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1 Introduction

In this paper we study H*-rectifiable sets in metric spaces, i.e. sets S which
can be covered, up to H*-negligible sets, by a countable family of Lipschitz
images of subsets of R*. One of the reasons for our interest in this class of sets
is the development, in a forthcoming paper [2], of a general theory of currents
in metric spaces, along the lines proposed by E. De Giorgi in [5], [6]. Indeed,
in this general setting we will prove the Federer-Fleming closure theorem and
the boundary rectifiability theorem for integral currents, which are supported
on countably H*-rectifiable sets.

The theory of rectifiable sets in Euclidean spaces provides on the one hand
side a powerful tool for the solution of geometrical problems in the calculus of
variations. On the other hand side, it allows to decide if a general set is of this
particular type (so being curve- or surface-like) knowing only some of its metric
(densities) or geometric properties (size of projections, existence of approximate
tangent planes). This theory started in the pioneering work by A.S. Besicovitch
in the late 20’ties treating these questions in deep for sets of finite length in the
plane. Subsequent contributions by H. Federer, J.M. Marstrand and P. Mattila
extended these results to sets of any dimension in general Euclidean spaces
and finally D. Preiss established the relation between density and geometry for
general measures in such spaces. A nice presentation of the whole subject can
be found in [23].

As concerns rectifiable sets in general metric spaces the situation is much
less understood. The first results concerning countably H*-rectifiable sets, in
particular for £ > 1, in this situation were proved by the second author in [15].
Using a new metric differentiability theorem for Lipschitz functions f : R¥ —
E, in [15] an area formula for these maps was estabilished, and this formula
was used to study the k-dimensional density lim, o H*(S N By(x))/(wko®) of
rectifiable sets with finite measure. Moreover, it was proved that in a suitable
approximate sense the distance function locally behaves on S as a norm (called
local norm), not necessarily induced by an inner product.

In this paper we use an isometric embedding of E into a Banach space Y
(typically [°°, as in [11]) to gain a linear structure. This structure is necessary
if one intends to define an approximate tangent space to rectifiable sets as in
the Euclidean case. Our main technical tool is an extension of the Rademacher
differentiability theorem for Lipschitz maps f : R¥ — Y, with ¥ dual of a
separable Banach space, saying that for H*-a.e. = € R the difference quotients
satisfy

fly) = f(z) — wdfy(y — o)

i 1 @) = f@)l = wdfaly —2)|| _ (1.1)
Yy—x |y — $|

for some linear map wdf, : R¥ — Y, called w*-differential of f. Simple exam-
ples show that this statement is optimal: indeed, if k = 1, Y = L'(0,1) and
f(z) = X(0,) the difference quotients are nowhere converging, and this shows
the necessity to deal with dual spaces. Moreover, if f is viewed as a map with



values in the space (C]0,1])* of Radon measures in [0, 1], then (1.1) holds with
wdf(t) = td,, but the difference quotients are not strongly converging. Notice
that (1.1) implies Frechet differentiability if Y is uniformly convex.

The plan of our paper is the following: in Section 3 we collect the main facts
about differentiability of Lipschitz functions, in Section 4 we define a notion of
jacobian for linear maps L : V — W, with V, W finite dimensional Banach
spaces and we use it in Section 5 to estabilish a general area formula between
rectifiable subsets of metric spaces. In the same section we study rectifiable sets,
introducing the approximate tangent space to them; it turns out that in the
general metric setting the approximate tangent space is uniquely determined
up to isometries, and that its norm is exactly the local norm of [15]. Moreover,
if E =Y is the dual of a separable Banach space the approximate tangent space
can be characterized by the w*-limits of secant vectors: the geometric counter-
part of (1.1) is the w*-convergence of unit secant vectors to unit tangent vectors.
In Section 6 we see that the above mentioned properties of rectifiable sets are
sharp, giving rectifiability criteria for sets and measures. Moreover, revisiting
an unpublished work of S. Konyagin [17], we show in Section 7 that rectifiabil-
ity can not be recovered using Euclidean projections: in fact, for any s > 0 we
exhibit a compact metric space X, such that H*(X,) =1 and H* (f(Xs)) =0
for any Lipschitz map f into any Euclidean space RP. This property implies
that, for integer s, X, is purely H®-unrectifiable, i.e. H® (f(M)) = 0 for any
Lipschitz map f : M C R* = X, (see Theorem 11 in [15]).

The final two sections of the paper are devoted to the area and coarea
formula in a general metric setting, i.e. for Lipschitz functions defined on
countably H¥-rectifiable subsets of a metric space.

It is a pleasure to thank M.Chlebik and J.Matousek for their helpful com-
ments and suggestions. The first author gratefully acknowledges the hospitality
of the Max Planck Institut in Leipzig, where a large part of this paper was writ-
ten.

2 Notations

We denote by B(X) the o-algebra of Borel sets in a metric space (X,d) and
by M(X) the class of finite Borel measures in X, i.e. o-additive functions
p: B(X) — [0, 400).

We define the k-dimensional Hausdorff measure in X as in [§8], 2.10.2(1),
and will denote it by H*. Since H% (B) = H%(B) whenever B C X and X
is isometrically embeded in Y, our notation for the Hausdorff measure does
not emphasize the ambient space. Even if we will often work in non-separable
spaces, sets of finite or o-finite Hausdorff measure will of course always be
separable.

We recall (see for instance [15], Lemma 6(i)) that if X is a k-dimensional
vector space and By is its unit ball, then H*(B;) is a dimensional constant inde-
pendent of the norm of X and equal, in particular, to the Lebesgue measure of
the Euclidean unit ball. This constant will be denoted by wy, and the Lebesgue
measure in R¥ will be denoted by £*.



The upper and lower k-dimensional densities of a finite Borel measure p at
x are respectively defined by

B B
O (u, z) := limsup M(f)) O, (1, ) :== lim infM(‘:)) .
010 Wi 010 Wk
We recall that the implications
Oi(m,z) >t Ve e B = pu>tHLB (2.1)
Oi(u, )<t VeeB =— uLB<2MH*LB (2.2)

hold in any metric space X whenever ¢ € (0,00) and B € B(X) (see [8], 2.10.19).
Let (X,dx), (Y,dy) be metric spaces; we say that f : X — Y is a Lipschitz
function if
dY (f($)7f(y)) SMdX($7y) quyEX

for some constant M € [0,00); the least constant with this property will be
denoted by Lip(f), and the collection of Lipschitz functions will be denoted by
Lip(X,Y) (Y will be omitted if Y = R). Furthermore, we use the notation
Lip;(X,Y) for the collection of Lipschitz functions with Lipschitz constant less
or equal to 1.

Given a Lipschitz functions f : A C X — Y, with X, Y Banach spaces, one
often needs an extension which is still a Lipschitz function, possibly with the
same Lipschitz constant. If Y = R then f can be extended to the whole of X,
preserving the Lipschitz constant, by

f(z) := inf f(y) + Lip(f)l|lz — y|| reX .
yeA

A similar result holds if both X and Y are Euclidean (which in this paper
always includes finiteness of the dimension) spaces, but the construction of an
extension is not elementary (see [8], 2.10.43). If X is an Euclidean space, then
without any assumption on Y there is a Lipschitz extension, not necessarily
with the same Lipschitz constant (see [14]). If Y = [°° an extension preserving
the Lipschitz constant can easily be obtained with the same procedure used in
the case Y = R, arguing on the single components of f.

We will often use isometric embeddings into [*° or, more generally, into
duals of separable Banach spaces. To this aim, we recall that any separable
metric space can be isometrically embedded into [*° by the map

j(x) == (po(x) — @o(z0), p1(z) — p1(x0),...) € X

where ¢;(z) = d(z,x;) and (z;) C X is a dense sequence.
Finally, if Y = G* is the dual of a separable Banach space G we define the
distance

du(@,y) =D 27" {w — ¢ gn)| (2.3)
n=0

where (gp,) is a countable dense set in the unit ball of G. It is easy to check
that d,, induces the w* topology on bounded subsets of Y and that (Y, d,,) is
separable.



3 Differentiability of Lipschitz functions

In this section we study the differentiability properties of Lipschitz functions
f:R¥ =Y, where Y is a metric space or a dual Banach space.

Definition 3.1 (Metric differential) Let E be a metric space; we say that
a function f : R¥ — E is metrically differentiable at x € R* if there exists a
seminorm || - ||z in R* such that

d(f(y), f(2)) = lly = zllz = olly — =) .

This seminorm will be said to be the metric differential and be denoted by

mdf (x).

The following differentiability result has first been estabilished in [15] (see
also [1] for the case k =1).

Theorem 3.2 (Metric differentiability) Any Lipschitz function f : RF —
E is metrically differentiable at LF-a.e. x € RF.

Using an isometric embedding of f(RF) in a dual space we will obtain in
Theorem 3.5 a new proof of this differentiability result. In the following theorem
we see how the metric differentiability property can be strengthened, taking into
account also d (f(y), f(z)) for y, z close to . We shall use the natural metric
on seminorms given by

§(s,8') == |SI|1<p1 |s(z) — s'(z)|

Theorem 3.3 For any Lipschitz map f : R¥ — E we have

d(f(y), f(2)) —mdfe(y — z) = o(ly — z[ + |z — z])

for L¥-a.e. & € R¥. Furthermore, there exist a sequence of compact set K,
whose union covers LF-almost all of R* and moduli of continuity wy, such that
T — mdfy is d-continuous in Ky, and

A (f(y), f(2)) —mdf.(y —2)| Swnlly —2))ly —2|  Vy € RF, z € K,
for any h € N.

PRrROOF. The first part of the statement is proved in Theorem 2 of [15]. By
Lusin theorem we can find a family of compact sets C}, whose union covers £*-
almost all of R* and such that @ +— mdf, is 6-continuous in Cj,. Analogously,
by Egorov theorem, we can find a family of compact sets Lj whose union covers
LF-almost all of R*¥ and such that

|d(f(y), £(2)) = mdfa(y = 2)| Swnlly —z)ly —2|  VyeR*, 2z €Ly

for some modulus of continuity wy. By taking the intersections Cj N Ly the
proof is achieved. O



Now we introduce a natural w*-differentiability property for Lipschitz maps
with values in dual Banach spaces. This concept is of course closely related
to other kind of weak-differentials which are around since the foundation of
Banach space theory. However, it seems that our particular notion was used
for the first time in [12].

Definition 3.4 (Weak* differential) Let Y = G* be a dual Banach space
and let f : RF — Y be a function; we say that f is w*-differentiable at z if
there exists a linear map L : R¥ =Y satisfying

v i [0 = @) = Ly~ 2)

y—e |y — =l

=0.

This map L will be said to be the w*-differential of f at x and it will be denoted
by wdfy.

The metric differential and the w*-differential at a given point are obviously
related by
[wdfy(v)]| < mdfa(v) Vo e R,

by the w*-lower semicontinuity of the norm. However, the following result can
be estabilished:

Theorem 3.5 (Weak* differentiability) LetY = G*, with G separable. Any

Lipschitz function f : R¥ =Y is w*-differentiable and metrically differentiable
and fulfills

mdfz(v) = ||wdfz(v)]| Vv € RF (3.1)
for LF-a.e. z € RF.

PROOF. For the convenience of the reader we repeat the existence proof for the
w* differential, which could also be considered as a kind of folklore.

Let D C G be a dense and countable vector space over Q; by the Rademacher
theorem we can find a LF-negligible set N C RF such that f,(z) = (f(z),g) is
differentiable at any = € R*¥\ N for any g € D. By continuity, we can find for any
z € RF\ N a linear function Vf(z) : R¥ — Y such that (Vf(z),g) = Vf,(x)
for any z € R¥ \ N and any g € D. By a density argument it is easy to check
that f is w*-differentiable at any € R* \ N and V f(z) = wdf,.

Using the lower w*-semicontinuity of the norm we infer

1/ (z +tv) — ()]
t

|wdf(v)|| < n%nf Vo € RF . (3.2)

Let D’ C S*¥~! be a countable dense set; setting Vfg=0in Nand Vf =0
in N as well, for any z € R* and any v € D’ we define V, f(z) as the unique
element of y € Y such that (y,g) = V,fy(z) for any g € D. By a well known
theorem about derivatives of functions in Sobolev spaces (see for instance [31],
Theorem 2.1.4) there exists a £*-negligible set N’ C R* such that

t
(o +tv) — f(z), 9) = /0 Vo fy(w + 7v) dr
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and

1
lim —

4
i~ [*90f (@ + )l dr = [V,f @)
for any t >0, v € D', g € D and « € R¥\ N'. By density this yields
(ot 0) = F@ho)l < [ 1Vudy(o+ o)l dr = [ {¥af(e+ ro),0)ldr
for any ¢t >0, v € D', g € G and z € R¥ \ N, hence
I+ )~ S < [ 1907+ o)l dr

If z ¢ (NUN')and v € D' we can divide both sides by ¢ and let ¢ | 0 to get

msup @+ 1) = (@)
t10 t

I < Jwar, )] -

By density again, the inequality above holds for any v € S¥~1 and, in conjunc-
tion with (3.2), gives the metric differentiability of f at x and (3.1). O

Remark 3.6 Assuming that £ =Y is the dual of a separable Banach space,
the conditions on K} listed in Theorem 3.3 can be, with a similar argument,
strengthened: we can require that f is w*-differentiable at any point of K}, and
that = — wdf(v) is w*-continuous in K} for any v € R¥; we can also require
that

dw (f(y) — f(2),wdf-(y—2)) <wn(ly—z2))ly —2| VyeRF z€K, .

Using the d-continuity of the metric differential on Kj we obtain also

|d(f(y), f(2)) —mdfa(y — )| = o(ly — 2]) (3-3)
dw (f(y) = f(2), wdfs(y — 2)) = o(ly — 2|)

as z € K} converges to x.

4 Norms and jacobians

In the framework of an area formula for Lipschitz mappings between rectifiable
metric spaces, we will need to generalize the notion of the jacobian of a linear
map between Euclidean spaces. Since the metric differential is only a seminorm,
not necessarily given by an inner product, we have to consider general finite
dimensional linear maps and spaces.

Definition 4.1 (Jacobians) Let W, V be Banach spaces, L : W — V linear.
If kK =dim W s finite, the “k-jacobian” of L is defined by
Wi

He({z s IL@)I < 13)

Ji(L) :=

If s is a seminorm in R¥ we define also

Ji(s) == Hr({z - sk(x) <1})




Notice that the second definition of jacobian could be considered as a par-
ticular case of the first one with W = R¥ and V' = [*: in fact, any convex and
symmetric set C C R* is the intersection of a sequence of strips

Sp = {x cR*: |(ap, )| < 1} ,

for a suitable bounded sequence (a,) C R*. Hence, given a seminorm s and
C ={z: s(z) <1}, by setting

L(z) := ((ag,z), (a1, z),...) z e RF

we obtain s(x) = || L(z)]|, hence Ji(s) = J(L).
If W,V are Hilbert spaces it is well known that Jj(L) coincides with
det(L* o L). In [15] an expression of the jacobian for linear maps from Eu-
clidean into general Banach spaces can be found (compare also Chapter 6 of
[26]). We will often need the following simple chain rule for the jacobians.

Lemma 4.2 [fdimU =dimV =k <dimW and K : U -V, L:V - W are
linear maps, then

Jp (Lo K) = Ju(L)In(K) . (4.1)

ProoOF. The statement relies on the simple observation that any translation
invariant and locally finite measure on a k-dimensional normed space is a certain
constant multiple of the k-dimensional Hausdorff measure on this space, in fact
any linear isomorphism to R¥ reduces the situation to the more familiar one
about multiples of Lebesgue measure in Euclidean space. Since we already
noticed that H*({z : ||z| < 1}) = wy for all k and all norms, we conclude that
the jacobian J; L of any linear map L is just the proportion of the k-dimensional
Hausdorff of the L-image of any set to the H*-measure of the set itself. So, (4.1)
becomes obvious. O

5 Area formula and rectifiable sets

The following generalization of the Euclidean area formula to the case of Lip-
schitz maps f from the Euclidean space R¥ into a metric space E has been
proved in [15], Corollary 8.

Theorem 5.1 (Area formula) Let f : R¥ — E be a Lipschitz function.

Then
/9 kadfxd:r_/ Z 9 ) dH" (y)

zef-1

for any Borel function 6 : RF — [0, 00] and
/9 )3 (mdf.) dm—/ OH” (AN () dHH(y)

for A € B(RF) and any Borel function 6 : E — [0, c0].



The proof of Theorem 5.1 is mainly based on the following lemma (see [15],
Lemma 4), which is of independent interest.

Lemma 5.2 Let f : R¥ — E be a Lipschitz function and let B C RF be the
Borel set of points © € R¥ such that mdf, exists and is a norm. Then, for any
A > 1 there ezist a sequence of norms ||-||; and a Borel partition (B;) of B such
that

1 )
e =l < d(f(2), f(y)) < Ale—ylli Yo,y €Bi, i€ N .

Definition 5.3 (Rectifiable sets and measures) We say that a Borel set
S C E is countably H*-rectifiable if there exists a sequence of Lipschitz functions
fi: Aj CR¥ = E such that H* (S \ U f;(4;)) = 0.

We say that p € M(E) is k-rectifiable if p = OHFLS for some countably
HE -rectifiable set S and some Borel function 0 : S — (0,00).

Countably H*-rectifiable sets are closed under finite or countable unions,
and it is not hard to see that the property of being countably #H*-rectifiable is
intrinsic, i.e. if F is isometrically embedded in another metric space F' then S
is countably H¥-rectifiable in F if and only if S is countably H*-rectifiable in
F. If E is a Banach space, using the Lipschitz extension theorem mentioned in
Section 3 it can be easily seen that countably #¥-rectifiability can be restated
in an equivalent way by requiring the existence of countably many Lipschitz
functions! f; : R¥ — E whose images cover H*-almost all of S.

By the Radon-Nikodym theorem, a positive finite Borel measure p is k-
rectifiable if and only if it is absolutely continuous with respect to H*L S for
some countably H¥-rectifiable set S. However, the Radon-Nikodym theorem
does not provide an explicit formula for 6. Like in the Euclidean spaces, 6 can
be recovered as a spherical density, as the following theorem shows.

Theorem 5.4 (Spherical density) Let u = 0H*LS be a k-rectifiable mea-
sure in E. Then

lim'u(L(;f)) =6(x) for Hr-a.e. z€ S .
o0 wgo

The above theorem has been proved by the first author (see [15], Theorem
9) when 6 is a characteristic function; a simple comparison argument together
with (2.1) and (2.2) proves the result in the general case. We also recall that
(2.1) easily implies

lim =0 for HF-ae z€E\S .
0l0  Wgo
without any rectifiability assumption on S.

Now we define an approximate tangent space to countably #*-rectifiable sets
in dual Banach spaces; the definition is first given using a Lipschitz parametriza-
tion of the set and then it is compared with more intrinsic properties related
to w*-limits of secant vectors to the set. Finally, using an isometric embedding
the definition is extended to the general metric case.

Lor, equivalently, a single Lipschitz map f: R* = E



Definition 5.5 (Approximate tangent space) LetY be the dual of a sepa-
rable Banach space, let S € B(Y'), and assume that S = f(B) for some Lipschitz
function f : R¥ — Y, one to one on B € B(R¥). For any x € S such that f
is metrically and w*-differentiable at y = f~'(z), with I (wdf,) > 0, we define
the approzimate tangent space Tan®) (S, z) as wdf,(RF).

If S CY is any countably H*-rectifiable set and Sij = fi(B;) are given by
Lemma 5.2, we define

Tan® (8, z) := Tan(k)(Sij,w) for HF-a.e. € S;;NS .
Notice that, by the area formula, the S;;’s cover HE-almost all of S.

Even though the S;;’s above are not disjoint in general, the definition is well
posed because of the following result:

Lemma 5.6 (Locality) Let S; = fi(B;) with f; € Lip(R¥,Y) one to one on
B; € B(RF),i=1,2. Then

Tan(k)(S1,w) — Tan(k)(SQ,x) for Hr-g.e. 2€5S,NS,y .

More generally the conclusion above holds for any pair of countably H*-rectifiable
subsets S1, So of Y.

PROOF. Let K C S; NSy be a closed set and K = f; 1K), Ky = f, {(K).
We will prove the inclusion C for H*-a.e. € K (the other one follows by a
symmetric argument).

Let K| be the set of points z € Kj such that f; is metrically and w*-
differentiable, Jy(wdf1,) > 0 and K; has density 1 at z, and let K/, be defined
analogously with fs in place of fi; we will prove the inclusion at any point
z € f1(K7) N fo(KY). In fact, if x = f1(2) = fa(y), since K has density one at
z we can find a unitary basis wy, ... ,wy of R¥ such that, for any i = 1,... , k,
there exists a sequence (t;) | 0 with z + tgw; € K; for any k € N. Setting

zrp = fi(z + thw;) € K, Y = f5 (zk) € Ko

we have (z) — z and (yx) — y. We can assume, possibly extracting a subse-
quence, that (yx —vy)/|yx — y| converge to some unit vector v. Hence, using the
w* and the metric differentiability properties of f; we get

. . T — T . ) Tp— T

) = w1 = Hw* — lim "L

wdf1, (w;) w” — lim 7 mdf,(w;) w Jim Tze — 2]
folwg) — fa(w)  mdfi,(w;)

= mdflz(wi) w* — khm 'U)df2w(v) .

00 lzx — x|  mdfay(v)

This proves that wdfy,(w;) € Tan(k)(SQ,w) for any + = 1,... ,k, whence the
inclusion C follows.

Finally, the general locality property for any pair of countably H*-rectifiable
sets follows directly by the previous one and by the construction of the approx-
imate tangent space. U

10



By construction the approximate tangent space is defined only H*-a.e., and
is a k-dimensional subspace of Y. The following proposition shows the intrinsic
character of the approximate tangent space: basically we can say that secant
vectors generate (taking w*-limits) the approximate tangent space; the metric
counterpart of this statement will be investigated in Proposition 5.8.

Proposition 5.7 (Secant vectors to rectifiable sets) Let S C Y be count-
ably HE-rectifiable. Then, we can find a countable family of sets S; whose union
covers H*-almost all of S and such that

Tan®)(S;,2) N OB, = {p cp=wt — " } (5.1)

lim
v Ty —al
for H*-a.e. x € S;.

PROOF. We assume without loss of generality that S C f(R*) for some Lips-
chitz map f : R¥ — Y let B; be given by Lemma 5.2 and let B} be the set of all
points y € B; such that f is metrically and w*-differentiable at y, J;(mdf,) > 0
and (3.1) holds. By the area formula, S; = f(B!) cover H*-almost all of S.
Moreover, by definition Tan®)(S;, z) = wdfy(RF) for HF-ae. z = f(y) € S;. If
yp € Bi\ {y} and =), = f(yn) € S; converge to z, then y, converge to y and we
can assume, possibly extracting a subsequence, that (y, — y)/|yn — y| converge
to some unit vector v. Using both the metric and the w*-differentiability at y
we get

flyn) = fly) _ wdfy(v)

— lim 7 —w* — i = .
O TS e —al Y T B ) — ST mdfy ()

This proves the inclusion D in (5.1); the opposite inclusion holds, by a similar
argument, at H*-a.e. point z = f(y) such that B! has density 1 at y. O

Using (3.3) we can now describe the local metric behaviour of countably H*-
rectifiable sets with finite measure, showing that locally the distance behaves
like the norm in the approximate tangent space. A similar property has been
proved in Theorem 9 of [15], in a purely metric setting.

Proposition 5.8 (Local metric behaviour) Let S C Y be a countably H*-
rectifiable set with H*(S) < oo. Then, for HF-a.e. = € S there exist a Borel
set Sy and a linear and w*-continuous map ny : Y — Tan(k)(S,:Jc) equal to the
identity on Tan®) (S, z), such that OL(S\ Sz, z) =0 and

172 (y) = 7 (2)
ly — 2|

limsup{ -1 :y,zESzﬂBQ(w),y#z}:0.

040
PROOF. It is not restrictive to assume that S C f(RF) for some Lipschitz map
f:RF =Y. Let K, be given by Remark 3.6 and B; given by Lemma 5.2. Let
h, i be fixed and S;, = f(Kp N B;); let 2’ € Ky N B;, « = f(z), assume
S, = wdfy (RF) to be k-dimensional and let 7, be a w*-continuous linear
projection of Y onto S;.

11



Since H*-almost any point of S is a point of density 0 for one of the sets
S\ Si, the conclusion will be achieved with S, = Sj; if we show that (using a
selfexplaining notation)

, ly — =| }
1 _ B n.Ss; =1
;Jr,{]l{nﬁg;(y_Z)H Y, z € Q(x) ih 3/752’
Writing y = f(y'), z = f(2') with ¢/, 2’ € Kj; N B;, the claimed equality is
implied by

no_ /

lgiﬁ)l{% c Yy, 2 €By(eYNKyN B, y # z'} =1
xT

and

. ||1Udfa:'(y'—2')|| o z ) / S
lgw{llm(f(y’)—f(z’))ll'y’ € By(a) KN B, 3/ 42} =1

The first identity follows at once from the first one in (3.3); the prove the second
one, consider sequences (y;), (z;) in Kj, N B; both converging to z’ and assume

with no loss of generality that v; = (y] — 2])/|y, — 2| converge to some unit
vector v. Then, the second equality in (3.3) and the w*-continuity of 7, imply
i 01 = )]
=00 [|me (f (y7) — f( )
df (Y] — I
I—00 ly; — zl| 00 72 (f (1) — f())]
1 wdf (v
= Jwdfa )] - — lwd (ol _

17a (wafur (W) [lwdfar (V)]
O

Finally, we conclude this section pointing out how the definition of approx-
imate tangent space can be given for countably #H*-rectifiable subsets S of a
general metric space E.

Definition 5.9 Let S, E as above and let j : S — Y be an isometric embedding,
with Y = G*, G separable (for instance G =1', Y =1%). We define

Tan® (8, z) := Tan® (5(S), j(x)) Vees .

Of course, the approximate tangent space is defined H*-a.e. on S and
depends on the choice of the space Y and of the embedding j. However, since
j is an isometry, Proposition 5.8 shows that different choices of Y and j simply
produce approximate tangent spaces which are isometric for H*-a.e. z € S.
In this sense the definition above is well posed, and will be used to estabilish
general area and coarea formulas for Lipschitz maps between rectifiable subsets
of metric spaces.
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6 Rectifiability criterions

In this section we find some rectifiability criterions for sets and measures in dual
Banach spaces. We will see that the condition stated in Proposition 5.7, namely
the w*-convergence of unit secant vectors to nonzero (actually, unit) vectors in
a suitable k-dimensional subspace actually provides a characterization of k-
rectifiable sets.

For any pair of Banach spaces Y, M, with Y dual space, we define I, (Y, M)
as the collection of all w*-continuous linear maps w : ¥ — M such that
dim (7(Y)) = k. In I (Y, M) we define a pseudometric v as follows:

y(m, ') = sup ||n(z)ll - =" (@)l -
llzll<1
In general « is not a metric: for instance, if Y = M = (C[0,1])*, k =1 and
(1) = p([0,1])d;, then y(m, 7,) = 0 whenever ¢, ¢ € [0,1]. The advantage of
7 is that it makes (the quotient space of) I (Y, M) separable even though Y
is not separable, as the following lemma shows.

Lemma 6.1 If Y is the dual of a separable Banach space, the set 11 (Y, M),
endowed with the pseudometric vy, is separable.

PROOF. Any 7 € II;(Y,M) can be factored (not uniquely) as ¢(X), where
A € I, (Y,R¥) and ¢ € II,(R¥, M).
Let D C G be a countable dense set and let

k
F = {Z<x79i>éi g € D} C I(Y,RY)
=1

where (&1,...,8&) is the canonical basis of R¥. Let (¢;) C Hx(R¥, M) be a
sequence such that the sets C; = {v : [|¢;(v)|| < 1} are dense in

Ci={{v: eI <1}: € M(RF, M)}

with respect to the Hausdorff topology on compact, convex, symmetric sets.

We will prove that the class ¢;(A) with i € N and A € F is dense. In
fact, if o(\) € (Y, M) and € > 0 are given, we can find A € F such that
lelllA = Al < /2, hence

7 () 0(N) < llelllx =3 < 5 -

On the other hand, by the density of the associated convex sets in the Hausdorff
topology, we can find ¢ € N such that

— I _
A I =Nl )l < 5 Vy € By ,

hence v (¢(A), pi(A)) < €/2. By the triangle inequality the conclusion follows.[]
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Using the previous lemma and a standard argument in finite dimensional
spaces (see for instance [28], Theorem 11.8) we can establish the following rec-
tifiability result.

Theorem 6.2 (Rectifiability criterion for sets) Let Y = G*, with G sep-
arable, let S CY and assume that for any x € S there exist e(z) > 0, o(z) > 0
and 7y € (Y,Y) such that

172y = 2)|| = e(2)lly — | Vy € SN By)(z) -

Then, there exists a sequence of Lipschitz functions f, : R¥ — Y such that
S C Uy, fn(RF).

PrOOF. Possibly splitting S in a countable union of sets we can assume with
no loss of generality the existence of an integer j > 1 such that e(z) > 1/5 and
o(x) > 1/j for any =z € S. Let {m;}ien be given by Lemma 6.1 and let

1
S; = {:Jc €S vy(mg,m) < Z} , Vi=m((Y) .
We will prove that any subset A of S; with diameter less than 1/ is contained
in f(V;) for some Lipschitz function f : V; — Y. In fact, if 21, 29 € A we can
apply the hypothesis with z = x5 to get

1 1
[7i (21 — @2)[| = |72, (21 — 2)|| — 2—j||$1 — 3l > 2—j||$1 — 32| .
This shows that m; : A — V; is one to one and that its inverse function has
Lipschitz constant less than 2j. O

Theorem 6.3 (Rectifiability criterion for measures) Assume pe M(Y).
Then, u is k-rectifiable if and only if for p-a.e. x € Y the following two con-
ditions hold: 0 < Op.(p,x) < OF (1, z) < 0o and there exist m, € I (Y,Y) and
e(z) > 0 such that

Co={y €Y :|m(y —2)| <e(@)lly — |}
has p-density 0 at x.

PROOF. By (2.1) the measure y is concentrated on a Borel set S o-finite with
respect to #¥, and (2.2) implies that p is absolutely continuous with respect to
H*. Assuming with no loss of generality that both conditions in the statement
of the theorem are satisfied for any = € S, we will prove that the sets

By(z))
k

Sa::{xGS:M(Q >« VgG(O,a)} a>0

satisfy the assumptions of Theorem 6.2, and hence are countably H*-rectifiable.
In fact, let € S, and let v € (0,1) such that

c@)/2 + ol _
11— -

14



We claim that 2|7, (y—z)|| > e(z)||ly—z|| if y € Sy and ||y —z|| is small enough;
in fact, by the triangle inequality we have
1
_’<L’_ _ <<1 L) I _ — "l =
Iy =yl < 72l =all . =l < (14 72 ) Iy = ol = =l ==
for any y' € Byjy_y(y). Setting r = |ly — z|, 2[m(y — 2)|| < e(@)lly — =
implies
e(z) e(2)/2 + vl |l
Ima(y’ — o)l < == +lmalir < T

< e@)y' - = Vy' € By (y) -

ly" = ||

This proves that B, (y) is contained in Cy; as p(Ba,(z) N Cy) = o(r¥) and

Q’Yka < N(B'yr(y)) < N(BQT((E) N Ca:)
the claim follows. Ol

The density condition on C;, is implied by the w*-convergence of unit secant
vectors to a k-dimensional subspace, with a lower bound on the norms of the
w*-limits. The following example shows that the only w*-convergence of secant
vectors to a k-dimensional subspace is not sufficient for rectifiability, not even
if supplemented with a uniform density lower bound.

Example 6.4 Let £ = [0, 1], endowed with the distance d(z,y) = /|z — y|.
Then, E isometrically embeds in L?([0,1]) with the mapping t X(o,0)- 1t is
easy to check that #2(E) = m/4 and, more generally, that

H2(B,(t 1

% =5  forany ball B,(t) C [0,1] .
In particular, by Theorem 5.4, E is purely H?-unrectifiable, i.e. no subset of
E with strictly positive H?-measure is countably 7{?-rectifiable. On the other
hand, the secant vectors to x(o,)

X(0,s) — X(0,t)
|s — 1]
weakly converge to 0 in L2([0,1]) as s — t. The same is true if we embed, using

12 coordinates, L?([0,1]) in [°°: in this case the secant vectors w*-converge to 0
in [*°.
To our knowledge, the problem whether
"ENB
HHENBy(2))

li
010 wi 0¥

=1 for Hk-ae. z € E

implies rectifiability for a general metric space E is open. This is known to
be true in Euclidean spaces (see [21], [23]) or in case one dimensional mea-
sures are considered (see [27]). For two dimensional measures, first promising
nonEuclidean results have been obtained in [20]. Finally, the results in [3] in-
dicate that the implication might be true for spaces which can be isometrically
embedded in Hilbert spaces.
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7 Unrectifiable metric spaces

In this section we deal with examples of purely k-unrectifiable metric spaces,
i.e. metric spaces E such that H¥(S) = 0 for any countably H*-rectifiable set
SCE.

The first example is the Heisenberg group H; for simplicity we consider the
lowest dimensional one, made of all pairs (z,t) with z € C and t € R. The
noncommutative group operation is

(z,8) (2, t) = (2 + 2/, t + t' + 2Im(2Z"))

so that (0,0) is the identity and (z,t)™! = (—z,—t). The Heisenberg group
becomes a metric space (see [19]) when endowed with the homogeneous norm
(2, 1)|| = (|2]* + 2)/* and with the distance

d(z,y) == [~ "yl .
It is easy to check that H has Hausdorff dimension 4, strictly larger than the
topological dimension. The group law, the norm and the distance are well
behaved with respect to the dilations 6,(z,t) = (rz,r?t); these dilations can
be used to prove the following differentiability theorem, proved by P. Pansu in
the more general framework of Lipschitz maps between Carnot—Carathéodory
spaces.

Theorem 7.1 Let A C R* be a Borel set and let f : A — H be a Lipschitz
function. Then for LF-a.e. © € A there exists a group homomorphism dfy
R* — H such that

tim 8y, ([f ()] 7 f (2 + t0)) = dfi(v) ¥ € RF .

Notice that the result is stated in [25] under the assumption that A is
an open set, but its proof works with minor modifications also in the general
case. Using the Pansu and the metric differentiability theorems and following
basically the argument in §11.5 of [4] we can obtain the following result:

Theorem 7.2 The Heisenberg group is purely k-unrectifiable for k =2, 3, 4.

PROOF. Let f : A C R¥ — H be a Lipschitz map and let us prove that
H* (f(A)) = 0. Since H is complete we can assume with no loss of generality
that A is closed. By the area formula we need only to check that Ji(mdf;) =0
at any metric differentiability point where the Pansu differential df,, is defined.
Since df,(R*) is a commutative subgroup of H, it must be contained in Rzy xR
for some 2y € C; on the other hand, writing df,(v) = (2(v), t(v)), the inequality

|t(v) = t(v")| < [Lip(df.)]* Jo — '] Vo, o' € R*

implies that ¢ is constant, hence the image of df, is contained in Rzy x {0} and
the kernel of df, has dimension at least £ — 1 > 1. Since

mdf, (o) = tim WLELETED 5, (1701 a4+ ) | = (o))

t10 t
for any v € R* we conclude that H* ({v € RF: mdf,(v) < 1}) = 00 and hence
that Jj(mdf,) = 0. O
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The statement is false for £ = 1; indeed, it can be proved (see for instance
[29], Section I11.4) that any pair of points in H can be connected by a curve with
finite length. The lack of rectifiable sets in the Heisenberg group suggests that
more intrinsic definitions of rectifiability could be useful in this space, related
for instance to level sets of regular functions. Some ideas in this direction can
be found in [9].

In the following definition we introduce a property stronger than pure k-
unrectifiability.

Definition 7.3 (Strongly k-unrectifiable spaces) Let (F,d) be a metric
space with H¥(E) < co. We say that E is strongly k-unrectifiable if H* (f(E)) =
0 for any Lipschitz map f with values into an Euclidean space.

By Lemma 5.2 we infer that any strongly k-unrectifiable space is purely
k-unrectifiable, but the opposite implication does not hold: in fact, there are
simple examples of purely l-unrectifiable sets in the Euclidean plane having
linear projections with strictly positive H!-measure, see for instance Lemma
18.12 in [23]. An example of purely l-unrectifiable set E in the Euclidean
plane such that #'(E) = 1 and #' (f(E)) = 0 for any f € Lip(E,R) was
constructed by A.G. Vituskin, L.D. Ivanov and M.S. Melnikov in [30] (see also
[16] for a simplified and rigorous presentation); this property is close to strong
k-unrectifiability, but of course no subset of any Fuclidean space can be strongly
k-unrectifiable.

We conclude this section with a remarkable example of strongly k-unrectifi-
able space; this shows that that rectifiability can not be deduced by the rectifi-
ability of the projections, not even if nonlinear projections on Euclidean spaces
of arbitrary dimension are allowed. The construction is a modification of an
unpublished idea of S. Konyagin [17] which answers the more special question
posed in [10] for the case of one dimensional measure and real Lipschitz func-
tions.

Theorem 7.4 For any dimension o > 0 there exists a compact metric space
(X,0) such that HE(X) = 1 but any Lipschitz image of X in any Euclidean
space is H*-negligible.

Proor. For any j > 1 we consider the space

X():={0,1}Y ={4: Ac{1,...,5}}

equipped with the normalized I'-metric

1 1
pj(z,y) == ;Z |z — yi| = ;Card($Ay) .
=1

In the sequel we will use the following two observations.
Fact 1. If1 <k < j then



Indeed, this inequality obviously holds if £ = 1 or k£ > j/2. Moreover, the left
hand side is convex on {1,...,[(j + 1)/2]} whereas the right one is linear in k.

Fact 2. For each § > 0 there is an integer js such that for any 5 > j5 and
any A, B C X(j) fulfilling card(A),card(B) > § - card(X(j)) the p;-distance
between A and B is necessarily less than . The best estimate of this kind can
be obtained using Harper’s inequality based on combinatorial considerations,
see [13]. Alternatively, the claim is also a consequence of the isoperimetric
results for the Hamming metric proved using martingale techniques, see §7.9 of
[24]. Tt states that (here pj(x, M) denotes the p; distance of  from M)

card {:1: € X(j): pj(z, M) > g} < 2exp(—j0?/64)27

for any M C {0,1}/ with card(M) > 2/~! and positive . Our statement follows
now by the usual argument applied e.g. in the local theory of Banach spaces to
prove the phenomenon of concentration of measure. Indeed, we choose

T:inf{tZO: card{z : pj;(z,A) St}Zijl}

Then T is the median of z — p;j(A, ), which means that both sets M, =
{pi(vA) > T}, M_ = {pj(-,A) < T} have cardinality at least card(X(j))/2.
Since for j large enough 2exp(—jd?/64) < &, we conclude that dist,, (4, M) <
/2, hence T' < §/2. Analogously, we infer that dist,, (B, M) < 6/2 and so the
definition of M_ gives that dist,, (4, B) <T + /2 < 6.

For k > 0 we set my = Efzol = k(k + 1)/2 and choose the set I, =
{mg +1,...,mgy1} of cardinality k + 1. Our space X will be the set {0, 1}N+
of all sequences (v1,72,...) withy; € {0,1}. So, for v € X the restriction yL Ij
can be understood as an element of X (k). Given n > 0 we define the “tail” of
v € X by

Tn(y) ={y: i=%fori<n} ,
so that in particular Ty(y) = X. Finally, for different v, ¥ € X define the
distance of v to 74 to be

os(7,7) = 27910 [pj (YL I, L I;)|minth1/e)
where

Ji=7(v,y) =min{j > 1: yLI; #yL1I;} .
Since 2//5 > jmin(L1/$) for all s > 0, it follows that

2/ < oy(y,5) <2 S

and using these inequalities it is easily checked that o, is indeed a metric which
induces on {0, 1}N+ the canonical product topology.

Now we show that w,/25T! < #H3 (X) < 1. The upper estimate readly fol-
lows using covers of the type {T},, (v) ; v € X} (for a fixed k > 1) which consists
of 2™ sets of diameter 2™+/$. To obtain the lower estimate we consider the
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canonical product probability measure p on X such that p({y: v =1}) =1/2
for all 7. Obviously, it suffices to show that

u(A) < 2 - diam,, (A)* for all A € B(X) . (7.1)

Of course, we can suppose that A contains at least two points and set
Jo = min{j(y,7) : 7,7 € A different}. We also fix 7y € A, set

A = {’}/LI]'O S A} (@ X(j())

and notice that A contains at least two points. Since u(T},(y)) = 27" for all
n >0, v € X, we have

u(A) <p ({'y syl =yl if j < joand yLIj, € ;1}) =2 ™o card(A) .

Choosing the maximal & which satisfies card(4) > Y- (%), we obtain

min(1,1/s)
1 <k < jo and diam,, (A) > 27Mi0-1/9 . <ﬁ>
Jo

Consequently, due to Fact 1

k .
diam, (A)* > 27Mo-1 <E> > 2_mj0—1_j0—12 Jo
Jo =\

1 ~
> 52’mfocard(A) > u(A)/2
which establishes (7.1).

Moreover, the natural isomorphism between the tails Tj(y) and T () en-
sures that

HE (Ti(y)) =27F - HE (X) forally € X, k>0 . (7.2)

To finish the proof of the theorem, we assume now by contradiction that we
are given an integer d > s and a 1-Lipschitz map f : (X, 0,) — R? such that
H(f(X)) > 0.

Since H*(f(X)) < H; (X) < oo, we have O(f(X),z) < 1 at H-ae.
x € R%. Therefore, we find a set Y C f(X) with #*(Y) > & > 0 and a jo such
that

HE(Z) < 2'F°diam(Z)° if Z C Y and diam(Z) < 270/,

Next, we choose an integer N and a positive J such that

N > /2245 .3d/e . \/d and § < min{{/e/2+5/(NVd),e/(2N?)}
(7.3)

and we select j; > max{jo, js} where js was introduced in Fact 2.
Obviously, there is a vy € X such that

B =T, (Y0) satisfies H*(f(B)NY) > 27" .
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Since diam(f(B)) < diam(B) = 2~™1/%, we find a cube Q of size ¢ < 27™1/*
containing f(B)NY. Let F be the family of N‘f disjoint subcubes of Q of size
g/N. We denote by Fs the subfamily of those @ € F fulfilling H*(Q N f(B) N
Y) < £27™i1 N~ Obviously H*(UF, N f(B)NY) < £27™i1, so
H(UF\F)NFBINY) 2 2™
We also know that for each Q € F
- S
HS(Q N f(B) N Y) < 21+S <%> d5/2 < 21+Sd8/22*mj1 N5 .

Consequently, based on our choice of N we conclude

€ —1my S ]S —m; —S € S
card(F \ Fs) > 52 i /(218 e/ N9 = WN > 37 .
In particular, there are 1, Q2 € F \ Fs with
dist(Q1,Q2) = 7 > N—ﬂ >5.27mals (7.4)

since gv/d > diam(f(B)NY) > /Hs(f(B)NY)/21+5.

Denote M; = f~H(QiNY)NB, A; = {yLI;,+1; v € M;} C X(j1+1). Since
Qi & Fs, we see that HS(M;) > H* (Q;NY N f(B)) > e2 ™11 N~4 More-
over, the definition of B and (7.2) ensure that H; (M;) < card(A;) - 27™n+t,
Therefore,

card(4;) > €2 N4 > § - card(X (j; + 1)) fori=1, 2 .

Since j1 > js, we conclude from Fact 2 that distpj1+1 (A1, Ag) <4, which in turn
implies
diStgs (Ml, Mz) < 27mj1/s -0 .

However, this combined with Lip(f) < 1 obviously contradicts (7.4). O

8 Tangential differentiability and general area for-
mula

In this section we prove a general area formula for Lipschitz maps defined on
general countably 7{¥-rectifiable subsets S of a metric space E. We consider
first the case when FF =Y is the dual of a separable Banach space and then we
recover the general case using an isometric embedding.

The jacobian appearing in the general area formula depends on a “tangential
differential”, seen as a linear map defined on Tan(k)(S,:Jc), whose existence is
ensured by the following theorem.
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Theorem 8.1 (Tangential differential on rectifiable sets) Let Y = G*,
Z = H* be duals of a separable Banach spaces G, H, let S C Y be countably
HE -rectifiable and let g € Lip(S,Z). Let § : S — (0,00) be integrable with
respect to HFLS and set p = OHFLS.

Then, for HF-a.e. x € S there exist a linear and w*-continuous map L :
Y = Z and a Borel set S* C S such that O} (uLS",z) =0 and

i dw (9(y),9(z) + L(y — z))
yes\St sz ly — |

=0 . (8.1)

The map L is uniquely determined on Tan(k)(S,x), and its restriction to this
space, denoted by d°g,, satisfies the chain rule

wd(goh)y = dsgh(y) o wdh,, for LE-a.e. y € A (8.2)
for any Lipschitz function h: AC R¥ — S.

PROOF. We first assume Z = R and, without loss of generality, S C f(RF)
for some Lipschitz map f : R¥ — Y. Let S; = f(B;) be as in the proof of
Proposition 5.7; we will prove that (8.1) holds, for a suitable w*-continuous
map L : Y — R and with S = S\ §;, at any point z € SN S; where the
following conditions hold:

(a) f is metrically and w*-differentiable at z = f~(z) € B;, Jx(mdf,) > 0
and Tan®) (S;, z) = wdf, (RF);

(b) go f is differentiable at y and

B i )
hmw)gs) =0(x) >0, lim
040 Wk O 00 Wk O

p(By(z) \ i)

S0 =0 .

We define L(v) = d(go f), (wdf,) ™" (v) for any v € Tan*(S;, z), and extend
L to a linear and w*-continuous map on the whole of Y. Under the above
density assumptions, (8.1) is implied by the pointwise limit

i 9@ —9(@) — Ly —2)
Yy—T,YyES; |y — :E|

=0 .

Writing y = f(w), the limit above is equivalent to

19U ) — () — L () = S(2)
k=00 |f (zk) = f(2)]
for any sequence (z;) C B; \ {z} converging to z. Assuming with no loss of

generality that (zy — 2)/|z; — 2| converge to some unit vector v, we infer that
the limit above is equal to

d(g o f)y(“) - L(Wdfy(v))
mdf ,(v)

=0 (8.3)
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which is 0 by the construction of L. A similar argument based on (5.1) also
proves that the restriction of L to Tan(k)(Si, x) is uniquely determined by (8.2)
with A= B;, h=f and S = 5.

In the general case, let Z = H*, with H separable, and let D C H be a dense
and countable vector space over Q; by using the tangential differentiability
of the real valued functions g¢(z) = (g(z),d) we can recover, arguing as in
Theorem 3.5, the existence for py-a.e. £ € Y of a linear and w*-continuous map
L,:Y — (Z,dy) such that

(Ly(v),g) = d°gi(v) Vde D, veY .

By construction it can be easily checked that L, satisfies (8.1) and (8.2) with
h=f.

Finally (8.2) with a generic function h follows by the uniqueness of L, re-
peating the argument above with h in place of f. [

Consider now a Lipschitz map g : S — F, with E, F' separable metric
spaces and S C E countably H*-rectifiable. We can embed isometrically E, F
respectively in duals of separable Banach spaces Y, Z with maps jg, jr and
define the “lifted” map

g:=jrpogojp 1 je(S)CY =7 .
Then, we can define
Je(d®gy) =y, (djE(S)ng(w)) for HF-ae. z €S . (8.4)

Notice that g and its tangential differential depend of course on the choice of the
spaces Y, Z and the embeddings jg, jr. However, the following result shows
that Jj(d%g,) has an intrinsinc character.

Theorem 8.2 (General area formula) Let g : E — F be a Lipschitz func-
tion and let S C E be a countably H*-rectifiable set. Then Jj(d°g) is well
defined H¥-a.e. by (8.4). Moreover

/9 VI (d® gp) dHF (x / Z H(z)dﬂ’“(y)

rzeSng—1

for any Borel function 6 : S — [0,00] and
/9 )35 (d5g,) dH* (z) / M (ANg () dHA ()
for any A € B(E) and any Borel function 6 : F' — [0, oc].

ProOOF. We first assume £ C Y and F C Z, so that § = g. By the locality
properties of the approximate tangent space (and of  — d°g, as well) we can
assume S C f(RF) for some f € Lip(R¥, E). Arguing as in Theorem 3.2.3 of
8], the proof follows by the area formula for Lipschitz maps defined in R¥ once
we prove the chain rule

Ji (wd(g o f)y) = Ik(d® gy(y)) I (wdfy) (8-5)
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for jacobians. The identity (8.5) follows by (8.2) (with h = f) and (4.1).
In the general case, if we choose different embeddings jg1, jp2 to define gy
and go, by applying the formula just proved we get

[ 0GR m) ) = [ Y b))
z€SNg~=!(w)
= [ 05T g (2

for any Borel function 6 : S — [0,00], with S1 = 71£(S) and Sy = jop(S5).
Being 0 arbitrary, we get

J(dg1y) = Jp(d™g2.)  withy = j1p(2), 2 = jop(2)

for H*-a.e. x € S. This proves that J,(d®g) is well defined H*-a.e. and that
the area formula holds. O

9 Coarea formula

In this section we prove a coarea formula for R¥-valued Lipschitz maps defined
on countably H"-rectifiable subsets S of a metric space E.

Definition 9.1 (Coarea factor) Let X, Y be finite dimensional linear spaces
with dim X =n > dimY =k and f : X — Y linear. We define Cr(f) as the
unique constant such that

CUpH ) = [ HE(AnsT W) ) VA€ BX) . o
9.1

The definition is well posed because the right side in (9.1) is shift invariant,
hence coincides with a constant multiple of H"(A). Notice that, by the area
formula, C(f) = Jn(f) if n = k. By Theorem 2.10.25 of [8] the coarea factor
can be estimated from above with wiw, [Lip(f)]k Jwn. By applying Fubini
theorem and a polar decomposition it is not hard to see (see for instance [7])
that in the case Y = R" the coarea factor can be computed by

Ci(f) = [det(f o f)]'/* . (9.2)

We will prove the coarea formula using the Euclidean one and a parametriza-
tion of the rectifiable set; the following general chain rule will be useful.

Lemma 9.2 Let f: X =Y, g:Y — Z be linear maps, with dim X = dimY =
n>dimZ =k. Then

Cil9) - In(f) = Cilg o ) Tn s (flker(ger)) - (9:3)
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PROOF. Let K = Ker(g o f); using the identity

dim f(X) = dimKer(g|;(x)) + dimTm(g|;x))
= dim f(K) + dimgo f(X)
it can be easily checked that if either f is not injective or ¢ is not surjective
then both sides in (9.3) are zero. Hence, in the following we assume that f is
bijective and g is surjective, and thus that dim K = n — k. We fix a vector

space X' C X such that X = K & X’ and choose Borel sets B C K, C C X'
such that H"*(B) = H"(A) = 1, with A = B + C. The definition of Cj, gives

Clgof) = [ (An(gen@) dHi(e)
= HAgo F(C)) - H"H(B) = H¥(g o f(4))

because AN (go f) ' (g(f(x))) = B +x for any 2 € g o f(C), and is empty
otherwise. On the other hand

Ci(g) - In(f)

Ci(g) - H"(f(4))
= [t (ryng @) arte)
Z
_ /Z’H”_k (F(An(go NTH=)) aHt(2)
H'E(F(B)) - H (g o f(A))
= Jnfk(f|Ker(gof)) : Ck(g °© f) '
]

By using a similar decomposition argument we can also obtain a different
representation of Cg(f).

Lemma 9.3 Let X, Y and f be as in Definition 9.1, let K be the kernel of f,
assume that dim K =n—k. Let p: X — R" ¥ be a linear map injective on K.

Then o) = 3.(0)
g B Jn—k(p|K) ’

where ¢ : X — R™ is given by q(z) = (p(x), f(x)).

PROOF. Choosing K’ = Kerp, we have X = K @ K'. Again we fix B C K
and C C K' compact such that for A = B + C the normalization condition
H"(A) = H"*(B) = 1 holds. Since we have the orthogonal sum

q(A) = q(B) + q(C) = (p(B) x {0}) ® ({0} x f(C)),

we conclude

Inlg) = £ (q(4)) = 1" (p(B)) H" ((C)) = Ju—k(plx)Cr(f) -
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Let S C E be a countably H"-rectifiable set and let g € Lip(E,R*), with
k < n. Arguing as in the previous section we can define Cy(d”g) first in
the case when E is contained in the dual of a separable Banach space (using
Theorem 8.1) and then in the general case, using an isometric embedding.

Theorem 9.4 (General coarea formula) Under the above assumptions the
following properties hold:

(a) for HE-a.e. y € R the set g1 (y) N S is countably H™ *-rectifiable;

(b) for ’Hsk—a.e. y € RF and H" F-a.e. z € g~ (y)NS is Tan"F) (g~ (y), z) =
Kerd”g,.

(c) for every Borel function 6 : S — [0, 00] we have
/ 0(2)Ci(d5g,) AH" () = / < / 0(z) d’H”_k(a:)> dH* (y) .
s R* \Jg='(y)

PROOF. We assume first that F is the dual of a separable Banach space. We
know that S can be written as a disjoint union Sy U [J; S; where H"(Sp) = 0
and each S; is a bilipschitz image of a compact set in R". Due to Theorem
2.10.25 of [8] we have

HH (So N gil(y)) =0 for HF-a.e. y € RF .

Consequently, by the o-additivity of the integral and the locality properties of
approximate tangent spaces we can restrict our attention the case S = f(P),
with P C R™ compact and f : P — S bilipschitz. We set h = go f : P — R*.
Theorem 3.5 and Theorem 8.1 ensure that the conditions

(i) the differential dh, : R" — R* exists

(ii) the w*-differential wdf, : R® — E exists and is injective

(iii) the approximate tangential differential dsgf(m) : Tan™ (S, f(z)) — R¥
exists

(iv) Tan™ (S, f(z)) = wdf,(R") and dhy = dg () o wdf,
are satisfied for H™-a.e. £ € P. Consequently, Lemma 9.2 gives

Cr(dhy)-Jn (wdfslker(an,)) = Cr(d®gs0) - In(wdf,) — for Hae z€ P .

The Euclidean coarea formula (see Theorem 3.2.22 of [8]) ensures that for *-
a.e. y € R* the level set h~!(y) is compact and countably H" *-rectifiable. So
the same holds true for g *(y) = f(h !'(y)). This estabilishes statement (a).
Moreover, the same theorem implies that for 7*-a.e. y € R* we have

dhe(R") =RF  and  Tan™®(h~'(y),z) = Ker(dhy)

for H" *-a.e. x € h~!(y). Hence, wdfz|Ker(dh,) = d"'® f,. which ensures (b),
and the area formula gives

/ o O(x)dH (@) = / B (@) T k(d" W) ) dH ()
97 (y) h=1(y)
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for H*-a.e. y € R*. Finally, we apply the Euclidean coarea formula once more
and Lemma 9.2 to find

/R/ dH" () di* (y)
- /Rk /, O0(f ()T (wdfz|Ker(an,)) dH" *(x) dH* (y)

= /9 Jn—k(wdfz|ker(an,)) Ck(dhy) dH" ()
= /9 Ck d 9f(z) ) n(Wdfw)dHn($)

= /SH(w)Ck(d gz) dH" () .

In the general metric case we argue exactly as in Theorem 8.2. O

It should be noted that a construction in [18] shows that even for C!-

functions f : [0,1]> — [0,1] the level sets f~!(¢) can in general be covered
by countably many lipschitz curves only up to H'-zero sets.
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