic” construction. Such situations occur frequently in mathematics,
and it is also useful (maybe more useful) to have a complementary “bottom up” or
“intrinsic construction”.

By way of comparison, if G is a group and S is a subset of G, then there is a
notion of the subgroup H(S) generated by S. The “extrinsic” construction is again
just

⋂
H⊃S H, the intersection over all subgroups containing S. But there is also a

well-known “instrinsic construction” of H(S): namely, as the collection of all group
elements of the form xε11 · · ·xεnn , where xi ∈ S and εi ∈ ±1. In some sense, this
“bottom up” construction is a two-step process: starting with the set S, we first
replace S by S ∪S−1, and second we pass to all words (including the empty word!)
in S ∪ S−1.

In general, we may not be so lucky. If X is a set and F is a family of subsets
of X, in order to form the σ-algebra generated by F , extrinsically we again just
take the intersection over all σ-algebras on X containing F (in particular there is
always 2X , so this intersection is nonempty). Sometimes one needs the intrinsic
description, but this is usually avoided in first courses on measure theory because
it is very complicated: one alternates the processes of passing to countable unions
and adjoining complements, but in general one must do this uncountably many
times, necessitating a transfinite induction!6

Luckily, the case of topological spaces is much more like that of groups than that
of σ-algebras. Namely, starting with F ⊂ 2X , we first form F1 which consists of all
finite intersections of elements of elements of F (employing, as usual, the conven-
tion that the empty intersection is all of X). We then form F2, which consists of
all arbitrary unions of elements of F1 (employing, as usual, the fact that the empty
union is ∅). Clearly F2 contains ∅ and X and is stable under arbitrary unions. In
fact it is also stable under finite intersections, since for any two families {Yi}i∈I ,

6To read more about this, the keyword is Borel hierarchy.
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{Zj}j∈J of elements of F1, ⋃
i

Yi ∩
⋃
j

Zj =
⋃
i,j

Yi ∩ Zj ,

and for all i and j Yi ∩ Zj ∈ F1 since F1 was constructed to be closed under finite
intersections. So we are done in two steps: F2 = τ(F) is the topology generated
by F .

Example 3.10. Let X be any nonempty set. If F = ∅, then τ(F) is the trivial
topology. If F = {{x} | x ∈ X}, τ(F) is the discrete topology. More generally,
let S be any subset of X and F(S) = {{x} | x ∈ S}, then τ(S) := τ(F(S)) is a
topology whose open points are precisely the elements of S, so this is a different
topology for each S ∈ 2X .

5. Bases, Subbases and Neighborhood Bases

5.1. Bases and Subbases.

We have found our way to an important definition: if τ is a topology on X and
F ⊂ 2X is such that τ = τ(F), we say F is a subbase (or subbasis) for τ .

Example 3.11. Let X be a set of cardinality at least 2.
(a) Again, if we take F to be the empty family, then τ(F) is the indiscrete topology.
(b) If Y is a subset of X and we take F = {Y }, then the open sets in the induced
topology τY are precisely those which contain Y . Note that these 2X topologies are
all distinct. If Y = X this again gives the indiscrete topology, whereas if Y = ∅ we
get the discrete topology. Otherwise we get a non-Hausdorff topology: indeed for
x ∈ X, {x} is closed iff x ∈ X \ Y .

Exercise 3.13. Let X be a set and Y, Y ′ be two subsets of X. Show that the
following are equivalent:
(i) (X, τY ) is homeomorphic to (X, τY ′).
(ii) #Y = #Y ′.

The nomenclature “subbase” suggests the existence of a cognate concept, that of
a “base”. Based upon our above intrinsic construction of τ(F), it would be rea-
sonable to guess that F1 is a base, or more precisely that a basis for a topology
should be a collection of open sets, closed under finite intersection, whose unions
recover all the open sets. But it turns out that a weaker concept is much more useful.

Consider the following axioms on a family B of subsets of a set X:

(B1) ∀ U1, U2 ∈ B and x ∈ U1 ∩ U2, ∃ U3 ∈ B such that x ∈ U3 ⊂ U1 ∩ U2.
(B2) For all x ∈ X, there exists U ∈ B such that x ∈ U .

The point here is that (B1) is weaker than the property of being closed under
finite intersections, but is just as good for constructing the generated topology:

Proposition 3.4. Let B = (Ui)i∈I be a family of subsets of X satisfying (B1)
and (B2). Then τ(B), the topology generated by B, is given by {

⋃
i∈J Ui|J ⊂ I}, or

in other words by the collection of arbitrary unions of elements of B.
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Proof. Let T be the set of arbitrary unions of elements of B; certainly T ⊂
τ(B). It is automatic that ∅ ∈ T (take the empty union), and (B2) guarantees that
X =

⋃
i∈I Ui. Clearly T is closed under all unions, so it suffices to show that the

intersection U1 ∩U2 of any two elements of B of B can be expressed as a union over
some set of elements of B. But the point is that (B1) visibly guarantees this: for
each x ∈ U1∩U2, by (B1) we may choose Ux ∈ B such that x ∈ Ux ⊂ U1∩U∈. Then

U1 ∩ U2 =
⋃

x∈U1∩U2

Ux. �

A family B of subsets of X satisfying (B1) and (B2) is a base (or basis) for the
topology it generates. Or, to put it another way, a subcollection B of the open sets
of a topological space (X, τ) which satisfies (B1) and (B2) is called a base, and then
every open set is obtained as a union of elements of the base. And conversely:

Exercise 3.14. Let (X, τ) be a topological space and B be a family of open
sets. Suppose that every open set in X may be written as a union of elements of
B. Show that B satisfies (B1) and (B2).

Example 3.12. In a metric space (X, d), the open balls form a base for the
topology: especially, the intersection of two open balls need not be an open ball but
contains an open ball about each of its points. Indeed, the open balls with radii 1

n ,
for n ∈ Z+, form a base.

Example 3.13. In Rd, the d-fold products
∏d
i=1(ai, bi) of open intervals with

rational endpoints is a base. In particular this shows that Rd has a countable
base, which will turn out to be a key property for a topological space.

5.2. Neighborhood bases. Let x be a point of a topological space X. A
family {Nα} of neighborhoods of x is said to be a neighborhood base at x (or
a fundamental system of neigborhoods of x) if every neighborhood N of x
contains some Nα. Suppose we are given for each x ∈ X a neighborhood basis Nx
at x. The following axioms hold:

(NB1) N ∈ Bx =⇒ x ∈ N .
(NB2) N, N ′ ∈ Bx =⇒ there exists N ′′ in Bx such that N ′′ ⊂ N ∩N ′.
(NB3) N ∈ Bx =⇒ there exists V ∈ Bx, V ⊂ N , such that y ∈ V =⇒ V ∈ By.

Conversely:

Proposition 3.5. Suppose given a set X and, for each x ∈ X, a collection Bx
of subsets satisfying (NB1)-(NB3). Then the collections Nx = {Y |∃N ∈ Bx|Y ⊃
N} are the neighborhood systems for a unique topology on X, in which a subset U
is open iff x ∈ U =⇒ U ∈ Nx. Each Nx is a neighborhood basis at x.

Exercise 3.15. Prove Proposition 3.5.

Remark: Consider the condition

(NB3′) N ∈ Bx, y ∈ N =⇒ y ∈ N .

Replacing (NB3) with (NB3′) amounts to restricting attention to open neighbor-
hoods. Since (NB3′) =⇒ (NB3), we may specify a topology on X by giving,
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for each x, a family Nx of sets satisfying (NB1), (NB2), (NB3′). This is a very
convenient way to define a topology: e.g. the metric topology is thus defined just
by taking Nx to be the family {B(x, ε)} of ε balls about x.

Here is a more interesting example. Let M = {(x, y) ∈ R2 | y ≥ 0}. Now:

For P = (x, y) ∈ M with y > 0, we take BP to be the set of Euclidean-open
disks B(P, r) centered at P with radius r ≤ y (so that B(P, r) ⊂M .
For P = (x, 0) ∈M , we take BP to be the family of sets {P ∪D((x, y), y) | y > 0};
in other words, an element of BP consists of an open disk in the upper half plane
which is tangent to the x-axis at P , together with P .

Exercise 3.16. Verify that {BP | P ∈M} satisfies (NB1), (NB2) and (NB3′),
so there is a unique topology τM on M with these sets as neighborhood bases. The
space (M, τM ) is called the Moore-Niemytzki plane.7

Proposition 3.6. Suppose that ϕ : X → X is a self-homeomorphism of the
topological space x. Let x ∈ X and Nx be a neighborhood basis at x. Then ϕ(Nx)
is a neighborhood basis at y = ϕ(x).

Proof: It suffices to work throughout with open neighborhoods. Let V be an open
neighborhood of y. By continuity, there exists an open neighborhood U of x such
that ϕ(U) ⊂ V . Since ϕ−1 is continuous, ϕ(U) is open.

As for any category, the automorphisms of a topological space X form a group,
Aut(X). We say X is homogeneous if Aut(X) acts transitively on X, i.e., for any
x, y ∈ X there exists a self-homeomorphism ϕ such that ϕ(x) = y. By the previous
proposition, if a space is homogeneous we can recover the entire topology from the
neighborhood basis of a single point. In particular this applies to topological groups.

Nothing stops us from defining neighborhood subbases. However we have no
need of them in what follows, so we leave this task to the reader.

6. The Subspace Topology

6.1. Defining the Subspace Topology.

Let (X, τ) be a topological space, and let Y be a subset of X. We want to put a
topology on Y so as to satisfy the following properties:

• Let f : X → Z be a continuous function. Then f |Y : Y → Z is continuous.

• Let f : Z → Y be a continuous function. Since Y ⊂ Z we may view f as
giving a map f : Z → X. This map is continuous.

We define the subspace topology on Y as follows:

τY = {U ∩ Y | U ∈ τX}.

7Like the Sorgenfrey line, and possibly even more so, this space is extremely useful for showing
nonimplications among topological properties.
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Let us check that this is indeed a topology on Y . First, ∅ = ∅ ∩ Y ∈ τY . Second,
Y = X ∩ Y ∈ τY . Second, if {Vi}i∈I is a family of sets in τY then for all i we have
Vi = Ui ∩ Y for some Ui ∈ τX . Thus⋃

i∈I
Vi =

⋃
i∈I

Ui ∩ Y = (
⋃
i∈I

Ui) ∩ Y ∈ τY .

Finally, if V1, V2 ∈ τY then V1 = U1 ∩ Y and V2 = U2 ∩ Y for U1, U2 ∈ τX . Thus

V1 ∩ V2 = (U1 ∩ Y ) ∩ (U2 ∩ Y ) = (U1 ∩ U2) ∩ Y ∈ τY .

Proposition 3.7. Let f : X → Z be a continuous function, and let Y ⊂ X be
a subset. Then the restricted function f : Y → Z is continuous.

Proof. For clarity let us denote the restriction of f to Y by g : Y → Z. Let
V ⊂ Z be open. Then

g−1(V ) = {x ∈ Y | g(x) ∈ V } = {x ∈ X | g(x) ∈ V } ∩ Y = f−1(V ) ∩ Y

is open in Y . �

Corollary 3.8. Let Y be a subset of a topological space X. Then the inclusion
map ι : Y ↪→ X is continuous.

Proof. Apply the previous result with Z = X and f = 1X . �

Proposition 3.9. Let Z be a topological space, let Y ⊂ Z be a subset, and let
ι : Y → Z be the inclusion map. Let X be a topological space, and let f : X → Y
be a function. The following are equivalent:
(i) The function f : X → Y is continuous.
(ii) The function ι ◦ f : X → Z is continuous.

Proof. (i) =⇒ (ii): This is immediate from the previous result and the fact
that compositions of continuous functions are continuous.
(ii) =⇒ (i): Let V ⊂ Y be open. Since f(X) ⊂ Y , we have that

(ι ◦ f)−1(V ) = {x ∈ X | ι(f(x)) ∈ V } = {x ∈ X | f(x) ∈ V } = f−1(V )

is open in X. �

Let (X, d) be a metric space, and let Y ⊂ X be a subset. We have a potential
embarrassment of riches situation: Y gets a topology, say τ1, that it inherits as a
subspace of the metric topology τX on X, and also a topology, say τ2, that it gets
from restricting the metric function to d : Y × Y → R.

It is not completely obvious that τ1 and τ2 coincide. The following exercise ex-
plores the underlying issues.

Exercise 3.17. Let (X, d) be a metric space, and let Y ⊂ X be a metric space.
a) Suppose y ∈ Y , let ε > 0, let BY (y, ε) be the open ε-ball about y in Y , and let
BX(y, ε) be the open ε-ball about y in X. Show that

(11) BY (y, ε) = BX(y, ε) ∩ Y.

b) Give an example of a subset Y of R2 (with the Euclidean topology) a point x ∈ R2

and ε > 0 such that BX(x, ε) ∩ Y is not an open ball in Y .
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Using this exercise we can see that τ2 ⊂ τ1. Indeed, since every set in τ2 is a union
of open ε-balls in Y , it is enough to check that for all y ∈ Y and all ε > 0, we have
that BY (y, ε) lies in τ1, and (11) shows this.

That τ1 ⊂ τ2 lies just a bit deeper. Namely, let V ∈ τ1, so there is an open
subset U ⊂ X with V = U ∩ Y . Suppose y ∈ V . Since v ∈ U there is ε > 0 such
that BX(v, ε) ⊂ U and then

BY (v, ε) = BX(v, ε) ∩ Y ⊂ U ∩ Y = V.

This shows that V is a union of elements of τ2 (an empty union, if V = ∅), hence
V ∈ τ2. We summarize:

Proposition 3.10. The metric topology on a subset Y of a metric space X
coincides with the topology Y inherits as a subspace of the metric topology on X.

We remark that later we will introduce a topology τX on any ordered set (X,≤).
For a subset Y ⊂ X we will have an analogous embarrassment of riches situation:
we can endow Y with the topology τ1 it receives as a subspace of X and also the
topology τ2 it receives by restricting ≤ to an ordering on Y . Again it will be easy
to show that τ2 ⊂ τ1. In this case though it can happen that τ2 ( τ1. This more
complicated behavior of subspaces is probably one of the main reasons that order
topologies are not as widely used as metric topologies.

6.2. The Pasting Lemma.

Theorem 3.11. (Pasting Lemma) Let X be a topological space, and let {Yi}i∈I
be a family of subsets of X with

⋃
i Yi = X. Let Z be a topological space. For each

i ∈ I let fi : Yi → Z be a continuous function. Consider the following conditions:
(i) There is a continuous function f : X → Z such that f |Yi = fi for all i ∈ I.
(ii) For all i 6= j ∈ I, we have fi|Yi∩Yj = fj |Yi∩Yj .
a) In all cases we have (i) =⇒ (ii).
b) If each Yi is open, then (ii) =⇒ (i).
c) If I is finite and each Yi is closed, then (ii) =⇒ (i).

Proof. Given any collection of maps fi : Yi → Z, condition (ii) is necessary
and sufficient for the existence of a map f : X → Z with f |Yi = fi, and in this case
the corresponding map is unique. This establishes part a). To show the remaining
parts we need to show that the unique such map f is continuous.
b) Suppose each Yi is open. Let x ∈ X. It is enough to show that f is continuous at
x. Let V ⊂ Z be an open neighborhood of f(x). Choose i such that x ∈ Yi. Since
fi is continuous at x, there is an open neighborhood Ui of x in Yi with fi(Ui) ⊂ V .
Since Yi is open in X, Ui is open in X. Since f |Yi = fi we have fi(Ui) ⊂ V .
c) Suppose each Yi is closed. We will show that for all closed subsets B ⊂ Y ,
we have that f−1(B) is closed in Y . For each i we have that fi is continuous, so
f−1
i (B) is closed in Yi. Because X =

⋃n
i=1 Yi and f |Yi = fi for all i, we have

f−1(B) =

n⋃
i=1

f−1(B) ∩ Yi =

n⋃
i=1

f−1
i (B).

Since I is finite, f−1(B) is a finite union of closed sets and is thus closed. �

Exercise 3.18. a) Give an example to show that the finiteness of I in part c)
of Theorem 3.11 is necessary in order for the conclusion to hold.
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b) A family of subsets {Yi}i∈I of a topological space X is locally finite if for all
x ∈ X there is a neigbhorhood U of X such that {i ∈ I | Yi ∩ U 6= ∅} is finite.
Show that Theorem 3.11c) holds for a locally finite family {Yi}i∈I of closed subsets.

7. The Product Topology

convention: When we speak of the Cartesian product
∏
i∈I Xi of an indexed

family of sets {Xi}i∈I , we will assume that I 6= ∅. (It is a reasonable convention
that the Cartesian product over an empty family should be a one-point set , but
we are left with the annoyance of specifying what the element of such a set should
be. It is easiest to avoid this entirely: we lose out on (literally) nothing.)

Let {Xi}i∈I be a family of topological spaces, let X =
∏
i∈I Xi be the Cartesian

product, and for i ∈ I let πi : X → Xi be the ith projection map, πi({xi}) = xi.
We want to put a topology on the Cartesian product X. Well, as above in the case
of metric spaces we really want more than this – we could just put the discrete
topology on X, but this is not (in general) what we want.

In the case of metric spaces, we focused on the property that a sequence x in X
converges to p iff for all i ∈ I the projected sequence πi(x) converges to pi = πi(p)
in Xi. In the context of a general topological space we still want this property, but
because in a general topological space the topology need not be determined by the
convergence of sequences, this is no longer a characteristic property.

We can suss out the right property by reflecting carefully on how functions be-
have on Cartesian products (of sets: no topologies yet). Going back to multivari-
able calculus, recall the difference between a function f : R2 → R and a function
g : R→ R2. Then f is a “function of two variables” and such things are inherently
more complicated than functions of a single variable: being “separately continuous”
in the two variables is not enough to imply that f is continuous.

Exercise 3.19. Let f : R2 → R be given by

f(x, y) =

{
xy

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)
.

a) Show: ∀x0 ∈ R, the function a : R→ R given by a(y) = f(x0, y) is continuous.
b) Show: ∀y0 ∈ R, the function b : R→ R given by b(x) = f(x, y0) is continuous.
c) Show: f is not continuous.

On the other hand, the function g is a “vector-valued function of one variable”.
Indeed, if π1, π2 : R2 → R are the two projection maps

π1(x, y) = x, π2(x, y) = y,

then we have

g = (π1(g), π2(g)).

So every g : R→ R2 is no more and no less than a pair of functions g1, g2 : R→ R.

This is completely general. For any set Z and any Cartesian product X =
∏
i∈I Xi,
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for every function f : Z → X, we have “component functions” fi := πi◦f : Z → Xi

and we uniquely recover f from these component functions as

f(z) = {fi(z)}i∈I .
To be a little fancier about it, recall that we write Y X for the set of all maps
X → Y . Then we have a canonical bijection(∏

i∈I
Xi

)Z
=
∏
i∈I

XZ
i .

Okay, so what? The point is that this means that for any topological space Z and
any family {Xi}i∈I of topological spaces, we know what we want the continuous
functions f : Z → X =

∏
i∈I Xi to be: namely, we want f : Z → X to be continu-

ous iff each of its projections fi = πi ◦f : Z → Xi is continuous. In general, given a
topological space (X, τ), we can recover the topology τ from the knowledge of which
functions f : Z → X from a topological space Z to X (for all topological spaces Z)
are continuous. So this is the characteristic property of the product topology, and
our task is to construct such a topology, ideally in a more direct, explicit way.

Let us begin with the case of two topological spaces X and Y . Let B be the
family of all subsets U × V = {(x, y) ∈ X × Y | x ∈ U, y ∈ V } as U ranges over all
open subsets of X and V ranges over all subsets of Y .

Proposition 3.12. a) The family B is the base for a topology τ on X × Y .
b) In the topology τ , for any topological space Z, a function f : Z → X × Y is
continuous iff f1 = π1 ◦ f : Z → X and f2 = π2 ◦ f : Z → Y are both continuous.
Thus τ is the desired product topology on X × Y .
c) The maps π1 : X × Y → X and π2 : X × Y → Y are continuous and open.
d) A sequence x• in X × Y converges to p ∈ X × Y iff π1(x•) → π1(p) in X and
π2(x•)→ π2(p) in Y .

Proof. First we dispose of an annoying technicality: the product X × Y is
empty iff either X = ∅ or Y = ∅. The only set Z for which there is a function
Z → ∅ is when Z = ∅, and we will allow the reader to check that the result is
(quite vacuous but) true in this case. Now suppose X and Y are both nonempty.
a) The elements of B are closed under finite intersections: (U1 × V1) ∩ (U2 × V2) =
(U1 ∩U2)× (V1 ∩ V2). This is (more than) enough for the set of unions of elements
of B to be a topology on X × Y .
b) Let f : Z → X × Y . Continuity can be checked on the elements of a base, so f
is continuous iff for all U open in X and V open in Y , f−1(U × V ) is open in Z.
But writing f = (f1, f2) we have that

f−1(U × V ) = {z ∈ Z | (f1(z), f2(z)) ∈ U × V }
= {z ∈ Z | f1(z) ∈ U and f2(z) ∈ V } = f−1

1 (U) ∩ f−1
2 (V ).

Thus if f1 and f2 are each continuous, then f−1(U ×V ) is open so f is continuous.
Conversely, if f is continuous, then for every open U ⊂ X,

f−1(U ×Y ) = {z ∈ Z | f1(z) ∈ U and f2(z) ∈ Y } = {z ∈ Z | f1(z) ∈ U} = f−1
1 (U)

is open in X, so f1 : Z → X is continuous. Applying this argument with the roles
of X and Y interchanged shows that f2 : Z → Y is continuous.
c) If V ⊂ X is open, then π−1

1 (V ) = V × Y is open in X × Y , so π1 is continuous.
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Similarly π2 is continuous. Since
⋃
i∈I f(Ui) = f(

⋃
i∈I Ui), openness can be checked

on a base, and certainly if U1 ⊂ X and U2 ⊂ Y are open, then π1(U1 × U2) = U1

is open in X and π2(U1 × U2) = U2 is open in Y . So π1 and π2 are open.
d) Since continuous functions preserve convergent sequences and by part c) the
projection maps π1 and π2 are continuous, it is clear that x• → p implies π1(x•)→
π1(p) and π2(x•) → π2(p). Conversely, suppose π1(x•) → π1(p) and π2(x•) →
π2(p). Let N be a neighborhood of p in X×Y ; then p ∈ U1×U2 ⊂ N with U1 open
in X and U2 open in Y . Let N ∈ Z+ be sufficiently large so that for all n ≥ N we
have π1(p) ∈ U1 and π2(p) ∈ U2. Then p ∈ U1 × U2. This shows that x• → p. �

Now for any finite product X =
∏n
i=1Xi of topological spaces, we can define the

product topology either by considering it as an iterated pairwise product – e.g.
X×Y ×Z = (X×Y )×Z – or by modifying the definition of the product topology
directly: namely, we may take as a base the collection of all subsets W =

∏n
i=1 Ui

such that Ui is open in Xi for all 1 ≤ i ≤ n. No problem.

Things become more interesting for infinite products. Let us not try to disguise
that the obvious first guess is simply to take as the base the collection of all Carte-
sian products of open sets in the various factors, namely W =

∏
i∈I Ui with Ui

open in Xi for all i ∈ I. It is certainly still true that these sets are closed under
finite intersection and thus form a base for some topology on the infinite Cartesian
product X =

∏
i∈I Xi. As is traditional, we call this topology the box topology.

However, this is not the correct definition of the product topology, because it does
not satisfy the property that a map f : Z → X is continuous iff each projection
fi = πi ◦ f : Z → Xi is continuous. Actually it is easier to explain the right thing
than to explain why the wrong thing is wrong, so let us pass to the correct definition
(with proof!) of the product topology and revisit this issue shortly.

I claim that we want to take as a base B the collection of all families {Ui}i∈I
such that for all i ∈ I Ui is open in Xi and that Ui = Xi for all but finitely many
i ∈ I. Again this family is closed under finite intersections so is certainly a base
for a topology on the Cartesian product. Note also that this topology is coarser
than the above box topology. Let us now check that for this topology, a function
f : Z → X =

∏
i∈I Xi is continuous iff each fi = πi ◦ f : Z → Xi is continuous.

In fact the half of the argument that f continuous implies each fi is continuous
is essentially the same as above: for each fixed i• ∈ I, we choose a basis element
W =

∏
i∈I Ui with Ui = Xi for all i 6= i• and Ui• an arbitrary open subset of

Xi, and then if f is continuous then f−1(W ) = f−1
i (Ui) is open in Z. The other

direction is also just as easy to do in this generality and very enlightening to do so:
for W =

∏
i∈I Ui, we find

f−1(W ) = {z ∈ Z | fi(z) ∈ Ui for all i ∈ I} =
⋂
i∈I

f−1
i (Ui).

Now we are assuming that each fi is continuous and Ui is open in Xi, so each
f−1
i (Ui) is open in Z. However, infinite intersections of open sets are not required

to be open! So thank goodness we have required that Ui = Xi for all but finitely
many i ∈ I; since f−1

i (Xi) = Z, the intersection is the same as we get by intersecting
over the finitely many indices i such that Ui is a proper open subset of Xi, and
thus is a finite intersection of open subsets of Z so is open in Z.
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Exercise 3.20. Let X =
∏
i∈I Xi be a product of nonempty topological spaces.

a) Show that each projection map πi : X → Xi is continuous and open.
b) Show that a sequence x• in X converges to p ∈ X iff for all i ∈ I we have
πi(x•)→ πi(p).

Exercise 3.21. Let I be an infinite index set, and for each i ∈ I let Xi be a
nontrivial topological space (i.e., the topology on Xi is not the indiscrete topology:
in particular, #Xi ≥ 2). Show that the box topology on

∏
i∈I Xi is strictly finer

than the product topology on X.

The following exercise gives an especially clear contrast between the behavior of
the box topology and the product topology.

Exercise 3.22. Let X =
∏∞
n=1{0, 1}. Give each {0, 1} the discrete topology.

a) Give X the box topology. Show that X is discrete. More generally, show that
any product of discrete spaces is discrete in the box topology.
b) Give X the product topology. Using the fact that a function f : Z → X is con-
tinuous iff each fn : Z → Xn = {0, 1} is continuous, construct a homeomorphism
from X to the classical Cantor set. Deduce that X is compact. More generally...?

Theorem 3.13. Let X =
∏
i∈I Xi be a Cartesian product of nonempty topo-

logical spaces, endowed with the product topology. Let x be a sequence in X. Let
p ∈ X. The following are equivalent.
(i) The sequence x converges to p in X.
(ii) For all i ∈ I, the sequence πi(x) converges to πi(p) in Xi.

Proof. (i) =⇒ (ii): For each i ∈ I, πi : X → Xi is continuous, and
continuous functions preserve convergence of sequences.
(ii) =⇒ (i): Suppose that πi(x)→ πi(p) for all i ∈ I. We need to show that every
neighborhood of p in X contains xn for all but finitely many n ∈ Z+. It is enough
to check this on a base (in fact, on a neighborhood base at p...), so we may assume
that U =

∏
i∈I Ui with Ui = Xi for all i ∈ I \ J , where J ⊂ I is finite. For each

j ∈ J , choose Nj ∈ Z+ such that we have πj(xn) ∈ Uj for all n ≥ Nj , and put
N = maxj∈J Nj . Then xn ∈ U for all n ≥ N . �

Corollary 3.14. Let {(Xn, dn)}∞n=1 be an infinite sequence of metric spaces,
and let X =

∏∞
n=1Xn

a) There is a metric d on X which is good in the sense that for all sequences x in
X and all p ∈ X, we have x→ p ⇐⇒ πn(x)→ πn(p) for all n ∈ Z+.
b) Any good metric on X induces the product topology on X.

Proof. a) We have already proven this: it is Theorem X.X.
b) We have already seen that any two metrics on a set which have the same con-
vergent sequences and the same limits induce the same topology. By part a) and
Theorem 3.13, this common topology is the product topology. �

It is worth comparing our current discussion of the product topology to our pre-
vious discussion of product metrics. In fact the present discussion is significantly
simpler, as we do not have to resolve issues arising from the “embarrassment of
riches”. As an exercise, the reader might try to ignore our previous discussion of
product metrics and simply prove directly that a countable product of metrizable
spaces is metrizable. This takes about half a page!
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From now on, whenever we meet a new property P of topological spaces, we will
be interested to know whether it behaves nicely with respect to products. More
precisely, we say that P is productive if whenever we have a family {Xi}i∈I of
nonempty topological spaces each having property P , then X =

∏
i∈I Xi (with the

product topology!) has property P . Similarly we say that P is factorable if when-
ever we have a family {Xi}i∈I of nonempty topological spaces, if X =

∏
i∈I Xi has

property P then so does each Xi. Finally, we say that P is faithfully productive
if it is both productive and factorable.

Remark 3.15. We really do want to require each Xi to be nonempty: if any
Xi is empty, that makes the Cartesian product empty. The empty space has many
good properties but not all: for instance, we will later prove that connectedness is
productive, and according to our convention the empty space is not connected.

The other direction is much more serious: if any one Xi is empty then the
product is empty, so it would be the height of folly to try to deduce properties of the
other factors from properties of ∅!

Lemma 3.16. Let X =
∏
i∈I Xi be a product of nonempty topological spaces.

a) For i ∈ I, the projection map πi : X → Xi is open: for all open subsets U ⊂ X
we have πi(U) is open in Xi.
b) In general πi : X → Xi need not be closed: we may have a closed subset A ⊂ X
such that πi(A) is not closed in Xi.

Proof. a) Since f(
⋃
i Yi) =

⋃
i f(Yi), a map f : X → Y of topological spaces

is open iff f(U) is open in Y for all U in a base B for the topology of X. Thus we
may take U =

∏
j∈I Uj with Uj open in Xj for all j and Uj = Xj for all but finitely

many j and then f(U) = Uj is open in Xj .
b) Consider the map π1 : R2 → R, (x, y) 7→ x. Let F : R2 → R by F (x, y) = xy.
Then F is continuous, so

A = {(x, y) ∈ R2 | xy = 1} = F−1({1})

is closed in R2. But π1(A) = R \ {0} is not. �

Exercise 3.23. a) Let π1 : [0, 1] × [0, 1] → [0, 1] be projection onto the first
factor. Show that π1 is closed.
b) Comparing part a) with Lemma 3.16b) suggests that closedness of projection
maps has something to do with compactness. Explore this. (We will address this
connection in detail later on.)

Let X =
∏
i∈I Xi be a Cartesian product of nonempty topological spaces. A slice

in X is a subset of X of the form Xi ×
∏
j 6=i{pj}; here we have chosen i ∈ I and

for all j 6= i, an element pj ∈ Xj . Thus a slice is obtained precisely by restricting
the values of all but one of the indices to be particular values and not restricting
the remaining index. A subslice is a subset of a slice, which is thus of the form
Yi
∏
j 6=i{pj} for some subset Yi ⊂ Xi.

Lemma 3.17. (Slice Lemma) Let S = Yi×
∏
j 6=i{pj} be a subslice in the product

X =
∏
i∈I Xi of nonempty topological spaces. Let πi : X → Xi be the projection

map. Then πi|S : S → Yi is a homeomorphism. Thus every subspace of Xi is
homeomorphic to a subspace of X.
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Proof. The map πi is the restriction of a continuous map so is continuous.
It is plainly a bijection. It remains to check that it is open, which we may check
on the elements of a base. There is a base for the topology of S consisting of sets
V of the form

∏
i∈I Ui ∩ S in which each Ui is open in Xi and Ui = Xi for all but

finitely many i. Intersecting such a V with S we get either the empty set (if some
pj /∈ Uj for some j 6= i) or (Ui ∩ Yi)×

∏
j 6=i{pj}. Thus πi|S(V ) is either empty or

of the form Ui ∩ Yi; either way we get an open subset of Yi. �

Corollary 3.18. Let P be a topological property. If P is either hereditary or
imagent, then P is factorable.

Proof. Let X =
∏
i∈I Xi be a product of nonempty topological spaces which

satisfies a topological property P .
Suppose P is hereditary. By the Slice Lemma, for each i ∈ I, Xi is homeo-

morphic to a slice S in X. Since P is hereditary, S has property P , and since P is
topological, the homeomorphic space Xi has property P .

Suppose P is imagent. Then for each i ∈ I we have Xi = πi(X), so Xi is a
continuous image of X and thus has property P . �

Proposition 3.19. For a topological space X, the following are equivalent:
(i) X is Hausdorff.
(ii) For all x ∈ X, the intersection of all closed neighborhoods of x is equal to {x}.
(iii) The image ∆ of X under the diagonal map is closed in X ×X.

Proof. (i) =⇒ (ii): Let y 6= x in X and choose disjoint open neighborhoods
Ux, Uy of x and y. Then Cy := X \ Uy is a closed neighborhood of x which does
not contain y.
(ii) =⇒ (i): Let x and y be distinct points of X, and choose a closed neighbor-
hood Cy of x which does not contain y. Then C◦y and X \ Cy are disjoint open
neighborhoods of x and y.
(i) ⇐⇒ (v): Assume (i), and let (x, y) ∈ X ×X \∆, i.e., x 6= y. Let Ux and Uy
be disjoint open neighborhoods of x and y. Then Ux×Uy is an open neighborhood
of (x, y) disjoint from (x, y), so (x, y) does not lie in the closure of ∆. So (i) =⇒
(v). The converse is quite similar and left to the reader. �

8. The Coproduct Topology

Let {Xi}i∈I be an indexed family of sets. All of a sudden it is not critical that
each Xi 6= ∅. In this context, allowing empty spaces is harmless albeit completely
uninteresting.) We denote by

∐
iXi the disjoint union of the Xi’s. Roughly

speaking, this means that we regard the Xi’s as being pairwise disjoint and then
take the union. Sadly, set theoretic correctness requires a bit more precision. The
following works: for each i ∈ I, let X̃i = Xi × {i}. Then there is a super-obvious

bijection Xi → X̃i given by xi ∈ Xi 7→ (xi, i); and moreover have X̃i ∩ X̃j = ∅ for
all i 6= j in I. So we may take ∐

i

Xi =
⋃
i∈I

X̃i.

For i ∈ I, we denote by ιi the map Xi →
∐
iXi, xi 7→ (xi, i).

Exercise 3.24. Let Y be a set; for i ∈ I let fi : Xi → Y be a map. Show:
there is a unique map f :

∐
iXi → Y such that f ◦ ιi = fi : Xi → Y for all i ∈ I.
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Now suppose that eachXi is a topological space. Our task is to put a useful topology
on the coproduct

∐
iXi. We could motivate this via the preceding exercise but it

seems to be simpler in this case just to give the construction. Namely, for each
i ∈ I let Bi be a base for τi (e.g. take Bi = τi). For i ∈ I, let

B̃i = {ιi(U) | U ∈ Bi.

(In other words, B̃i is the copy of Bi in the relabelled copy X̃i of Xi.) Put

B =
⋃
i∈I
B̃i.

Then B satisfies the axioms (B1) and (B2) for a base: since X̃i ∈ B̃i for all i, we

have
∐
iXi =

⋃
i X̃i is a union of elements of B. Moreover, if U1, U2 ∈ B U1 ∈ B̃i

and U2 ∈ B̃j for i, j ∈ I. If i = j then every element of U1 ∩ U2 contains some

U3 ∈ B̃i because Bi is a base on Xi. If i 6= j then U1 ∩ U2 = ∅. Therefore the
set τ of unions of elements of B is a base on

∐
i∈I Xi. We call this the coproduct

topology (also the direct sum and the disjoint union).

Proposition 3.20. Let X =
∐
i∈I Xi endowed with the coproduct topology.

a) For all i ∈ I, X̃i is open in X.

b) For all i ∈ I, the map ιi : Xi → X̃i is a homeomorphism, and thus ι1 : Xi → X
is an embedding.
c) For a subset U ⊂ X, the following are equivalent.
(i) U is open.

(ii) For all i ∈ I, U ∩ X̃i is open in X̃i.
(iii) For all i ∈ I, ι−1(U) is open in Xi.
d) Let Y be a topological space. For a map f : X → Y , the following are equivalent:
(i) f is continuous.

(ii) For all i ∈ I, f |X̃i : X̃i → Y is continuous.

(iii) For all i ∈ I, f ◦ ιi : Xi → Y is continuous.

Proof. a) Since X̃i is a union of elements of B̃i, it is open.

b) The map ιi : Xi → X̃i is certainly a bijection. If Ui ⊂ Xi is open, then Ui is a

union of elements of Bi, hence ιi(Ui) is a union of the corresponding elements of B̃i,
so is open in X̃i. Conversely, if Vi ⊂ X̃i is open, then it is a union of elements of B,
but since it is contained in X̃i it is a union of elements of B̃i. We have Vi = ιi(Ui)
for a unique Ui (nothing more is going on here than converting from (x, i) to x)
which is a union of the corresponding elements of Bi, so it is open. It follows that
ιi : Xi → X̃i is a homeomorphism, so ι1 : Xi → X is an embedding.
c) (i) =⇒ (ii) is the definition of the subspace topology.
(ii) ⇐⇒ (iii) follows from part b).

(ii) =⇒ (i): By part a), U ∩ X̃i is open in X, so U =
⋃
i∈I U ∩ X̃i is open in X.

(i) =⇒ (ii): Restricting a continuous map to a subspace yields a continuous map.

(ii) ⇐⇒ (iii): This follows from the fact that ιi : Xi → X̃i is a homeomorphism.
(ii) =⇒ (i): This is a special case of the Pasting Lemma. �

Exercise 3.25. Let X be a topological space and let {Ui}i∈I be an open covering
of X. Show that a subset U of X is open iff U ∩ Ui is open in Ui for all i ∈ I.
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9. The Quotient Topology

We come now to one of the most geometrically useful constructions in general topol-
ogy: the quotient space. This construction allows us to “identify” or “glue” points
together in a topological space. We will see many examples later, but here are some
basic ones to give the flavor.

• Let X = [0, 1]. If we identify 0 and 1 then we get (or will get...) a space
homeomorphic to the circle S1 (let us take our “standard model” of the circle to
be the subspace {(x, y) ∈ R2 | x2 + y2 = 1}).
• Let X = R. If we identify x and x+ 1 for all x ∈ R then we get (or will get...) a
space homeomorphic to S1.
• Let X = C. If we identify x and x+ 1 for all x ∈ C then we get (or will get...) a
space homeomorphic to an infinite open cylinder, i.e., homeomorphic to S1 × R.
• Let X = C. If we identify x, x + 1 and x + i for all x ∈ C then we get (or will
get...) a space homeomorphic to the torus, i.e., homeomorphic to S1 × S1.
• Let X = [0, 1]N be the unit cube, viewed as a subset of RN . If we identify all
points on the boundary ∂X of X, then we get a space homeomorphic to the N -
sphere SN . (Imagine raking leaves onto a square sheet and then pulling the edges
of the sheet together to pick up the leaves.)

Our first task is of course to formalize this intuition. The first step is to un-
derstand “identifications” set theoretically in terms of equivalence relations. Let
∼ be an equivalence relation on a (say nonempty, to avoid trivialities) set X. Let
X/ ∼ be the set of equivalence classes, and let q : X → X/ ∼ be the natural map
which sends x to its ∼-equivalence class [x]: then q : X → X/ ∼ is surjective and
its fibers are precisely the equivalence classes.

The idea is that we “identify” x and y precisely when x ∼ y. In the first ex-
ample, the equivalence relation corresponds to having each x ∈ (0, 1) equivalent
only to itself and to having 0 ∼ 1. In the second case we said to identify x with
x+ 1, which may initially suggest that the equivalence classes should be {x, x+ 1}.
But this is not an equivalence relation: it is not transitive. This is not really a
problem if we interpret the identification instructions as generating an equivalence
relation rather than giving one: the equivalence relation generated by x ∼ x+ 1 is
x ∼ y iff x− y ∈ Z. In general, we must identify x and x whether we are told to or
not (and why say it? it’s obvious), when we are told to identify x and y we must
also identify y and x (again, obviously) and if we identify x and y and then also
identify y and z then we want to identify x and z even if not explicitly so directed.

Now we claim that if f : X → Y is a map such that x1 ∼ x2 =⇒ f(x1) = f(x2),
then there is a unique map F : X/ ∼→ Y such that

f = F ◦ q.

In other words, there is a bijective correspondence between maps out of X which
preserve ∼-equivalence classes and maps out of X/ ∼. We ask the reader who is
unfamiliar with this simple fact to stop and prove it on the spot.

Now suppose X is a topological space and ∼ is an equivalence relation on X.
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Our task is to endow X/ ∼ with a topology so as to make q : X → X/ ∼ continu-
ous and also to render true the topological analogue of the above fact, namely: if
f : X → Y is a continuous map such that x1 ∼ x2 =⇒ f(x1) = f(x2), then the
unique function F : X/ ∼→ Y such that f = F ◦ q is continuous.

We have to perform a bit of a balancing act: the coarser the topology is on X/ ∼,
the easier it will be for q : X → X/ ∼ to be continuous: indeed if we gave it
the indiscrete topology then every map from a topological space into it would be
continuous. But if X/ ∼ has the indiscrete topology then it is very unlikely that
the induced map F : X/ ∼→ Y will be continuous.

A little thought yields the following thought: of all topologies on X/ ∼ that make
q : X → X/ ∼ continuous, we want the finest one – that gives all the maps
F : X → Y the best possible chance of being continuous. It is fairly clear from
general nonsense that there will be a finest topology that makes q continuous (we
will meet such general nonsense considerations in the following section), but in this
case we can be more explicit: if V ⊂ X/ ∼ is open, we need q−1(V ) to be open.
Therefore, if

τ = {V ⊂ Y | q−1(V ) is open}
is a topology, it must be the finest such topology. In fact τ is a topology: since
q−1(∅) = ∅ is open in X, ∅ ∈ τ ; since q−1(X/ ∼) = X is open in X, X/ ∼∈ τ ; if for
all i ∈ I, Vi ∈ τ then q−1(Vi) is open in X, hence so is

⋃
i∈I q

−1(Vi) = q−1(
⋃
i∈I Vi)

and thus
⋃
i∈I Vi ∈ τ ; and finally if V1, V2 ∈ τ then q−1(V1) and q−1(V2) are open

in X so q−1(V1 ∩ V2) = q−1(V1) ∩ q−1(V2) is open in X, so V1 ∩ v2 ∈ τ .
And now the moment of truth: let F : X/ ∼→ Y be a map such that

f = F ◦ q for a continuous map f : X → Y . Does our “best chance topol-
ogy”8 τ on X/ ∼ make F continuous? Happily, this is easily answered. Let
W ⊂ Y be open. Since f = F ◦ q for a continuous function f : X → Y , we
have f−1(W ) = (F ◦ q)−1(W ) = q−1(F−1(W )) is open in X. Thus by the very
definition of τ , because q−1(F−1(W )) is open in X we have that F−1(W ) is open
in X/ ∼. Thus we have found the right topology τ on X/ ∼: we call it the identi-
fication space topology.

Having defined the identification space associated to an equivalence relation on
a topological space we now wish to define quotient maps. This is a fine distinction
but an important one, and it can be explained via the examples above. We found
an equivalence relation ∼ on [0, 1] for which the identification space [0, 1]/ ∼ is
homeomorphic to the circle S1; if ϕ : [0, 1]/ ∼→ S1 is such a homeomorphism, then
we are more interested in the map ϕ ◦ q : [0, 1] → S1 than the map q itself. We
would like a definition of “quotient map” which applies to [0, 1] → S1, and simi-
larly we want quotient maps R→ S1, R2 → S1×R, R2 → S1×S1 and [0, 1]N → SN .

As a side remark, the situation here is a close analogue of one that arises in group
theory. If G is a group and H is a subgroup then we use H to define an equivalence
relation ∼H on G: g1 ∼H g2 iff g1g

−1
2 ∈ H. In this case the equivalence classes

are the cosets {gH | g ∈ G}, and we have a natural map q : G → G/H = G/ ∼H ,
g 7→ gH. If moreover H is normal in G then there is a unique group structure on

8For A. Russell: the Swan topology? The Pinocchio topology??
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G/H such that q becomes a surjective group homomorphism. This is the analogue
of what we’ve done so far. But in group theory one goes farther: if f : G → G′

is any surjective homomorphism of groups, then its kernel H is a normal sub-
group, the map f is constant on ∼H -equivalence classes and thus factors through
F : G/H → G′. But now the fundamental isomorphism theorem kicks in to say
that F is an isomorphism of groups. As a result, we may regard any surjective
group homomorphism f : G→ G′ as realizing G′ as a quotient of G...meaning that
there is a unique group isomorphism F : G/Ker(f)→ G′ such that f = F ◦ q.

We return to the topological situation: let f : X → Y be a surjective continu-
ous map of topological spaces. Let ∼f be the equivalence relation on X given by
x1 ∼ x2 ⇐⇒ f(x1) = f(x2). Then f is constant on ∼f -equivalence classes, so by
our above discussion, if q : X → X/ ∼f is the identification map, we get a unique
continuous function F : X/ ∼f→ Y such that

f = F ◦ q.

The map F is a bijection: this has nothing to do with topology and holds whenever
we factor a map of sets through the associated equivalence relation ∼f . We leave
the verification of this as a simple but important exercise. We thus find ourself in a
position of nonanalogy with the group theoretic case: namely the map F : X/ ∼f→
Y is a continuous bijection of topological spaces...but it does not automatically
follow that F is a homeomorphism! Indeed it is necessary and sufficient that F be
an open map, i.e., if V ⊂ X/ ∼f is open then F (V ) is open in Y . Now comes the
following simple but important result.

Proposition 3.21. Let f : X → Y be a continuous surjective map of topolog-
ical spaces. Let ∼f be the above equivalence relation, q : X → X/ ∼f the identifi-
cation map and F : X/ ∼f→ Y the unique continuous map such that f = F ◦ q,
which as above is a bijection. The following are equivalent:
(i) F is a homeomorphism.
(ii) For all V ⊂ Y , we have that V is open if and only if f−1(V ) is open in X.
When these equivalent conditions hold we say that f : X → Y is a quotient map.

Proof. (i) =⇒ (ii): We have already seen that F is a continuous bijection,
so it is a homeomorphism iff it is an open map. Suppose F is open: then for
W ⊂ X/ ∼f , W is open iff F (W ) is open in Y . Now let V ⊂ Y . If V is open, then
since f is continuous, f−1(V ) is open in X. On the other hand if V is not open,
then F−1(V ) is not open in X/ ∼f , and then by definition of the quotient topology

f−1(V ) = (q ◦ F )−1(V ) = F−1(q−1(V ))

is not open in X.
(ii) =⇒ (i): Let W ⊂ X/ ∼f be open. Since q is continuous, q−1(W ) is open.
Since F is a bijection, we have

f−1(F (W )) = (F ◦ q)−1(F (W )) = q−1(F−1(F (W ))) = q−1(W ).

Thus f−1(F (W )) is open, which by assumption implies F (W ) is open. Thus F is
an open map, hence as above it is a homeomorphism. �

Exercise 3.26. Let f : X → Y be a surjective map of topological spaces. Show
that the following are equivalent:
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(i) f is a quotient map.
(ii) For all subsets Z ⊂ Y , Z is closed iff f−1(Z) is closed in X.

In theory the definition of a quotient map is simple and clean. In practice deter-
mining whether a continuous surjection is a quotient map can be a nontrivial task.
The following result gives two pleasant sufficient conditions for this.

Proposition 3.22. Let f : X → Y be a continuous surjection. If f is either
open or closed, it is a quotient map.

Proof. A continuous surjection f : X → Y is a quotient map iff for all V ⊂ Y ,
if f−1(V ) then V is open iff for all Z ⊂ Y , if f−1(Z) is closed then Z is closed.
Since f is surjective, for all B ⊂ Y we have f(f−1(B)) = B. Thus if f is open and
V ⊂ Y is such that f−1(V ) is open, then V = f(f−1(V )) is open. Similarly, if f is
closed and Z ⊂ Y is such that f−1(Z) is closed, then Z = f(f−1(Z)) is closed. �

Exercise 3.27. Let f : X → Y be a map of sets. We say that a subset A ⊂ X
is saturated if A = f−1(f(A)). We say that a subset B ⊂ Y is saturated if
B = f(f−1(B)).
a) Show: A ⊂ X is saturated iff it is a union of fibers f−1(y) for y ∈ Y .
b) Show that B ⊂ Y is saturated iff B ⊂ f(X). In particular, if f is surjective then
every subset is saturated.
c) Show that for all A ⊂ X, f−1(f(A)) is the smallest saturated subset of X
containing A. Show that for all B ⊂ Y , f(f−1(B)) is the largest saturated subset
of Y contained in B.
d) Let S(X) be the set of saturated subsets of X and let S(Y ) be the set of saturated
subsets of Y (with respect to the map f , in both cases). Show that

A ∈ S(X) 7→ f(A), B ∈ S(Y ) 7→ f−1(B)

give mutually inverse bijections between S(X) and S(Y ).

Exercise 3.28. Let f : X → Y be a surjective map of topological spaces.
a) Show that the following are equivalent:9

(i) f is a quotient map.
(ii) The open subsets of Y are precisely the images f(U) of the saturated open
subsets U of X under f .
(ii) The closed subsets of Y are precisely the images f(A) of the saturated closed
subsets A of X under f .
b) Suppose that f is moreover continuous. Show that the following are equivalent:
(i) f is a quotient map.
(ii) If U ⊂ X is open and saturated, then f(U) is open.
(iii) If A ⊂ X is closed and saturated, then f(A) is closed.
c) Show that a bijective quotient map is a homeomorphism.

Thus being a quotient map is equivalent to subtly weaker conditions than either
openness and closedness. And indeed a quotient map need not be open or closed.

Example 3.14. For any family {Xi}i∈I of nonempty topological spaces, every
projection map πi :

∏
i∈I Xi → Xi is continuous, surjective and open and thus

a quotient map. In general projections are not closed, e.g. the projection maps
R2 → R are not closed.

9This is almost a restatement of what we’ve already done, but it provides a useful way for
thinking about quotient maps.
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Example 3.15. Let f : [0, 2π] → S1 by f(θ) = (cos θ, sin θ). Then f is a
continuous surjection. Like any continuous map of compact spaces, it is closed, so
is a quotient map. However [0, π) is open and f([0, π)) is not, so f is not open.

Producing a quotient map which is neither open nor closed takes a little more work.
The next two exercises accomplish this.

Exercise 3.29. Let f : X → Y be a continuous map. A section of f is a
continuous map σ : Y → X such that f ◦ σ = 1Y . Show that if f admits a section,
it is a quotient map.

Exercise 3.30. Let π1 : R × R → R be projection onto the first coordinate:
(x, y) 7→ x. Let A = {(x, y) ∈ R2 | x ≥ 0 or y = 0}. Let f = π1|A : A→ R.
a) Show that f is quotient map. (Suggestion: use the previous exercise.)
b) Show that f is neither open nor closed.

Exercise 3.31.
a) For a quotient map f : X → Y , show: the following are equivalent:
(i) For all y ∈ Y , {y} is closed.10

(ii) All fibers f−1(y) are closed subsets of X.
b) The rational numbers Q are a (normal, since R is commutative) subgroup of R.
We have a quotient map of groups q : R → R/Q. In particular this is a quotient
by a continuous relation so we may put the identification space topology on R/Q.
Show that in the resulting topology, for no y ∈ R/Q is {y} closed.

Part b) of the above exercise gives in particular a quotient map f : X → Y in which
X is Hausdorff and Y is not. By part a), this occurs because Q is not closed in
R (rather it is proper and dense). Having the fibers be closed is a nice, checkable
condition. Unfortunately this condition checks for something weaker than what
we really want, which is that Y be Hausdorff. There is (much) more to say on
Hausdorff quotient spaces, but we will content ourselves with the following result.

Proposition 3.23. Let q : X → Y be an open quotient map, and let ∼ be the
corresponding equivalence relation on X: i.e., x1 ∼ x2 ⇐⇒ q(x1) = q(x2). The
following are equivalent:
(i) Y is Hausdorff.
(ii) The relation ∼ is a closed subset of X ×X.

Proof. We may assume that Y = X/ ∼.
(i) =⇒ (ii): The map q× q : X×X → Y ×Y is continuous. Since H is Hausdorff,
the diagonal ∆ ⊂ Y × Y is closed, so

∼= (q × q)−1(∆)

is closed in X ×X. (Note that this implication did not use that q is open.)
(ii) =⇒ (i): Since q is open, so is q × q. Let U = X ×X\ ∼. By assumption U is
open, hence so is

(Y × Y ) \∆ = (q × q)(U).

Thus ∆ is closed in Y × Y so Y is Hausdorff. �

10We say that Y is “separated”; this property will be studied in detail in the next chapter.
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Exercise 3.32. Let q : X → Y be a quotient map with corresponding equiva-
lence relation ∼ viewed as a subset of X ×X. Consider the map

q × q : X ×X → Y × Y, (x1, x2) 7→ (q(x1), q(x2)).

a) Show: q × q is continuous and surjective.
b) Let τ be the product topology on Y × Y and let τQ be the quotient topology on
Y × Y induced from q × q. Show that τQ ⊃ τ .
c) Show that if τ = τQ and ∼ is closed in X ×X then Y is Hausdorff.
d) Show: if q is open then τQ = τ .
e) Give an example in which τQ ) τ .

The previous results give us reason to want our quotient maps to be open. The
following exercise gives a useful instance in which this is the case.

Exercise 3.33. Let X be a topological space, and let G be a group acting on
X such that for all g ∈ G, g• : X → X is a homeomorphism.
a) Show that the relation ∼ on X defined by x1 ∼ x2 iff there is g ∈ G with gx1 = x2

is an equivalence relation. We write X/G for X/ ∼ and call it the orbit space.
b) Show that the quotient map q : X → X/G is open.

10. Initial and Final Topologies

10.1. Definitions.

Let {Yi}i∈I be a family of topological spaces, letX be a set, and let {fi : X → Yi}i∈I
be a family of functions. We will use this data to define a topology on X, the ini-
tial topology. Indeed, consider the family of all topologies τ on X with respect
to which fi : X → Yi is continuous for all i ∈ I. The discrete topology is such a
topology. It exists and is evidently the finest such topology. Moreover we did not
need a family of maps fi : X → Yi to put the discrete topology on X, so this is
a clue that going the other way will be more interesting. Namely, we consider the
coarsest possible topology on X which makes each fi continuous. It is not hard
to see abstractly that such a thing exists: let T be the set of all topologies on X
making each fi continuous. By Exercise X.X, τ =

⋂
σ∈T σ is a topology on X. For

all i ∈ I, if Vi ⊂ Yi is open, then f−1(Vi) ∈ σ for all σ ∈ T , so f−1(Vi) ∈ τ . Thus
(X, τ) is the coarsest possible topology that makes each fi continuous.

Let us describe τ in a slightly different way. In order for each fi : X → Yi to
be continuous it is necessary and sufficient for every open Vi ⊂ Yi that f−1

i (Vi) is

open in X. Thus {f−1
i (Vi)} ⊂ τ , and since τ is the coarsest possible topology with

this property, it must be the topology generated by f−1
i (Vi): that is, τ consists of

arbitrary unions of finite intersections of the subbasic sets f−1
i (Vi).

Example 3.16. (Subspace Topology)

Example 3.17. (Product Topology)

There is a difference between the two examples. In the case of the inclusion map
ι : Y ↪→ X given by a subset Y of a topological space X, it is not just true that
ι−1(V ) generates the subspace topology: in fact every element of the subspace
topology is of that form. However in the case of a product topology – even in very
nice cases like R×R – we need to take finite intersections to get our canonical base
and then we need to take arbitrary unions to get the product topology.
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Exercise 3.34. Let Y be a topological space, let X be a set and let f : X → Y
be a map. Show: {f−1(V ) | V is open in Y } is the initial topology on X.

Proposition 3.24. (Universal Property of Initial Topologies) Let {Yi}i∈I be a
family of topological spaces, let X be a set, and let {f : X → Yi}i∈I be a family of
maps. We endow X with the initial topology. Then for any topological space Z and
any function g : Z → X, the following are equivalent:
(i) g : Z → X is continuous.
(ii) fi ◦ g : Z → Yi is continuous for all i ∈ I.

Proof. �

Exercise 3.35. a) Let X have the weak topology induced by a family {fi : X →
Yi}i∈I of maps. For each i ∈ I, let Ji be a set and let {gij : Yi → Zj}j∈Ji be family
of continuous maps. Suppose that each Yi has the weak topology induced by the
family {gij : Yi → Zj}j∈Ji of maps. Show: X has the weak topology induced by the
family {gij ◦ fi : X → Zj}i∈I,j∈Ji of maps.
b) Deduce: if Z ⊂ X with inclusion map ι : Z → X, then Z has the weak topology
induced by the family {fi ◦ ι : Z → Yi}i∈I of maps.

10.2. Embeddings and the Initial Topology.

A family {fi : X → Yi}i∈I of functions on a set X separates points of X if
for all x 6= y ∈ X we have fi(x) 6= fi(y) for some i ∈ I. The family separates
points from closed sets if for all closed subsets A of X and points p ∈ X \ A,

there is i ∈ I such that fi(p) /∈ fi(A).

Theorem 3.25. Let {fi : X → Yi}i∈I be a family of continuous maps, let
Y =

∏
i∈I Yi, and let f = (fi) : X → Y be the corresponding continuous map.

Then:
a) f is injective iff {fi} separates points of X.
b) The map f : X → f(X) is open if {fi} separates points from closed subsets.
c) (Embedding Lemma) In particular, if all points in X are closed and {fi} separates
points from closed sets, then f : X → Y is a topological embedding.

Proof. a) This is immediate from the definition.
b) Let p ∈ X, and let U be a neighborhood of p. It is enough to show that f(U)
contains the intersection of an open neighborhood V of f(p) with f(X). Let i ∈ I
be such that fi(p) /∈ fi(X \ U)). We may take V = π−1

i (Yi \ fi(X \ U)).
c) Since points are closed and continuous functions separate points from closed
subsets, continuous functions separate points. We apply parts a) and b). �

The Embedding Lemma will be used later in the proof of the all-important Ty-
chonoff Embedding Theorem. Notice that its proof followed almost immediately
from the definitions involved. We now wish to go a bit deeper, following [Wi], by
connecting the condition that a family of maps {fi : X → Yi} yields a topological
embedding f = (fi) : X →

∏
i∈I Yi to initial topologies.

Theorem 3.26. Let {fi : X → Xi}i∈I be a family of continuous maps of
topological spaces. Let f : X →

∏
i∈I Xi be the map x 7→ {fi(x)}i∈I . The following

are equivalent:
(i) The map f : X →

∏
i∈I Xi is a topological embedding.
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(ii) The space X has the initial topology induced by the family {fi}i∈I , and the
family {fi}i∈I separates points of X.

Proof. [Wi, p. 56]. �

Let X be a topological space, and let {Xi}i∈I be an indexed family of topological
spaces. For each i ∈ I, let fi : X → Xi be a function.

Theorem 3.27. Let f : X → Xi be a family of continuous functions. The
following are equivalent:
(i) The family separates points from closed sets in X.
(ii) The family {f−1

i (Vi) | i ∈ I, Vi open in Xi} is a base for the topology of X.

Proof. (i) =⇒ (ii): Let U be an open set of X and p ∈ U . Let A = X \ U .
Then A is closed and does not contain p, so by hypothesis there is some i ∈ I such
that fi(p) /∈ fi(A), which in turn means that there is some open neighborhood
Vi of fi(p) in Xi which is disjoint from f(A). Then W = f−1

i (Vi) is an open
neighborhood of p disjoint from A and thus contained in U .
(ii) =⇒ (i): let A be closed in X and let p ∈ X \A. Then U = X \A is open and
contains p. The given hypothesis implies that U contains an open neighborhood of
p of the form f−1

i (Vi) for some i ∈ I and Vi open in Xi. If y ∈ Vi∩fi(A), then there

is a ∈ A with fi(a) ∈ Vi, so a ∈ f−1
i (Vi) ⊂ U , contradiction. Thus Vi ∩ fi(A) = ∅

and fi(p) ∈ Vi, so fi(p) /∈ fi(A). �

Corollary 3.28. If {fi : X → Xi}i∈I is a family of continuous functions on
the topological space X which separates points from closed sets, then the topology
on X is the initial topology induced by the maps {fi}i∈I .

Proof. By Theorem 3.27, {f−1
i (Vi) | i ∈ I, Vi open in Xi} is a base for the

topology of X. But to say that X has the weak topology is to say that this family
forms a subbase for the topology of X: okay. �

Exercise 3.36. Let π1, π2 : R2 → R be the two coordinate projections.
a) Show: {π1, π2} does not separate points from closed sets in R2.
b) Show: R2 has the weak topology induced by π1 : R2 → R, π2 : R2 → R.

11. Compactness

11.1. First Properties.

A topological space is quasi-compact if every open cover admits a finite subcover.
A topological space is compact if it is quasi-compact and Hausdorff.

Exercise 3.37. Show that a topological space X is quasi-compact iff it satisfies
the finite intersection property: if {Fi}i∈I is a family of closed subsets of X
such that for all finite subsets J ⊂ I,

⋂
i∈J Fi 6= ∅, then

⋂
i∈I Fi = ∅.

Lemma 3.29. Let C be a compact subset of the Hausdorff space X, and let
p ∈ X \ C. Then there are disjoint open subsets U, V ⊂ X with p ∈ U and C ⊂ V .

Proof. Since p /∈ C and X is Hausdorff, for each y ∈ C we may choose disjoint
open neighborhoods Uy of p and Vy of y. Then {Vy}y∈Y is an open cover of the

compact space Y , so there is a finite subcover, say Y ⊂
⋃N
i=1 Vyi . We may take

U =
⋂N
i=1 Uyi and V =

⋃N
i=1 Vyi . �
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Proposition 3.30. a) A closed subspace of a quasi-compact space is quasi-
compact, and a closed subspace of a compact space is compact.
b) If X is Hausdorff and C ⊂ X is compact, then C is closed.

Proof. a) Let X be quasi-compact and let Y ⊂ X be closed. Let {Vi}i∈I
be a family of open subsets of Y which cover Y . By definition of the subspace
topology, for each i ∈ I there is an open subset Ui ⊂ X with Vi = Ui ∩ Y . Then
{Ui}i∈I ∪ {X \ Y } is an open covering of the quasi-compact space X, so there is a
finite subcovering:

X =

N⋃
i=1

Ui ∪ (X \ Y ).

Intersecting with Y gives

Y =

N⋃
i=1

(Ui ∩ Y ) ∪ (X \ Y ) ∩ Y =

N⋃
i=1

Vi.

Since (all) subspaces of Hausdorff spaces are Hausdorff, a closed subspace of a
compact space is compact.
b) Let p ∈ X \C. By Lemma 3.29, there are disjoint open sets U containing p and
V containing C. In particular p ∈ U ⊂ X \ C, so p ∈ (X \ C)circ. Since this holds
for all p, X \ C is open and thus C is closed. �

Exercise 3.38. a) Show: a finite union of quasi-compact subsets is quasi-
compact.
b) Show: a countably infinite union of compact subsets need not be compact.
c) (WARNING!) Show: The intersection of two quasi-compact sets need not be
quasi-compact.
d) Show: a finite intersection of compact subsets is compact.

Exercise 3.39. a) Show that compactness is not a hereditary property.
b) A topological space is hereditarily compact if every subspace is compact. Show
that a topological space is hereditarily compact iff it is finite.
c) Show that any indiscrete space is hereditarily quasi-compact. Deduce that there
exist hereditarily quasi-compact spaces of all possible cardinalities. (We will later
study hereditarily quasi-compact spaces and see that in particular they are precisely
those spaces for which the open subsets satisfy the Ascending Chain Condition.)

Theorem 3.31. Quasi-compactness is an imagent property: if X is quasi-
compact and f : X → Y is a continuous surjection, then Y is quasi-compact.

Proof. Let V = {Vi}i∈I be an open covering of Y . For each i ∈ I, let
Ui = f−1(Vi). Then each Ui is open in X and

X = f−1(Y ) = f−1(
⋃
i∈I

Vi) =
⋃
i∈I

f−1(Vi) =
⋃
i∈I

Ui,

so U = {Ui}i∈I is an open covering of X. Since X is quasi-compact, there is a finite
subset J ⊂ I such that X =

⋃
i∈J Ui, and then

Y = f(X) = f(
⋃
i∈J

Ui) =
⋃
i∈J

f(Ui) =
⋃
i∈J

Vi,

so {Vi}i∈J is a finite subcovering. �
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Corollary 3.32. (Extreme Value Theorem) If X is quasi-compact and f :
X → R is continuous, f is bounded and attains its maximum and minimum values.

Proof. By Theorem 3.31, f(X) is a compact subset of the metric space R,
hence is closed and bounded. Thus f(X) contains its infimum and supremum. �

A topological space is pseudocompact if every continuous real-valued function
on that space is bounded. Thus the Extreme Value Theorem states quasi-compact
spaces are pseudocompact. At first glance it seems to give a little more – the
attainment of the maximum and minimum – but in fact that comes along for free.

Exercise 3.40. Let X be a pseudocompact space, and let f : X → R be a
continuous function. Show that f attains its maximum and minimum values.

Exercise 3.41. A topological space is irreducible if it is nonempty and is not
the union of two proper closed subsets.
a) Show that a continuous image of an irreducible space is irreducible.
b) Show that a topological space X is irreducible and Hausdorff iff #X = 1.
c) Show that an irreducible space is pseudocompact.

We saw – well, up to a big theorem whose proof still lies ahead of us – that every
pseudocompact metric space is compact. As the terminology suggests, this is far
from being true for arbitrary topological spaces: there is quite a menagerie of
pseudo-compact noncompact spaces.

Exercise 3.42. Let X be an infinite set endowed with the particular point
topology (you pick the point!).
a) Show: X is irreducible, hence pseudocompact.
b) Show: X is not quasi-compact.

It follows from Theorem 3.31 that quasi-compactness is a factorable property: it
passes from a nonempty Cartesian product to each factor space. Of course the next
question to ask is whether quasi-compactness is productive, i.e., must all products
of quasi-compact spaces be quasi-compact? Since Hausdorffness is faithfully pro-
ductive, it would then follow that compactness is faithfully productive.

It turns out that the productivity of quasi-compactness is true, rather difficult
to prove, and of absolutely ubiquitous use in the subject: it is perhaps the single
most important theorem of general topology! It is certainly easily said:

Theorem 3.33. (Tychonoff) Arbitrary products of quasi-compact spaces are
quasi-compact. It follows that arbitrary products of compact spaces are compact.

We are not going to prove the general case of Tychonoff’s Theorem in this section.
On the contrary, a clean conceptual proof of Tychonoff’s Theorem will be the main
application of our general study of convergence in topological spaces, to which we
devote an entire chapter. However it is much easier to prove the result for finite
products, and though that will turn out to be logically superfluous (i.e., the proof
of the general case will not rely on this) nevertheless the proof showcases some
important ideas, so we will give it now.

Theorem 3.34. (Tube Lemma) Let X be a topological space and let Y be a
quasi-compact topological space. Let x0 ∈ X, and let N be a neighborhood of {x0}×
Y in the product space X × Y . Then there is a neighborhood U of x0 in X such
that U × Y ⊂ N .
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Proof. For each y ∈ Y , choose a basic open subset Uy × Vy of X × Y with
(x0, y) ⊂ Uy × Vy ⊂ N . Then {Uy × Vy}y∈Y is an open cover of the quasi-compact
space11 {x0} × Y , and we may extract a finite subcover, say {Ui × Vi}ni=1. Then
U =

⋂n
i=1 Ui is an open neighborhood of x0 in X. Let (x, y) ∈ U × Y . For at least

one i, we have (x0, y) ∈ Ui × Vi, so

(x, y) ∈ U ∩ Vi ⊂ Ui ∩ Vi ⊂ N .
It follows that U × Y ⊂ N . �

Corollary 3.35. (Little Tychonoff Theorem) Let X1, . . . , XN be quasi-compact

topological spaces. Then X =
∏N
i=1Xi is quasi-compact in the product topology.

Proof. Induction reduces us to the case N = 2. Let U be an open cover of
X1 × X2. For each x ∈ X1, let Ux be a finite subset of U which covers {x} × X2

(Slice Lemma again). Then Nx =
⋃
Ux is an open neighborhood of {x}×X2. Since

X2 is quasi-compact, by the Tube Lemma there is an open neighborhood Wx of
x0 in X such that Wx × X2 ⊂ Nx. Since X1 is quasi-compact, there is a finite
subset set {x1, . . . , xm} of X1 such that

⋃m
i=1Wxi = X1. Then

⋃m
i=1 Uxi is a finite

subcover of X1 ×X2. �

Exercise 3.43. Suppose a topological space Y satisfies the conclusion of the
Tube Lemma. Show that for all topological spaces X, the projection map π1 : X ×
Y → X is a closed map.

Remark 3.36. It turns out to be true that for a topological space, being quasi-
compact, satisfying the conclusion of the Tube Lemma and projection maps being
closed are all equivalent. This requires tools we have not yet developed and we will
return to it later.

11.2. Variations on a theme.

A topological space X is sequentially compact if every sequence admits a con-
vergent subsequence.

A topological space X is countably compact if every countable open cover
{Un}∞n=1 admits a finite subcover. This is equivalent to the finite intersection
property for countable families {Fn}∞n=1 of closed subsets. By passing from Fn to
Fn =

⋂n
i=1 Fi, we see that a space is countably compact iff every nested sequence

of nonempty closed subsets has nonempty intersection.

A topological space X is limit point compact if every infinite subset Y ⊂ X
has a limit point in X, i.e., there exists x ∈ X such that for every open neighbor-
hood U of x, U \ {x} ∩ Y 6= ∅.

Thus Bolzano-Weierstrass asserts that [a, b] is limit point compact, whereas Theo-
rem 1.13 asserts, in particular, that [a, b] is sequentially compact.

Exercise 3.44. a) Show: a sequentially compact space is pseudocompact.
b) Show: a closed subspace of a sequentially compact space is sequentially compact.
c) Must a sequentially compact subspace of a Hausdorff space be closed?

11Here we use the Slice Lemma.
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Proposition 3.37. Let X be a topological space.
a) If X is countably compact, it is limit point compact.
b) In particular a compact space is limit point compact.
c) If X is sequentially compact, it is countably compact.
d) In particular a sequentially compact space is limit point compact.

Proof. a) We establish the contrapositive: suppose there exists an infinite
subset of X with no limit point; then there exists a countably infinite subset A ⊂ X
with no limit point. Such a subset A must be closed, since any element of A \ A
is a limit point of A. Moreover A must be discrete: for each a ∈ A, since a is not
a limit point of A, there exists an open subset U such that A ∩ U = {a}. Now
write A = {an}∞n=1, and define, for each N ∈ Z+, FN = {an}∞n=N . Then each FN
is closed, any finite intersection of FN ’s is nonempty, but

⋂∞
N=1 FN = ∅, so X is

not countably compact.
b) Clearly a compact space is countably compact; now apply part a).
c) Let {Fn}∞n=1 be a nested sequence of closed subsets of X, and choose for all
n ∈ Z+ a point xn ∈ Fn. By sequential compactness, after passing to a subsequence
– let us suppose we have already done so and retain the current indexing – we get
x ∈ X such that xn → x. We claim x ∈

⋂∞
n=1 Fn. Suppose not: then there is

N ∈ Z+ such that x /∈ FN . But then U = X \ FN is an open neighborhood of x,
so for all sufficiently large n, xn ∈ U and thus xn /∈ FN . But as soon as n ≥ N we
have Fn ⊂ FN and thus xn /∈ Fn, contradiction.
d) Apply part c) and then part a). �

Proposition 3.38.
A first countable limit point compact space in which every point is closed is sequen-
tially compact.

Proof. Let an be a sequence in X. If the image of the sequence is finite,
we may extract a constant, hence convergent, subsequence. Otherwise the image
A = {an}∞n=1 has a limit point a, and since every point of X is closed, every limit
point is an ω-limit point: every neighborhood U of a contains infinitely many points
of A. Let {Nn}∞n=1 be a nested countable neighborhood base at x. Choose n1 such
that xn1 ∈ N1. For all k > 1, choose nk > nk−1 with xnk ∈ Nk. Then xnk → x. �

Proposition 3.39. Sequential compactness is an imagent (hence also fac-
torable) property.

Proof. Let f : X → Y be a surjective continuous map, with X sequentially
compact. Let y be a sequence in Y . Since f is surjective, for all n ∈ Z+ we
may choose xn ∈ f−1(yn) and get a sequence x in X. By hypothesis, there is a
subsequence xnk converging to a point p ∈ X. Then by continuity ynk = f(xnk)
converges to f(p). �

Example 3.18. Let X = {0, 1}[0,1]: we give each factor {0, 1} the discrete
topology and X the product topology. By (a case which we have not yet proved of)
Tychonoff’s Theorem, X is compact. We claim that X is not sequentially compact.
This will show two things: that compact spaces need not be sequentially compact
and that – unlike quasi-compactness! – sequential compactness is not productive.

An element of X is a function f : [0, 1]→ {0, 1}. We define a sequence x in X
by taking xn to be the function which maps α ∈ [0, 1] to the nth digit of its binary
expansion (we avoid ambiguity by never taking a binary expansion which ends in an
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infinite sequence of 1’s). See http: // ncatlab. org/ nlab/ show/ sequentially+

compact+ space ...

Example 3.19. There are sequentially compact topological spaces which are not
compact, but the ones I know involve order topologies, which we will discuss a little
later on. For now we just record that the least uncountable ordinal and the long
line are sequentially compact but not compact.

Proposition 3.40. Sequential compactness is countably productive: if {Xn}∞n=1

is a sequence of sequentially compact spaces, then X =
∏∞
n=1Xn is sequentially

compact in the product topology.

Proof. A diagonalization argument. �

12. Connectedness

12.1. Basics.

Let X be a nonempty topological space. A presep on X is an ordered pair (U, V )
of open subsets of X with U ∪V = X, U ∩V = ∅. X certainly admits two preseps,
namely (X,∅) and (∅, X); any other presep of (U, V ) of X – i.e., in which U and
V are each nonempty – is called a separation of X.

A space X is connected if it is nonempty and does not admit a separation.

Example 3.20. Let X be a nonempty set endowed with the discrete topology.
The preseps on X correspond to the subsets of X, via Y 7→ (Y,X \ Y ). “Thus”12 a
discrete space X is connected iff #X = 1.

Let f : X → Y be a continuous map, and let (U, V ) be a presep on Y . Then
(f−1(U), f−1(V )) is a presep on X. If (U, V ) is a separation and f is surjective,
then (f−1(U), f−1(V )) is a separation on X. This shows:

Proposition 3.41. The continuous image of a connected space is connected.

In particular, let {0, 1} be a two-point discrete space, with the separation ({0}, {1}).
For a topological spaceX and a continuous function f : X → {0, 1}, (f−1({0}), (f−1({1}))
is a presep on X. Conversely, for a presep (U, V ) on X, mapping x ∈ U 7→ 0 and
x ∈ V 7→ 1 gives a continuous function f : X → {0, 1}. These constructions are
mutually inverse bijections between C(X, {0, 1}) and the set of preseps on X.

Recall that an ordered space is connected in the order topology if it is nonempty,
order-dense and Dedekind complete. It follows that a nonempty subset of R is
connected iff it is compact iff it is an interval.

Proposition 3.42. Let Y be a connected subset of a topological space X. Then
Y is connected.

Proof. We may assume without loss of generality that Y = X. We show the
contrapositive: suppose X is not connected, and let (U, V ) be a separation. Since
Y is dense in X, U ∩ Y and V ∩ Y are nonempty so the presep (U ∩ Y, V ∩ Y ) of
Y is a separation. �

12This was rather clear in any event!
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Proposition 3.43.
Let {Yi}i∈I be a nonempty family of sets in a topological space X.
a) If

⋂
i∈I Yi 6= ∅ then

⋃
i∈I Yi is connected.

b) If I is a linearly ordered set and for all i ≤ j, Yi ⊂ Yj, then
⋃
i∈I Yi is connected.

Proof. We may assume without loss of generality that X =
⋃
i∈I Yi.

a) Let x ∈
⋂
i∈I Yi. Let (U, V ) be a presep on X with x ∈ U . Then for all i ∈ I,

(Ui, Vi) = (U ∩ Yi, V ∩ Yi) is a presep on the connected space Yi. Since x ∈ Ui we
have Vi = ∅ for all i and thus

V = V ∩ (
⋃
i∈I

Yi) =
⋃
i∈I

(V ∩ Yi) =
⋃
i∈I

Vi = ∅.

Thus X admits not separation.
b) Choose i0 ∈ I and x ∈ Yi. Then X =

⋃
i∈I Yi =

⋃
i≥i0 Yi. Apply part a). �

Exercise 3.45. a) Let Y1, Y2 ⊂ X be connected subsets with Y1∩Y2 = ∅. Give
examples to show that Y1 ∪ Y2 may or may not be connected.
b) Show that in R, the intersection of any family of connected subsets is either
connected or empty.
c) Show that this fails dramatically in R2.

Exercise 3.46. Let {Yn}∞n=1 be a sequence of connected subsets of a topological
space X. Show that if for all n ∈ Z+ we have Yn ∩ Yn+1 6= ∅, then

⋃∞
n=1 Yn is

connected.

Lemma 3.44. (Caging Connected Sets) Let (U, V ) be a separation of a topolog-
ical space X and let Y ⊂ X be connected. Then Y ⊂ U or Y ⊂ V .

Proof. Let f : X → {0, 1} be the continuous function corrresponding to
(U, V ): f(U) = {0}, f(V ) = {1}. Since Y is connected, f(Y ) is connected, so
f(Y ) ∈ {0} or f(Y ) ∈ {1}. �

Theorem 3.45. Connectedness is faithfully productive: if {Xi}i∈I is a family
of nonempty spaces and X =

∏
i∈I Xi endowed with the product topology, then X

is connected iff Xi is connected for all i ∈ I.

Proof. Connectedness is an imagent property, hence factorable. The matter
of it is to show that if each Xi is connected then so is X. We do this in several
steps.
Step 1: Suppose #I = 2. In this case let us rename the factor spaces X and Y .
Since πX(X × Y ) = X and πY (X × Y ) = Y , if X × Y is connected, so are its
continuous images X and Y . Conversely, seeking a contradiction we let (U, V ) be
a separation of X × Y , and let (x1, y1) ∈ U , (x2, y2) ∈ V . Then the subset

C = ({x1} × Y ) ∪ (X × {y2})

is a union of two connected subsets which intersect at (x1, y2) so C is a connected
subset of X × Y containing (x1, y1) and (x2, y2).
Step 2: The case in which I is finite follows by induction.
Step 3: We are left with the case in which I is infinite. COMPLETE ME! �
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12.2. Path Connectedness.

A topological space X is path-connected if it is nonempty and for all x, y ∈ X
there is a continuous map γ : [0, 1]→ X with γ(0) = x, γ(1) = y. We say that γ is
a path in X from x to y.

Proposition 3.46. A path-connected topological space is connected.

Proof. Seeking a contradiction, let (U, V ) be a separation of X, choose x ∈ U ,
y ∈ V , and let γ be a path in X from x to y. Then the presep (γ−1(U), γ−1(V )) is
a separation of [0, 1] since 0 ∈ γ−1(U) and 1 ∈ γ−1(V ): contradiction. �

Exercise 3.47. Let n ≥ 2, and let Y ⊂ Rn be a countable subset. Show that
Rn \ Y is path-connected.

Exercise 3.48. A point x in a topological space x is a cut point if X is con-
nected but X \ {x} is not.
a) Show that homeomorphic spaces have the same number of cut points. Thus the
number of cut points is a cardinal invariant of a topological space.
b) Show that every point of R is a cut point.
c) Show that for n ≥ 2, Rn has no cut points.
d) Deduce that for n ≥ 2, Rn and R are not homeomorphic.
(Of course what we want to show is that if m 6= n then Rm and Rn are not homeo-
morphic. This is true but – sadly enough – the proof lies beyond the scope of these
notes)

Theorem 3.47. Let f : X → Y be a continuous function, and let Γ(f) =
{(x, f(x)) ∈ X × Y } be the graph of f . Then:
a) The space Γ(f) is homeomorphic to X.
b) In particular, Γ(f) is connected iff X is connected.

12.3. Components.

Let x be a point in the space X, and let {Yi} be the family of all connected subsets
of X containing X. By Proposition X.X, C(x) =

⋃
Yi is connected. Evidently

C(x) is the unique maximal connected set containing x. It is called the connected

component of x. By X.X, C(x) ⊃ C(x) is connected, so by maximality we deduce
that C(x) is closed. Let x, y ∈ X. If C(x) ∩ C(y) 6= ∅ then X.X applies to show
that C(x)∪C(y) is a connected subset containing x and y. By maximality we have
C(x) = C(x) ∪ C(y) = C(y). It follows that {C(x)}x∈X is a partition of X by
closed subsets.

If for all x ∈ X we have C(x) = {x}, we say that X is totally disconnected.
Clearly a discrete space is totally disconnected; interestingly, there are totally dis-
connected spaces which are very far from being discrete.

We say points x, y in a space X can be separated in X if there is a separa-
tion (U, V ) with x ∈ U , y ∈ V . If we had C(x) = C(y), then (U ∩ C(x), V ∩ C(y))
would give a separation of C(x), contradiction. So two points which lie in the same
connected component cannot be separated in X.

Let X be a topological space. We consider the relation R on X defined by xRy if
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x and y cannot be separated in X; it is clearly reflexive and symmetric. Suppose
xRy and yRz but that there is a separation (U, V ) of X with x ∈ U and y ∈ V .
Then either z lies in U , in which case y and z can be separated, or z lies in V , in
which case x and y can be separated: either way, a contradiction. It follows that
R is an equivalence relation; we denote the R-equivalence class of x by CQ(x) and
call it the quasi-component of x in X. By the previous paragraph, we have

∀x ∈ X,C(x) ⊂ CQ(x).

Exercise 3.49. Recall that a subset Y of a topological space X is clopen if it
is both open and closed. Thus, a nonempy proper subset Y is clopen iff (Y,X \ Y )
is a separation of X.
a) Let x ∈ X. Show: the quasi-component CQ(x) is the intersection of all clopen
subsets Y of X containing x.
b) Deduce: for all x ∈ X, CQ(x) is closed. Show by example that CQ(x) need not
be open.

Exercise 3.50. Let X be the following subspace of R2:

{(0, 0), (0, 1)} ∪
⋃
n∈Z+

{(1/n, y) | y ∈ [0, 1]}.

Show that C((0, 0)) = {(0, 0)} and CQ((0, 0)) = {(0, 0), (0, 1)}.

13. Local Compactness and Local Connectedness

13.1. On Properties.

By a property P of a topological space, we really mean a subclass P of the class
Top of all topological spaces, but rather than saying X ∈ P , we say that X has the
property P . In practice this is of course only natural: for instance if P is the class
of all compact topological spaces, then rather than say “X lies in the class of all
compact topological spaces” we will say “X has the property of compactness” (of
course for many purposes it would be better still to say “X is compact”).

A property of P of topological spaces is a topological property if whenever
a topological space X has that property, so does every topological space Y which
is homeomorphic to X. Really this just formalizes what is good sense: topology
is by definition the study of topological properties of topological spaces. Thus for
instance for a space Y , the property “X is a subspace of Y ” is not a topological
property: for instance assuming that by S1 we mean precisely the unit circle in R2,
then R is not a subspace of S1. However R is homeomorphic to a subspace of S1:
indeed, removing any point from S1 we get a homeomorphic copy of R.

The above example shows that any property of topological spaces which is not
itself topological can be made so simply by replacing “is” with “is homeomorphic
to”. In the above case, the topologization (?!?) of the property “X is a subspace
of Y ” (for fixed Y , say) is “X can be embedded in Y ”. Honestly, when someone
speaks or writes about a property of topological spaces that is not topological (or
not manifestly topological), it is likely that they really mean the topologization
of that property. For instance, anyone who asks “Which topological spaces are
subspaces of compact spaces?” surely really mean “Which topological spaces are
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homeomorphic to subspaces of compact spaces – i.e., can be embedded in a compact
space?” The latter is a great question, by the way. We will answer it later on.

13.2. Local Compactness.

The only problem with compactness is that it can be too much to ask for: even
the real numbers are not compact. However, every closed bounded interval in R is
compact. The goal of this section is to formalize and study the desirable property
of the real numbers corresponding to the compactness of closed, bounded intervals.

Let X be a topological space, and let p be a point of X. In line with our above
conventions about localization of topological properties, we say that X is weakly
locally compact at p if there is a compact neighborhood C of p. Let us spell that
out more explicitly: C is a compact subset of X and p lies in the interior of p. A
topological space is weakly locally compact if it is Hausdorff and weakly locally
compact at every point.

A topological space is locally compact at p if there is a neighborhood base
{Ci}i∈I at p with each Ci compact. Again we spell it out: this means that for
every neighborhood N of p, there is i ∈ I such that

p ∈ Ci ⊂ N.
A topological space is locally compact if it is Hausdorff and locally compact at
each of its points.

Note that at the cost of preserving one terminological convention – that when
a topological property is most important and useful in the presence of the Haus-
dorff axiom, we give the cleaner name to the version of the property that includes
the Hausdorff axiom – we are breaking another.

Exercise 3.51. Show that the line with two origins is locally compact at each
of its points but is not locally compact.

Example 3.21. Let y ∈ R. Then for all x, z ∈ R with x < y < z, we have that
[x, z] is a compact neighborhood of y. Thus R is weakly locally compact. Moreover,
if N is any neighborhood of y then for some ε > 0 we have

[y − ε

2
, y +

ε

2
] ⊂ (y − ε, y + ε) ⊂ N.

This shows that – as promised – R is locally compact.

Proposition 3.48. a) Let X be a Hausdorff space, and let p ∈ X. If X is
weakly locally compact at p, then X is locally compact at p.
b) A Hausdorff space in which each point admits a compact neighborhood is locally
compact.
c) Compact spaces are locally compact.

Proof. a) Let C be a compact neighborhood of p. Given a neighborhood U
of p, our task is to produce a compact set K with

p ∈ K◦ ⊂ K ⊂ U.
Notice that if we can complete our task with the open neighborhood U◦ we can
certainly do it with U , so we may assume that U is open. Then A = C \ U is
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closed in the compact space C so is compact. By Lemma 3.29 there are disjoint
open subsets W1 containing p and W2 containing A. Then V = W1 ∩ C◦ is an
open neighborhood of p disjoint from A = C \ U and thus contained in U . Since
X is Hausdorff, C is closed, and thus V ⊂ C is compact. Because V ⊂ W1 and
W1 ∩W2 = ∅, we have

V ∩ (C \ U) = V ∩A ⊂ V ∩W2 = ∅

and thus

p ∈ V ◦ ⊂ (V )◦V ⊂ U.
So K = V does the job.
b) This follows immediately.
c) So does this: if X is compact, then it is Hausdorff and for all p ∈ X, X is a
compact neighborhood of p. �

Exercise 3.52. For a subset Y of a topological space X, the following are
equivalent:
(i) For all p ∈ Y , there is an open neighborhood Up of p in X such that Up ∩ Y is
closed in Up.
(ii) There is an open subset U ⊂ X and a closed subset A ⊂ X with Y = U ∩A.
(iii) Viewed as a subspace of Y , Y is open.
A subset satisfying these equivalent conditions is called locally closed. (The term
applies most sensibly to the first condition.)

Exercise 3.53.
a) Show: a finite intersection of locally closed sets is locally closed.
b) Show: the complement of a locally closed set need not be locally closed.
c) Let X be a topological space, and let A be the algebra of sets generated by the
topology τX : that is, τX ⊂ A, A is closed under finite union, finite intersection
and taking complements, and A is the minimal family of sets satisfying these two
properties. We say that the elements of A are constructible sets. Show: a subset
Y ⊂ X is constructible iff it is a finite union of locally closed sets.

Proposition 3.49. Let X be a topological space.
a) If X is locally compact and Y ⊂ X is open, then Y is locally compact.
b) If X is locally compact and Y ⊂ X is closed, then Y is locally compact.
c) If Y1, Y2 ⊂ X are both locally compact, so is Y1 ∩ Y2.
d) Suppose X is Hausdorff. For Y ⊂ X, the following are equivalent:
(i) Y is locally closed.
(ii) Y is locally compact.

Proof. a) For any topological property P, an open subspace of a locally P
space is locally P. Local compactness is not quite defined this way, so we also need
to mention that a subspace of a Hausdorff space is Hausdorff.
b) If Y is closed and Cp is a compact neighborhood of p in X, then Cp ∩ Y a
neighborhood of p in Y which is closed in Cp hence compact.
c) Let p ∈ Y1 ∩ Y2, let K1 be a compact neighborhood of p in Y1 and let K2 be
a compact neighborhood of p in Y2. Then K1 ∩ K2 is compact. Moreover write
K◦1 = U1 ∩ Y1 and K◦2 = U2 ∩ Y2 with U1, U2 open in X. Then

p ∈ K◦1 ∩K◦2 = (U1 ∩ U2) ∩ (Y1 ∩ Y2),
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so K1 ∩K2 is a neighborhood of p in Y1 ∩ Y2.
d) (i) =⇒ (ii): Write Y = U ∩A with U open, A closed, and apply a), b) and c).
(ii) =⇒ (i): (A. Fischer) For p ∈ Y , let Vp be an open neighborhood of p in Y
whose closure in Y , say clY (Vp), is compact. We have

clY (Vp) = Vp ∩ Y.

Then Vp ∩ Y is compact, hence closed, in X. Moreover, there is an open neighbor-
hood Wp of p in X such that Vp = Wp ∩ Y . Then

Wp ∩ Y ∩ Y = clY (Vp).

Since Wp is open, we have

Wp ∩ Y = Wp ∩ Y.
Since Wp ∩ Y ⊂Wp ∩ Y ∩ Y , we have

p ∈Wp ∩ Y ⊂Wp ∩ Y = Wp ∩ Y ⊂Wp ∩ Y ∩ Y = Wp ∩ Y ∩ Y ⊂ Y.

Then U =
⋃
y∈Y Wp is open in X and

U ∩ Y =
⋃
y∈Y

Wp ∩ Y = Y.

So Y is locally closed. �

13.3. The Alexandroff Extension.

A compactification of a topological space is X is an embedding ι : X → C
with dense image: ι(X) = C. Notice that given any embedding ι : X → C into a

compact space, we get a compactification by replacing C with ι(C).

Exercise 3.54. Suppose X is compact. Show: a map ι : X → C is a compact-
ification iff it is a homeomorphism.

The study of compactifications is a high point of general topology: it is beautiful,
rich and useful.

We will not pursue the general theory just yet but rather one simple, important
case. However we will introduce one piece of terminology: if ι : X → C is com-
pactification, the remainder is C \ ι(X). In other words, the remainder is what
we have to add to X in order to compactify it. Here we are interested in the case
in which the remainder consists of a single point.

Example 3.22. Let n ∈ Z+. By removing the point ∞ = (0, . . . , 0, 1) from
the n-sphere Sn = {(x1, . . . , xn) ∈ Rn+1 | x2

1 + . . . + x2
n+1 = 1}, we get a space

which is homeomorphic to Rn. (There is an especially nice way of doing this,
called the stereographic projection. We leave it to the reader to look into this.
If you don’t care about having such a nice map, it is much easier to construct
a homeomorphism.) Thus we get an embedding ι : Rn → Sn with one-point
remainder: Sn \ ι(Rn) = {∞}.

The goal of this section is to view the above example in reverse: i.e., to figure out
how, rather than removing a point from Sn to get Rn, to start with Rn and “add
the point at ∞” intrinsically in terms of the topology of Rn.
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Let ι : X → C be a compactification with one-point remainder – or, as one of-
ten says, a one-point compactification – say {∞} = C \ ι(X). Since C is
Hausdorff, {∞} is closed and thus ι(X) is open. Being open in a compact space,
ι(X) is locally compact; since ι : X → ι(X) is a homeomorphism, it follows that
X is locally compact. Moreover, if X were compact then ι(X) is a proper closed
subset of C, so it cannot be dense. We’ve shown the following result.

Proposition 3.50. If a topological space X admits a compactification with
one-point remainder, it is locally compact but not compact.

Rather remarkably, Proposition 3.50 has a converse: if X is locally compact and not
compact, it has a compactification with one-point remainder. This was shown by
Alexandroff. To see how to do it, let’s cheat and run it backwards: i.e., we will con-
tinue to contemplate a compactification ι : X → C with one-point remainder {∞}
until we can understand how to build C out of X. Because the image ι(X) is open
in C, the embedding ι : X → C is an open map: this means that for every p ∈ X, a
neighborhood base at p is given by {ι(N) | N is a neighborhood of p in X}. (More
precisely, we get all neighborhoods of p in C by adding to the above neighborhood
base all sets {ι(N)∪{∞} | N is a neighborhood of p in X}. If we know a neighbor-
hood base at each point then we know the topology, so the remaining task is to find
a neighborhood base of the point∞. If N is an open neighborhood of∞ in C, then
C \N is on the one hand closed in the compact space C hence compact, and on the
other hand a subset of X, hence a compact subset of X by the intrinsic nature of
compactness. Conversely, if K ⊂ X is compact, then ι(K) is compact in C, hence
closed, and thus C \ K is an open neighborhood of ∞. It follows that the open
neighborhoods of ∞ in C are precisely the sets of the form C \K = (X \K)∪{∞}
for K compact in X.

Exercise 3.55. Let X be a topological space, and let ι1 : X → C1 and ι2 :
X → C2 be compactifications with one-point remainders ∞1 and ∞2. Show: there
is a unique homeomorphism Φ : C1 → C2 such that

ι2 = Φ ◦ ι1.

Our cheating has paid off: we now have enough information to construct a one-point
compactification of any locally compact space. In fact the construction is meaning-
ful on any topological space, and though we know it can’t yield a compactification
unless X is locally compact and not compact, nevertheless it is of some interest, so
following Alexandroff we phrase it in that level of generality.

Let X be a topological space, and let ∞ be anything which is not an element
of X. Let X∗ = X ∪ {∞} and let ι : X → X∗ be the inclusion map. On X∗ we
put the Alexandroff topology: the open subsets consist of all open subsets U of
X together with all subsets of the form X∗ \K = (X \K) ∪ {∞} for K a closed
compact subset of X (note that we are not assuming that X is Hausdorff).

Exercise 3.56. a) Show: the Alexandroff topology on X∗ is a topology.
b) The Alexandroff topology on X∗ is quasi-compact.

Theorem 3.51. Let X be a topological space, let X∗ = X ∪{∞} endowed with
the Alexandroff topology, and let ι : X → X∗ be the inclusion map. Then:
a) The map ι : X → X∗ is an open embedding, called the Alexandroff extension.
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b) The following are equivalent:
(i) X is not quasi-compact.
(ii) X is dense in X∗.
c) The following are equivalent:
(i) X is locally compact.
(ii) X∗ is compact.

Proof. �

In particular the Alexandroff extension gives a “quasi-compactification” of any
space which is not itself quasi-compact. (However, quasi-compactifications are much
less well-behaved and ultimately less interesting than compactifications.)

13.4. Local Connectedness.

Example 3.23. (Topologist’s Sine Curve) Let Y be the subspace {x, sin 1
x ) |

x ∈ (0, 1]} of R2 and let X be its closure. X consists of Y together with all points
(0, y) with y ∈ [−1, 1]. Then:
(i) Y is path-connected: indeed, it is the graph of the continuous function sin 1

x :
(0, 1]→ R so it is homeomorphic to (0, 1].
(ii) X is compact (Heine-Borel).
(iii) X, being the closure of a connected set, is connected.
(iv) X is not path-connected.
(v) X is not locally connected.
This example shows first that unlike connectedness, the closure of a path-connected
subset need not be path-connected, and second that a connected space need not be
locally connected, even if it is compact. In particular, weakly locally connected does
not imply locally connected.

Exercise 3.57. Prove assertions (iii) and (iv) of the preceding example.

Proposition 3.52. For a topological space X, the following are equivalent:
(i) X is (homeomorphic to) the coproduct of its components.
(ii) Every component of X is open.
(iii) X is weakly locally connected.

Proof. (i) =⇒ (ii) =⇒ (iii) is immediate.
(iii) =⇒ (ii): Let p ∈ X, let C(p) be the component of p. Let q ∈ C(p); since the
components partition X we have C(p) = C(q). By weak local connectedness, q has
a connected neighborhood N and thus

q ∈ N ⊂ C(q) = C(p),

so q ∈ C(p)◦. It follows that C(p) is open. �

Proposition 3.53. For a topological space X, the following are equivalent:
(i) X is locally connected.
(ii) For every open subset U of X and every point p of U , the connected component
of p in U is open (in U or equivalently in X).

Proof. (i) =⇒ (ii): Let U ⊂ X be open, and let C be a component of U . If
p ∈ C, there is a connected neighborhood V of p which is contained in U . Since
C is the maximal connected subset of U which contains p we must have V ⊂ C,
hence p ∈ C◦. Since p was arbitrary, C is open.
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(ii) =⇒ (i): Let p ∈ X, and let N be a neighborhood of p. By assumption, the
component C of p in N◦ is open, so C is a connected neighborhood of p contained
in N . �

Exercise 3.58. Show that in a locally connected space, every point admits a
neighborhood base of connected open neighborhoods.

14. The Order Topology

A subset U of an ordered set X is open if it is a union of open intervals. A subset
Z of an ordered set X is closed if its complement X \ Z is open.

Exercise 3.59. Show that closed intervals are closed.

The order topology on X is the family τX of all open sets in X.

Let us describe the order topology in a more down-to-earth way. The empty set is
open. We claim that a nonempty subset A ⊂ X is open iff for all b ∈ A, at least
one of the following holds:
(i) There are a, c ∈ X with a < b < c and (a, c) ⊂ A.
(ii) X has a bottom element B and there is c ∈ X with b < c and [B, c) ⊂ A.
(iii) X has a top element T and there is a ∈ X with a < b and (a,T] ⊂ A.

If this holds for each b ∈ A, then A is a union of open intervals, so is open.
Conversely, if A is open, then A is a union of open intervals ∪iIi. Thus for all b ∈ A
we must have b ∈ Ii for at least one i, and this leads to one of (i), (ii) and (iii).

Exercise 3.60. a) Let A ⊂ R be a nonempty subset. Show that A is open iff
for all a ∈ A there is ε > 0 such that (a− ε, a+ ε) ⊂ A.
b) Show that part a) holds in any ordered field.

Exercise 3.61. Let X be an ordered set, and let τX be the order topology.
a) Show that X ∈ τX .
b) Show that if {Ui}i∈I ⊂ τX , then

⋃
i∈I Ui ∈ τX : that is, a union of open subsets

is open.
c) Show that if U1, . . . , Un ∈ τX , then

⋃n
i=1 Ui ∈ τX : that is, a finite intersection

of open subsets is open.

Lemma 3.54. (Topological Ordered Induction) Let X be an ordered set, and let
S ⊂ X be both open and closed in the order topology. Then S is inductive iff it
satisfies (IS1): (−∞, a] ⊂ S for some a ∈ X.

Exercise 3.62. a) Prove Lemma 3.54.
b) Suppose X is dense, and let S ⊂ X be open. Show that X satisfies (IS2).
c) Give a counterexample to part b) with the word “dense” omitted.

Theorem 3.55.
Let X be a Dedekind complete ordered set, and let Y ⊂ X be a subset.
a) If X is complete, then Y is complete iff it is closed.

b) Define Ỹ to be Y together with supY if Y is unbounded above and inf Y if Y is

unbounded below. Then Y is Dedekind complete iff Ỹ is closed.

Proof.
a) Let B ⊂ A be nonempty and bounded above. Since X is Dedekind complete,
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the supremum s = supB exists in X; what we must show is that s ∈ B. Suppose
not: then s ∈ X \ B, which is an open set, so there is a bounded open interval
s ∈ I ⊂ X \ B. If X is not left-discrete at s, then there is s′ ∈ I, s′ < s, which is
a smaller upper bound for A in X than s: contradiction. So X is left-discrete at s:
there is s′ < s such that (s′, s) = ∅. If s ∈ A, then s ∈ B and we’re done. If not,
then again s′ is a smaller upper bound for A in X than s: contradiction.
b) This is just a matter of dealing properly with endpoints. Let XC be obtained
from X by adjoining a top element if X doesn’t have one and a bottom element if
X doesn’t have one. Since X is Dedekind complete, XC is complete. Let

YC = Ỹ ∪ {B,T}.
Since YC is obtained by Y by adding certain top and/or bottom elements (perhaps
twice), Y is Dedekind complete iff YC is Dedekind complete iff YC is complete iff

(by part a)) YC is closed in XC . Also Ỹ is closed in X iff YC is closed in XC , so Y

is Dedekind complete iff Ỹ is closed in X. �

Corollary 3.56. If X is Dedekind complete, then so is every interval in X.

Proof. If I is an interval, then Ĩ is a closed interval. Apply Theorem 3.55. �

Exercise 3.63. Show: if X is connected in the order topology, then X is dense.

Theorem 3.57. For an ordered set X, the following are equivalent:
(i) X is dense and Dedekind complete.
(ii) X is connected in the order topology.

Proof.
(i) =⇒ (ii): Let ∅ 6= U1, U2 ⊂ X be open with U1 ∩ U2 = ∅, U1 ∪ U2 = X.
Step 1: Suppose B ∈ X, and without loss of generality suppose B ∈ U1. Then by
Topological Ordered Induction U1 is inductive. Since U1 is Dedekind complete, by
the Principle of Ordered Induction U1 = X. But this forces U2 = ∅: contradiction.
Step 2: We may assume X 6= ∅ and choose a ∈ X. By Corollary ??, Step 1 applies
to show [a,∞) connected. A similar downward induction argument shows (−∞, a]
is connected. Since X = (−∞, a]∪[a,∞) and (−∞, a]∩[a,∞) 6= ∅, X is connected.
(ii) =⇒ (i): By Exercise X.X, X is dense. Suppose we have S ⊂ X, nonempty,
bounded below by a and with no infimum. Let L be the set of lower bounds for
S, and put U =

⋃
b∈L(−∞, b), so U is open and U < S. We have a 6= inf(S), so

a ∈ U , and thus U 6= ∅. If x 6∈ U , then x ≥ L and, indeed, since L has no maximal
element, x > L, so there exists s ∈ S such that s < x. Since the order is dense there
is y with s < y < x, and then the entire open set (y,∞) lies in the complement of
U . Thus U is also closed. Since X is connected, U = X, contradicting U < S. �

An ordered set X is compact if for any family {Ui}i∈I of open subsets of X with⋃
i∈I Ui = X, there is a finite subset J ⊂ I with

⋃
i∈J Ui = X.

Theorem 3.58. For a nonempty ordered set X, the following are equivalent:
(i) X is complete.
(ii) X is compact.

Proof. (i) =⇒ (ii): Let U = {Ui}i∈I be an open covering of X. Let S be the
set of x ∈ X such that the covering U ∩ [B, x] of [B, x] admits a finite subcovering.
B ∈ S, so S satisfies (IS1). Suppose U1∩ [B, x], . . . , Un∩ [B, x] covers [B, x]. If there
exists y ∈ X such that [x, y] = {x, y}, then adding to the covering any element
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Uy containing y gives a finite covering of [B, y]. Otherwise some Ui contains x and
hence also [x, y] for some y > x. So S satisfies (IS2). Now suppose that x 6= B and
[B, x) ⊂ S. Let ix ∈ I be such that x ∈ Uix , and let y < x be such that (y, x] ∈ Uix .
Since y ∈ S, there is a finite J ⊂ I with

⋃
i∈J Ui ⊃ [a, y], so {Ui}i∈J ∪ Uix ⊃ [a, x].

Thus x ∈ S and S satisfies (IS3). Thus S is an inductive subset of the Dedekind
complete ordered set X, so S = X. In particular T ∈ S, hence the covering has a
finite subcovering.
(ii) =⇒ (i): For each x ∈ X there is a bounded open interval Ix containing x. If
X is compact, {Ix}x∈X has a finite subcovering, so X is bounded, i.e., has 0 and
1. Let S ⊂ X. Since inf ∅ = 1, we may assume S 6= ∅. Since S has an infimum
iff S does, we may assume S is closed and thus compact. Let L be the set of lower
bounds for S. For each (b, s) ∈ L×S, consider the closed interval Cb,s := [b, s]. For

any finite subset {(b1, s1), . . . , (bn, sn)} of L×S,
⋂N
i=1[bi, si] ⊃ [max bi,min si] 6= ∅.

Since S is compact there is y ∈
⋂
L×S [b, s] and then y = inf S. �

Corollary 3.59. (Generalized Heine-Borel)
a) For a linearly ordered set X, the following are equivalent:
(i) X is Dedekind complete.
(ii) A subset S of X is a compact subset iff it is closed and bounded. (iii) For all
x < y ∈ X, the interval [x, y] is a compact subset.
b) The equivalent properties of part a) imply that X is locally compact.

Proof. a) (i) =⇒ (ii): A compact subset of any ordered space is closed and
bounded. Conversely, if X is Dedekind complete and S ⊂ X is closed and bounded,
then S is complete by Theorem 3.55 and thus compact by Theorem 3.58.
(ii) ⇐⇒ (iii): Every closed, bounded interval is a closed, bounded set, and every
closed bounded set is a closed subset of a closed bounded interval.
(ii) =⇒ (i): If S ⊂ X is nonempty and bounded above, let a ∈ S. Then
S′ = S ∩ [a,∞) is bounded, so S′ is compact and thus S′ is complete by Theorem
3.58. The least upper bound of S′ is also the least upper bound of S.
b) Let p ∈ X. If p is neither the bottom nor the top element, then {[p−, p+] | p− <
p < p+} is a neighborhood base at p. If p is the bottom element and not the top
element, then {[p, p+] | p < p+} is a neighborhood base at p. If p is the top element
and not the bottom element, then {[p−, p] | p− < p} is a neighborhood base at p.
If p is both the top and bottom element, then X = {p} is compact. �

There is some subtle care taken in the statement of Corollary 3.59: we speak about
compact subsets. This is because of the following issue: there is another topology
to put on a subset Y of an ordered set (X,≤): namely the order topology on
(Y,≤). This is somewhat analogous to the situation for metric spaces, and in that
case we saw that the “submetric topology” coincides with the subspace topology.
Unfortunately that need not be the case here.

Lemma 3.60. Let (X,≤) be an ordered set, and let Y ⊂ X be a subset.
a) The subspace topology on Y is finer than the order topology on (Y,≤).
b) If Y is convex, the subspace and order topologies on Y coincide.
c) If Y is compact for the subspace topology, then the subspace and order topologies
on Y coincide.

Proof. a) FIX ME!!
b) FIX ME!!
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c) By part a), the identity map from Y with the subspace topology to Y with the
order topology is a continuous bijection from a compact space to a Hausdorff space,
hence a homeomorphism. �

Example 3.24. Let X = [0, 1] and let Y = {0} ∪ {1/2 + 1
n}n≥2. Then:

• X is compact in the order topology.
• The subspace Y is not closed in X.
• Therefore Y is not compact in the subspace topology.
• Y is compact in the order topology.

14.1. Further Exercises.

Exercise 3.64. Let ω1 be the least uncountable ordinal. In particular ω1 is an
ordered set, so give it the order topology. Show that ω1 is:
a) sequentially compact but not compact.
b) pseudocompact.
c) first countable but not separable.
d) countably compact and not Lindeöf.
e) not metrizble.

Exercise 3.65. Let X be an ordered set, and let f : X → X be continuous for
the order topology. Observe that the statement of Theorem 2.107 is meaningful in
this context.
a) Give an example in which X is (nonempty!) and complete but the result fails:
there is no fixed point, there is x1 ∈ X with f(x1) > x1 and x2 ∈ X with f(x2) < x2.
b) Suppose X is Dedekind complete and densely ordered. Does the conclusion of
Theorem 2.107 continue to hold?



CHAPTER 4

Convergence

1. Introduction: Convergence in Metric Spaces

Recall the notion of convergence of sequences in metric spaces. In any set X, a
sequence in X is just a mapping a mapping x : Z+ → X, n 7→ xn. If X is endowed
with a metric d, a sequence x in X is said to converge to an element x of X if
for all ε > 0, there exists an N = N(ε) such that for all n ≥ N , d(x, xn) < ε. We
denote this by x → x or xn → x. Since the ε-balls around x form a local base
for the metric topology at x, an equivalent statement is the following: for every
neighborhood U of x, there exists an N = N(U) such that for all n ≥ N , xn ∈ U .

We have the allied concepts of limit point and subsequence: we say that x is a
limit point of a sequence xn if for every neighborhood U of x, the set of n ∈ Z+

such that xn ∈ U is infinite. A subsequence of x is obtained by choosing an infi-
nite subset of Z+, writing the elements in increasing order as n1, n2, . . . and then
restricting the sequence to this subset, getting a new sequence y, k 7→ yk = xnk .

The study of convergent sequences in the Euclidean spaces Rn is one of the main-
stays of any basic analysis course. Many of these facts generalize immediately to
the context of an arbitrary metric space (X, d).1

Proposition 4.1. Each sequence in (X, d) converges to at most one point.

Proposition 4.2. Let Y be a subset of (X, d). For x ∈ X, the following are
equivalent:
a) x ∈ Y .
b) There exists a sequence x : Z+ → Y such that xn → x.

In other words, the closure of a set can be realized as the set of all limits of convegent
sequences contained in that set.

Proposition 4.3. Let f : X → Y be a mapping between two metric spaces.
The following are equivalent:
a) f is continuous.
b) If xn → x in X, then f(xn)→ f(x) in Y .

In other words, continuous functions between metric spaces are characterized as
those which preserve limits of convergent sequences.

Proposition 4.4. Let x be a sequence in (X, d). For x ∈ X, the following are
equivalent:
a) The point x is a limit point of the sequence x.
b) There exists a subsequence y of x converging to x.

1We recommend that the reader who finds any of these facts unfamiliar should attempt to
verify them on the spot. On the other hand, more general results are coming shortly.
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Moreover, there are several results in elementary real analysis that exploit, in var-
ious ways, the compactness of the unit interval [0, 1]:

Theorem 4.5. (Bolzano-Weierstrass) Every bounded sequence in Rn has a
convergent subsequence.

Theorem 4.6. (Heine-Borel) A subset of the Euclidean space Rn is compact
iff it is closed and bounded.

In any metric space there are several important criteria for compactness. Two of
the most important ones are given in the following theorem. Recall that in any
topological space X, we say that a point x is a limit point of a subset A if for
every neighborhood N of x we have N \ {x} ∩A 6= ∅. (In other words, x lies in the
closure of A \ {x}.)

Theorem 4.7. Let (X, d) be a metric space. The following are equivalent:
a) Every sequence has a convergent subsequence.
b) Every infinite subset has a limit point.
c) Every open covering {Ui} of X has a finite subcovering (i.e., X is compact).

Theorem 4.7 is of a less elementary character than the preceding results, and we
shall give a proof of it later on.

Taken collectively, these results show that, in a metrizable space, all the impor-
tant topological notions can be captured in terms of convergent sequences (and
subsequences). Since every student of mathematics receives careful training on the
calculus of convergent sequences, this provides significant help in the topological
study of metric spaces.

It is clearly desirable to have an analogous theory of convergence in arbitrary
topological spaces. Using the criterion in terms of neighborhoods, one can certainly
formulate the notion of a convergent sequence in a topological space X. However,
we shall see that there are counterexamples to each of the above results for se-
quences in an arbitrary topological space.

There are two reasonable responses to this. First, we can search for sufficient,
or necessary and sufficient, conditions on a space X for these results to hold. In
fact relatively mild sufficient conditions are not so difficult to find: the Hausdorff
axiom ensures the uniqueness of limits; for most of the other properties the key
result is the existence of a countable base of neighborhoods at each point.

The other response is to find a suitable replacement for sequences which ren-
ders correct all of the above results in an arbitrary topological space. Clearly this is
of interest in applications: one certainly encounters “in nature” topological spaces
which are not Hausdorff (e.g. Zariski topologies in algebraic geometry) or which
do not admit a countable neighborhood base at each point (e.g. weak topologies in
functional analysis), and one does not want to live in eternal fear of meeting a space
for which sequences are not sufficient.2 However, the failure of the above results
to hold should suggest to the student of topology that there is “something else out
there” which is the correct way to think about convergence in topological spaces.
Knowing the “correct” notion of convergence leads to positive results in the theory

2Unfortunately many of the standard texts used for undergraduate courses on general topol-
ogy (and there are rarely graduate courses on general topology nowadays) seem content to leave

their readers in this state of fear.
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as well as the avoidance of negative results: for instance, armed with this knowledge
one can prove the important Tychonoff theorem in a few lines, whereas other proofs
are significantly longer and more complicated (even in a situation when sequences
suffice to describe the topology of the space!). In short, there are conceptual ad-
vantages to knowing “the truth” about convergence.

Intriguingly, there are two different theories of convergence which both success-
fully generalize the convergence of sequences in metric spaces: nets and filters. The
theory of nets was developed by the early twentieth century American topologists
E.H. Moore and H.L. Smith (their key paper appeared in 1922). In 1950 J.L. Kel-
ley published a paper which made some refinements on the theory, cosmetic and
otherwise (in particular the name “net” appears for the first time in his paper).
The prominent role of nets in his seminal text General Topology cemented the
centrality of nets among American (and perhaps all anglophone) topologists. Then
there is the rival theory of filters, discovered by Henri Cartan in 1937 amidst a
Séminaire Bourbaki. Cartan successfully convinced his fellow Bourbakistes of the
elegance and utility of the theory of filters, and Bourbaki’s similarly influential
Topologie Generale introduces filters early and often. To this day most conti-
nental mathematicians retain a preference for the filter-theoretic language.

For the past fifty years or so, most topology texts have introduced at most one
of nets and filters (possibly relegating the other to the exercises). As Gary Laison
has pointed out, since both theories appear widely in the literature, this practice
is a disservice to the student. The fact that the two theories are demonstrably
equivalent – that is, one can pass from nets to filters and vice versa so as to pre-
serve convergence, in a suitable sense – does not mean that one does not need to be
conversant with both of them! In fact each theory has its own merits. The theory
of nets is a rather straightforward generalization of the theory of sequences, so that
if one has a sequential argument in mind, it is usually a priori clear how to phrase
it in terms of nets. (In particular, one can make a lot of headway in functional anal-
ysis simply by doing a search/replace of “sequence” with “net.”) Moreover, many
complicated looking limiting processes in analysis can be expressed more simply
and cleanly as convergence with respect to a net – e.g., the Riemann integral. One
may say that the main nontriviality in the theory of nets is the notion of “subnet”,
which is more complicated than one at first expects (in particular, a subnet may
have larger cardinality!). The corresponding theory of filters is a bit less straightfor-
ward, but most experts agree that it is eventually more penetrating. One advantage
is that the filter-theoretic analogue of subnet is much mor transparent: it is just
set-theoretic containment. Filters have applications beyond just generalizing the
notion of convergent sequences: in completions and compactifications, in Boolean
algebra and in mathematical logic, where ultrafilters are arguably the single most
important (and certainly the most elegant) single technical tool.

2. Sequences in Topological Spaces

In this section we develop the theory of convergence of sequences in arbitrary topo-
logical spaces, including an analysis of its limitations.

2.1. Arbitrary topological spaces. A sequence x in a topological space X
converges to x ∈ X if for every neighborhood U of x, xn ∈ U for all sufficiently
large n. Note that it would obviously be equivalent to say that all but finitely
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many terms of the sequence lie in any given neighborhood U of x, which shows that
whether a sequence converges to x is independent of the ordering of its terms.3

Remark 2.1.1: The convergence of a sequence is a topological notion: i.e., if
X, Y are topological spaces, f : X → Y is a homeomorphism, xn is a sequence in
X and x is a point of X, then xn → x iff f(xn) → f(x). In particular the theory
of sequential convegence in metric spaces recalled in the preceding section applies
verbatim to all metrizable spaces.

Tournant dangereuse: Let us not forget that in a metric space we have the
notion of a Cauchy sequence, a sequence xn with the property that for all ε > 0,
there exists N = N(ε) such that m,n ≥ N =⇒ d(xm,xn) < ε, togtether with
the attendant notion of completness (i.e., that every Cauchy sequence be conver-
gent) and completion. Being a Cauchy sequence is not a topological notion: let
X = (0, 1), Y = (1,∞), f : X → Y , x 7→ 1

x , and xn = 1
n . Then xn is a Cauchy

sequence, but f(xn) = n is not even bounded so cannot be a Cauchy sequence.
(Indeed, the fact that boundedness is not a topological property is certainly rele-
vant here.) This means that what is, for analytic applications, arguably the most
important aspect of the theory – what is first semester analysis but an ode to the
completeness of the real numbers? – cannot be captured in the topological context.
However there is a remedy, namely Weil’s notion of uniform spaces, which will
be discussed later on.

Example 4.1. Let X be a set with at least two elements endowed with the
indiscrete topology. Let {xn} be a sequence in X and x ∈ X. Then xn converges
to x.

Example 4.2. A sequence is eventually constant if there exists an x ∈ X
and an N such that n ≥ N =⇒ xn = x; we say that x is the eventual value
of the sequence (note that this eventual value is unique). In any topological space,
an eventually constant sequence converges to its eventual value. However, such a
sequence may have other limits as well, as in the above example.

Exercise 4.1. In a discrete topological space X, a sequence xn converges to x
iff xn is eventually constant and x is its eventual value.

In particular the limit of a convergent sequence in a discrete space is unique. (Since
discrete spaces are metrizable, by Remark 2.1.1 we knew this already.) The follow-
ing gives a generalization:

Proposition 4.8. A sequence in a Hausdorff space converges to at most one
point.

Proof. If xn → x and x′ 6= x, there exist disjoint neighborhoods N of x and
N ′ of x′. Then only finitely many terms of the sequence can lie in N ′, so the
sequence cannot converge to x. �

Let ι : Z+ → Z+ be a monotone increasing injection. If {xn} is a sequence in a
space X, then so too is {xι(n)}, a subsequence of {xn}. Immediately from the
definitions, if a sequence converges to a point x then every subsequence converges to
x. On the other hand, a divergent sequence may admit a convergent subsequence.

3This aspect of sequential convergence will not be preserved in the theory of nets.
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We say that x is a limit point of a sequence xn if every neighborhood N of x
contains infinitely many terms from the sequence.

A space X is first countable at x ∈ X if there is a countable neighborhood
base at x. A space is first countable if it is first countable at each of its points.

In a metric space, the family {B(x, 1
n )}n∈Z+ is a countable neighborhood base

at x. So metrizable spaces are first countable. Note that this countable base at
x is nested: N1 ⊃ N2 ⊃ . . .. This is not particular to metric spaces: if {Nn} is
a countable base at x, then N ′n = ∩ni=1Ni is a nested countable base at x. This
simple observation justifies the role that sequences play in the topology of a first
countable space.

Proposition 4.9. Let X be a first countable space and Y ⊂ X. Then Y is the
set of all limits of sequences from Y .

Proof. Suppose yn is a sequence of elements of Y converging to x. Then every
neighborhood N of x contains some yn ∈ Y , so that x ∈ Y . Conversely, suppose
x ∈ Y . If X is first countable at x, we may choose a nested collection N1 ⊃ N2 ⊃ . . .
of open neighborhoods of x such that every neighborhood of x contains some Nn.
Each Nn meets Y , so choose yn ∈ Nn ∩ Y , and yn converges to y. �

Proposition 4.10. Let f be a map of sets between the topological spaces X
and Y . Assume that X is first countable. The following are equivalent:
a) f is continuous.
b) If xn → x, f(xn)→ f(x).

Proof. a) =⇒ b): Let V be any open neighborhood of f(x); by continuity
there exists an open neighborhood U of x such that f(U) ⊂ V . Since xn → x,
there exists N such that n ≥ N implies xn ∈ U , so that f(xn) ∈ V . Therefore
f(xn)→ f(x).

b) =⇒ a): Suppose f is not continuous, so that there exists an open subset V
of Y with U = f−1(V ) not open in X. More precisely, let x be a non-interior point
of U , and let {Nn} be a nested base of open neighborhoods of x. By non-interiority,
for all n, choose xn ∈ Nn \ U ; then xn → x. By hypothesis, f(xn)→ f(x). But V
is open, f(x) ∈ V , and f(xn) ∈ Y \ V for all n, a contradiction. �

Proposition 4.11. A first countable space in which each sequence converges
to at most one point is Hausdorff.

Proof. Suppose not, so there exist distinct points x and y such that every
neighborhood of xmeets every neighborhood of Y . Let Un be a nested neighborhood
basis for x and Vn be a nested neighborhood basis for y. By hypothesis, for all n
there exists xn ∈ Un ∩ Vn. Then xn → x, xn → y, contradiction. �

Proposition 4.12. Let {xn} be a sequence in a first countable space. The
following are equivalent:
a) x is a limit point of the sequence.
b) There exists a subsequence converging to x.

Proof. a) =⇒ b): Take a nested neighborhood basis Nn of x, and for each
k ∈ Z+ choose successively a term nk > nk−1 such that xnk ∈ Nk. Then xnk → x.
The converse is almost immediate and does not require first countability. �
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The following example shows that the hypothesis of first countability is necessary
for each of the previous three results.

Example 4.3. (Cocountable Topology): Let X be an uncountable set. The
family of subsets U ⊂ X with countable complement together with the empty set
forms a topology on X, the cocountable topology. This is a non-discrete topology
(since X is uncountable). In fact it is not even Hausdorff, if Nx and Ny are any
two neighborhoods of points x and y, then X \ Nx and X \ Ny are countable, so
X \ (Nx ∩ Ny) = (X \ Nx) ∪ (X \ Ny) is uncountable and Nx ∩ Ny is nonempty.
However, in this topology xn → x iff xn is eventually constant with eventual value
x. Indeed, let xn be a sequence for which the set of n such that xn 6= x is infinite.
Then X \ {xn 6= x} is a neighborhood of x which omits infinitely many terms xn of
the sequence, so xn does not converge to x. This implies that the set of all limits of
sequences from a subset Y is just Y itself, whereas for any uncountable Y , Y = X.

Exercise 4.2. A point x of a topological space is isolated if {x} is open.
a) If x is isolated, and xn → x, then xn is eventually constant with limit x.
b) Note that Example 2.1.3 shows that the converse is false in general. Show how-
ever, that if X is first countable and x is not isolated, then there exists a non-
eventually constant sequence converging to x.

2.2. Sequential spaces. Note that the hypothesis of first countability ap-
peared as a sufficient condition in most of our results on the topological adequacy
of convergent sequences. It is natural to ask to what extent it is necessary.

To explore this let us define the sequential closure sc(Y ) of a subset Y of X
to be the set of all limits of convergent sequences from Y . We have just seen that
sc(Y ) ⊂ Y in any space, sc(Y ) = Y in a first countable space, and in general we
may have sc(Y ) 6= Y .

One calls a space Fréchet if sc(Y ) = Y for all Y . However, a weaker condi-
tion is in some ways more interesting. Namely, define a space to be sequential if
sequentially closed subsets are closed. Here are some easy facts:

(i) Closed subspaces of sequential spaces are sequential.
(ii) A space is Fréchet iff every subspace is sequential.
(iii) A space is sequential iff sc(Y ) \ Y 6= ∅ for every nonclosed subset Y .
(iv) Let f : X → Y be a map between topological spaces. If X is sequential, then
f is continuous iff xn → x =⇒ f(xn)→ f(x).

Next we note that in any space, A 7→ sc(A) satisfies the three Kuratowski clo-
sure axioms (KC1), (KC2), (KC4), but not in general (KC3). As the proof of
[Topological Spaces, Thm. 1] shows, the sequentially closed sets therefore satisfy
the axioms (CTS1)-(CTS3) for the closed sets of a new, finer topology τ ′ on X.

Consider next the prospect of iterating the sequential closure. If X is not se-
quential, there exists some nonclosed subset A whose sequential closure is equal to
A itself, and then no amount of iteration will bring the sequential closure to the
closure. Conversely, if X is sequential but not Fréchet, then for some nonclosed sub-
set A of X we have A is properly contained in sc(A) which is properly contained



3. NETS 131

in sc(sc(A)). For any ordinal number α, we can define the α-iterated sequential
closure scα, by scα+1(A) = sc(scα(A)), and for a limit ordinal β we define

scβ(A) =
⋃
α<β

scα(A).

There is then some ordinal α such that scα(A) = A for all subsets A of X. The
least such ordinal is called the sequential order, and is an example of an ordinal
invariant of a topological space.

These ideas have been studied in considerable detail, notably by S.P. Franklin
(to whom the term sequential space is due) in the 1960’s. The wikipedia entry
is excellent and contains many references to the literature.

One would think that there could arise, in practice, situations in which one was
naturally led to consider sequential closure and not closure. (In fact, it seems to me
that this is the case in the theory of equidistribution of sequences. But not being
too sure of myself, I will say nothing further about it here.) However, we shall not
pursue the matter further here, but rather turn next to two ways of “repairing” the
notion of convergence by working with more general objects than sequences.

3. Nets

3.1. Nets and subnets.

On a set I equipped with a binary relation ≤, consider the following axioms:

(PO1) For all i ∈ I, i ≤ i. (reflexivity).
(PO2) For all i, j, k ∈ I, i ≤ j, j ≤ k implies i ≤ k. (transitivity).
(PO3) If i ≤ j and j ≤ i, then i = j (anti-symmetry).
(D) For i, j ∈ I there exists k ∈ I such that i ≤ k and j ≤ k.

If ≤ satisfies (PO1), (PO2) and (PO3), it is called a partial ordering. We trust
that this is a familiar concept. If ≤ (PO1) and (PO2) it is called a quasi-ordering.4

Finally, a relation which satisfies (PO1), (PO2) and (D) is said to be directed,
and a nonempty set I endowed with ≤ is called a directed set.

Example 4.4. A nonempty set I endowed with the “maximal” (discrete??)
relation I × I – i.e., x ≤ y for all x, y ∈ I is directed, but not partially ordered if I
has more than one element.

Example 4.5. Any totally ordered set is a directed set; in particular the positive
integers with their standard ordering form a directed set.

A subset J of a directed set I is cofinal if for all i ∈ I, there exists j ∈ J such that
j ≥ i. For instance, a subset of Z+ is cofinal iff it is infinite. A cofinal subset of a
directed set is itself directed.

Example 4.6. The neighborhoods of a point x in a topological space form a
directed (and partially ordered) set under reverse inclusion. More explicitly, we
define N1 ≤ N2 iff N1 ⊃ N2. A cofinal subset is precisely a neighborhood basis.

4Alternate terminology: preordering.
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If X has a countable basis at x, then we saw that we could take a nested neighbor-
hood basis. In other words, the directed set of neighborhoods has a cofinal subset
which is order isomorphic to the positive integers Z+, and this structure was the
key to the efficacy of sequential convergence in first countable spaces. This suggests
modiyfying the definition of convergence by replacing sequences by functions with
domain in an aribtrary directed set:

A net x : I → X in a set X is a mapping from a directed set I to X.

Some further net-theoretic (but not yet topological) terminology: a net x : I → X
is eventually in a subset A of X if there exists i ∈ I such that for all j ≥ i, xj ∈ A.
Moreover, x is cofinally in A if the set of all i such that xi ∈ A is cofinal in I.

Exercise 4.3. For a net x : I → X and a subset A of X, the following are
equivalent:
(i) x is cofinal in A.
(ii) x is not eventually in X \A.

Now suppose that we have a net x• : I → X in a topological space X. We say that
x• converges to x ∈ X – and write x → x or xi → x – if for every neighborhood
U of x, there is an element i ∈ I such that for all j ≥ i, xj ∈ U . In other words,
xi → x iff x is eventually in every neighborhood of x. Moreover, we say that x is a
limit point of x if x is cofinally in every neighborhood of x.

Exercise 4.4. Check that for nets with I = Z+ this reduces to the definition
of limit and limit point for sequences given in the previous section.

Now the following result almost proves itself:

Proposition 4.13. In a topological space X, the closure of any subset S is the
set of limits of convergent nets of elements of S.

Proof. First, if x is the limit of a net x of elements of S, then if x were
not in S there would exist an open neighborhood U of x disjoint from S, but the
definition of a net ensures that the set of i ∈ I for which xi ∈ U ∩S is nonempty, a
contradiction. On the other hand, assume that x ∈ S, and let I be the set of open
neighborhoods of x. For each i, select any xi ∈ i∩ S. That the net xi converges to
x is a tautology: each open neighborhood U of x correponds to some i ∈ I, and for
all j ≥ i – i.e., for all open neighborhoods V = V (j) ⊂ U = U(i) – we do indeed
have xj ∈ V . �

Proposition 4.14. For a map f : X → Y between topological spaces, the
following are equivalent:
(i) f is continuous.
(ii) If x is a net converging to x, then f(x) is a net converging to f(x) in Y .

Proposition 4.15. A space is Hausdorff iff each net converges to at most one
point.

Exercise 4.5. Prove Propositions 4.14 and 4.15.

We would now like to give the “net-theoretic analogue” of Proposition 4.12. Its
statement should clearly be the following:
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Proposition 4.16. Let x be a net in a topological spcae. The following are
equivalent:
a) x is a limit point of x.
b) There exists a subnet converging to x.

Of course, in order to make proper sense of this we need to define “subnet”: how
to do this? It is tempting to define a subnet of x : I → X as the net obtained
by restricting x to a cofinal subset of I. (At any rate, this is what I would have
guessed.) However, with this definition, a subnet of a sequence is nothing else than
a subsequence, and although this may sound appealing initially, it would mean that
Proposition 4.12 is true without the assumption of first countability. This is not
the case, as the following example shows.

Example 4.7. (Arens) Let X = Z+ × Z+, topologized as follows: every one-
point subset except (0, 0) is open, and the neighborhoods of (0, 0) are those subsets
N containing (0, 0) for which there exists an M such that m ≥M =⇒ {n | (m,n) 6
∈N} is finite: that is, N contains all but finitely many of the elements of all but
finitely many of the columns M × Z+ of X. Then X is a Hausdorff space in
which no sequence in X \ {(0, 0)} converges to (0, 0). Moreover, there is a sequence
xn ∈ X \ {(0, 0)} which has (0, 0) as a limit point, but by the above there is no
subsequence which converges to (0, 0).

So we define a subnet of a net x : I → X to be a net y : J → X for which there
exists an order homomorphism ι : J → I (i.e., j1 ≤ j2 =⇒ ι(j1) ≤ ι(j2)) with
y = x ◦ ι such that ι(J) is cofinal in I. This differs from the expected definition
in that ι is not required to be an injection. Indeed, J may have larger cardinality
than I, and this is an important feature of the definition.

Exercise 4.6. Let J and I be a directed sets. A function ι : J → I is said to be
cofinal if for all i ∈ I there exists j ∈ J such that j′ ≥ j =⇒ ι(j′) ≥ i. Show that
the order homomorphism ι required in the definition of subnet is a cofinal function.

Remark 3.1.9: Indeed, many treatments of the theory (e.g. Kelley’s) require only
that the function ι be cofinal, which gives rise to a more inclusive definition of a
subnet. The two definitions lead to exactly the same results, so the issue of which
one to adopt is purely a matter of taste. Our perspective here is that by restricting
as we have to “order-preserving subnets”, results of the form “There exists a subnet
such that. . .” become (in the formal sense) slightly stronger.5

Exercise 4.7. Let y be a subnet of x and z be a subnet of y. Show that z is
a subnet of x.

To prove Proposition 4.16 we will build a subnet in terms of the given net and the
directed set of neighborhoods of the limit point x. Here is the key result.

Lemma 4.17. (Kelley’s Lemma) Let x : I → X be a net in the topological space
X, and A a family of subsets of X. We assume:
(i) For all A ∈ A, IA := {i ∈ I | xi ∈ A} is cofinal in A.
(ii) The intersection of any two elements of A contains an element of A.
Then there is a subnet y of x which is eventually in A for all A ∈ A.

5Indeed, after gaining inspiration from the theory of filters, we will offer in §6 a definition of
subnet which is more inclusive than even Kelley’s definition and seems decidedly simpler: it does

not require an auxiliary function ι.
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Proof. Property (ii) implies that the family A is directed by ⊃. Let J be the
set of all pairs (i, A) such that i ∈ I, A ∈ A and xi ∈ A, endowed with the induced
ordering from the product I ×A. It is easy to see that J is a directed set. Indeed:
For (i, A), (i′, A′) in J , we may choose first A′′ ⊂ A′ ∩ A′′ and then i′′ ∈ I such
that i′′ ≥ i, i′′ ≥ i′ and xi′′ ∈ A′′, and then (i′′, A′′) is an element of J dominating
(i, A) and (i′, A′). Moreover, the natural map ι : J → I given by (i, A) 7→ i is an
order homomorphism. Since IA × {A} ⊂ J and IA is cofinal for all A ∈ A, ι(J) is
cofinal in I, so that y := x ◦ ι is a subnet of x. Fix A ∈ A and choose i ∈ I such
that xi ∈ A. If (i′, A′) ≥ (i, A), then xi′ ∈ A′ ⊂ A, so that y(i′,A′) = xi′ ∈ A, and y
is eventually in A. �

Now we can prove Proposition 4.16. Let x ∈ X be a limit point of a net x•. Then
the previous lemma applies to the family of all neighborhoods of x, giving us a
subnet y• : J → X of x• such that yJ → x. Conversely, if x is not a limit point
of x• then there exists a neighborhood N of x such that IN is not cofinal in I,
meaning that I is eventually in X \N . It follows that every subnet is eventually in
X \N and hence that no subnet converges to x.

Exercise 4.8. Define an “eventually constant net” and prove the following:
for a topological space X and x ∈ X, the following are equivalent:
(i) x is an isolated point of X; (ii) Every net converging to x is eventually constant.
Conclude: a nondiscrete space carries a convergent, not eventually constant net.

Exercise 4.9. Let x be a net on a set X, y a subnet of X, x a point of X and
A a subset of X.
a) If x is eventually in A, then y is eventually in A.
b) If x→ x, then y→ x.
c) If y is cofinally in A, so is x.
d) If x is a limit point of y, it is also a limit point of x.

3.2. Two examples of nets in analysis.

Example 4.8. Let A = {ai} be an indexed family of real numbers, i.e., a
function from a naked set S to R. Can we make sense of the infinite series

∑
i∈S ai?

Note that we are assuming no ordering on the terms of the series, which may look
worrisome, since in case S = Z+ it is well-known that the convergence of the series
(and its sum) will in general depend upon the ordering relation on I we use to form
the sequence of partial sums.

Nevertheless, there is a nice answer. We say that the series
∑
i∈S ai converges

unconditionally to a ∈ R if: for all ε > 0, there exists a finite subset J(ε) of S
such that for all finite subsets J(ε) ⊂ J ⊂ S, we have |a−

∑
i∈J ai| < ε.

Exercise 4.10. a) Show that if sumi∈Iai is unconditionally convergent, then
the set of indices i ∈ I for which ai 6= 0 is at most countable.
b) Suppose I = Z+. Show that a series converges unconditionally iff it converges
absolutely, i.e., iff

∑∞
i=1 |ai| <∞.

c) Define unconditional and absolute convergence of series in any real Banach space.
Show that absolute convergence implies unconditional convergence, and find an ex-
ample of a Banach space in which there exists an unconditionally convergent series
which is not absolutely convergent.6

6In fact, the celebrated Dvoretzky-Rogers theorem asserts that a Banach spaces admits an
unconditionally but nonabsolutely convergent series iff it is infinite- dimensional.
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The point is that this “new” type of limiting operation can be construed as an
instance of net convergence. Namely, let I(S) be the set of all finite subsets J of S,
directed under containment. Then given a : S → R, we can define a net x on I(S)
by J 7→

∑
i∈J ai. Then the unconditional convergence of the series is equivalent to

the convergence of the net x in R.

Exercise 4.11. Suppose that we had instead decided to define
∑
i∈S ai con-

verges unconditionally to a as: for all ε > 0, there exists N = N(ε) such that for
all finite subsets J of S with #J ≥ N we have |a−

∑
iinJ ai| < ε.

a) Show that this is again an instance of net convergence.
b) Is this equivalent to the definition we gave?

Example 4.9. The collection of all tagged partitions (P, x∗i ) of [a, b] forms a
directed set, under the relation of inclusion P ⊂ P ′ (“refinement”). A function
f : [a, b]→ R defines a net in R, namely

(P, x∗i ) 7→ R(f,P, x∗i ),
the latter being the associated Riemann sum.7 The function f is Riemann-integrable
to L iff the net converges to L.

Such examples motivated Moore and Smith to develop their generalized convergence
theory.

3.3. Universal nets. A net x : I → X in a set X is said to be universal8 if
for any subset A of X, x is either eventually in A or eventually in X \A.

Exercise 4.12. Show that a net is universal iff whenever it is cofinally in a
subset A, it is eventually in A.

Exercise 4.13. Let x : I → X be a net, and let f : X → Y be a function.
a) Show that if x is universal, so is the induced net f(x) = f ◦ x.
b) Show that the converse need not hold.

Exercise 4.14. Show that any subnet of a universal net is universal.

Example 4.10. An eventually constant net is universal.

Less trivial examples are difficult to come by. Note that a convergent net need
not be universal: for instance, take the convergent sequence xn = 1

n in [0, 1] and

A = {1, 1
3 ,

1
5 , . . .}. Then the sequence is cofinal in both A and its complement so

is not eventually in either one. Indeed, the same argument shows that a sequence
which is universal is eventually constant.

Nevertheless, one has the following result:

Theorem 4.18. (Kelley) Every net admits a universal subnet.

Proof. Let x be a net in X, and consider all collections A of subsets of X
such that:
(i) Y1, Y2 ∈ A =⇒ Y1 ∩ Y2 ∈ A.
(ii) Y1 ∈ A, Y2 ⊃ Y1 =⇒ Y2 ∈ A.

7Moreover, all of the standard variations on the definitio of Riemann integrability – e.g.

upper and lower sums – can be similarly described in terms of convergence of nets.
8Alternate terminology: ultranet.
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(iii) Y ∈ A =⇒ x is cofinal in Y .

The set of all such families is nonempty, since A = {X} is one. The collection of
such families is therefore a nonempty poset under the relation A1 ≤ A2 if A1 ⊂ A2.
The union of a chain of such families is is immediately checked to be such family,
so Zorn’s Lemma entitles us to a family A which is not properly contained in any
other such family. We claim that such an A has the following additional property:
for any A ⊂ X, either A ∈ A or X \A ∈ A.

Indeed, suppose first that for every Y ∈ A, x is cofinal in A ∩ Y . Then the
fmaily A′ of all sets containing A∩Y for some Y ∈ A satisfies (i), (ii) and (iii) and
contains A, so by maximality A′ = A and hence A = A∩X is in A and x is cofinal
in A.

So we may assume that there exists Y ∈ A such that x is not cofinal in A∩ Y ,
i.e., x is eventually in (so a fortiori is cofinal in) X \ (A∩Y ). Then by the previous
case, X \ (Z ∩ Y ) ∈ A; by (ii) so too is

Y ∩ (X \A ∩ Y ) = Y \ (A ∩ Y ),

and then by (ii) we get X \A ∈ A.

Now we apply Kelley’s Lemma (Lemma 4.17) to the net x : I → X and the
family A: we get a subnet y• which is eventually in each A ∈ A. Since A has the
property that for all A, either A or X \A lies in A, this subnet is universal. �

At this point, the reader who is not wondering “What on earth is the point of
universal nets?” is either a genius, has seen the material before or is pathologically
uncurious. The following results provide a hint:

Proposition 4.19. For a universal net x in a topological space, and x ∈ X,
the following are equivalent:
(i) x is a limit point of x.
(ii) x→ x.

Proof. Of course (ii) =⇒ (i) for all nets. Conversely, if x is a limit point of
x, then x is eventually in every neighborhood U of x. But then, by Exercise 3.3.1,
universality implies that x is eventually in N . So x→ x. �

Proposition 4.20. Let X be a topological space. The following are equivalent:
(i) Every net in X admits a convergent subnet.
(ii) Every net in X has a limit point.
(iii) Every universal net in X is convergent.

Proof. This follows from previous results. Indeed, by Proposition 4.16 (i)
=⇒ (ii); by Proposition 4.19 (ii) =⇒ (iii); and by Theorem 4.18 (iii) =⇒ (i). �

Recall that in the special case of metric spaces these conditions hold with ”net”
replaced by “sequence”, and moreover they are equivalent to the Heine-Borel
condition that every open cover admits a finite subcover (Theorem 4.7, which we
have not yet proved). We shall now see that, for any topological space, our net-
theoretic analogues of Proposition 4.20 are equivalent to the Heine-Borel condition.

4. Convergence and (Quasi-)Compactness
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4.1. Net-theoretic criteria for quasi-compactness.

Definition: A family {Ui}i∈I of subsets of a set X is said to cover X (or be a
covering of X) if X =

⋃
i∈I Ui. A family {Fi}i∈I of subsets of a set X is said to

satisfy the finite intersection property (FIP) if for every finite subset J ⊂ I,
∩i∈JFi 6= ∅.

Theorem 4.21. For a topological space X, the following are equivalent:
a) Every net in X admits a convergent subnet.
b) Every net in X has a limit point.
c) Every universal net in X is convergent.
d) X is quasi-compact: every open covering admits a finite subcovering.
e) For every family {Fi}i∈I of closed subsets satisfying the finite intersection prop-
erty, we have ∩i∈IFi 6= ∅.

Proof. The equivalence of a), b) and c) has already been shown. The equiv-
alence of d) and e) is “due to de Morgan”: property d) becomes property e) upon
setting Fi = X \ Ui, and conversely. Thus it suffices to show b) =⇒ e) =⇒ b).

Assume b), and let {Fi}i∈I be a family of closed subsets satisfying the finite
intersection property. Then the index set I is directed under reverse inclusion. For
each i ∈ I, choose any xi ∈ Fi; the assignment i 7→ xi is then a net x in X. Let x
be a limit point of x, and assume for a contradiction that there exists i such that
x does not lie in Fi. Then x ∈ Ui = X \ Fi, and by definition of limit point there
exists some index j > i such that xj ∈ Ui. But j > i means Fj ⊂ Fi, so that
xj ∈ Fj ∩ Ui ⊂ Fi ∩ Ui = (X \ Ui) ∩ Ui = ∅, contradiction! Therefore x ∈ ∩i∈IFi.

Now assume e) and let x : I → X be a net in X. For each i ∈ I, define

Fi = {xj | j ≥ i}. Since directedness implies that given any finite subset J of I
there exists some i ∈ I such that i ≥ j for all j ∈ J , the family {Fi}i∈I of closed
subsets satisfies the finite intersection condition. Thus by our assumption there
exists x ∈ ∩i∈IFi. Let U be any neighborhood of x and take any i ∈ I. Then
x ∈ Fi, so that Fi ∩ U is nonempty. In other words, there exists j ≥ i such that
xj ∈ U , and this means that x is cofinal in U . Since U was arbitrary, we conclude
that x is a limit point of x. �

Theorem 4.22. a) In a first countable space, limit point compactness implies
sequential compactness.
b) In a metrizable space, sequential compactness implies quasi-compactness, and
hence quasi-compactness, sequential compactness, limit point compactness, and count-
able compactness are all equivalent properties.

Proof. Suppose first that X is first countable and limit point compact, and
let x be a sequence in X. If the image of the sequence is finite, we can extract a
constant, hence convergent, subsequence. Otherwise the image is an infinite subset
of X, which (since quasi-compactness implies limit point compactness) has a limit
point x, which is in particular a partial limit of the sequence. Then, as in any first
countable space, Proposition 4.12 implies that there exists a subsequence converging
to x.

Now suppose that X is sequentially compact. For each positive integer n, let
Tn be a subset which is maximal with respect to the property that the distance
between any two elements is at least 1

n . (Such subsets exist by Zorn’s Lemma.) It is
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clear that the set Tn can have no limit points, so (because sequential compactness
implies limit point compactness) it must be finite. Since every point of X lies at
a distance at most 1

n from some element of Tn, the set
⋃
n Tn is a countable dense

subset. By Proposition ?? this implies that every open covering has a countable
subcovering. But since sequential compactness implies countable compactness, this
countable subcovering in turn has a finite subcovering, so altogether we have shown
that X is quasi-compact. �

4.2. Products of quasi-compact spaces. Let {Xi}i∈I be a family of topo-
logical spaces. Recall that the product topology on the Cartesian product X =∏
iXi is the topology whose subbase is the collection of all sets of the form π−1

i (Ui),
where πi : X → Xi is projection onto the ith factor and Ui is an open set in Xi.

An easy and important fact:

Theorem 4.23. Let x : J →
∏
iXi be a net in the product space X =

∏
iXi.

The following are equivalent:
a) The net x converges to x = (xi) in X.
b) For all i, the image net πi(x) converges to xi in Xi.

Proof. Continuous functions preserve net convergence, so a) =⇒ b). Con-
versely, suppose that x does not converge to x. Then there exists a finite subset
{i1, . . . , in} of I and open subsets Uik of xik in Xik such that x is not eventually in
∩nk=1π

−1
ik

(Uik), which in fact means that for some k x is not eventually in π−1
ik

(Uik).
But then πik(x) is not eventually in Uik and hence does not converge to xik . �

We can now prove one of the truly fundamental theorems in general topology.

Theorem 4.24. (Tychonoff Theorem) For a family {Xi}i∈I of nonempty topo-
logical spaces, the following are equivalent:
a) Each factor space Xi is quasi-compact.
b) The Cartesian product X =

∏
i∈I Xi is quasi-compact in the product topology.

Proof. That b) implies a) follows from Exercise 4.1.1, since Xi is the image
of X under the projection map Xi. Conversely, assume that each factor space Xi

is quasi-compact. To show that X is quasi-compact, we shall use the notion of
universal nets: by Theorem 4.21 it suffices to show that every universal net x on
X is convergent. But since x is universal, by Exercise 3.3.2 each projected net
πi(x) is universal on Xi. Since Xi is quasi-compact, Theorem 4.21 implies that
πi(x) converges, say to xi. But then by Theorem 4.23, x converges to x = (xi):
done! �

This proof is due to J.L. Kelley [Ke50]. To my knowledge, it remains the out-
standing application of universal nets.

Exercise 4.15. (Little Tychonoff): Let xn be a sequence of metrizable spaces.
Prove the Tychonoff theorem in this case by combining the following observations –
(i) A countable product of metrizable spaces is metrizable.
(ii) Sequential compactness is equivalent to quasi-compactness in metrizable spaces.
(iii) A sequence converges in a product space iff each projection converges –
with a diagonalization argument. In particular, deduce the Heine-Borel theorem in
Rn from the Heine-Borel theorem in R.
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Exercise 4.16. Investigate to what extent the Axiom of Choice (AC) is used
in the proof of Tychonoff’s theorem. Some remarks:
a) The use of Zorn’s Lemma in the proof that every net has a universal subnet is
unavoidable in the sense that this assertion is known to be equivalent to the Boolean
Prime Ideal Theorem (BPIT). BPIT is known to require AC (in the sense of
being unprovable from Zermelo-Frankel set theory) but not to imply it (a similar
meaning).
b) A cursory look at the proof might then suggest that BPIT implies Tychonoff’s
theorem. However, it is a famous observation of Kelley that Tychonoff’s theorem
implies AC,9 so this cannot be the case. So AC must get invoked again in the proof
of Tychonoff. Where?
c) Hint: BPIT does imply that arbitrary products of quasi-compact Hausdorff spaces
are quasi-compact Hausdorff!

5. Filters

5.1. Filters and ultrafilters on a set. Let X be a set. A filter on X is a
nonempty family F of nonempty subsets of X satisfying

(F1) A1, A2 ∈ F =⇒ A1 ∩A2 ∈ F .
(F2) A1 ∈ F , A2 ⊃ A1 =⇒ A2 ∈ F .

Example 4.11. For any nonempty subset Y of X, the collection FY = {A | Y ⊂
A} of all subsets containing Y is a filter on X. Such filters are said to be principal.

Exercise 4.17. Show that every filter on a finite set is principal. (Hint: if F
is a filter on the finite set X then ∩A∈FA ∈ F .)

Example 4.12. For any infinite set X, the family of all cofinite subsets of X
is a filter on X, called the Fréchet filter.

Exercise 4.18. A filter F on X is free if ∩A∈FA = ∅.
a) Show that a principal filter is not free.
b) Show that a filter is free iff it contains the Fréchet filter.

Example 4.13. If X is a topological space and x ∈ X, then the collection Nx of
neighborhoods of x is a (nonfree) filter on X. It is principal iff x is an isolated point
of X. More generally, if Y is a subset of X, then the collection NY of neighborhoods
of Y (recall that we say that N is a neighborhood of Y is Y ⊂ N◦) is a nonfree
filter on X, which is principal iff Y is an open subset.

Exercise 4.19. a) Let {Fi}i∈I be an indexed family of filters on a set X. Show
that ∩i∈IFi is a filter on X, the largest filter which is contained in each Fi.
b) Let X be a set with cardinality at least 2. Exhibit filters F1, F2 on X such that
there is no filter containing both F1 and F2.

The collection of all filters on a set X is partially ordered under set-theoretic con-
tainment. Exercise 4.19a) shows that in this poset arbitrary joins exist – i.e., any
collection of filters admits a greatest lower bound – whereas Exercise 4.19b) shows
that if #X > 1 the collection of filters on X is not a directed set. If F1 ⊂ F2 we

9It is sometimes said that this is not surprising, since without AC the Cartesian product
might be empty. But I have never understood this remark, since the empty set is of course

quasi-compact. At any rate, the proof is not trivial.
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say that F2 refines F1, or is a finer filter than F1. An ultrafilter on X is a filter
on X which is maximal with respect to this ordering, i.e., is not properly contained
in any other filter.

Exercise 4.20. Let Y be a nonempty subset of X. Then the principal filter
FY is an ultrafilter iff #Y = 1.

If X is finite, this gives all the ultrafilters on X. More precisely, the ultrafilters
on a finite set may naturally be identified with the elements x of X. However, if
X is infinite (the case of interest to us here) there are a great many nonprincipal
ultrafilters.

Lemma 4.25. Any filter is contained in an ultrafilter.

Proof. Since the union of a chain of filters is itself a filter, this follows from
Zorn’s Lemma. �

Proposition 4.26. For a filter F on X, the following are equivalent:
(i) For every subset Y of X, F contains exactly one of Y and X \ Y .
(ii) F is an ultrafilter.

Proof. If a filter F satisfies (i) and Y is any subset of X which is not an
element of F , then X \ Y ∈ F , and since any finer filter F ′ would contain X \ Y ,
by (F1) it certainly cannot contain Y ; i.e., F is not contained in any finer filter.
Conversely, suppose that F is an ultrafilter and Y is a subset of X. Suppose first
that for every A ∈ F we have A∩ Y 6= ∅. Then the family F ′ of all sets containing
a set A ∩ Y with A ∈ F is easily seen to be a filter containing F . Since F is an
ultrafilter we have F ′ = F and in particular Y = Y ∩ X ∈ F . Otherwise there
exists an A ∈ F such that A∩Y = ∅. Then A ⊂ X \Y and by (F2) X \Y ∈ F . �

Corollary 4.27. A nonprincipal ultrafilter is free.

Proof. If there exists x ∈
⋂
A∈F A, then X \ {x} is not an element of F , so

by Proposition 4.26 {x} ∈ F and F = F{x}. �

Thus free ultrafilters exist on any infinite set: by Lemma 4.25 the Fréchet filter is
contained in some ultrafilter, and any refinement of a free filter is free. To be sure,
a free ultrafilter is a piece of set-theoretic devilry: it has the impressively decisive
ability to, given any subset Y of X, select exactly one of Y and its complement
X \ Y . A bit of thought suggests that even on X = Z+ this will be difficult or
impossible to do in any constructive way. And indeed Lemma 4.25 is known to
be equivalent to the Boolean Prime Ideal Theorem, so that it requires (but is not
equivalent to) the Axiom of Choice.

Theorem 4.28. There are 22#X

nonprincipal ultrafilters on an infinite set X.

Proof. Search for “number of ultrafilters” at http://www.planetmath.org.
�

Exercise 4.21. Every filter is the intersection of the ultrafilters containing it.
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5.2. Prefilters.

Proposition 4.29. For a family F of nonempty subsets of a set X, TFAE:
(i) For all A1, A2 ∈ F , there exists A3 ∈ F such that A3 ⊂ A1 ∩A2.
(ii) The collection of all subsets which contain some element of F is a filter.

Exercise 4.22. Prove Proposition 4.29.

We shall call a family F of nonempty subsets satisfying (i) a prefilter.10 The
collection F of all supersets of F is called the filter generated by F (or sometimes
the associated filter). Note that the situation is reminiscent of the criterion for
a family of subsets to be the base for a topology.

Example 4.14. Let X be a set and x ∈ X. Then F = {{x}} is a prefilter
on X (which might be called “constant”). The filter it generates is the principal
ultrafilter Fx.

Example 4.15. Let X be a topological space and Y a subset of X. Then the
collection NY of all open neighborhoods of Y (i.e., open sets containing Y ) is a
prefilter, whose associated filter is the neighborhood filter NY of Y .

Our choice of terminology “prefilter” rather than “filter base” is motivated by the
following principle: if we have in mind a certain property P of filters and we are
seeking an analogous property for prefilters, then we need merely to define a pre-
filter to have property P if the filter it generates has property P . Then, if necessary,
we unpack this definition more explicitly.

For instance, we can use this perspective to endow the collection of prefilters on
X with a quasi-ordering: we say that a prefilter F2 refines F1 and write F1 ≤ F2

if for the corresponding filters F1 and F2 we have F1 ⊂ F2. It is not hard to see
that this holds iff for every A1 ∈ F1 there exists A2 ∈ F2 such that A1 ⊃ A2. If
F1 ≤ F2 ≤ F1 we say that F1 and F2 are equivalent prefilters and write F1 ∼ F2.

Exercise 4.23. If #X ≥ 2, show: there are prefilters F1 and F2 on X such
that F1 ∼ F2 but F1 6= F2.

Similarly we say a prefilter F on X is ultra if its associated filter is an ultrafilter.
This amounts to saying that for any Y ⊂ X, there exists A ∈ F such that either
A ⊂ Y or A ⊂ (X \ Y ).

Exercise 4.24. (Filter subbases):
a) Show that for a family I of nonempty subsets of a set X, TFAE:
(i) I has the finite intersection property: if A1, . . . , An ∈ I, then A1 ∩ . . . An 6= ∅.
(ii) There exists a prefilter F such that I ⊂ F .
(iii) There exists a filter F such that I ⊂ F .
b) If I satisfies the equivalent conditions of part a), show that there is a unique
minimal filter F(I) containing I, called the filter generated by I.

A family {Fi}i∈I of prefilters on a set X is compatible if there exists a prefilter
F ⊃

⋃
i∈I Fi, i.e., if

⋃
i∈I Fi is a filter subbase. (It is equivalent to require that⋃

i∈I Fi be refined by some prefilter.) In turn, this occurs iff for every finite subset
J ⊂ I and any assignment j 7→ Aj ∈ Fj we have

⋂
j∈J Aj 6= ∅.

10The more traditional terminology is filter base. We warn that this terminology is often
used in the literature for something else.
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5.3. Convergence via filters.

Let F be a prefilter in a topological space X, and let x be a point of X. We
say F converges to x – and write F → x – if F refines the neighborhood filter
Nx of x. In This means that every neighborhood N of x contains an element A of F .

Let F be a prefilter in a topological space X, and let x be a point of X. We
say that x is a limit point11 of F if F is compatible with the neighborhood filter
Nx, or in plainer language, if every element of F meets every neighborhood of x.

Proposition 4.30. Let F be a prefilter on X with associated filter F , and let
F ′ ≥ F be a finer prefilter.
a) If F converges to x, then x is a limit point of F .
b) F converges to x ⇐⇒ F ′ converges to x.
c) x is a limit point of F ⇐⇒ x is a limit point of F .
d) If F converges to x, then F ′ converges to x.
e) If x is a limit point of F ′, then x is a limit point of F .
f) X is Hausdorff ⇐⇒ every prefilter on X converges to at most one point.

Exercise 4.25. Prove Proposition 4.30.

Exercise 4.26. Show: for a topological space X, the following are equivalent:
(i) X has the trivial topology.
(ii) Every filter on X converges to every point of X.

Exercise 4.27. Let X be a topological space.
a) Show: the following are equivalent:
(i) X is Alexandroff: x ∈ X has a minimal neighborhood.
(ii) For all x ∈ X, the neighborhood filter Nx is principal.
b) (E. Wofsey) Show: the following are equivalent:
(i) Every convergent filter on X is principal.
(ii) X is locally finite: every point of X has a finite neighborhood.
c) Show: finite implies locally finite implies Alexandroff, and neither implication
can be reversed.

Proposition 4.31. Let F be a prefilter on X. TFAE:
(i) x is a limit point of F .
(ii) There exists a refinement F ′ of F such that F ′ converges to x.

Proof. (i) =⇒ (ii): If x is a limit point of F , there exists a prefilter F ′

refining both F and Nx, and then F ′ is a finer prefilter converging to x.
(ii) =⇒ (i): since F ′ → x, x is a limit point of F ′ (Proposition 4.30a)), and since
F ′ ≥ F , x is a limit point of F (Proposition 4.30e)). �

Proposition 4.32. Let X be a topological space, Y a nonempty subset of X
and x a point of x. The following are equivalent:
(i) x is a limit point of the prefilter FY = {Y }.
(ii) x ∈ Y .

Proof. Both (i) and (ii) say that every neighborhood of x meets Y . �

11Alternate terminology: cluster point
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A more traditional characterization of closure using filters is the following:

Corollary 4.33. Let X be a topological space, Y a nonempty subset of X and
x a point of x. The following are equivalent:
(i) We have x ∈ Y .
(ii) There is a prefilter F on X consisting of subsets of Y such that F → x.
(iii) There is a filter F on X such that F → x and Y ∈ F .

Proof. (i) =⇒ (ii): We may take F := {N ∩ Y | N is a neighborhood of x}.
(ii) =⇒ (iii): We may take F to be the filter generated by F .
(iii) =⇒ (i): Since F → x, for every neighborhood N of x we have N ∈ F . Since
Y ∈ F , we have N ∩ Y ∈ F and thus N ∩ Y 6= ∅. �

Proposition 4.34. Let X be a topological space, Y a nonempty subset of X
and x a point of x. TFAE:
(i) The prefilter FY = {Y } is compatible with the neighborhood filter Nx of x.
(ii) x ∈ Y .

Proof. Each of (i) and (ii) says that every neighborhood of x meets Y . �

Lemma 4.35. If an ultra prefilter F has x as a limit point, then F → x.

Proof. As above, there is a prefilter F ′ refining both F and Nx. But since F
is ultra, it is equivalent to all of its refinements, so that F itself refines Nx. �

It may not come as a surprise that we can get further characterizations of quasi-
compactness in terms of convergence / limit points of prefilters.

Theorem 4.36. For a topological space X, TFAE:
(i) X satisfies the equivalent conditions of Theorem 4.21 (“X is quasicompact.”)
(ii) Every prefilter on X has a limit point.
(iii) Every ultra prefilter on X is convergent.
The same equivalences hold with “‘prefilter” replaced by “filter” in (ii) and (iii).

Proof. (i) =⇒ (ii): Let F = {Ai} be a prefilter on X. The sets Ai satisfy
the finite intersection property, hence a fortiori so do their closures. Appealing to
condition e) in Theorem 4.21 there is an x ∈

⋂
iAi, and this means precisely that

each Ai meets each neighborhood of x.
(ii) =⇒ (iii) follows immediately from Lemma 4.35.
(iii) =⇒ (i): Consider a family I = {Fi} of closed subsets of X satisfying the finite
intersection condition. Then I is a filter subbase, so that there exists some ultra
prefilter refining I. By hypothesis, there exists x ∈ X such that F converges to x,
and a fortiori x is a limit point of F . So every element of F – and in particular
each Fi – meets every neighborhood of x, so that x ∈ Fi = Fi. Therefore ∩iFi
contains x and is thus nonempty.

The fact that the results hold also for filters instead of prefilters is easy and
left to the reader. �

Corollary 4.37. Let F be a prefilter on the quasi-compact space X.
a) If F does not converge to a point x ∈ X, then F has a limit point y 6= x.
b) If F has at most one limit point, it is convergent.
c) A filter on a compact space converges iff it has a unique limit point.
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Proof. a) If F does not converge to x, then there is an open neighborhood U
of x which does not contain any element of F . Let Y = X\U , and put FY = {A∩Y |
A ∈ F}. Then FY is a prefilter on Y : if A ∈ F and A ∩ Y = ∅ then A ⊂ U . For
A1, A2 ∈ F , if A3 ∈ F is such that A3 ⊂ A1∩A2 then A3∩Y ⊂ (A1∩Y )∩(A2∩Y ).
Since Y is a closed subspace of the quasi-compact space X, FY has a limit point
y ∈ Y . If now N is a neighborhood of y in X, then N ∩ Y is a neighborhood of y
in Y , so for all A ∈ F , (A∩ Y )∩ (N ∩ Y ) 6= ∅, hence A∩ Y 6= ∅. It follows that y
is a limit point of F . Since x ∈ U and y ∈ X \ U , y 6= x.
b) Keeping in mind that by Theorem 4.36 F must have at least one limit point,
this follows immediately from part a).
c) This follows from part b) and the uniqueness of limits in Hausdorff spaces. �

Pushing forward filters: if f : X → Y is any map of sets and I = A〉 is a family of
subsets of X, then by f(I) we mean the family {f(Ai)}i∈I .

Proposition 4.38. Let f : X → Y be a function and F a prefilter on X.
a) f(F ) is a prefilter on Y .
b) If F is ultra, so is f(F ).

Exercise 4.28. Prove Proposition 4.38.

Proposition 4.39. Let f : X → Y be a function. The following are equivalent:
(i) For every prefilter F on X with a limit point x, f(F ) has f(x) as a limit point.
(ii) For every prefilter F on X converging to x, f(F ) converges to f(x).
(iii) f is continuous.

Proof. A function f between topological spaces is continuous iff for all x ∈ X,
f(Nx) is a neighborhood base for Y . The result follows easily from this and is left
to the reader. �

Let {Xi}i∈I be an indexed family of topological spaces and suppose given a prefilter
Fi on each Xi. We then define the product prefilter

∏
i Fi to be the family of

subsets of X of the form
∏
i∈IMi, where there exists a finite subset J ⊂ I such

that Mi = Xi for all i ∈ I \ J and Mi ∈ Fi for all i ∈ J . Since

(
∏
i∈I

Mi) ∩ (
∏
i∈I

M ′i) =
∏
i∈I

(Mi ∩M ′i) ⊃
∏
i∈I

M ′′i

where M ′′i is an element of Fi contained in M ′i ∩M ′′i (or is Xi if Mi = M ′′i = Xi),
this does indeed give a prefilter on X. Another way around is to say that F is the
prefilter generated by taking finite intersections of the filter subbase π−1

i (Mi).

Exercise 4.29. a) If for each i we are given equivalent prefilters Fi ∼ F ′i on
Xi, then the product prefilter

∏
i Fi is equivalent to

∏
i F
′
i .

b) (Remark): Because of part a), as far as convergence / limit points are concerned,
it would be no loss of generality to assume that Xi ∈ Fi for all i, and then we get
a cleaner definition of the product prefilter.

Theorem 4.40. Let F be a prefilter on the product space X = Xi. TFAE:
(i) F converges to x = (xi).
(ii) For all i, πi(F ) converges to xi.

Proof. (i) =⇒ (ii) is immediate from Proposition 4.39, so assume (ii). It is
enough to show that for every i ∈ I and every neighborhood Nij of xi in Xi there
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exists an element A ∈ F with πi(A) ⊂ Nij , for then F will be a prefilter which is

finer than the family π−1
i (Nij) which is a subbasis for the filter of neighborhoods of

x in X. But this is tautological: since πi(F ) converges to xi, it contains an element,
say B = πi(A), which is contained in Nij , and then A ⊂ π−1

i (Nij). �

Now for a proof of Tychonoff’s Theorem (Theorem 4.24) using filters:

That b) implies a) follows from Exercise 4.1.1, since Xi is the image of X under the
projection map Xi. Conversely, assume that each factor space Xi is quasi-compact.
To show that X is quasi-compact, we shall use the notion of ultra prefilters: by
Theorem 4.36 it suffices to show that every ultra prefilter F on X is convergent.
Since F is ultra, by Proposition 4.38b) each projected prefilter πi(F ) is ultra on
Xi. Since Xi is quasi-compact, Theorem 4.36 implies that πi(F ) converges, say to
xi. But then by Theorem 4.40, F converges to x = (xi): done!

This proof is due to H. Cartan [Ca37].

6. A characterization of quasi-compactness

Theorem 4.41. For a topological space Y , the following are equivalent:
(i) Y is quasi-compact.
(ii) For all topological spaces X, the projection map πX : X × Y → X is closed.

6.1. Proof of (i) =⇒ (ii). Let C ⊂ X×Y be closed, and let x0 ∈ X\πX(C).
Then N = (X×Y )\C is a neighborhood of {x0}×Y . By the Tube Lemma, there is
a neighborhood U of x0 in X such that U × Y ⊂ N , and then U is a neighborhood
of x0 in X which is disjoint from πX(C).

6.2. Proof of (ii) =⇒ (i) using filters.

Let F be a filter on Y . Let ? be a point which is not in Y , and let X be the
set Y

∐
{?}. We topologize X as follows: every subset not containing ? is open; a

subset A ⊂ X containing ? is open iff A \ ? ∈ F . Since ∅ /∈ F , {?} is not open in
X and thus it lies in the closure of Y .

D = {(y, y) | y ∈ Y } ⊂ X × Y,
and let

E = D.

For any closed map f : X → Y of topological spaces and subset A ⊂ X we have
f(A) is closed and thus

f(A) ⊂ f(A) ⊂ f(A),

so

f(A) = f(A).

Since πX is closed by assumption, we have

πX(E) = πX(D) = Y = X.

It follows that there is y ∈ Y such that (?, y) ∈ E. We claim that y is a limit
point of F . Indeed, let V be a neighborhood of y in Y , and let M ∈ F . Then
N = (M

∐
{?}) × V is a neighborhood of (?, y) in Y ×X. Since (?, y) ∈ E = D,

there is z ∈ Y such that (z, z) ∈ N and thus z ∈M ∩ V .
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Exercise 4.30. a) Observe that our proof of (i) =⇒ (ii) in Theorem 4.41 used
only that the conclusion of the Tube Lemma holds for Y . Combining with (ii) =⇒
(i), observe that if a topological space satisfies the conclusion of the Tube Lemma,
it is quasi-compact.
b) The structure of the above argument was: quasi-compact =⇒ Tube Lemma =⇒
projections are closed =⇒ quasi-compact, and part a) follows by going two steps
around this triangle. Give a much shorter direct proof that closedness of projections
implies the Tube Lemma.

7. The correspondence between filters and nets

Take a moment and compare Cartan’s ultra prefilter proof with Kelley’s universal
net proof. By replacing every instance of “universal net” with “ultra prefilter” they
become word for word identical! This, together with the other manifest parallelisms
between §3 and §5, strongly suggests that nets and prefilters are not just different
means to the same end but are somehow directly related: given a net, there ought
to be a way to trade it in for a prefilter, and vice versa, in such a way as to preserve
the concepts of: convergence, limit point, subnet / finer prefilter and universal net
/ ultra prefilter. This is exactly the correspondence that we now pursue.

If we search the preceding material for hints of how to pass from a net to a prefilter,
sooner or later we will notice that we have already done so in the proof that b)
=⇒ e) in Theorem 4.21. We repeat that construction here, after introducing the
following useful piece of notation.

If ≤ is a relation on a set I, for i ∈ I we put i+ = {i′ ∈ I | i ≤ i′}.

Proposition 4.42. Let x : I → X be a net in the set X. Then the collection
P(x) := {i+}i∈I is a prefilter on X, the prefilter of tails of x.

Proof. Indeed, for i1, i2 ∈ I, choose i3 ≥ i1, i2. Then Ai3 ⊂ Ai1 ∩Ai2 . �

Conversely, suppose we are given a prefilter F on X: how to get a net? Evidently
the first (and usually harder) task is to find the directed index set I and the sec-
ond is to define the mapping I → X. The key observation is that the condition
A1, A2 ∈ F =⇒ ∃A3 ∈ F | A3 ⊂ A1 ∩ A2 on a nonempty family of nonempty
subsets of X says precisely that the elements of F are (like the neighborhoods of a
point) directed under reverse inclusion. This suggests that we should take I = F .
Then to get a net we are supposed to choose, for each A ∈ F , some element xA of
X. Other than to require xA ∈ A, no condition presents itself. Making many arbi-
trary choices is dismaying, on the one hand for set-theoretic reasons but moreover
because we shall inevitably have to worry about whether our choices are correct.
So let’s worry: once we have our net x(F ), we can apply the previous construction
to get another prefilter P(x(F )), and whether we dare to admit it out loud or not,
we are clearly hoping that P(x(F )) = F .

Let us try our luck on the simplest possible example: let X be a set with more
than one element, and let F = {X}, the unique minimal filter. A net x with index
set F is just a choice of a point x ∈ X. The corresponding prefilter P(x) – namely
the principal prefilter Fx = {x} – is not only not equal to F , it is ultra: its associ-
ated filter is maximal. At least we don’t have to worry about our choice of xA in
A: all choices fail equally.
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We trust that we have now suitably motivated the correct construction:

Proposition 4.43. Let F be a prefilter on X. Let I(F ) be the set of all pairs
(x,A) such that x ∈ A ∈ F . We endow I(F ) with the relation (x1, A1) ≤ (x2, A2)
iff A1 ⊃ A2. Then (I(F ),≤) is a directed set, and the assignment (x,A) 7→ x
defines a net x(F ) : I → X.

Exercise 4.31. Prove Proposition 4.43.

Coming back to our earlier example, if F = {X}, then x(F ) has domain I =
{X}×X and is just (X,x) 7→ x. Note that the induced quasi-ordering on X makes
x ≤ x′ for any x, x′: notice that it is directed and is not anti-symmetric (which at
last justifies our willingness to entertain directed quasi -ordered sets). So for any
x ∈ X, we have (X,x)+ = {x′ ≥ x} = X, and we indeed get P(x(F )) = {X} = F .
This was not an accident:

Proposition 4.44. For any prefilter G on X, we have F (x(G)) = G.

Proof. The index set of x(G) consists of all pairs (x,A) for x ∈ A ∈ F ,
partially ordered under reverse inclusion. The associated prefilter consists of sets
A(x,A) = {π1((x′, A′)) |(x′, A′) ≥ (x,A)}. A moment’s thought reveals this to be
the set of all points x in filter elements A′ ⊂ A, i.e., A(x,A) = A. �

What about the relation x(F (x)) = x? A moment’s thought shows that this cannot
possibly hold: the index set I of any net associated to a prefilter on X is a subset of
X×2X hence has cardinality at most #(X×2X) (i.e., 2#X isX is infinite), but every
nonempty set admits nets based on index sets of arbitrarily large cardinality, e.g.
constant nets. Indeed, if x : I → X has constant value x ∈ X, then the associated
prefilter F (x) is just {x}, and then the associated net x(F (x)) has I = {(x, {x})},
a one point set!

Exercise 4.32. Suppose a net x is eventually constant, with eventual value
x ∈ X.
a) Show that the filter generated by F (x) is the principal ultrafilter Fx.
b) Suppose that F is a prefilter generating the principal ultrafilter Fx
(i.e., {x} ∈ F !). Show that x(F ) is eventually constant with eventual value x.

Nevertheless the nets x and x(F (x)) are “pan-topologically equivalent” in the sense
that they converge to the same points and have the same limit points for any
topology on X. Indeed:

Theorem 4.45. Let X be a topological space, F be a prefilter on X, x a net
on X and x ∈ X.
a) F converges to x ⇐⇒ x(F ) converges to x.
b) x converges to x ⇐⇒ F (x) converges to x.
c) x is a limit point of F ⇐⇒ x is a limit point of x(F ).
d) x is a limit point of x ⇐⇒ x is a limit point of F (x).
e) F is an ultra prefilter ⇐⇒ x(F ) is a universal net.
f) x is a universal net ⇐⇒ F (x) is an ultra prefilter.
g) If y is a subnet of x, then F (y) refines F (x).

Exercise 4.33. Prove Theorem 4.45.
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Were you expecting a part h)? Unfortunately it need not be the case that if F ′ ≥ F
then the associated net x(F ′) can be endowed with the structure of a subnet of x(F ).
A bit of quiet contemplation reveals that a subnet structure is equivalent to the
existence of a function r : F ′ → F satisfying A′ ⊂ r(A′) for all A′ ∈ x(F ′) and
A′′ ⊂ A′ =⇒ r(A′′) ⊂ r(A′). To see that such a map need not exist, take X = Z+.
For all n ∈ Z+, define let An = {1} ∪ {n, n + 1, . . .}. Since An ∩ Am = Amaxm,n,
F = {An} is a prefilter on X. Let F ′ = F ∪{1}. The directed set I ′ on which x(F ′)
is based has an element which is larger than every element – namely {(1, {1}} –
but this does not hold for the directed set I on which x(F ) is based. (Indeed, I
is order isomorphic to the positive integers, or the ordinal ω, whereas I ′ is order
isomorphic to ω + 1.) There is therefore no order homomorphism I ′ → I so that
x(F ′) cannot be given the structure of a subnet of x(F ).

This example isolates the awkwardness of the notion of subnet. Taking a step
back, we see that we became satisfied that we had the right definition of a subnet
only insofar as it fit into the theory of convergence as it should: i.e., it rendered
true the facts that “x is a limit point of x ⇐⇒ some subnet y converges to x”
and “every net x admits a subnet y which converges to each of its limit points.”
These two results are what subnets are for. Now that we have at our disposal the
correspondence with the theory of filters, the extent of our leeway becomes clear.
Any definition of “y is a subnet of x” which satisfies the following requirements:

(SN1) If y is a subnet of x, then F (y) ≥ F (x);
(SN2) For every net x : I → X and every prefilter F ′ ≥ F (x), there exists a subnet
y of x with F (y) = F ′;

will render valid the above results and hence give an acceptable definition. Note
that (SN1) is part g) of Theorem 4.45. The following establishes (SN2) (and a little
more).

Theorem 4.46. (Smiley) Let α : I → X be a net, and let F ′ be a prefilter on
X which is compatible with F (x). Let I be the set of all triples (x, i, A) with i ∈ I,
A ∈ F ′ and x ∈ A such that there exists j ≥ i with αj = x. Let ≤ be the relation
on I by (x, i, A) ≤ (x′, i′, A′) if i ≤ i′ and A ⊃ A′. Let γ : I → X be the function
(x, i, A) 7→ x. Then:
a) I is a directed set, and γ is a net on X.
b) Via the natural map I → I given by (x, i, A) 7→ i, γ is a subnet of I.
c) The associated prefilter F (γ) is the prefilter generated by F (x) and F ′.
So if F ′ ≥ F (x), then γ is a subnet of x with F (γ) = F ′.

Exercise 4.34. Prove Theorem 4.46.

Thus our definition of subnet is an acceptable one in the sense of (SN1) and (SN2).
(In particular, the material of this section and §4 on filters gives independent proofs
of the material of §3.) However, from the filter-theoretic perspective there is cer-
tainly a simpler definition of subnet that renders valid (SN1) and (SN2): just define
y : J → X to be a subnet of x : I → X if F (y) ≥ F (x); or, in other words, that
for all i ∈ I, there exists j ∈ J such that y(j+) ⊂ x(i+). That this should be the
definition of a subnet was in fact suggested by Smiley.
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8. Notes

The material of §1 ought to be familiar to every undergraduate student of math-
ematics. Among many references, we can recommend Kaplansky’s elegant text
[Ka]. That the key properties of metric spaces making the theory of sequential
convergence go through are first countability and (to a lesser extent) Hausdorffness
was first appreciated by Hausdorff himself. There is a very rich theory of the se-
quential closure operator, e.g. in set-theoretic topology (via the sequential order).
Apparently there has been a recent interest in the general theory of operators satis-
fying the three Kuratowksi closure axioms (KC1), (KC2) and (KC4) but not (KC3)
(idempotence): such an operator is called a praclosure.

The development of a repaired convergence theory via nets has a complicated his-
tory. In some form, the concept was first developed by E.H. Moore in his 1910
colloquium lectures [Mo10] and then in his 1915 note Definition of limit in general
integral analysis [Mo15]. A fuller treatment was given in the 1922 paper [MS22],
written jointly with his student H.L. Smith. As the titles of these articles suggest,
Moore and Smith were primarily interested in analytic applications: as in §3.2,
the emphasis of their work was on a single notion of limit to which all the various
complicated-looking limiting processes one meets in analysis can refer back to.12

Thus their theory was (as I understand it; I have not had a chance to read their
original paper) limited to “Moore-Smith sequences” (i.e., nets) with values in R,
C, or some Banach space.

In 1937, Birkhoff published a paper Moore-Smith Convergence in General Topol-
ogy whose point of departure is precisely the same as ours: to use mappings from a
directed set to a topological space to generalize facts about neighborhoods, closure
and continuous functions that hold using sequences only under the assumption
of first countability (and to a lesser extent, Hausdorffness). He paper then goes
on to discuss applications to the completion of various structures of mixed alge-
braic/topological character, e.g. topological vector spaces and topological algebras.
In this aspect he goes beyond the material we have presented so far and competes
with the work of André Weil, who in that same year introduced the seminal concept
of uniform space as the correct generalization of special classes of spaces, notably
metric spaces and topological groups, in which one can speak of one pair of points
being as close together as another.

In 1940 Tukey published a short book which explored the interrelationships of
Moore-Smith convergence and Weil’s uniform spaces. Tukey’s book is systematic
and foundational, in particular employing a language which does not seem to have
persuaded many to speak. (E.g. we find in his book that a stack is the directed set
of finite subsets of a given set S – if only that’s what stack meant today! – and a
phalanx if a function from a stack to a topological space (cf. Example 3.2.1).) The
book is probably most significant for its formulation of the notion of a uniform space
in terms of star refinements, which is still useful today (e.g. [?]). Moreover the
notion of uniform completion seems to appear here for the first time. We quote the
first two sentences of Steenrod’s review of Tukey’s book: “The extension of metric
methods to non-metrizable topological spaces has been a principal development in
topology of the past few years. This has occurred in two directions: one through a

12It is therefore a bit strange, is it not, that one does not learn about nets in basic real

analysis courses? Admittedly the abstract Lebesgue integral plays a similar unifying role.
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rebirth of interest in Moore-Smith convergence due to results of Garrett Birkhoff,
and the other through the concept of uniform structure due to André Weil.” May
it not even be the case that the emerging study of uniform spaces was the major
cause of the rebirth of interest in Moore-Smith convergence?

Our treatment of nets in §3 closely follows Kelley’s 1950 paper Convergence
in topology [Ke50] and his text General Topology [Ke]. Apart from introducing
the term “nets” for the first time, [Ke50] is the first to recognize the subnet as an
essential tenet of the theory, to prove Proposition 4.16, to introduce the notion of
universal net and apply it to give a strikingly simple proof of Tychonoff’s theorem.
On the other hand the idea of a universal net is motivated by that of an ultrafilter,
and Kelley makes explicit reference to earlier work of H. Cartan.

Indeed, in 1937 Henri Cartan came up with the definition of a filter: apparently
inspiration struck during a lull in a Séminaire Bourbaki (and Cartan stayed behind
to think about his new idea rather than go hiking with the rest of the group). His
ideas are written up briefly in [Ca37]. Evidently he had no trouble convincing
André Weil (the de facto leader of Bourbaki at its inception in the 1930’s) of the
importance of this idea: Bourbaki’s 1940 text Topologie Generale introduces filters
and uses them systematically throughout. It may well be the case that this was the
most influential of the many innovations introduced across Bourbaki’s many books.

Bourbaki’s treatment of filters is much more intensive than what we have given
here. In particular Bourbaki rewrites the theory of convergent series and integrals
in the filter-theoretic language. To my taste this becomes tiresome and serves as a
de facto demonstration of the usefulness of nets in more analytic applications. One
Bourbakism we have adopted here is the emphasis of the development of the theory
at the level of prefilters (called there and elsewhere “filter bases”). It is not neces-
sary to do so – at any stage, one can just pass to the associated filter – but seems to
lead to a more precise development of the theory. We have emphasized the notion of
compatible prefilters more than is typical (an exception is [Sm57]). The existence
of free ultrafilters (due, so far as I know, to Cartan) even on a countably infinite set
leads to what must be the single most striking application of set-theoretic machin-
ery in general mathematics, the ultraproduct. The proof of Tychonoff’s theorem
via ultrafilters first appears in [Bo] and is one of Bourbaki’s most celebrated results.

The material of §6 is distressingly absent from most standard treatments. Most
texts choose to present either the results of §3 or the results of §4 but not both,
and then give a few exercises on the convergence theory they did not develop. In
terms of relating the two theories, standard is to drop the unhelpful remark “The
equivalence of nets and filters is part of the folklore of the subject.” Even Kelley’s
text [Ke] does this, although he gives the construction of a net from a filter and a
filter from a net (the latter amounts to taking the associated filter of our prefilter
of tails) and asks the reader to show our Proposition 4.44 (for filters). But this
result is cited as “grounds for suspicion” that filters and nets are “equivalent”, a
phrasing which leads the careful reader to wonder whether things do in fact work
out as they appear to. Of interest here is R.G. Bartle’s 1955 paper Nets and Filters
in Topology [Ba55]. Written at about the same time as [Ke], it aspires to make
explicit the equivalence between the two theories. Unfortunately the paper is rather
defective: the net that Bartle associates with a filter F is indexed by the elements
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of F (and one chooses arbitrarily a point in each element to define the net). As
discussed in §6, this is inadequate: upon passing to the (pre)filter of tails, one gets a
(pre)filter which may be strictly finer than the original one. (The correct definition
is given in a footnote, following the suggestion of the referee!) As a result, instead
of the equivalences of Theorem 4.45 Bartle gives only one-sided statements of the
form “If the filter converges, then the net converges.” Moreover, he erroneously
claims [Ba55, Prop. 2.5] that given a net x and a finer prefilter F ′ ≥ F (x), there
exists a subnet y of x with F (y) = F ′. (Interestingly, Kelley reviews this paper
in MathReviews; his review is complimentary and finds nothing amiss.) There is
a 1963 (eight years later!) erratum [Ba55er] to [Ba55] which replaces Prop. 2.5
by our (SN2). In between the paper and its erratum comes Smiley’s 1957 paper
[Sm57], whose results we have presented in §6. (Bartle’s erratum does not make
reference to [Sm57].) It is tempting to derive a moral about the dangers of leaving
“folklore” unexamined; we will leave this to the interested reader.





CHAPTER 5

Separation and Countability

1. Axioms of Countability

1.1. First Countable Spaces.

Let X be a topological space, and let x be a point of X. We say X is first
countable at x if there is a countable neighborhood base at x. A space is first
countable – or, more formally, satisfies the first axiom of countability – if it
is first countable at each of its points.

Exercise 5.1. Suppose that X has a countable neighborhood base at x. Show
that there is a countable base of open neighborhoods N = {Un}∞n=1 of x which is
nested: U1 ⊃ U2 ⊃ . . . ⊃ Un ⊃ . . .

Proposition 5.1. Metrizable spaces are first countable.

Proof. Let d be a metric on (X, τ) inducing the topology τ . For p ∈ X,
{B(p, 1

n )}∞n=1 is a countable neighborhood base at p. �

Example 5.1. Discrete spaces are first countable: this is a special case of the
last result. Certainly any topological space with finitely many open sets is first
countable. This includes any finite topological space and the indiscrete topology on
any set. The cofinite topology on a set X is first countable iff X is countable. The
cocountable topology on a set X is first countable iff X is countable (in which case
it is discrete).

Exercise 5.2. Show: the Arens-Fort space is countable but not first countable.

Proposition 5.2. First countability is hereditary: a subspace of a first count-
able space is first countable.

Proof. Let X be a topological space and Y a subspace. If y ∈ Y and N is a
neighborhood base for y in X, then N ∩ Y = {N ∩ Y | N ∈ N} is a neighborhood
base for y in Y . �

Theorem 5.3. a) If X is first countable and f : X → Y is a continuous
surjection, then Y need not be first countable.
b) If X is first countable and f : X → Y is continuous, surjective and open, then
Y is first countable.

Proof. We leave this to the reader as an exercise. In the next section we will
prove the analogous result with “first countable” replaced by “second countable”.
This is so similar that the reader who wants to prove this result for herself should
do so before going on to the next section. �

153
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Theorem 5.4. Let {Xi}i∈I be an indexed family of nonempty topological spaces,
let X =

∏
i∈I Xi, and let

κ = {i ∈ I | Xi is not indiscrete}.
The space X is first countable iff each Xi is first countable and κ is countable.

Proof. Suppose X is first countable, and for each i ∈ I let πi : X → Xi be
the projection map. Then πi is continuous open and surjective, so Xi = πi(X) is
first countable by X.X. FIXME! �

Proposition 5.5. Let X be a first countable space and Y ⊂ X. Then Y is the
set of all limits of sequences from Y .

Proof. Suppose yn is a sequence of elements of Y converging to x. Then every
neighborhood N of x contains some yn ∈ Y , so that x ∈ Y . Conversely, suppose
x ∈ Y . If X is first countable at x, we may choose a nested collection N1 ⊃ N2 ⊃ . . .
of open neighborhoods of x such that every neighborhood of x contains some Nn.
Each Nn meets Y , so choose yn ∈ Nn ∩ Y , and yn converges to y. �

Proposition 5.6. Let X be a first countable space, Y a topological space, and
let f : X → Y be a function. The following are equivalent:
(i) f is continuous.
(ii) If xn → x, f(xn)→ f(x).

Proof. a) =⇒ b): Let V be an open neighborhood of f(x); by continuity
there is an open neighborhood U of x with f(U) ⊂ V . Since xn → x, there is
N ∈ Z+ such that n ≥ N implies xn ∈ U , so f(xn) ∈ V . Therefore f(xn)→ f(x).

b) =⇒ a): Suppose f is not continuous, so that there exists an open subset V
of Y with U = f−1(V ) not open in X. More precisely, let x be a non-interior point
of U , and let {Nn} be a nested base of open neighborhoods of x. By non-interiority,
for all n, choose xn ∈ Nn \ U ; then xn → x. By hypothesis, f(xn)→ f(x). But V
is open, f(x) ∈ V , and f(xn) ∈ Y \ V for all n, a contradiction. �

Proposition 5.7. A first countable space in which each sequence converges to
at most one point is Hausdorff.

Proof. Suppose not, so there exist distinct points x and y such that every
neighborhood of xmeets every neighborhood of Y . Let Un be a nested neighborhood
basis for x and Vn be a nested neighborhood basis for y. By hypothesis, for all n
there exists xn ∈ Un ∩ Vn. Then xn → x, xn → y, contradiction. �

Proposition 5.8. Let x be a sequence in a first countable topological space,
and let x be a point of X. The following are equivalent:
(i) The point x is a limit point of the sequence x.
(ii) There exists a subsequence converging to x.

Proof. (i) =⇒ (ii): Take a nested neighborhood basis Nn of x, and for each
k ∈ Z+ choose successively a term nk > nk−1 such that xnk ∈ Nk. Then xnk → x.
(ii) =⇒ (i): This direction holds in all topological spaces. �

Example 5.2. (Cocountable Topology): Let X be an uncountable set. The
family of subsets U ⊂ X with countable complement together with the empty set
forms a topology on X, the cocountable topology. This is a non-discrete topology
(since X is uncountable). In fact it is not even Hausdorff, if Nx and Ny are any
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two neighborhoods of points x and y, then X \ Nx and X \ Ny are countable, so
X \ (Nx ∩ Ny) = (X \ Nx) ∪ (X \ Ny) is uncountable and Nx ∩ Ny is nonempty.
However, in this topology xn → x iff xn is eventually constant with eventual value
x. Indeed, let xn be a sequence for which the set of n such that xn 6= x is infinite.
Then X \ {xn 6= x} is a neighborhood of x which omits infinitely many terms xn of
the sequence, so xn does not converge to x. This implies that the set of all limits of
sequences from a subset Y is just Y itself, whereas for any uncountable Y , Y = X.

Exercise 5.3. A point x of a topological space is isolated if {x} is open.
a) If x is isolated, and xn → x, then xn is eventually constant with limit x.
b) Show that if X is first countable and x is not isolated, then there exists a non-
eventually constant sequence converging to x. Must there exist an injective sequence
– i.e., xm 6= xn for all m 6= n conveging to x?

1.2. Second Countability, Separability and the Lindelöf Property.

A topological space is second countable – or, more formally, satisfies the sec-
ond axiom of countability – if there is a countable base for the topology.

A topological space is separable if it admits a countable dense subset.

A topological space is Lindelöf if every open cover admits a countable subcover.

Proposition 5.9. Let X be a topological space. Then:
a) If X is second countable, it is first countable, separable and Lindelöf.
b) If X is metrizable, then being second countable, separable and Lindelöf are all
equivalent properties.

Proof. a) Second countable implies first countable: base for the topology of
a space is also a neighborhood base at each of its points.

Second countable implies separable: let B = {Un}∞n=1 be a countable base for
X. For each n ∈ Z+, choose Pn ∈ Un, and let Y = {Pn}∞n=1. We claim that Y = X,
which is sufficient. To see this, let U ⊂ X be nonempty and open. Then U ⊃ Un
for some n and thus Pn ∈ U .

Second countable implies Lindelöf: Let U = {Ui}i∈I be an open cover of X. For
each positive integer n, if Vn ⊂ Ui for some i, then choose one such index and call it
in; if not, choose in to be any element of I. We claim that {Uin}∞n=1 is a countable
subcovering. Indeed, for any x ∈ X, x ∈ Ui for some i and thus x ∈ Vn(i) ⊂ Ui for
some n(i), and thus x ∈ Uin(i)

.

b) This is Theorem 2.68. We recall it here for the sake of comparison. �

Example 5.3. a) Let X be an uncountable set endowed with the discrete topol-
ogy. Then X is first countable, but not separable or second countable.
b) The Sorgenfrey line is first countable, separable and Lindelöf, but not second
countable.
c) The space [0, 1]R is separable but not first countable.

Exercise 5.4. a) Prove Example 5.3a).
b) Prove Example 5.3b).
c) Try to prove Example 5.3c). (This is harder, and we’ll come back to it.)

Exercise 5.5. The weight w(X) of a topological space is the least cardinality of
a base for the topology. (Thus second countable means w(X) ≤ ℵ0.) The density
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d(X) of a topological space is the least cardinality of a dense subspace. (Thus
separable means d(X) ≤ ℵ0.) Define the packing number pn(X) of a space X to
be the maximum cardinality of a pairwise disjoint family of nonempty open subsets
of X. These are cardinal invariants.
a) Show that for any space, max(d(X),pn(X)) ≤ w(X).
b) Show that for every cardinal number κ, there is a space X with

w(X) = d(X) = pn(X) = #X = κ.

Exercise 5.6. a) Let α ≤ β be cardinal numbers. Show: there is a topological
space of density α and cardinality β.
b) Let X be a first countable, Hausdorff topological space. Show: #X ≤ 2d(X).
(Suggestion: use the interpretation of closure via sequences.)

c) Let X be a Hausdorff topological space. Show: #X ≤ 22d(X)

.
(Suggestion: use the interpretation of closure via prefilters.)

Exercise 5.7. [Mu, Exc. 4.1.4] Let A be an uncountable subset of a second
countable space. Recall that A′ denotes the set of limit points of A in X. Show that
A ∩A′ is uncountable.

Proposition 5.10. Second countability is hereditary: a subspace of a second
countable space is second countable.

Proof. Let X be a topological space and Y a subspace. If B is a base for the
topology of X, then B ∩ Y = {B ∩ Y | B ∈ B} is a base for the topology of Y . The
result follows. �

Proposition 5.11. a) A subspace of a separable space need not be separable.
b) An open subspace of a separable space is separable.
c) A subpace of a Lindelöf space need not be separable.
d) A closed subspace of a Lindelöf space is Lindelöf.

Proof. a) . . . Moore-Nymetskii plane
b) Let A ⊂ X be countable and dense, and let U ⊂ Y be open. Then every open
nonempty open subset V of U is also a nonempty open subset of X, so A∩V 6= ∅.
It follows that A∩U is dense in U . Certainly it is also countable, so U is separable.
c) . . . Moore-Nymetskii plane
d) We leave it to the reader to check that the proof that a closed subspace of a
quasi-compact space carries over easily to this context. �

Exercise 5.8. Show that for a topological space X, the following are equivalent:
(i) Every subset of X is Lindelöf.
(ii) Every open subset of X is Lindelöf.
(A space satisfying these properties is called strongly Lindelöf.)

Exercise 5.9. Let X be quasi-compact and Y be Lindelöf. Show: X × Y is
Lindelöf. (Suggestion: adapt the proof of Corollary 3.35.)

Proposition 5.12. a) A continuous image of a separable space is separable.
(If X is separable and f : X → Y is a continuous surjection, then Y is separable.)
b) A continuous image of a Lindelöf space is Lindelöf.

Proof. a) Let A ⊂ X be countable and dense, let f : X → Y be a continuous
surjection, and let V ⊂ Y be nonempty and open. Then f−1(Y ) is nonempty and
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open in Y , so there is a ∈ A ∩ f−1(Y ), so f(a) ∈ f(A) ∩ Y . It follows that f(A) is
dense. Certainly f(A) is countable, so Y is separable.
b) We leave it to the reader to check that the proof that a continuous image of a
quasi-compact space is quasi-compact carries over easily to this context. �

Proposition 5.13. a) The continuous image of a second countable space need
not be second countable.
b) If X is second countable and f : X → Y is continuous, surjective and open, then
Y is second countable.

Proof. a) Let X be R with its usual Euclidean topology, let Y be R with
cofinite topology, and let f : X → Y be the identity map. We leave the verification
of the properties as a nice exercise.
b) Let B be a countable base for the topology of X. Let f(B) = {f(B) | B ∈ B}.
Since f is open, f(B) is a family of open sets. If V is open in Y , then f−1(V )
is open in X, so there is B′ ⊂ B such that

⋃
B∈B′ B = U . Since f is surjective,

V = f(U) =
⋃
B∈B′ f(B). So f(B) is a countable base for the topology of Y . �

Remark 5.14. The proof of part a) above shows that second countability is not
a coarsenable property (recall that a property P of topological spaces is coarsen-
able if (X, τ1) has property P and τ2 ⊂ τ1 is another topology on X, then (X, τ2)
has property P ). Comparing R with the Euclidean topology to R with the discrete
topology shows that second countability is not refineable either.

Proposition 5.15. The product of two Lindelöf spaces need not be Lindelöf.

Proof. Sorgenfrey plane... �

Theorem 5.16. Let I be a set of at most continuum cardinality: #I ≤ c = #R.
For i ∈ I, let Xi be a separable topological space. Then X =

∏
i∈I Xi is separable.

2. The Lower Separation Axioms

A general topological space need not be Hausdorff, but a metrizable space is nec-
essarily Hausdorff. The Hausdorff axiom is an example – probably the single most
important example – of a “separation axiom” for a topological space. Very roughly
speaking, a separation axiom is one which guarantees that certain kinds of set-
theoretic distinctnesses of points or subsets are witnessed by the topology. Exactly
what this means we will now explore, but one motivation for studying separation
axioms is that metric topologies satisfy very strong separation axioms, so if we are
looking for necessary and/or sufficient conditions for metrizability, separation ax-
ioms are the first place to look. (We will see later that metrizability is not implied
by separation axioms alone, but it is a good starting point.)

Let A and B be subsets of X. It may happen that A and B do not overlap in
the set-theoretic sense – i.e., A ∩B = ∅ but they are “touching” in the topological
sense: e.g., the intervals (−∞, 0] and (0,∞) are “just touching.” More formally,
we define two subsets A and B to be separated if

A ∩B = A ∩B = ∅.
For subsets A,B in a topological space, A ∩ B = ∅ means that for every b ∈ B,
there is an open neighborhood Nb of b which is disjoint from A. Thus the condition
that A and B are separated is a sort of “disjointness with insurance.
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Exercise 5.10. Suppose (X, d) is a metric space. Show that subsets A,B of
X are separated iff every point in A has positive distance from B and conversely.

Exercise 5.11. a) Show that separated subsets of a topological space are dis-
joint.
b) Find an open subset A and a closed subset B of R which are disjoint but not
separated.
c) Let A and B be disjoint subsets of a topological space. Suppose that A and B
are either both closed or both open. Show that A and B are separated.
d) Find open subsets A and B of R which are separated but for which A and B are
not separated.

2.1. Separated spaces.

We call a space separated, or Fréchet, if for any distinct points x and y, the
one-point subsets {x} and {y} are separated.1

Proposition 5.17. a) For a topological space X, the following are equivalent:
(i) X is separated.
(ii) For all pairs x, y of distinct points of X, there is an open set U containing x
and not y.
(iii) For all x ∈ X, the singleton set {x} is closed. (Briefly: “points are closed”.)
b) Every Hausdorff space is separated.
c) There are spaces which are separated but not Hausdorff.

Proof. a) (i) =⇒ (ii): Suppose X is separated, and let x, y be distinct points
of x. The existence of an open set containing x and not y is equivalent to y not
lying in the closure of x, which follows from the definition of the sets {x} and {y}
being separated. (ii) =⇒ (iii): If {x} is not closed, then there are y 6= x such that
every open neighborhood of x contains y. (iii) =⇒ (i) is immediate.
b) Suppose X is Hausdorff, and let x, y ∈ X. Then there are distinct open neigh-

borhoods Ux and Uy of x and y respectively. In particular y 6∈ Ux, so y 6∈ {x}.
Therefore {x} is closed.
c) The cofinite topology on an infinite set is separated but not Hausdorff. �

Exercise 5.12. Show that being separated is a refineable property: if (X, τ1) is
separated and τ2 ⊃ τ1 is a finer topology on X, then (X, τ2) is separated.

Exercise 5.13. Let X be a separated space and q : X → Y a quotient map.
Show that Y is separated iff all the fibers of q are closed.

2.2. Kolmogorov spaces and the Kolmogorov quotient.

In many branches of modern mathematics, a yet weaker separation axiom turns
out to be more useful. One way to motivate it is by consideration of the following
relation on a topological space X: we say that x, y ∈ X are topologically indis-
tinguishable if for all open sets U of x, x ∈ U ⇐⇒ y ∈ U . We write x ∼ y iff x
and y are topologically indistinguishable.

1Another common name for this separation axiom is T1. We will not use this terminology
here.
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Exercise 5.14. Let X be a topological space. Show: topological indistinguisha-
bility is an equivalence relation on X.

A space X is Kolmogorov2 if the relation of topological indistinguishability is
simply equality: for all x, y ∈ X, x ∼ y ⇐⇒ x = y.

Proposition 5.18. a) A topological space is Kolmogorov iff, for any two disinct
points x, y ∈ X, either there is an open set U containing x and not y, or there is
an open set V containing y and not x (or both).
b) A separated space is Kolmogorov.
c) There are spaces which are Kolmogorov and not separated.

Proof. a) This is a simple unwinding of the definition and is left to the reader.
b)By Proposition 5.17, a space is separated iff for any distinct points x, y ∈ X, there
is an open set U containing x and not y, hence by part a) X is Kolmogorov.
c) The Sierpinski space – a two-point set X = {◦, •} with topology τ = {∅, ◦, X}
– is Kolomogorov but not separated. �

Lemma 5.19. Let f : X → Y be a continuous map between topological spaces.
If x1, x2 ∈ X are topologically indistinguishable, then f(x1), f(x2) ∈ Y are topolog-
ically indistinguishable.

Proof. We argue by contraposition: suppose y1 = f(x1) and y2 = f(x2) are
topologically distinguishable in Y ; without loss of generality, we may assume that
there is an open set V in Y containing y1 but not y2. Then f−1(V ) is an open
subset of X containing x1 but not x2. �

Let X be a topological space and let ∼ be the equivalence relation of topological
indistinguishability on X. Let XK = X/ ∼ be the set of ∼-equivalence classes
and q : X → X the quotient map. We endow XK with the quotient topology – a
subset of XK is open iff its preimage in X is open – and then the space XK and
the continuous map q : X → XK is called the Kolmogorov quotient of X.

Proposition 5.20.
Let X be a topological space and q : X → XK its Kolmogorov quotient.

a) The map q induces a bijection from the open sets of X to the open sets of XK .
b) The space XK is a Kolmogorov space.
c) The map q is universal for continuous maps from X into a Kolmogorov space:
i.e., for any Kolmogorov space Y and continuous map f : X → Y , there is a unique
continuous map f : XK → Y such that f = f ◦ q.

Proof. a) We claim that q (direct image) and q−1 (inverse image) are mutually
inverse functions from the set of open sets of X to the set of open sets of XK . For
any quotient map q : X → Y and any open subset V of Y , one has q(q−1(V )) = V .
The other direction is more particular to the current situation: reall that a quotient
map need not be open. But for any open subset U of X, q−1(q(U)) is the set of all
points which are topologically indistinguishable from some element of U . This set
plainly contains U , and conversely if x ∈ U and y ∈ X \U , then U itself is an open
set distinguishing x from Y , so q−1(q(U)) = U .
b) Let y1 6= y2 ∈ XK , and choose x1 ∈ q−1(y1), x2 ∈ q−1(y2). Because y1 6= y2,
there is an open set U of X which either contains x1 and not x2 or contains x2

2It is common to call such spaces T0.
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and not x1; relabelling if necessary, we suppose that x1 ∈ U and x2 /∈ U . By part
a), q(U) is open in Y , so y1 ∈ q(U). If we had y2 ∈ q(U), then we would have
x2 ∈ q−1(q(U)) = U , contradiction.
c) By Lemma 5.19, f factors through q. The resulting map F is unique, and is
continuous by the universal property of quotient maps. �

The upshot is that, intuitively speaking, passing to the Kolmogorov quotient does
not disturb the underlying topology – only the underlying set! That doesn’t quite
make sense in the standard set-theoretic setup for topology (to be sure, the only
one we are considering!) but one can make sense of it via the theory of locales.

Exercise 5.15. Show: Kolmogorov completion is a functor and is left adjoint
to the forgetful functor from Kolmogorov spaces to topological spaces.

Exercise 5.16. Show: a space is quasi-compact iff its Kolmogorov quotient is
quasi-compact.

2.3. The specialization quasi-ordering.

We define a second relation on the points of a topological space X. Namely, for
x, y ∈ X, we say that y is a specialization of x if y ∈ {x}.

Many of the concepts we have been exploring in this section can be interpreted
in terms of a specialization relation. In particular, a point is closed iff it does not
specialize to any other point. Thus, a space is separated iff the specialization re-
lation is equality. Moreover, two points x and y are topologically indistinguishable
iff x specializes to y and y specializes to x.

In general, a binary relation R on a set X is a preordering if it satisfies the
following axioms:

(PO1) For all x ∈ X, xRx (reflexivity).
(PO2) For all x, y, z ∈ X, xRy and yRz implies xRz (transitivity).

Lemma 5.21. Let R be any preorder on a set X, and define a new relation ∼
on X by x ∼ y if xRy and yRx. Then:
a) The relation ∼ is an equivalence relation on X. Put X = X/ ∼.
b) The relation R descends to a partial ordering on X.

Exercise 5.17. Prove it.

Proposition 5.22. Let X be a topological space.
a) X is Kolmogorov iff the specialization relation is a partial ordering (equivalently,
if it antisymmetric).
b) For any space X, the quotient by the specialization relation is, as a partially
ordered set, canonically isomorphic to the Kolmogorov quotient.

Exercise 5.18. Prove it.

Exercise 5.19. Let f : X → Y be a continuous map of topological spaces.
a) Show that the map is compatible with the specialization preorderings on X and
Y , in the following sense: if x1 4 x2 in X, then f(x1) 4 f(x2) in Y .
b) Use part a) to define a functor P from the category of topological spaces and
continuous maps to the category of preordered sets and preorder-preserving maps.
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It is natural to ask what the essential image of P is, i.e., which preordered sets, up
to isomorphism, arise from the specialization preorder on a topological space? To
answer this we will define a functor in the other direction.

If (X,4) is a quasi-ordered set, an upward set in X is a subset Y of X such
that for all y ∈ Y and x ∈ X, if y 4 x, then x ∈ Y . Similarly, a subset Y of X is a
downward set if for all y ∈ Y and x ∈ X, if x 4 y, then x ∈ Y .

Alexandroff space of a preordered set: let (X,4) be a preordered set. Let τX
be the family of all downward sets in X. It is easy to see that τX contains ∅ and X
and is closed under arbitrary unions and also arbitrary intersections. In particular
τX is a topology on X, and (X, τX) is called the Alexandroff topology on (X,4).

Exercise 5.20. Let X be any set.
a) Endow X with the trivial quasi-ordering – x 4 y ⇐⇒ x = y – and show that
the associated Alexandroff topology is the discrete topology.
b) Endow X with the discrete quasi-ordering – for all x, y ∈ X, x 4 y – and show
that the associated Alexandroff topology is the trivial (or indiscrete) topology.
c) Endow X with a nontrivial partial ordering. Show that the associated Alexandroff
topology is Kolmogorov but not separated.

Exercise 5.21. Show that (X,4) 7→ (X, τX) extends to a functor T from the
category of topological spaces and continuous maps to the category of preordered
sets and preorder-preserving maps.

Proposition 5.23. Let (X,4) be a preordered set. Then the identity map
X 7→ P(T (X)) is an isomorphism of preordered spaces. It follows that every pre-
ordered space is, up to isomorphism, the specialization preordering on some topo-
logical space.

Proof. Let x1, x2 ∈ X. Suppose first that x1 ≤ x2. Then every downward
set which contains x2 also contains x1, i.e., every τX -open set containing x2 also
contains x1, so x2 is a specialization of x1. Now suppose that x1 is not less than or
equal to x2. Then the downward set D(x2) of all elements less than or equal to x2

is a τX -open set containing x2 but not x1, so x2 is not a specialization of x1. �

This answers the question of which preordered sets arise as a specialization preorder,
but gives rise to another question: which topological spaces are the Alexandroff
topology of some preorder on the underlying set? Note that here the answer is
certainly not “all of them”, because the Alexandroff topology on (X,4) has a
property which most topologies lack: the family of open sets is closed under not
just finite intersections but arbitrary intersections. This gives rise to interesting
class of topological spaces which we study next.

2.4. Alexandroff Spaces.

Proposition 5.24. For a topological space X, the following are equivalent:
(i) If {Ui}i∈I is any family of open sets of X,

⋂
i∈I Ui is open.

(ii) If {Fi}i∈I is any family of closed sets of X,
⋂
i∈I Fi is closed.

(iii) Every x ∈ X has a unique minimal open neighborhood.
(iv) Every downward set in the specialization quasi-ordering is open.
(v) For every S ⊂ X and y ∈ S, there is x ∈ S such that x specializes to y.
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(vi) For every S ⊂ X and y ∈ S, there is a finite subset S′ of S such that y ∈ S.
A space satisfying these equivalent conditions is called an Alexandroff space.

Proof. Obviously (i) ⇐⇒ (ii) by complementation.
(i) ⇐⇒ (iii): Note that (iii) amounts to: for every x ∈ X, the intersection of
all open neighborhoods of x is open, say equal to N(x). So certainly (i) =⇒
(iii). Conversely, suppose (iii) holds, let {Ui}i∈I be a family of open sets, and let
x ∈ U =

⋂
i Ui. Then N(x) ⊂ Ui for all i, so N(x) ⊂ U and x is an interior point

of U . Since x was arbitrary, U is open.
(iii) ⇐⇒ (iv): Let x, y ∈ X. Then y ∈ N(x) iff y lies in every open neighborhood
of x iff x ∈ y iff y 4 x in the specialization preorder. Thus N(x) is precisely the
principal downard set associated to x, and (iii) is equivalent to each of these sets
being open. So (iv) =⇒ (iii). Moreover, since any downard set is the union of its
principal downward subsets, (iii) =⇒ (iv).
(ii) =⇒ (v): Since y ∈ S, there is x ∈ N(y) ∩ S.
(v) =⇒ (vi) trivially.
(vi) =⇒ (iu): Let {Fi}i∈I be a family of closed sets of X, put F =

⋃
i∈I Fi, and

let x ∈ F . By assumption, there exist x1, . . . , xn ∈ F such that x ∈ {x1, . . . , xn}.
For each 1 ≤ j ≤ n, xj lies in some Fij , so that {x1, . . . , xn} ⊂ F ′ =

⋃n
j=1 Fij .

Since F ′ is a finite union of closed sets, it is closed, and thus

x ∈ {x1, . . . , xn} ⊂ F ′ ⊂ F .

Since x was arbitrary, F is closed. �

Example: Finite spaces, discrete and indiscrete spaces are all Alexandroff.

Exercise: Show that an Alexandroff space is separated iff it is discrete.

Exercise: Show that the class of Alexandroff spaces is closed under: passage to
subspaces and finite products.

Proposition 5.25. A quotient of an Alexandroff space is Alexandroff.

Proof. Let X be an Alexandroff space and q : X → Y be a quotient map.
Let {Vi}i∈I is a family of open subsets of Y and put V =

⋂
i Vi. Then

f−1(V ) = f−1(
⋂
i

f−1(Vi)) =
⋂
i

f−1(Vi)

is open, since f is continuous and X is Alexandroff. By definition of the quotient
topology, this implies that V is open in Y . �

Exercise: Let X be an Alexandroff space and f : X → Y be continuous, open and
surjective. Show that Y is an Alexandroff space.

In particular, the Kolmogorov quotient of an Alexandroff space is Alexandroff and
Kolmogorov. This is the topological analogue of passing from a quasi-order to its
associated partial order. An Alexandroff spcace is Kolmogorov iff the assignment
x ∈ X 7→ D(x) is injective.

Proposition 5.26. Let X be an Alexandroff space and x ∈ X. Then the
principal downset D(x) is quasi-compact.
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Proof. Indeed, since D(x) is the unique minimal open neighborhood of x, in
any covering of D(x) by open subsets of X, at least one of the elements U of the
cover must contain D(x), so {U} is a finite subcovering. �

Note that this gives many examples of quasi-compact Alexandroff spaces, namely
the Alexandroff topology on a quasi-ordered set X with a top element, i.e., an ele-
ment xT such that for all x ∈ X, x ≤ xT .

For any topological space X, we define its Alexandroff completion to be T (PX),
i.e., the topological space with the same underlying set as X but retopologized so
that the open sets are precisely the downward sets for the specialization preorder-
ing on X. By Proposition 5.23, passage to the Alexandroff completion does not
change the specialization preordering, so in particular a space is Kolmogorov (resp.
separated) iff its Alexandroff completion is Kolmogorov (resp. separated). But
of course most spaces are not Alexandroff, so the Alexandroff completion usually
carries a different topology.

Example: Let X be a set endowed with the cofinite topology. Then X is sepa-
rated, so the specialization preorder is the trivial order, hence by XX above the
Alexandroff completion is discrete. On the other hand X is itself quasi-compact,
so X coincides with its Alexandroff completion iff it is a finite space.

Example: Let Y = X ∪ {η}, where X is an infinite set. We topologize Y as
follows: a nonempty subset of Y is open iff it contains η and is cofinite. In this
topology, the points of X are each closed whereas the closure of η is all of Y . The
specialization preordering on Y is as follows: no two distinct points of X special-
ize to each other, whereas η specializes to every point of X. In particular X is
quasi-compact, Kolmogorov but not separated. In the Alexandroff completion of
Y , the minimal open sets are the singleton set η and the pairs {η, x} for x ∈ X. In
other words, this is the topology – seen at the very beginning of our notes but not
“in nature” until now – in which a subset of Y is open iff it contains η. This new
topology is far from being quasi-compact.

In both of these examples, passage to the Alexandroff completion resulted in a
finer topology. The following result establishes this, and a little more.

Proposition 5.27. Let (X,4) be a preordered set. Then the Alexandroff topol-
ogy (X, τX) is the finest topology τ on X such that the associated specialization
preordering coincides with 4.

Proof. Let (X, τ) be a topological space with specialization preordering 4. It
suffices to show: if U ∈ τ and x ∈ U , then the principal downset D(x) = {y | y ≤ x}
is contained in U . But indeed, y ∈ D(x) iff x ∈ y iff every open neighborhood Nx
of x meets {y}. So in particular U meets y, i.e., y ∈ U . �

An equivalent phrasing of Proposition 5.27 is that, for any topological space X, the
identity map T (PX)→ X is continuous. It follows that every topological space is
the continuous image of an Alexandroff space.

Corollary 5.28. a)The functors P and T induce an equivalence between the
category of Alexandroff topological spaces and the category of preordered sets.
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2.5. Irreducible spaces, Noetherian spaces, and sober spaces.

A topological space is irreducible if it is nonempty and if it cannot be expressed
as the union of two proper closed subsets.

Exercise 5.22. Show that for a Hausdorff topological space X, the following
are equivalent:
(i) X is irreducible.
(ii) #X = 1.

Proposition 5.29. For a topological space X, the following are equivalent:
(i) X is irreducible.
(ii) Every finite intersection of nonempty open subsets (including the empty inter-
section!) is nonempty.
(iii) Every nonempty open subset of X is dense.
(iv) Every open subset of X is connected.

Exercise: Prove Proposition 5.29.

Proposition 5.30. Let X be a nonempty topological space.
a) If X is irreducible, every nonempty open subset of X is irreducible.
b) If a subset Y of X is irreducible, so is its closure Y .
c) If {Ui} is an open covering of X such that Ui ∩ Uj 6= ∅ for all i, j and each Ui
is irreducible, then X is irreducible.
d) If f : X → Y is continuous and X is irreducible, then f(X) is irreducible in Y .

Proof. a) Let U be a nonempty open subset of X. By Proposition 5.29, it
suffices to show that any nonempty open subset V of U is dense. But V is also a
nonempty open subset of the irreducible space X.
b) Suppose Y = A ∪ B where A and B are each proper closed subsets of Y ; since
Y is itself closed, A and B are closed in X, and then Y = (Y ∩ A) ∪ (Y ∩ B). If
Y ∩A = Y then Y ⊂ A and hence Y ⊂ A = A, contradiction. So A is proper in Y
and similarly so is B, thus Y is not irreducible.
c) Let V be a nonempty open subset of X. Since the Ui’s are a covering of X, there
is at least one i such that V ∩ Ui 6= ∅, and thus by irreducibility V ∩ Ui is a dense
open subset of Ui. Therefore, for any index j, V ∩Ui intersects the nonempty open
subset Uj ∩Ui, so in particular V intersects every element Uj of the covering. Thus
for all sets Ui in an open covering, V ∩ Ui is dense in Ui, so V is dense in X.
d) If f(X) is not irreducible, there exist closed subsets A and B of Y such that
A∩ f(X) and B ∩ f(X) are both proper subsets of f(X) and f(X) ⊂ A∪B. Then
f−1(A) and f−1(B) are proper closed subsets of X whose union is all of X. �

Exercise 5.23. Show: the union of a chain of irreducible subspaces is irre-
ducible.

Let x be a point of a topological space, and consider the set of all irreducible
subspaces of X containing x. (Since {x} itself is irreducible, this set is nonempty.)
Applying Exercise X.X and Zorn’s Lemma, there is at least one maximal irreducible
subset containing x. A maximal irreducible subset – which by Proposition 5.30b) is
necessarily closed – is called an irreducible component of X. Since irreducible
subsets are connected, each irreducible component lies in a unique connected com-
ponent, and each connected component is the union of its irreducible components.
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However, unlike connected components, it is possible for a given point to lie in
more than one irreducible component. We will see examples shortly.

In the case of the Zariski topology SpecR, there is an important algebraic in-
terpretation of the irreducible components. Namely, the irreducible components Y
of SpecR correspond to V (p) where p ranges through the minimal primes.

Proposition 5.31. For an ideal I of R, the closed subset V (I) is irreducible
iff the radical ideal

rad(I) = {x ∈ R | ∃n ∈ Z+xn ∈ I}
is prime.

Proof. See [CA, §9.1]. �

It follows that the irreducible components – i.e., the maximal irreducible subsets –
are the sets of the form V (p) as p ranges over the distinct minimal prime ideals.

Proposition 5.32. For a topological space X, the following are equivalent:
(i) Every ascending chain of open subsets is eventually constant.
(ibis) Every descending chain of closed subsets is eventually constant.
(ii) Every nonempty family of open subsets has a maximal element.
(iibis) Every nonempty family of closed subsets has a minimal element.
(iii) Every open subset is quasi-compact.
(iv) Every subset is quasi-compact.
A space satisfying any (and hence all) of these conditions is called Noetherian.

Proof. The equivalence of (i) and (ibis), and of (ii) and (iibis) is immediate
from taking complements. The equivalence of (i) and (ii) is a general property of
partially ordered sets.

(i) ⇐⇒ (iii): Assume (i), let U be any open set in X and let {Vj} be an open
covering of U . We assume for a contradiction that there is no finite subcovering.
Choose any j1 and put U1 := Vj1 . Since U1 6= U , there exists j2 such that U1 does
not contain Vj2 , and put U2 = U1∪Vj2 . Again our assumpion implies that U2 ) U ,
and continuing in this fashion we will construct an infinite properly ascending chain
of open subsets of X, contradiction. Conversely, assume (iii) and let {Ui}∞i=1 be an
infinite properly ascending chain of subsets. Then U =

⋃
i Ui is not quasi-compact.

Obviously (iv) =⇒ (iii), so finally we will show that (iii) =⇒ (iv). Suppose
that Y ⊂ X is not quasi-compact, and let {Vi}i∈I be a covering of Y by relatively
open subsets without a finite subcover. We may write each Vi as Ui∩Y with Ui open
in Y . Put U =

⋃
i Ui. Then, since U is quasi-compact, there exists a finite subset

J ⊂ I such that U =
⋃
j∈J Uj , and then Y = U ∩ Y =

⋃
j∈J Uj ∩ Y =

⋃
j∈J Vj . �

Corollary 5.33. A Noetherian Hausdorff space is finite.

Exercise 5.24. Prove Corollary 5.33.

Proposition 5.34. Let X be a Noetherian topological space.
a) There are finitely many closed irreducible subsets {Ai}ni=1 such that X =

⋃n
i=1Ai.

b) Starting with any finite family {Ai}ni=1 as in part a) and eliminating all redun-
dant sets – i.e., all Ai such that Ai ⊂ Aj for some j 6= i – we arrive at the
set of irreducible components of X. In particular, the irreducible components of a
Noetherian space are finite in number.
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Proof. a) Let X be a Noetherian topological space. We first claim that X
can be expressed as a finite union of irreducible closed subsets. Indeed, consider
the collection of closed subsets of X which cannot be expressed as a finite union
of irreducible closed subsets. If this collection is nonempty, then by Proposition
5.32 there exists a minimal element Y . Certainly Y is not itself irreducible, so is
the union of two strictly smaller closed subsets Z1 and Z2. But Z1 and Z2, being
strictly smaller than Y , must therefore be expressible as finite unions of irreducible
closed subsets and therefore so also can Y be so expressed, contradiction.

b) So write
X = A1 ∪ . . . ∪An

where each Ai is closed and irreducible. If for some i 6= j we have Ai ⊂ Aj , then
we call Ai redundant and remove it from our list. After a finite number of such
removals, we may assume that the above finite covering ofX by closed irreducibles is
irredundant in the sense that there are no containment relations between distinct
Ai’s. Now let Z be any irreducible closed subset. Since Z =

⋃n
i=1(Z ∩Ai) and Z is

irreducible, we must have Z = Z ∩ Ai for some i, i.e., Z ⊂ Ai. It follows that the
“irredundant” Ai’s are precisely the maximal irreducible closed subsets, i.e., the
irreducible components. �

We deduce the following important result, which is not so straightforward to prove
using purely algebraic methods:

Corollary 5.35. Let I be a proper ideal in a Noetherian ring R. The set
of prime ideals p which are minimal over I (i.e., minimal among all prime ideals
containing I) is finite and nonempty.

Exercise 5.25. Prove Corollary 5.35.

3. More on Hausdorff Spaces

Recall that a topological space X is Hausdorff if for each pair x, y of distinct points
in X, there exist open neighborhoods Ux, Uy of x and y such that Ux ∩ Uy = ∅.

Proposition 5.36. The Hausdorff property is hereditary.

Proof. Let Y be a subspace of the Hausdorff space X, and let y1 6= y2 ∈ Y .
Since X is Hausdorff there are disjoint open sets U1 and U2 of X with y1 ∈ U1 and
y2 ∈ U2. Then V1 = U1 ∩Y and V2 = U2 ∩Y are dsijoint open sets of Y containing
y1 and y2 respectively. �

Exercise 5.26. Let X be an infinite Hausdorff space.
a) Show: there is a nonempty open subset U of X such that X \ U is infinite.
b) Show: X admits a countably infinite discrete subspace.

Proposition 5.37. The Hausdorff property is faithfully productive: that is, let
{Xi}i∈I be a nonempty family of nonempty topological spaces, and let X =

∏
i∈I Xi,

endowed with the product topology. Then X is Hausdorff iff for all i ∈ I, Xi is
Hausdorff.

Proof. Suppose X is Hausdorff. Since Hausdorff is a hereditary property, it
follows from Corollary 3.18 that each Xi is Hausdorff. Suppose Xi is Hausdorff for
all i ∈ I and let x 6= y ∈ X. Then there is i ∈ I such that xi 6= yi. Let Ui and Vi be
disjoint open subsets of Xi containing xi and yi respectively. Then U = π−1

i (Ui)

and V = π−1
i (Vi) are disjoint open subsets of X containing x and y respectively. �
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Proposition 5.38. a) The continuous open image of a Hausdorff space need
not be Hausdorff.
b) If X is Hausdorff and q : X → Y is a closed quotient map, then Y need not be
Hausdorff.

Proof. [Wi, p. 88]. �

For a set X, we define the diagonal map ∆X : X ↪→ X ×X by x 7→ (x, x). It is
plainly an injection. If X is a topological space, we claim that ∆X is moreover an
embedding, i.e., continuous and open. Indeed, let x in X. Then a neighborhood
base of (x, x) in X×X is given by sets of the form U ×V , where U and V are both
open neighborhoods of x in X. Then ∆−1

X (U × V ) = U × V is open in X, so ∆X is
continuous at x. Moreover, for any open subset U of X, ∆X(U) = U × U is open
in X ×X.

Example 5.4. (The line with two origins): Let X be the union of two lines in
R2, say y = 0 and y = 1. We define a quotient of X via the following equivalence
relation: if x 6= 0, (x, 0) ∼ (x, 1), but (0, 0) is not equivalent to (0, 1). The quotient
Y = X/ ∼ is “almost” homeomorphic to the Euclidean line, except that it has
“two origins”. Y is locally Euclidean: for any ε > 0, ((ε, ε) × {1}) ∪ ((−ε, 0) ×
{0})∪ ((0, ε)×{0}) is a neighborhood base at the image of (0, 1) in Y each of whose
elements is disjoint from (0, 0). In particular Y is separated. But it is evidently
not Hausdorff.

Proposition 5.39. Let f : X → Y be a continuous map with Y a Hausdorff
space. The set S = {(x1, x2) ∈ X ×X | f(x1) = f(x2)} is closed in X ×X.

Proof. If (x1, x2) ∈ X×X\S, then f(x1) 6= f(x2). Since Y is Hausdorff, there
exist disjoint open neighborhoods V1 of f(x1) and V2 of f(x2). Then f−1(V1) ×
f−1(V2) is an open neighborhood of (x1, x2) in X×X which is disjoint from S. �

The following result gives a necessary and sufficient condition for the image under
an open quotient map to be Hausdorff.

Theorem 5.40. Let f : X → Y be an continuous, open and surjective. Then
the following are equivalent:
(i) Y is Hausdorff.
(ii) S = {(x1, x2) ∈ X ×X | f(x1) = f(x2)} is closed in X ×X.

Proof. By Proposition 5.39, (i) =⇒ (ii) (even without the hypothesis that
f is an open quotient map). Conversely, assume that S is closed in X × X, and
let f(x1), f(x2) be distinct points of Y . Then (x1, x2) 6∈ S, so there exist open
neighborhoods U1, U2 of x1, x2 in X such that (U1 ×U2)∩ S = ∅. Since f is open,
V1 = f(U1) and V2 = f(U2) are open neighborhoods of f(x1), f(x2). If there existed
a y ∈ V1 ∩ V2, then there exist x′1 ∈ U1 and x′2 ∈ U2 such that f(x′1) = y = f(x′2),
contradicting the fact that (U1 × U2) ∩ S = ∅. �

Exercise 5.27. [Wi, Exc. 13H] Show that for every topological space Y there
is a Hausdorff space X and a continuous, open surjection f : X → Y .

Proposition 5.41. Let X be a space, Y a Hausdorff space and f, g : X → Y
two continuous functions.
a) Then the set E(f, g) = {x ∈ X | f(x) = g(x)} is closed in X.
b) If f and g agree on a dense subset of X, then f = g.
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Exercise 5.28. Prove it.

Exercise 5.29. Recall that for any function f : X → Y , the graph of f is

G(f) = {(x, f(x) | x ∈ X} ⊂ X × Y }.
a) Show that if f is continuous and Y is Hausdorff then G(f) is closed.
b) Find a discontinuous function f : R→ R for which G(f) is closed.

Exercise 5.30. (Insel)
a) Suppose X is first countable and every quasi-compact subset of X is closed.
Show: X is Hausdorff.
b) Give a counterexameple to part a) with the hypothesis of first countability omitted.

4. Regularity and Normality

Let A,B be subsets of a topological space X. We say that A and B are separated
by open sets if there are disjoint open subsets U, V of X with A ⊂ U , B ⊂ V .

A topological space X is quasi-regular if for every point p ∈ X and every closed
subset A ⊂ X, if p /∈ A then {p} and A can be separated by open sets. A topo-
logical space is regular if it is quasi-regular and Hausdorff. A topological space X
is quasi-normal if every pair of disjoint closed subsets can be separated by open
sets. A topological space is normal if it is quasi-normal and Hausdorff.

Exercise 5.31. Show: the Moore-Niemytzki plane is Hausdorff but not regular.

The following exercise should help to explain the “quasi”s.

Exercise 5.32. a) Show that normal spaces are regular.
b) Show that the Sierpinski space is quasi-regular but not quasi-normal.

Proposition 5.42. a) For a topological space X, the following are equivalent:
(i) X is quasi-regular.
(ii) Every point of X admits a neighborhood base of closed neighborhoods.
b) For a topological space X, the following are equivalent:
(i) X is quasi-normal.
(ii) For all subsets B ⊂ U ⊂ X with B closed and U open, there is an open subset
V with

B ⊂ V ⊂ V ⊂ U.

Proof. a) (i) =⇒ (ii) Let p ∈ X, and let U be an open set containing p.
Then A = X \U is closed and p /∈ A, so by assumption there are disjoint open sets
V containing p and W containing A. Then V ∩ A = ∅: indeed, if x ∈ A, then W
is a neighborhood of x disjoint from V . So p ∈ V ⊂ U .
(ii) =⇒ (i): Let A ⊂ X be closed, let U = X \ A, and let p ∈ U . By hypothesis,
there is an open neighborhood V of p with p ∈ V ⊂ U . Then V and X \ V are
disjoint open sets with p ∈ V and A ⊂ X \ V .
b) (i) =⇒ (ii): Let B ⊂ U ⊂ X with A closed and U open. Let A = X \ U , so A
is closed and A ∩ B = ∅. By hypothesis there are disjoint open sets V containing
B and W containing A. As above, we have V ∩A = ∅, so V ⊂ U .
(ii) =⇒ (i): Let A and B be disjoint closed subsets of X. Let U = X \ A, so
B ⊂ U . By hypothesis there is an open subset V with B ⊂ V ⊂ V ⊂ U . Then V
and X \ V are disjoint open sets containing B and A respectively. �
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Proposition 5.43.
a) A space is quasi-regular iff its Kolmogorov quotient is regular.
b) In particular, a Kolmogorov quasi-regular space is regular.
c) A space is quasi-normal iff its Kolmogorov quotient is normal.
d) In particular, a Kolmogorov quasi-normal space is normal.

Proof. It suffices to prove parts a) and c); parts b) and d) follow immediately.
�

Proposition 5.44. a) Quasi-regularity and regularity are hereditary properies:
subspaces of quasi-regular (resp. regular) spaces are regular.
b) Quasi-regularity and regularity are faithfully productive properties: if {Xi}i∈I is
a family of nonempty topological spaces, then X =

∏
i∈I Xi is quasi-regular (resp.

regular) iff each Xi is quasi-regular (resp. regular).

Proof. It is enough to show parts a) and b) for quasi-regular spaces and
combine with the analogous result for separated spaces.
a) Let X be a quasi-regular space, let Y ⊂ X, let B ⊂ Y be closed in Y and let
y ∈ Y \B. Then there is a closed subset A ⊂ X such that B = A∩Y . Since y ∈ Y
and y /∈ B we have y /∈ A. By quasi-regularity, there are disjoint open subsets U, V
of X with y ∈ U and A ⊂ V . The subsets U ∩ Y and V ∩ Y are disjoint, open in
Y , and contain y and B respectively.
b) As usual, since each Xi is homeomorphic to a space of X =

∏
i∈I Xi, if X is

quasi-regular, then it follows from part a) that each Xi is quasi-regular. Conversely,
suppose each Xi is quasi-regular, let x ∈ X, and consider a basic neighborhood

U =

n⋂
j=1

π−1
ij

(Uij )

of x in X. Then each Uij is a neighborhood of xij = πij (x) in Xij , so by X.X there
is a closed neighborhood Cij of xij contained in Uij . Then

C =

n⋂
j=1

π−1
ij

(Cij )

is a closed neighborhood of x contained in U . So X is quasi-regular. �

Theorem 5.45. (Ubiquity of Normality)
a) Metrizable spaces are normal.

b) Compact spaces are normal.
c) (Tychonoff’s Lemma) Regular Lindelöf spaces are normal.
d) Order spaces are normal.

Proof. a) Let A, B be disjoint closed subsets of X. Since A∩B = ∅, for every
a ∈ A, there exists εa > 0 such that B(a, εa)∩B = ∅. Similarly, since B∩A = ∅, for
every b ∈ B, there exists εb > 0 such that B(b, εb)∩A = ∅. Put U =

⋃
a∈AB(a, εa2 )

and V =
⋃
b∈B B(a, εb2 ). Then U ∩ V = ∅. Indeed, suppose x ∈ U ∩ V ; then there

exist a ∈ a and b ∈ B such that x ∈ B(a, εa2 ) ∩B(b, εb2 ). Then

d(a, b) <
εa + εb

2
≤ max{εa, εb}.

That is, either d(a, b) < εa – in which case there exists a point of B in B(a, εa), a
contradiction – or d(a, b) < εb, which is similarly contradictory.
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b) Step 1: We will show that X is regular.
Let A be a closed subset of the compact space X and x ∈ X \ A. Since X is
Hausdorff, each point y ∈ A has an open neigbhborhood Uy such that y /∈ Up. The
closed subset A is itself compact, so we can extract a finite covering {Uyi}Ni=1 of A.

Put U =
⋃N
i=1 Uyi ⊃ A.

Then

U =

N⋃
i=1

Uyi

does not contain p, so X \ U , U are disjoint open subsets containing p and A.
Step 2: Now suppose A and B are disjoint closed subsets of X. Let p ∈ B, and
apply the previous sstep to get disjoint open neighborhoods Up of A and Vp of

B. Because A is compact, there is a finite subset such that A ⊂
⋃N
i=1 Upi . Let

V =
⋂N
i=1 Vpi . Then U and V are disjoint open subsets containing A and B.

c) Let X be regular Lindelöf, and let A and B be disjoint closed subsets of X.
Because X is regular, for all a ∈ A there is an open neighborhood Ua of a such that
Ua ∩ B = ∅; and similarly for each b ∈ B there is an open neighborhood Vb of b
such that A ∩ Vb = ∅. Since A and B are closed in a Lindelöf space, they too are
Lindelöf, so there are sequences {an}∞n=1 in A and {bn}∞n=1 in B such that

A =
⋃
n

Un, B =
⋃
n

Vn.

We now inductively construct two sequences of open sets:

S1 = U1, T1 = V1 \ S1,

S2 = U2 \ T2, T2 = V2 \ (S1 ∪ S2),

S3 = U3 \ (T1 ∪ T2), T3 = V3 \ (S1 ∪ S2 ∪ S3),

and so forth. Put

S =
⋃
n

Sn, T =
⋃
n

Tn.

Then S and T a be a countably infinite, connected and regular topological space.
re disjoint open subsets with A ⊂ S and B ⊂ T .
d) FIX ME! �

Theorem 5.46. (Fragility of Normality)
a) A subspace of a normal space need not be normal.
b) The product of two normal spaces need not be normal.
c) (Noble’s Theorem) Let X be a topological space such that for all cardinal numbers
κ, the product Xκ is normal. Then X is compact.

Proof. a,b) Our example (a very famous one) which establishes both of these
facts will be the following: let ω1 be the least uncountable ordinal, endowed with
the order topology, in which a base is given by open intervals. Let ω1+1 = ω1∪{ω1}
be its successor ordinal. We claim ω1 and ω1 + 1 are both normal; and indeed, that
ω1 + 1 is compact. However, the product ω1 × (ω1 + 1) is not normal. Moreover, it
is a subspace of the space (ω1 + 1)× (ω1 + 1), which is compact and hence normal.
c) FIX ME! See https://dantopology.wordpress.com/2014/03/09/ �
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Theorem 5.45 gives an insight into the importance of normality: it gives a rather
strong necessary condition for metrizability of a topological space. Unfortunately
the same result shows that normality is not sufficient for metrizability.

Example 5.5. Let X be a compact space containing more than one point, and
let J be an uncountable set. By Tychonoff’s Theorem, the product XJ is compact,
hence normal by Theorem X.X. On the other hand, by X.X the space XJ is not
first countable, so it cannot be metrizable.

This suggests that we should add on some countability axiom in order to guar-
antee metrizability. Since metrizable spaces are necessarily first countable, it is
natural to look at the class of normal, first-countable spaces. However, these
need not be metrizable, even when compact. A counterexample is given by the
space [0, 1]× [0, 1], topologized via the lexicographic ordering: (x1, y1) < (x2, y2) iff
x1 < x2 or x1 = x2 and y1 < y2.

It is then natural to ask whether a normal, second countable space must be metriz-
able. The answer to this question is one of the main goals of the following chapter.

5. An application to (dis)connectedness

Theorem 5.47. Let X be a compact space. Then the connected components
and the quasi-components coincide: for all x ∈ X we have C(x) = CQ(x).

Proof. Let x ∈ X. As above, we have C(x) ⊂ CQ(x). Since C(x) is the
maximal connected subset containing X, the equality C(x) = CQ(x) holds iff CQ(x)
is connected. So suppose CQ(x) = Y1

∐
Y2 for disjoint closed subsets of CQ(x) with

x ∈ Y1. Since CQ(x) is closed in X and Y1 and Y2 are closed in CQ(x), we get that Y1

and Y2 are disjoint closed subsets in X. Being compact, X is thus normal, so there
are disjoint open subsets U1 ⊃ Y1 and U2 ⊃ Y2. Since CQ(x) is the intersection of all
clopen subsets containing x, X \CQ(x) is a union of clopen subsets not containing
x, hence X \ (U1 ∪ U2) is contained in a union of clopen subsets not containing x.
By compactness, there are finitely many clopen subsets B1, . . . , Bn not containing
x such that

(X \ (U1 ∪ U2)) ⊂
n⋃
i=1

Bi.

Then Fi := X \Bi is a clopen subset containing x, hence

CQ(X) ⊂
n⋂
i=1

Fi ⊂ U1 ∪ U2.

Put F :=
⋂n
i=1 Fi, a clopen subset. Since

U1 ∩ F ⊂ U1 ∩ F ⊂ U1 ∩ (U1 ∪ U2) ∩ F = U1 ∩ F,

so U1 ∩ F is clopen. Since x ∈ U1 ∩ F , we have CQ(x) ⊂ U1 ∩ F and thus
Y2 ⊂ CQ(x) ⊂ U1. It follows that Y2 ⊂ U1∩U2 = ∅. Hence CQ(x) is connected. �

A topological space is zero-dimensional if it admits a base of clopen sets.

Exercise 5.33. a) Show: an infinite zero-dimensional space can be connected.
b) Show: a zero-dimensional space is totally disconnected iff it is separated.
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Theorem 5.48. Let X be locally compact and totally disconnected. Then ev-
ery point of x admits a neighborhood base of compact clopen neighborhoods. In
particular, X is zero-dimensional.

Proof. Let x ∈ X, and let U be an open neighborhood of X. Since X
is regular, there is an open neighborhood V of x such that V is compact and
V ⊂ U . Thus V is compact and totally disconnected, so by Theorem 5.47 the
quasi-component of x in V is {x}. So for every y ∈ V \ V , there is a clopen
subset Uy disjoint from x. By compactness, V \ V has a finite covering by clopen
subsets disjoint from x, and taking complements we get finitely many clopen subsets
F1, . . . , Fn such that

x ∈
n⋂
i=1

Fi ⊂ V.

Then F :=
⋂n
i=1 is a compact clopen neighborhood of x contained in U . �

Corollary 5.49. For a compact metric space X, the following are equivalent:
(i) X is totally disconnected.
(ii) X is zero-dimensional.
(iii) For all δ > 0, X is a finite disjoint union of open subsets, each of diameter at
most δ.

Proof. (i) ⇐⇒ (ii) is a special case of Theorem 5.48.
(ii) =⇒ (iii): Fix δ > 0. For each x ∈ X, by Theorem 5.48 the open ball B(x, δ)
contains a clopen subset Fx, and by compactness there are x1, . . . , xn ∈ X such
that X =

⋃n
i=1 Fxi . Let F1 := Fx1

, and for 2 ≤ i ≤ n, let

Fi := Fxi \
i−1⋃
j=1

Fxj .

This works.
(iii) =⇒ (ii): Suppose that X is not totally disconnected. Then there is a con-
nected subset Y ⊂ X consisting of more than one point, thus of positive diameter
δ. If then X is a disjoint union of finitely many open subsets U1, . . . , Un, then for
some Ui we have Ui ∩ Y = Y and thus the diameter of Ui is at least δ. �

We can now give a striking classical characterization of Cantor space.

Theorem 5.50. Let X be a metric space which is nonempty, compact, totally
disconnected and perfect (i.e., without isolated points). Then X is homeomorphic
to the Cantor set.

Proof. Step 1: Let X be a compact metric space. We suppose given a se-
quence of successive separations on X: we separate X =

∐
X0 ∪X1, we separate

X0 = X0,0 ∪X0,1, X1 = X1,0 ∪X0,1, and so forth: at the nth stage we have par-
titioned X into 2n nonempty clopen sets Xε1,...,εn , εi ∈ {0, 1}. Suppose also that
for all ε > 0, there is n ∈ Z+ such that for all ε1, . . . , εn ∈ {0, 1}, the diameter of
Xε1,...,εN is at most ε. We claim that X is homeomorphic to

∏∞
n=1{0, 1}, and thus,

by Lemma 2.99, to the Cantor set. Indeed, for n ∈ Z+, define Φn : X → {0, 1}
by Φn(x) = 0 if x ∈ Xε1,...,εn−1,0 and Φn(x) = 1 if x ∈ Xε1,...,εn−1,1, and let
f : X → {0, 1}n by x 7→ {fn(x)}∞n=1. The map f is surjective by assumption,
and it is injective because of the shrikning diameters condition, which implies that
if x1, x2 are distinct points of X then for sufficiently large n they cannot lie in
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the same set Xε1,...,εn , i.e., fn(x1) 6= fn(x2) for some n. Each map fn is locally
constant, hence continuous, hence f is continuous by the universal property of the
product topology. Thus f : X → {0, 1}n is a continuous bijection from a compact
topological space to a Hausdorff space, hence a homeomorphism.
Step 2: Let X be a compact, totally disconnected perfect metric space. We claim
that X admits a sequence of successive separations as in Step 1, which will com-
plete the proof. For this we will use Corollary 5.49. First, we can partition X into
2 ≤ N1 < ℵ0 clopen sets {Ui}, each of which has diameter at most 1

2 . Each Ui is
again a nonempty compact totally disconnected metric space. Moreover, because
X is perfect, so is each Ui (for an isolated point of Ui would be an isolated point
of X). Observe that by further separating some of the Ui’s if necessary, we may
assume that N1 − 1 = 2n1 for some n1 ∈ Z+. We put X0 := U1 and we take the
X1,ε2,...,εn1

to be the remaining Ui’s in some order. We now repeat this procedure
on each Ui, requiring the diameter of each subset of the partition into clopen sets
to be at most 1

4 , and so forth.
It may take a little thought to see that the bookkeeping can be made to work

here, and we leave this to the reader. For instance, perhaps it is cleaner to further
partition U1 into 2n1 clopen subsets, so that after the first stage of the process we
have partitioned X into 2n1+1 clopen subsets each of diameter at most 1

2 . �

6. P-Ifification

In this section – probably not ideally placed in these notes, but as usual that is
subject to change – we follow the recent article [Os14] of M. Scott Osborne.

Let P be a property of topological spaces. We are interested in finding conditions
for the existence of a P-ification: for every topological space X, a topological
space XP and a continuous map qP : X → XP which is universal for maps from
X into a P-space: if Y is a topological space satisfying Property P and f : X → Y
is a continuous map, then there is a unique map F : XP → Y such that

f = F ◦ qP .

Example 5.6. Let P be the Hausdorff property. For a topological space X we
define an equivalence relation ∼ on X as follows: x ∼ x′ iff for every continuous
map f : X → Y with Y Hausdorff we have f(x) = f(y). It is no problem to
see that ∼ is an equivalence relation, and this has absolutely nothing to do with the
Hausdorff property: indeed, it would hold with the class of Hausdorff spaces replaced
by any class of topological spaces whatsoever. Let XH = X/ ∼, let qH : X → XH

be the quotient map, and give XH the quotient topology. We claim that qH is
universal for continuous maps from X into a Hausdorff space. To see this, let
f : X → Y be a continuous map into a Hausdorff space Y . Then f factors through
fH : XH → Y by the universal property of the quotient topology. The matter of it
is to show that XH is Hausdorff. To see this, choose x + 1 6∼ x2 ∈ X. Then there
is a Hausdorff space Y and a continuous map f : X → Y with f(x1) 6= f(x2). Sine
Y is Hausdorff there are disjoint open neighbohods V1 and V2 of f(x1) and f(x2)
in Y . Take U1 = f−1

H (V1) and U2 = f−1
H (V2).

The previous example not only constructs the Haussdorffification of any topological
space X but shows a further property: namely the defining map q : X → XH is a



174 5. SEPARATION AND COUNTABILITY

quotient map. Thus we speak of the Hausdorff quotientXH of X. In particular
this is a surjective P-ification.

Exercise 5.34. a) Let f : X → Y be a continuous map of topological spaces.
Show: there is a continuous map fH : XH → YH such that qH ◦ f = fH ◦ qH .
b) In fact, suppose that for any property P, there is a universal map qP : X → XP .
Show that for any continuous map f : X → Y , there is a unique continous map fP
such that qP ◦ f = fP ◦ qP . (In categorical language, P-ification is a functor.)
c) Show that when it exists, the P-ification functor is left adjoint to the inclusion
from P-spaces to topological spaces.

Exercise 5.35. Let X be a topological space. Let ∼ be the equivalence relation
of Example X.X.
a) Show that ∼ is the finest Hausdorff equivalence relation on X in the fol-
lowing sense: it is the intersection of all equivalence relations R on X such that
X/R, given the quotient topology, is a Hausdorff space.
b) For x1, x2 ∈ X, let x1 ≈ x2 iff every neighborhood of x1 meets every neighbor-
hood of x2. Show that ∼ is the equivalence relation generated by ≈.

Theorem 5.51. (Existence of Surjective P-ifications)
Let P be a property of topological spaces.
a) The following are equivalent:
(i) There is a surjective P-ification.
(ii) The property P is hereditary and productive.
b) Let P be a property of topological spaces admitting a surjective P-ification. Then
the following are equivalent:
(i) For all spaces X, the map qP : X → XP is a quotient map.
(ii) Whenever (X, τ) satisfies property P and τ ′ ⊃ τ is a finer topology, then (X, τ ′)
satisfies property P.

Proof. a) (i) =⇒ (ii): Suppose that for every topological space X there is
a surjective P-ification, and let X be a P-space. Let A ⊂ X be a subset, and let
qP : A → AP be its surjective P-ification. Let ι : A → X be the inclusion map.
Then there is a continuous map I : AP → X such that ι = I ◦ qP . Since ι is
injective, so is qP , and thus qP is a bijection. It follows that I|qP(A) is the inverse
function to qP : A→ qP(A), so qP is a homeomorphism and A is a P-space.

�

We need a name for the metaproperty that comes up in the previous result. For
now let’s call it refineable. In fact, refineability distinguishes the lower separation
axioms from the higher ones, as we now show.

Exercise 5.36. Show that all of the following properties are refineable: Kol-
mogorov, separated, Hausdorff, totally disconnected.

Example 5.7. Consider the topology τ ′ on R in which the closed subsets are
those of the form A ∪ B where A is closed in the Euclidean topology and B is any
subset of Q. In (R, τ ′) the set C = { 1

n | n ∈ Z+} is closed and cannot be separated
from {0} by open sets – every open set containing C contains arbitrarily small
positive irrational numbers and every neighborhood of {0} contains all sufficient
small positive irrational numbers. Thus (R, τ ′) is a refinement of the Euclidean
topology which is not regular.
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Exercise 5.37. a) Show that each of the following properties P is hereditary
and productive but not refinable, so that surjective P-ifications exist but are not (al-
ways) given by quotient maps: quasi-regular, regular, completely regular, Tychonoff.
b) Show that quasi-normality and normality are not refineable.

Exercise 5.38. Let X be a countably infinite set endowed with the discrete
topology. Show directly that there is no topological space Y and continuous sur-
jection f : X → Y which is universal for continuous maps from X to a compact
space.

On the other hand, we will see later that for every topological space X there is a
space βX and a continuous map β : X → βX which is universal for continuous
maps from X into a compact space. The map β is injective iff X is Tychonoff. For
a Tychonoff space, β is surjective iff X is compact.

7. Further Exercises

Exercise 5.39. [Wi, Thm. 14.6] Let f : X → Y be a continuous map of
topological spaces. Show: if X is regular and f is open and closed, then Y is
Hausdorff.

Exercise 5.40. [Wi, Thm. 14.7] Let X be a regular space, let A ⊂ X be a
closed subset, let ∼ be the equivalence relation on X in which A is an equivalence
class and all singletons x ∈ X \ A are equivalence classes, let Y = X/ ∼ and let
q : X → Y be the quotient map. Show that Y is Hausdorff.

Exercise 5.41. Show that a closed subspace of a quasi-normal (resp. normal)
space is quasi-normal (resp. normal).

Exercise 5.42. Let f : X → Y be a closed map of topological spaces.
a) Show: if X is quasi-normal, so is Y .
b) Show: if X is normal, so is Y .





CHAPTER 6

Embedding, Metrization and Compactification

1. Completely Regular and Tychonoff Spaces

Two subsets A and B of a topological space X can be separated by a continu-
ous function if there exists a continuous function f : X → [0, 1] with A ⊂ f−1(0),
B ⊂ f−1(1). This is indeed a strong separation axiom, for it follows immediately
that A and B are separated by open neighborhoods, e.g. f−1([0, 1

2 ) and f−1(( 1
2 , 1]).

A space is completely regular if for every point x of X and every closed set
A not containing x, {x} and A can be separated by a continuous function. A
separated completely regular space is called a Tychonoff space.1

Exercise 6.1. Show that a completely regular space is quasi-regular but not
necessarily regular.

Theorem 6.1. a) There is a regular space which is not completely regular.
b) (Hewitt) There is an infinite regular topological space X such that the only con-
tinuous functions f : X → R are the constant functions. More precisely for every
cardinal κ of uncountable cofinality, there is such a space of cardinality κ.

Proof. a) I don’t know a simple enough example to be worth our time. But
see e.g. the Deleted Tychonoff Corkscrew [SS, pp. 109-11]. b) See [He46]. �

Proposition 6.2. Metric spaces are Tychonoff.

Proof. Let (X, d) be a metric space, let A ⊂ X be closed, and let p ∈ X \A.

Define f : X → R by f(x) = min d(x,A)
d(p,A) , 1. It works! �

Proposition 6.3. a) Complete regularity and the Tychonoff property are hered-
itary (each passes from a space to all of its subspaces).
b) Complete regularity and the Tychonoff property are faithfully productive: if
{Xi}i∈I is a family of nonempty topological spaces, then X =

∏
i∈I Xi is completely

regular (resp. Tychonoff) iff each Xi is completely regular (resp. Tychonoff).
c) A quotient of a Tychonoff space need not be Hausdorff, and even if it is, it need
not be Tychonoff.

Proof. Since we know that the Hausdorff property is hereditary and faithfully
productive, it suffices to show parts a) and b) for complete regularity.
a) Suppose X is completely regular, let Y ⊂ X be a subspace, let A ⊂ Y be closed,
and let p ∈ Y \ A. Then A = B ∩ Y for some closed B ⊂ X. Since p is in Y and
not in A, p ∈ X \ B, so there is a continuous function f : X → R with f(p) = 1,
f(B) = {0}. Then f |Y : Y → [0, 1] is a continuous function separating p from A.

1It would be more consistent with our nomenclature to call completely regular spaces “quasi-
Tychonoff”. Unfortunately no one does this and the term “completely regular” is quite standard.

177



178 6. EMBEDDING, METRIZATION AND COMPACTIFICATION

b) Suppose each Xi is completely regular, let A ⊂ X be closed and let p ∈ X \ A.
Then there is a finite subset J ⊂ I and for all j ∈ J an open Uj ⊂ Xj such that

p ∈
∏
j∈J

Uj ×
∏
i∈I\J

Xi ⊂ X \A.

For each j ∈ J , choose fj : Xj → [0, 1] such that fj(pj) = 1 and fj(Xj \Uj) = {0}.
Let g : X → I by

g(x) = min
j∈J

fj(xj) = min
j∈J

(fj ◦ πj)(x).

The second description exhibits g as a minimum of finitely many continuous real-
valued functions, hence g is continuous. Moreover we have g(p) = 1 and g(x) = 0
unless πj(x) ∈ Uj for all j ∈ J , so g(A) = {0}.

Being hereditary and productive, complete regularity is faithfully productive.
c) See [Wi, p. 96]. �

2. Urysohn and Tietze

Theorem 6.4. (Tietze Extension Theorem)
For a topological space X, the following are equivalent:
(i) X is quasi-normal.
(ii) If A ⊂ X is closed and f : A→ [0, 1] is continuous, then there is a continuous
map F : X → [0, 1] with F |A = f .
(iii) For all disjoint closed subsets B1, B2 of X, there is a Urysohn function: a
continuous function f : X → [0, 1] with B1 ⊂ f−1(0) and B2 ⊂ f−1(1).

Proof. (i) =⇒ (ii): We directly follow an argument of M. Mandelkern
[Ma93]. Let A ⊂ X be a closed subset of a quasi-normal topological space, and let
f : A→ [0, 1] be a continuous function. For r ∈ Q, we put

Ar = f−1([0, r]),

so Ar ⊂ X is closed. For s ∈ Q ∩ (0, 1), we put

Us = X \ (A ∩ f−1([s, 1])),

so Us ⊂ X is open. Let

P = {(r, s) | r, s ∈ Q, 0 ≤ r < s < 1}.
The set P is countably infinite; let P = {(rn, sn)}∞n=1 be an enumeration.
Let n ∈ Z+. Inductively, we suppose that for all 1 ≤ k < n we have defined closed
subsets Hk ⊂ X such that

(12) Ark ⊂ H◦k ⊂ HK ⊂ Usk∀k < n

and

(13) Hj ⊂ H◦k when j, k < n, rj < rk and sj < sk.

We will define Hn. First put

J = {j | j < n, rj < rn and sj < sn}
and

K = {k | k < n, rn < rk and sn < sk}.
Since X is quasi-normal, there is a closed subset Hn ⊂ X such that

Arn ∪
⋃
j∈J

Hj ⊂ H◦n ⊂ Hn ⊂ Usn ∩
⋂
k∈K

H◦k .
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We write Hrs for Hn when r = rn and s = sn. Inductively, we have defined a
family {H(r,s){(r,s)∈P of closed subsets of X such that

(14) ∀(r, s) ∈ P, Ar ⊂ H◦rs ⊂ Hrs ⊂ Us,

(15) Hrs ⊂ H◦tu when r < t and s < u.

For r ∈ Q ∩ [0, 1], put

Xr =
⋂
s>r

Hrs.

For r < 0, let Xr = ∅. For r ≥ 1, let Xr = X. For (r, s) ∈ P , choose t ∈ Q such
that r < t < s. Then

Xr ⊂ Hrt ⊂ H◦ts ⊂ Hts ⊂
⋂
u>s

Hsu = Xs.

For r ∈ Q ∩ [0, 1), we have

Ar ⊂ Xr ∩A = A ∩
⋂
s>r

Hrs ⊂ A ∩
⋂
s>r

Us = Ar.

Thus we have constructed a family {Xr}r∈Q of closed subsets of X such that

(16) Xr ⊂ X◦s when r, s ∈ Q and r < s,

(17) ∀r ∈ Q, Xr ∩A = Ar.

Finally, for x ∈ X put g(x) = inf{r | x ∈ Xr}. Then g : X → [0, 1]; since for all
x ∈ A we have f(x) = inf{r | x ∈ Ar}, we have that g|A = f . If a < b ∈ R then

g−1((a, b)) =
⋃
{X◦s \Xr : r, s ∈ Q and a < r < s < b}

is open. Thus g is a continuous extension of f .
(ii) =⇒ (iii): Let B1, B2 ⊂ X be closed and disjoint; put A = B1∪B2 = B1

∐
B2.

The function g : A → [0, 1] with g|B1 ≡ 0 and g|B2 ≡ 1 is locally constant, hence
continuous. By assumption it extends to a continuous function f : X → [0, 1].
(iii) =⇒ (i): Let B1, B2 ⊂ X be closed and disjoint. By our hypothesis, there
is a continuous function f : X → [0, 1] with f(B1) = {0}, f(B2) = {1}, let
U1 = f−1([0, 1

2 )), U2 = f−1( 1
2 , 1]). Then U1, U2 ⊂ X are disjoint and open with

U1 ⊃ B1 and U2 ⊃ B2. �

Corollary 6.5. (Urysohn’s Lemma)
Normal spaces are Tychonoff. In particular compact spaces, regular Lindelöf spaces
and order spaces are Tychonoff.

Proof. Normal spaces are Hausdorff, so {p} is closed for all p ∈ X. So
according to Theorem 6.4 we can separate points from closed sets by continuous
functions. �

The following variant of Theorem 6.4 is also useful.

Corollary 6.6. Let X be quasi-normal, let A ⊂ X be closed, and let f : A→
R be continuous. Then there is a continuous map F : A→ R such that F |A = f .
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Proof. The obvious idea is the following: R is homeomorphic to (0, 1), so we
may as well asume that f(A) ⊂ (0, 1). Then in particular f(A) ⊂ [0, 1], so by
Tietze-Urysohn we may extend to a continuous function F : X → [0, 1]. However,
this is not good enough, since we don’t want F to take the values 0 or 1. (I.e.: we
can extend f : A ⊂ R to a continuous function to the extended real line [−∞,∞].)

We get around this as follows: first, for shallow reasons to be seen shortly, it
will be better to work with the interval (−1, 1) instead of R. Certainly Theorem
6.4 holds for functions with values in [−1, 1] in place of [0, 1], so let F : X → [−1, 1]
such that F |A = f . Put

B = F−1(0) ∪ F−1(1),

so B ⊂ X is closed. Since F extends f and f(A) ∈ (0, 1), we have A ∩B = ∅. Let
ϕ : X → [0, 1] be a Urysohn function for B and A: ϕ(B) = {0}, ϕ(A) = {1}. Put

h : X → [0, 1], h(x) = F (x)ϕ(x).

This works: h is a continuous extension of f with values in (−1, 1). �

Corollary 6.7. a) A normal, connected topological space with more than one
point has at least continuum cardinality.
b) No topological space is countably infinite, connected and regular.

Proof. a) Let X be normal and connected, and let x, y be distinct points of
X. The subspace {x, y} is discrete, so the function f : {x, y} → [0, 1] by f(x) = 0,
f(y) = 1 is continuous. By the Tietze Extension Theorem, there is a continuous
function f : X → [0, 1]. Thus f(X) is a connected subset of [0, 1] containing {0, 1},
so f(X) = [0, 1]. Since #[0, 1] = c, we’re done.
b) Suppose not: let X be countable infinite, connected and regular. Like every
countable space, X is Lindelöf, so by Tychonoff’s Lemma (Theorem 5.45c) X is
normal. Applying part a) gives a contradiction. �

A subset of a topological space is a Gδ-set if it is a countable intersection of open
sets. A subset A of a topological space X is a zero set if there is a continuous
function f : X → [0, 1] with A = f−1(0). If so, then

A = f−1(

∞⋂
n=1

[0,
1

n
)) =

∞⋂
n=1

f−1([0,
1

n
)),

so A is a closed Gδ-set.

Let A,B be disjoint closed subsets in a topological space X. We have seen that
if X is quasi-normal, it admits a Urysohn function, i.e., a continuous function
f : X → [0, 1] with A ⊂ f−1(0) and B ⊂ f−1(1). It is natural to ask whether
we can always find a Urysohn function with A = f−1(0) and B = f−1(1): let us
call such an f a perfect Urysohn function for A and B and say that X is
perfectly normal if it is Hausdorff and a perfect Urysohn function exists for all
pairs of disjoint closed subsets.

Proposition 6.8. Metrizable spaces are perfectly normal.

Proof. Exercise! �

Theorem 6.9. For a topological space X, the following are equivalent:
(i) X is perfectly normal.
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(ii) X is separated and every closed subset of X is a zero set.
(iii) X is normal and every closed subset is a Gδ-set.

Proof. Exercise! �

Proposition 6.10. If X is perfectly normal, then every subspace of X is nor-
mal.

Proof. Exercise! �

3. The Tychonoff Embedding Theorem

By a cube we mean a topological space [0, 1]κ for some cardinal κ.

Theorem 6.11. (Tychonoff Embedding Theorem)
For a topological space X, the following are equivalent:
(i) X is homeomorphic to a subspace of a cube.
(ii) X admits a compactification, i.e., there is a compact space C and an embedding

ι : X ↪→ C with ι(X) = C.
(iii) X is Tychonoff.

Proof. (i) =⇒ (ii): Let ι : X ↪→ [0, 1]κ be an embedding into a cube, and

let Y = ι(X). By Tychonoff’s Theorem [0, 1]κ is compact, hence so is the closed
subspace Y . The map ι : X ↪→ Y is an embedding of X into a compact space
with dense image, i.e., a compactification of X. (ii) =⇒ (iii): Compact spaces are
normal (Theorem 5.45b), normal spaces are Tychonoff (Urysohn’s Lemma: Theo-
rem 6.5), and subspaces of Tychonoff spaces are Tychonoff (Theorem 6.3a)), so any
space which is homeomorphic to a compact space is Tychonoff.
(iii) =⇒ (i): Consider the evaluation map

e : X → [0, 1]C(X,[0,1]), x 7→ (f 7→ f(x)).

By the universal property of the product topology, e is continuous. The map e is
injective because X is completely regular and separated and thus for all x 6= y ∈ X
there is a continuous function f : X → [0, 1] with f(x) 6= f(y). Similarly, if A ⊂ X
is closed and p ∈ X \ A, then there is a continuous function f : X → [0, 1] with

f |A ≡ 0, f(p) = 1 and thus f(p) /∈ f(A). By Lemma 3.25, e is an embedding. �

Corollary 6.12. Locally compact spaces are Tychonoff.

Exercise 6.2. Prove Corollary 6.12.

4. The Big Urysohn Theorem

Proposition 6.13. Let X be a Tychonoff space with a countable base B. Then
there exists a countable family F of continuous [0, 1]-valued functions on X such
that F separates points from closed subsets.

Proof. Consider the set A of all pairs (U, V ) with U, V ∈ B and U ⊂ V ;
evidently A is countable. Since X is regular and second countable, it is normal;
hence for each such pair (U, V ), choose a function f : X → [0, 1] which is 0 on U and
1 on X \ V . This gives a countable family. Moreover let x ∈ X and B be a closed
set not containing x; we may choose an element V of B such that x ∈ V ⊂ X \ B
and U in B such that x ∈ U ⊂ V . Then the continuous function f corresponding
to the pair (U, V ) separates x from B. �
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Theorem 6.14. (Big Urysohn Theorem) For a separated, secound countable
topological space X, the following are equivalent:
(i) X can be embedded in the Hilbert cube [0, 1]ℵ0 =

∏∞
n=1[0, 1].

(ii) X is metrizable.
(iii) X is normal.
(iv) X is Tychonoff.
(v) X is regular.

Proof. (i) =⇒ (ii): Metrizability is countably productive and hereditary.
(ii) =⇒ (iii) =⇒ (iv) =⇒ (v) hold for all topological spaces.
(v) =⇒ (i): Since X is regular and second countable, it is normal (Theorem 5.45c))
and thus Tychonoff by Urysohn’s Lemma. Proposition 6.13 gives us a countable
family {fn : X → [0, 1]}∞n=1 of continuous functions which separated points from
closed subsets of X. By the Embedding Lemma (Theorem 3.25c), the restricted
evaluation map

eF : X →
∞∏
n=1

, x 7→ (n 7→ fn(x))

is an embedding. �

5. A Manifold Embedding Theorem

A manifold is a second countable Hausdorff topological space X such that for all
p ∈ X, there is an open neighborhood Up of p which is homeomorphic to Rn(p)

for some positive integer n(p). An n-manifold is a second countable Hausdorff
topological space such that for all p ∈ X, there is an open neighborhood Up of p
which is homeomorphic to Rn.

Exercise 6.3.
a) Show: a countable coproduct

∐∞
i=1Mi of manifolds is a manifold.

b) Let d > 1. Show: R
∐

Rd is not a d-manifold for any d ∈ Z+.

Let M be a manifold. Then M is locally connected and second countable, so is the
coproduct of its connected components, which form a countable set. It is often the
case that the study of manifolds reduces easily to the case of connected manifolds.

It is natural to suspect that a connected manifold must be an n-manifold for some
positive integer n. And in fact it is true, but annoyingly difficult to prove. In
particular, if this holds then for all 1 ≤ m < n we must have that Rm is not home-
omorphic to Rn. This is easy to show when m = 1; for m ≥ 2 it is most naturally
approached using the methods of algebraic topology.

Exercise 6.4. a) Let m < n ∈ Z+. Show: if Rm ∼= Rn then Sm ∼= Sn.
b) (Exercise for a future course) Show that the mth homotopy of group of Sm is
nontrivial and the mth homotopy group of Sn is trivial, so Sm 6∼= Sn.
c) (Exercise for a future course) Show that for a positive integer d, the dth homology
group of Sm is nontrivial iff d = m. Deduce Sm 6∼= Sn.

We can get what we want using the following result of L.E.J. Brouwer.

Theorem 6.15. (Invariance of Domain) Let U ⊂ Rn be open, and let f : U →
Rn be a continuous injection. Then f is an open map.
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Exercise 6.5.
a) Use Invariance of Domain to show that if Rm ∼= Rn then m = n.
b) Use Invariance of Domain to show that if a point p admits an open neighborhood
Up ∼= Rm and an open neighborhood Vp ∼= Rn then m = n. Thus there is a well-
defined function dim : M → Z+, the dimension at p.
c) Show: the function dim : M → Z+ is locally constant.
d) Every connected manifold is an m-manifold for a unique m ∈ Z+.

Exercise 6.6. Let M be a manifold, and let N ∈ Z+. Suppose every connected
component of M can be embedded in RN . Show: M can be embedded in RN .

An open covering U = {Ui} of a topological space X is locally finite if for all
p ∈ X, there is a neighborhood Np such that {i ∈ U | Ui ∩ Np 6= ∅} is finite.
Certainly any finite cover is locally finite.

For a function f : X → R, the support of f is

supp f = f−1(R \ {0}).

Thus p does not lie in the support of f iff there is a neighborhood Np of p on which
f is identically 0.

Let X be a topological space. A family of functions F = {f : X → [0, 1]} is a
partition of unity if:
(PU1) For all x ∈ X, there is a neighborhood Ux of x such that {f ∈ F |
supp f ∩ Ux 6= ∅} is finite; and
(PU2) For all x ∈ X,

∑
f∈F f(x) = 1.

Notice that because of (PU1), the sum in (PU2) amounts to a finite sum.

Let U = {Ui}i∈I be an open covering of X. A partition of unity F = {fi : X →
[0, 1]}i∈I is subordinate to the covering if supp fi ⊂ Ui for all i ∈ I.

Theorem 6.16. (Existence of Partitions of Unity) Let X be quasi-normal, and
let U = {Ui}ni=1 be a finite open cover of X. Then there is a partition of unity
{fi : X → [0, 1]}ni=1 which is subordinate to U .

Proof. Step 1: We show there are open subsets V1, . . . , Vn of X with X =⋃n
i=1 Vi and Vi ⊂ Ui for all 1 ≤ i ≤ n. Let A1 = X \

⋃n
i=2 Ui. Then A is closed, and

since
⋃n
i=1 Ui = X, we have A1 ⊂ U1. By quasi-normality, there is an open subset

V1 with A1 ⊂ V1 ⊂ V1 ⊂ U1, and thus {V1, U2, . . . , Un} covers X. Let 2 ≤ k ≤ n.
Having constructed open subsets V1, . . . , Vk−1 such that Vi ⊂ Ui for all 1 ≤ i ≤ k−1
and such that {V1, . . . , Vk−1, Uk, Uk+1, . . . , Un} covers X, let

Ak = X \ (

k−1⋃
i=1

Vi ∪
n⋃

j=k+1

Uj).

Then Ak is closed in X and Ak ⊂ Uk, so by quasi-normality there is an open subset
Vk with Ak ⊂ Vk ⊂ Vk ⊂ Uk, and thus {V1, . . . , Vk, Uk+1, . . . , Un} covers X and
Vi ⊂ Ui for all 1 ≤ i ≤ k. We are done by induction: take k = n.
Step 2: Apply Step 1 to the finite open covering {Ui}ni=1 of X to get a finite open
covering {Vi}ni=1 of X with Vi ⊂ Ui for all i. Then apply Step 1 again (!) to get a
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finite open covering {Wi}ni=1 of X with Wi ⊂ Vi for all i. By the Tietze Extension
Theorem, for all 1 ≤ i ≤ n there is a continuous function gi : X → [0, 1] with
gi|Wi

≡ 1 and gi|X\Vi ≡ 0. Thus for all 1 ≤ i ≤ n we have

supp gi ⊂ Vi ⊂ Ui.
Define

g : X → [0, 1], g(x) =

n∑
i=1

gi(x).

Because X =
⋃n
i=1Wi we have g(x) > 0 for all x ∈ X. For 1 ≤ i ≤ n, put

fi : X → [0, 1], fi(x) =
gi(x)

g(x)
.

Then {fi : X → [0, 1]}ni=1 is a partition of unity subordinate to {Ui}ni=1. �

Theorem 6.17. (Manifold Embedding Theorem) Let M be a compact manifold.
Then there is a continuous embedding ι : M ↪→ R2n+1.

Proof. By compactness, M admits a finite covering U by open sets U1, . . . , Un
such that each Ui is homeomorphic to Rm(i). Let m = maxni=1m(i). Then each
Ui can be embedded in Rm; choose such an embedding ιi : Ui → Rm. Since M
is compact, it is normal, so by Theorem 6.16 there is a partition of unity {fi :
X → [0, 1]}ni=1 subordinate to U . Let Ai = supp fi. For all 1 ≤ i ≤ n, define
hi : X → Rm by

hi(x) = fi(x) · ιi(x), x ∈ Ui
= 0, x ∈ X \Ai.

This function is well-defined because the two prescriptions agree on the intersection
and is continuous by the Pasting Lemma. Now consider the function

F : X → Rn+mn

given by

F (x) = (f1(x), . . . , fn(x), h1(x), . . . , hn(x)).

The characteristic property of the product topology shows that F is continuous.
Suppose F (x) = F (y). Since

∑n
i=1 fi(x) = 1 we have fi(x) > 0 for some i; thus

fi(y) = fi(x) > 0, so x, y ∈ Ui. We have

fi(x)ιi(x) = hi(x) = hi(y) = fi(y)ιi(y),

so ιi(x) = ιi(y). But ιi : Ui → Rm is an embedding, so x = y. Thus F is injective.
Being an injective continuous map from a compact space to a Hausdorff space, F
is an embedding. �

Remark 6.18. Theorem 6.17 can be improved in several ways (which are un-
fortunately beyond the scope of our ambitions).
a) The word “compact” can be removed entirely [Mu, p. 315]. The proof given
there uses topological dimension theory.
b) Every smooth n-manifold can be smoothly embedded in R2n. This gives sharper
results in small dimensions, since (as it happens: this is certainly not an easy re-
sult!) every manifold of dimension 3 admits a smooth structure. In particular we
deduce that all surfaces can be embedded in R4, a fact which follows more directly
by classifying all surfaces and finding explicit embeddings.
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CHAPTER 7

Appendix: Very Basic Set Theory

1. The Basic Trichotomy: Finite, Countable and Uncountable

1.1. Introducing equivalence of sets, countable and uncountable sets.

We assume known the set Z+ of positive integers, and the set N = Z+ ∪ {0} of
natural numbers. For any n ∈ Z+, we denote by [n] the set {1, . . . , n}. We take it
as obvious that [n] has n elements, and also that the empty set ∅ has 0 elements.
Just out of mathematical fastidiousness,1 let’s define [0] = ∅ (why not?).

It is pretty clear what it means for an arbitrary set S to have 0 elements: it
must be the empty set. That is – and this is a somewhat curious property of the
empty set – ∅ as a set is uniquely characterized by the fact that it has 0 elements.

What does it mean for an arbitrary set S to have n elements? By definition,
it means that there exists a bijection ι : S → [n], i.e., a function which is both in-
jective and surjective; or, equivalently, a function for which there exists an inverse
function ι′ : [n]→ S.2

Let us call a set finite if it has n elements for some n ∈ N, and a set infinite
if it is not finite.

Certainly there are some basic facts that we feel should be satisfied by these defi-
nitions. For instance:

Fact 7.1. The set Z+ is infinite.

Proof. It is certainly nonempty, so we would like to show that for no n ∈ Z+

is there a bijection ι : [n] → Z+. This seems obvious. Unfortunately, sometimes
in mathematics we must struggle to show that the obvious is true (and sometimes
what seems obvious is not true!). Here we face the additional problem of not having
formally axiomatized things, so it’s not completely clear what’s “fair game” to use
in a proof. But consider the following: does Z+ have one element? Absolutely
not: for any function ι : [1] = {1} → Z+, ι is not surjective because it does not
hit ι(1) + 1. Does Z+ have two elements? Still, no: if ι is not injective, the same
argument as before works; if ι is injective, its image is a 2 element subset of Z+.
Since Z+ is totally ordered (indeed well-ordered), one of the two elements in the
image is larger than the other, and then that element plus one is not in the image of

1Well, not really: this will turn out to be quite sensible.
2I am assuming a good working knowledge of functions, injections, surjections, bijections and

inverse functions. This asserts at the same time (i) a certain amount of mathematical sophistica-
tion, and (ii) a certain amount of metamathematical informality.
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our map. We could prove it for 3 as well, which makes us think we should probably
work by induction on n. How to set it up properly? Let us try to show that for all
n and all ι : [n]→ Z+, there exists N = N(ι) such that ι([n]) ⊂ [N ]. If we can do
this, then since [N ] is clearly a proper subset of Z+ (it does not contain N + 1, and
so on) we will have shown that for no n is there a surjection [n]→ Z+ (which is in
fact stronger than what we claimed). But carrying through the proof by induction
is now not obvious but (much better!) very easy, so is left to the reader. �

What did we use about Z+ in the proof? Some of the Peano axioms for Z+, most
importantly that it satisfies the principle of mathematical induction (POMI). Since
it is hard to imagine a rigorous proof of a nontrivial statement about Z+ that does
not use POMI, this is a good sign: things are proceeding well so far.

What about Z: is it too infinite? It should be, since it contains an infinite subset.
This is logically equivalent to the following fact:

Fact 7.2. A subset of a finite set is finite.

Proof. More concretely, it suffices to show that for any n ∈ N and and subset
S ⊂ [n], then for some m ∈ N there exists a bijection ι : S → [m]. As above, for
any specific value of n, it straightforward to show this, so again we should induct
on n. Let’s do it this time: assume the statement for n, and let S ⊂ [n + 1]. Put
S′ = S ∩ [n], so by induction there exists a bijection ι′ : [m]→ S′ for some m′ ∈ N.
Composing with the inclusion S′ ⊂ S we get an injection ι : [m] → S. If n + 1 is
not an element of S, then S′ = S and ι is a bijection. If n+ 1 ∈ S, then extending
ι′ to a map from [m+ 1] to S by sending m+ 1 to n+ 1 gives a bijection. �

Again, by contraposition this shows that many of our most familiar sets of numbers
– e.g. Z, Q, R, C – are infinite.

There is one more thing we should certainly check: namely, we have said that
a set S has n elements if it can be put in bijection with [n] for some n. But we
have not shown that this n is unique: perhaps a set can have n elements and also
n+ 691 elements? Of course not:

Fact 7.3. For natural numbers n 6= n′, there is no bijection from [n] to [n′].

Of course, we even know a more precise result:

Fact 7.4. Let S be a set with m elements and T a set with n elements.
a) If there exists a surjection ϕ : S → T , then m ≥ n.
b) If there exists an injection ϕ : S → T , then m ≤ n.

Exercise 7.1. Give a proof of Fact 7.4 which is rigorous enough for your taste.

Remark: For instance, part b) is the famous “Pigeonhole” or “Dirichlet’s box”
principle, and is usually regarded as obvious. Of course, if we play the game of for-
malized mathematics, then “obvious” means “following from our axioms in a way
which is so immediate so as not to deserve mention,” and Fact 7.4 is not obvious in
this sense. (But one can give a proof in line with the above induction proofs, only
a bit longer.)

Exercise 2: Show that for sets S and T , the following are equivalent:
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a) There exists a surjection S → T .
b) There exists an injection T → S.

Let us press on to study the properties of infinite sets.

Basic Definition (Cantor): We say that S and T as equivalent, and write S ∼= T if
there exists a bijection ι : S → T .

Historical Remark: When there exists a bijection between S and T , Cantor first
said that S and T have the same power.3 As is often the case in mathematics, this
forces us to play a linguistic-grammatical game – given that a definition has been
made to have a certain part of speech, write down the cognate words in other parts
of speech.4 Thus a faithful rendition of Cantor’s definition in adjectival form would
be something like equipotent. The reader should be warned that it would be more
common to use the term equinumerous at this point.

However, we have our reasons for choosing to use “equivalent.” The term
“equinumerous,” for instance, suggests that the two sets have the same number of
elements, or in other words that there is some numerical invariant we are attaching
to a single set with the property that two sets can be put in bijection exactly when
both have the same value of this numerical invariant. But we would like to view
things in exactly the opposite way. Let us dilate a bit on this point.

It was Cantor’s idea that we should regard two sets as “having the same size”
iff they are equivalent, i.e., iff their elements can be paired off via a one-to-one
correspondence. Certainly this is consistent with our experience from finite sets.
There is, however, a brilliant and subtle twist: colloquially one thinks of counting
or measuring something as a process which takes as input one collection of objects
and outputs a “number.” We therefore have to have names for all of the “numbers”
which measure the sizes of things: if you like, we need to count arbitrarily high. Not
every civilization has worked out such a general counting scheme: I have heard tell
that in a certain “primitive tribe” they only have words for numbers up to 4 and
anything above this is just referred to as “many.” Indeed we do not have proper
names for arbitrarily large numbers in the English language (except by recourse to
iteration, e.g., million million for a trillion).

But notice that we do not have to have such an elaborate “number knowl-
edge” to say whether two things have the same size or not. For instance, one may
presume that shepherding predates verbal sophistication, so the proto-linguistic
shepherd needs some other means of making sure that when he takes his sheep
out to graze in the countryside he returns with as many as he started with. The
shepherd can do this as follows: on his first day on the job, as the sheep come in,
he has ready some sort of sack and places stones in the sack, one for each sheep.
Then in the future he counts his sheep, not in some absolute sense, but in relation
to these stones. If one day he runs out of sheep before stones, he knows that he is
missing some sheep (at least if he has only finitely many sheep!).

Even today there are some situations where we test for equivalence rather than

3Or rather, he said something in German that gets translated to this. Such pedantic remarks

will be omitted from now on!
4This is a game that some play better than others, viz.: generization, sobrification, unicity.
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count in an absolute sense. For instance, if you come into an auditorium and ev-
eryone is sitting in a (unique!) seat then you know that there are at least as many
seats as people in the room without counting both quantities.

What is interesting about infinite sets is that these sorts of arguments break down:
the business of taking away from an infinite set becomes much more complicated
than in the finite case, in which, given a set S of n elements and any element
x ∈ S, then S \ x has n− 1 elements. (This is something that you can establish by
constructing a bijection and is a good intermediate step towards Fact 7.4.) On the
other hand, Z+ and N are equivalent, since the map n 7→ n − 1 gives a bijection
between them. Similarly Z+ is equivalent to the set of even integers (n 7→ 2n).
Indeed, we soon see that much more is true:

Fact 7.5. For any infinite subset S ⊂ Z+, S and Z+ are equivalent.

Proof. Using the fact that Z+ is well-ordered, we can define a function from
S to Z+ by mapping the least element s1 of S to 1, the least element s2 of S \ {s1}
to 2, and so on. If this process terminates after n steps then S has n elements, so
is finite, a contradiction. Thus it goes on forever and clearly gives a bijection. �

It is now natural to wonder which other familiar infinite sets are equivalent to Z+

(or N). For this, let’s call a set equivalent to Z+ countable.5 A slight variation of
the above argument gives

Fact 7.6. Every infinite set has a countable subset.

Proof. Indeed, for infinite S just keep picking elements to define a bijection
from Z+ to some subset of S; we can’t run out of elements since S is infinite! �

As a first example:

Fact 7.7. The two sets Z and Z+ are equivalent.

Proof. We define an explicit bijection Z → Z+ as follows: we map 0 7→ 1,
then 1 7→ 2, −1 7→ 3, 2 7→ 4, −2 7→ 5 and so on. (If you are the kind of person
who thinks that having a formula makes something more rigorous, then we define
for positive n, n 7→ 2n and for negative n, n 7→ 2|n|+ 1.) �

Fact 7.8. Suppose that S1 and S2 are two countable sets. Then S1

⋃
S2 is

countable.

Indeed, we can make a more general splicing construction:

Fact 7.9. Let {Si}i∈I be an indexed family of pairwise disjoint nonempty sets;
assume that I and each Si is at most countable (i.e., countable or finite). Then
S :=

⋃
i∈I Si is at most countable. Moreover, S is finite iff I and all the Si are

finite.

Proof. We sketch the construction: since each Si is at most countable, we
can order the elements as sij where either 1 ≤ j ≤ ∞ or 1 ≤ j ≤ Nj . If everything
in sight is finite, it is obvious that S will be finite (a finite union of finite sets is
finite). Otherwise, we define a bijection from Z+ to S as follows: 1 7→ s11, 2 7→ s12,

5Perhaps more standard is to say “countably infinite and reserve “countable” to mean count-
ably infinite or finite. Here we suggest simplifying the terminology.
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3 7→ s22, 4 7→ s13, 5 7→ s23, 6 7→ s33, and so on. Here we need the convention that
when sij does not exist, we omit that term and go on to the next element in the
codomain. �

Fact 7.9 is used very often. As one immediate application:

Fact 7.10. The set of rational numbers Q is countable.

Proof. Each nonzero rational number α can be written uniquely as ±ab , where
a, b ∈ Z+. We define the height h(α) of α to be max a, b and also h(0) = 0. It
is clear that for any height n > 0, there are at most 2n2 rational numbers of
height n,6 and also that for every n ∈ Z+ there is at least one rational number of
height n, namely the integer n = n

1 . Therefore taking I = N and putting some
arbitrary ordering on the finite set of rational numbers of height n, Fact 7.9 gives
us a bijection Z+ → Q. �

In a similar way, one can prove that the set Q of algebraic numbers is countable.

Fact 7.11. If A and B are countable, then the Cartesian product A × B is
countable.

Exercise 3: Prove Fact 11. (Strategy 1: Reduce to the case of Z+×Z+ and use the
diagonal path from the proof of Fact 7.9. Strategy 2: Observe that A×B ∼=

⋃
a∈AB

and apply Fact 7.9 directly.)

The buck stops with R. Let’s first prove the following theorem of Cantor, which is
arguably the single most important result in set theory. Recall that for a set S, its
power set 2S is the set of all subsets of S.

Theorem 7.12. (First Fundamental Theorem of Set Theory)
There is no surjection from a set S to its power set 2S.

Proof. It is short and sweet. Suppose that f : S → 2S is any function. We
will produce an element of 2S which is not in the image of f . Namely, let T be the
set of all x ∈ S such that x is not an element of f(x), so T is some element of 2S .
Could it be f(s) for some s ∈ S? Well, suppose T = f(s) for some s ∈ S. We ask
the innocent question, “Is s ∈ T?” Suppose first that it is: s ∈ T ; by definition of
T this means that s is not an element of f(s). But f(s) = T , so in other words s is
not an element of T , a contradiction. Okay, what if s is not in T? Then s ∈ f(s),
but again, since f(s) = T , we conclude that s is in T . In other words, we have
managed to define, in terms of f , a subset T of S for which the notion that T is in
the image of f is logically contradictory. So f is not surjective! �

What does this have to do with R? Let us try to show that the interval (0, 1] is
uncountable. By Fact 7.5 this implies that R is uncountable. Now using binary
expansions, we can identify (0, 1] with the power set of Z+. Well, almost: there is
the standard slightly annoying ambiguity in the binary expansion, that

.a1a2a3 · · · an01111111111 . . . = .a1a2a2 · · · an1000000000 . . . .

There are various ways around this: for instance, suppose we agree to represent
every element of (0, 1] by an element which does not terminate in an infinite string

6I will resist the temptation to discuss how to replace the 2 with an asymptotically correct
constant.
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of zeros. Thus we have identified (0, 1] with a certain subset T of the power set of
Z+, the set of infinite subsets of Z+. But the set of finite subsets of Z+ is countable
(Fact 7.9 again), and since the union of two countable sets would be countable (and
again!), it must be that T is uncountable. Hence so is (0, 1], and so is R.

There are many other proofs of the uncountability of R. For instance, we could con-
template a function f : Z+ → R and, imitating the proof of Cantor’s theorem, show
that it cannot be surjective by finding an explicit element of R not in its image. We
can write out each real number f(n) in its decimal expansion, and then construct a
real number α ∈ [0, 1] whose nth decimal digit αn is different from the nth decimal
digit of f(n). Again the ambiguity in decimal representations needs somehow to be
addressed: here we can just stay away from 9’s and 0’s. Details are left to the reader.

A more appealing, albeit more advanced, proof comes from a special case of the
Baire category theorem: in any complete metric space, the intersection of a count-
able number of dense open subsets remains dense (although not necessarily open, of
course). Dualizing (i.e., taking complements), we get that in any complete metric
space, the union of a countable number of closed subsets with empty interior also
has empty interior. Thus:

Corollary 7.13. A complete metric space without isolated points is uncount-
able.

Proof. Apply the dual form of Baire’s theorem to the one-point subsets of
the space. �

Thus, since R is by definition the completion of Q with respect to the standard
Euclidean metric, and has no isolated points, R must be uncountable. For that
matter, even Q has no isolated points (which is strictly stronger: no element of
the completion of a metric space minus the space itself can be isolated, since this
would contradict the density of a space in its completion), so since we know it is

countable, we deduce that it is incomplete without having to talk about
√

2 or
any of that sort of thing. Indeed, the same argument holds for Q endowed with a
p-adic metric: there are no isolated points, so Qp is uncountable and not equal to Q.

The above was just one example of the importance of distinguishing between count-
able and uncountable sets. Let me briefly mention some other examples:

Example 2: Measure theory. A measure is a [0,∞]-valued function defined on
a certain family of subsets of a given set; it is required to be countably additive
but not uncountably additive. For instance, this gives us a natural notion of size
on the unit circle, so that the total area is π and the area of any single point is 0.
The whole can have greater measure than the sum of the measures of the parts if
there are uncountably many parts!

Example 3: Given a differentiable manifold M of dimension n, then any subman-
ifold of dimension n − 1 has, in a sense which is well-defined independent of any
particular measure on M , measure zero. In particular, one gets from this that a
countable family of submanifolds of dimension at most n − 1 cannot “fill out” an
n-dimensional manifold. In complex algebraic geometry, such stratifications occur
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naturally, and one can make reference to a “very general” point on a variety as a
point lying on the complement of a (given) countable family of lower-dimensional
subvarieties, and be confident that such points exist!

Example 4: Model theory is a branch of mathematics which tends to exploit the
distinction between countable and uncountable in rather sneaky ways. Namely,
there is the Lowenheim-Skolem theorem, which states in particular that any the-
ory (with a countable language) that admits an infinite model admits a countable
model. Moreover, given any uncountable model of a theory, there is a countable
submodel which shares all the same “first order” properties, and conversely the
countable/uncountable dichotomy is a good way to get an intuition on the differ-
ence between first-order and second-order properties.

1.2. Some further basic results.

Fact 7.14. A set S is infinite iff it is equivalent to a proper subset of itself.

Proof. One direction expresses an obvious fact about finite sets. Conversely,
let S be an infinite set; as above, there is a countable subset T ⊂ S. Choose some
bijection ι between T and N. Then there is a bijection ι′ between T ′ := T \ ι−1(0)
and T (just because there is a bijection between N and Z+. We therefore get a
bijection between S′ := S \ ι−1(0 and S by applying ι′ from T ′ to T and the
identity on S \ T . �

This characterization of infinite sets is due to Dedekind. What is ironic is that in
some sense it is cleaner and more intrinsic than our characterization of finite sets,
in which we had to compare against a distinguished family of sets {[n] | n ∈ N}.
Thus perhaps we should define a set to be finite if it cannot be put in bijection with
a proper subset of itself! (On the other hand, this is not a “first order” property,
so is not in reality that convenient to work with.)

Notice that in making the definition “uncountable,” i.e., an infinite set which is
not equivalent to Z+, we have essentially done what we earlier made fun of the
“primitive tribes” for doing: giving up distinguishing between very large sets. In
some sense, set theory begins when we attempt to classify uncountable sets up to
equivalence. This turns out to be quite an ambitious project – we will present
the most basic results of this project in the next installment – but there are a few
further facts that one should keep in mind throughout one’s mathematical life.

Let us define a set S to be of continuum type (or, more briefly, a continuum7)
if there is a bijection ι : S → R. One deserves to know the following:

Fact 7.15. There exists an uncountable set not of continuum type, namely 2R.

Proof. By Theorem 7.12 there is no surjection from R to 2R, so 2R is certainly
not of continuum type. We must however confirm what seems intuitively plausible:
that 2R is indeed uncountable. It is certainly infinite, since via the natural injection
ι : R → 2R, r 7→ {r}, it contains an infinite subset. But indeed, this also shows
that 2R is uncountable, since if it were countable, its subset ι(R) ∼= R would be
countable, which it isn’t. �

7This has a different meaning in general topology, but no confusion should arise.
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1.3. Some sets of continuum type.

For any two sets S and T , we define TS as the set of all functions f : S → T .
When T = [2], the set of all functions f : S → [2] is naturally identified with the
power set 2S of S (so the notation is almost consistent: for full consistency we
should be denoting the power set of S by [2]S , which we will not trouble ourselves
to do).

Fact 7.16. The sets (0, 1], 2Z
+

and RZ+

are of continuum type.

Earlier we identified the unit interval (0, 1] in R with the infinite subsets of Z+ and
remarked that, since the finite subsets of Z+ form a countable set, this implies that
(0, 1] hence R itself is uncountable. Let us refine this latter observation slightly:

Lemma 7.17. Let S be an uncountable set and C ⊂ S an at most countable
subset. Then S \ C ∼= S.

Proof. Suppose first that C is finite, say C ∼= [n]. Then there exists an
injection ι : Z+ → S such that ι([n]) = C (as follows immediately from Fact 6).
Let C∞ = ι(Z+). Now we can define an explicit bijection β from S \ C to S:
namely, we take β to be the identity on the complement of C∞ and on C∞ we
define β(ι(k)) = ι(k − n).

Now suppose C is countable. We do something rather similar. Namely, taking
C1 = C, since S \ C1 is uncountable, we can find a countably infinite subset C2 ⊂
S \ C1. Proceeding in this way we can find a family {Ci}i∈Z+ of pairwise disjoint
countable subsets of S. Let us identify each of these subsets with Z+, getting a
doubly indexed countable subset C∞ :=

⋃
i Ci = {cij} – here cij is the jth element

of Ci. Now we define a bijection β from S \C1 to S by taking β to be the identity
on the complement of C∞ and by putting β(cij) = c(i−1)j . This completes the
proof of the lemma. �

Thus the collection of infinite subsets of Z+ – being a subset of 2Z
+

with countable

complement – is equivalent to 2Z
+

, and hence (0, 1] ∼= 2Z+. So let us see that (0, 1] is
of continuum type. One way is as follows: again by the above lemma, [0, 1] ∼= (0, 1),
and R is even homeomorphic to (0, 1): for instance, the function

arctan(π(x− 1

2
)) : (0, 1)

∼−→ R.

For the case of (Z+)R: since R ∼= 2Z
+

, it is enough to find a bijection from (Z+)2Z+

to 2Z
+

. This is in fact quite easy: we are given a sequence aij of binary sequences
and want to make a single binary sequence. But we can do this just by choosing a
bijection Z+ × Z+ → Z+.

A little more abstraction will make this argument seem much more reasonable:

Lemma 7.18. Suppose A, B and C are sets. Then there is a natural bijection

(AB)C ∼= AC×B .

Proof. Indeed, given a function F from C to AB and an ordered pair (c, b) ∈
C×B, F (c) is a function from B to A and so F (c)(b) is an element of a. Conversely,
every function from C×B to A can be viewed as a function from C to the set AB of
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functions from B to A, and these correspondences are evidently mutually inverse.8

So what we said above amounts to

2Z
+ ∼= 2Z

+×Z+ ∼= (2Z
+

)Z
+

.

Exercise 4: A subinterval of R containing more than one point is of continuum
type. �

It is also the case that (Z+)Z
+

is of continuum type. I do not see a proof of this
within the framework we have developed. What we can show is that there exists

an injection R ↪→ (Z+)Z
+

– indeed, since R ∼= 2Z
+

, this is obvious – and also that

there exists an injection (Z+)Z
+

↪→ 2Z
+ ∼= R.

To see this latter statement: given any sequence of positive integers, we want
to return a binary sequence – which it seems helpful to think of as “encoding” our
original sequence – in such a way that the decoding process is unambiguous: we can
always reconstruct our original sequence from its coded binary sequence. The first
thought here is to just encode each positive integer ai in binary and concatenate
them. Of course this doesn’t quite work: the sequence 2, 3, 1, 1, 1 . . . gets coded
as 1011 followed by an infinite string of ones, as does the sequence 11, 1, 1, 1 . . ..
But this can be remedied in many ways. One obvious way is to retreat from binary
notation to unary notation: we encode ai as a string of i ones, and in between each
string of ai ones we put a zero to separate them. This clearly works (it seems almost
cruelly inefficient from the perspective of information theory, but no matter).

Roughly speaking, we have shown that (Z+)Z+ is “at least of continuum type”
and “at most of continuum type,” so if equivalences of sets do measure some rea-
sonable notion of their size, we ought to be able to conclude from this that (Z+)Z+

is itself of continuum type. This is true, a special case of the important Schröder-
Bernstein theorem whose proof we defer until the next installment.

1.4. Many inequivalent uncountable sets.

From the fundamental Theorem 7.12 we first deduced that not all infinite sets
are equivalent to each other, because the set 2Z

+

is not equivalent to the countable

infinite set Z+. We also saw that 2Z
+ ∼= R so called it a set of continuum type.

Then we noticed that Cantor’s theorem implies that there are sets not of continuum

type, namely 2R ∼= 22Z+
. By now one of the most startling mathematical discoveries

of all time must have occurred to the reader: we can keep going!

To simplify things, let us use (and even slightly abuse) an obscure9 but colorful
notation due to Cantor: instead of writing Z+ we shall write i0. For 2Z+ we shall
write i1, and in general, for n ∈ N, having defined in (informally, as the n-fold
iterated power set of Z+), we will define in+1 as 2in . Now hold on to your hat:

Fact 7.19. The infinite sets {in}n∈N are pairwise inequivalent.

Proof. Let us first make the preliminary observation that for any nonempty
set S, there is a surjection 2S → S. Indeed, pick your favorite element of S, say
x; for every s ∈ S we map {s} to s, which is “already” a surjection; we extend the

8This is canonical bijection is sometimes called “adjunction.”
9At least, I didn’t know about it until recently; perhaps this is not your favorite criterion for

obscurity.
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mapping to all of 2S by mapping every other subset to x.
Now we argue by contradiction: suppose that for some n > m there exists even

a surjection s : im → in. We may write n = m+k. By the above, by concatenating
(finitely many) surjections we get a surjection β : im+k → im+1. But then β ◦ s :
im → im+1 = 2im is a surjection, contradicting Cantor’s theorem. �

Thus there are rather a lot of inequivalent infinite sets. Is it possible that the in’s
are all the infinite sets? In fact it is not : define iω :=

⋃
n∈N in. This last set iω

is certainly not equivalent to in for any n, because it visibly surjects onto in+1.
Are we done yet? No, we can keep going, defining iω+1 := 2iω .

To sum up, we have a two-step process for generating a mind-boggling array of
equivalence classes of sets. The first step is to pass from a set to its power set,
and the second stage is to take the union over the set of all equivalence classes of
sets we have thus far considered. Inductively, it seems that each of these processes
generates a set which is not surjected onto by any of the sets we have thus far
considered, so it gives a new equivalence class. Does the process ever end?!?

Well, the above sentence is an example of the paucity of the English language
to describe the current state of affairs, since even the sequence i0, i1, i2 . . . does
not end in the conventional sense of the term. Better is to ask whether or not we
can reckon the equivalence classes of sets even in terms of infinite sets. At least we
have only seen countably many equivalence classes of sets10 thus far: is it possible
that the collection of all equivalence classes of sets is countable?

No again, and in fact that’s easy to see. Suppose {Si}i∈N is any countable col-
lection of pairwise inequivalent sets. Then – playing both of our cards at once! –
one checks immediately that there is no surjection from any Si onto 2

⋃
i∈N Si . In

fact it’s even stranger than this:

Fact 7.20. For no set I does there exists a family of sets {Si}i∈I such that
every set S is equivalent to Si for at least one i.

Proof. Again, take Sbigger = 2
⋃
i∈I Si . There is no surjection from

⋃
i∈I Si

onto Sbigger, so for sure there is no surjection from any Si onto Sbigger. �

2. Order and Arithmetic of Cardinalities

Here we pursue Cantor’s theory of cardinalities of infinite sets a bit more deeply.
We also begin to take a more sophisticated approach in that we identify which
results depend upon the Axiom of Choice and strive to give proofs which avoid
it when possible. However, we defer a formal discussion of the Axiom of Choice
and its equivalents to a later installment, so the reader who has not encountered it
before can ignore these comments and/or skip ahead to the next installment.

We warn the reader that the main theorem in this installment – Theorem 7.23
(which we take the liberty of christening “The Second Fundamental Theorem of
Set Theory”) – will not be proved until the next installment, in which we give a
systematic discussion of well-ordered sets.

10The day you ever “see” uncountably many things, let me know.
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For More Advanced Readers: We will mostly be content to use the Axiom
of Choice (AC) in this handout, despite the fact that we will not discuss this ax-
iom until Handout 3. However, whereas in [?] we blithely used AC without any
comment whatsoever, here for a theorem whose statement requires AC we indicate
that by calling it AC-Theorem. (If a theorem holds without AC, we sometimes
still gives proofs which use AC, if they are easier or more enlightening.)

2.1. The fundamental relation ≤.

Let’s look back at what we did in the last section. We introduced a notion of
equivalence on sets: namely S1 ≡ S2 if there is a bijection f : S1 → S2. This sets
up a project of classifying sets up to equivalence. Looking at finite sets, we found
that each equivalence class contained a representative of the form [n] for a unique
natural number n. Thus the set of equivalence classes of finite sets is N. Then we
considered whether all infinite sets were equivalent to each other, and found that
they are not.

If we look back at finite sets (it is remarkable, and perhaps comforting, how much of
the inspiration for some rather recondite-looking set-theoretic constructions comes
from the case of finite sets) we can’t help but notice that N has so much more struc-
ture than just a set. First, it is a semiring: this means that we have operations of
+ and ·, but in general we do not have − or /. Second it has a natural ordering ≤
which is indeed a well-ordering : that is, ≤ is a linear ordering on x in which every
non-empty subset has a least element. (The well-ordering property is easily seen to
be equivalent to the principle of mathematical induction.)

Remarkably, all of these structures generalize fruitfully to equivalence classes of
sets! What does this mean? For a set S, let |S| stand for its equivalence class.
(This construction is commonplace in mathematics but has problematic aspects
in set theory since the collection of sets equivalent with any nonempty set S does
not form a set. Let us run with this notion for the moment, playing an important
mathematician’s trick: rather than worrying about what |S| is, let us see how it
behaves, and then later we can attempt to define it in terms of its behavior.)

We write S1 ≤ S2 if there exists an injection ι : S1 ↪→ S2.

Proposition 7.21. Let S1 be a nonempty set and S2 a set. If there is an
injection from S1 to S2, then there is a surjection from S2 to S1.

Proof. Let ι : S1 → S2 be an injection. We define s : S2 → S1 as follows.
Let x1 ∈ S2. If y ∈ ι(S1), then since ι is injective there is exactly one x ∈ S1

with ι(x) = y, and we set s(y) = x. If y /∈ ι(S1), we set s(y) = x1. This is a
surjection. �

Theorem 7.22. Let S1 be a nonempty set and S2 a set. If there is a surjection
from S2 to S1, then there is an injection from S1 to S2.

Proof. Let s : S2 → S1 be a surjection. We define ι : S1 → S2 as follows. For
each x ∈ S1, we choose y ∈ S2 with s(y) = x and define ι(x) = y. If for x1, x2 ∈ S1

we have ι(x1) = ι(x2), then x1 = s(ι(x1)) = s(ι(x2)) = x2, so ι is an injection. �
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Exercise: Suppose S1 = ∅. Under what conditions on S2 does Proposition 7.21
remain valid? What about Theorem 7.22?

Let F be any family (i.e., set!) of sets Sα. Then our ≤ gives a relation on F ;
what properties does it have? It is of course reflexive and transitive, which means
it is (by definition) a quasi-ordering. On the other hand, it is generally not a par-
tial ordering, because Sα1

≤ Sα2
and Sα2

≤ Sα1
does not in general imply that

Sα1 = Sα2 : indeed, suppose have two distinct, but equivalent sets (say, two sets
with three elements apiece). However, given a quasi-ordering we can formally as-
sociate a partial ordering, just by taking the quotient by the equivalence relation
x ≤ y, y ≤ x. However, exactly how the associated partial ordering relates to the
given quasi-ordering is in general unclear.

Therefore we can try to do something less drastic. Namely, let us write |S1| ≤ |S2|
if S1 ≤ S2. We must check that this is well-defined, but no problem: indeed, if
Si ≡ Ti then choosing bijections βi : Si → Ti, we get an injection

β2 ◦ ι ◦ β−1
1 : T1 → T2.

Thus we can pass from the quasi-ordered set (F ,≤) to the quasi-ordered set of
equivalence classes (|F ,≤). Since we removed an obvious obstruction to the quasi-
ordering being a partial ordering, it is natural to wonder whether or not this partial
ordering on equivalence classes is better behaved. If F is a family of finite sets,
then |F| is a subset of N so we have a well-ordering. The following stunning result
asserts that this remains true for infinite sets:

AC-Theorem 7.23. (Second Fundamental Theorem of Set Theory) For any
family F of sets, the relation ≤ descends to |F| and induces a well-ordering.

In its full generality, Theorem 7.23 is best derived in the course of a systematic
development of the theory of well-ordered sets, and we shall present this theory
later on. However, the following special case can be proved now:

Theorem 7.24. (Schröder-Bernstein) If M ≤ N and N ≤M , then M ≡ N .

Proof. Certainly we may assume that M and N are disjoint. Let f : M ↪→ N
and g : N ↪→ M . Consider the following function B on M ∪ N : if x ∈ M ,
B(x) = f(x) ∈ N ; if x ∈ N , B(x) = g(x) ∈ M . Now we consider the B orbits on
M ∪N . Put Bm = B ◦ . . . ◦B (m times). There are three cases:
Case 1: The forward B-orbit of x is finite. Equivalently, for some m, Bm(x) = x.
Then the backwards B-orbit is equal to the B-orbit, so the full B-orbit is finite.
Otherwise the B-orbit is infinite, and we consider the backwards B-orbit.
Case 2: The backwards B-orbit also continues indefinitely, so for all m ∈ Z we have
pairwise disjoint elements Bm(x) ∈M ∪N .
Case 3: For some m ∈ Z+, B−m(x) is not in the image of f or g.
As these possibilities are exhaustive, we get a partition of M ∪N into three types
of orbits: (i) finite orbits, (ii) {Bm | m ≥ m0}, and (iii) {Bm | m ∈ Z}. We can use
this information to define a bijection from M to N . Namely, f itself is necessarily
a bijection from the Case 1 elements of M to the Case 1 elements of N , and the
same holds for Case 3. f need not surject onto every Case 2 element of N , but the
Case 2 element of M ∪ N have been partitioned into sets isomorphic to Z+, and



2. ORDER AND ARITHMETIC OF CARDINALITIES 199

pairing up the first element occurring in M with the first element occurring in N ,
and so forth, we have defined a bijection from M to N ! �

Theorem 7.23 asserts that |S| is measuring, in a reasonable sense, the size of the
set S: if two sets are inequivalent, it is because one of them is larger than the other.
This motivates a small change of perspective: we will say that |S| is the cardinality
of the set S. Note well that we have not made any mathematical change: we have
not defined cardinalities in an absolute sense – i.e., we have not said what sort of
object |N| is – but only in a relational sense: i.e., as an invariant of a set that
measures whether a set is bigger or smaller than another set.

Notation: For brevity we will write

ℵ0 = |N|
and

c = |R|.
Here ℵ is the Hebrew letter “aleph”, and ℵ0 is usually pronounced “aleph naught”
or “aleph null” rather than “aleph zero”. Exactly why we are choosing such a
strange name for |N| will not be explained until the third handout. In contrast, we
write c for |R| simply because “c” stands for continuum, and in Handout 1 we said
that a set S if of continuum type if S ≡ R. In our new notation, [?, Fact 16] is
reexpressed as

(18) |2ℵ0 | = c.

2.2. Addition of cardinalities.

For two sets S1 and S2, define the disjoint union S1

∐
S2 to be S′1 ∪ S′2, where

S′i = {(s, 1) | s ∈ Si}. Note that there is an obvious bijection Si → S′i; the point
of this little artifice is that even if S1 and S2 are not disjoint, S′1 and S′2 will be.11

Now consider the set S1

∐
S2.

Fact 7.25. The equivalence class |S1

∐
S2| depends only on the equivalence

classes |S1| and |S2|.

Proof: All this means is that if we have bijections βi : Si → Ti, then there is a
bijection from S1

∐
S2 to T1

∐
T2, which is clear: there is indeed a canonical bijec-

tion, namely β1

∐
β2: by definition, this maps an element (s, 1) to (β1(s), 1) and

an element (s, 2) to (β2(s), 2).

The upshot is that it makes formal sense to define |S1| + |S2| as |S1

∐
S2|: our

addition operation on sets descends to equivalence classes. Note that on finite sets
this amounts to

m+ n = |[m]|+ |[n]| = |[m]
∐

[n]| = |[m+ n]| = m+ n.

Theorem 7.26. Let S ≤ T be sets, with T infinite. Then |S|+ |T | = |T |.

There is a fairly quick and proof of Theorem 7.26, which however uses Zorn’s Lemma
(which is equivalent to the Axiom of Choice). At this stage in the development of
the theory the reader might like to see such a proof, so we will present it now

11This in turn raises canonicity issues, which we will return to later.
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(certainly Zorn’s Lemma is well known and used in “mainstream mathematics”).
We begin with the following preliminary result which is of interest in its own right.

AC-Theorem 7.27. Any infinite set S is a disjoint union of countable subsets.

Proof. Consider the partially ordered set each of whose elements is a pairwise
disjoint family of countable subsets of S, and with ≤ being set-theoretic inclusion.
Any chain Fi in this poset has an upper bound: just take the union of all the
elements in the chain: this is certainly a family of countable subsets of S, and if
any element of Fi intersects any element of Fj , then Fmax(i,j) contains both of these
elements so is not a pairwise disjoint family, contradiction. By Zorn’s Lemma we
are entitled to a maximal such family F . Then S \

⋃
i∈F Si must be finite, so the

remaining elements can be added to any one of the elements of the family. �

AC-Theorem 7.28. For any infinite set A, there are disjoint subsets B and
C with A = B ∪ C and |A| = |B| = |C|.

Proof. Express A =
⋃
i∈F Ai, where each Ai ∼= Z+. So partition Si into Bi ∪

Ci where Bi and Ci are each countable, and take B =
⋃
i∈F Bi, C =

⋃
i∈F Ci. �

Proof of Theorem 7.26: Let S and T be sets; by Theorem 7.23 we may assume
|S| ≤ |T |. Then clearly |S| + |T | ≤ |T | + |T |, but the preceding result avers
|T | + |T | = |T |. So |S| + |T | ≤ |T |. Clearly |T | ≤ |S| + |T |, so by the Schröder-
Bernstein Theorem we conclude |S|+ |T | = |T |.

Exercise: Let T be an infinite set and S a nonempty subset of T . Show that
S can be expressed as a disjoint union of subsets of cardinality |T |.

AC-Theorem 7.29. For all infinite sets S and T , |S|+ |T | = max |S|, |T |.
Exercise: Deduce Theorem 7.29 from Theorem 7.23 and Theorem 7.26.

2.3. Subtraction of cardinalities.

It turns out that we cannot formally define a subtraction operation on infinite
cardinalities, as one does for finite cardinalities using set-theoretic subtraction:
given sets S1 and S2, to define |S1| − |S2| we would like to find sets Ti ≡ Si such
that T2 ⊂ T1, and then define |S1| − |S2| to be |T1 \ T2|. Even for finite sets this
only makes literal sense if |S2| ≤ |S1|; in general, we are led to introduce negative
numbers through a formal algebraic process, which we can recognize as the group
completion of a monoid (or the ring completion of a commutative semiring).

However, here the analogy between infinite and finite breaks down: given
S2 ⊂ S1, T2 ⊂ T1 and bijections βi : Si → Ti, we absolutely do not in general
have a bijection S1 \S2 → T1 \T2. For instance, take S1 = T1 = Z+ and S2 = 2Z+,
the even numbers. Then |S1 \ S2| = |N|. However, we could take T2 = Z+ and
then T2 \ T1 = ∅. For that matter, given any n ∈ Z+, taking T2 to be Z+ \ [n], we
get T1 \ T2 = [n]. Thus when attempting to define |N| − |N| we find that we get all
conceivable answers, namely all equivalence classes of at most countable sets. This
phenomenon does generalize:

Proposition 7.30. (Subtraction theorem) For any sets S1 ⊂ S2 ⊂ S3, there
are bijections β1 : S1 → T1, β3 : S3 → T3 such that T1 ⊂ T3 and |T3 \ T1| = |S2|.

Proof. If S1 and S2 are disjoint, we may take T1 = S1, T2 = S2 and T3 =
S1 ∪ S2. Otherwise we may adjust by bijections to make them disjoint. �
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2.4. Multiplication of cardinalities.

Let S1 and S2 be sets. We define

|S1| × |S2| = |S1 × S2|.

Exercise: Check that this is well-defined.

At this point, we have what appears to be a very rich structure on our cardi-
nalities: suppose that F is a family of sets which is, up to bijection, closed under∐

and ×. Then the family |F| of cardinalities of these sets has the structure of a
well-ordered semiring.

Example: Take F to be any collection of finite sets containing, for all n ∈ N, at
least one set with n elements. Then |F| = N and the semiring and (well)-ordering
are the usual ones.

Example: Take F to be a family containing finite sets of all cardinalities together
with N. Then, since N

∐
N ∼= N and N×N ∼= N, the corresponding family of cardi-

nals |F| is a well-ordered semiring. It contains N as a subring and one other element,
|N|; in other words, as a set of cardinalities it is N∪{N}, a slightly confusing-looking
construction which we will see much more of later on. As a well-ordered set we have
just taken N and added a single element (the element N!) which is is larger than
every other element. It is clear that this gives a well-ordered set; indeed, given
any well-ordered set (S,≤) there is another well-ordered set, say s(S), obtained
by adding an additional element which is strictly larger than every other element
(check and see that this gives a well-ordering). The semiring structure is, however,
not very interesting: every x ∈ N ∪ {N}, x+ N = x ·N = N. In particular, the ring
completion of this semiring is the 0 ring. (It suffices to see this on the underlying
commutative monoid. Recall that the group completion of a commutative monoid
M can be represented by pairs (p,m) of elements of M with (p,m) ∼ (p′,m′) iff
there exists some x ∈ M such that x + p + m′ = x + p′ + m. In our case, taking
x = N we see that all elements are equivalent.)

However, like addition, multiplication of infinite cardinalities turns out not to be
very interesting.

Theorem 7.31. Let T be infinite and S a nonempty subset of T . Then |S| ×
|T | = |T |.

The same remarks are in order here as for the addition theorem (Theorem 7.26):
combining with cardinal trichotomy, we conclude that |S| × |T | = max(|S|, |T |) for
any infinite sets. This deduction uses the Axiom of Choice, whereas the theorem as
stated does not. However, it is easier to give a proof using Zorn’s Lemma, which is
what we will do. Moreover, as for the additive case, it is convenient to first establish
the case of S = T . Indeed, assuming that T × T ∼= T , we have

|S| × |T | ≤ |T | × |T | = |T | ≤ |S| × |T |.
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So let us prove that for any infinite set T , T × T ∼= T .

Consider the poset consisting of pairs (Si, fi), where Si ⊂ T and fi is a bijection
from Si to Si×Si. Again the order relation is the natural one: (Si, fi) ≤ (Sj , fj) if
Si ⊂ Sj and fj |Si = fi. Now we apply Zorn’s Lemma, and, as is often the case, the
verification that every chain has an upper bound is immediate because we can just
take the union over all elements of the chain. Therefore we get a maximal element
(S, f).

Now, as for the case of the addition theorem, we need not have S = T ; put
S′ = T \S. What we can say is that |S′| < |S|. Indeed, otherwise we have |S′| ≥ |S|,
so that inside S′ there is a subset S′′ with |S′′| = |S|. But we can enlarge S × S to
(S ∪ S′′)× (S ∪ S′′). The bijection f : S → S × S gives us that

|S′′| = |S| = |S| × |S| = |S′′| × |S′′|.

Thus using the addition theorem, there is a bijection g : S∪S′′ → (S∪S′′)×(S∪S′′)
which can be chosen to extend f : S → S × S; this contradicts the maximality of
(S, f).

Thus we have that |S′| < |S| as claimed. But then we have |T | = |S ∪ S′| =
max(|S|, |S′|) = |S|, so

|T | × |T | = |S| × |S| = |S| = |T |,

completing the proof.

Exercise: Prove the analogue of Proposition 7.30 for cardinal division.

Exercise: Verify that + and · are commutative and associative operations on car-
dinalities, and that multiplication distributes over addition. (There are two ways
to do this. One is to use the fact that |S|+ |T | = |S| · |T | = max(|S|, |T |) unless S
and T are both finite. On the other hand one can verify these identities directly in
terms of identities on sets.)

2.5. Cardinal Exponentiation.

For two sets S and T , we define ST to be the set of all functions f : T → S.
Why do we write ST instead of TS? Because the cardinality of the set of all func-
tions from [m] to [n] is nm: for each of the m elements of the domain, we must
select one of the n elements of the codomain. As above, this extends immediately
to infinite cardinalities:

For any sets S and T , we put |S||T | = |ST |.

Exercise: Check that this is well-defined.

Exercise: Suppose X has at most one element. Compute |X||Y | for any set Y .

Henceforth we may as well assume that X has at least two elements.

Proposition 7.32. For any sets X, Y , Z we have

(|X||Y |)|Z| = |X||Y |·|Z|.
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Proof. By [?, Lemma 18] we have (XY )Z ≡ XY Z . The result follows imme-
diately. �

Proposition 7.33. For any sets X, Y , Z, we have

|X||Y |+|Z| = |X||Y | · |X||Z|

and
(|X| · |Y |)|Z| = |X||Z| · |Y ||Z|.

Exercise: Prove Proposition 7.33.

Theorem 7.34. Let X1, X2, Y1, Y2 be sets with Y1 6= ∅. If |X1| ≤ |X2| and
|Y1| ≤ |Y2| then |X1||Y1| ≤ |X2||Y2|.

Proof. Let ιX : X1 → X2 be an injection. By Proposition 7.21, there is a
surjection sY : Y2 → Y1. There is an induced injection XY1

1 → XY1
2 given by

f : Y1 → X1 7→ ιX ◦ f : Y1 → X2

and an induced injection XY1
2 → XY2

2 given by

f : Y1 → X2 7→ f ◦ sY : Y2 → X2.

Composing these gives an injection from XY1
1 to XY2

2 . �

If Y is finite, then |X||Y | = |X|·. . .·|X| so is nothing new. The next result evaluates,
in a sense, |X||Y | when |Y | = ℵ0.

AC-Theorem 7.35. Let S be a set with |{1, 2}| ≤ |S| ≤ c. Then |S|ℵ0 = c.

Proof. There is an evident bijection from the set of functions N → {1, 2} to
the power set 2N, so |{1, 2}|ℵ0 = |2ℵ0 | = c. Combining this with Theorem 7.34 and
Proposition 7.33 we get

c = |{1, 2}|ℵ0 ≤ |S|ℵ0 ≤ cℵ0 = (|{1, 2}|ℵ0)ℵ0 = |{1, 2}|ℵ0×ℵ0 = |{1, 2}|ℵ0 = c.

�

What about |X||Y | when Y is uncountable? By Cantor’s Theorem we have

|X||Y | ≥ |{0, 1}||Y | = |2Y | > |Y |.
Thus the first order of business seems to be the evaluation of |2Y | for uncountable
Y . This turns out to be an extremely deep issue with a very surprising answer.

What might one expect 2|S| to be? The most obvious guess seems to be the mini-
malist one: since any collection of cardinalities is well-ordered, for any cardinality
κ, there exists a smallest cardinality which is greater than κ, traditionally called
κ+. Thus we might expect 2|S| = |S|+ for all infinite S.

But comparing to finite sets we get a little nervous about our guess, since 2n

is very much larger than n+ = n + 1. On the other hand, our simple formulas for
addition and multiplication of infinite cardinalities do not hold for finite cardinali-
ties either – in short, we have no real evidence so are simply guessing.

Notice that we did not even “compute” |2N| in any absolute sense but only showed
that it is equal to the cardinality c of the real numbers. So already it makes sense
to ask whether c is the least cardinality greater than ℵ0 or whether it is larger.
The minimalist guess c = ℵ+

0 was made by Cantor, who was famously unable to
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prove it, despite much effort: it is now called the Continuum Hypothesis (CH).
Moreover, the guess that 2S = |S|+ for all infinite sets is called the Generalized
Continuum Hypothesis (GCH).

Will anyone argue if I describe the continuum hypothesis (and its generalization)
as the most vexing problem in all of mathematics? Starting with Cantor himself,
some of the greatest mathematical minds have been brought to bear on this prob-
lem. For instance, in his old age David Hilbert claimed to have proved CH and he
even published his paper in Crelle, but the proof was flawed. Kurt Gödel proved
in 1944 that CH is relatively consistent with the ZFC axioms for set theory – in
other words, assuming that the ZFC axioms are consistent (if not, all statements
in the language can be formally derived from them!), it is not possible to deduce
CH as a formal consequence of these axioms. In 1963, Paul Cohen showed that
the negation of CH is also relatively consistent with ZFC, and for this he received
the Fields Medal. Cohen’s work undoubtedly revolutionized set theory, and his
methods (“forcing”) have since become an essential tool. But where does this leave
the status of the Continuum Hypothesis?

The situation is most typically summarized by saying that Gödel and Cohen showed
the undecidability of CH – i.e., that it is neither true nor false in the same way
that Euclid’s parallel postulate is neither true nor false. However, to accept this as
the end of the story is to accept that what we know about sets and set theory is
exactly what the ZFC axiom scheme tells us, but of course this is a position that
would require (philosophical as well as mathematical) justification – as well as a
position that seems to be severely undermined by the very issue at hand! Thus, a
more honest admission of the status of CH would be: we are not even sure whether
or not the problem is open. From a suitably Platonistic mathematical perspective
– i.e., a belief that what is true in mathematics is different from what we are able
(in practice, or even in principle) to prove – one feels that either there exists some
infinite subset of R which is equivalent to neither Z+ nor R, or there doesn’t, and
the fact that none of the ZFC axioms allow us to decide this simply means that
the ZFC axioms are not really adequate. It is worth noting that this position was
advocated by both Gödel and Cohen.

In recent years this position has begun to shift from a philosophical to a math-
ematical one: the additional axioms that will decide CH one way or another are
no longer hypothetical. The only trouble is that they are themselves very compli-
cated, and “intuitive” mostly to the set theorists that invent them. Remarkably –
considering that the Axiom of Choice and GCH are to some extent cognate (and
indeed GCH implies AC) – the consensus among experts seems to be settling to-
wards rejecting CH in mathematics. Among notable proponents, we mention the
leading set theorist Hugh Woodin. His and other arguments are vastly beyond the
scope of these notes.

To a certain extent, cardinal exponentation reduces to the problem of computing
the cardinality of 2S . Indeed, one can show the following result.
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AC-Theorem 7.36. If X has at least 2 elements and Y has at least one ele-
ment,

max(|X|, |2Y |) ≤ |X||Y | ≤ max(|2X |, |2Y |).

We omit the proof for now.

2.6. Note on sources.

Most of the material of this installment is due to Cantor, with the exception of
the Schröder-Bernstein theorem (although Cantor was able to deduce the Second
Fundamental Theorem from the fact that every set can be well-ordered, which we
now know to be equivalent to the Axiom of Choice). Our proofs of Theorems 7.26
and 7.31 follow Kaplansky’s Set Theory and Metric Spaces. Gödel’s views on the
Continuum Problem are laid out with his typical (enviable) clarity in What Is Can-
tor’s Continuum Problem? It is interesting to remark that this paper was first
written before Cohen’s work – although a 1983 reprint in Benacerraf and Putnam’s
Philosophy of Mathematics contains a short appendix acknowledging Cohen – but
the viewpoint that it expresses (anti-formalist, and favoring the negation of CH) is
perhaps more accepted today than it was at the time of its writing.

3. The Calculus of Ordinalities

3.1. Well-ordered sets and ordinalities.

The discussion of cardinalities in Chapter 2 suggests that the most interesting
thing about them is their order relation, namely that any set of cardinalities forms
a well-ordered set. So in this section we shall embark upon a systematic study of
well-ordered sets. Remarkably, we will see that the problem of classifying sets up
to bijection is literally contained in the problem of classifying well-ordered sets up
to order-isomorphism.

Exercise 1.1.1: Show that for a linearly ordered set X, TFAE:
(i) X satisfies the descending chain condition: there are no infinite strictly descend-
ing sequences x1 > x2 > . . . in X.
(ii) X is well-ordered.

We need the notion of “equivalence” of of well-ordered sets. A mapping f : S → T
between partially ordered sets is order preserving (or an order homomor-
phism) if s1 ≤ s2 in S implies f(s1) ≤ f(s2) in T .

Exercise 1.1.2: Let f : S → T and g : T → U be order homomorphisms of partially
ordered sets.
a) Show that g ◦ f : S → U is an order homomorphism.
b) Note that the identity map from a partially ordered set to itself is an order
homomorphism.
(It follows that there is a category whose objects are partially ordered sets and
whose morphisms are order homomorphisms.)

An order isomorphism between posets is a mapping f which is order preserving,
bijective, and whose inverse f−1 is order preserving. (This is the general – i.e.,
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categorical – definition of isomorphism of structures.)

Exercise 1.1.3: Give an example of an order preserving bijection f such that f−1

is not order preserving.

However:

Lemma 7.37. An order-preserving bijection whose domain is a totally ordered
set is an order isomorphism.

Exercise 1.1.4: Prove Lemma 7.37.

Lemma 7.38. (Rigidity Lemma) Let S and T be well-ordered sets and f1, f2 :
S → T two order isomorphisms. Then f1 = f2.

Proof: Let f1 and f2 be two order isomorphisms between the well-ordered sets S
and T , which we may certainly assume are nonempty. Consider S2, the set of ele-
ments s of S such that f1(s) 6= f2(s), and let S1 = S \ S2. Since the least element
of S must get mapped to the least element of T by any order-preserving map, S1

is nonempty; put T1 = f1(S1) = f2(S1). Supposing that S2 is nonempty, let s2 be
its least element. Then f1(s2) and f2(s2) are both characterized by being the least
element of T \ T1, so they must be equal, a contradiction.

Exercise 1.1.5: Let S be a partially ordered set.
a) Show that the order isomorphisms f : S → S form a group, the order auto-
morphism group Aut(S) of S. (The same holds for any object in any category.)
b) Notice that Lemma 7.38 implies that the automorphism group of a well-ordered
set is the trivial group.12

c) Suppose S is linearly ordered and f is an order automorphism of S such that
for some positive integer n we have fn = 1S , the identity map. Show that f = 1S .
(Thus the automorphism group of a linearly ordered set is torsionfree.)
d) For any infinite cardinality κ, find a linearly ordered set S with |Aut(S)| ≥ κ.
Can we always ensure equality?
e)** Show that every group G is (isomorphic to) the automorphism group of some
partially ordered set.

Let us define an ordinality to be an order-isomorphism class of well-ordered sets,
and write o(X) for the order-isomorphism class of X. The intentionally grace-
less terminology will be cleaned up later on. Since two-order isomorphic sets are
equipotent, we can associate to every ordinality α an “underlying” cardinality |α|:
|o(X)| = |X|. It is natural to expect that the classification of ordinalities will be
somewhat richer than the classification of cardinalities – in general, endowing a set
with extra structure leads to a richer classification – but the reader new to the sub-
ject may be (we hope, pleasantly) surprised at how much richer the theory becomes.

From the perspective of forming “isomorphism classes” (a notion the ontological de-
tails of which we have not found it profitable to investigate too closely) ordinalities
have a distinct advantage over cardinalities: according to the Rigidity Lemma, any
two representatives of the same ordinality are uniquely (hence canonically!) isomor-
phic. This in turn raises the hope that we can write down a canonical representative

12One says that a structure is rigid if it has no nontrivial automorphisms.
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of each ordinality. This hope has indeed been realized, by von Neumann, as we shall
see later on: the canonical representatives will be called “ordinals.” While we are
alluding to later developments, let us mention that just as we can associate a cardi-
nality to each ordinality, we can also – and this is much more profound – associate
an ordinality o(κ) to each cardinality κ. This assignment is one-to-one, and this
allows us to give a canonical representative to each cardinality, a “cardinal.” At
least at the current level of discussion, there is no purely mathematical advantage
to the passage from cardinalities to cardinals, but it has a striking ontological13

consequence, namely that, up to isomorphism, we may develop all of set theory in
the context of “pure sets”, i.e., sets whose elements (and whose elements’ elements,
and . . .) are themselves sets.

But first let us give some basic examples of ordinalities and ways to construct
new ordinalities from preexisting ones.

3.2. Algebra of ordinalities.

Example 1.2.1: Trivially the empty set is well-ordered, as is any set of cardinality
one. These sets, and only these sets, have unique well-orderings.

Example 1.2.2: Our “standard” example [n] of the cardinality n comes with a
well-ordering. Moreover, on a finite set, the concepts of well-ordering and linear
ordering coincide, and it is clear that there is up to order isomorphism a unique
linear ordering on [n]. Informally, given any two orderings on an n element set,
we define an order-preserving bijection by pairing up the least elements, then the
second-least elements, and so forth. (For a formal proof, use induction.)

Example 1.2.3: The usual ordering on N is a well-ordering. Notice that this is
isomorphic to the ordering on {n ∈ Z | n ≥ n0} for any n0 ∈ Z. As is traditional,
we write ω for the ordinality of N.

Exercise 1.2.4: For any ordering ≤ on a set X, we have the opposite ordering
≤′, defined by x ≤′ y iff y ≤ x.
a) If ≤ is a linear ordering, so is ≤′.
b) If both ≤ and ≤′ are well-orderings, then X is finite.

For a partially ordered set X, we can define a new partially ordered set X+ :=
X ∪ {∞} by adjoining some new element ∞ and decreeing x ≤ ∞ for all x ∈ X.

Proposition 7.39. If X is well-ordered, so is X+.

Proof: Let Y be a nonempty subset of X+. Certainly there is a least element if
|Y | = 1; otherwise, Y contains an element other than∞, so that Y ∩X is nonempty,
and its least element will be the least element of Y .

If X and Y are order-isomorphic, so too are X+ and Y +, so the passage from
X to X+ may be viewed as an operation on ordinalities. We denote o(X+) by
o(X) + 1, the successor ordinality of o(X).

13I restrain myself from writing “ontological” (i.e., with quotation marks), being like most
contemporary mathematicians alarmed by statements about the reality of mathematical objects.
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Note that all the finite ordinalities are formed from the empty ordinality 0 by
iterated successorship. However, not every ordinality is of the form o′ + 1, e.g. ω
is clearly not: it lacks a maximal element. (On the other hand, it is obtained from
all the finite ordinalities in a way that we will come back to shortly.) We will say
that an ordinality o is a successor ordinality if it is of the form o′ + 1 for some
ordinality o′ and a limit ordinality otherwise. Thus 0 and ω are limit ordinals.

Example 1.2.6: The successor operation allows us to construct from ω the new
ordinals ω+ 1, ω+ 2 := (ω+ 1) + 1, and for all n ∈ Z+, ω+ n := (ω+ (n− 1)) + 1:
these are all distinct ordinals.

Definition: For partially ordered sets (S1,≤1) and (S2,≤2), we define S1 + S2

to be the set S1

∐
S2 with s ≤ t if either of the following holds:

(i) For i = 1 or 2, s and t are both in Si and s ≤i t;
(ii) s ∈ S1 and s ∈ S2.

Informally, we may think of S1 + S2 as “S1 followed by S2.”

Proposition 7.40. If S1 and S2 are linearly ordered (resp. well-ordered), so
is S1 + S2.

Exercise 1.2.5: Prove Proposition 7.40.

Again the operation is well-defined on ordinalities, so we may speak of the ordinal
sum o+ o′. By taking S2 = [1], we recover the successor ordinality: o+ [1] = o+ 1.

Example 1.2.6: The ordinality 2ω := ω + ω is the class of a well-ordered set which
contains one copy of the natural numbers followed by another. Proceeding induc-
tively, we have nω := (n− 1)ω + ω, with a similar description.

Tournant dangereuse: We can also form the ordinal sum 1 + ω, which amounts
to adjoining to the natural numbers a smallest element. But this is still order-
isomorphic to the natural numbers: 1 + ω = ω. In fact the identity 1 + o = o holds
for every infinite ordinality (as will be clear later on). In particular 1 + ω 6= ω + 1,
so beware: the ordinal sum is not commutative! (To my knowledge it is the only
non-commutative operation in all of mathematics which is invariably denoted by
“+”.) It is however immediately seen to be associative.

The notation 2ω suggests that we should have an ordinal product, and indeed we do:

Definition: For posets (S1,≤1) and (S2,≤2) we define the lexicographic product
to be the Cartesian product S1 × S2 endowed with the relation (s1, s2) ≤ (t1, t2)
if(f) either s1 ≤ t1 or s1 = t1 and s2 ≤ t2. If the reasoning behind the nomenclature
is unclear, I suggest you look up “lexicographic” in the dictionary.14

Proposition 7.41. If S1 and S2 are linearly ordered (resp. well-ordered), so
is S1 × S2.

14Ha ha.
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Exercise 1.2.7: Prove Proposition 7.41.

As usual this is well-defined on ordinalities so leads to the ordinal product o · o′.

Example 1.2.8: For any well-ordered set X, [2] ·X gives us one copy {(1, x) | x ∈ X}
followed by another copy {(2, x) | x ∈ X}, so we have a natural isomorphism of
[2] ·X with X + X and hence 2 · o = o + o. (Similarly for 3o and so forth.) This
time we should be prepared for the failure of commutativity: ω · n is isomorphic to
ω. This allows us to write down ω2 := ω × ω, which we visualize by starting with
the positive integers and then “blowing up” each positive integer to give a whole
order isomorphic copy of the positive integers again. Repeating this operation gives
ω3 = ω2 ·ω, and so forth. Altogether this allows us to write down ordinalities of the
form P (ω) = anω

n + . . .+a1ω+a0 with ai ∈ N, i.e., polynomials in ω with natural
number coefficients. It is in fact the case that (i) distinct polynomials P 6= Q ∈ N[T ]
give rise to distinct ordinalities P (ω) 6= Q(ω); and (ii) any ordinality formed from
[n] and ω by finitely many sums and products is equal to some P (ω) – even when
we add/multiply in “the wrong order”, e.g. ω ∗ 7 ∗ω2 ∗ 4 +ω ∗ 3 + 11 = ω3 +ω+ 11
– but we will wait until we know more about the ordering of ordinalities to try to
establish these facts.

Example 1.2.9: Let α1 = o(X1), . . . , αn = o(Xn) be ordinalities.
a) Show that α1 × (α2 × α3) and (α1 × α2)× α3 are each order isomorphic to the
set X1×X2×X3 endowed with the ordering (x1, x2, x3) ≤ (y1, y2, y3) if x1 < y1 or
(x1 = y1 and (x2 < y2 or (x2 = y2 and x3 ≤ y3))). In particular ordinal multipli-
cation is associative.
b) Give an explicit definition of the product well-ordering on X1× . . .×Xn, another
“lexicographic ordering.”

In fact, we also have a way to exponentiate ordinalities: let α = o(X) and β = o(Y ).
Then by αβ we mean the order isomorphism class of the set Z = Z(Y,X) of all
functions f : Y → X with f(y) = 0X (0X denotes the minimal element of X) for all
but finitely many y ∈ Y , ordered by f1 ≤ f2 if f1 = f2 or, for the greatest element
y ∈ Y such that f1(y) 6= f2(y) we have f1(y) < f2(y).

Some helpful terminology: one has the zero function, which is 0 for all values.
For every other f ∈W , we define its degree ydeg to be the largest y ∈ Y such that
f(y) 6= 0 and its leading coefficient xl := f(ydeg).

Proposition 7.42. For ordinalities α and β, αβ is an ordinality.

Proof: Let Z be the set of finitely nonzero functions f : Y → X as above, and let
W ⊂ Z be a nonempty subset. We may assume 0 is not in W , since the zero func-
tion is the minimal element of all of Z. Thus the set of degrees of all elements of W
is nonempty, and we may choose an element of minimal degree y1; moreover, among
all elements of minimal degree we may choose one with minimal leading coefficient
x1, say f1. Suppose f1 is not the minimal element of W , i.e., there exists f ′ ∈ W2

with f ′ < f1. Any such f ′ has the same degree and leading coefficient as f1, so the
last value y′ at which f ′ and f1 differ must be less than y1. Since f1 is nonzero at
all such y′ and f1 is finitely nonzero, the set of all such y′ is finite and thus has a
maximal element y2. Among all f ′ with f ′(y2) < f(y2) and f ′(y) = f(y) for all
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y > y2, choose one with x2 = f ′(y2) minimal and call it f2. If f2 is not minimal, we
may continue in this way, and indeed get a sequence of elements f1 > f2 > f3 . . . as
well as a descending chain y1 > y2 > . . .. Since Y is well-ordered, this descending
chain must terminate at some point, meaning that at some point we find a minimal
element fn of W .

Example 1.2.10: The ordinality ωω is the set of all finitely nonzero functions
f : N → N. At least formally, we can identify such functions as polynomi-
als in ω with N-coefficients: Pf (ω) =

∑
n∈N f(n)ωn. The well-ordering makes

Pf < Pg if the at the largest n for which f(n) 6= g(n) we have f(n) < g(n), e.g.
ω3 + 2ω2 + 1 > ω3 + ω2 + ω + 100.

It is hard to ignore the following observation: ωω puts a natural well-ordering
relation on all the ordinalities we had already defined. This makes us look back
and see that the same seems to be the case for all ordinalities: e.g. ω itself is order
isomorphic to the set of all the finite ordinalities [n] with the obvious order relation
between them. Now that we see the suggested order relation on the ordinalities of
the form P (ω) one can check that this is the case for them as well: e.g. ω2 can be
realized as the set of all linear polynomials {aω + b | a, b ∈ N}.

This suggests the following line of inquiry:

(i) Define a natural ordering on ordinalities (as we did for cardinalities).
(ii) Show that this ordering well-orders any set of ordinalities.

Exercise 1.2.11: Let α and β be ordinalities.
a) Show that 0β = 0, 1β = 1, α0 = 1, α1 = α.
b) Show that the correspondence between finite ordinals and natural numbers re-
spects exponentiation.
c) For an ordinal α, the symbol αn now has two possible meanings: exponentiation
and iterated multiplication. Show that the two ordinalities are equal. (The proof
requires you to surmount a small left-to-right lexicographic difficulty.) In particular
|αn| = |α|n = |α|.
d) For any infinite ordinal β, show that |αβ | = max(|α|, |β|).

Tournant dangereuse: In particular, it is generally not the case that |αβ | = |α||β|:
e.g. 2ω and ωω are both countable ordinalities. In fact, we have not yet seen any
uncountable well-ordered sets, and one cannot construct an uncountable ordinal
from ω by any finite iteration of the ordinal operations we have described (nor by
a countable iteration either, although we have not yet made formal sense of that).
This leads us to wonder: are there any uncountable ordinalities?

3.3. Ordering ordinalities. Let S1 and S2 be two well-ordered sets. In anal-
ogy with our operation ≤ on sets, it would seem natural to define S1 ≤ S2 if there
exists an order-preserving injection S1 → S2. This gives a relation ≤ on ordinalities
which is clearly symmetric and transitive.

However, this is not the most useful definition of ≤ for well-ordered sets, since
it gives up the rigidity property. In particular, recall Dedekind’s characterization
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of infinite sets as those which are in bijection with a proper subset of themselves,
or, equivalently, those which inject into a proper subset of themselves. With the
above definition, this will still occur for infinite ordinalities: for instance, we can
inject ω properly into itself just by taking N → N, n 7→ n + 1. Even if we require
the least elements to be preserved, then we can still inject N into any infinite subset
of itself containing 0.

So as a sort of mild deus ex machina we will work with a more sophisticated
order relation. First, for a linearly ordered set S and s ∈ S, we define

I(s) = {t ∈ S | t < s},
an initial segment of S. Note that every initial segment is a proper subset. Let
us also define

I[s] = {t ∈ S | t ≤ s}.

Now, given linearly ordered sets S and T , we define S < T if there exists an
order-preserving embedding f : S → T such that f(S) is an initial segment of T
(say, an initial embedding). We define S ≤ T if S < T or S ∼= T .

Exercise 1.3.1: Let f : S1 → S2 and g : T1 → T2 be order isomorphisms of linearly
ordered sets.
a) Suppose s ∈ S1. Show that f(I(s)) = I(f(s)) and f(I[s])) = I(f [s]).
b) Suppose that S1 < T1 (resp. S1 ≤ T1). Show that S2 < T2) (resp. S2 ≤ T2).
c) Deduce that < and ≤ give well-defined relations on any set F of ordinalities.

Exercise 1.3.2: a) Show that if i : X → Y and j : Y → Z are initial embed-
dings of linearly ordered sets, then j ◦ i : X → Z is an initial embedding.
b) Deduce that the relation < on any set of ordinalities is transitive.

Definition: In a partially ordered set X, a subset Z is an order ideal if for all
z ∈ Z and x ∈ X, if x < z then x ∈ Z. For example, the empty set and X itself
are always order ideals. We say that X is an improper order ideal of itself, and
all other order ideals are proper. For instance, I[s] is an order ideal, which may
or may not be an initial segment.

Lemma 7.43. (“Principal ideal lemma”) Any proper order ideal in a well-
ordered set is an initial segment.

Proof: Let Z be a proper order ideal in X, and s the least element of X \Z. Then
a moment’s thought gives Z = I(s).

The following is a key result:

Theorem 7.44. (Ordinal trichotomy) For any two ordinalities α = o(X) and
β = o(Y ), exactly one of the following holds: α < β, α = β, β < α.

Corollary 7.45. Any set of ordinalities is linearly ordered under ≤.

Exercise 1.3.3: Deduce Corollary 7.45 from Theorem 7.44. Is the Corollary equiv-
alent to the Theorem?
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Proof of Theorem 7.44: Part of the assertion is that no well-ordered set X is
order isomorphic to any initial segment I(s) in X (we would then have both
o(I(s)) < o(X) and o(I(s)) = o(X)); let us establish this first. Suppose to the
contrary that ι : X → X is an order embedding whose image is an initial segment
I(s). Then the set of x for which ι(x) 6= x is nonempty (otherwise ι would be the
identity map, and no linearly ordered set is equal to any of its initial segments), so
let x be the least such element. Then, since ι restricted to I(x) is the identity map,
ι(I(x)) = I(x), so we cannot have ι(x) < x – that would contradict the injectivity
of ι – so it must be the case that ι(x) > x. But since ι(X) is an initial segment,
this means that x is in the image of ι, which is seen to be impossible.

Now if α < β and β < α then we have initial embeddings i : X → Y and
j : Y → X. By Exercise 1.3.2 their composite j ◦ i : X → X is an initial em-
bedding, which we have just seen is impossible. It remains to show that if α 6= β
there is either initial embedding from X to Y or vice versa. We may assume that
X is nonempty. Let us try to build an initial embedding from X into Y . A little
thought convinces us that we have no choices to make: suppose we have already
defined an initial embedding f on a segment I(s) of X. Then we must define f(s)
to be the least element of Y \ f(I(s)), and we can define it this way exactly when
f(I(s)) 6= Y . If however f(I(s)) = Y , then we see that f−1 gives an initial em-
bedding from Y to X. So assume Y is not isomorphic to an initial segment of X,
and let Z be the set of x in X such that there exists an initial embedding from
I(z) to Y . It is immediate to see that Z is an order ideal, so by Lemma 7.43 we
have either Z = I(x) or Z = X. In the former case we have an initial embedding
from I(z) to Y , and as above, the only we could not extend it to x is if it is sur-
jective, and then we are done as above. So we can extend the initial embedding
to I[x], which – again by Lemma 7.43 is either an initial segment (in which case
we have a contradiction) or I[x] = X, in which case we are done. The last case
is that Z = X has no maximal element, but then we have X =

⋃
x∈X I(x) and a

uniquely defined initial embedding ι on each I(x). So altogether we have a map
on all of X whose image f(X), as a union of initial segments, is an order ideal.
Applying Lemma 7.43 yet again, we either have f(X) = Y – in which case f is an
order isomorphism – or f(X) is an initial segment of Y , in which case X < Y : done.

Exercise 1.3.4: Let α and β be ordinalities. Show that if |α| > |β|, then α > β. (Of
course the converse does not hold: there are many countable ordinalities.)

Corollary 7.46. Any set F of ordinalities is well-ordered with respect to ≤.

Proof: Using Exercise 1.1.1, it suffices to prove that there is no infinite descending
chain in F = {oα}α∈I . So, seeking a contradiction, suppose that we have a se-
quence of well-ordered sets S1, S2 = I(s1) for s1 ∈ S1, S3 = I(s2),. . .,Sn+1 = I(sn)
for sn ∈ Sn,. . .. But all the Sn’s live inside S1 and we have produced an infinite
descending chain s1 > s2 > s3 > . . . > sn > . . . inside the well-ordered set S1, a
contradiction.

Thus any set F of ordinalities itself generates an ordinality o(F), the ordinality
of the well-ordering that we have just defined on F !

Now: for any ordinality o, it makes sense to consider the set I(o) of ordinalities
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{o′ | o′ < o}: indeed, these are well-orderings on a set of cardinality at most the
cardinality of o, so there are at most 2|o|×|o| such well-orderings. Similarly, define

I[o] = {o′ | o′ ≤ o}.
Corollary 7.47. I(o) is order-isomorphic to o itself.

Proof: We shall define an order-isomorphism f : I(o)→ o. Namely, each o′ ∈ I(o)
is given by an initial segment I(y) of o, so define f(o′) = y. That this is an order
isomorphism is essentially a tautology which we leave for the reader to unwind.

3.4. The Burali-Forti “Paradox”.

Do the ordinalities form a set? As we have so far managed to construct only
countably many of them, it seems conceivable that they might. However, Burali-
Forti famously observed that the assumption that there is a set of all ordinalities
leads to a paradox. Namely, suppose O is a set whose elements are the ordinalities.
Then by Corollary 7.46, O is itself well-ordered under our initial embedding relation
≤, so that the ordinality o = o(O) would itself be a member of O.

This is already curious: it is tantamount to saying that O is an element of
itself, but notice that we are not necessarily committed to this: (O,≤) is order
isomorphic to one of its members, but maybe it is not the same set. (Anyway,
is o ∈ o paradoxical, or just strange?) Thankfully the paradox does not depend
upon these ontological questions, but is rather the following: if o ∈ O, then con-
sider the initial segment I(o) of O: we have O ∼= o ∼= I(o), but this means that O
is order-isomorphic to one of its initial segments, in contradiction to the Ordinal
Trichotomy Theorem (Theorem 7.44).

Just as the proof of Cantor’s paradox (i.e., that the cardinalities do not form a
set) can be immediately adapted to yield a profound and useful theorem – if S is
a set, there is no surjection S → 2S , so that 2|S| > |S| – in turn the proof of the
Burali-Forti paradox immediately gives the following result, which we have so far
been unable to establish:

Theorem 7.48. (Burali-Forti’s Theorem) For any cardinal κ, the set Oκ of
ordinalities o with |o| ≤ κ has cardinality greater than κ.

Proof: Indeed, Oκ is, like any set of ordinalities, well-ordered under our relation
≤, so if it had cardinality at most κ it would contain its own ordinal isomorphism
class o as a member and hence be isomorphic to its initial segment I(o) as above.

So in particular there are uncountable ordinalities. There is therefore a least un-
countable ordinality, traditionally denoted ω1. This least uncountable ordinality
is a truly remarkable mathematical object: mere contemplation of it is fascinating
and a little dizzying. For instance, the minimality property implies that all of its
initial segments are countable, so it is not only very large as a set, but it is ex-
tremely difficult to traverse: for any point x ∈ ω1, the set of elements less than x is
countable whereas the set of elements greater than x is uncountable! (This makes
Zeno’s Paradox look like kid stuff.) In particular it has no largest element so is a
limit ordinal.15

15In fact this only begins to express ω1’s “inaccessibility from the left”; the correct concept,
that of cofinality, will be discussed later.
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On the other hand its successor ω+
1 is also of interest.

Exercise 1.4.1 (Order topology): Let S be a totally ordered set. We endow S
with the order topology, which is the topology generated by by infinite rays of
the form

(a,∞) = {s ∈ S | a < s}
and

(−∞, b) = {s ∈ S | s < b}.
Equivalently, the open intervals (a, b) = (a,∞) ∩ (−∞, b) together with the above
rays and X = (−∞,∞)16 form a basis for the topology. A topological space which
arises (up to homeomorphism, of course) from this construction is called a linearly
ordered space.
a) Show that the order topology on an ordinal o is discrete iff o ≤ ω. What is the
order topology on ω + 1? On 2ω?
b) Show that order topologies are Hausdorff.
c) Show that an ordinality is compact iff it is a successor ordinality. In particular
I[o] is the one-point compactification of I(o) ∼= o; deduce that the order topology
on an ordinality is Tychonoff.
d)* Show that, in fact, any linearly ordered space is normal, and moreover all sub-
spaces are normal.
e) A subset Y of a linearly ordered set X can be endowed with two topologies:
the subspace topology, and the order topology for the ordering on X restricted to
Y . Show that the subspace topology is always finer than the order topology; by
contemplating X = R, Y = {−1}∪{ 1

n}n∈Z+ show that the two topologies need not
coincide.
f) Show that it may happen that a subspace of a linearly ordered space need not
be a linearly ordered space (i.e., there may be no ordering inducing the subspace
topology). Suggestion: take X = R, Y = {−1} ∪ (0, 1). One therefore has the no-
tion of a generalized order space, which is a space homeomorphic to a subspace
of a linearly ordered space. Show that no real manifold of dimension greater than
one is a generalized order space.
g) Let X be a well-ordered set and Y a nonempty subset. Show that the embed-
ding Y → X may be viewed as a net on X, indexed by the (nonempty well-ordered,
hence directed) set Y . Show that for any ordinality o the net I(o) in I[o] converges
to o.

Exercise 1.4.2: Let F be a set of ordinalities. As we have seen, F is well-ordered
under our initial embedding relation < so gives rise to an ordinality o(F). In fact
there is another way to attach an ordinality to F .
a) Show that there is a least ordinality s such that α ≤ s for all α ∈ F . (Write

α = o(Xα), apply the Burali-Forti theorem to |2
∐
α∈F Xα |, and use Exercise 1.3.4.)

We call this s the ordinal supremum of the ordinalities in F .
b) Show that an ordinality is a limit ordinality iff it is the supremum of all smaller
ordinalities.
c) Recall that a subset T of a partially ordered set S is cofinal if for all s ∈ S there

16This calculus-style interval notation is horrible when S has a maximal or minimal element,

since it – quite incorrectly! – seems to indicate that these elements “±∞” should be excluded.
We will not use the notation enough to have a chance to get tripped up, but beware.
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exists t ∈ T such that s ≤ t. Let α be a limit ordinality, and F a subset of I(α).
Show that F is cofinal iff α = supF .
d) For any ordinality α, we define the cofinality cf(α) to be the minimal ordinality
of a cofinal subset F of I(α). E.g., an ordinality is a successor ordinality iff it has
cofinality 1. Show that cf(ω) = ω and cf(ω1) = cf(ω1). What is cf(ω2)?
e*) An ordinality is said to be regular if it is equal to its own cofinality. Show that
for every cardinality κ, there exists a regular ordinality o with |o| > κ.
g) (For D. Lorenzini) For a cardinality κ, let o be a regular ordinality with |o| > κ.
Show that any linearly ordered subset of cardinality at most κ has an upper bound
in o, but I(κ) does not have a maximal element.17

3.5. Von Neumann ordinals.

Here we weish to report on an idea of von Neumann, which uses the relation I(o) ∼= o
to define a canonical well-ordered set with any given ordinality. The construction
is often informally defined as follows: “we inductively define o to be the set of all
ordinals less than o.” Unfortunately this definition is circular, and not for reasons
relating to the induction process: step back and see that it is circular in the most
obvious sense of using the quantity it purports to define!

However, it is quite corrigible: rather than building ordinals out of nothing, we
consider the construction as taking as input a well-ordered set S and returning
an order-isomorphic well-ordered set vo(S), the von Neumann ordinal of S.
The only property that we wish it to have is the following: if S and T are order-
isomorphic sets, we want vo(S) and vo(T ) to be not just order-isomorphic but equal.
Let us be a bit formal and write down some axioms:

(VN1) For all well-ordered sets S, we have vo(S) ∼= S.
(VN2) For well-ordered S and T , S ∼= T =⇒ vo(S) = vo(T ).

Consider the following two additional axioms:

(VN3) vo(∅) = ∅.
(VN4) For S 6= ∅, vo(S) = {vo(S′) | S′ < S}.

The third axiom is more than reasonable: it is forced upon us, by the fact that
there is a unique empty well-ordered set. The fourth axiom is just expressing the
order-isomorphism I(o) ∼= o in terms of von Neumann ordinals. Now the point is
that these axioms determine all the von Neumann ordinals:

Theorem 7.49. (von Neumann) There is a unique correspondence S 7→ vo(S)
satisfying (VN1) and (VN2).

Before proving this theorem, let’s play around with the axioms by discussing their
consequences for finite ordinals. We know that vo(∅) = ∅ = [0]. What is vo([1])?
Well, it is supposed to be the set of von Neumann ordinals strictly less than it.
There is in all of creation exactly one well-ordered set which is strictly less than

17This shows that one must allow chains of arbitrary cardinalities, and not simply ascending
sequences, in order for Zorn’s Lemma to hold.
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[1]: it is ∅. So the axioms imply

vo([1]) = {∅}.

How about vo([2])? The axioms easily yield:

vo([2]) = {vo[0], vo[1]} = {∅, {∅}}.

Similarly, for any finite number n, the axioms give:

v0([n]) = {vo[0], vo[1], . . . , vo[n− 1]},

or in other words,

vo([n]) = {vo[n− 1], {vo[n− 1]}}.
More interestingly, the axioms tell us that the von Neumann ordinal ω is precisely
the set of all the von Neumann numbers attached to the natural numbers. And
we can track this construction “by hand” up through the von Neumann ordinals of
2ω, ω2, ωω and so forth. But how do we know the construction works (i.e., gives a
unique answer) for every ordinality?

The answer is simple: by induction. We have seen that the axioms imply that
at least for sufficiently small ordinalities there is a unique assignment S 7→ vo(S).
If the construction does not always work, there will be a smallest ordinality o for
which it fails. But this cannot be, since it is clear how to define vo(o) given defi-
nitions of all von Neumann ordinals of ordinalities less than o: indeed, (VN4) tells
us exactly how to do this.

This construction is an instance of transfinite induction. This is the extension
to general well-ordered sets of the principle of complete induction for the natural
numbers: if S is a well-ordered set and T is a subset which is (i) nonempty and (ii)
for all sinS, if the order ideal I(s) is contained in T , then s is in T ; then T must
in fact be all of S. We trust the proof is clear.

Note that transfinite induction generalizes the principle of complete induction,
not the principle of mathematical induction which says that if 0 is in S and
n ∈ S =⇒ n + 1 ∈ S, then S = N. This principle is not valid for any ordi-
nality larger than ω, since indeed ω is (canonically) an initial segment of every
larger ordinality and the usual axioms of induction are satisfies for ω itself. All
this is to say that in most applications of transfinite induction one must distinguish
between the case of successor ordinals and the case of limit ordinals. For example:

Exercise 1.5.1: Show that for any well-ordered set S, vo(S+) = {vo(S), {vo(S)}}.

We should remark that this is not a foundationalist treatment of von Neumann
ordinals. It would also be possible to define a von Neumann ordinal as a certain
type of set, using the following exercise.

Exercise 1.5.2: Show that a set S is a von Neumann ordinal iff:
(i) if x ∈ S implies x ⊂ S;
(ii) the relation ⊂ is a well-ordering on elements of S.
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For the rest of these notes we will drop the term “ordinality” in favor of “ordi-
nal.” The reader who wants an ordinal to be something in particular can thus take
it to be a von Neumann ordinal. This convention has to my knowledge no real
mathematical advantage, but it has some very convenient notational consequences,
as for instance the following definition of “cardinal.”

3.6. A definition of cardinals. Here we allow ourselves the following result,
which we will discuss in more detail later on.

Theorem 7.50. (Well-ordering theorem) Assuming the Axiom of Choice, every
set S can be well-ordered.

We can use this theorem (“theorem”?) to reduce the theory of cardinalities to a
special case of the theory of ordinalities, and thus, we can give a concrete definition
of cardinal numbers in terms of Von Neumann’s ordinal numbers.

Namely, for any set S, we define its cardinal |S| to be the smallest von Neumann
ordinal o such that o is equivalent to (i.e., in bijection with) S.

In particular, we find that the finite cardinals and the finite ordinals are the same:
we have changed our standard n element set from [1, n] to the von Neumann ordinal
n, so for instance 3 = {∅, {∅}, {∅, {∅}}}. On purely mathematical grounds, this is
not very exciting. However, if you like, we can replace our previous attitude to what
the set [n] = {1, . . . , n} “really is” (which was, essentially, “Why are you bothering
me with such silly questions?”) by saying that, in case anyone asks (we may still
hope that they do not ask), we identify the non-negative integer n with its von
Neumann ordinal. Again, this is not to say that we have discovered what 3 really
is. Rather, we noticed that a set with three elements exists in the context of pure
set theory, i.e., we do not have to know that there exist 3 objects in some box
somewhere that we are basing our definition of 3 on (like the definition of a meter
used to be based upon an actual meter stick kept by the Bureau of Standards). In

truth 3 is not a very problematic number, but consider instead n = 10101010

; the
fact that n is (perhaps) greater than the number of distinct particles in the universe
is, in our account, no obstacle to the existence of sets with n elements.

Let’s not overstate the significance of this for finite sets: with anything like
a mainstream opinion on mathematical objects18 this is completely obvious: we
could also have defined 0 as ∅ and n as {n − 1}, or in infinitely many other ways.
It becomes more interesting for infinite sets, though.

That is, we can construct a theory of sets without individuals – in which we
never have to say what we mean by an “object” as an element of a set, because
the only elements of a set are other sets, which ultimately, when broken up enough
(but possibly infinitely many) times, are lots and lots of braces around the empty
set. This is nice to know, most of all because it means that in practice we don’t
have to worry one bit about what the elements of are sets are: we can take them
to be whatever we want, because each set is equivalent (bijective) to a pure set. If
you would like (as I would) to take a primarily Bourbakistic view of mathematical
structure – i.e., that the component parts of any mathematical object are of no

18The only contemporary mathematician I know who would have problems with this is Doron
Zeilberger.
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importance whatsoever, and that mathematical objects matter only as they relate
to each other – then this is very comforting.

Coming back to the mathematics, we see then that any set of cardinals is in partic-
ular a set of ordinals, and the notion of < on cardinals induced in this way is the
same as the one we defined before. That is, if α and β are von Neumann cardinals,
then α < β holds in the sense of ordinals iff there exists an injection from α to β
but not an injection from β to α.

Exercise 1.6.1: Convince yourself that this is true.

Thus we have now, at last, proved the Second Fundamental Theorem of Set Theory,
modulo our discussion of Theorem 7.50.

3.7. Introducing the Axiom of Choice.

Now we come clean. Many of the results of Chapter II rely on the following “fact”:

Fact 7.51. (Axiom of Choice (AC)): For any nonempty family I of nonempty
sets Si, the product

∏
i∈I Si is nonempty.

Remark: In other words, any product of nonzero cardinalities is itself nonzero. This
is the version of the axiom of choice favored by Bertrand Russell, who called it the
“multiplicative axiom.” Aesthetically speaking, I like it as well, because it seems
so simple and self-evident.

Exercise 2.1: Show that if (AC) holds for all families of pairwise disjoint sets Si, it
holds for all nonempty families of nonempty sets.

However, in applications it is often more convenient to use the following refor-
mulation of (AC) which spells out the connection with “choice”.

(AC′): If S is a set and I = {Si} is a nonempty family of nonempty subsets of
S, then there exists a choice function, i.e., a function f : I → S such that for all
i ∈ I, f(Si) ∈ Si.

Let us verify the equivalence of (AC) and (AC′).
(AC) =⇒ (AC′): By (AC), S =

∏
i∈I Si is nonempty, and an element f of

S is precisely an assignment to each i ∈ I of an element f(i) ∈ Si ⊂ S. Thus f
determines a choice function f : I → S.

(AC′) =⇒ (AC): Let I = {Si} be a nonempty family of nonempty sets. Put
S =

⋃
i∈I Si. Let f : I → S be a choice function: for all i ∈ I, f(Si) ∈ Si. Thus

{f(i)}i∈I ∈
∏
i∈I Si.

The issue here is that if I is infinite we are making infinitely many choices – possibly
with no coherence or defining rule to them – so that to give a choice function f is
in general to give an infinite amount of information. Have any of us in our daily
lives ever made infinitely many independent choices? Probably not. So the worry
that making such a collection of choices is not possible is not absurd and should be
taken with some seriousness.
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Thus the nomenclature Axiom of Choice: we are, in fact, asserting some feeling
about how infinite sets behave, i.e., we are doing exactly the sort of thing we had
earlier averred to try to avoid. However, in favor of assuming AC, we can say: (i)
it is a fairly basic and reasonable axiom – if we accept it we do not, e.g., feel the
need to justify it in terms of something simpler; and (ii) we are committed to it,
because most of the results we presented in Chapter II would not be true without
it, nor would a great deal of the results of mainstream mathematics.

Every student of mathematics should be aware of some of the “facts” that are
equivalent to AC. The most important two are as follows:

Fact 7.52. (Zorn’s Lemma) Let S be a partially ordered set. Suppose that every
chain C – i.e., a totally ordered subset of S – has an upper bound in S. Then S
has a maximal element.

Theorem 7.53. The axiom of choice (AC), Zorn’s Lemma (ZL), and the Well-
Ordering Theorem (WOT) are all equivalent to each other.

Remark: The fact that we are asserting the logical equivalence of an axiom, a
lemma and a theorem is an amusing historical accident: according to the theorem
they are all on the same logical footing.

WOT =⇒ AC: It is enough to show WOT =⇒ AC′, which is easy: let {Si}i∈I
be a nonempty family of nonempty subsets of a set S. Well-order S. Then we may
define a choice function f : I → S by mapping i to the least element of Si.

AC =⇒ ZL: Strangely enough, this proof will use transfinite induction (so that
one might initially think WOT would be involved, but this is absolutely not the
case). Namely, suppose that S is a poset in which each chain C contains an upper
bound, but there is no maximal element. Then we can define, for every ordinal o,
a subset C0 ⊂ S order-isomorphic to o, in such a way that if o′ < o, Co′ ⊂ Co.
Indeed we define C∅ = ∅, of course. Assume that for all o′ < o we have defined
Co′ . If o is a limit ordinal then we define Co :=

⋃
o′<o Co′ . Then necessarily C0

is order-isomorphic to o: that’s how limit ordinals work. If o = o′ + 1, then we
have Co′ which is assumed not to be maximal, so we choose an element x of S \Co′
and define xo := x. Thus we have inside of S well-ordered sets of all possible
order-isomorphism types. This is clearly absurd: the collection o(|S|) of ordinals
of cardinality |S| is an ordinal of cardinality greater than the cardinality of S, and
o(|S|) ↪→ S is impossible.

But where did we use AC? Well, we definitely made some choices, one for each
non-successor ordinal. To really nail things down we should cast our choices in the
framework of a choice function. Suppose we choose, for each well-ordered subset
W of X, an element xW ∈ X \W which is an upper bound for W . (This is easily
phrased in terms of a choice function.) We might worry for a second that in the
above construction there was some compatibility condition imposed on our choices,
but this is not in fact the case: at stage o, any upper bound x for Co in S \Co will
do to give us Co+1 := Co ∪ {x}. This completes the proof.

Remark: Note that we showed something (apparently) slightly stronger: namely,
that if every well-ordered subset of a poset S has an upper bound in S, then S has
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a maximal element. This is mildly interesting but apparently useless in practice.

ZL =⇒ WOT: Let X be a non-empty set, and let A be the collection of pairs
(A,≤) where A ⊂ X and ≤ is a well-ordering on A. We define a relation < on A:
x < y iff x is equal to an initial segment of y. It is immediate that < is a strict
partial ordering on A. Now for each chain C ⊂ A, we can define xC to be the union
of the elements of C, with the induced relation. xC is itself well-ordered with the
induced relation: indeed, suppose Y is a nonempty subset of xC which is not well-
ordered. Then Y contains an infinite descending chain p1 > p2 > . . . > pn > . . ..
But taking an element y ∈ C such that p1 ∈ y, this chain lives entirely inside y
(since otherwise pn ∈ y′ for y′ > y and then y is an initial segment of y′, so pn ∈ y′,
pn < p1 implies pn ∈ y), a contradiction.

Therefore applying Zorn’s Lemma we are entitled to a maximal element (M,≤M
) of A. It remains to see that M = X. If not, take x ∈ X \M ; adjoining x to
(M,≤M ) as the maximum element we get a strictly larger well-ordering, a contra-
diction.

Remark: In the proof of AC =⇒ ZL we made good advantage of our theory
of ordinal arithmetic. It is possible to prove this implication (or even the direct
implication AC =⇒ ZL) directly, but this essentially requires proving some of our
lemmata on well-ordered sets on the fly.

3.8. Some equivalents and consequences of the Axiom of Choice. Al-
though disbelieving AC is a tenable position, mainstream mathematics makes this
position slightly unpleasant, because Zorn’s Lemma is used to prove many quite
basic results. One can ask which of these uses are “essential.” The strongest pos-
sible case is if the result we prove using ZL can itself be shown to imply ZL or AC.
Here are some samples of these results:

Fact 7.54. For any infinite set A, |A| = |A×A|.

Fact 7.55. For sets A and B, there is an injection A ↪→ B or an injection
B ↪→ A.

Fact 7.56. Every surjective map of sets has a section.

Fact 7.57. For any field k, every k-vector space V has a basis.

Fact 7.58. Every proper ideal in a commutative ring is contained in a maximal
proper ideal.

Fact 7.59. The product of any number of compact spaces is itself compact.

Even more commonly one finds that one can make a proof work using Zorn’s Lemma
but it is not clear how to make it work without it. In other words, many statements
seem to require AC even if they are not equivalent to it. As a simple example, try
to give an explicit well-ordering of R. Did you succeed? In a precise formal sense
this is impossible. But it is intuitively clear (and also true!) that being able to
well-order a set S of any given infinite cardinality is not going to tell us that we
can well-order sets of all cardinalities (and in particular, how to well-order 2S), so
the existence of a well-ordering of the continuum is not equivalent to AC.

Formally, speaking one says that a statement requires AC if one cannot prove that
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statement in the Zermelo-Fraenkel axiomation of set theory (ZF) which excludes
AC. (The Zermelo-Fraenkel axiomatization of set theory including the axiom of
choice is abbreviated ZFC; ZFC is essentially the “standard model” for sets.) If on
the other hand a statement requires AC in this sense but one cannot deduce AC
from ZF and this statement, we will say that the statement merely requires AC.
There are lots of statements that merely require AC:19

Theorem 7.60. The following facts merely require AC:
a) The countable union of countable sets is countable.
b) An infinite set is Dedekind infinite.
c) There exists a non(-Lebesgue-)measurable subset of R.
d) The Banach-Tarski paradox.
e) Every field has an algebraic closure.
f) Every field extension has a relative transcendence basis.
g) Every Boolean algebra contains a prime ideal (BPIT).
h) Every Boolean algebra is isomorphic to a Boolean algebra of sets (Stone repre-
sentation theorem).
i) Every subgroup of a free group is free.
j) The Hahn-Banach theorem (on extension of linear functionals), the open map-
ping theorem, the closed graph theorem, the Banach-Alaoglu theorem.
k) The Baire category theorem.
l) The existence of a Stone-Cech compactification of every completely regular space.

Needless to say the web of implications among all these important theorems is a
much more complicated picture; for instance, it turns out that the BPIT is an
interesting intermediate point (e.g. Tychonoff’s theorem for Hausdorff spaces is
equivalent to BPIT). Much contemporary mathematics is involved in working out
the various dependencies.

19This list was compiled with the help of the Wikipedia page on the Axiom of Choice.
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[Bo] N. Bourbaki, Éléments de Mathématique. Livre III: Topologie Générale, Hermann,

Paris, 1940, 1942, 1947, 1948, 1949.

[CA] P.L. Clark, Commutative Algebra. http://pete.math.uga.edu/~pete/integral.pdf
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[Ul03] D.C. Ullrich, The Ascoli-Arzelà theorem via Tychonoff’s theorem. Amer. Math.

Monthly 110 (2003), 939–940.
[Ve97] D.J. Velleman, Characterizing continuity. Amer. Math. Monthly 104 (1997), 318–322.

[Wi] S. Willard, General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-

Don Mills, Ont. 1970.


