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Executive summary 

The building sector accounted for 32% of the global energy consumption in 2010 which 

escalated up to 40% in 2018. This change in the trend of energy consumption in buildings not only 

increased the energy demand, but also increased the greenhouse gas (GHG) emissions (CO2 from 

19% in 2010 to 39% in 2017). To resolve this, efficient utilization of renewable energy sources is 

considered to be a potential alternative to meet the increasing energy demand in buildings. 

Statistical data conveys that the power generation from renewables grew by 17% in 2017, 

contributing to 8% of the global electricity. In addition, the concepts of district level generation, 

cogeneration systems together with the energy storage technologies and energy-efficient buildings 

have also been accepted globally by the building community to achieve the future goal of energy 

roadmap defined by the international energy agency (IEA).  

At present, the energy requirements in buildings are majorly met from non-renewable 

sources where the contribution of renewable sources is still in its initial stage. Meeting the peak 

energy demand by non-renewable energy sources is highly expensive for the utility companies and 

it critically influences the environment through GHG emissions. In addition, renewable energy 

sources are inherently intermittent in nature. Therefore, to make both renewable and non-

renewable energy sources more efficient in building/district applications, they should be integrated 

with energy storage systems. 

Nevertheless, determination of the optimal operation and integration of energy storage with 

buildings/districts are not straightforward. The real strength of integrating energy storage 

technologies with buildings/districts is stalled by the high computational demand (or even lack of) 

tools and optimization techniques. Annex 31 aims to resolve this gap by critically addressing the 

challenges in integrating energy storage systems in buildings/districts from the perspective of 

design, development of simplified modeling tools and optimization techniques. 

There are several well-established modeling approaches available at the building level. 

These include approaches such as heating degree day, energy use intensity and load factor, 

comprehensive (using simulation software) and simplified modeling, etc. Many of the existing 

simulation software (including but not limited to TRNSYS and Modelica) now have built-in 

options/libraries to accommodate energy storage in buildings. However, most of the existing 

models consider buildings as standalone systems, barely representing the complexity of an 

urban/district setting. This leads to over-simplification of the building model and less accuracy in 
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the results. In Annex 31 (Chapter 3), advanced concepts for effective modeling of buildings in 

urban setting are proposed. Moreover, innovative ideologies on simplified modeling of buildings 

(such as multiple linear regression) and their components (e.g. PCM heat exchangers, electrically 

heated floor, thermally activated walls, etc.) are presented as examples. Furthermore, the potential 

of PCM-based free cooling over the conventional district heating and cooling system is 

emphasized in terms of annual primary energy savings. 

On the other hand, modeling a district not only includes several buildings, but also the 

interactions amongst them, with at least one heating/cooling network and at least one energy 

resource. If energy storage is also utilized, it should be included, too. Therefore, modeling at the 

district level is much more complicated and computationally intense, which requires sacrificing 

some accuracy compared to the building level. That is why simplified models have received 

considerable attention at the district level. Several tools have also been developed to achieve 

different objectives with diverse features and various levels of complexity. In this regard, Annex 

31 recommends that screening of existing tools should be conducted (prior to modeling) to select 

and use the best one for that specific case. Note that the developed tools are often criticized for 

their limitations in terms of accuracy and frustrating computational time. To resolve this, a 4-step 

procedure has been developed in Annex 31 (Chapter 4) to accurately predict the demand profile 

of different types of district systems with high resolution (hourly interval) and in a timely manner. 

In addition, two levels of model validation (for the 4-step procedure) at the district level are 

illustrated as examples. 

Once developed and validated, building/district models can then be used for system 

optimization based on various criteria. Generally, objective functions can be classified in two 

major categories of environmental (including GHG and pollutant production, energy efficiency, 

life cycle analysis, and thermal comfort) and cost. Multi-objective optimization at the district level 

is very common which (due to the complexity and size of the system) suffers from long 

computational time. Therefore, some methods have been introduced in Annex 31 (Chapter 5) to 

reduce this period for instance by the parallelism of the models, surrogating modeling and 

utilization of satisfaction functions. Besides, state-of-the-art optimization examples at the 

building/district levels are presented. 

From the viewpoint of design as well as guidelines, standards and policy development, it is 

important to ensure that the value of a storage is correctly captured. In this way, the storage can be 

appropriately adopted to enhance the system performance and achieve the aims of resilient energy 
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systems with minimum emissions. To evaluate the effectiveness of energy storage technologies in 

building/district applications, key performance indicators (KPIs) can represent important methods 

for analyzing interactions among economic, human activity, energy consumption and reduction of 

GHG emissions. Despite the importance of KPIs, the lack of clear definition (even for well-known 

metrics such as efficiency) hinders their widespread application and prevents comparability of the 

obtained results. Therefore, ten main KPIs (i.e. storage capacity, recharging energy, maximum 

charging and discharging power, depth of discharge, durability, specific cost of storage, maximum 

self-discharge rate, storage size/weight, energy storage factor and generated energy/cost saving) 

are hereby developed (in Chapter 6) and used to evaluate the Annex 31 case studies. Ten case 

studies have been carried out in several participating countries including Canada, France, Italy, 

Japan, Turkey and UK. This international effort as part of Annex 31 revealed the potentials and 

challenges to use these KPIs. 

The main contributions of Annex 31 lie on addressing the existing hindrance in developing 

simplified models, optimization tools and performance evaluation criteria related to energy 

efficient buildings/districts with energy storage. The results disseminated by this publication in 

terms of given examples in each domain (application of energy storage in buildings/districts, 

optimization techniques, etc.) and the ideology of representing KPIs for evaluating the 

effectiveness of energy storage in buildings and districts will benefit researchers in identifying and 

reducing the existing research gaps in designing, modeling and optimizing energy efficient 

buildings and districts with energy storage systems. 
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Preface 

The International Energy Agency (IEA) supports research and development projects for 

energy security, economic growth and environmental protection through Technology 

Collaboration Programs (TCPs). Energy Conservation through Energy Storage (ECES) - one of 

the 38 TCPs operating today - was established in 1978. To date, the following projects have been 

initiated by the executive committee of ECES (ongoing, planned and not materialized projects are 

identified by *, # and ^, respectively): 

Annex 1: Large scale thermal storage systems evaluation 

Annex 2: Lake storage demonstration plant in Mannheim 

Annex 3: Aquifer storage demonstration plant in Lausanne Dorigny 

Annex 4: Short term water heat storage systems 

Annex 5: Full scale latent heat storage installations 

Annex 6: Environmental and chemical aspects of thermal energy storage in aquifers and 

research and development of water treatment methods 

Annex 7: Innovative and cost effective seasonal cold storage applications 

Annex 8: Implementing underground thermal energy storage systems  

Annex 9: Electrical energy storage technologies for utility network optimization 

Annex 10: Phase change materials and chemical reactions for thermal energy storage 

Annex 12: High-temperature underground thermal energy storage (HT UTES) 

Annex 13: Design, construction and maintenance of UTES wells and boreholes 

Annex 14: Cooling with TES in all climates 

Annex 15^: Applying thermal and electrical energy storage in ultra-low energy buildings 

Annex 16^: Deployment of energy storage technologies 

Annex 17: Advanced TES techniques: Feasibility studies and demonstration projects 

Annex 18: Transportation of thermal energy utilizing thermal energy storage technology 

Annex 19: Optimised industrial process heat and power generation with thermal energy storage 

Annex 20: Sustainable cooling with thermal energy storage 

Annex 21: Thermal response test for underground thermal energy storages 

Annex 22: -------------- 

Annex 23: Applying energy storage in ultra-low energy buildings  

Annex 24: Material development for improved thermal energy storage systems 

Annex 25: Surplus heat management using advanced TES for CO2 mitigation 

Annex 26: Electric energy storage: Future energy storage demand 

Annex 27*: Quality management in design, construction and operation of borehole TES systems 

Annex 28*: Distributed energy storages for the integration of renewable energies 

Annex 29: Compact Thermal Energy Storage 

Annex 30*: Thermal Energy Storage for Cost-Effective Energy Management & CO2 Mitigation 

Annex 31*: Energy storage with energy efficient buildings and districts: Optimization and 

automation 

Annex 32#: Modeling of energy storage for simulation/optimization of energy systems 

Annex 33*: Material and component development for thermal energy storage 

Annex 34#: Flexible sector coupling by energy storage implementation 

Annex 35#: Accelerating development for affordable domestic combined heat pump and storage 

systems 



 

VII 

 The mission of TCP Energy Conservation and Energy Storage (TCP ECES) is to facilitate 

integral research, development, implementation and integration of energy-storage technologies, to 

optimize the energy efficiency of all kinds of energy system and to enable the increasing use of 

renewable energy instead of fossil fuels. 

Storage technologies are a central component in energy-efficient systems. Since energy 

storage is a cross-cutting issue, expert knowledge of many disciplines (energy supply and all end-

use sectors, as well as distribution) must be taken into account. To use this widespread experience 

efficiently and gain benefits from the resulting synergies, high-level coordination is needed to 

develop suitable working plans and research goals. TCP ECES is responsible for fulfilling this 

important task. TCP ECES’ strategic plan therefore includes research activities (strategies for 

scientific research and development, dissemination and market deployment), as well as co-

ordination activities (aims and administration). 
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1 Chapter 1: Introduction 

 

1.1 Energy in buildings and districts 

Sustainable development is the ability to fulfill the requirements of current generation without 

disturbing the future generations to sustain theirs [1]. Most traditional forms of energy such as 

coal, petroleum and natural gas are non-renewable sources of energy and will be depleted in the 

near future [2, 3]. Use of renewable energy and an increase in energy efficiency are two essential 

solutions to address the current energy crisis [4]. 

In the recent years, substantial energy is spent in building sector where 46% of the total 

worldwide energy demand can be attributed to heating and cooling [5]. In addition to the 

availability of nonrenewable energy forms, environmental impacts associated with power 

production from these nonrenewable energies stresses the development of more efficient and 

sustainable heating/cooling and energy distribution strategies. District heating systems (DHSs) are 

found to be a promising technology to address sustainability in building-related energy production 

and distribution [6]. 

1.2 Necessity of energy storage 

As energy systems become more complex (in both supply and demand), mechanisms are 

being sought by which greater control for variability and unpredictability can be adopted. At the 

district level, where heating and/or cooling networks can exist, energy storage can provide such 

control. Such districts vary in size, from tens of buildings connected to a small gas engine in 

London, UK [7], through hundreds of properties in Lieni, Italy [8] and Southern Austria [9], to a 

974 km district network within Vienna, Austria [10] or even a 1,300 km district heating network 

connecting 19 energy centers in Berlin, Germany [11]. New thermal energy storage (TES) vessels 

are often the focus, but innovative methods are also considered for storing thermal energy, using 

the existing building stock thermal mass [12] and district heating pipework [10]. This section 

discusses the necessity of energy storage within building and district energy systems. 

1.2.1 Profile smoothing 

Renewable energy is becoming globally more prevalent as a source of heat and electricity; 

however, it is also inherently intermittent with time and space. To smoothen this varying supply, 

it is possible to use energy storage as a buffer. Electrical or thermal storage can be used indirectly, 

by using peaks in renewable supply to operate electric heaters/chillers [13] or by operating 

combined heat and power (CHP) plants in renewable supply troughs without wasting the resultant 

heat output [14, 15]. Solar thermal systems also tend to be optimized with storage in mind, either 

at high temperature preceding use through a Rankine engine (as is the case for concentrated solar 

power [16]) or at low temperature for direct use in a heating network [17]. 

Less intermittent than renewables (but equally variable) is the demand for electricity, 

heating, and cooling. Supply technologies are conventionally designed to meet the peak demand, 
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but could be sized smaller with the installment of storage [18-20]. By operating the supply to meet 

average demand, excess energy can be stored for use during peak demands, reducing the pressure 

on supply. 

1.2.2 Time of use tariffs 

Profile smoothing is beneficial to allow for intermittency and to reduce capacity 

requirements of the supply technologies. However, the same capability provided by storage to 

decouple supply from demand can be used purely for operational economic gain. Given a large 

enough swing in electricity wholesale price, significant economic gain can be achieved from 

operating CHP plants at the right time of day and selling the produced electricity to the grid [7, 

21-24]. In fact, some argue that thermal storage in a district system is only beneficial with sufficient 

variation in wholesale electricity price [7, 22, 25]. Conversely, electricity can be purchased at off-

peak times to operate chillers, reducing operating costs [18]. 

1.2.3 Efficiency improvements 

Off-peak electricity wholesale pricing hours tend to be overnight, when the temperatures are 

lower. By operating cooling systems at this time, not only the electricity purchasing is cheaper, 

but also enhancement in efficiency can be realized directly in the technologies and via the cooling 

towers [26]. Thermal storage is then utilized to meet cooling demands when temperature increases 

during the day and buildings are occupied. 

Loading of a given technology also affects its efficiency, with certain cooling technologies 

operating more efficiently at partial load rates, which can be maintained if supply is decoupled 

from demand by use of storage [27]. Avoiding excessive cycling (to meet varying demands) can 

also have the added benefit of extending technology lifetime and reducing maintenance 

requirements [28]. 

1.2.4 Seasonal variations 

Short-term storage is widely found in actual and modeled systems; however, seasonal 

storage could also be used. Cooling in summer can be matched to heating in winter for potentially 

greater economic gain than considering the systems separately in the short-term [29]. 

1.3 Content organization 

Energy storage technologies can be generally classified in two major categories of thermal 

and electrical energy storage. These technologies and their mechanisms are covered in Chapter 2, 

introducing storage systems. 

To support the optimum integration of TES into future building energy systems, benefits of 

TES should be quantified during decision making processes at policy, strategy, concept design and 

detailed design stages. Modeling has a key role in providing this quantification and underpinning 

future standards, regulations, guidance and design methods for effective TES integration. In 

general, modeling can be viewed as supporting three different domains with different requirements 

on modeling outputs (see Table 1.1): 
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(1) Policy, scoping and concept design, regulation compliance 

(2) Detailed system design 

(3) System automation design and operation. 

Table 1.1: Modeling requirements for different levels and domains 

Scale Component Building District Regional 

Policy, scoping/concept design, regulatory compliance ✓ ✓ ✓ ✓ 

Detailed system design ✓ ✓ ✓  

System automation design and operation ✓ ✓ ✓  

The integration of TES primarily requires that materials, components, and local interactions 

are characterized, and their behavior are captured in models which allow these to represent TES 

systems in the design process. Thereafter, these TES system characteristics must be appropriately 

integrated within constructions or plant models for their behavior to be correctly comprehended 

within building or district models in the higher-level design processes. In turn, the TES 

characteristics at building level should be comprehended in district or regional level models. 

Therefore, energy storage applications in buildings (including component level) are discussed in 

Chapter 3, while Chapter 4 is devoted to the district level. These chapters cover the fundamentals 

of energy storage, introduce available tools, provide state-of-the-art examples, etc. Note that this 

publication is not focused on the regional or national level. 

Once a system is modeled, optimization can be carried out based on several criteria. This is 

the subject of Chapter 5 with a focus on energy storage. First, common optimization methods and 

algorithms are explained. Then, common objective functions and decision parameters for energy 

storage are presented. Existing tools for optimization at building and district levels are elaborated. 

Thereafter, due to the complicated nature of district level optimization, some computational time 

deduction methods are covered. Further, examples based on some recent studies are provided to 

illustrate how optimization can be applied to energy storage in buildings and districts. 

In order to evaluate the effectiveness of energy storage technologies in building/district 

applications, key performance indicators (KPIs) are important for analyzing the interactions 

among economic, human activity, energy consumption and GHG emissions [30]. Therefore, 

Chapter 6 first reviews the existing KPIs and then introduces ten KPIs in detail which are later 

used at the end of Chapter 6 to evaluate Annex 31 case studies. The chapter also introduces some 

other advanced KPIs. 

Finally, Chapter 7 concludes the publication by explaining the achievements of Annex 31 as 

well as providing recommendations for the future work.  
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2 Chapter 2: Energy storage technologies 

Energy storage technologies store energy at the time of availability of excess energy for later 

use. The most common storage technologies for building applications can be divided into two 

categories of electrical energy storage devices [31, 32] and TES devices [33]. These energy storage 

technologies as well as their common mechanisms are shown in Figure 2.1. In this chapter, each 

category is presented in detail. 

 

Figure 2.1: Common energy storage technologies and their storage mechanisms 

Note that since sensible and latent thermal energy storages received considerable attention, 

this chapter primarily focuses on these types of TES. Therefore, their fundamentals and 

applications are also presented. 

2.1 Thermal energy storage 

The main energy demands in buildings are related to supplying power for heating, 

ventilation and air conditioning (HVAC) systems and hot water tanks. The occurrence of these 

demands varies considerably and can depend upon the time of day or night and season, 

particularly in regions with extreme weather conditions. Any change in energy demand results in 

peak and off-peak energy usage of the grid, leading to a variation in energy prices offered by most 

utility companies. According to time of use tariffs, higher electricity rates are imposed during 

peak-power demand (reflecting the cost of electricity generation during peak periods) compared 

to off-peak power demand. The disparity between the available energy supply and the consumed 

energy necessitates the need for integrating TES in different building applications such as 
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providing hot water, HVAC and utilizing waste heat. This also highlights the need to store excess 

energy which would otherwise be wasted as well as shifting peak power demand. In addition, 

TES not only improves the performance and reliability of energy systems, but also plays a key 

role in energy conservation and reducing the time mismatch between energy supply and demand. 

The following sections briefly introduce four modes of TES, namely sensible, latent and 

thermochemical energy storages. 

2.1.1 Sensible 

Sensible heat storage (SHS) is the energy stored in a material within fixed temperature ranges 

without phase change. 

2.1.1.1 Fundamentals 

In SHS, thermal energy is normally stored by raising the temperature of a liquid, such as 

water (temperature levels range from 0 to 100 °C), or a solid, such as bricks, concrete, sand, soil 

and metals such as aluminum and steel. SHS systems utilize the heat capacity and change in 

temperature of the material during the process of charging and discharging. Water is used as the 

storage medium in most of the low temperature applications. In such systems, when the energy is 

stored or released in/from the storage medium, its temperature either increases or decreases. The 

amount of stored heat can be calculated by Equation (2.1): 

 12 TTmCQ pSHS   (2.1) 

where QSHS is the amount of stored sensible heat (J), m is the storage mass (kg), Cp is the specific 

heat capacity at constant pressure (J/kg.°C), and T1 and T2 are the lower and upper temperatures 

(°C) between which heat storage occurs. 

2.1.1.2 Applications 

In buildings, the use of SHS involves various applications such as the provision of domestic 

hot water (DHW) which is mostly provided by electric or gas heaters. In this case, sensible heat 

is stored by a temperature change of water using heating devices. 

The main advantage of using SHS lies in the simplicity of its system design. The 

disadvantages are its typical very low efficiency in terms of energy usage and low storage capacity 

which means that large size of TES systems must often be used in practice. The water heater is 

one fine example for the SHS. Its performance depends mostly on the position and number of 

thermal elements, inlet design, size and aspect ratio of the tank, and location of the inlet and outlet 

of the water heater. 

Another example for SHS is the underground thermal energy storage (UTES) which uses 

underground as the storage medium for heat or cold storage. The shallow geothermal energy is 

regarded as one of the most stable renewable energy sources (RES). When this renewable energy 

is utilized in building sector, the ground can be utilized as a heat source/sink or a medium for heat 

storage depending on the hydrological and thermal properties of the ground. In UTES, a ground 

heat exchanger (GHE) is the key component, connecting the demand and source sides. 



 

6 

Aquifer thermal energy storage (ATES) is also a SHS system as it uses underground water 

in an aquifer for heat storage and is referred to as an open loop system. This technique is limited 

by the geological parameters and is normally used for seasonal energy storage. On the other hand, 

when the heat is transferred indirectly via a closed fluid loop without a direct mass transfer, it is 

referred to as a closed loop system. Generally, the closed loop configuration is more common since 

the direct use of groundwater is often strictly restricted by local regulations. Among the several 

types of closed loop GHEs, the most favorable type is the vertical closed-loop GHE, also known 

as borehole heat exchanger (BHE). Basically, borehole thermal energy storage (BTES) needs 

much less space than other types of GHEs and can utilize the thermal capacity of the ground to its 

maximum. 

2.1.2 Latent 

Latent heat storage (LHS) is the energy stored or released when a storage material 

undergoes a phase change process from solid to liquid or liquid to gas or solid to gas (and vice 

versa), or is the energy needed to change the phase of a material without temperature change. 

Typical examples of latent heat are melting of ice (solid to liquid) and boiling of water (liquid to 

gas). 

2.1.2.1 Fundamentals 

Materials used for their latent heat thermal storage capacity are called phase change 

materials (PCMs) which have received considerable interest in recent years. The substance used 

as a storage medium in latent heat storage applications is often water/ice or PCMs usually based 

on paraffin, hydrated salts or fatty acids. The stored latent heat for a given mass of a substance 

can be calculated by Equation 2.2: 

mLQLHS   (2.2) 

where QLHS is the amount of stored latent heat during the phase change of the substance (J), m is 

its mass (kg) and L is its latent heat (J/kg). 

2.1.2.2 Applications 

During the past decade, LHS has received wide attention from building engineers, 

researchers, architects and designers and has been applied to HVAC systems and building 

envelopes, etc. The economic aspect of LHS is particularly evident for buildings in which there 

is a significant demand for cooling. A typical example is the usage of PCMs in wallboards and 

water heaters. 

One major advantage of LHS systems is their relatively large heat storage capacity, 

compared with SHS, which is due to the high enthalpy change during phase change. This can be 

illustrated by the huge amount of energy requirement during the phase change of water. As an 

example of LHS, the energy required to melt 1 kg of ice at 0 °C is 333 kJ/kg. The same amount 

of energy is required to heat up 1 kg water from 0 °C to up 80 °C (by SHS). Some other operational 

advantages are smaller temperature swing between day indoors and night outdoors, smaller size 

and lower weight per unit of storage capacity with high energy storage density [34]. Setterwall 
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[35] reported that PCM storage (i.e. LHS) is very compact compared to SHS and it allows for 

greater flexibility in choosing a location for the storage system. 

In Table 2.1, SHS in a rock bed and a water tank is compared to LHS using organic and 

inorganic compounds. In summary, while most of practical applications utilize SHS methods, 

LHS provides a much higher storage density, with very little temperature variation during the 

charging/discharging processes with higher efficiency in storing thermal energy. 

Table 2.1: Comparison of sensible heat and latent heat storages 

Property  
Sensible heat storage Latent heat storage 

Rock Water Organic PCM Inorganic PCM 

Density (kg/m3) 2,240 1,000 800 1,600 

Specific heat (kJ/kg) 1.0 4.2 2.0   2.0 

Latent heat (kJ/kg) N/A N/A 190 230 

Latent heat (kJ/m3) N/A N/A 368 368 

Storage mass required for 106 J (kg) 67,000 16,000 5,300 4,350 

Storage volume required for 106 J (m3) 30 16 6.6 2.7 

Relative storage mass* 15 4 1.25 1.0 

Relative storage volume* 11 6 2.5 1.0 
* Relative to the inorganic PCM 

It can be seen from Table 2.1 that the use of LHS results in storage densities which are 

typically five to ten times higher than that of SHS and that the PCM storage volume is twice 

smaller than that of water [36, 37]. The table also shows that inorganic compounds, such as 

hydrated salts, have a greater volumetric thermal storage density than most organic compounds 

due to their higher latent heat and density [38]. 

2.1.3 Thermochemical 

Thermochemical energy storage (TCES) systems rely on the energy absorbed and released 

by breaking and reforming molecular bonds in a completely reversible chemical reaction. As 

such, the stored heat depends on the amount of storage material, endothermic heat of reaction, 

and extent of conversion. For example, in a TCES system, thermal energy from a solar collector 

is commonly used to initiate an endothermic chemical reaction in a storage medium and the 

constituents of the storage medium are then stored for later use. The chemical reactions selected 

for the storage system should necessarily be completely reversible. Compared with sensible and 

latent heat storages, TCES benefits from higher storage capacity. The main principle of TCES 

can be generally described by the reaction in Equation (2.3): 

Z + Heat ⇄ X + Y (2.3) 

where Z is a thermochemical material, and X and Y are reactants (X can be a hydrate, hydroxide 

or ammoniate and Y can be CO2 or water). 

The main advantages of using chemical reactions as storage systems are the potentially high 

energy density and the possibility of indefinitely long duration of storage near ambient 

temperatures. Some typical TCES materials and chemical reactions are listed in Table 2.2. 
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Table 2.2: Chemical storage materials and reactions [39] 

Compound Reaction  Energy density Reaction temperature 

Hydroxides [40] Ca(OH2) ⇄ CaO + H2O 3 GJ/m3 500 °C 

Ammonia [41] NH3 + ΔH ⇄ 1/2 N2 + 3/2 H2 67 kJ/mol 400-500 °C 

Calcium carbonate [42] CaCO3 ⇄ CaO + CO2 4.4 GJ/m3 800-900 °C 

Iron carbonate [43] FeCO3 ⇄ FeO + CO2 2.6 GJ/m3 180 °C 

Methanolation [44] CH3OH ⇄ CO + 2H2 N/A 200-250 °C 

2.2 Electrical energy storage 

The principle of electrical energy storage is to store electrical energy as mechanical energy, 

chemical energy or other forms such that it can be converted back to electrical energy again when 

the demand is high. 

2.2.1 Thermal 

TES systems for electrical energy generation are usually contained in high temperature TES 

plants. There are two types of TES systems for electrical energy storage, namely those which are 

applicable to solar thermal power plants and end-use TES. Application of TES for solar thermal 

power plants consists of a synthetic oil or molten salt which stores solar energy in the form of heat 

collected by solar radiation. End-use TES uses hot or cold storage in underground aquifers, water 

or ice tanks, or other materials and uses this energy to reduce the electricity consumption of 

buildings. 

2.2.2 Chemical 

2.2.2.1 Electrochemical 

There are various types of devices which use chemical energy to store electrical energy. 

The most common technique is the well-known electrochemical battery which converts the 

chemical energy contained in its active materials directly into electrical energy by an 

electrochemical oxidation-reduction (redox) reaction. The basic electrochemical unit is a cell. A 

battery consists of one or more cells, connected in series or parallel, or both, depending on the 

desired output voltage or capacity. The cells consist of three major components: the anode, the 

cathode and the electrolyte. These components are placed in the same container. 

A variety of electrolytes are used including lead-acid, nickel-cadmium (Ni-Cd), lithium-ion 

(Li-ion), sodium-sulfur (Na-S), zinc-bromide (Zn-Br), nickel-metal hydride (Ni-MH), etc. 

Another battery type, called flow batteries or redox flow batteries, uses an electrolyte which is 

stored in a separate container outside of the battery cell container. Thus, in a flow battery, the 

reactants flowing across the electrodes come from containers outside the electrochemical cell and 

are prevented from mixing by a specially chosen membrane: an ion selective membrane or a 

micro-porous separator. 

Another type of electrochemical energy storage is metal-air energy storage (MAES) which 

holds out great promise in terms of its intrinsic specific energy density. This type of battery uses 

the electrochemical coupling of a reactive metal anode to an air electrode. Several types of metal-

air battery have been successfully developed, including zinc-air, aluminum-air, magnesium-air, 
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iron-air and lithium-air configurations, all operating in alkaline or neutral aqueous electrolytes. 

The MAES technology is very promising but its future usefulness in the development of electrical 

energy storage, especially renewable energy storage, depends largely on the successful 

development of bi-functional air electrodes. 

2.2.2.2  Hydrogen 

The fuel cell (FC) technology is one of the most promising new electric power technologies. 

Fuel cell power systems have attracted attention due to their potential for high efficiency, low 

emission, flexible use of fuels and quietness. FCs are electrochemical devices which convert the 

chemical energy of a fuel directly into usable energy, electricity and heat, without combustion. 

They can be operated as either a generator or storage device. FCs can be regarded as similar to 

batteries containing electrodes and electrolytic material to accomplish the electrochemical 

production of electricity. An FC uses oxidation-reduction reaction between hydrogen and oxygen 

to produce electricity and heat. It includes (1) electrolysis which consumes off-peak electricity to 

produce hydrogen, (2) the fuel cell which uses that hydrogen and oxygen from air to generate 

peak-hour electricity, and (3) a hydrogen buffer tank to ensure adequate resources in periods of 

need. 

There are many types of FCs, such as alkaline fuel cell (AFC), proton exchange membrane 

fuel cell (PEMFC), direct methanol fuel cell (DMFC), phosphoric acid fuel cell (PAFC), molten 

carbonates fuel cell (MCFC) and solid oxide fuel cell (SOFC). The last two operate at high 

temperatures, while the rest are low temperature FCs. 

2.2.3 Mechanical 

2.2.3.1 Pumped hydro 

Pumped hydro storage (PHS) utilizes off-peak electricity to pump water from a lower 

reservoir into another one at a higher elevation. When the water stored in the upper reservoir is 

released, it passes through hydraulic turbines to generate electricity. Thus, the key elements of a 

PHS include turbine/generator equipment, a water way, an upper reservoir and a lower reservoir. 

The turbine/generator is similar to equipment used for normal hydroelectric power plants with no 

storage. The off-peak electrical energy used to pump the water to a higher elevation can be stored 

indefinitely as gravitational energy in the upper reservoir. Thus, two reservoirs in combination can 

be used to store electrical energy for a long period of time and in large quantities. 

2.2.3.2 Flywheel 

A conventional flywheel energy storage (FES) system is a cylinder which spins at very high 

speed storing kinetic energy. A flywheel can be combined with a device operating as an electric 

motor which produces electricity from the energy stored in the flywheel. The faster the flywheel 

spins, the more energy it retains. Energy can be drawn off as needed by slowing the flywheel. 

Modern flywheels use composite rotors made with carbon-fiber materials [45]. 

The rotors have a very high strength-to-density ratio and rotate in a vacuum chamber to 

minimize aerodynamic losses. Moreover, a magnet levitates the cylinder limiting friction-related 
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losses and wear. The amount of energy stored in a flywheel depends upon the linear speed of 

rotation and the mass of the disk. Short discharge time flywheels are suitable for stabilizing 

voltage and frequency, while longer duration flywheels may be suitable for damping load 

fluctuations. 

2.2.3.3 Compressed air 

Compressed air energy storage (CAES) uses off-peak electricity to power a motor/generator 

which drives compressors to force the air into a storage reservoir such as rock caverns, salt 

formations or depleted natural gas fields for large CAES plants. For smaller CAES plants, 

compressed air is stored in tanks or large pipes such as those designed for high pressure natural 

gas transmission. When the demand for electric power peaks, the process is reversed. The 

compressed air is released, heated by natural gas in combustors and run through high-pressure 

and low-pressure expanders to power the motor/generator producing electricity. In a traditional 

gas turbine, the air which drives the turbine is compressed and heated using natural gas. CAES 

technology needs less gas to produce power because it uses air which has already been 

compressed. 

2.2.4 Superconducting magnet 

Superconducting magnetic energy storage (SMES) systems store energy in the magnetic 

field created by the flow of direct currents through a large coil of superconducting material which 

has been super-cooled. In low-temperature superconducting materials, electric currents encounter 

almost no resistance, greatly enhancing their storage capacity. The coil with many windings of 

superconducting wire should be cooled to a temperature below the temperature needed for 

superconductivity. SMES charging or discharging causes a corresponding increase or decrease in 

the current flow. Thus, energy is added or extracted from the magnetic field of the inductor by 

increasing or decreasing the current in the windings. Moreover, power is available almost 

instantaneously and very high output power can be provided for a short period of time. The lack 

of moving parts results in high reliability and minimal maintenance. However, superconductors 

require refrigeration systems which induce energy losses and contain moving parts. 
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3 Chapter 3: Application to buildings 

The overall aim of this publication is to address the existing challenges in the integration of 

TES in buildings and districts. To support the design and optimization of systems incorporating 

TES, this chapter is dedicated to buildings and their components. Clearly, there is no 

distinguishable boundary between buildings and districts as many of the models and tools 

developed for buildings can be used (with some modification) for districts. Keeping that in mind, 

the building level is covered in this chapter and next chapter focuses on the district level. 

The integration of TES in buildings can temporally decouple when devices such as heat 

pumps or chillers should operate and when the heating or cooling should be provided to the end 

users. This can radically alter the timing of building energy demand, potentially enhancing the use 

of renewable energy resources [46]. TES allows potentially cheaper off-peak energy supplies to 

be exploited [47] and it can also act as a means to collect local energy resources [48]. However, 

many obstacles exist with regards to integration and operation of heat storage systems in buildings. 

One of the most significant is competition for space. As dwelling sizes reduce, floor area is at a 

premium and the space penalty associated with conventional technologies such as hot water 

storage can act as a barrier to its uptake. This problem becomes more acute if the operation of 

future networks necessitates the need for heat to be stored over longer time periods than is done at 

present [49]. Storage in the future may need to migrate away from the traditional hot water tank, 

towards media such as PCMs and storages which make better use of the existing space and thermal 

mass in and around buildings, including large-scale community storage. 

Fabric integrated thermal storage (FITS) systems store heat in structural or constructional 

elements; therefore, they do not compromise internal space. However, the effective operation of 

FITS, within a building, possibly featuring multiple heterogeneous heat sources and active energy 

network participation, raises significant engineering and social challenges. For example, the heat 

stored in building fabric should be effectively insulated to prevent excessive losses as well as 

overheating which could be a problem in modern, well-insulated dwellings. Moreover, FITS 

should be integrated and operated with existing energy systems. Finally, operating local storage to 

improve the operation of external energy networks (in addition to servicing the needs of the local 

building) would not be attractive to building owners if they were financially disadvantaged or 

subject to increased discomfort. 

Depending on the storage temperature, FITS can be coupled to or decoupled from the 

building interior according to insulation level and its location inside the building. The storage 

temperature is a key element in a FITS system and has multiple implications on the system design 

since the available charging and discharging options, as well as working fluid, are dependent on 

this (Figure 3.1). Charging and discharging of FITS, can be passive or active. Generally, active 

systems provide the opportunity to operate with higher and greater range of storage temperatures 

than passive systems. With passive storage, the heat is stored without mechanical input, instead by 

using solar gains, convection or temperature difference. On the other hand, active systems require 
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a system for heat generation and transfer to/from the storage. Passive storage systems or 

technologies are normally integrated as part of the building structure. This is the case in sun spaces, 

exposed thermal mass or shading devices [50]. In an active storage system, the heat is transferred 

using a distribution medium (such as air or water) with forced convection [50] or using electricity. 

Air and water-based systems can either be used for cooling or heating, while direct electric systems 

are used for heating. In some cases, charging and discharging can be a combination of active 

charging and passive discharging or vice versa, and the thermal energy can be stored in a HVAC 

system, in the building fabric or outside the building structure [51]. The comprehensive taxonomy 

of coupled FITS systems is illustrated in Figure 3.2. It uses parameters such as storage location, 

temperature, material and charge/discharge options, and it includes passive and active systems. In 

this figure, passive systems use storage temperatures ranging from ambient to low temperature up 

to 30 °C and are presented as sensible or latent storage systems. Besides, active coupled systems 

include low storage temperatures up to around 40 °C and are presented according to the storage 

activation process and, therefore, organized by distribution medium, such as air and water, and 

electricity. A taxonomy for semi-decoupled and decoupled systems is presented in Figure 3.3. Note 

that the semi-decoupled systems use medium storage temperatures up to 70 °C with electric 

activation, while the decoupled systems are best used with temperatures greater than 70 °C. 

 
Figure 3.1: Storage temperature and systems options 
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Figure 3.2: Taxonomy of FITS for coupled storage systems 
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Figure 3.3: Taxonomy of FITS for semi-decoupled and decoupled storage systems 

In this chapter, fundamentals of some well-established modeling approaches at the building 

level are presented. In addition, introduction of some available tools along with state-of-the art 

examples for component and building levels are illustrated. 

3.1 Fundamentals 

Accurate prediction of the energy demand profile of users in smaller time interval (such as 

hourly basis) can affect the efficiency of a system as well as its optimization procedure [52]. It is 

thus essential to predict the heating demand profiles of the users to determine the appropriate sizing 

of the heating equipment. Regardless of the method used, the heating demand profile of each user 
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consists of three major parts of (1) physical and environmental characteristics of the building (i.e. 

R-value, infiltration rate, ambient air temperature, solar radiation, and humidity), (2) human-

related factors or social behavior of the occupants, and (3) random factors which account for 

uncertainties. Different techniques have been developed to predict user demand profiles 

considering all or one of the mentioned factors, including historical approaches [52, 53], 

deterministic method and times series predictive methods [54]. While the deterministic methods 

(also known as simulation-based models) use the mathematical representation of the buildings 

physical behavior, the numerical predictive time series methods rely on the mathematical curve 

fitting relation(s) to predict user demand profiles. The predictive models themselves are further 

categorized to classical approaches and artificial intelligence (AI) methods. 

3.1.1 Heating degree day 

Heat loss in buildings (Qloss) is proportional to the difference between indoor and outdoor 

ambient temperature. This concept is used in the development of the heating degree day (HDD) 

method [55]: 

  HDDUAQ overallloss   (3.1) 

where (UA)overall is the overall heat loss coefficient which is determined based on the infiltration 

rate and the summation of the UA values for all different envelope assemblies of the building. The 

infiltration rate can be defined either in hourly rate or as an average [55]. 

Online and free historical weather data are mainly assumed as reliable sources to obtain the 

HDD values [56-58]. This method is widely used to model small buildings in whose envelope the 

main source of energy is unclear. HDD method has been compared with a historical method known 

as the BIN method [59]. Unlike HDD method, the BIN method is mainly used for larger scale 

buildings in which the internal load generation has a significant effect, rendering the HDD method 

unfeasible. In both cases, the main concern in modeling is the ambient condition of the buildings 

and the average envelope thermal resistance. The fact that factors such as the social behavior of 

occupants and buildings thermal mass are not considered results in predominantly low-accuracy 

findings [52]. In addition, the low frequency of available data results in inaccurate outcomes. 

3.1.2 Energy use intensity and load factor 

Energy use intensity (EUI) and load factor (LF) is another technique to estimate the users 

demand profile where the historical supply data is provided. EUI is the rate of energy use per unit 

area [60] and LF is the ratio of energy consumption over the maximum possible energy generation 

of the supply side (the product of peak demand and time) [61, 62]. 

Knowing the EUI and LF of different users [63], it is possible to calculate the total energy 

and peak heating demand required for each consumer. The supply energy demand provides the 

annual average LF per area of different users. Mainly, the values are accessible based on region or 

reference archetype [58, 63]. As an example, this method can be used for load prediction based on 
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different user sectors of a DHS whose summation provides the heating demand profile of the users 

[64]. One of the main problems with this method is the lack of separated factors for ambient 

conditions. 

3.1.3 Comprehensive models 

Simulation software (such as EnergyPlus [65] and TRNSYS [66]) are widely used for 

predicting the energy consumption pattern of various buildings. Although they yield highly 

accurate demand profiles, the main disadvantage of these models is their dependency on data and 

high computational cost for modeling each building [53, 67, 68]. For small-scale systems 

consisting of a limited number of buildings, using the comprehensive method can increase the 

accuracy of the simulation. Nevertheless, the data and time required to model many buildings in a 

city-wide scale is computationally expensive. As an example, a comprehensive method was 

utilized to model the demand profile of 95,817 buildings in Westminster, UK [69, 70]. 

3.1.4 Simplified simulation models 

Simplified methods are adopted when the comprehensive method is computationally 

expensive for a large-scale community. Moreover, they can be used for cases where computational 

speed prevails its accuracy. These methods simplify the buildings physical characteristics to 

predict their demand profile. For example, parameters including shape, orientation and occupancy 

type were considered to model the end-user profiles [71]. Besides, the average energy required per 

square meter of a dwelling area of a building was used based on its monthly/yearly outdoor design 

temperature. Two sets of coefficients can be used to consider the shape and orientation of buildings 

[67]: (1) the ratio of the outdoor surface to volume of the building (the shape factor) and (2) the 

orientation relative to the south (orientation factor). A simplified physical method can also be used 

to predict the demand profile load of a residential building, with a lower internal heat gain density 

[72]. Inversely, this method is unsuitable for larger buildings with higher internal heat gain density. 

3.1.5 Predictive models 

3.1.5.1 ARMA type 

Autoregressive moving average (ARMA) time series predict end-user profiles by 

implementation of a linear combination between the previous value along with previous and 

current noise values. For demand profile prediction [73]: 

     tYtYtz p   (3.2) 

where Yp (t) represents the day and the normal weather condition for the design day, and Y (t) 

indicates the effect of deviation from the normal weather pattern. 

With slight difference from the general form, different kinds of ARMA-type models can be 

developed, e.g. Box-Jenkins [74], time series [75], ARIMA [76]. 
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3.1.5.2 Kalman filter 

Similar to other predictive methods, this technique estimates the future time step values  

(t + ∆t) based on the current time step values (t). To make the best estimation, Kalman filter 

determines the best variable set, which minimizes the source function using the residual sequence 

method. In each step, Kalman filter checks the difference between the measurements and model 

output and selects the variable, minimizing the difference. Since the deviation from the 

measurement can be positive or negative, two different sets of residual sequences could be 

assumed; residual for the hot side as well as residual for the cold side of the profile [77]. 

3.1.5.3 Regression-based methods 

One of the most common methods to predict the demand profile of buildings is the 

regression-based methods. These models are usually divided into two subcategories of multiple 

linear regression (MLR) and multiple nonlinear regression (MNLR) models. While the main 

objective of the MLR is to find a linear relationship between some independent variables and one 

dependent variable, the nonlinear regression methods assume nonlinear behavior between the 

dependent variable and independent variables: 

nn XXXY   ...22110  MLR (3.3) 

 nnn XXXXXXXY ......... 21,

2

22,2

2

12,111,211,10    MNLR (3.4) 

In some cases, the results of the dependent variable at the time t is highly influenced not only 

by the value of the independent variables at the time t, but also by some previous time steps. In 

these cases, such as a building with high thermal mass, the dependent variable is predicted based 

on the previously observed set of independent variables. Due to its usefulness in predicting the 

dependent variable, this method received attention to forecast future results [78]. There are 

different types of time series methods among which the simple exponential smoothing is the most 

common one [79]. Besides, the autoregressive (AR) method is a predictive time series method 

which works based on the simple exponential smoothing method. 

3.1.5.4 Artificial intelligence 

Using predictive methods such as AI is another approach to predict building demand profiles. 

The most common AI methods used for load prediction are artificial neural network (ANN), fuzzy 

neural network (FNN) and support vector machine (SVM). The ANN has been widely used for 

load prediction, particularly in forecasting the electricity consumption of buildings [80]. In most 

cases, the ANN shows superior prediction performance compared with other simulation-based 

methods. This higher accuracy of the ANN method is usually due to its higher adaptability as it 

considers the social parameters in load prediction by integration of real case data into the system 

training [80, 81]. Despite the high accuracy of the predictive methods, their main drawbacks are 

the over-fitting problem as well as the data requirements for the training purposes. Requirement 
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of accurate, comprehensive archives of data for ANN is one of its main drawbacks. For cases 

where the data archive used for training the system is small, the SVM methods [82] show a better 

performance. However, SVM was scarcely used in the last few years; therefore, there is limited 

information regarding the utilization of this model. 

3.2 Available tools 

Available building simulation tools have already been contrasted [83] and it is beyond the 

scope of this publication to go through their details. Nevertheless, in this section, some common 

tools which are later discussed in this publication are introduced. 

3.2.1 TRNSYS 

TRNSYS is a program with a modular structure which was designed to solve complex energy 

system problems by breaking them down into a series of smaller components. TRNSYS 

components (referred to as types) may be as simple as a pump or pipe, or as complicated as a 

multi-zone building model. The components are configured and assembled using a fully integrated 

visual interface known as TRNSYS Simulation Studio, and building input data are entered through 

a dedicated visual interface. The simulation engine then solves the system of algebraic and 

differential equations which represent the entire system. In building simulations, all HVAC system 

components are simultaneously solved with the building envelope thermal balance as well as the 

air network at each time-step. 

As the building model is developed separately from the other parts of the model, the process 

to obtain a complete TRNSYS simulation model requires the creation of two separate files. The 

file concerning the building has a “bui” extension, while the Simulation Studio file, containing 

data related to the boundary conditions, energy systems, equation components and output 

management, has a “tpf” extension. As the “bui” file is called as an external file in the “tpf” file, 

it is possible to use the same “tpf” file for different “bui” files. This means that it is easy and fast 

to evaluate and compare the performance of different buildings in the same context of climate and 

energy system. 

The modular nature of TRNSYS facilitates the addition of new mathematical models to the 

software. Components can be easily shared between users without recompiling the program. 

Simple components, control strategies or pre and post-processing operations can also be 

implemented directly in an input file using simple equation(s) supporting the usual mathematical 

and logical operators and can use the (optionally delayed) outputs of other components. In addition 

to the ability to develop new components in any programming language, the program allows to 

directly embed the components implemented using other software (such as MATLAB/Simulink, 

Excel/VBA and Engineering Equation Solver). 

The TRNSYS library includes many common components found in the thermal and 

electrical energy systems such as solar thermal and photovoltaic systems, low energy buildings 

and HVAC systems, renewable energy systems, cogeneration, and hydrogen systems. It also 
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provides component routines to handle input of weather data or other time-dependent forcing 

functions and output of simulation results. 

The standard library includes a popular vertical cylindrical storage tank model. In addition, 

the TES storage tank library contains spherical, rectangular and horizontally cylindrical tank 

models. It also features a wrap-around heat exchanger tank, aquastats, a heat pump water heater, 

and a water heater. 

3.2.2 eQUEST 

The U.S. department of energy developed a free building energy simulation engine, known 

as DOE-2. To include graphical features in DOE-2, eQUEST (the QUick Energy Simulation Tool) 

has been developed based on the DOE engine and it is a free software. eQUEST includes 

configurations, wizards and industry standard defaults. With its extra added feature, the application 

of eQUEST can now be extended from both basic/simple energy analysis to detailed life cycle cost 

(LCC) analysis. eQUEST was developed to enable users to conduct detailed comparative analysis 

of building designs and technologies by applying sophisticated building energy simulation 

techniques. The main advantage of eQUEST is that it is not necessary for users to have extensive 

expertise in building performance modeling. 

eQUEST can be used for (1) basic energy modeling and comparative runs, (2) intermediate 

energy modeling, (3) LCC analysis and (4) advanced energy modeling and complex comparative 

runs. eQUEST has three built-in wizards of schematic design (SD), design development (DD) and 

energy efficiency measure (EEM). The first two are used for building design purposes, while the 

latter is for energetic comparison of models. 

Using the SD wizard, the user can create an energy model. SD wizard is used in the initial 

stage/earliest design phase and hence basic details of the building (shape of the building, HVAC 

system, DHW, occupancy schedules, energy usage data, internal loads, etc.) are fed as input. Once 

all the required inputs in SD wizard are provided, the user can enter into the main eQUEST 

window. 

In DD wizard, additional information regarding the developed building model (more details 

on complicated structures, internal loads, schedules, HVAC system assignments, etc.) can be 

provided. The EEM wizard is the most powerful feature of eQUEST as it allows users to create 

modified energy models in a faster and easier way. The energy comparison (individual or 

cumulative) can be performed in the EEM wizard. The energy efficient measurement category, 

type, details pertaining to LCC analysis can also be provided in the EEM wizard. 

3.2.3 EnergyPlus 

EnergyPlus is a building energy simulation program developed with support from the U.S. 

department of energy. It was originally developed using Fortran 90, but was changed to C ++ on 

its way with open source code. 
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EnergyPlus receives the input data describing the building to calculate the thermal load 

conducted in the heat and mass balance engine. The resultant conditions of zones are then 

transferred to the building system simulation part to calculate the heat and mass transfer in the 

HVAC system. The result of building system simulation is again transferred to the heat and mass 

balance engine in a ping pong coupling way which updates the state of a zone. 

In EnergyPlus, a node represents a quantity state of a zone or some point in a system loop. 

Generally, a zone air node has only one representative temperature and humidity information since 

the zone air node assumes fully mixed state. However, since each component of the system in 

EnergyPlus has a module structure, a system can be configured as a multi-node system. For 

example, the temperature stratification in a TES system can be reproduced using multiple nodes 

and the resultant information is exchanged with the heat and mass balance engine. 

EnergyPlus is more of a simulation engine (with minimal graphic user interface) than a 

complete simulation program such as TRNSYS. Therefore, there are many third-party programs 

such as OpenStudio, a plug-in of Google SketchUp, where all the building geometry, and system 

configuration can be easily defined with full graphical interface. Then, the specified information 

in OpenStudio can be exported to an “idf” extension file which can be imported to EnergyPlus. 

EnergyPlus also has its own language, the EnergyPlus runtime language (ERL), to allow 

users to perform various controls internally. Additionally, there is a middleware building controls 

virtual test bed (BCVTB) which enables EnergyPlus to be coupled with other programs such as 

MATLAB and Modelica. 

3.2.4 Modelica 

In 1997, an international effort was carried out to design Modelica [84], a freely available, 

object-oriented equation-based language for modeling large, complex, and heterogeneous physical 

systems. In the last two decades, Modelica has been used especially in the design of multi-domain 

engineering systems such as mechatronic, automotive and aerospace applications involving 

mechanical, electrical, hydraulic and control subsystems. The use of Modelica has recently been 

extended to the building energy research community due to the increasing need for analysis of 

more complex and efficient systems. 

Modelica is an open language, and not a dedicated computer program. Equations in this 

language are encapsulated into models, which can be graphically assembled through connectors to 

define the architecture of larger and more complex models. To assemble models and perform 

simulations, a simulation environment (e.g. Dymola or OpenModelica) is needed. 

The Modelica code behind a graphical model is automatically converted into executable 

code. Therefore, a separation exists between the code defining the physical equations and the 

executable code. This separation makes it easier to implement new component and system models 

than in traditional tools. 
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Modelica models are typically structured into libraries. There are numerous libraries 

available (both commercial and free) ranging from thermodynamics and chemical processes to 

automotive and space applications. Currently, several Modelica libraries exist for building 

components and HVAC systems, which are continuously being updated [85-87]. Moreover, the 

International Energy Agency (IEA) undertook a large-scale international project (IEA ECB Annex 

60 [88]) to develop a new generation of computational tools for building energy systems based on 

Modelica. The continuation of Annex 60 is currently being conducted by the International Building 

Performance Simulation Association (IBPSA), known as IBPSA Project 1, focused on designing 

and operation of building and community energy systems [89]. 

3.3 Examples 

In this section, some sample applications are presented for building as well as component 

level modeling. Ideally, each modeling level would feed characteristics into the next level of 

modeling so that systems are easily adopted in modeling frameworks. Modeling at all levels should 

support robust design methodologies which incorporate uncertainties such as user behaviors and 

weather conditions in determining optimal solutions for system design and their control 

automation algorithms. 

3.3.1 Simplified building load prediction 

Districts are made up of several individual buildings. Although district systems are 

thoroughly covered in Chapter 4, individual building modeling lies within the scope of this chapter. 

There are several challenges in the design, construction, and operation of energy-efficient DHSs. 

Simulation tools are addressed among one of the essential lacks when such systems are designed 

and implemented. Building simulation tools are broadly used to investigate the effectiveness of 

integrating energy storage and renewable energy resources [90-93]. Nonetheless, only limited 

simulation tools have been developed to predict the energy demand at the district level [94, 95]. 

Furthermore, detailed building simulation tools (e.g. TRNSYS, EnergyPlus) can also be utilized 

for the energy analysis of the district energy networks; however, other tools (such as HOMER, 

explained further in Chapter 4) utilize the predicted demand profile from other software or 

measured data as an input to the DHS. In both scenarios, existing tools cannot satisfy the current 

need for a dynamic, reliable and accurate tool which can envisage the demand profile prediction 

of large-scale district networks in a timely manner. As a result, simplified methods emerged for 

prediction of demand profile of district networks. 

3.3.1.1 Background 

Three primary sources of discrepancies can be identified for existing models which are 

occupant behavior, neighborhood interference and scaling effect. The first two are further 

explained here. Since most of the models do not directly consider the occupant behavior influence, 

the accuracy of the prediction, particularly at the building level, is observed to show a much lower 

value in many cases. In contrast, the accuracy is significantly higher at the district level with more 

diverse building types since several building influencing parameters at the district level overlap 

one another; therefore, they compensate the accumulated error at some points. As a consequence 
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of this misleading schedule prediction, most studies focused only on one type of building to 

improve their simulation accuracy. 

The unmeasured effects of the district/community on buildings (such as shared walls 

between them and also the solar blockage by the adjacent shadow casted from surrounding 

buildings) significantly impact on the prediction of the heating demand schedules. Most of the 

existing models are designed as a standalone building, barely representing the complexity of an 

urban/district setting. Indeed, the first assumption in the modeling of a standalone building is that 

the entire building shell receives solar radiation and exchanges heat with the surrounding 

environment. 

In this example, an MLR model (described in Section 3.1.5.3) was used to predict the heating 

demand profile of the individual buildings. A simplified building load prediction approach based 

on MLR was validated. Then, the obtained results were compared with those predicted by a 

comprehensive software model. 

3.3.1.2 System description 

The first step in defining the new procedure to predict the heading demand profile of a district 

is to identify the entire building stock and to segment it into different building archetypes. To have 

different building archetypes, a reference building was defined for each archetype, which 

represents all the buildings within that category. Using the geometrical properties and actual 

demand schedule of the reference building, an MLR model was developed to predict the demand 

profile of an entire district. Using the MLR model, the heating demand of two buildings (B1 and 

B2) were predicted. These buildings were developed using some verified models. The buildings 

were first modeled in eQUEST, by changing some of the parameters (see Table 3.1). Since one of 

the identified source of discrepancy in predicted results was the common wall, building B1 

assumed to have a common wall on the east side. 

Table 3.1: Characteristics of the buildings 

Building Area [m2] Stories Window/wall ratio Set point Note 

Reference 1,858 4 30 25 ºC Detached with no shading 

B1 2,044 4 35 24 ºC Common wall on east 

B2 1,998 4 35 Schedule 1* 20° rotation to east 

       
*Schedule 1 

Month Nov Dec Jan Feb Mar Apr 

Average temperature [ºC] 2.61 -6.82 -9.83 -9.43 -2.72 6.49 

Set point [ºC] 22 23 24 24 22 21 

3.3.1.3 Methodology 

The heating demand profiles of the buildings were obtained using MLR approach and were 

compared with those obtained from the eQUEST simulation. Moreover, to check the model 

accuracy under different circumstances, two different air set-point temperature scenarios were 

defined (see Table 3.1) and the accuracy of the results was compared with those obtained from the 

comprehensive modeling. In the first scenario (B1), a constant set-point air temperature was 



 

23 

defined for the entire year. In the second scenario (B2), two different heating and cooling seasons 

were defined. It was assumed that there is no heating load during the cooling season, even if the 

indoor air temperature drops below the thermostat set-point. On the other hand, different set-points 

were defined based on the average outdoor temperature of that month. The heating season was 

assumed to start from November, lasting until the end of April. 

In some MLR cases, the results of the dependent variable at the time t is highly influenced 

by the value of the independent variables at the time t as well as some previous time steps. In these 

cases (such as buildings with high thermal mass), the dependent variables are predicted based on 

the previously observed set of independent variables. Due to its effectiveness in predicting the 

dependent variable, this method is common to forecast future results [78]. The autoregressive (AR) 

method is a linear prediction time series method which works based on the simple exponential 

smoothing method, and was use in this example: 
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where α, β and γ are the coefficients obtained from auto regression, C is a constant and Xk are the 

input parameters of the system. For instance, for a low-rise multifamily residential building, this 

value was determined to be 4. To determine the best fit, two criteria were checked; having the 

highest R-value while maintaining the P-value within 95% confident interval. 

3.3.1.4 Results 

From the regression analysis, for a low-rise multifamily residential building the best-fit 

results for t = 4 were the same value of 0.9966 for both multiple R and adjusted R2. These results 

indicated a high correlation between the input file and target values (heating demand profile). 

Having the coefficients of the regression analysis of the reference building, further simulations 

were performed using MLR method to predict the heating demand profile of B1 and B2 buildings. 

As shown in Table 3.1, building B1 had a common wall with another building on the east side and 

a constant set-point temperature of 24 °C. 

Figure 3.4 compares the results of B1 for the simplified model and the comprehensive 

simulation for December, showing an acceptable agreement. The R-value and standard error of the 

prediction (MSE) were found to be 0.9971 and 6.996, respectively. 
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Figure 3.4: Simulation (blue) versus prediction (red) graphs for heating demand profile [kWh] of B1 

showing a one-month (Dec.) period (top) and an 8-day (in mid-Dec.) period (bottom) 

Since MLR method mainly assumes that there is a linear relation between load at the time t 

and inputs, the linearity assumption was also checked. According to the left graph in Figure 3.5, 

the red line shows almost a linear relationship between predicted values and simulated ones. 

Furthermore, the magnitude of the errors between predicted and simulated profile is shown by the 

histogram as depicted on the right. 
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Figure 3.5: Results for B1 showing residual against fitted values (left) and error histogram (right) 

In the second scenario, the demand profile of building B2 was predicted only for the defined 

heating season. Unlike the previous scenario, based on the average outdoor temperature, the set-

point was varied between 21-24 °C. Figure 3.6 shows the predicted demand profile against the 

simulated profile of B2. Similar to B1, an acceptable agreement exists between the MLR predicted 

and simulated demand profiles. For B2, the R-value and standard error of the prediction (MSE) 

were 0.9947 and 5.462, respectively. The predicted heating demand profile for B2 showed slightly 

lower correlation with the demand profile obtained from detailed simulation. However, note that 

the duration of simulation was different for the two cases (i.e. 8,760 hours for B1 and 4,341 hours 

for B2). Figure 3.7 also proves the linearity assumption made earlier in proposing the MLR 

methods. It also illustrates the error histogram for B2. 
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Figure 3.6: Simulation (blue) versus prediction (red) graph for heating demand profile [kWh] of B2 

including the heating season (top) and 10 days period in late Dec. till early Jan. (bottom) 

 
Figure 3.7: Results for B2 showing residual against fitted values (left) and error histogram (right) 
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3.3.2 Electrically heated floor 

In cold climates, electricity demand for space heating becomes a critical issue for utility 

companies during certain periods of the day. Shifting a portion or all the demand to off-peak 

periods can help reduce peak demand and reduce stress on the electrical grid. Sensible TES 

systems, particularly electrically heated floors (EHF), can store thermal energy in buildings during 

the off-peak periods and release it during the peak periods while maintaining occupants’ thermal 

comfort. 

3.3.2.1 Background 

To improve the performance of floor heating systems, it is important to understand the 

behavior and the importance of each layer of the assembly on their performance. The insulation 

layer between the ground and the floor heating system has a considerable influence on its 

performance. A thicker insulation layer is required to reduce heat losses to the ground for a floor 

heating system compared to a conventional system [96, 97]. Moreover, the concrete thickness 

affects the system performance. Using a hydronic floor heating system with concrete, the impact 

of the concrete layer on the performance of hydronic heating system was assessed where the floor 

surface temperature was found to be higher when the concrete layer was thin [98]. 

Although floor heating systems can shift part of or the entire space-conditioning load from 

peak periods to off-peak periods, they may not be able to provide the required thermal comfort, 

especially with intermittent heating mode. This can be investigated using a building simulation 

software, such as TRNSYS. However, the existing models for an EHF in TRNSYS do not allow 

the consideration of the thermal mass on the top of the EHF. Therefore, in this example, a 

procedure was developed for the integration of an EHF in TRNSYS. Then, the developed model 

was validated using experimental data. 

3.3.2.2 Methodology 

To model an EHF in TRNSYS, two methods can be used. The first method consists of using 

the wall gain which is defined as “an energy flux to the inside wall surface”. Considering that in 

TRNSYS the term “wall” is used whether it is positioned as an actual wall, floor or roof, the wall 

gain is thus analogous to simply defining a given heat flux on a surface. However, the wall gain 

can only be defined on the top of the surface and not within it, and consequently may change the 

storage system behavior. 

The other method is to use the active layer in TRNSYS, which is designed for hydronic floor 

heating systems. By choosing a high water flow rate, a constant water temperature can be assumed, 

which can then behave as an EHF. However, the use of the active layer requires determination of 

the relationship between the parameters of the active layer (flow, pipe diameter, pipe conductivity, 

water temperature, etc.) and the EHF power. Moreover, to use this type of layer, some hypotheses 

should be verified [99], which may limit the parametric study. 

In this example, the wall gain method was selected, with some modifications to go beyond 

the presented limit. Few modifications must be made in the floor assembly to use the wall gain for 
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an EHF integrated in a building. In an EHF, heating elements are uniformly placed within the 

concrete. Thus, the power is evenly distributed, and the concept of constant power gain can be 

applied to EHF. Then, to model the heat flux, a wall gain was used. To apply this surface gain for 

such application, a fictitious zone was created below the room zone, as presented in Figure 3.8. By 

having the size of the air volume of this fictitious zone infinitesimally small and assuming a high 

heat transfer coefficient for the fictitious zone, a perfect contact between the two layers can be 

assumed. In addition, the perimeter heat losses were neglected since the height of the air node of the 

fictitious zone is very small. 

As depicted in Figure 3.8, the fictitious zone has one floor (connected to the ground) and one 

ceiling (connected to the room zone). Coupled together, these two zones represent all layers of the 

floor assembly. The wall gain, used as a surface gain (the EHF), is added on the upper-surface of 

the lower-wall (between the Floor_1 and Floor_2 as shown in Figure 3.9) to model the wires. The 

total thickness of each material (insulation, concrete and plywood) is the same in the two 

configurations. 

 
Figure 3.8: Conventional configuration of a room in TRNSYS (left) and configuration with the added 

fictitious zone in TRNSYS (right). 

 
Figure 3.9: Conventional configuration of an EHF (electrically heated floor) (left) and configuration of 

the floor in TRNSYS with the added fictitious zone and the wall gain (right) 

3.3.2.3 System description 

The developed model was applied to a residential building in Montreal, Canada (Figure 

3.10), which had been previously validated for electric baseboard with field measurement data 

[100] and used in previous studies [101]. To validate the model, the main concern was to make 

sure that the fictitious zone was properly created, and the proposed wall gain approach simulates 

the behavior of the system accurately. 
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Figure 3.10: Experimental building including its picture (left), and its zones (right) 

3.3.2.4 Results 

In this section, the results for energy validation, temperature validation and inter-model 

comparison are presented. To validate the integration of the fictitious zone, the wall gain was set 

to zero, and electrical baseboards were used to heat the building with the same control strategy as 

the one used earlier (operating all day as a function of the indoor temperature with a set-point at 

21 °C). Simulations were performed for one month (January), for the reference building (equipped 

with electrical baseboards only) and the modified one (with electrical baseboards and the EHF 

structure with the wall gain set to zero). The energy consumption of the two heating systems was 

compared by calculating the normalized mean bias error (NMBE). Details about the calculation 

procedure for this statistical index are accessible in the ASHRAE Guideline 14-2014 [102]. The 

results are presented in Table 3.2 where the passive EHF model is shown not to have any adverse 

effect on the building performance. 

Table 3.2: Statistical index to compare energy consumptions of the reference and modified buildings 

Statistical index Monthly Hourly 

NMBE 0.20% 1.91% 

To validate the assumption of perfect contact between the two concrete layers, the 

temperature on the bottom of Floor_1 was compared to the temperature on the top of Floor_2 (see 

Figure 3.8). These temperatures were obtained from TRNSYS simulation. The temperature 

difference between the upper side of Floor_2 and the lower side of Floor_1 was calculated for ten 

days. To ignore the initial condition effect, only the last eight days were considered for the analysis. 

The results showed an NMBE of less than 1%. 

The inter-model comparison was conducted through the development of a finite-element 

mathematical model in MATLAB and validated using LISA, a CFD software. The radiant floor in 

the MATLAB environment is analyzed in two dimensions with the electric heating cables running 

perpendicular to the two considered axes. The objective was to analyze the temperature of the 

cable as well as the concrete in proximity to the cables. The size of the analyzed wires was 6.25 

mm. The cable was assumed to be a square, with dimensions of 6.25 mm  6.25 mm. The 
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dimensions governed the size of the elemental volumes around the cable. The discretization of the 

concrete around the wire is shown in Figure 3.11. 

 

 

 
Figure 3.11: Discretization of thermal mass around electric heating cables 

The model was validated by comparing its prediction to LISA. This simulation software is 

designed for matrix analyses using finite element analysis for complicated geometries of many 

types such as structural, heat flow and acoustics. The discretization of the thermal mass and cables 

in the LISA graphical interface was executed to achieve much smaller elemental volumes. In 

addition, the arrangement of the nodes was performed in a way to have the nodes much closer to 

one another near the cable. There was an acceptable agreement between the predictions made by 

the two models. Error values of 0.2% and 3.6% were observed for the floor surface temperature 

and electrical cable temperature, respectively. The temperature distribution from the MATLAB 

interface is shown in Figure 3.12 for an initial concrete temperature of 20 °C and a charging 

duration of 10 hours. 

 
Figure 3.12: Temperature distribution within the zone after 10 hours of continuous heating 

The predicted temperature at the heating cable height from an equivalent TRNSYS study 

was 32.38 °C, while the 2D MATLAB model predicted a temperature of 35.48 °C in close 

proximity to the cables. This shows that for this type of system, a 1D analysis (TRNSYS model) 
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underestimated the temperature of the cables. However, the average temperature along the height 

of the cables from the 2D model output was 31.11 °C, which is very close to the 1D model. The 

average surface temperature of the 2D model was 24.26 °C. The floor surface was almost 

isothermal due to the concrete thickness in the assembly. Nonetheless, the same quantity of heat 

was stored in both models, with a difference of only 0.312%. The TRNSYS simulation 

overestimated the surface temperature by approximately 1 °C. 

3.3.3 Triplex tube heat exchanger with PCM 

PCMs received considerable attention for building and district TES applications in recent 

years. This is mainly due to the high thermal storage capacity of PCMs compared to the sensible 

heat storage methods. 

The ultimate goal of charging any thermal storage system is to use the stored heat when 

needed. Generally, PCM storages could be classified into two major categories based on their 

charging/discharging capabilities. The first category includes those storages which are 

consecutively charged and discharged by the same heat transfer fluid (HTF) path. For instance, the 

same tube first carries the hot HTF to charge the storage and then the cold HTF is flown through 

to discharge it. In essence, such storages are not capable of simultaneous charging and discharging 

(SCD) due to the restricted configuration. An insulated shell and tube heat exchanger (STHX) is 

an example of such storages. In contrast, the second category is capable of SCD due to the separate 

HTF paths. Thus, based on the control strategy, occupant behavior, etc. the PCM could undergo 

charging or discharging or a combination of both. 

Storages of the first category are the most common ones and are not able to efficiently handle 

continuous operation, when the storage needs to be simultaneously charged and discharged. In real 

life applications, PCMs might go through SCD several times. In such scenarios, a PCM undergoes 

charging from one hand, while it simultaneously faces discharging from the other. Specifically, 

SCD can happen when dealing with unpredictable occupant behavior or intermittent consumption. 

For instance, in the case of solar domestic hot water (SDHW), water consumption might occur 

during sunshine hours; i.e. at the same time when the thermal storage is being charged. 

Despite the applicability of the second type storages, the issue of simultaneous charging and 

discharging did not receive enough attention from the research community especially because it is 

not an efficient and desirable way of heat transfer. Besides, researchers face several challenges for 

such systems regarding the thermal conductivity enhancement of the PCM and optimizing the heat 

exchange area. 

For efficient integration of TES systems with PCM in buildings and districts, storage systems 

should be able to handle different charging and discharging scenarios. Understanding and 

investigating the heat transfer mechanisms inside thermal storage systems of the second category 

is necessary to develop simple and reliable models of such systems, which can be used to optimize 

the integration. 
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3.3.3.1 Background 

According to the literature, the numerical analysis of the phase change process of PCMs 

could generally be classified into two major categories based on the considered heat transfer 

mechanism: the pure conduction (PC) model and the combined conduction and natural convection 

(CCNC) model. Early numerical modeling of the process considered only conduction as the 

dominant heat transfer mechanism during the melting and solidification processes [103]. This is 

equivalent to a circular (or cylindrical in 3D) PCM melting front shape around a tube [104, 105]. 

However, during the phase change process, the density changes create buoyancy forces resulting 

in natural convection in the melted PCM, which affects the heat transfer. The effect of natural 

convection on the phase change process has been reported experimentally [106, 107]. 

Nevertheless, some simple approaches (such as the well-known ε-NTU approach for heat 

exchanger design) ignore the effect of natural convection. Ignoring this effect resulted in the 

underestimation of effectiveness values during melting and solidification processes [108]. 

Therefore, it is important to compare the results of the real process considering the effect of natural 

convection with those of the pure conduction assumption in order to understand the deviation of 

such an assumption from the reality. 

The literature about phase change process of PCMs had a routine trend over the course of 

these years. This trend includes investigation of a PCM under a one-time charging or one-time 

discharging process or considering consecutive charging and discharging periods. Therefore, it is 

assumed that the PCM is initially completely melted/solidified and then it undergoes 

solidification/melting. This ideal assumption ignores the fact that in real life applications, PCMs 

might, as presented earlier, go through SCD. In this example, the results of a numerical study 

related to a triplex tube heat exchanger (TTHX) under SCD is presented. 

3.3.3.2 System description 

Certain configurations have the capability of providing SCD such as TTHXs. Basically, a 

TTHX is a concentric configuration of three tubes. For thermal storage applications, the middle 

tube is filled with a PCM while the inner and outer ones carry the HTFs. Therefore, the PCM is 

surrounded in an annulus as shown in Figure 3.13. The heat exchanger had inner and middle tubes 

with nominal diameters of 2 and 5 inches, respectively. Thus, the inner tube had a radius (ri) of 

25.51 mm and a thickness of 1.47 mm. The middle tube had a radius (ro) of 62.32 mm with 4.32 

mm of thickness. 
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Figure 3.13: Schematic representation of the triplex tube heat exchanger 

A commercial PCM (RT31, Rubitherm Technologies GmbH) was considered for the 

investigation. Table 3.3 shows the thermophysical properties of the PCM, which filled the middle 

space in the TTHX as shown in Figure 3.13. 

Table 3.3: Thermophysical properties of RT31 [109] 

Property Symbol Value 

Solidus temperature Ts 300.15 K (27 °C) 

Liquidus temperature Tl 306.15 K (33 °C) 

Solid density ρs 880 kg/m3 

Liquid density ρl 760 kg/m3 

Specific heat capacity Cp 2,000 J/kg.K 

Latent heat of fusion λ 170,000 J/kg 

Thermal conductivity k 0.2 W/m.K 

Thermal expansion coefficient β 0.00076 1/K 

Dynamic viscosity μ 0.002508 kg/m.s 

3.3.3.3 Methodology 

In this section, the modeling procedure and its assumptions as well as the initial and 

boundary conditions are presented. 

According to the physics of the problem as well as the common assumptions used in the 

literature, the following assumptions were made for the PCM phase change modeling: 

• The flow of the liquid PCM was considered as laminar, incompressible Newtonian fluid 

flow, 

• Viscous dissipation was neglected since large velocity gradients were not present, 

• No-slip boundary condition was present, 

• At the boundaries, heat transfer occurred with the corresponding HTF (Dirichlet boundary 

condition), 

• Liquid fraction variation was assumed to be linear with temperature, and 

• Phase-wise constant thermophysical properties for the PCM except for the density, which 

was evaluated based on Boussinesq approximation to account for the buoyancy forces. 
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Since the problem was symmetric ( ), half of the annulus was modeled to save 

computational time. The governing equations were developed as follows: 

 Continuity equation 

Based on the assumptions, the continuity equation is: 
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1 1

0rrv v
t r r r
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
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(3.6) 

 Momentum balance 

To develop momentum balance equations, Darcy’s law was used to account for the flow of 

the mushy PCM due to the natural convection. The law appears as a source term in the momentum 

balance [110]: 

 

(3.7) 

where γ is the liquid fraction of the melted PCM, which will be presented later. To avoid division 

by zero, ε is added to the denominator with the value of 0.001 [111]. The mushy zone parameter 

C in Equation (3.7) is a measure that indicates the steepness of reaching zero velocity during 

solidification. In this example, a value of 105 kg.m-3.s-1 was considered for this parameter. The 

following equations were developed for the two velocity components: 
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(3.9) 

Boussinesq approximation was introduced to account for the natural convection process in 

the melted PCM [111, 112]: 

 

(3.10) 

where 𝛽 is the thermal expansion coefficient. 
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 Energy balance 

Enthalpy method was adopted for the problem since it has been proven to prevent the 

difficulties of phase change front tracking of the normal energy balance equation [111]. Energy 

balance in terms of enthalpy variations is: 
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(3.11) 

where the source term is: 

 

(3.12) 

In these equations h and ΔH account for sensible and latent heat, respectively. Furthermore: 

 
(3.13) 

where γ is the liquid fraction whose variation was assumed to be linear during the phase change 

process: 
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 Initial and boundary conditions 

According to the previous assumptions and Figure 3.13, the PCM was heated by the inner 

tube carrying hot heat transfer fluid (HHTF), while it was simultaneously cooled down by the cold 

heat transfer fluid (CHTF). Therefore, initial and boundary conditions for inside heating/outside 

cooling mode were defined as: 
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(3.15) 

while for outside heating/inside cooling only the HTF temperatures were swapped at inner and 

outer boundaries. Constant wall temperature values of 40 °C and 20 °C were assumed for the 

HHTF and CHTF, respectively. The PCM was assumed to be initially fully melted or solidified 

depending on the case under investigation. 

 Software tools 

There is several commercial software available for numerical analysis of the 

melting/solidification process. However, according to a recent review [113], ANSYS Fluent is the 

most widely accepted and utilized software among researchers. Therefore, numerical study of the 

developed model was conducted using ANSYS Fluent v16.2. ANSYS Fluent uses the enthalpy-

porosity approach in which the mushy zone is considered as a porous medium where the liquid 

fraction is its porosity. 

A step-by-step approach was taken in ANSYS Workbench to simulate the process. First, the 

2D symmetric half of the annulus was sketched in the DesignModeler environment. Thereafter, 

ANSYS Meshing generated the mesh. Then, the simulation was set up in ANSYS Fluent 

environment. To solve the equations, pressure-based solver was used since it is the only option in 

the software for solving melting/solidification processes. Semi-implicit pressure-linked equation 

(SIMPLE) method was used for pressure-velocity coupling. For spatial discretization of pressure 

and momentum, PRESTO (pressure staggering option) and QUICK schemes were adopted, 

respectively. 

3.3.3.4 Results 

This section presented the numerical investigation results for simultaneously charged and 

discharged PCM with different heat transfer modes and different initial conditions. Eight cases 

were compared showing the effect of natural convection on the phase change process (see Figure 

3.14). The most important findings are: 
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• For the case of internal heating/external cooling, the natural convection did not affect 

the lower half of the system since it had almost similar temperature distribution; 

however, the top half was greatly affected by the buoyancy forces and natural 

convection of the melted PCM. On the other hand, for the case of internal 

cooling/external heating, the upward PCM motion affected the entire domain. 

• Depending on the initial condition of the PCM, different liquid fraction, temperature, 

and solid-liquid interface locations were observed, which was totally different from the 

results obtained from the pure conduction model. This shows how far from reality such 

an assumption could be and to have accurate modeling of SCD, natural convection 

should be considered. 

• Comparing the average temperature and liquid fraction results, it was found that the 

pure conduction model could be applied to the initially fully melted PCM under SCD 

with a small error, but for the initially solidified PCM neglecting the natural convection 

would result in an unacceptably high error. 

 

 Initially solidified Initially melted 

Internal heating/ 

external cooling 

  

Internal cooling/ 

external heating 

  

Figure 3.14: Comparison of the steady solid-liquid interface for pure conduction model (left half) and 

combined conduction and natural convection model (right half) for the phase change material 

3.3.4 Shell and tube heat exchanger with PCM 

Shell and tube heat exchanges (STHXs) are used in several engineering applications 

particularly due to their manufacturing simplicity and economic feasibility [114]. Agyenim et al. 

reviewed the materials, heat transfer and phase change problem formulation for latent heat TES 

units [115]. It was concluded that the most intensely studied unit was the shell and tube storage, 
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accounting for about 70% of publications. Latent heat storage STHXs have found application in 

solar domestic hot water systems [114], solar thermal plants [116], solar collectors [117], etc. 

The possible heat transfer mechanisms in PCMs are conduction, convection or a combination 

of both. Therefore, the simulation methods in the literature are based on the considered heat 

transfer mechanism: the pure conduction (PC) model and the combined conduction and natural 

convection (CCNC) model. Due to the complexity of the CCNC model, to account for the 

buoyancy effect during the melting process, effective thermal conductivity was introduced in order 

to have better accuracy in the ε-NTU method. Comparing the results of the ε-NTU method (1D) 

and CFD (3D) with experimental data [108], it was found that the 1D ε-NTU method could be 

utilized for PCM heat exchanger design instead of the complicated time-consuming 3D CFD if the 

natural convection is accurately accounted by the effective thermal conductivity. It is common to 

develop power law effective thermal conductivity correlations as a function of Rayleigh number; 

i.e. c(Ra)n [118-120]. Nevertheless, the main disadvantages of effective thermal conductivity are: 

(1) experimental data should be available a priori to evaluate the effective thermal conductivity; 

(2) derivation of effective thermal conductivity is a tedious task since several thermal conductivity 

values should be examined to find the one that has similar heat transfer rate as that of the 

experimental data; (3) a constant value cannot be designated to the effective thermal conductivity 

of a fluid with varying temperature [121]; and (4) despite all the complexity, it cannot provide 

information about the melting front location since it is essentially a conduction model. 

3.3.4.1 Background 

During the phase change process, knowing the location of melting front is greatly important 

since it shows what portion of the storage has gone through the phase change (also known as the 

liquid fraction) as well as the speed of the front propagation. However, this knowledge has been 

proven to be hard to obtain, particularly experimentally. Calculation of liquid fraction from 

experimental data was formerly conducted by interruption of the process at various stages to 

remove the remaining solid part [122]. However, in recent years, utilization of transparent tubes 

for direct visual observation [123] or digital high resolution photography [124], which might 

include image processing [125], replaced the old technique. Due to such complexities, it is 

preferred to obtain liquid fraction values from numerical analysis. 

In early numerical studies, front tracking was a great challenge. The problem was the 

complexity of simultaneously solving the conventional energy equation for solid and liquid 

domains together with the energy balance at the melting front (i.e. a moving-boundary problem). 

However, the introduction of enthalpy method significantly improved numerical studies by 

replacing the simultaneous solving approach with a single enthalpy-based energy equation for the 

whole domain [111]. Nevertheless, melting front tracking by enthalpy method is a two-step 

process, where first the enthalpy values are calculated and then the location of the melting front is 

determined from the respective temperature values [126]. Furthermore, as of today, the numerical 

analysis is still complicated and computationally intense and requires expertise to develop in-house 

codes or familiarity with commercial software. 
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Therefore, several studies developed correlations to characterize the phase change process 

within PCMs. According to the literature, most of the old studies focused on the phase change time 

by developing correlations for Fourier number (Fo), whereas liquid fraction (γ) correlations 

received attention more recently. Besides, absence of Rayleigh number (Ra) in many correlations 

shows that the effect of natural convection was neglected. Overall, despite separate correlation 

developments for natural convection as well as pure conduction model, no study has focused on a 

correlation between these two models. 

Therefore, it is desirable to develop a simplified method, which (1) can provide the results 

of the CCNC model from PC model results and (2) can approximate the melting front location 

(outperforming the effective thermal conductivity method). 

3.3.4.2 System description 

In the horizontal STHXs, the PCM filled the shell side forming an annulus as shown in 

Figure 3.15. Three different geometries were used in this study to generate the required data. Table 

3.4 shows the geometrical properties of the investigated STHXs. The shell diameter was fixed 

whereas tube diameter was altered. 

 
Figure 3.15: Schematic representation of the STHXs 

Table 3.4: Geometrical properties of the STHXs [127] 

Geometry 

Radius (mm) 
Shell-to-tube 

radius ratio 
Tube Shell 

Inner Outer Inner Outer 

Geometry 1 25.51 26.98 62.32 65.09 2.31 

Geometry 2 37.86 39.69 62.32 65.09 1.57 

Geometry 3 49.97 52.38 62.32 65.09 1.19 

Commercial paraffin-based PCMs (from Rubitherm Technologies GmbH) were considered 

for the investigation whose thermophysical properties are tabulated in Table 3.5. It should be noted 

that the highlighted PCM (RT35HC) was not included in the model development phase to be used 

later for verification purposes. 

 

 
 

PCM 

HTF 
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Table 3.5: Thermophysical properties of the PCMs [128] 

Property Dimension Symbol RT31 RT35 RT35HC RT44HC 

Solidus temperature K (°C) Ts 300.15 (27) 302.15 (29) 307.15 (34) 314.15 (41) 

Liquidus temperature K (°C) Tl 306.15 (33) 309.15 (36) 309.15 (36) 317.15 (44) 

Solid density kg/m3 ρs 880 860 880 800 

Liquid density kg/m3 ρl 760 770 770 700 

Specific heat capacity J/kg.K Cp 2,000 2,000 2,000 2,000 

Latent heat of fusion J/kg λ 170,000 160,000 240,000 250,000 

Thermal conductivity W/m.K k 0.2 0.2 0.2 0.2 

Thermal expansion coefficient 1/K β 0.00076 0.00076 0.00076 0.00076 

Dynamic viscosity kg/m.s μ 0.002508 0.002500 0.002700 0.003300 

3.3.4.3 Methodology 

The modeling approach has already been introduced and validated in an earlier study [129]. 

Nevertheless, the non-dimensionalized form of the equations are presented here. The 

dimensionless parameters are listed in Table 3.6. Moreover, modified pressure (P) is defined in a 

way that: 
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where p is the pressure. 

Table 3.6: List of dimensionless parameters 
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Substitution of these parameters in the governing equations yields where the continuity 

equation is: 
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The momentum balances in r and θ directions are: 
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Finally, the energy balance is: 
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To conduct simulations, each PCM (see Table 3.5) was used within each storage (see Table 

3.4). Table 3.7 shows the combination of Stefan numbers and shell-to-tube radius ratios (R). It 

should be noted that the three cases designated by “Ver” indicate the cases used for verification 

purpose. Since simulations were required for both PC and CCNC models, a total of 42 simulations 

were carried out. 

Table 3.7: The investigated values of Stefan and shell-to-tube radius ratios 

Case Ste R Case Ste R Case Ste R 

Case 1 0.16 2.31 Case 7 0.25 2.31 Case 13 0.47 2.31 

Case 2 0.16 1.57 Case 8 0.25 1.57 Case 14 0.47 1.57 

Case 3 0.16 1.19 Case 9 0.25 1.19 Case 15 0.47 1.19 

Case 4 0.24 2.31 Case 10 0.32 2.31 Case 16 0.50 2.31 

Case 5 0.24 1.57 Case 11 0.32 1.57 Case 17 0.50 1.57 

Case 6 0.24 1.19 Case 12 0.32 1.19 Case 18 0.50 1.19 

Ver 1 0.17 2.31 Ver 2 0.17 1.57 Ver 3 0.33 1.19 

In this example, the intent is to use the PC model liquid fraction as a measure of time to be 

able to link the PC and CCNC models. Therefore, instead of time, the liquid fraction of the CCNC 

model would be a function of that of the PC model. 

When dealing with the PC model, the melting front departs from the HTF tube towards the 

outer shell forming a circular shape (i.e. cylindrical in 3D). This is due to the fact that gravity has 

no effect on the results of this model. Therefore, the upper and lower halves of the system have 

equal liquid fraction values, which is equal to that of the PC model: 
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L U

PC PC PC     
(3.21) 

However, in reality, buoyancy forces create an upward melted PCM motion affecting the 

upper half of the system. The logic behind the method is to assume that the difference between the 

results of the CCNC and PC models is due to the natural convection: 

Conv CCNC PC     
(3.22) 

At the initial stages of melting, conduction is the dominant heat transfer mechanism. This is 

due to the lack of enough melted PCM to create an upward buoyancy-driven motion. As soon as 

enough PCM is melted, convection establishes, which later dominates the heat transfer. Based on 

this, the simplified method assumes that the lower half of the system remains the same as that of 

the PC model. This assumption is not far from reality, which has been reported in detail [130]. 

Therefore, the lower half would have a semi-circular (or semi-cylindrical in 3D) front. On the other 

hand, the effect of natural convection is designated solely to the upper half of the system. Thus, 

the difference between the CCNC and PC models is only attributed to the melting front propagation 

at the upper half, as long as the liquid fraction of the upper half is lower than unity. In other words, 

the upper and lower halves of the system would have two semi-circular (or semi-cylindrical in 3-

D) front shapes where the radius of the upper half’s front is larger than that of the lower half (see 

Figure 3.16). A correlation (f1) is developed to map the PC model liquid fraction to that of the 

upper half. 

 

Figure 3.16: Schematic representation of two separate melting fronts for upper and lower halves  

Once the upper half of the PCM is fully melted (i.e. when its liquid fraction reaches one), 

the rest of the melting is attributed to the lower half, differing it from the PC model. The melting 

process continues until the maximum liquid fraction value is reached. In such conditions, another 

correlation (f2) is developed to map the PC model liquid fraction to that of the lower half. When 

there are two separate melting fronts for the upper and lower halves, the overall liquid fraction 

value would be the average of the two: 

HTF 

Melted PCM 

Solid PCM 
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Therefore, the developed correlations are independent of time (i.e. Fourier number) and 

instead dependent on the liquid fraction of the PC model. Figure 3.17 shows the flowchart of the 

method for users. In order to generalize the flowcharts, the first decision symbol (i.e. the first 

diamond) compares the liquid and solid density values of the PCM. This is to make sure that the 

natural convection is designated to the correct half of the system. For several materials with lower 

liquid density, the buoyancy-induced motion is upward. However, for other materials such as 

water, the flow is downward. 

 
Figure 3.17: Flowchart of the novel front tracking method 

3.3.4.4 Results 

Figure 3.18 shows the variation of upper half liquid fraction values versus those of the pure 

conduction model. Despite showing the results for different PCMs, the figure is dominated by 
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three separate lines, each of which representing a geometry as presented in Table 3.4. Interestingly, 

the data for each geometry almost coincide, which confirms that the only effective parameter for 

the upper half liquid fraction versus that of the PC model is the geometrical properties of the 

system. In other words, the thermophysical properties of the PCMs have negligible effect. 

Therefore: 

   nPC

mU Rc    
(3.24) 

where c, m and n are the three constants of the equation and R is the shell-to-tube radius ratio: 

i

o

r

r
R   (3.25) 

 
Figure 3.18: Variation of the upper half liquid fraction versus PC model liquid fraction 

The multiple variable regression analysis was applied to the to the upper half liquid fraction 

data. Regression results with 95% confidence level using least-squares method for all the cases are 

graphically shown in Figure 3.19 and the constants are tabulated in Table 3.8. The figure also 

shows that the majority of the data points (about 95%) lie within the range of ±15% discrepancy 

from the linear curve. 
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Figure 3.19: Variation of the upper half liquid fraction versus the developed correlation 

Table 3.8: Constants of Equation (3.24) for the upper half liquid fraction 

C m n R2 Range 

3.981 3.747 2.553 0.9209 R = 1.19 – 2.31 

Correlation development for the lower half is not as straightforward as the upper half. First 

of all, in order to use the same correlation format for the lower half, some modifications are 

required. The reason is graphically shown in Figure 3.20 for Case 17 (see Table 3.7) as an example. 

 
Figure 3.20: Liquid fraction variation for Case 17 
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According to Figure 3.20, since the lower half correlation (f2) should initiate upon 

completion of melting in the upper half (shown by the vertical green line), its initial PC model 

liquid fraction value would be the last one of the upper half correlation (f1). In other words, for 

each case, there is a different liquid fraction value of the PC model (
fU

PC

, ), upon which the upper 

half is completely melted, which is the starting point for the lower half correlation. To have 

consistency with the upper half, the coordinate of the origin should be transformed to that point 

(shown by a red dot). Consequently, for the horizontal and vertical axes, the values are modified 

so that the initial value for all the cases is zero, which would otherwise be different for each case, 

making the regression meaningless: 

fU

PCPC

mod

PC

,   
(3.26) 

fU

PC

LmodL ,,    
(3.27) 

Another modification is related to the nature of conduction heat transfer. As the melting front 

propagates, the thermal resistance between the hot HTF tube and the melting front increases. 

Therefore, the heat transfer rate and consequently the rate of liquid fraction change decreases with 

time. Since this liquid fraction is used as the horizontal axis, whereas that of the lower half (which 

considers the effect of natural convection) is used as the vertical axis, after a certain period, the 

graph would become more and more vertical. The time when this happens (if any) depends on the 

thermophysical properties of the PCM, the geometrical properties of the thermal storage and the 

boundary conditions. To prevent complexity of the method and upon careful examination of the 

PC model data, it was found that prior to a certain time when the slope of PC model liquid fraction 

versus time is higher than 10-5, a format close to that of the upper half could be utilized. 

The variation of the modified lower half liquid fraction values versus the modified PC model 

results is shown in Figure 3.21. Again, three main separate lines exist in the figure per geometry; 

however, due to the vicinity of the data points, they are barely distinguishable. Therefore, a similar 

format to that of the upper half is adopted: 

   nmod

PC

mmodL Rc  ,  
(3.28) 
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Figure 3.21: Variation of the modified lower half liquid fraction versus modified PC model liquid fraction 

Figure 3.22 shows the regression results for all the cases and the obtained constants are 

shown in Table 3.9. The figure also shows that the majority of the data points (about 96%) lie 

within the range of ±10% discrepancy from the linear curve. 

 
Figure 3.22: Variation of the modified lower half liquid fraction versus the developed correlation 

Table 3.9: Constants of Equation (3.28) for the modified lower half liquid fraction 

C m n R2 Range 

0.6558 0.9259 0.3857 0.8999 R = 1.19 – 2.31 

Finally, since the method was developed using the three PCMs presented in Table 3.5, its 

application should be verified by a new PCM. To examine the developed method, the correlations 

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

M
o

d
if

ie
d

 l
o

w
er

 h
al

f 
li

q
u
id

 f
ra

ct
io

n
 (
γL

,m
o
d
)

PC model liquid fraction (γmod
PC

)

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10
Case 11
Case 12
Case 13
Case 14
Case 15
Case 16
Case 17
Case 18

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
o

d
if

ie
d
 l

o
w

er
 h

al
f 

li
q
u
id

 f
ra

ct
io

n
 

(γ
L

,m
o

d
)

c(R)m(γmod
PC)n

Data points

Correlation

+10%

-10%



 

48 

were used for a new PCM, RT35HC. For the three verification cases (see Table 3.7), the left and 

right graphs in Figure 3.23 show the verification of the developed correlations for the upper and 

lower halves, respectively. According to the figure, all data points of the upper half correlation lie 

within the range of ±15% discrepancy from the linear curve (the correlation). For the lower half 

there is also an acceptable agreement between the results from the correlation and the data points, 

which lie within the range of ±10% discrepancy. 

  
Figure 3.23: Verification of the developed correlations for the upper half (left) and modified lower half 

(right) liquid fractions 

3.3.5 Air-PCM heat exchanger 

On certain days, especially in spring and autumn, space heating or ventilation air heating 

may not be required during the daytime when the outdoor temperature is relatively high and solar 

radiation is available but that need usually arises after the sunset. In addition, some residential 

buildings do not need to be ventilated or heated to the comfort level during the day since occupants 

are not at home. These are the situations where a day-cycle thermal storage unit can be used in air-

based solar systems. Solar heat can be stored in the heat storage unit during the day when the heat 

supply exceeds the heating demand and it can be released later when otherwise. For that purpose, 

the latent heat of phase change can favorably be utilized. The main advantage of thermal storage 

with PCMs is the amount of heat which can be stored in a small temperature interval around the 

melting temperature. That amount of heat stored in a PCM is generally larger than in the case of 

sensible heat storage operating in the same temperature range. 

A general problem with most solar thermal systems is the need for thermal storage to balance 

the supply and demand of heat over a certain period. Numerous ways of integrating the PCM-

based heat storage with air-based solar thermal systems have been reported. One of the simplest 

ways is the integration of PCMs directly with the solar air collector. 

Compact storage module (CSM) panels provide a rather easy and flexible approach to 

building thermal storage units of a desired thermal storage capacity. The CSM panels can be 

arranged in several ways in the units. The basic arrangement is a row of parallel CSM panels with 

an air channel between the two adjacent panels. In order to increase the capacity of the heat storage 
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unit, the CSM panels can be added in all three spatial directions. However, even if the storage unit 

has the desired thermal capacity, that capacity may not be available in operation due to various 

heat transfer constraints. The simplified energy balance calculations may underestimate the 

problems with heat transfer between the HTF and the heat storage materials. 

3.3.5.1 Background 

Several numerical studies have been carried out on latent heat thermal storage with air as the 

HTF. However, many of the models neglect the heat exchange between the thermal storage unit 

and the ambient environment [131, 132]. Such simplification can be justified for thermal storage 

in passive cooling applications where the temperature difference between the PCM and the 

ambient air is rather small (usually less than 10 °C) and the heat storage cycles are relatively short. 

In the case of thermal storage for space heating, the temperature difference between the PCM and 

the ambient air can exceed 30 °C, resulting in a non-negligible heat loss over a certain period. 

Another assumption often made in modeling of the storage units with PCM slabs is the equal air 

flow rate in all air channels. This flow pattern can be achieved in laboratory experiments, but it is 

less likely in the case of the thermal storage units in actual building energy systems. 

Therefore, in this example, a simulation model was developed for the heat storage units 

comprising CSM panels filled with PCMs. The simulation model allowed considering the 

distribution of air flow rates in different air channels as well as the heat exchange with the ambient 

environment. 

3.3.5.2 System description 

A schematic of the air-PCM heat exchanger is shown in Figure 3.24. The air-PCM heat 

exchanger consists of several rows of CSM panels. The CSM panels are aluminum containers 

filled with a PCM. The model was validated with the experimental data for the air-PCM heat 

exchanger containing 100 CSM panels (5 rows of 20 panels) but the model is not limited to this 

number or this arrangement of the CSM panels. 

 
Figure 3.24: Schematic of the investigated heat storage unit (left) and the unit without the front and top 

walls revealing CSM panels (right) 

3.3.5.3 Methodology 

The model of the air-PCM heat exchanger was formulated with the numerical solution of 1D 

heat conduction including an internal heat source representing the PCM: 
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(3.30) 

where ρ, Cp, k, T, x, λ and γ are the density, specific heat, thermal conductivity, spatial coordinate 

(in the direction of the PCM layer thickness), latent heat of fusion and liquid fraction, respectively. 

The effective heat capacity method was adopted for latent heat modeling. The control 

volume method using the explicit scheme for the time derivative was utilized to solve the problem 

numerically. The detail of one of the sections (a sample computational domain) is shown in Figure 

3.25. The initial condition was the uniform temperature of the entire heat storage unit. The 

convective heat flux according to Newton's law of cooling was used as the boundary condition at 

the surfaces of the panels. The number of nodes used for the calculations could be specified in the 

model together with the number of sections which should be solved for each panel. Regardless of 

the number of sections, each of them was solved as a 1D heat transfer problem. The model 

accounted for the heat loss to the ambient environment. Several versions of the model were 

developed with different level of details. Understandably, the more detailed the model is the more 

calculation time is required for the simulation. 

 
Figure 3.25: Schematics of the numerical model (left) and a computational domain (right) 

3.3.5.4 Results 

The TRNSYS model of the PCM heat exchanger was used for a parametric study aimed at 

the reduction of peak air temperatures of ventilation air. The goal of the study was to investigate 

the potential of LHS in reducing the peak temperatures of outdoor air supplied to the ventilated 

space; thus, reducing the ventilation cooling load. The study was conducted for the typical 

meteorological year (TMY) of the city of Brno, Czech Republic. The simulated time period was 

from June 15 to August 31. The air-PCM heat exchanger containing 100 CSM panels 

(approximately 50 kg of PCM) was considered in the study. The study was performed for 4 phase 

change temperatures of PCM (22, 24, 26 and 28 °C) and 4 air flow rates of ventilation air (200, 
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100, 50 and 25 m3.h-1). The results for the phase change temperature of 24 °C and the ventilation 

air volumetric rate of 50 m3h-1 is shown in Figure 3.26. 

 
Figure 3.26: Effectiveness of an air-PCM heat exchanger in peak-shaving of ventilation air temperature  

3.3.6 Water-PCM heat exchanger 

Despite the fact that TES has been a main topic in research for the last 30 years (perticularly 

PCMs [133]), the release to market of efficient technologies for the cold storage systems using 

these materials is quite recent [134]. Due to the high costs of experimental tests in the real 

conditions of buildings, numerical simulation, developed analytical methods and different 

modeling are needed to predict the behavior and results of TES usage in buildings. These tools are 

necessary to optimize this technique and to make it more efficient and cost-effective. 

The system presented in this example will be part of the multi-energy production and storage 

systems of HIKARI project (details in Section 6.6.1), a positive energy district located in Lyon, 

France consisting of three buildings, combining commercial, residential and office usage. The 

exchanger will help to optimize and improve the performance of HIKARI’s absorption chiller. 

3.3.6.1 Background 

The aim of this example is to develop and validate a numerical model of an innovative water-

PCM heat exchanger for cooling purposes. This model was validated and then integrated into a 

building model to optimize the behavior of this innovative energy storage technology when 

coupled to other multi-source energy architectures. 

3.3.6.2 System description 

The system is an innovative thermal storage system at low temperature. In particular, it 

consists of 60 m3 of PCM (subject to a phase change between 8 and 9 °C) processed into a 

gelatinous form and enclosed in multilayer film with both water and oil resistance for ease of use. 

According to Figure 3.27, the gel is enclosed in cylindrical stick packages that are inserted in 

plastic cases, which are subsequently inserted in four insulated thermal storage tanks. 
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Figure 3.27: Latent heat thermal storage material package or gel pack (left), plastic case filled with gel 

packs (middle), and typical installation of the plastic cases into the isolated tank (right) 

A flow of water runs into each tank, entering in the system from tubes situated on the top of 

the tank, passing from little holes. The plastic cases have large apertures so as not to impede the 

water flow which runs into the tank when they are stacked in it. After passing through the gel sticks 

layer (PCM), the water exits the system passing through some openings present in other tubes 

located at the bottom of the tanks. 

 
Figure 3.28: Schematic representation of the thermal storage system 

3.3.6.3 Methodology 

The model of the system was developed using MATLAB Simulink to analyze the heat 

transfer between a cylinder of PCM and water. To obtain the dynamic model, the heat balance 

approach was chosen. It was based on the division of the analyzed system into a defined number 

of volume elements and the subsequent application of the energy balance equations for each of 

them. The first step was to analyze all the relevant energy flows present in the system to write the 

energy balance equation (i.e. conduction, convection and advection). 

The phase change problem of the heat storage medium was modeled using the apparent heat 

capacity method. It represents the phase change through an apparent increase of the PCM heat 

capacity value for a certain temperature range where the increase represents the corresponding 

latent heat absorption/release. 
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Once the energy balance equations were written, the finite difference method was employed 

to approximate the partial differential equations. 

3.3.6.4 Results 

Two validation studies were considered in this example (1) a CFD model designed using 

ANSYS Fluent and (2) an experimental prototype of the cold storage system, designed and 

constructed in laboratory conditions. The first (numerical) validation shows that there is a time 

difference between the two software’s results, even if the behavior can be considered similar 

(Figure 3.29). It could be caused by some input errors that cause the delay between the curves or 

by some assumptions made in the energy balance equations that are far from reality. 

 
Figure 3.29: Comparison of the temperature curves for the same point using MATLAB Simulink and 

ANSYS 

For the second validation, the results obtained from MATLAB Simulink were compared 

with the results obtained using an experimental prototype which reproduces the real system. It 

consisted of two Plexiglas tanks filled with water inside one of which plastic case filled with the 

PCM sticks was inserted. The water temperature in Tank 1 was regulated by an external cryostat 

and then sent to Tank 2, crossing the PCM modules layer, enabling the heat exchange (see Figure 

3.30). The second comparison, between the experimental results obtained from the prototype and 

the values obtained from MATLAB Simulink, shows a very similar behavior. As shown in Figure 

3.31, there is no delay as was found in the comparison with the CFD model in the freezing and 

melting processes, respectively. 
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Figure 3.30: Schematic representation of the experimental prototype 

  
Figure 3.31: Comparison of the temperature curves for the same point between the experimental and the 

MATLAB Simulink results for the solidification (left) and melting (right) processes 

3.3.7 Thermally activated wall panels containing PCM 

Thermally activated building structures (TABS) such as floor or wall heating or ceiling 

radiant cooling have received much attention in the past decade. An advantage of TABS is their 

large surface area which allows for lower temperature difference between the heat carrier and the 

ambient environment. Such conditions are favorable for enhancing the efficiency of the heat and 

cold sources (e.g. the COP of heat pumps). Another advantage of TABS is radiant heat transfer 

which makes it possible to achieve an acceptable level of occupant thermal comfort at lower indoor 

air temperatures during the heating season and higher indoor air temperatures in the cooling 

season. 

The heating and cooling capacity of TABS per unit area is limited; thus, these systems are 

not suitable for spaces with high heating or cooling loads. Moreover, radiant cooling systems alone 

are not suitable for climates or indoor spaces with high latent heat cooling loads as the moisture 

condensation on surfaces of TABS can result in mold growth and other problems. 

TABS can be extended with integrated latent heat storage in the form of PCMs [135] and 

thus be employed for other energy saving measures such as peak shaving, shifting of cooling load 
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or even nighttime cooling (under favorable climatic conditions). The increasing use of energy 

simulations in design and operation of buildings and HVAC systems brought about the 

development of the models of various HVAC system components including TABS [136]. TABS 

have high thermal inertia and therefore respond relatively slowly to changes in heating or cooling 

demand [137]. 

3.3.7.1 Background 

Simulation of buildings or HVAC systems performance usually covers a period of several 

weeks, months or even a year. Therefore, the computational demand for simulation models of 

buildings or HVAC systems can be quite constraining for their practical application. A substantial 

simplification of the simulated problem is usually necessary to reduce the computational demand. 

In this example, a quasi 1D model was developed for a thermally activated layer with PCM. 

3.3.7.2 System description 

Experimental data for model validation were acquired from an experimental room located at 

the Faculty of Civil Engineering of Brno University of Technology, Czech Republic. The 

thermally activated panels, shown in Figure 3.32, consisted of oriented strand boards (OSB) with 

gypsum plaster containing a microencapsulated PCM on one side and thermal insulation on the 

other. The plastic tubes for liquid HTF were embedded in the plaster. There were 17 U-shape 

plastic tubes in each panel (Figure 3.33). The tubes had an inner diameter of 2.35 mm, a wall 

thickness of 0.5 mm and were placed 15 mm from each other. The supply and return piping for the 

HTF was on one side of the panels; thus, the tubes were connected in a U-shape manner (with both 

the inlet and outlet at the same side of the panel). Four heights of the panels were experimentally 

tested (0.9 m, 1.25 m, 1.5 m and 2.0 m). 

 
Figure 3.32: Schematic representation of the thermally activated wall panel 



 

56 

 
Figure 3.33: Base plates with attached plastic tubes 

3.3.7.3 Methodology 

A quasi 1D model of thermally activated wall panels containing PCM was developed to 

obtain the average surface temperatures on each side of the panel and the outlet water temperature. 

The model was developed in MATLAB and subsequently implemented as a TRNSYS type. A 

schematic of the numerical model of a wall panel is shown in Figure 3.34. It was assumed that the 

HTF mass flow rate was the same in all 17 tubes. Besides, the following parameters were assumed 

to be constant: thermophysical properties of the plaster with PCM, the plaster thickness, the 

capillary tubes thickness and the overall thermal resistance of base plate with thermal insulation. 

The effective heat capacity method was used to account for enthalpy change of the PCM in the 

plaster. The heat conduction with a heat source was considered in the layer of plaster containing 

the PCM and a simple energy balance was used for the calculation of water temperature along the 

length of the tube. 

 
Figure 3.34: Schematic of the wall panel model 

The developed model (TRNSYS type) can be used as a stand-alone component or in 

combination with Type 56 (multi-zone building). The use of the panel with Type 56 is more 

complicated. As the model of wall panel is a separate type not integrated in Type 56, the input and 

output data need to be exchanged between Type 56 and the model of the panel (Figure 3.35). 

Qplaster,2

Qloss,2

twater,2

Qplaster,3

Qloss,3

twater,3

Qplaster,1

Qloss,1

twater,1

Qplaster,n

Qloss,n

twater,n

twater,in

mwater,in

twater,out

mwater,out

ts,i

Qtube,i

Qplaster,i

Qloss,i

twall,i

tboundary,i



 

57 

 
Figure 3.35: Thermally activated panel on an external wall 

3.3.7.4 Results 

The hot/cold water for thermal activation of the panels was provided by a reversible air-to-

water heat pump. Thermal imaging was used to acquire the surface temperatures of the panels. The 

average temperature of the plaster (the surface facing the room) was acquired in 5-minute intervals. 

The comparison of the experimental and simulation results for the panel with the height of 2 m is 

shown in Figure 3.36. Initially, the test room was cooled down to 18 °C and later it was heated up 

to 30 °C with thermally activated wall panels. The wall panels were installed on all surfaces of the 

experimental room (Figure 3.36). As the hot water was provided by the air-to-water heat pump, 

the water temperature was not constant but gradually increased during the experiment. The heat 

pump went through a defrosting mode about 1.5 hours into the experiment and as a result both the 

water temperature and the surface temperature of the panels decreased. 

   
Figure 3.36: Model validation (left) and thermal imaging results (right) 

3.3.8 High-temperature cooling system with PCM 

Free cooling can be defined as that amount of cooling which can be obtained from existing, 

additional or modified system components during low ambient conditions and used to partly or 

fully offset the load on mechanical refrigeration plant [138]. In building applications, there are two 

free cooling approaches: water-side free cooling and air-side free cooling. The water-side free 

cooling often adopts dry coolers or evaporative cooling towers to cool down the chilled water 
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without the need of mechanical cooling. The air-side free cooling uses fresh air and/or recirculated 

indoor air to cool down the building. 

3.3.8.1 Background 

It is noted that most of the applications found in the literature regarding PCM-based free 

cooling techniques used the air-side approach [139-141]. Conversely, a PCM-based heat 

exchanger can take advantage of free cooling conditions by using the water-side approach. The 

possibility of using the water-side approach effectively depends on two factors. First, the PCM-

based heat exchanger should be integrated into high-temperature cooling systems with chilled 

water at about 18-20 °C. Second, the PCM-based heat exchanger should be used in buildings 

located in cold climates, where ambient air temperature during summer nights falls below 16 °C 

(e.g. Scandinavian climate). 

3.3.8.2 System description 

A conceptual design of the PCM-based heat exchanger assembly is illustrated in Figure 3.37. 

It consisted of PCM layers embedded in a heat exchanger, a fan to enhance heat transfer and 

lamellas. 

 
Figure 3.37: Assembly of the PCM-based heat exchanger 

The working principle had two operation modes of charging and discharging. The charging 

process occurred during nighttime when lamellas were opened, and the fan blew the ambient air 

to solidify the PCM layers (store cooling energy). The discharging process occurred during 

daytime when lamellas were closed, isolating the heat exchanger from the outdoor. The return 

water flowing through the heat exchanger was at a temperature higher than the PCM melting point. 

Therefore, PCM layers absorbed heat, and the material melted. 
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3.3.8.3 Methodology 

The model of the PCM-based heat exchanger was developed in Modelica [84] using models 

from the “Buildings” library [85]. The computational domain is shown in Figure 3.38, which can 

be divided into water flow, wall, PCM slab and air flow cells. 

 
Figure 3.38: Schematic representation of the computational domain for the PCM-based heat exchanger 

showing cells and direction of fluids and heat transfer 

The energy in the water flow was carried from fluid cell to fluid cell diffusing into the 

adjacent wall cell by heat transfer using a convective heat transfer coefficient (hi), which is defined 

as: 

h

w
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d

Nuk
h   (3.31) 

where Nu is the Nusselt number calculated with the Dittus-Boelter correlations [142], kw is the 

thermal conductivity of water and dh is the hydraulic diameter. The convective heat transfer 

coefficient was calculated at every time-step according to the actual water mass flow rate. 

The wall cell transmitted energy to the adjacent PCM cell. Each PCM cell was further 

discretized into layers parallel to the wall where energy was transferred one dimensionally: 

   

























2

2 ,,

y

tyu
k

t

tyu
PCM  (3.32) 

where u is specific internal energy, kPCM is the thermal conductivity of the PCM and y is the vertical 

location. 

The Modelica model of the PCM-based heat exchanger is illustrated in Figure 3.39. The 

PCM slab was thermally connected to the air flow (ambient environment) through a convective 

heat transfer coefficient that varied according to the actual air mass flow rate between 25 W/m2K 
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(zero flow, natural convection) and 100 W/m2K (nominal flow, forced convection). During the 

discharging process (daytime) lamellas isolated the PCM slab from the air flow. This was modeled 

by using a thermal resistance. 

The air mass flow rate was modulated by a fan with variable speed, regulated by a PI 

controller. The actual air mass flow rate was controlled according to the surface temperature of the 

PCM slab, indicating the solidification stage of the material. A three-way valve modulated the 

water flow through the bypass. Table 3.10 shows the thermophysical properties of the PCM. 

 
Figure 3.39: Modelica model of the thermal plant configuration including a reversible heat pump and a 

PCM-based heat exchanger 

Table 3.10: Properties of the PCM (PureTemp 18) 

PCM properties Value 

Melting point 18 °C 

Heat storage capacity 192 kJ/kg 

Thermal conductivity 0.15-0.25 W/mK 

Density 860-950 kg/m3 

Specific heat  1470-1740 J/kgK 

3.3.8.4 Results 

To estimate the energy saving potential of the PCM-based heat exchanger, a simulation-

based experiment was carried out. The PCM-based heat exchanger was integrated into a novel 

HVAC system with the ability to provide simultaneous heating and cooling to buildings using a 

single hydronic circuit with water temperatures in the range 20-23 °C all year round [143]. The 

primary energy use of the novel HVAC system was calculated for four different configurations of 

the thermal plant: 
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• DHC: District heating/cooling (baseline) 

• HP: Reversible air-source heat pump 

• HP_DC: Reversible air-source heat pump with dry cooler 

• HP_PCM: Reversible air-source heat pump with PCM-based heat exchanger 

Simulations were performed for a fifteen-zone building model which is representative of the 

medium office building prototype, as described by the U.S. Department of Energy [144]. Annual 

simulations were run for the four thermal plant configurations. Figure 3.40 shows the annual 

primary energy use in terms of heating, cooling and auxiliary devices, such as circulating pumps 

and fans included in the configurations HP_DC and HP_PCM. The configuration HP_PCM has 

the best energy performance with an annual primary energy use of 6.3 kWh/m2, followed by the 

configuration HP_DC with 7.7 kWh/m2, the configuration HP with 10.9 kWh/m2 and the 

configuration DHC with 19.2 kWh/m2. 

 
Figure 3.40: Annual primary energy use for the four configurations 

When comparing thermal plant configurations with the baseline configuration DHC, energy 

savings of approximately 67%, 60% and 43% were achieved respectively for the configurations 

HP_PCM, HP_DC and HP. 

Since the configurations DHC and HP do not implement any free cooling strategy, 

mechanical cooling was required almost all over the year. Note that in large office buildings, 

interior zones tend to overheat due to the waste heat generated by internal factors (e.g. people, 

lighting and equipment) even during the coldest day. Therefore, cooling might be required in 

winter, too. 

The configuration HP_DC allowed avoiding the use of mechanical cooling for most of the 

year. Whenever ambient air temperature was suitable, the building cooling load could be rejected 

to the ambient by activating the fan in the dry cooler. However, the dry cooler could only be used 
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during operating hours of the system (daytime), meaning that ambient air temperatures were 

favorable for free cooling, especially during summer. Conversely, the configuration HP_PCM 

allowed avoiding mechanical cooling energy even during summer, except for very few days where 

ambient conditions during nighttime were not cold enough for a complete solidification of the 

PCM. 

3.3.9 Borehole heat exchanger 

To utilize the thermal capacity of the ground, the most favorable type of ground heat 

exchanger (GHE) is the vertical closed-loop GHE, also known as the borehole heat exchanger 

(BHE). To accurately design BHEs, or optimize system operation, including ground source heat 

pump (GSHP), a reliable thermal response model is essential. 

Modeling of BHEs is about the prediction of fluid temperature in the BHE loop or subsurface 

temperature distribution. Ground thermal response can be predicted using either analytical models 

or numerical models. There are some accuracy issues in different response time scales. They can 

be categorized into the short-term accuracy and long-term accuracy problems. The former problem 

is caused by the geometry simplification of GHE which is extremely slender, and the latter is 

caused by the simplified boundary condition of top and bottom-end of the ground. 

As stated, either a numerical or analytical approach can be used to predict the thermal 

response of a BHE. When examining the temperature response of a BHE, an analytical solution is 

a quick and convenient option to choose. However, in the process of deriving an analytical 

solution, many assumptions and simplifications are needed, specifically, the simplification of 

boundary conditions and geometry of a BHE. Those simplifications cause some accuracy 

problems, especially in short-term and long-term predictions. The validity range of classical 

analytical models at different time-scales, such as the infinite line source [145, 146], the infinite 

cylindrical source [145, 147], and the finite line source [148-151] can be found in the literature 

[152-154] hence detailed discussions are not provided here. 

A typical problem is the inaccurate short-time transient behavior in which the temperature 

response of BHE itself is important. Additionally, in a long-term simulation of temperature 

response, the axial heat transfer near the ground surface and the bottom-end of BHE has a 

significant impact on the accuracy. Although, research has been actively conducted to overcome 

the drawbacks of classical analytical solutions, a time-varying ground surface boundary condition 

is very difficult to consider in an analytical solution. Most analytical solutions which consider the 

axial effect assign a constant Dirichlet boundary condition to the ground surface. However, this is 

far from the actual condition where the ground surface temperature is affected by BHE operation. 

3.3.9.1 Background 

Although a numerical model is computationally more intensive compared to analytical 

models, a numerical approach is easier to achieve the required accuracy at all time scales than the 

analytical approach because the numerical models use fewer assumptions and have flexibility in 

imposing the boundary conditions. However, the advantages of numerical approach have not been 
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fully exploited in this field. In particular, although boundary conditions in a numerical model can 

have a time-varying form for a realistic consideration of the heat balance at ground surface, such 

study has not been reported yet. This is especially important in a long-term prediction. 

To address the mentioned issues, in this example, a numerical model is presented based on 

the finite element method. The geometric shape of a BHE was fully discretized and the heat 

balance model of the ground surface was also integrated into the numerical model to examine the 

impact of the ground surface boundary condition on the long-term prediction. The developed 

model was coupled with a building simulation program, and the coupled simulation was conducted 

for 10 years to examine the long-term performance of a GSHP and subsurface thermal state. 

3.3.9.2 System description 

Figure 3.41 shows the boundary condition and geometry of the numerical BHE model. The 

thermal properties of each component are listed in Table 3.11. To generate the load profile assigned 

to a BHE, EnergyPlus 8.0 was used [155]. Weather data generated by the expanded AMeDAS 

(EA) method [156] were used for the load calculation and ground heat flux model integrated in the 

numerical BHE model. The coupling scheme is shown in Figure 3.42. 

 

Figure 3.41: Calculation domain, geometry of BHE, and boundary conditions 

Table 3.11: Thermal properties used in the numerical model 

Properties Fluid U-tube Backfill Ground 

Volumetric heat capacity [MJ/(m3K)] 4.2 1.8 2.8 2.8 

Thermal conductivity [W/(mK)] 0.6 0.38 1.72 1.72 

A
d

ia
b

at
ic

6 m

6 
m

1
0

0
 m

Section A

17 °C Dirichlet

Geometry of BHE

Inner dia.:27 mm
Outer dia.:34 mm

BHE dia.:165 mm

Boundary condition of 

Section A

Adiabatic

A
d

ia
b

at
ic

Adiabatic

BHE 100 m

50 mm

5
0

 m

BHE inlet :

Time varying 

Dirichlet B.C.

Ground surface :

Time varying 

Neumann B.C.



 

64 

 
Figure 3.42: The coupled simulation scheme and data transfer among the simulation models 

3.3.9.3 Methodology 

The ground was modeled from a macroscopic view. Except for the fluid flow in the U-tube, 

the model considered neither the advective heat transfer by groundwater flow nor the natural 

convection in the porous medium. Therefore, all thermal properties of components were 

considered as bulk properties. The fluid flow in the U-tube was simplified using a one-dimensional 

(1D) flow element based on the law of Hagen–Poiseuille flow [156-158]. Except for the 1D flow 

element, the entire numerical model domain is governed by the following equation of energy 

conservation: 
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The initial temperature of the entire calculation domain was 17 °C. The adiabatic boundary 

condition was assigned to the sides of a section. A Dirichlet condition of 17 °C was set to the 

bottom surface (z = -150 m) and a time-varying Neumann boundary condition was assigned to the 

top surface. For the inlet and outlet of the U-tube (represented using a 1D-flow element) a 

volumetric flow rate of 17 L/min was assigned and the inlet had an additional time-varying 

Dirichlet boundary condition to describe the change in the fluid temperature in terms of the heat 

exchange between the circulating fluid and heat pump. The time-varying boundary condition for 

BHE inlet is defined by: 
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The heat balance of ground surface can be expressed as Equation (3.35) [159] whose 

schematic is depicted in Figure 3.43. The net heat flux Qg is a time-varying value and assigned to 

the ground surface in the calculation model. 
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(3.35) 

 

Figure 3.43: Schematic of heat balance on ground surface and flux components 

3.3.9.4 Results 

The simulation was conducted for 10 years. The temperature distribution across the 

horizontal and vertical cross-sections for the 221th day (at 6 PM) in the tenth year of operation 

(when the peak fluid temperature occurred) are shown in Figure 3.44 and Figure 3.45, respectively. 

The maximum entrance fluid temperature was 43.22 °C. Overall, the ground temperature had risen 

compared with the initial temperature (17 °C) due to the dominated cooling load. The ground 

temperature was approximately 23 °C and 18 °C at the depths of 100 m and 120 m, respectively. 

This indicated the importance of the thermal diffusion in axial direction in long-term simulation. 

The steep axial temperature gradient can also be observed below the depth of 100 m in Figure 

3.45. This steep vertical temperature gradient below the BHE indicated a large heat flux in the 

vertical direction. If this effect were not considered, the subsurface temperature under conditions 

dominated by the cooling load would be overestimated. 

 
Keys: Rsr: absorbed global solar irradiation, Rlrg: longwave radiation from ground to sky, Rlrs: longwave radiation 

from sky to ground, Sg: sensible heat transfer on the ground surface, and Lg: latent heat transfer on the ground 

surface. All the components have the unit W/m2 
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Figure 3.44: Temperature distribution of horizontal sections at different depths at 6:00 PM on the 221st 

day in the 10th year: (a) z = -2 m, (b) z = -10 m, (c) z = -50 m, and (d) z = -100 m 
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Figure 3.45: Temperature distribution of vertical sections at different y coordinates; (a) y = 0 m, and (b) y 

= 6 m (y = -6 m showed almost the same distribution) 

The vertical temperature distribution presents some interesting features. Near the ground 

surface, the highest temperature is visible, because in July the global solar irradiation is strong 

(around 1,000 W/m2). However, below the shallow part, a convex shaped vertical temperature 

distribution can be observed around z = -5 m, with lower temperature (about 24 °C) than the 

surrounding area. This indicates the cooling effect from the ground surface boundary during winter 

and spring still influences the ground temperature due to the large heat capacity of the ground. 

Such a heat storage effect by the time-varying boundary condition is difficult to consider in 

analytical models. Especially, when a ground heat exchanger is installed in shallow ground of 

which the depth is less than -20 m (e.g. a horizontal heat exchanger or energy piles) considering 

the effect of the time-varying surface boundary can be a very important factor for predicting the 

long-term operation. Based on the results, it was concluded that the ground surface boundary and 

the axial effect should be considered for a better long-term simulation of ground thermal response.  
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4 Chapter 4: Application to districts 

In recent years, many countries have benefited from a rapid growth in the number of the 

installed DHSs [160]. In many cities, the requirements for space heating (SH) and domestic hot 

water (DHW) can be entirely supplied by a DHS. Figure 4.1 shows the percentage of DHSs utilized 

in Europe by 2012. Many long and short-term plans have also been developed to fully take 

advantage of RES. An example is a plan in Denmark to employ100% of the energy demand from 

renewable sources [2, 3]. In addition to energy efficiency, DHSs help to minimize several safety 

and fuel transportation issues due to the absence of any combustion system for the space heating 

at the end-user level. The absence of boilers also elevates the available usable floor area. Moreover, 

individual users restrain from dependency on installation and maintenance of boilers, furnaces, 

chillers and/or air conditioning [161]. 

 
Figure 4.1: Share of low temperature heat demand in Europe met by DHSs [162] 

Nevertheless, DHS implementation requires a high level of management, especially in 

regions with a high share of renewable energy systems (e.g. Germany, Sweden and Denmark). In 

that case, most end-users have to remain connected to the electrical grid to import/export excess 

electricity during the fluctuations of power and heat demand in the operation period [161]. Note 

that cost optimization is necessary to justify the fluctuations in heating and electricity consumption 

in accordance with peak and off-peak tariffs from electrical distribution companies [161]. 

In this chapter, the main elements of a DHS along with its fundamentals are presented. 

Furthermore, the available tools for modeling a DHS are briefly discussed and a tool selection 

process is proposed. Finally, two unique examples are illustrated for DHS modeling.  
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4.1 Elements 

DHSs are broadly designed to be localized to mainly make use of the excess heat in a specific 

area. The supply of heat depends on the available local energy sources, topography of 

suppliers/end-users and DHW needs [163]. The design of such systems requires a case-by-case 

approach to fully take advantage of the available local energy. Nonetheless, in all DHSs, three 

main elements can be identified (1) an energy source, (2) a distribution network and (3) more than 

one end-user. The DHS design (as opposed to stand-alone individual building heating/cooling 

systems) should consider the energy requirements of all the end-users, the energy resources 

available locally as well as the spatial distribution of the energy suppliers with respect to the energy 

consumers. 

4.1.1 Energy resources 

Most DHSs employ several energy resources. Some focus on increasing the fuel utilization 

factor where the main electricity production comes from coal or natural gas [164] and waste heat 

energy [165]. Other systems integrate renewable technologies such as solar energy [166]. The 

renewable technologies can be located on the energy supplier side, in the actual distribution 

network or be installed on individual buildings. The selected energy type can vary region by region 

as it highly depends on the locally available resources and the associated climate. Table 4.1 shows 

some recent studies of the DHS and sorts them in terms of type of energy resource. 



 

70 

Table 4.1: Recent case studies of available energy resources for district heating networks 

Source Type of system Ref. Modeling Location Remarks 

C
H

P
 

CFB1 gasification from 

biomass and plastic in coal-

fired CHP 

[167] ECLIPSE UK ▪ Up to 20% of coal can be replaced by biomass and plastic without 

decreasing electrical efficiency or increasing CO2 emissions. 

Combined cycle gas turbine 

CHP with biomass 

[168] Ebsilon Professional 7.0 

and Aspen Plus v7.1 

Spain ▪ CCGT CHP with biomass gasification can have up to 3% higher 

efficiency when biomass is dried from the flue gas. 

[169] Aspen Plus® with Fortran 

sub-models 

Güssing, Austria ▪ Detailed modeling of a wood biomass CCGT CHP connected to a DHS. 

▪ When considering processes to clean the syngas for the gas engine, the 

electrical and heat efficiencies can be expected to reach 27% and 39%. 

[170] EnergyPlan Jiangsu, China ▪ CCGTs are more flexible plants compared to nuclear and coal. 

[171] Deterministic energy 

model for combustion 

and heat transfer  

Liège, Belgium ▪ CHP coupled to DHS is identified as an effective way to integrate RES. 

Gas emissions from incomplete combustion and thermal storage were 

not included in this study. 

NGCC2 CHP [172] EU Directive CHP 

Method 

Netherlands ▪ NGCC CHP coupled to DHSs are more energy efficient than natural 

gas condensing boilers, which are widely used in the Netherlands. 

Coal-fired CHP [173] Hysys v7.3 China ▪ The minimum extraction ratio can be used as an indicator when 

choosing a CHP for a DHS. 

CCGT3, CFB and APF4 [174] EnergyPlan Denmark ▪ The CCGT CHP plant is the best type of the three analyzed plants for 

large-scale DHSs and for the integration of RES. 

- [175] Deterministic energy and 

exergy model 

- ▪ CHP plants combining exergy and thermal energy was analyzed using 

a novel approach. 

R
en

ew
ab

le 

Geothermal systems and 

heat pumps 

[176] Energy and exergy 

balance equations to train 

an artificial neural 

network 

Afyonkarahisar, 

Turkey 

▪ A control strategy based on exergy rather than energy can increase the 

heat production of the Afyon geothermal DHS by up to 13% and the 

payback period for installation of such control can be low (3.8 years). 

▪ Exergy analysis of a DHS is particularly useful in analyzing inefficient 

components of the system such as heat exchangers. 

[177] 

[178] 

[179] Deterministic energy and 

exergy model 

Salihli, Turkey ▪ Exergoeconomic analysis of a GDHS was conducted. 

[180] TERMIS Aarhus, Denmark ▪ A 100% renewable scenario for Denmark was developed. 

[181] EnergyPlan Frederikshavn 

[182] 

[183] Aalborg, Denmark 

[184] Deterministic model Gonen, Turkey ▪ Results show that the energy loses in the pipes and the initial investment 

of the system are the costliest part of the implementation of the GDHS. 

[185] Deterministic model 

based on mass, energy 

and exergy balance 

equations 

Izmir, Turkey ▪ Energy and exergy efficiencies must be calculated based on a reference 

temperature that is more realistic. 

▪ Energy and exergy efficiencies could vary between 38-49% and 45-

47%, respectively by changing reference temperatures within 0-25 °C. 
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Waste to energy [186] Simple deterministic 

model 

Hurning and 

Aarhus, Denmark 

▪ Integration of waste incineration to coal-fired CHP was analyzed. 

▪ It is insufficient to only consider plant efficiency since heat and 

electricity production are interlaced in CHP. 

[187] EnergyPlan Denmark ▪ Syngas is the waste to energy technology which has the lowest CO2 

emission (i.e. negative) and both biogas and syngas are interesting 

waste incineration technologies. 

[188] - China ▪ Incineration of municipal solid waste (based on technological 

advancements) is now considered a renewable energy source in China. 

[189] EnergyPlan Denmark ▪ Producing syngas as a waste source for CHP was identified as an 

approach to reduce dependence on fossil fuels. 

▪ The dynamic effects of heat supply and demand were investigated. 

[190] R1 formula Europe ▪ Application of R1 formula by country was found. 

Solar [191] TRNSYS Chemnitz, 

Germany 

▪ Conversion of a 3GDHS to a 4GDHS with solar collector bay was 

investigated. 

[192] TRNSYS Europe ▪ Application of a system and methodology from Okotoks study to five 

other cities in Europe was studied. 

[193] TRNSYS Okotoks, Canada ▪ 52 residences entirely heated by a solar collector bay were equipped 

with thermal storage above 90% solar fraction. 

[194] Deterministic heat, cost 

and electricity model 

Spain ▪ Addition of a TSP5 to a DHS for heating and cooling increases payback 

period, but considerably decreases production of CO2. 

[195] TRNSYS Denmark ▪ Over 70% solar fraction can be achieved for most large-scale DHS. 

[196] Deterministic - ▪ Using CuO nanofluid as a heat transfer medium can increase energy 

efficiency of solar collector bays for low temperature CHP plants. 

Industrial excess energy [197] Method for analysis of 

industrial energy systems 

(MIND) 

Sweden ▪ Excess industrial heat is economically more competitive in small to 

medium sized DHSs than in large DHSs due to the potential for biomass 

CHP and low temperature output. 

[165] - China ▪ Excess industrial output temperature is mainly lower than 200 ºC. 

[198] - UK ▪ Not all of the excess industrial heat is economically viable because of 

the location of the industry with respect to the end-users. 
1 CFB: circulation fluidized bed 
2 NGCC: natural gas combined-cycle 
3 CCGT: combined-cycle gasification turbine 
4 APF: advanced pulverized fuel 
5 TSP: Thermal solar plant 
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4.1.1.1 Combined heat and power plants 

Cogeneration plants coupled with DHSs have been proposed as a solution to maximize the 

fuel utilization factor [160]. Centralized heat and power plants provide the necessary heat to meet 

the thermal energy demand of the end-users as well as electrical power needs. A key advantage to 

such thermal energy distributions is the considerable reduction in the pollutant and waste thermal 

energy emissions [160]. However, these plants are most efficient when operated at full capacity 

[164]. Knowing that heat and electricity demands are non-uniform and not synchronized, operating 

these plants at their optimal efficiency can be a very challenging problem. Therefore, CHP plants 

can be employed to provide 50-60% of the heat demand while boilers, being more efficient when 

trying to meet the peak demand, provide the remainder of the heat [186]. Another option to tackle 

the time mismatch is by benefiting from energy storage. 

CHP plants have been reported to be efficient for meeting both electrical and heating 

demands. Overall, the flexibility in CHP plants is important for the integration of wind and other 

RES [170]. Note that to maximize the economic, environmental and energetic efficiencies of a 

CHP connected to a DHS, both the electrical and heating demands should be simultaneously 

analyzed [171]. Energetic and exergetic analyses of a coal-fired CHP revealed that the minimum 

extraction ratio can be used as a reliable indicator to design or select a CHP for a DHS [173]. Fuel 

burning and tax credits can be optimized for CHP plants to help the decision making process [199]. 

However, it is highly insufficient to analyze the efficiency of CHP plants without considering the 

configuration of the district heating network [186]. 

4.1.1.2 Industrial excess energy 

The attention to energy efficiency in the building sector is not equally seen in the energy 

intensive industrial sector [165]. For example, in the United States, where the industrial sector 

accounts for one third of the energy demand, it is estimated that 20-50% of this energy is dumped 

to the environment as heat [200]. With the increased awareness about global warming and the 

energy crisis, the industrial excess energy serves as a potential source to be recovered and reused 

in DHSs [198]. 

Overall, excess industrial heat is economically more competitive in small to medium sized 

DHSs than in large DHSs due to the potential for a biomass CHP [197]. However, utilization of 

excess heat has its difficulties as most of the excess heat is below 200 °C and most often unstable 

as it depends on the production and related processes [165]. Besides, not all of the excess industrial 

heat can be used in DHSs due to the industry location with respect to heat consumers, which would 

not be economically viable in all the scenarios [198]. 

4.1.1.3 Renewable sources 

The integration of RES into DHSs mainly results in low-temperature outputs, meaning that 

it is lower than most supply temperatures of DHS distribution networks. A thorough discussion of 

low temperature district heating system (LTDHS) is provided in Section 4.1.2. Designing a DHS 

for full integration of RES requires considerable initial investment, which can be as much as 30% 
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of total expenditures over 30 years. However, such a system is sustainable from socioeconomic 

and environmental viewpoints [61]. 

 Solar energy 

Integration of solar energy into DHSs has seen a considerable increase in the past few years 

in many countries such as Austria and Germany [166]. The main challenge for the use of solar 

energy in DHSs is the time lag between the solar irradiance and the heat demand peak [201]. 

Hence, this technology needs to be coupled to a TES system, being often a vessel/tank filled with 

a high thermal density material such as water or a PCM [202]. The size of the collector, tank and 

thermal panel should be carefully designed to avoid panel overheat during the off-heating season. 

If the heat can be dissipated into a heat sink such as a pool, then the collector area as well as the 

storage capacity can be increased. Otherwise, either seasonal storage is installed or the remainder 

of the energy is supplied through another technology during the heating season [201]. Studies have 

shown that small-scale storage is inefficient as the volume to surface area ratio of the storage vessel 

is very low, resulting in considerable thermal losses [202]. In this regard, large-scale district 

heating systems (LSDHSs) are proposed with collectors installed on each individual building, and 

a central thermal storage, serving the whole district. 

In Europe, most of the solar thermal systems are coupled with biomass boilers, which can 

utilize residual wood chips from the wood industry. In response to this, the framework SOLLET 

was put in place to standardize the combined solar thermal-biomass heating systems [166]. This 

includes 10 plants across Europe (Austria, Germany, Sweden, Luxembourg and Greece), currently 

being monitored. Moreover, the installed collector area is now more than 340,000 m2 in eight 

European countries (Germany, Austria, France, Netherlands, Switzerland, Sweden, Denmark and 

Norway) [203]. 

Another challenge when using solar energy in DHSs is the very low solar irradiation in most 

of the developed countries. For instance, the average sun irradiance in southern Germany is 130 

W/m2 [204]. Maximum values are attained in summer months when the demand for heating is less. 

To use the heat available in the summer for winter heating, seasonal storage is often required. 

The integration of solar collectors to DHSs can represent a high economic risk [205]. Despite 

considerable research in the design of LSDHS and seasonal storage [206-208], implementation of 

these systems are very costly [205]. Nonetheless, in many countries such as Denmark, tax credits 

on alternative fuels make solar collectors a more economically viable alternative. 

Since 1996, several central solar heating plants with seasonal storage (CSHPSS) projects 

have been established in Germany mainly aligned with “SolarThermie 2000” and “SolarThermie 

2000plus” frameworks [206]. For example, a DHS with a CHP plant was economically justified 

in Chemnitz, located in eastern Germany, due to a need to restructure a part of the town [191]. Up 

to 2010, solar energy in eastern Germany stood against low cost of the CHP heat from coal, power 

demand management of CHP developing excess heat and the high service temperature of the DHS. 

The new design of this part of the town included a solar thermal plant as opposed to being 
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connected to the CHP. Despite the low solar fraction (11.1%), its development is an improvement 

towards a sustainable DHS. 

Most of the large-scale solar heating plants are built in Northern or Mid-Europe, in countries 

such as Sweden, Denmark, Germany and Austria [209]. It is economically advantageous to build 

larger scaled solar plants as it reduces the relative initial investment per kWh. Such systems 

equipped with short-term storage (diurnal) typically supply 15-20% of the energy required for SH 

and DHW. Systems with long-term storage (seasonal) have typical solar fractions (SF) of 50% 

[206] for systems installed in the late 1990’s and early 2000’s. 

The Drake Landing Solar Community in Alberta, Canada is a DHS with a large-scale solar 

collector bay which reaches an SF of over 90% [193]. However, it was shown that this solar 

fraction was only met after the fifth year of the DHS operation [193]. Based on the promising 

results of the Drake Landing Solar Community, various cities across Europe were assessed in terms 

of achievable SF in various geographical locations: Helsinki, Hohhot, Dublin, Oviedo and 

Perpignan (with HDD of 4598, 4634, 3009, 2118 and 1608, respectively) [192]. Based on a series 

of simulations using TRNSYS, it was possible to obtain SF values above 90% for all five cities, 

but not all without building modifications. For instance, houses in Helsinki had to be insulated to 

PassiveHaus standards. 

The combination of large solar plants with seasonal storage and heat pumps is very attractive 

due to the flexibility of power and heat generation as well as the high SF which can be obtained 

[210]. The effective use of such combinations was the main objective of Task 45 of IEA-SHC 

[211]. In the current market, the investment cost of solar collectors is still high compared to fuel-

based technologies, but it is prone to be decreased with additional market penetration [212]. 

Solar collectors can also be integrated to CHP plants for instance to pre-heat the production 

of steam for the turbines [196]. Besides, changing the heat transfer medium to a mixture of water 

and copper oxide (CuO) nanofluid increases the daily thermal and exergy efficiencies, and 

decreases the total production costs for all CHP operating fluids. 

 Geothermal systems and heat pumps 

Geothermal energy is often proposed as a renewable, sustainable, simple, safe and adaptive 

source of energy [185]. Geothermal district heating system (GDHS) can be a sustainable 

replacement to fossil and fissile fuels [213]. Heat is mainly extracted from or exhausted to the 

ground with the use of heat pumps, achieving coefficient of performance (COP) values of 

approximately four [214]. GDHSs produce negligible CO2, SOx and NOx and particulate matters. 

Some systems use an air duct in the ground as a way to extract heat from the earth as opposed to a 

heat pump [215]. 

There is a large potential for more exploitation of geothermal energy in many regions. For 

instance, since its first geothermal installation in 1964, Turkey has had a large development in the 

installation of geothermal systems. By 2004, there were 10 city-based GDHSs [179]. However, 



 

75 

implementation and development of GDHSs is very low compared to the availability and potential 

of geothermal energy in Turkey [216, 217]. In Sweden, 12% of the heat supplied to DHSs comes 

from heat pumps connected to seawater or sewage sludge [218]. Inversely, geothermal energy 

adoption is likely to decrease in such countries due to the competition to CHP and waste 

incineration energy systems unless considerable investments and political incentives are directed 

towards this technology. On a short-term basis, GDHSs are in competition to biofuel/gas heat-only 

boilers (HOB) and gas-steam cycle/oil CHP [218]. 

Denmark, in particular, established a new policy for reducing dependency on fossil fuels by 

achieving a 30% utilization of RES by 2025 and 100% by 2050, which includes an increase in use 

of geothermal energy [183]. These policies are tremendously supported by many municipal 

incentives such as in Aalborg, Samso, Arhus [180], Frederikshavn [181, 182], Thisted and 

Margreteholm [183]. As an example, Thisted plant is a currently active geothermal plant in 

Denmark which produces more than 15.4 GWh of heat per year. Geothermal wells in Denmark 

have the potential of supplying water at 40 °C which can be integrated to fourth generation DHSs 

where with an absorption heat pump they can easily be integrated to current third generation DHS 

(DHS generations are explained in Section 4.1.2) [181]. They can also be combined to solar 

collectors for a higher renewable energy fraction [219]. 

Many energy and exergy studies have been conducted on GDHSs [220]. For example, it was 

shown that a control strategy based on exergy rather than energy can increase the heat production 

of the Afyon GDHS by up to 13% with a payback period as low as 3.8 years [221]. An ANN model 

was developed to predict future exergy efficiencies of the Afyon GDHS and an economic analysis 

was simulated. A system composed of proportional-integral-derivative (PID) controllers coupled 

with an ANN model for exergy efficiency was developed and recognized to be more efficient than 

conventional manual ON/OFF control [176]. It was shown that the installation of a GDHS was 

profitable when the present worth factor (PWF) is higher than 7.9. 

Note that energy and exergy efficiencies of GDHSs must be calculated based on a more 

realistic reference temperature. For instance, reference temperature of 11.4 °C as the average local 

temperature of a GDHS in Balcova, Turkey was found to be more realistic than the previously 

used 13.4 °C [185]. Besides, energy and exergy efficiencies could vary between 38-49% and 45-

47%, respectively, by changing the reference temperatures within 0-25 °C. Moreover, the design 

of any DHS should have a supply temperature as high as possible to increase the exergy 

efficiencies of the heat exchangers and the total exergy content. Note that the total energy 

efficiency increases as the ambient temperature decreases. 

Furthermore, exergy and energy efficiency as well as LCC of GDHSs were evaluated in 

locations such as Afyon [178], Balcova [185], Bigadic [222], Gonen [184], Dikili [223] and Salihli 

[224]. Interestingly, all these systems have an average cost of 1.47 million USD/kW of useful 

energy, varying only by 0.03 million USD/kW. 
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 Solid waste to energy 

Another source of energy for DHSs is solid waste material, which is identified as a RES 

[214]. Waste heat is a possible solution for many countries to achieve policies regarding GHG 

emissions reduction [225]. Municipal solid waste (MSW) in Denmark accounts for 20% of the 

district heating and 4% of electricity production [186]. Efficiencies of 20-30% for electricity and 

70-80% for heat production can be achieved with modern waste material incinerators. The 

combustion of residual solid waste, as a sustainable energy production approach, is still reluctantly 

seen by many European Union members. This is due to the fact that early incinerator designs 

emitted a considerable quantity of toxic gases and heavy metals [190]. However, recent technology 

advances enabled MSW to reduce its footprint on the environment and health risks [226]. 

A major challenge with MSW is the composition of the utilized fuel, which is constantly 

changing while the emissions must always be kept under an acceptable environmental and health 

associated concentration [227]. Incineration is a costly energy production approach, but it still 

remains less expensive than recycling and more sustainable than landfilling [228]. This is due to 

the fact that preparing the waste material for incineration requires several stages of preparation, 

including drying and degassing, pyrolysis and gasification [229]. Sewage waste, for example, 

usually comes with a high water content and requires a considerable amount of drying and 

sometimes addition of a second fuel to assure a proper combustion. More research advancements 

are needed to render MSW as a more economical competitor to fossil fuels [230]. 

4.1.2 Distribution network 

The distribution network links the energy supplier(s) and end-user(s) and is mainly designed 

on a case-by-case basis. Parameters involved in the design of distribution networks include the 

distance between energy supply and end-users, distance between end-users, quantity of 

available/required energy, temperature of supply and return, sizing of pipes and flow rate of liquid 

in pipes. In this sense, there is a considerable number of possible configurations when it comes to 

linking energy supplier(s) and end-user(s). Many studies presented the methodologies for the 

design of such networks [6, 231]. Heat is delivered to the end-users through a hot water supply 

line from which end-users collect the required heat through heat exchangers. A challenge behind 

designing such a system is the temperature change of the supply line throughout the system where 

users at the end of the supply line have access to a lower temperature with respect to other users. 

4.1.2.1 First to third generation DHS 

The first generation DHS (between 1880 and 1930) used steam at temperatures over 200 °C 

in concrete conduits to provide energy to end-users. Such systems were replaced due to the high 

thermal losses and the risk of conduit explosions [232]. The second generation DHS (between 

1930 and 1980) had pressurized water at temperatures higher than 100 °C in concrete conduits. 

They were replaced by the third generation DHS (3GDHS), being constructed by lighter 

prefabricated insulated components and operated at temperatures lower than 100 °C. 
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4.1.2.2 Low temperature DHS 

The more recent DHSs, the fourth generation DHS (4GDHS), is commonly referred to low 

temperature district heating system (LTDHS). An extensive differentiation of all four generations 

of DHSs has been performed by Lund et al. [232]. It has been shown through case studies that 

LTDHSs are more exergy efficient than medium or high temperature DHSs [233]. Super low 

supply temperatures (40-45 °C) are also utilized where the temperature is raised near the end user 

with heat pumps [234]. The problem with lowering supply temperatures of the DHS piping is the 

risk for Legionella bacteria, enforcing the temperature needs to be higher than 55 °C [234]. 

A comparison between 3GDHSs and 4GDHSs was conducted to assess the impact of 

introducing LTDHSs to the current and future (2025) Danish context [235]. The new generation 

of DHS showed reduced levels in heat losses, CO2 emissions and costs. Moreover, consumers’ 

costs could possibly be lower if the temperature of the system is high enough so that booster heat 

pumps are not required. Challenges in justifying the cost of 4GDHSs were also discussed with 

respect to the cost of the piping and various insulation layers [236]. 

Newer or refurbished buildings with lower energy demand can be entirely supplied in energy 

by LTDHSs with an adequate control of the substations. In the cases where the demand cannot be 

met during peak periods, the supply temperature can temporarily be increased with limited 

negative impact on exergy efficiency given the short duration of the increased load [237]. Different 

configurations of the pipe distribution of a LTDHS was studied and it was found that the addition 

of a buffer tank at each substation can help to considerably diminish the pipe size [238]. The DHW 

tank can also be used as a DHS substation reservoir for energy accumulation coupled to the 

LTDHSs [239]. 

4.1.2.3 Heat storage 

The intermittent nature of low temperature heat production from industrial excess heat, solar 

collectors and heat pumps justifies the need of storage technologies in LTDHSs. The embedded 

heat storage can be divided into two types: (1) diurnal heat storage, designed to cover 10-20% of 

the yearly heat load and usually used for hospitals, hostels and apartment buildings and (2) seasonal 

storage [209]. 

Currently, latent and chemical seasonal heat storage applications are at the stage of 

laboratory-scale prototypes, whereas sensible seasonal heat storage has been used for large-scale 

demonstration plants [240]. Table 4.2 shows a list of the current DHS projects using seasonal 

storage. Nearly all CHP plants in Sweden and Denmark have short-term sensible storage tanks to 

cover peak demand periods, to achieve smaller plant design and to run at full capacity [241]. 

Hot water tanks (for SHS) can be made of concrete and can be completely or partly buried. 

Steel liners can be placed inside them to limit vapor diffusion [209]. They can also be built from 

stainless steel [241], but their size is often not sufficient for seasonal storage. 

A comparison of German solar collector plants equipped with seasonal storage was 

conducted based on experience from operation and construction of 11 plants through the 
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‘SolarThermie 2000’ and ‘SolarThermie 2000plus’ programs [206]. Tank and pit thermal storage 

are found to be feasible, but considerable improvements need to be done with respect to insulation 

and material vapor resistance. It has been reported that hot water storages have the lowest storage 

volume to solar collector area ratio (1.5-3.0) in comparison to gravel pits (2.81-14.81) [206]. 

Aquifer heat storages are reserves of hydraulically porous materials filled with groundwater. 

One half is used as a cold well and the other as a hot well. Charging can be carried out by extracting 

water from the cold well and passing it through a heat exchanger to later be injected in the hot 

well. Discharging is done by reversing the flow direction. The first solar heat plant with an aquifer 

heat storage connected to a DHS was built in 2000 [209]. The highest obtained solar fraction was 

57% in 2005, which is close to the planned SF (62%) [206]. Note that the temperature of the system 

is limited to 500 °C, above which there is a change in soil chemical properties. Moreover, it was 

reported that fuel energy savings could be reduced [241]; for instance, by 90-95% [242]. 

Other types of sensible seasonal storage include pit TES, consisting of a pit dug out and lined 

with an impermeable liner and filled with water. In some applications, the pit can be filled with 

gravel. The advantage of this storage application is associated to less effort to build structural 

components since the retaining walls of the reservoirs are mounds of soil [241]. This approach is 

particularly attractive in the Danish market since a major income for CHP plants is the regulation 

of electricity production [243]. Cities where seasonal storage has been constructed include Marstal, 

Braedstrup and Dronninglund of which two have pit thermal storage. Pilot plants with pit seasonal 

storage have also been constructed in Germany as part of the ‘SolarThermie2000’ and 

‘SolarThermie Plus 2000’ programs [244]. 

Borehole heat exchangers can also be used in conjunction to a DHS. They consist of holes 

dug in the ground and a U-tube with operative fluid to transfer heat. A borehole heat exchanger 

can have many rows of holes with the U-tubes connected in series or parallel arrangements. Recent 

modifications have been made to this configuration while two U-tubes are inside the hole to 

simultaneously charge and discharge the heat [245]. The efficiency of borehole heat storage 

increases as the quantity of boreholes increases, since this reduces the surface to volume ratio of 

the apparatus in the ground [241]. The most recent example of this technology is the Drake 

Landing Solar Community in Canada where a 144 borehole heat storage could enable a 52 house 

community to have solar fractions above 90% [193].
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Table 4.2: District heating system projects utilizing sensible seasonal heat storage 

Project location No. of buildings DHS demand System type System size Storage volume Reference 

Rise, Denmark 115 buildings  Solar collector 3,575 m2 5,000 m3 [246]  

Marstal, Denmark 1,300 houses  Solar collector 26,000 m2 70,000 m3 [247]  

Ingelstad, Sweden 50 houses  Solar collector 1,320 m2 5,000 m3 [246]  

Lambohov, Sweden 50 houses  Solar collector 2,700 m2 10,000 m3 [246]  

Westway Beacons, UK 130 apartments  Solar collector   [246]  

Attenkirchen, Germany 30 homes 1,386 GJ/year Solar collector 836 m2 500 m3 [244]  

Anneberg, Sweden 50 residential units 1,980 GJ/year Solar collector 2,400 m2 60,000 m3 [248]  

Izmir, Turkey 4,000 residences  Geothermal  356 m aquifer horizon [185, 223] 

Aalborg, Denmark * - 7,380 GJ/year Geothermal, CHP   [183]  

Frederikshavn, Denmark * - 194,400 GJ/year Solar collector 8,000 m2 1,500 m3 [181]  

Salihli, Turkey 5,470 residences  Geothermal  40-513 m depth [179, 224]  

Afyonkarahisar, Turkey 4,613 residences 173,988 GJ/year Geothermal   [176]  

Balikesir, Turkey 2,200 residences 132,388 GJ/year Geothermal  429 m and 307 m depth [184, 222]  

Okotoks, Canada 52 homes  Solar collector 2,293 m2 34,000 m3, 144 boreholes [193]  

Braedstrup, Denmark 500 residences  Solar collector 37,500 m2 500 m3 [243]  

Dronninglund, Denmark - 144,000 GJ/year Solar collector 35,000 m2 50,000 m3 [243]  
* 2050 scenario, 100% renewable energy 
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4.1.3 End-users 

DHSs can accommodate a variety of different end-users, which consume the produced energy 

for their space heating and DHW. In some cases, especially when end-users are sparse in distance, 

connecting buildings to a DHS is not justified since it can be beneficial for the users to be heated 

through an alternative energy. An example is the Turin DHS where the potential of a community 

heated with groundwater heat pump systems was investigated based on a thermoeconomic 

optimization [57]. An optimal configuration was established for this application with regards to 

the distance between end-users and the piping distribution network. 

From the end-user’s perspective, DHSs are much safer (heat exchangers as opposed to 

boilers), there is an increase in floor space (no boiler needed anymore), and often the heating costs 

are reduced [214]. However, buildings are often not designed for DHS; therefore, their conversion 

demands a considerable retrofit program. The responsibility of the operation and maintenance is 

mainly given to a third party, taking a burden off the homeowners. On the other hand, specialized 

maintenance technicians are required to be trained, turning a DHS to a more complex system [249]. 

There is also a potential for end-users to be an integral part of the heat supply of DHSs. In this 

case, the end-user is referred to as a ‘prosumer’ [250] where one of the biggest challenges is dealing 

with the intermittent power production associated with prosumers. The decentralization of district 

heat (DH) production has been studied and it was shown that prosumers reinjecting heat in the 

system create daily temperature variations in the pipes [251].  

The control of a DHS integrated with prosumers (smart DHS) is very different from a DHS 

with a centralized heat production [252]. A control strategy that includes metering of the 

prosumer’s heat production takes more advantage of the available solar thermal heat. Using this 

approach, integrated solar collectors could supply 108% of the yearly thermal needs, whereas 

standalone systems could only provide 27.7%. The Hyllie Swedish case study is another example 

that highlights the prosumer concept. The potential for prosumers in the city of Hyllie was studied 

with a deterministic energy balance model integrated with the software NetSim [253]. It was 

shown that a DHS has prosumer potential in areas with a mixed building stock. 

4.2 Fundamentals 

Accurate modeling and design of each DHS component plays an important role in its efficacy 

and efficiency. To shed light on the recent achievements in modeling of DHSs, this section aims 

to summarize the fundamentals of modeling. 

Unlike building demand profiles, the heating demand profile of a DHS is defined as the 

summation of (1) the heating demand profile of the individual users of the system, (2) the heating 

demand profile of the distribution network, and (3) the heat loss of distribution network. Therefore, 

predicting the demand heat profile of the individual users of the DHS is similar to the one presented 

earlier for buildings (in Chapter 3). However, due to the unmeasured effects of the 

district/community on the buildings (e.g. shared walls or solar blockage by the adjacent shadow 
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casted from surrounding buildings), building methods should be modified for demand load 

prediction at the district level. 

4.2.1 Energy resources 

In general, heat sources in DHSs are modeled based on their efficiency and heat generation 

output. A minimum efficiency index has been defined depending on the type of the heat source. 

For example, the primary energy saving (PES) index has been defined to evaluate the efficiency 

of a CHP heat source [8]: 
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where ηH,CHP is the heat efficiency in cogeneration production, ηH,Ref is the efficiency in separated 

hear generation, ηE,CHP is the electricity efficiency in cogeneration production, and ηE,Ref is the 

efficiency in separated electricity generation. 

The minimum PES value for a CHP heat source with the nominal size of smaller than 1 MW 

should be a positive value, whilst this value is more than 0.1 for sources above 1 MW [8]. Similar 

types of indices have been defined for other types of heat sources [254]. 

4.2.2 Distribution network 

A DHS distribution network is mainly designed in accordance with the system scale, 

geographical considerations, type of the users and utilized heat generations sources. Beside the 

role of the distribution network in linking the generation side with demand side of the cycle and 

defining the inter communication between different components of the system, the distribution 

network affects the energy consumption of the system as well. In general, the total energy required 

to be fed to the system is: 


n

iloss QQQ
1

 (4.2) 

where Q is the total energy consumption of the DHS, Qi is the demand profile of each user and 

Qloss is the heat loss of the system. Since most distribution networks operate within a specific 

temperature range, the heat loss from the system could be considered as a function of the network 

size and not a function of time. As a result, the total energy requirement of the system is equal to 

the summation of the profiles of different users in addition to the heat loss per network length. 

Since a DHS is a type of hydronic system, the modeling technique to design the distribution system 

can be either based on hydraulic or thermal equilibrium. 
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4.2.2.1 Hydraulic equilibrium 

The distribution system in the DHS operates based on heat transfer through a heated fluid. 

Therefore, it should be designed based on the requirements of the hydraulic system regardless of 

the flow rate and energy level of the fluid. 

 Mass balance  

The mass flow balance could be written for each point of the system as [255, 256]: 

0 
user

user

out

out

in

in QQQ  (4.3) 

where Qin is the mass flow rate entering the point, Qout is the mass flow rate exiting the point, and 

Quser is the mass flow rate required by the utility. Depending on the type of the system (i.e. open 

or closed loop), Quser could be considered as zero. It is important to note that the system and 

network are assumed to be leak free without any loss of the fluid mass. 

 Energy balance 

The energy balance could be written between any two points in the system as [160]: 

  0 jiij HHH  (4.4) 

where ΔHij represents the energy loss between points i and j and Hi and Hj are the energy content 

of the fluid at points i and j, respectively. Considering the DHS as a closed system and without 

any loss in the liquid mass, the energy loss in the system could be written as a correlation to the 

pressure loss in the system represented in two different ways: 
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In the distribution pressure drop, the friction loss due to viscous effect, generated by the pipe 

surface, is the governing parameter. The hydraulic diameter of the pipe, mass flow rate of the 

system and roughness of the pipe surface are the parameters affecting the distribution pressure loss 

of the system [256]. Additionally, in concentrated pressure loss, head loss due to fittings and 

changes in pipe diameter are taken into the account [160]. 

4.2.2.2 Thermal equilibrium 

Thermal equilibrium can be represented as either a steady-state or dynamic equation. A DHS 

with operational temperature lower than 70 °C or with low heat propagation (well insulated) can 

be represented as a steady state system. Inversely, a DHS operating with temperatures higher than 

110 °C or with high heat propagation can be considered as a dynamic system [232, 257]. The 

thermal model could be written based on two major sources of the temperature drop in the system, 
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including temperature drop across the users and due to the system heat loss. The temperature drop 

across the users can be modeled based on a simple convection heat transfer equation [258, 259]: 

TUQ   (4.7) 

where Q is the amount of the energy flux required by the system, U is the heat transfer coefficient 

and ΔT is the temperature drop across the users. 

On the other side, the temperature drop due to heat loss in the system occurs in both 

longitudinal and radial directions. The longitudinal heat loss is along the system between different 

locations, whereas the radial heat loss occurs in the surrounding environment. Both types of the 

heat transfer in the system could simply be modeled by the enthalpy balance between any two 

points [260, 261]: 
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where 
cQ  is the convective heat flow and 1Qd   is the radial heat flow: 

 earthTTdxkQd 1
  (4.10) 

  pxmxc CTqxQ   (4.11) 

where k is the radial heat transmission coefficient and qmx is the flow rate. By replacing 1Qd   and 

 xQc
  in Equation (4.9), the temperature at any point can be calculated as (see Figure 4.2): 
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where Cp is heat capacity, Tn is the temperature, Δt is the time step and mi is the water mass. 

 
Figure 4.2: Heat flow in the piping system 
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Based on the definition of the 1Qd  , one of the main factors influencing the amount of heat 

loss is the earth’s temperature. In systems with higher operating temperature, the higher differences 

in temperature could result in higher amounts of heat loss in the system. Similarly, the increased 

heat losses in a system could result in increased surrounding temperatures over time, consequently 

decreasing the heat loss over time. 

4.2.2.3 Holistic modeling 

Physical and black box models are the approaches conducted in holistic DHS modeling 

[262]. The network has been considered as a package in the black box models where individual 

design of the components is disregarded. The whole system is then modeled by techniques such 

as the transfer function or ANN [176]. One the other hand, in physical models, each component of 

the DHS has been designed separately and as a set of equations describing the flow and pressure 

losses of that element. For instance, the physical modeling has been categorized as the link flow 

(Q), the loop corrective flow (∆Q), the nodal heads (H) and finally the mixed node-loop approaches 

[263]. 

Due to the high number of the elements which should be considered, solving such a system 

can be computationally expensive. Therefore, numerical approaches have been widely developed 

for solving the system of equations of the hydraulic distribution networks. Some of these 

approached are categorized as [263]: 

• Numerical minimization method: finding the minimum value of the nonlinear function 

subjected to linear constrained 

• Hardy-Cross method: solving the system of nonlinear equations [264] 

• Newton-Raphson method: solving the system of nonlinear equations [265] 

• Linear theory method: solving the system of nonlinear equations [266] 

The most frequently used method is a combination of Newton-Raphson and nodal head 

methods [263]. This is due to the simplicity of the input data, the number of equations and the size 

of equation matrix [267] as well as the accuracy of the results. Furthermore, due to the weak 

convergence of the nodal equation algorithm for networks with low flow rate, another approach 

has been suggested (called the loop equation method), which is a combination of the loop 

corrective and Newton-Raphson methods [263]. 

Further to the abovementioned studies, several commercial software (explained in Section 

4.4) has been developed based on the loop equation method using the graph theory such as 

TERMIS [268] or spHeat [269]. Table 4.3 summarizes some of the current DHS modeling studies.
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Table 4.3: Summary of the recent DHS modeling studies 

No. Description 
Country/ Modeling level 

Scale Energy source Utilized tool Validation Ref. 
Climate Source Building System 

1 34 Users  Italy 
 

GD P M CHP ODS TERMIS [160] 

2 Combined sources  
 

SM 
  

M Combined UC 
 

[161] 

3 Multi-unit apartment building 
  

GD P S CHP UC 
 

[259] 

4 8 units, different supply temperature Geneva SM GD 
 

M CHP UC 
 

[270] 

5 7 users with Lp > 13.5 km Germany 
 

GD P/T L Biomass ODS 
 

[260] 

6 Compares HT and LT supply  Ottawa 
 

LF P/T L CHP Logster TERMIS [62] 

7 Effect of human behavior  Denmark 
 

LF P M HP IDA-ICE TERMIS [61] 

8 Thermal storage  Stuttgart 
 

GD P/T L CHP/Biomass 
 

spHeat [255] 

9 Solar district heating 
 

SM GD 
 

M Solar/CHP UC 
 

[271] 

10 Solar thermal heating network Sonnenberg SM Software P/T M Geothermal/Solar 
 

spHeat [272] 

11 CHP with thermal storage for 100 units Flanders SM Measurement P M CHP UC 
 

[273] 

12 Biomass fired CHP with storage Leini/Turin SM Measurement 
 

L CHP/Biomass UC 
 

[8] 

13 For 50% heating load calculation Zaragoza SM TRNSYS 
 

L Solar UC 
 

[68] 

14 Source optimization Estonia SM 
  

L CHP UC 
 

[274] 

15 Different flow control strategy  
  

GD P/T M CHP/HP UC 
 

[261] 

16 Different control strategy Wales  HDD TPL M CGP PSS SINCAL 
 

[56] 

17 City level Yazd SM GD 
 

L Combined EMD 
 

[275] 

18 Neighborhood Turin 
 

HDD 
     

[57] 

Keys: SM: source modeling, GD: given data, LF: load factor, HDD: heating degree day, P: pressure model, T: thermal model, ODS: own developed software, 

UC: user code, L: large, M: medium. 
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4.2.3 User demand profile 

Accurate prediction of the energy demand profile of users in smaller time intervals (such 

as hourly basis) can affect the efficiency of a network as well as its optimization procedure 

[53]. Building heterogeneity in each district system is elevated, particularly in the urban setting, 

and each building has its own properties and demand profile. Therefore, developing a model 

which could predict the demand profile of the entire district with acceptable accuracy is 

essential. Most of the existing models used for demand prediction of DHSs have been 

developed based on the assumption of a standalone building, barely representing the 

complexity of an urban/district setting. Indeed, the first assumption in the modeling of a 

standalone building is that the entire building shell receives solar radiation and exchanges heat 

with the surrounding environment. Moreover, since the demand profile of a building varies as 

a function of time, this variation has a stochastic behavior (and not a deterministic behavior). 

As a result, the level of model complexity is increased [270, 276, 277], especially for large 

district systems with more varying occupant behaviors. In general, the methods suggested to 

model and predict the demand profile of DHSs (similar to Chapter 3 for buildings), can be 

categorized as (1) deterministic methods, (2) historical methods [52, 53], and (3) time series 

predictive methods [54]. Nevertheless, regardless of the prediction methods used by designers 

to predict the heating demand profile of the districts, these methods could be divided into two 

general categories: 

• Comprehensive modeling using more detailed information and specifications of the 

buildings such as using commercial simulation software for modeling every individual 

user within a district 

•  Simplified numerical methods adopting times series predictive or historical methods 

to predict the district demand profile using some limited properties of individual users 

of the network 

4.2.3.1 Comprehensive models 

A common way to predict the district heating demand profile is to use the deterministic 

methods. Similar to building modeling, the deterministic methods are divided into two 

categories of (1) comprehensive modeling using commercial simulation software and (2) 

simplified deterministic methods. Over the past few decades, many simulation tools have been 

developed for predicting the energy demand profile of buildings such as EnergyPlus, TRNSYS, 

eQUEST, etc. These simulation tools are broadly used for modeling various type of buildings. 

At district level, although they yield highly accurate demand profiles, their main disadvantages 

are the dependency on data quantity and high computational cost for modeling each individual 

building [53, 68]. For small-scale districts consisting of a limited number of buildings, using 

comprehensive models can increase the accuracy of the simulation. Nevertheless, providing 

the data and time required for modeling several buildings in a city-wide scale is very expensive. 

As a result, simplified methods emerged as a popular option for prediction of demand profile 

of district networks. 

4.2.3.2 Simplified simulation models 

Deterministic methods have been widely used at the building level, while historical/time 

series methods are more favorable at the district level with a more stochastic behavior. This is 
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due to their high level of dependency to data for training purposes, especially for large DHSs 

with diverse building type [94]. These methods have mainly been adopted to predict buildings 

total energy consumption and maximum demand rather than predicting the actual demand of 

the system in a smaller interval such as an hourly basis [278]. 

At the district level, to simplify the prediction process and increase the prediction 

accuracy, the community building stock is segmented into “building archetypes” (i.e. a building 

which can represent a group of similar buildings). In this method, buildings with similar 

occupancy type are divided into subcategories while a reference building is defined for each 

category. The demand profile of other buildings located within each category is later defined 

based on the reference building with some adjustment. The number of building categories used 

in this method as well as the number of adjustments required for modeling the entire demand 

profiles are the key parameters of the simplified method. The most commonly utilized 

technique is the regression method. 

Usually, segmentation of the building stock is carried out based on the type of parameter 

picked. Although different sets of parameters can be used to generate building archetypes, 

generally, these parameters are divided into three major categories: 

• Physical properties of the building 

• Usage and occupational behavior of the building 

• Climatological properties of the region 

To conduct the segmentation, the first step is to investigate the existing building stock to 

define different types of occupancy behavior and to categorize the buildings with similar 

occupancy type. After categorizing the buildings based on their occupancy behavior, they are 

further grouped based on their physical properties and/or the type of their mechanical systems. 

Due to existence of different climates at different regions in national level, these archetypes 

could be further grouped based on climatological properties of the region in the case of defining 

the archetypes at national level. Table 4.4 shows a summary of the previous studies. 
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Table 4.4: Parameters considered to model the demand profiles 

Building archetype 

Level 
 Statistics Parameters 

Ref. Country No. of buildings No. of archetype Shape Area Age Use System Climate 

Urban 

level 

[279] Japan 1,128 20 ✓ ✓     

[280] USA  30 ✓  
✓ ✓ ✓  

[281] England 267,000 144 ✓  
✓    

[282] Italy 1,320 7   
✓    

[283] Italy  56 ✓  
✓ ✓   

[284] Netherlands 300,000 26 ✓  
✓    

[280] USA 200 12 ✓  
✓ ✓ ✓  

[285] Switzerland 20,802 20 ✓  
✓ ✓   

National 

level 

[286] England 115,751 47 ✓  
✓    

[287] Italy 11 M 96 ✓  
✓   

✓ 

[288] Greece 2.5 M 24 ✓  
✓   

✓ 

[288] Greece 2.5 M 5 ✓  
✓ ✓ ✓  

[287] Italy 877,144 3,168 ✓  
✓  

✓ ✓ 

[289] Ireland* 40,000 13       

[290] France 14.9 M 92 ✓  
✓  

✓ ✓ 

[290] Spain 9.8 M 120 ✓  
✓  

✓ ✓ 

[290] Germany 18 M 122 ✓  
✓  

✓ ✓ 

[290] UK 20.5 M 252 ✓  
✓  

✓ ✓ 

[291] Finland 36,000 12   
✓ ✓   

* Ireland: construction, thermal 

Although the building shape has been widely used in defining building archetypes, 

different studies considered different parameters to define the shape. For instance, in a study, 

the correlation of the building with surrounding buildings was used as the main parameters to 

define the building shape and shading effect, categorizing them as detached, semi-detached, 

townhouse [284]. However, in another study, the height of the buildings was considered as well 

[290]. Having the number of building archetypes, as well as the number of buildings within 

each archetype, the demand profile of the users can be predicted using the scaling methods. 

The two most common scaling methods are (1) area weighted in which the demand profile of 

a reference building is multiplied by the total district area over reference building area ratio 

and (2) number based in which the demand profile of a reference building is multiplied by the 

number of buildings within an archetype. 
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Table 4.5: Summary of the method used for load prediction in DHS and type of building stocks 

Country Year Method Scaling Type Output Ref. 

Japan 2004 Archetype/ survey Number per archetype Residential Total EUI [279] 

USA 2008 
eQUEST/ comprehensive 

modeling/ archetype 
Area weighted Mixed Hourly/ total consumption [280] 

Italy 2012 
Regression analysis of 

measured data 
Area weighted Residential Total consumption [282] 

Finland 2014 
Archetype/ linear 

development using REMA 
Number per archetype Mixed Total consumption [291] 

Italy 2013 
Archetype/ comprehensive 

modeling 
Area weighted Mixed Total consumption [283] 

Italy 2014 
Simplified equivalent 

resistance 
Area weighted Residential Total consumption [292] 

Greece 2011 
Archetype/ comprehensive 

modeling 
Area weighted Residential Hourly/ total consumption [288] 

Germany 2014 
Simplified/ equivalent 

resistance/ HDD 
Building by building Mixed Total consumption [269] 

Switzerland 2015 
Archetype/ simplified 

model/ adjusted HDD 
Area weighted Residential Total consumption [293] 

In such approaches, the level of simplification in the representation of the building stock 

modeling is observed to be very high. For example, the orientation and other geometrical 

diversity of the buildings are mainly neglected compared to the reference building within a 

defined archetype. These shortcomings in demand profile prediction are more magnified in the 

case of having larger DHSs with more uniform building type. In district systems with more 

diverse building types, several influencing parameters overlap one another at the district level, 

compensating the accumulated error at some points. For instance, in the case of the Japanese 

district [279], German district [294] or Swiss district [293], with more homogeneous building 

types, the simulation accuracy is presumably much lower compared with the Italian district 

[283] which has more heterogeneous building archetypes. 

4.3 Simplified 4-step prediction model 

4.3.1 Limitations of current models 

The main limitations of the methods to predict the DHS demand profile include: 

• Feasibility of expanding one model to the entire district level: The first limitation of 

the presented methods is related to the limitation of these models in prediction of the total 

energy consumption of the entire district. Especially, in the case of a larger district system 

where the heterogeneity of the buildings is elevated, this problem becomes more amplified. 

For instance, HDD should be only used for prediction of small residential buildings while 

the BIN method is more suitable for larger buildings with much higher internal heat 

generation density. As a result, an archetype method with a combination of these methods 

should be used to predict the total energy load of the entire network. 

• Type of prediction: Most of the presented methods has been adapted to predict the total 

energy consumption. Although at the design stage DHSs are designed based on the total 

energy consumption as well as the maximum peak demand of the system, detailed profile 

of the network is further required to improve the system efficiency and enhance the energy 

distribution management. Table 4.6 summarizes different prediction methods that has been 

used to predict the consumption load of DHSs. According to the table, most of the studies 

focused only on the total energy consumption of the networks and not the detailed profile. 
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• Accuracy: Prediction accuracy is the next limitation of the previous models. In the case 

of load prediction for district systems, two different types of error could be defined; the 

first type is the error associated with the entire district model, while the second one is 

associated to the modeling at the building level. As illustrated in Table 4.7, the simulation 

error is mainly much lower at the district level in comparison with the building level one, 

which is mainly related to behavior of the users. 

• Computational time: The long computational time of the stock modeling is one of the 

major limitations of the current DHS models. 

Table 4.6 Summary of the methods used for load prediction in DHS 

Ref. Year Prediction Prediction type/resolution Method 

[293] 2015 Annual Total energy demand Simplified modeling/adjusted HDD 

[295] 2014 Daily One day forecasting NARX*, ANN 

[291] 2014 Annual Total energy demand Linear development using REMA 

[292] 2014 Annual Total energy demand Simplified equivalent RC 

[296] 2014 Annual Total energy demand Simplified equivalent RC 

[297] 2013 Daily Average daily and hourly variation Time series 

[283] 2013 Annual Total energy demand Comprehensive modeling 

[294] 2013 Annual Total energy demand Quasi-state monthly energy balance 

[282] 2012 Annual Total energy consumption Linear regression analysis 

[298] 2011 Annual Peak load and total demand Multi-variant regression 

[299] 2011 Annual Total energy demand Gray box model 

[288] 2011 Annual Annual peak demand Comprehensive modeling 

[300] 2010 Monthly Peak load forecasting Linear regression and clustering 

[301, 302] 2009 Annual Annual heating degree day Linear regression 

[303] 2008 Annual Linearized peak day profile Linear regression 

 2008 Annual Total energy demand Gray box 

[280] 2008 Annual Hourly/total energy demand Software modeling using eQUEST 

[304] 2006 Annual Profile Gray box 

[305] 2008 Annual Peak demand Stochastic method 

 2005 Annual Total energy demand Gray box 

 2004 Annual Total energy demand Multi-variant regression 

[279] 2004 Annual Total EUI/total energy demand Software modeling using SCHEDULE 

[306] 2004 Annual Total energy demand Simplified equivalent RC 

[52] 2002 Annual Profile Linear regression 
*Nonlinear autoregressive network with exogenous inputs 

Table 4.7: Summary of the accuracy level of the previous studies 

Prediction error for district Prediction error for individual buildings 

Year Country Error Ref. Year Country Error Ref. 

2004 Japan 18% [279] 2014 USA 11-23% [307] 

2008 USA 10-13% [280] 2011 Greece 12-55% [288] 

2012 Italy 10% [282] 2013 Germany 5-50% [294] 

2013 Italy 4% [283] 2013 Germany 18-31% [294] 

2014 Italy 8% [292] 2014 Germany 1-60% [308] 

2013 Germany 21% [294] 2014 Switzerland 6-88% [309] 

2013 Germany 7% [294] 2015 Switzerland 8-99% [293] 

2014 Switzerland 8% [309]     

2015 Switzerland 9-66% [293]     

4.3.2 Model development 

Due to the mentioned limitations, a 4-step procedure has been developed to accurately 

predict the heating demand profile of different type of district system with a high resolution, 

hourly interval, in a timely manner. The procedure is based on the multiple linear regression 

(MLR) and multiple nonlinear regression (MNLR) methods. In this 4-step procedure, the 
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heating demand profile of the entire district is predicted by modeling each individual unit in 

the community using its physical and geometrical characteristics, the regions’ meteorological 

information, and the occupants’ general behavior. 

• Step 1: In the first step, a sample building stock model (BSM) is segmented into different 

archetypes, and a reference building is defined for each archetype. The initial segmentation 

is completed by considering the building construction method, physical and geometrical 

properties, and construction period [278]. Once the initial archetypes are determined, each 

archetype is further divided into sub-archetypes based on the occupancy schedule (e.g. 

residential user with high, medium and low usage) of the building within that archetype. 

Different methods are used for segmenting the BSM based on the occupancy schedule. 

While some researchers only segment the BSM based on major occupancy types (e.g. 

residential, commercial, or office types), others segment it following the user energy 

profile. This study presents a more detailed approach for defining the number of archetypes 

as well as the reference building for each archetype. A hierarchical clustering method was 

adopted for this end. In this method, the data set is split into a prefixed number of clusters. 

The building closest to the centroid of that cluster is defined as a reference building for 

that cluster. To define the number of clusters required for a given data set, prefixed number 

of clusters, the optimal number of cluster is defined using the elbow method. 

• Step 2: The second step involves building the model input files. These files are constructed 

based on the physical properties of individual units, regional meteorological data, and 

occupant behavior. In order to determine the input file of the model, extensive sensitivity 

analysis has been done to identify the most influential parameter on the heating demand 

profile of the buildings. Based on the results obtained from sensitivity analysis, four 

different input files were constructed for this study. 

✓ Input 2.1: The first input file is the solar dependent variable. This variable is 

determined using the weather station closest to the district site and defines each unit 

envelope assembly solar heat gain. The solar components obtained from the weather 

file are translated on each envelope assembly using the incident angle, orientation, and 

albedo of that assembly. 

✓ Input 2.2: The second input file is the thermal dependent file. The thermal dependent 

file is defined based on the average heat transfer from the unit exterior façade, 

considering its average thermal resistance of the exterior façade of the unit and the 

indoor-outdoor temperature difference. 

✓ Input 2.3: The third input file is the unit internal gain. Should specific data about unit 

internal heat generation be unavailable, the general household average heat generation 

can be used. 

✓ Input 2.4: Finally, the fourth input file constructed based on the daily HVAC system 

on/off cycles. 

• Step 3: In the third step, a reference building heating demand profile is initially defined 

using the data obtained from the measured data. An ANN model is then trained and tested 

using the reference building input file as well as the heating profile of them to obtain the 

regression coefficients. 
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• Step 4: Finally, in the fourth step, once the MNLR model is trained separately for each 

archetype, using the reference building, each individual unit heating demand profile is 

predicted by adopting the input file of them [278]. This procedure can predict the heating 

demand profile of both individual building whereas entire district network. 
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4.4 Available tools 

Storage and demand side management (DSM) are key in integrating RES into community 

energy systems. Many modeling tools are available which support design of such systems. To 

select an appropriate tool, it is essential to understand tool capabilities and assess how they 

match the requirements for a specific situation. The specific aims of this section are (1) to 

categorize and document the capabilities of tools suitable for modeling community systems for 

the planning design stage with focus on incorporation of storage and DSM, and (2) to develop 

a selection process based on these documented capabilities to identify the appropriate tools 

suitable for modeling a specific situation. This will be achieved through: 

• Initial screening process to identify potentially suitable tools 

• Categorization and tabulation of modeling tool capabilities and characteristics 

• Development of a tool selection process using the tables 

• Demonstration of the selection process for a case study and discussion of the findings 

4.4.1 Initial tool screening  

An initial list of 51 tools with some ability to model an energy system was derived from 

(1) literature including reviews and studies describing the development and application of tools, 

(2) tool user manuals/websites and (3) communication with tool providers. Tools not capable 

of modeling community scale energy systems were excluded. For example, Envi-met is a 

microclimate and landscaping tool [310], and Radiance is used in daylight prediction [311]; 

therefore, they were excluded. 

A set of criteria were applied to the selected 51 tools to determine their potential 

suitability in more detail. A tool was considered to pass the criteria if it (1) could be used at 

community scale (i.e. was defined as such or had a case study demonstrating this capability), 

(2) was appropriate for the planning stage, incorporated renewable and low carbon technologies 

and storage as well as DSM, (3) had hourly or sub-hourly time step, and (4) could cover either 

thermal or electrical energy supply. 

This process resulted in the identification of 15 tools suitable for modeling community 

scale energy systems incorporating RES, storage and DSM, for use at planning design stages. 

Two of the 15 tools (i.e. MODEST and Mesup/PlaNET) were excluded due to lack of 

accessible information required for more detailed analysis. This left 13 tools to be carried 

forward into the categorization of capabilities and tool selection process. The following criteria 

were examined for the initial screening process shown in Table 4.8: 

• Community scale: This criterion was met if the tool manual, guidance documentation 

or associated publications had specifically described the tool as applicable at 

community scale. 

• Community scale case study: If some tools identified as being primarily for ‘national’ 

or ‘regional’ planning rather than for community scale had available case studies or 

other documentation demonstrating application at community scale, they were 

included. 

• Planning-level design: Tools capable of modeling for planning-level design were 

deemed to be in scope and to pass this criterion. More detailed building or system design 
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tools, which require very detailed user inputs to describe each individual building and 

system component were deemed not to meet the criteria. 

• Low or zero carbon technologies (LZCT): Modeling of at least one low-carbon or 

renewable technology was imposed as a minimum. 

• Storage and DSM functionality: Modeling of at least one form of storage and DSM 

was imposed as a minimum. 

• Time step: Criterion met if capable of a time step of one hour or less. 

• Electrical and/or thermal modeling: The imposed criterion was the ability to model 

either electrical or thermal networks. Community systems can consist of (1) electrical, 

thermal and transport demands, (2) electrical and thermal generating components, (3) 

microgrid networks, (4) transport fuel systems, (5) thermal networks, and (6) various 

DSM technologies interacting across the spectrum. Integration of these energy sectors 

can provide synergistic benefits, often resulting in a higher penetration of renewable 

supply [312, 313]. While an ideal energy system tool would combine all these energy 

vectors, it was recognized that many community system design tasks utilize just one; 

therefore, this was set as the minimum requirement.
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Table 4.8: Initial tool screening process 

No. Tools  Criteria 

met? 

Community scale Case 

study 

Planning-

level design 

LZCT Storage/ 

DSM 

Time 

step 

Electrical Thermal Ref. 

1 AEOLIUS  National/regional  
✓ ✓ ✓ Minutes ✓  [314] 

2 Balmorel    
✓ ✓ ✓ Hourly ✓ ✓ [315] 

3 BCHP Screening Tool    
✓  

✓ Hourly ✓ ✓ [314, 316] 

4 Biomass decision support tool ✓ ✓ - ✓ ✓ ✓ Hourly  
✓ [317] 

5 CitySim  
✓ -  

✓ ✓ Hourly ✓ ✓ [318-320] 

6 COMPOSE ✓ ✓ - ✓ ✓ ✓ Hourly ✓ ✓ [313, 314] 

7 DECC 2050 Calculator    
✓ ✓ ✓ Yearly ✓ ✓ [321] 

8 DER-CAM ✓ ✓ - ✓ ✓ ✓ 5 mins ✓ ✓ [322, 323] 

9 E4Cast    
✓ ✓ ✓ Yearly ✓ ✓ [314] 

10 EMPS    
✓ ✓ ✓ Weekly ✓  [314, 324] 

11 EnergyPlan ✓ National/regional ✓ ✓ ✓ ✓ Hourly ✓ ✓ [325, 326] 

12 EnergyPRO ✓ ✓ - ✓ ✓ ✓ Minutes ✓ ✓ [327, 328] 

13 ENPEP-BALANCE  National/regional  
✓ ✓  Yearly ✓ ✓ [313, 314, 329] 

14 ESP-r  
✓ -  

✓ ✓ Seconds ✓ ✓ [330, 331] 

15 ETEM/Markal-lite  
✓ - ✓ ✓ ✓ Yearly ✓ ✓ [329, 332, 333] 

16 eTransport ✓ ✓ - ✓ ✓ ✓ Hourly ✓ ✓ [334, 335] 

17 GTMax    
✓ ✓ ✓ Hourly ✓ ✓ [314, 336] 

18 H2RES ✓ ✓ - ✓ ✓ ✓ Hourly ✓ ✓ [325, 337, 338] 

19 HOMER ✓ ✓ - ✓ ✓ ✓ Minutes ✓ ✓ [339-341] 

20 Hybrid2 ✓ ✓ - ✓ ✓ ✓ Minutes ✓  [342, 343] 

21 HYDROGEMS  
✓ -  

✓ ✓ Minutes ✓  [314, 344] 

22 IDA-ICE     
✓ ✓ Minutes  

✓ [318] 

23 iHOGA ✓ ✓ - ✓ ✓ ✓ Minutes ✓  [345-347] 

24 IKARUS    
✓ ✓ ✓ 5 years ✓ ✓ [314, 329] 

25 INFORSE    
✓ ✓ ✓ Yearly ✓ ✓ [314] 

26 Invert  National/regional ✓ ✓ ✓  Yearly ✓ ✓ [314, 348] 

27 KULeuven OpenIDEAS Framework  
✓ -  

✓ ✓ Minutes ✓ ✓ [314, 349, 350] 

28 LEAP    
✓ ✓ ✓ Yearly ✓ ✓ [329, 351] 

29 MARKAL/TIMES ✓ ✓ - ✓ ✓ ✓ Hourly ✓ ✓ [352, 353] 

30 MERIT ✓ ✓ - ✓ ✓ ✓ Minutes ✓ ✓ [354] 

31 Mesap/PlaNet ✓ ✓ - ✓ ✓ ✓ Minutes ✓ ✓ [314, 329, 355] 

32 MESSAGE    
✓ ✓ ✓ 5 years ✓ ✓ [314, 329, 334, 356] 

33 MiniCAM  National/regional  
✓ ✓ ✓ 15 years ✓ ✓ [314] 

34 MODEST ✓ ✓ ✓ ✓ ✓ ✓ Hourly ✓ ✓ [314, 357, 358] 
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35 NEMS    
✓  

✓ Yearly ✓ ✓ [314] 

36 Neplan  
✓ -  

✓ ✓ Minutes ✓ ✓ [359] 

37 NetSim  
✓ -  

✓  Hourly  
✓ [95, 360] 

38 ORCED    
✓ ✓ ✓ Hourly ✓  [355, 361] 

39 PERSEUS    
✓ ✓ ✓ 36-72/year ✓ ✓ [314] 

40 Polysun    
✓ ✓ ✓ 15 mins ✓ ✓ [362, 363] 

41 PRIMES    
✓ ✓ ✓ Yearly ✓ ✓ [95, 364] 

42 ProdRisk  
✓ - ✓ ✓ ✓ Hourly ✓  [314, 365] 

43 RAMSES    
✓ ✓ ✓ Hourly ✓ ✓ [314, 366] 

44 RETScreen  
✓ - ✓ ✓ ✓ Monthly ✓ ✓ [312, 314, 329, 367] 

45 SimREN ✓ ✓ - ✓ ✓ ✓ Minutes ✓ ✓ [314, 368] 

46 STREAM  National/regional  
✓ ✓ ✓ Hourly ✓ ✓ [369] 

47 Termis  
✓ -  

✓  Minutes  
✓ [160, 268] 

48 TRNSYS  
✓ -  

✓ ✓ Seconds ✓ ✓ [313, 314, 318, 346, 370, 371] 

49 UniSyD3.0    
✓ ✓ ✓ Bi-weekly ✓ ✓ [314] 

50 WASP  
✓ - ✓ ✓ ✓ 12/year ✓ ✓ [314] 

51 WILMAR Planning Tool    
✓ ✓ ✓ Hourly ✓ ✓ [314] 
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4.4.2 Categorization of capabilities 

In this section, tool capabilities are contrasted for the 13 modeling tools based on: 

• Input data requirements and input support capabilities 

• Electrical and thermal supply technology modeling capabilities including district 

heating 

• Design optimization and outputs capabilities 

• Controls and DSM modeling capabilities 

• Storage modeling capabilities and underlying storage models 

• Practical considerations 

These comparisons are intended to be useful in the tool selection process (described later 

in Section 4.4.3) by providing information on the capability of tools to be assessed against 

requirements for a specific community system analysis. 

4.4.2.1 Input requirements 

Tools have various levels of input data requirements. Some tools require the energy 

demand profiles, local climate, system characteristics or generation profiles to be explicitly 

input directly by the user as time series. Other tools have embedded functions and libraries 

which provide support in generating detailed datasets from simple inputs, and/or support a mix 

of both directly entered and tool generated calculation inputs. This functionality could be 

essential, desirable, or not applicable depending on availability of data or expertise. The key 

characteristics related to data input requirements for the various tools are tabulated in Table 4.9 

and further described in this section. 

Table 4.9: Tool input data characteristics 

Tool 
Demand profile 

generator 

Resource 

assessor * 

Supply profile 

generator 

Biomass decision support tool Yes No Modeler 

COMPOSE No No Database and input 

DER-CAM No S, T, W Modeler 

EnergyPlan No No Database and input 

EnergyPRO Yes B, H, S, T, W Modeler 

eTransport Yes Yes Modeler 

H2RES No B, H, S, W Modeler 

HOMER Yes B, H, S, T, W Modeler 

Hybrid2 Yes S, W Modeler 

iHOGA Yes H, S, W Modeler 

MARKAL/TIMES No B, H, S, T, W Modeler 

MERIT Yes S, T, W Modeler 

SimREN Yes Yes Modeler 

Resource assessor keys: B: Biomass, H: Hydro, S: Solar radiation, T: Temperature, W: Wind 
* “Yes” indicates that specific resources assessed by the tool were unable to be confirmed 

 Demand profile generator 

Tools were deemed to contain a demand profile generator (‘Yes’ in Table 4.9) if 

functionality exists to support synthesis of electrical, thermal or fuel demand profiles in hourly 

or sub-hourly time steps from simple inputs such as monthly or annual bill data or descriptions 

of building numbers and types, demographics, etc. Others in which either explicit half hourly 

or hourly metered data needs to be obtained, or potentially generated using a secondary 
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modeling process (e.g. using building performance simulation tools) were categorized as ‘No’ 

for this category. 

 Resource assessor 

A resource assessor gives access to weather and other resources (e.g. solar radiation, 

wind, water, biogas and biomass) in a suitable data input format (e.g. from national or 

international datasets) based on simple inputs (e.g. location). The resources covered were 

identified for each tool. 

 Supply profile generator 

A supply profile generator provides electric, thermal or fuel-producing system outputs to 

be used in the modeling. ‘Modeler’ describes a tool which generates the supply profile from 

the resource input (e.g. climate) and the device specifications. For example, in HOMER, local 

wind speeds (the resource input) and a specific wind turbine specification (a power curve and 

other details) are used to calculate the wind turbine supply profile. ‘Database and input’ 

describes a tool in which the hourly or sub-hourly supply profiles are directly fed as inputs 

requiring the user to carry out some outside tool calculations or source such datasets. 

4.4.2.2 Supply technology modeling capabilities 

Tools vary with respect to the range of supply technologies which can be directly 

modeled. Table 4.10 presents information about available supply technologies within the tools. 

A wide range of electrical supply systems can be modeled where most tools support modeling 

of connection to the external electricity grid. Two categories have been assigned for modeling 

of the grid connection. First, ‘Grid simple’ allows for limitless import and export, with static 

pricing. Second, more complex ‘Grid’ models include features such as connection limits and 

charges, complex time-based import, export tariffs, etc. 

DHS modeling (if available) is considered only as an estimated heat loss. This is a 

continuous heat loss as a percentage of peak load in the Biomass Decision Support Tool, or a 

percentage of real-time load as in EnergyPRO. The heat demand density, distribution 

temperature and other factors such as controls which have a large effect on ancillary energy 

use and losses in DHSs are not directly considered and are required to be the input provided by 

the user for thermal demand profiles. 

4.4.2.3 Output capabilities 

Two important attributes in supporting design tasks are (1) capability of the tool to aid 

the identification of optimum design solutions, and (2) ability of the tool to directly provide 

outputs required to support decision making. Key capabilities of the 13 tools in these areas are 

presented in the first two columns of Table 4.11 and further discussed in this section. 
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Table 4.10: Supply system technologies 

Tools Electrical supply Thermal supply District heating 

Biomass decision support tool No FB Yes 

COMPOSE B, C, CHP, G, Gr, PV, Wi  CHP, EB, FB, HP, ST  No 

DER-CAM CHP, D, G, Gr, PV, Wi CHP, EB, FB, Geo, HP, ST No 

EnergyPlan B, C, CHP, D, G, Geo, Gr, GrS, H, N, PP, PV, T, Wa, Wi CHP, EB, FB, Geo, HP, I, ST, Was Yes 

EnergyPRO B, C, CHP, D, G, Gr, H, PV, Wi CHP, EB, FB, HP, ST  Yes 

eTransport CHP, Gr, PP  CHP, FB, HP Yes 

H2RES B, C, D, G, GrS, H, PV, Wa, Wi,  EBo, FB No 

HOMER B, C, CHP, D, G, Gr, H, PV, Wi CHP, FB No 

Hybrid2 D, PV, Wi,  None No 

iHOGA D, G, Gr, H, PV, Wi None No 

MARKAL/TIMES B, C, CHP, D, G, Geo, Gr, GrS, H, N, PP, PV, T, Wa, Wi CHP, EB, FB, Geo, HP, I, ST, Was No 

MERIT C, CHP, G, GrS, PV, Wi,  CHP, HP, ST No 

SimREN Geo, H, PP PV, Wi CHP No 

Electrical supply keys: B: Biomass power plant, C: Coal power plant, CHP: Combined heat and power plant, D: Diesel plant, G: Gas plant, Geo: Geothermal plant, Gr: 

Grid, GrS: Grid simple, H: Hydro, N: Nuclear, PP: Power plant (generic), PV: Photovoltaic, T: Tidal, Wa: Wave, Wi: Wind 

Thermal supply keys: CHP: Combined heat and power, EB: Electric boiler, FB: Fuel boiler, Geo: Geothermal, HP: Heat pump, I: Industrial surplus, ST: Solar thermal, 

Was: Waste incineration 
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Table 4.11: Design optimization, outputs, controls and DSM controls capabilities 

Tools Optimization/Function Outputs Controls DSM control 

Biomass decision support tool S E, EP, FA, FC, RP, SA FO, NO FO 

COMPOSE E, F E, EP, FA, FC, SA  MO, OO (F) OO (F) 

DER-CAM E, F A, E, EP, FA, FC, SA DC, EV, LS, MO, OO (F, E) DC, EV, LS, OO (F, E) 

EnergyPlan No E, EP, FA, FC, SA, RP  FO, LS, MO, OO (F) FO, LS, OO (F) 

EnergyPRO No E, EMI, EP, FA, FC, SA EV, MO, NO, OO (F), UO EV, OO (F) 

eTransport F E, EMI, EP, FA, FC, SA  MO, OO (F) OO (F) 

H2RES No EP, FC, RP, SA FO, MO FO 

HOMER F A, E, EP, FA, FC, RP, SA AC, LS, MO, NO, OO (F), UO LS, OO (F) 

Hybrid2 No EP, FA, SA FO, LS, MO, NO FO, LS 

iHOGA 
Single: F 

Double/triple: combination of A, E, F, H, J, N 

A, E, EP, FA, FC, HDI, JC, RP, 

SA  
FO, MO, NO, OO (F)  FO, OO (F) 

MARKAL/TIMES F E, EMI, EP, FA, FC, RP, SA MO, NO, OO (F) OO (F) 

MERIT No EP, FC, M, SA FO, LS, MO FO, LS 

SimREN No EMI, EP, SA - - 

Design optimization keys: A: autonomy, E: emissions, F: financial, H: human development index, J: job creation, S: system 

Outputs keys: A: Autonomy, E: Emissions, EMI: Energy market interaction, EP: Energy production, FA: Financial analysis, FC: Fuel consumption, HDI: Human development 

index, JC: Job creation, M: Demands/supply match, RP: Renewable penetration, SA: System analysis 

Control/ DSM control keys: AC: Advanced control, CC: Cycle charging, DC: demand curtailment, EV: electric vehicle, FO: fixed order, LS: load shifting, MO: modulation 

output, NO: non-modulating output, OO: operational optimization (with objective function in brackets), UO: User-defined order 
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 Design optimization  

Optimization tools find the minima (or maxima) for a defined objective function by 

systematically searching a defined modeling space according to a mathematical algorithm 

(details in Chapter 5). Design optimization involves a search for the optimal system with 

respect to combination and sizing of components. Most of the reviewed tools which support 

optimization use a full factorial deterministic approach based on user defined inputs to solve 

the optimization problem and use a simple financial and/or carbon emissions objective. For 

example, HOMER used to execute a grid search based on user defined inputs specifying the 

system options to be included, but recently provided an update allowing users to only input 

upper and lower limits to the grid search. iHOGA was the only identified tool with multi-

objective function capability. It includes a choice of available objective functions and 

embedded genetic algorithms [372]. The Biomass Decision Support Tool can optimize the size 

of TES. Tools which do not directly support mathematical optimization could be used within 

an external mathematical optimization process by an iterative approach; however, this can be 

logistically complex or require advanced software skills to automate. 

 Outputs 

The outputs have a key role in assessing system performance. Different tools focus on 

different aspects of the system performance. Most tools provide financial analysis such as 

cost/kWh of energy produced or information on energy market interactions. Some tools are 

purely technical and focus on the energy production, system analysis, demand/supply match, 

or fuel consumption. Others assess emission and renewable penetration, while some others 

consider social factors such as job creation and the human development index. Specific tool 

outputs can be used in external calculations to generate a wider range of analysis outputs but 

only the built-in capabilities are documented here. 

4.4.2.4 Control modeling capabilities 

The ability to correctly capture the controls is also important to assess the performance 

of community scale energy systems and particularly when assessing the impacts of storage and 

DSM in such systems. Modeling tools often have built-in control logics intended to mimic real 

or idealized controls. It is important to comprehend and assess the control regime underpinning 

each of the models. 

Controls regulate how supply, storage and DSM technologies meet loads by determining 

the control logic and applied constraints. A simple community scale system control strategy 

can include (1) an order of dispatch for the different resources, and (2) a set of constraints. 

 Operational optimization 

Operational optimization (OO) control is defined as the tool which optimizes (at each 

time step) the order of dispatch of supply, storage and DSM technologies to satisfy an objective 

function which may relate to cost, emissions, etc. There are differences among the tools in 

terms of logical implementation; nevertheless, a general description is provided in this section. 

Most tools use OO control chronologically where calculations are performed at each 

individual time step to establish an optimum based on prevailing conditions at that time step 

only, before the next time step is considered. Storage is generally charged and discharged when 
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it is deemed favorable to do so according to the specific logical implementation and objective 

function. Typically, charging occurs when there is excess energy from renewable or non-

modulating supply where storage is deemed to have benefit over export or curtailment, or 

where grid parameters (e.g. tariff) make charging from grid advantageous. Discharging from 

available storage is generally treated as a dispatchable supply option. The value attached to 

storage charge and discharge considers characteristics of the storage system (e.g. efficiencies 

and costs, plus parameters such as tariffs and carbon contents). For example, in HOMER, the 

discharge energy cost includes average charge energy cost, efficiencies, and battery wear, 

lifetime and replacement costs. 

OO control is applied non-chronologically in some tools (e.g. in EnergyPRO) where the 

whole calculation period is scanned for energy supply costs. An optimized supply schedule is 

determined, with excess low-cost generation charging storage and discharge occurring to meet 

demand in subsequent favorable high cost time steps. These OO control functionalities may 

replicate real control systems for situations where local renewable consumption is prioritized 

or where a set tariff structure is established for energy import and export. The non-

chronological OO implementation may in some circumstances provide a somewhat optimistic 

view of system performance as perfect foresight is implied. 

 Fixed order 

Fixed order (FO) control is where there is an available set of functions with predefined 

order of dispatch of supply, and fixed conditions for the use of storage and DSM technologies. 

Dispatchable supply is dispatched in an FO in periods where non-dispatchable (typically 

renewable) supply is below demand. EnergyPLAN, H2RES and MERIT charge electrical 

storage in periods of excess renewable production and prioritize discharging from electrical 

storage over generators and power plants. In MERIT, TES discharging is prioritized over other 

thermal supply options. In EnergyPLAN, TES charging is prioritized to absorb excess 

electricity or heat production and discharged to avoid nonrenewable generation. In iHOGA, 

batteries can charge/discharge at fixed, user input tariff values. In the Biomass Decision 

Support Tool, excess heat from the biomass boiler is stored in a TES and discharged when 

demand exceeds supply. EnergyPLAN includes several selectable functions for excess 

electricity production. Hybrid2 contains embedded functionality for 13 predefined FO controls 

relating to the practical performance of electric systems [373]. 

 User-defined order 

User-defined order (UO) control is where the order of dispatch (for at least some part of 

the supply) is defined by the user. For example, UO in EnergyPRO requires all supply options 

to be given an order of preference, which can also include separate priorities for production to 

satisfy different loads (i.e. peak, high, low). In this tool, storage priority setting is not an option 

and storage operation always follows the OO control strategy. 

 Modulating output 

Application of modulating output (MO) control to a dispatchable supply allows 

modulation of output to match the load above certain minimum supply output level. In all tools, 

the grid connection (if enabled) can modulate output to follow electrical load with a minimum 
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supply level of zero. HOMER can only designate grid or generator supplies to this control, 

while in EnergyPRO, DER-CAM and eTransport any dispatchable supply can be assigned. 

 Non-modulating output 

Non-modulating output (NO) control sets the constraint that a designated supply must 

operate at a fixed output whenever it is operating. In the Biomass Decision Support Tool, the 

designated supply is the biomass boiler. In EnergyPRO, the user selects the supplies. In iHOGA 

and HOMER, the designated supplies are the generators. In these two tools, a set state of charge 

can be specified, and the designated supply will continue operating (regardless of renewable 

generation availability) until reaching the set point. It mimics a common feature in real systems 

used to maximize battery life but reducing the potential for renewable inputs to the storage. 

 Advanced control 

HOMER offers the capability to use advanced control (AC) strategies where users can 

define more complex control operating regimes than those previously outlined by interfacing 

with externally written codes in MATLAB [374]. 

4.4.2.5 Storage modeling capabilities 

This section looks at relevant capabilities of the 13 screened tools and underlying models 

with respect to storage functionality. Such functionality enables DSM and, in the reviewed 

tools, is used with the operational optimization and fixed order controls. 

Storage capabilities are presented in two tables for use in tool selection process. Table 

4.12 describes the range of storage modeling capabilities available in each tool and Table 4.13 

gives a summary of the models. In this section, a summary of each capability and underlying 

model is provided.
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Table 4.12: Storage and DSM general capabilities and underlying models 

Tools Electrical * Thermal * DSM * Fuel synthesis * Fuel storage * 

Biomass decision support tool No MB No No B 

COMPOSE KiBaM SSM, CS No No No 

DER-CAM SSM, FB MB LS, DR, DCL, EV No No 

EnergyPlan SSM, PH, CAES SSM, STS LS BF, BG, H, EF, GtL G, O, M 

EnergyPRO SSM, PH MB, CS EV BF, BG, H, EF, GtL G, O, M 

eTransport Yes Yes No Yes Yes 

H2RES Yes Yes No No Yes 

HOMER SSM, PH, KiBaM, MKiBaM, FB No DCL H H 

Hybrid2 EKiBaM No LS No No 

iHOGA SSM, KiBaM, MKiBaM No No H H 

MARKAL/TIMES Yes Yes Yes Yes Yes 

MERIT EKiBaM SSM LS No No 

SimREN Yes No No No No 

Electrical keys: SSM: Simple storage model, KiBaM: Kinetic battery model, MKiBaM: Modified kinetic battery model, EKiBaM: Extended kinetic 

battery model, FB: Flow battery model, PH: Pumped hydro model, CAES: Compressed air energy storage model 

Thermal keys: SSM: Simple storage model, MB: Moving boundary model, STS: Seasonal thermal storage model, CS: Cold storage model 

DSM keys: DCL: Directly controllable load, DR: Demand response, EV: Electric vehicles, LS: Load shifting 

Fuel synthesis keys: BF: Biofuel, BG: Biogas, EF: Electrofuel, GtL: Gas to liquid, H: Hydrogen 

Fuel storage keys: B: Biomass, G: Gas, H: Hydrogen, M: Methanol, O: Oil 
* “Yes” indicates that the tool has a certain capability, but specific models used were not able to be confirmed. These tools were assumed to have SSM 

as minimum electrical and thermal storage models 
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Table 4.13: Electrical and thermal storage technologies and models 

Electrical storage Models used Thermal storage Models used 

Lead-acid battery SSM, KiBaM, EKiBaM, MKiBaM Hot water tank SSM, MB 

Li-ion battery SSM, KiBaM, KiBaM, MKiBaM Cold storage SSM, CS 

Flow battery SSM, FB Seasonal thermal storage SSM, STS 

Pumped hydro SSM, PH   

CAES SSM, CAES   

 Electrical storage 

Electrical storage is a general term used here to include electrochemical (li-ion, flow, 

lead-acid batteries), electromagnetic (supercapacitors) and mechanical (CAES, hydro, 

flywheels) forms. Electrical storage can be represented using several different mathematical 

models, the different models used in the tools are described in this section. The level of detail 

required at the planning stage depends on the specifics of the system being modeled and the 

outputs to be derived from the modeling. 

4.4.2.5.1.1 Simple storage model 

A tool possessing the SSM, which can interact with supply and load, can model any 

storage technology. EnergyPLAN and EnergyPRO use the SSM to define all types of storage, 

including all electrical storage types. iHOGA, DER-CAM and HOMER support the use of the 

SSM, e.g. for high-performance batteries [366]. HOMER also recommends its use for simple 

pumped hydro storage systems. The SSM consists of a simple energy in/out balance via an 

energy storage. Energy can enter the storage below a threshold maximum charging rate, up to 

a maximum storage capacity. There can be self-discharge from the storage (e.g. a percentage 

or other function at each time step). Energy can be discharged from the storage below a 

threshold maximum discharging rate. For charging and discharging there are associated 

efficiencies, which combine with self-discharge to give a round-trip efficiency. Charging and 

discharging efficiencies are both generally fixed values. The SSM has fixed maximum charging 

and discharging rates independent of the state of the system. This approximation may be 

sufficient for some analyses but may not be realistic in other cases. Storage life cycle analysis 

is included in some tools with the SSM. For instance, in HOMER lifetime is modeled as both 

an energy throughput and time. However, performance degradation effects are only included 

in the MKiBaM model described later. 

4.4.2.5.1.2 Kinetic battery model 

The kinetic battery model (KiBaM) was first developed for modeling lead-acid batteries 

in hybrid energy systems [375]. It is described as a two tank model [376], where one tank holds 

the available energy to directly support charging and discharging and the other holds the bound 

energy which transfers energy to and from the available tank according to a defined exchange 

function representing the chemical process. The model supports charge/discharge rates as 

functions of stored energy in the two tanks. The underpinning electronic mechanisms are still 

somewhat simplified with voltage modeled only as a linear function of energetic state, etc. 

iHOGA and HOMER both possess this model and have libraries of electrochemical batteries 

with parameters established from test data. 
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4.4.2.5.1.3 Extended kinetic battery model 

The KiBaM was improved in terms of modeling voltage behavior [377]. These models 

are denoted here as extended kinetic battery models (EKiBaM). Hybrid2 includes such an 

improved model [378], with voltage, charging and discharging efficiencies and current as 

nonlinear functions of the state of charge. MERIT also contains a different but similar model 

with improved voltage modeling [354]. 

4.4.2.5.1.4 Modified kinetic battery Model 

A further modified kinetic battery model (MKiBaM) is used by HOMER and iHOGA to 

provide deeper insights. This includes a thermal model component whereby the resistive 

properties of the battery produce heat, affecting temperature, capacity and lifetime. iHOGA 

offers customized models for lead-acid batteries [379, 380] and Li-ion batteries [381-383]. 

4.4.2.5.1.5 Flow battery model 

Flow batteries can also be modeled explicitly with models which account for the 

independence between capacity and charge/discharge and other flow cell characteristics. Flow 

battery specific models based on manufacturers data are included in DER-CAM [384] and 

HOMER [376]. 

4.4.2.5.1.6 Pumped hydro model 

Pumped hydro is often modeled using the SSM by factoring in the capacity and efficiency 

of the pump and generator as well as the capacity of the reservoir. EnergyPLAN and HOMER 

include pumped hydro as a technology using the SSM. Only EnergyPRO includes an explicit 

pumped hydro model and includes inputs such as reservoir volume, friction factors and head 

difference. 

4.4.2.5.1.7 Compressed air energy storage model 

A simple CAES model is included in EnergyPLAN, with a focus on the possible 

economic trading [385]. 

 Thermal storage 

The investigated tools use only the least complex models, some of the limitations 

associated with this are discussed later. The categorization of TES models found in the tools is 

presented in Table 4.12 and Table 4.13 and is described in this section. 

4.4.2.5.2.1 Simple storage model 

The SSM model for thermal storage does not consider temperatures but only accounts 

for energy and was described earlier for electrical storages. EnergyPLAN uses the SSM to 

model all TES technologies. 

4.4.2.5.2.2 Moving boundary model 

The most common model for TES in the examined tools is the moving boundary (MB) 

model, where the additional inputs over the SSM are top and bottom tank temperatures. It 

assumes that there is no mixing between the upper hot zone and the lower cold zone and the 

thermocline boundary layer is infinitesimally small. This is again an energy balance model 
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with inflows and outflows of energy moving the boundary layer up and down the storage and 

stored energy is calculated based on the thermocline position. The model does not explicitly 

capture temperature variation due to losses and destratification. This model is incorporated in 

the Biomass Decision Support Tool, DER-CAM, EnergyPRO and MERIT. The model can be 

adjusted in EnergyPRO using a utilization factor reducing the useful energy which can be used 

for supply. DER-CAM allows for different high temperature and low temperature storages 

within the system to allow for different heat generation devices [386]. EnergyPRO also uses 

the MB model for cold storage and was the only tool identified to have electrical, heat and cold 

storage modeling capability. 

4.4.2.5.2.3 Seasonal model 

A seasonal TES model is included in EnergyPLAN. It is simplified and only two inputs 

are required (1) capacity, and (2) days of optimizing storage, which allows for the model to 

identify inter-seasonal variations in demand. In general, this functionality is not supported in 

the tools analyzed here apart from EnergyPLAN. 

4.4.2.5.2.4 Modeling of fuel synthesis and storage 

Fuel synthesis is the production of fuels within a system creating a new energy vector 

which can be used across a range of energy sectors, and acts as storage to be used later [387]. 

EnergyPLAN, EnergyPro, iHOGA and HOMER can model hydrogen synthesis. This is 

produced using electricity with an electrolyzer to form hydrogen, stored in a hydrogen tank, 

and then converted to meet transport, heat or electricity demands. All three technical 

components can be modeled within these tools. EnergyPRO contains a simple model for the 

synthesis of any fuel. EnergyPLAN allows for synthesis of different fuel types including 

biofuel, biogas, and hydrogen from electrolysis, electrofuel and gasification to liquid transport 

fuel. These fuels are used to form interactions between energy sectors and ensure high-value 

energy is used for high-value processes. 

These fuels must then be kept in storage. The Biomass Decision Support Tool can size 

biomass fuel storage, while iHOGA and HOMER can model hydrogen storage tanks. 

EnergyPLAN can model gas, oil and methanol storages, and EnergyPRO can model any fuel 

storage as a generic model. 

4.4.2.6 Practical considerations 

Table 4.14 sets out practical considerations associated with selecting a tool including 

cost, access, support, whether it is academic or commercial, and user-friendliness. Cost may 

be a vital factor in choosing an energy system tool and depends on the resources available to 

users. A student is likely to choose a free tool, e.g. Biomass Decision Support Tool, 

COMPOSE, DER-CAM, EnergyPLAN, iHOGA, Hybrid2, MERIT and MODEST. Often tools 

are available at discounted prices for students. A government agency or an engineering 

consultancy may have the resources available to afford the cost for a tool such as 3,000+ EUR 

for EnergyPRO, 500-1,500 USD for HOMER, or 1,275-3,130 EUR to manipulate the code for 

MARKAL/TIMES. 

Accessibility is defined in terms of availability, purchase requirement, and if the tool is 

downloadable or browser-based. Available support as indicated by tool websites are listed, and 
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includes user manual, available contact details, videos, training and an online forum. The tools 

are classed as academic or commercial based on the development and ownership of the tools 

through either a university/research group or a private company, respectively. User friendliness 

was judged on the provision of an intuitive model-building pathway which was subjectively 

graded at a low, medium, or high level.
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Table 4.14: Practical considerations 

Tools Cost Access Support Academic/commercial User friendliness 

Biomass Decision Support Tool Free Download UM, V, OC Commercial High 

COMPOSE Free Download V, F Academic Medium 

DER-CAM Free Browser UM, V, F Academic Medium 

EnergyPlan Free Download UM, C, V, T, OC Academic High 

EnergyPRO 3,000+ EUR for all modules Purchase UM, C, T Commercial High 

eTransport - Not available - Academic High* 

H2RES - Not available None Academic Not available 

HOMER Free 2-week trial, 500–1,500 USD Purchase UM, C, V, F Academic/commercial High 

Hybrid2 Free Download UM, C Academic Not available 

iHOGA Educational free, 500 EU for 1 year Purchase UM, F, C Academic Medium 

MARKAL/TIMES 1,275-3,130 EUR to manipulate source code Download UM, F, PS Academic Low* 

MERIT Free Download T Academic Medium 

SimREN - Not available Not available Commercial Not available 

Support keys: UM: user manual, V: videos, OC: online courses, F: forum, C: contact, T: training, PS: paid support 
* From Beuzekom et al. [313] 
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4.4.3 Tool selection process 

In this section, a typical stepwise tool selection process is developed to aid identifying 

an appropriate tool for a particular analysis for planning-level design of a community energy 

system incorporating storage and DSM, based on the process of Sandia National Laboratories 

[388]. 

4.4.3.1 Determination of requirements 

The first process step is to establish which of the modeling tool capabilities are essential, 

desirable or not applicable and to assign values of 2, 1 and 0 respectively to each of these tool 

capabilities. This process requires that each of the capabilities described in the column headings 

and associated keys of the tables are individually considered against the requirements for the 

intended analysis. For example, according to Table 4.9, the three tool capabilities captured are 

demand profile generator, resource assessor and supply profile generator. If the user requires 

the tool to provide demand profiles, weather data and renewable generation supply profiles 

from simple input data (such as location and demographics), then these capabilities would be 

considered essential and each of these capabilities would be assigned a value of 2. 

Alternatively, if the user has available data for demand, weather and renewable generation and 

supply (e.g. from monitored data), then these capabilities are not applicable so would be 

assigned a value of 0 and can be eliminated from further consideration. If the user can 

potentially source information and generate the demand, weather and renewable generation 

input data but this would need significant effort, then this capability could be ranked as 

desirable and allocated a value of 1. Similarly, according to Table 4.10, it may be essential to 

have the capability to model electrical generation with both PV and wind, so each of these 

capabilities would be allocated a 2, while if there is no potential for hydro, then this capability 

would be allocated a 0. When this process is complete, the essential and desirable capability 

requirements have been established. This process for a case study is described in the following 

sections. 

4.4.3.2 Scoring of tools against requirements 

Once the requirements have been established, each of the tools can be scored against 

them. The first consideration is whether all the essential capabilities are available. If a given 

modeling tool has all the essential capabilities it can be further considered. Those which do not 

pass this check can be discounted. For the tools which pass, their scores for the essential plus 

desirable capabilities are summed into an overall score and ranked with the most suitable tools 

having the highest scores. Table 4.15 illustrates this process for a simple case study which is 

described in more detail in the following section. 

4.4.3.3 Example application of the modeling tool selection process 

Findhorn is an ecovillage in the northeastern Scotland with an ambition to transition to a 

local, low-carbon energy system. It consists of about 75 buildings, with a private wire electrical 

network, wind and solar generation, a grid connection, micro-district heating from biomass, 

and individual household heat pumps and solar thermal systems. The community could be said 

to be net zero carbon but has large electricity surpluses and shortfalls due to stochastic demands 

and renewable production. The community has an interest in the use of thermal and electrical 
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storage with advanced controls as a potential route to achieving their aims. The community had 

previously been monitored as a research and demonstration site for advanced DSM [389]. 

The overall objective is to increase the energy autonomy and use of local RES. The 

community has some concerns over the sustainability of biomass. To help achieve their 

objective, an initial scoping process identified 2 initial future illustrative scenarios to be 

investigated (1) increased electrical generation plus battery storage, and (2) increased electrical 

generation plus heat pumps and large hot water tanks replacing the micro-district biomass heat 

source. The modeling tool selection process was then applied to identify suitable software to 

be used for the investigation. 

The first step was to review the tool capability requirements. Demand profile generator, 

resource assessor, and supply profile modeler capabilities (Table 4.9) were all deemed to have 

zero value (i.e. not applicable) since multi-year sub-hourly data was readily available from 

monitoring. 

Electrical supply technologies from wind, grid and solar PV were deemed to be essential 

(Table 4.10). Thermal supply modeling of fuel boiler (biomass fuel in this case) and heat pumps 

were also deemed essential. Capability to model solar thermal and district heating in detail 

were scored desirable but not essential at this stage as the primary focus was on the electrical 

supply system and the available monitoring data included heat delivery from existing heat 

production units net of solar inputs and distribution losses. 

Design optimization capability (Table 4.11) was deemed desirable but not essential as 

the view was that the relatively simple range of options to be investigated could be covered 

through a full factorial deterministic investigation and modeling outputs analyzed outside of 

the tool to establish potential optima. The output of hourly data allowing either autonomy, 

emissions or renewable penetration to be established was deemed essential. This level of 

system performance parameter output would then allow the other required outputs to be 

calculated outside of the tool. 

For control capabilities (Table 4.11), either FO or OO control was deemed essential to 

support the required ordering for dispatch of supply and storage, in addition to the MO control 

inherent in all the tools for representing the grid. DSM specific control functionality was not 

required in this example. 

Storage modeling capability was deemed essential for both electrical and thermal storage 

(Table 4.12 and Table 4.13, respectively). It was deemed that the SSM was sufficient but that 

it would be desirable for more complex models to be available. Fuel synthesis and fuel storage 

were not required in this simple illustrative study. 

These technical requirements are tabulated in the top rows of Table 4.15. Each of the 

tools assessed against these requirements, where a tool has an essential or desirable capability 

then it scores 2 or 1 respectively against that capability, otherwise it scores 0. Once all the 

potentially capable tools have been assessed, they are ranked by (1) the tools which do not have 

all the essentials are deemed to ‘fail’ to meet the essential requirements and discounted and 

only those that ‘pass’ this test are further considered, (2) the remaining tools are then ranked 
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based on their cumulative score. This process is illustrated in Table 4.15, with the result in this 

case that 6 tools are capable with similar scores of either 20 or 21. Note that this example was 

relatively simple for reasons of clarity and brevity. More complex situations follow the same 

process.
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Table 4.15: Output from application of tool selection process 

Tool 
Design 

optimization 
Outputs 

Control Supply technologies Electric 

battery 

SSM 

Electric 

battery> 

SSM 

Hot 

water 

tank 

SSM 

Hot 

water 

tank 

MB+ 

Pass/ 

fail 
Score FO or 

OO 
WT PV FB GR DH ST HP 

Desirable/Essential D E E E E E E D D E E D E D   

Value 1 2 2 2 2 2 2 1 1 2 2 1 2 1   

COMPOSE 1 2 2 2 2 2 2 0 1 2 2 1 2 0 Pass 21 

DER-CAM 1 2 2 2 2 2 2 0 1 2 2 0 2 1 Pass 21 

EnergyPRO 0 2 2 2 2 2 2 1 1 2 2 0 2 1 Pass 21 

EnergyPlan 0 2 2 2 2 2 2 1 1 2 2 0 2 0 Pass 20 

MERIT 0 2 2 2 2 2 2 0 1 2 2 1 2 0 Pass 20 

MARKAL/TIMES 1 2 2 2 2 2 2 0 1 2 2 0 2 0 Pass 20 

eTransport 1 2 2 0 0 2 2 1 0 2 2 0 2 0 Fail 16 

H2RES 0 2 2 2 2 2 2 0 0 0 2 0 2 0 Fail 16 

HOMER 1 2 2 2 2 2 2 0 0 0 2 1 0 0 Fail 16 

iHOGA 1 2 2 2 2 0 2 0 0 0 2 1 0 0 Fail 14 

Biomass Decision Support Tool 1 2 2 0 0 2 0 1 0 0 0 0 2 1 Fail 11 

Hybrid2 0 0 2 2 2 0 0 0 0 0 2 1 0 0 Fail 9 

SimREN 0 0 0 2 2 0 0 0 0 0 2 0 0 0 Fail 6 

Keys: WT: wind turbine, PV: photovoltaic, FB: fuel boiler, GR: grid, DH: district heating, ST: solar thermal, HP: heat pump 
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4.4.4 Shortcomings of available tools 

The categorization and documentation of tool capabilities revealed that there are 

many differences between the available tools. Some tools (such as EnergyPLAN) combine 

all energy sectors based on the view that holistic consideration across sectors leads to 

optimal solutions. Other tools are primarily single domain focused. For instance, iHOGA 

has strong capabilities for electrical analysis with a wide range of storage models but no 

thermal capability. 

Design optimization capabilities in the tools is generally focused on financial or 

technical considerations. Only iHOGA optimizes human considerations (e.g. human 

development index and job creation) and two tools optimize environmental considerations. 

Much work has been carried out regarding external optimization in a two-step process. This 

may influence the lack of embedded optimization options in the tools. Another factor is the 

preference for the simplicity and transparency in full factorial parametric analysis. 

There is also a lack of detailed DHS modeling capability in any of the community-

scale tools. With only a heat loss parameter as input, factors such as the heat demand 

density, distribution temperatures, network layouts and controls which have a large effect 

on ancillary energy use and losses in DHSs are not directly addressed. 

Analysis of control capabilities in the tools showed a wide range including 

operational optimization, fixed order, and user-defined orders, for dispatch of supply and 

storage. Operational optimization control is usually used with a cost based objective 

function, other possible objective functions such as maximizing local use of renewable 

generation, minimizing grid imports or minimizing emissions generally are not directly 

supported, with DER-CAM being a notable exception. More advanced predictive controls 

based on weather forecast and demand prediction are not supported. However, the non-

chronological operational optimization in EnergyPRO and the deferrable load functionality 

in HOMER, etc. can represent this type of control but with significant simplifications. The 

option to run tools in combination with external control algorithms in separate software 

packages is one way around this limitation. 

The analysis of storage functionality and modeling revealed the frequent use of SSM. 

More complex models exist for electrochemical storage particularly for lead-acid, li-ion 

and flow batteries. TES is limited to simple energetic models which do not directly consider 

temperature variations other than in assessing capacity. These may be suitable for initial 

planning design stages but have limitations. Consideration of temperatures, heat transfer 

rates, stratification and phase change in TES systems necessitates more complex models. 

These will be required in the future to support realistic modeling of the hybrid systems and 

advanced controls for which these parameters have critical importance. 

There were few tools found to be directly capable of analyzing the fuel synthesis 

technologies. However, such technology is currently unlikely to be at the community scale 
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in the short-term. For this reason, tools developed for regional scale have the most 

capability. 

The wide range of available tools and their differing capabilities make a 

categorization and tool selection process valuable for the end user of such tools. The 

abundance of available tools and rapidly developing field dictated that it was impossible to 

include everything. However, their selection is reasonably representative of the state-of-

the-art in tools for planning-level design at community scale. The presented categorization 

and selection process is not limited to the tools identified here but is intended to provide a 

framework which can be used in the future to refresh the capabilities categorization or be 

applied to further tools. The review of required capabilities as the first part of the selection 

process can also form a guide for modelers to ensure that relevant factors are considered. 

The tool selection process does not consider the potential for multiple tools to be 

used together to analyze the system under consideration. Such work is recommended for 

future studies. The more detailed simulation modeling tools currently used in building and 

system domains have the potential to be developed for community scale energy systems in 

the future. This would allow more physical detail to be captured in planning level design 

studies, their capabilities could also be assessed, and tools selected using the same process. 

An element not considered here is the validation of the modeling tools. So far in the 

available literature, case studies are largely based on design and do not include monitored 

data on completed schemes which include DSM and storage. Experience in the buildings 

industry has found that performance gaps are common [390] and identified that industry 

process needs to evolve to address these gaps [391]. It is critical that similar issues are 

addressed to avoid performance gaps in future community scale energy systems. 

4.5 Examples 

In the following two examples, two levels of model validation are presented at the 

district level for the 4-step prediction model using the simplified procedure mentioned 

earlier (Section 3.3.1). 

4.5.1 Simplified district load prediction: inter-model comparison 

A DHS is designed to distribute the heat generated by different means of heating 

sources within the network of users at higher efficiency and lower CO2 production. 

Although some evidence of DHS use can be observed over the span of several centuries, it 

was not until the last two decades that it has become an established method to design green 

and energy efficient heating for buildings. 

4.5.1.1 Background 

As explained in Section 3.3.1, three primary sources of discrepancies can be 

identified for existing models which are occupant behavior, neighborhood interference and 

scaling effect. Regarding the latter, scaling methods (Section 4.2.3.2) are used to represent 
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the entire housing stocks (see Table 4.5 and Table 4.7). In this example, the results of the 

developed method for predicting the heating demand profile of a district are compared with 

those obtained from detailed modeling using eQUEST. 

4.5.1.2 System description 

The following three districts were considered for the inter-model comparison: 

• District 1: comprised of 95 residential buildings 

• District 2: consisting of 82 office buildings 

• District 3: includes a mixture of 84 residential and 28 office buildings 

Two validated reference buildings were selected to study these districts. The 

geometric parameters (i.e. number of stories, aspect ratio, orientation, net area and window 

to wall ratio) were altered in accordance to these buildings to define the districts (Figure 

4.4). In other words, the geometric parameters from the reference buildings were utilized 

to define the range of the parameters of every other building in the district. These ranges 

were based on the likelihood of the characteristics for the archetypes within each district. 

Subsequently, the parameters of each building were given a random value within each of 

the defined ranges as shown in Table 4.16 to Table 4.18. Note that other than the reference 

buildings (which provide realistic values) and the ranges of the geometric parameters 

(which have been determined based on the likelihood within their specific district), all other 

values were randomly constructed. To construct the buildings within District 2 and District 

3, similar patterns of assigning random values were applied. 

 

Figure 4.4: The algorithm used to generate Districts 1-3 
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Table 4.16: Description of District 1 

Stories Buildings Area [m2] Window/wall Aspect ratio  Orientation* Set point [°C]  

4 32 3,500-4,500 20-45% 0.75-1.3 ± 25º 24 

5 36 3,800-5,000 20-45% 0.75-1.3 ± 25º 24 

6 27 3,500-5,500 20-45% 0.75-1.3 ± 25º 24 
*Orientation with respect to south 

Table 4.17: Description of District 2 

Stories Buildings Area [m2] Window/wall Aspect ratio  Orientation* Set point [°C]  

4 21 10,200-12,000 20-40% 0.75-1.3 ± 25º 24/20 

5 37** 10,200-13,000 20-35% 0.75-1.3 ± 25º 24/20 

6 24 11,500-14,000 20-35% 0.75-1.3 ± 25º 24/20 
*Orientation with respect to south 
**5 buildings assumed to have common wall on east or west side 

Table 4.18: Description of District 3 

Type Stories Buildings Area [m2] Window/wall Aspect ratio Orientation* Set point [°C]  

Residential 

4 25 3,500-4,500 20-40% 0.75-1.3 ± 20º 24 

5 32 3,800-5,000 20-40% 0.75-1.2 ± 25º 24 

6 27 3,500-5,500 20-40% 0.75-1.3 ± 20º 24 

Office 

4 12 10,200-12,000 20-35% 0.75-1.3 ± 25º 24/20 

5 10 10,200-13,000 20-35% 0.75-1.3 ± 25º 24/20 

6 6 11,500-14000 20-35% 0.75-1.1 ± 25º 24/20 
*Orientation with respect to south 

4.5.1.3 Methodology 

After defining the buildings within each district, the heating demand profile of each 

individual building was obtained using the simplified MLR approach as well as eQUEST. 

Since the office buildings were assumed to be operating for a limited period of time in each 

day, two different occupancy set point temperatures were defined. To have more 

consistency in the results, all buildings were assumed to use electrical heating systems. A 

similar approach was used for the office buildings. Note that the reference building used 

for modeling of the residential buildings in this example is the same as the one used earlier 

(in Section 3.3.1). 

4.5.1.4 Results 

Figure 4.5 presents the MLR predicted against simulated heating demand profiles for 

District 1 as well as the error histogram. Comparing the total heating demand load of 

District 1 (solely residential) with the schedule obtained from the summation of the profiles 

of the individual buildings using eQUEST shows high agreement between them. 
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Figure 4.5: Simulation (blue) versus prediction (red) graphs for heating demand profile [kWh] of 

District 1 showing an 11-day (end of Dec.) period (top) and error histogram (bottom) 

Based on the reference office building, the average predicted heating demand 

schedule of the office buildings within District 2 are presented in Figure 4.6. Due to higher 

daily fluctuation of the heating demand schedule of the office buildings (especially in early 

morning and late afternoon) switching between occupied and unoccupied periods, the 

average standard error for office buildings was higher (about 20.16 kW). Considering 

average office building area and average maximum pick, this value was slightly higher for 

office buildings, 1.6%. 
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Figure 4.6: Simulation (blue) versus prediction (red) graphs for heating demand profile [kWh] of 

District 2 showing an 11-day (end of Dec.) period (top) and error histogram (bottom) 

Finally, the results obtained for District 3 (Figure 4.7) showed that due to higher 

number of the residential buildings within the community, the MLR predicted profile was 

better fitted with simulated schedule. The R-value for District 3 was about 0.9856 and the 

average error was about 5.2%, which is quite close to the one obtained for District 1 

(4.67%). 
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Figure 4.7: Simulation (blue) versus prediction (red) graphs for heating demand profile [kWh] of 

District 2 showing an 11-day (end of Dec.) period (top) and error histogram (bottom) 

Due to the characteristics of the office buildings, having different daily usage 

schedule as well as set point temperature for occupied and unoccupied periods, the results 

for District 2 showed a lower correlation R = 0.9401 compared with 0.9966 obtained for 

District 1. This lower correlation was due to the higher daily heating load variation in the 

office buildings in District 2 compared with the residential buildings in Distrcit1. 
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4.5.2 Simplified district load prediction: case study 

Numerous building energy conservation strategies have been tested using energy 

storage [91, 129] and user-demand [392] methods. A hybrid community district heating 

system (H-CDHS) is a unique energy management alternative given its storage and 

renewable systems are integrated in the district thermal energy system. Since the energy 

generated by RES is not uniform throughout the day, a TES unit allows the system to 

synchronize with the supply and demand. To implement this system effectively, it is 

essential to predict the H-CDHS detailed energy demand profile [393]. 

 Background 

This example endorses the 4-step prediction model (described in Section 4.3) to 

predict the energy demand profile of an H-CDHS. The previous example covered model 

validation using the inter-model comparison, while in this example using measured data, 

the heating demand profile of a real case scenario was defined. Using the 4-step procedure, 

the district energy demand profile was predicted, and compared with both the measured 

data and the initial prediction. 

4.5.2.2 System description 

In this example, a mid-size community district heating system was picked. The field 

measurement data from the West Whitlawburn Housing Co-operative (WWHC) H-CDHS, 

Cambuslang, Scotland were used. The WWHC community (details in Section 6.6.7) 

consists of more than 640 dwellings with four types of buildings. Figure 4.8 shows the 

location of buildings connected to the H-CDHS with respect to the boiler house: 

• Newly renovated towers with 12 stories (6 towers) 

• Newly built duplex detached houses (50 buildings) 

• 4-story terrace buildings (10 buildings) 

• Community buildings (5 buildings) 
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Figure 4.8: Hybrid community-district heating system layout in Whitlawburn, Cambuslang, 

Scotland 

Unlike the inter-model comparison, in the WWHC community, the district network 

provided not only the heating energy required for space heating, but also the energy 

required for domestic usage. A dual pipe network transferred the heated water from the 

boiler house to the building units, where a dual heat exchanger was installed to provide 

energy for space heating and DHW purposes. 

4.5.2.3 Methodology 

A wide range of users with different socio-economic levels and behavior demands 

were connected to the system. Since many users were lower income families, their energy 

consumption (consequently their annual energy demand) were highly dependent on their 

economic state and the financial support received. Thus, a prepaid energy credit system 

allowing each tenant to buy a credit in advance has been installed. The prepaid system was 

connected to a meter in each unit recording the costs associated with the energy consumed 

every half hour, which tenants could use to monitor their energy usage over time. To ensure 

the accuracy of the measurements, cross validation between different data have been 

performed. To do so, in the first step, tenant occupancy was verified and any changes in 

unit occupancy was eliminated from results to avoid errors in the unit energy demand 

profile. After eliminating units with different tenants (between November 2016 and 

February 2017), the monthly energy demand of the remaining units was calculated using 

the data collected by smart meters. The monthly energy demand in units with similar 
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Tower#1 
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tenants was expected to correlate with the monthly outdoor temperature. Therefore, the 

monthly usage of a unit in months with similar average outdoor temperatures should remain 

almost constant. 

Figure 4.9 and Figure 4.10 represent the cross data validation for one of the towers 

(Arran tower). As illustrated in Figure 4.9, in units 12, 37 and 39 there was a higher 

monthly consumption fluctuation during the four months compared with other units. 

Further investigation showed that units 37 and 39 were vacant for a short period of time 

(probably due to holidays), while for the other unit, the tenant has been changed. As a 

result, the data for unit 12 were considered as false and removed from data set. 

To apply the 4-step prediction model (presented in Section 4.3) for predicting the 

heating load, the first step was to define the number of required clusters. To do so, all the 

units were initially divided (based on their built form and construction type) into two 

archetypes (1) newly renovated high-rise buildings, and (2) partially renovated old terrace 

buildings. The units within each archetype were further segmented based on their 

occupancy behavior. A sample population dataset was selected to define the optimal 

number of archetypes associated with the occupant behavior in each construction type. The 

total energy demand [kWh], the number of inter-unit heat exchanger ON/OFF cycles per 

month, the peak monthly load [kW], the monthly HDD, and average monthly outdoor 

temperature were determined as effective parameters to define the number of archetypes. 

For large-scale communities with numerous users such as WWHC, using all 

monitored data from every individual unit to determine the parameters required for 

defining the optimal cluster number is computationally intensive. Therefore, instead of 

calculating the required parameters of all units, the parameters of a smaller sample data 

which could represent the same distribution as the whole community were considered 

(Arran tower, 72 units). The results were extrapolated to the entire dataset (Arian tower 

and the whole district). 

 
Figure 4.9: Monthly consumption of individual units in Tower#1 (Arran tower) 
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Figure 4.10: Outdoor temperature and HDD for the 2016-17 heating season (Nov 2016 to Feb 

2017) 

Figure 4.9 shows the average monthly energy demand (for all dwelling units) of 

Arran tower for both DHW and SH, between November 2016 and February 2017. This 

figure shows the range of energy demand fluctuation when outdoor temperatures and 

monthly HDD do not vary considerably. Variations between 5.17 and 5.98 °C for outdoor 

temperature and from 312 to 331 for monthly HDD (Figure 4.10) are not significant for 

most units. The results obtained for all individual units in the Arran tower show that the 

monthly energy demand remains almost constant, with unit-to-unit variation generally 

being much greater than that of a unit (except units 12, 37 and 39). Hence, the monthly 

average demand profile of most units is expected to remain almost constant (Figure 4.9). 

4.5.2.4 Results 

Using the five parameters (monthly consumption, number of inter-unit heat 

exchanger ON/OFF cycles per month, monthly peak demand, monthly HDD and monthly 

outdoor average temperature), the k-means (number of clusters) was varied between 1 and 

20 to construct different numbers of clusters. Using R software for each value of k, the 

square metric distance [m²] of residual (R) from a reference point was determined to find 

the optimal number of archetypes (clusters) for simulation. This value was selected when 

the difference between the residual of two consecutive clusters became negligible. The 

number of clusters should be selected so that adding another cluster does not significantly 

increase the dataset presentation. The results are plotted in Figure 4.11, and it can be 

concluded that four to seven archetypes can be chosen as the optimal number. Here, k-

means 4 was selected as the optimal number for demonstrating the method with adequate 

accuracy while maintaining computational costs low. 
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Figure 4.11: Optimal number of archetypes 

Given the hierarchical clustering approach, all units in the sample dataset (Tower#1) 

were divided into four different archetypes of non-typical high usage (NTHU) in cluster 1, 

non-typical low usage (NTLU) in cluster 2, typical thermostat control usage (TTCU) in 

cluster 3, and non-typical medium usage (NTMU) in cluster 4 (see Figure 4.12). The 

percentage ratio of units within each archetype is shown in Figure 4.12. 



 

127 

 
Figure 4.12: Clustering results for Tower#1 

The results obtained from the clustering of Tower#1 revealed that only 5% of units 

were of the TTCU archetype. This value was assumed to be 100% in the CDHS design 

stage. The percentage of users in other archetypes were 16% (NTLU), 24% (NTMU), and 

53% (NTHU). Similar distribution was extrapolated to the entire district. 

Extracting the heating demand profile of the reference building of each cluster, the 

MLR model was trained. After training the model, and defining the input file for the 

remaining units, the heating demand profile of the district was predicted. To predict the 

demand profile in future hours, previously predicted values and input files were used at the 

same time. Using the trained model and the properties of the remaining units, the heating 

demand profile of another tower and then the monthly consumption of the entire district 

were predicted. 

Figure 4.13 illustrates the results obtained from prediction of the heating demand 

profile of the Arian tower for the first 10 days of November 2016 as well as the measured 

data for the same period. An acceptable agreement can be observed between prediction and 

measurement (calculated MSRE was about 11.2% for the entire year and 8.2% for the 
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heating season). The general trend of the predicted demand matches the measured demand. 

Considering that the data used to generate the demand profile model was based on that of 

occupants in a different tower, the result is remarkably good. 

 
Figure 4.13: Energy demand from model prediction (orange) versus measured (blue) for Tower#2 

In the next step, the monthly energy consumption of the entire district including the 

losses from the underground distribution network were predicted. The underground piping 

network was an insulated dual pipe network transferring hot water at a flow temperature of 

85 °C and a return temperature of 70 °C with a total length of 2.4 km (1.2 km supply and 

1.2 km return). Figure 4.14 shows the operational temperature of the underground piping 

network. 

 
Figure 4.14: Operational temperature of the underground network 

Instead of changing the room operational temperature, the network underground 

operational temperature remains relatively constant during the year to control the amount 

of heat transfer from the boiler house to the consumers. This causes the system mass flow 

rate to continuously vary during a day. Figure 4.15 shows the fluctuating water flow rate 

in the first 10 days of November 2016. 
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Figure 4.15: Water flow rate versus outdoor temperature in the distribution network 

Having the total length for the underground network alongside its operational 

temperature, the supply and return water mass flow rates, the outdoor temperature, the 

thermal properties of the soil and pipe insulations, and the distribution network total heat 

loss can be determined. To simplify the prediction process, a linear relation for the 

temperature difference between the operational temperature and surrounding environment 

temperatures was assumed. Figure 4.16 shows the predicted heat loss for the underground 

distribution network. 

 
Figure 4.16: Monthly heat loss projection of the distribution network 

Since for many units in the WWHC community the demand profiles were not 

available, the predicted energy demand for the entire system was compared with the total 

energy generated by the boiler house. Note that the boiler house sensor measured only the 

accumulated amount of fuel consumed and the energy generated by each boiler in fifteen-

minute intervals. Figure 4.17 shows the predicted accumulated energy demand of the 

district against the energy generated by the boiler house. 
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Figure 4.17: Accumulated predicted energy delivered versus actual generated energy in the boiler 

house 

The results showed high agreement between the predicted and actual energy demand 

with a monthly discrepancy between -4 to 6%, except in January 2017, when the error was 

approximately 30%. This error was due to a relatively high heat loss in the distribution 

network. In January 2017, due to two faulty bypass valves in two different towers, the 

system mass flow rate increased. Over a year, the predicted accumulated energy demand 

(3,288,340 kWh) showed a discrepancy of about 5% compared with the actual energy 

generated by the boiler house (3,138,431 kWh). The underestimation of the total energy 

demand of the district was mainly due to the heat loss from buildings, especially the older 

4-story terrace building with higher envelope deterioration. However, in the training 

process (Step 3), the reference profile obtained from the Arran tower (which was better 

renovated compared to the terrace buildings), was used with a relatively lower heat loss. 

Note that in the training stage, the MLR model was once trained using the reference 

building obtained from the Arran tower. These trained models were later used to predict 

the heating demand profile of the remaining units, only by adopting their input file. 

Moreover, the ratio of the occupant behavior considered in TTCU in terrace buildings was 

slightly higher. 
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5 Chapter 5: Optimization 

The term “optimization” is often used instead of heuristic approach which is a 

technique to solve a problem more quickly when classical methods are too slow, or for 

finding an approximate solution when classic methods fail to find any exact solution. On 

the other hand, deterministic approaches theoretically guarantee that the reported solution 

is indeed the global optimum. Mathematical formulation of an optimization problem is 

stipulated as minimization of an objective function subject to a set of constraints: 

 xf
Xx

min  (5.1) 

where the vector x X is called design parameter, f: x → ℝ is called objective function, 

and X  ℝn is the set of constraints. Prior to further details, some definitions for the correct 

interpretation of this chapter are presented: 

• Objective function: the optimization objective, which is computed as a function of 

the set of parameter values. 

• Decision parameter: also known as design variable, optimization variable or 

optimization parameter, denotes a component of the system which can affect the 

system performance, expressed by the optimization objective function through the 

variation of its value (see the definition of parameter value). 

• Parameter value: one of the alternatives defined for that specific parameter in a 

range of variation. Such value may directly represent a physical property (e.g. 

thickness of a layer, thermal transmittance of a glass) or it may be the name of the 

alternatives (e.g. the decision variable “heating system” can have two values of “1” 

or “2” which refer to a gas condensing boiler and a heat pump, respectively). 

• Design option: a combination of parameter values (one value for each decision 

parameter). 

• Design space: the set of all possible design options, depending on the set of 

decision parameters and the range of parameter values. 

• Multi-period vs. dynamic optimization: The term “multi-period” optimization is 

used if time is a discontinuous variable, otherwise “dynamic optimization” is the 

correct term. For simplicity, multi-period optimization is generally used with the 

assumption of linearity while dynamic optimization generally does not involve 

binary variables. 

• Single vs. multi-objective optimization: When there is more than one objective 

function for optimization then a multi-objective (or multi-criteria) optimization 

problem arises. This is common in building design problems and these functions 

are often contradictory. Two popular approaches are typically adopted by 

researchers to solve multi-objective problems in building engineering: (1) weighted 

sum functions, and (2) Pareto approach. In the former approach, each of the 
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objective functions is normalized, multiplied by a weight factor (sum of weight 

factors should be 1) and a new function is formed by adding up the sub-objectives. 

Typical optimization techniques can then be applied to find the optimal solution. 

Although the method is efficient and easy to apply, interference and compromise 

of different sub-objective functions cannot be identified and needs prior knowledge. 

Another problem is associated with processing time since the approach requires 

testing different values of weight factors which increases the number of 

computation processes. The Pareto approach leads to a set of non-dominated 

solutions called Pareto frontier. For a 2D optimization problem, an illustrative 

graphical representation is shown in Figure 5.1. A Pareto optimal (or non-

dominated) solution is any solution which leads to better value of the function 

without deteriorating the result for other function(s). In Figure 5.1, solutions A and 

B are non-dominated, but C is not an optimal solution. This approach is useful to 

exploit the diversity of the solutions, but often raises issues of inadequate 

effectiveness and efficiency. 

 
Figure 5.1: An exemplary Pareto approach for a 2D optimization 

Optimization at building level has been widely investigated in the literature [394, 

395]; therefore, this chapter is more focused on the district level optimization. A general 

framework of the optimization procedure at district level is given in Figure 5.2. This 

overview is applicable to a wide range of district configurations and conditions which can 

be represented by a group of input parameters. These are comprised of available resources 

(renewable and conventional), detailed neighborhood data (e.g. distances, roof area, load 

profiles), climatic conditions (e.g. ambient and soil temperatures, global solar irradiation, 

humidity) and technological parameters (e.g. efficiencies, generation capacities, 

investment, operating and maintenance costs). Moreover, the applicable legislative 

framework, including permission to sell the electricity, green certificates, and FITs (feed-

in tariffs) for PV production and CHP systems, is regarded as part of the input parameters. 

Financial exchange of local electricity is another kind of legislative framework. 
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Optimization can also be used for calibration of proposed models at the district level. 

Implicit calibration (Figure 5.3) refers to problems which are formulated and solved by 

using an optimization technique coupled with a steady-state thermal simulation model. 

 
Figure 5.2: A framework for optimization at district level 

 
Figure 5.3: Implicit calibration process 

5.1 Types of methods 

Although several optimization algorithms are available, they can be classified in two 

main categories of deterministic and stochastic methods. Moreover, some algorithms have 

been developed which share the characteristic of both stochastic and deterministic methods, 

which are here denoted by hybrid methods. 

5.1.1 Deterministic 

The deterministic methods (also known as mathematical programming) use 

mathematical approaches, such as the gradient information of functions and include the 

Newton, quasi-Newton, steepest decent and the Simplex methods. Deterministic methods 

can obtain the exact optimal solution when the applied problem is simple; i.e. linear and 

convex problems. However, solving large complicated problems requires large 

computational load. Although most of physical phenomena are nonlinear, in many cases, 

engineering systems are modeled by linear functions since they can be solved 

mathematically. Even if a system is not modeled as a linear function, it is easy to 

mathematically find a minimum/maximum value from a convex function. However, it is 

not easy to obtain an optimal solution for nonlinear or nonconvex functions. 
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Deterministic methods are often used for problems with a precise relationship 

between decision variables and objective function values. However, these methods present 

some difficulties in solving a problem when the relationship between the candidate and the 

solution is complex, or if the search space is large [396]. Unlike stochastic methods, 

deterministic algorithms do not contain a random component that determines orientation 

in the search space. 

5.1.2 Stochastic 

Compared to deterministic methods, some authors affirm that stochastic techniques 

are advantageous since better results can be obtained [397]. Within this category, the 

subcategory of metaheuristic methods, such as genetic algorithms (GA) and particle swarm 

optimization (PSO) methods, follow a different approach to deterministic methods. The 

difference is clarified when considering that “meta” means “beyond” or “higher level” and 

“heuristics” means “to find” or “to discover by trial and error” [398]. Therefore, 

metaheuristic methods iteratively find the optimal solution. Their advantage is that the 

solution can be obtained easily with lower computational load compared to deterministic 

methods. However, the solution obtained from metaheuristic methods is approximate and 

is not necessarily the exact solution. Thus, users must monitor the accuracy. 

Evolutionary algorithms (EA), such as genetic algorithms [399], are population-

based metaheuristic optimization algorithms that use principles of biology such as 

mutation, crossing, selection natural and survival of the fittest to find a solution. In Figure 

5.4, the application of various types of stochastic algorithms in building simulation and 

optimization studies is reported from a comprehensive review [400]. It is shown that GA 

are by far the most commonly used. 
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Figure 5.4: Optimization methods applied in building energy optimization studies [400] 

5.1.3 Hybrid 

As presented, stochastic and deterministic methods have their own limitations. 

Gradient based deterministic methods initially have rapid convergence; however, their 

convergence drops as they get closer to the optimum value. On the other hand, stochastic 

methods can be computationally intense when they search randomly. To benefit from the 

advantages of both methods simultaneously, hybrid methods have been introduced. Hybrid 

methods speed up the optimization process by partially solving the problem 

deterministically and the rest stochastically. 

5.2 Algorithms 

In this section, the common optimization algorithms are introduced. Note that the 

tools mentioned here will be explained later in Section 5.5. 

5.2.1 Mixed-integer linear programming 

The mixed-integer linear programming (MILP) model is composed of a linear 

objective function, linear constraints and one or more integer variables. Many previous 

research efforts [20, 271, 401-406] adopted MILP to optimize the operating schedules of 

an energy system with TES. Although the numerical values of continuous variables can be 

rounded to meet integer constraints, it cannot always guarantee an optimal solution. 

Therefore, developing a suitable method for MILP has received attention. 

The use of MILP first involves the transformation of integer variables to continuous 

variables, a process which is referred to as continuous relaxation. Then, linear 

programming is conducted on the relaxation model to produce the optimal solution. If the 
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optimal solution unexpectedly meets the integer constraints, it is an optimal solution of the 

original problem, which means it is a non-relaxation problem. However, these cases are 

rare in practice. Thus, it is necessary to formulate the continuous variables which violate 

the constraints of an integer-to-integer number transformation. The branch-and-bound 

method [407, 408] is known as the most useful and powerful method which employs an 

MILP algorithm and is presented schematically in Figure 5.5. 

 
Figure 5.5: Schematic representation of branch-and-bound method 

In the figure, the optimal solution (x1, x2) = (1.7, 3.4) was obtained by linear 

programming of a continuous relaxation problem P0 which originally had two decision 

variables with integer constraints. First, P0 is divided into P1 = {x  P0: x1 = 1} and P2 = 

{x  P0: x1 = 2}. If P1 does not have any feasible solutions, division of the P1 node 

terminates at this phase, leaving P2 to obtain the optimal solution (x1, x2) = (2, 4.5). Then, 

P2 is divided into P3 = {x  P2: x2 = 4} and P4 = {x  P2: x2 = 5}. Then, the optimal solution 

is obtained to be (x1, x2) = (2, 6) with objective value fp4 = 3.45 on P4. However, this solution 

is designated as the interim solution since both variables meet the integer constraint. Then, 

P3 is used to obtain the optimal solution (x1, x2) = (2.3, 2), P3 by getting split into P5 = {x 

 P3: x1 = 2} and P6 = {x  P3: x1 = 3}. If the optimal solution of P5 is fp5 = 3.7 at (x1, x2) 

= (1, 3), it is not the optimal solution of the original problem because fp5 is inferior to fp4. 

Finally, if the optimal solution fp6 = 3.12 is obtained at (x1, x2) = (3, 2), it is determined as 

the optimal solution of the original problem because fp6 is superior to fp4, concluding the 

calculation of all the branches. 

infeasible

(Interim solution)

(Optimal solution)
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Although MILP is widely used to obtain optimal solution (e.g. active TES control), 

it has two main disadvantages. First, the objective function must be a linear function. As 

most of features of equipment and physical phenomena are nonlinear, they should be 

modeled as linear functions. Second, in some cases, it is difficult to solve the matrix 

employed in MILP exactly. Furthermore, for a complex system with several variables, the 

computational load rapidly increases. Other methods which have been used with MILP 

include presolving [409], cutting planes [410] and heuristic methods. Besides, in some 

solvers (e.g. GAMS, CPLEX, and MATLAB) a combination of these methods is applied. 

5.2.2 Mixed-integer nonlinear programming 

The mixed-integer nonlinear programming (MINLP) models have a nonlinear 

objective function and/or constraint and one or more integer constraints. MINLP has found 

application in optimization of operating schedules of an energy system with TES [26]. The 

MINLP algorithm is similar to that of MILP except for its nonlinear conditions. First, 

integer constraints are relaxed to continuous conditions. Then, nonlinear programming is 

carried out on the relaxed problems. Note that relaxed problems are often assumed to be 

convex functions for obtaining the global optimum. The methods employed in MINLP 

include the branch-and-bound method, generalized benders decomposition (GBD) method 

[411] and outer approximation (OA) method [412]. In particular, the OA method forms the 

core algorithm of commercial solvers, e.g. AIMMS. However, optimization of nonconvex 

functions is challenging. Therefore, research is being carried out to address this problem 

[413]. 

5.2.3 Dynamic programming 

Dynamic programming (DP), which is another type of mathematical programming, 

was proposed by Bellman [414] in 1957. DP has been adopted to optimize the operating 

schedule of TES systems [415-418]. For instance, this method was applied to a cooling 

plant with an ice storage tank to minimize the operating cost [416]. The performances of 

chiller-priority control, storage-priority control and optimal control were compared, and 

the optimal control provided the highest operating cost savings. DP can be applied to 

almost all optimization problems which follow to the “principle of optimality” described 

as [414]: “An optimal policy has the property that whatever the initial state and the initial 

decisions are, the remaining decisions must constitute an optimal policy with regard to the 

state resulting from the first decision.” 

Most scheduling problems which include energy system optimization or network 

modeling [419] rely on the above theorem since it is composed of multi-stage decisions. 

Two algorithms have been used with DP, the backward and forward algorithms. The 

backward algorithm is depicted in Figure 5.6. 
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Figure 5.6: Backward algorithm on the first step 

Consider an optimization problem consisting of one heat source and TES in an energy 

system. The capacity of TES is set to 200 kWh and the heat source price is considered to 

be 1 yen/kWh to generate cooling. The decision variable is the amount of energy stored in 

the TES and the analyzed time horizons are set to five steps (hours). The price of electricity 

per kWh of each time interval varies according to the cooling demand (i.e. a dynamic 

pricing model is used). In the first (i = 1) and last (i = 5) time steps, the stored thermal 

energy (kWh) is specified to be zero as the initial condition. For simplification purposes, 

the operation of pumps is not considered. 

In the backward algorithm, the routes of all the grid points from the fourth to the last 

time step are considered first. Pi,j denotes a grid point of the j-th discrete point of the i-th 

time step. 

P4,1 → P5,1: In this route, since the amount of stored thermal energy does not vary, a 

charging/discharging process is not conducted. In this time step the cooling demand is 100 

kWh; therefore, the operating cost is 900 yen (100 kWh × 9.0 yen/kWh). 

P4,2 → P5,1: The discharging process (100 kWh) is carried out on this route. The 

operating cost is zero yen since the amount of discharged cooling heat is sufficient to meet 

the cooling demand. Therefore, no work is required from the heat source. 

P4,3 → P5,1: This route contains an applied penalty value, because the amount of 

discharged heat (200 kWh) exceeds the cooling demand (100 kWh). The penalty value is 

set to 1010 and the calculation of the objective function, which determines the operating 

cost of the heat source, is not evaluated because this route is not feasible. 

Next, the routes of all grid points from the third to the fourth time step are evaluated: 
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P3,1 → P4,1: The charging/discharging process is not carried out along this route. 

Therefore, 400 kWh of cooling should be generated to meet the demand. The operating 

cost is 400 kWh × 30 yen/kWh = 12,000 yen. Moreover, the operating cost of route P4,1 → 

P5,1, which has already been determined as 900 yen, should also be considered. Thus, the 

combined cost of P3,1 → P4,1 and P4,1 → P5,1 is 12,900 yen. 

P3,1 → P4,2: In this route, the charging process (100 kWh) is carried out. Thus, 500 

kWh of cooling should be generated. Therefore, the combined cost of P3,1 → P4,2 and P4,2 

→ P5,1 is 500 kWh × 30 yen/kWh + 0 yen = 15,000 yen. 

P3,1 → P4,3: The amount of charging thermal energy is 200 kWh. Thus, 600 kWh of 

cooling needs to be generated. Therefore, the total cost of P3,1 → P4,3 and P4,3 → P5,1 is 

600 kWh × 30 yen/kWh + 1010 yen ≈ 1010 yen (not feasible). 

Based on the calculation flow described above, the operating costs of all the routes 

from P3,1 → P4,j are obtained. In DP, it is only necessary to remember the minimum route 

at each grid point according to the principal of optimality. Therefore, P4,1 → P5,1 is 

determined as the optimal route of all the routes from P3,1 → P4,j. 

The optimal route and operating costs of the grid point of each time step are 

determined by the calculation flow as explained above. Therefore, as shown in Figure 5.7, 

using a forward algorithm, the straight red line (P1,1 → P2,1 → P3,1 → P4,1 → P5,1) is 

determined to be the optimal route of all time steps. The charging process is carried out 

when the price of electricity is low in the second time step, whereas the discharging process 

is carried out when it is high in the third time step. 

DP benefits from two main advantages of (1) versatility in terms of problems to 

which it can be applied and (2) the ability to reduce computational complexity. For 

example, in the optimization problem discussed above, the number of full searches is 35. 

On the other hand, the number of searches for DP is 3  5. Therefore, the DP algorithm is 

capable of transforming problems with a computational complexity of O (j
i) into problems 

of a lesser complexity, i.e. O (i × j). However, DP requires an exponential amount of time 

when the number of decision variables n of each time interval exceeds two, in which case 

the computational complexity becomes O (i × jn). 



 

140 

 
Figure 5.7: Forward algorithm on all time intervals during one cycle 

5.2.4 Quasi-Newton method 

The quasi-Newton method [18, 420], is a gradient-based optimization algorithm, 

such as the steepest decent and Newton methods. The Newton method is a famous 

optimizer which requires the second order differential (Hessian) of an objective function; 

however, its computations are time consuming. On the other hand, the quasi-Newton 

method assumes a Hessian value by using an approximation method, such as the symmetric 

rank one trust region method [421], the Berndt-Hall-Hall-Hausman (BHHH) algorithm 

[422] and Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [423-426]. Therefore, it is 

possible to use the quasi-Newton method to efficiently obtain the optimal solution for a 

convex function. 

5.2.5 Nelder-Mead simplex method 

The Nelder-Mead simplex method [427] (a downhill simplex method) has been used 

as a direct search complex method [428, 429]. This method does not use the derivative 

information; instead, it uses functional comparisons to obtain the optimal solution. Thus, it 

is applied to almost all functions regardless of characteristics such as convexity, 

differentiability and continuity. This method uses n + 1 vertices (n is the number of decision 

variables). Each vertex moves iteratively to obtain the optimal solution. There are four 

moving step algorithms of reflection, expansion, contraction and shrink. Although this 

method cannot avoid being trapped in a local optimum in nonconvex functions, it is capable 

of effectively obtaining the optimal solution on convex functions. 

5.2.6 Genetic algorithms 

The origin of GA dates back to the mid-1950s, when biologists [430] and computer 

scientists [431] began applying computer-assisted simulations to better understand genetic 

processes, the evolution and natural selection. Basics of such approaches were developed 

by Holland [432] in the late 1960s at the University of Michigan. GA is a subclass of 

evolutionary algorithms where search space elements are typically binary or discrete 
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values. The reproduction operations apply to the (binary) genotypes of individuals while 

the values of the objective functions are calculated on the basis of their phenotypes (real 

values) in the search space. GA is a relatively new approach of solving optimization 

problems and is currently very widely used. 

GA has been applied to optimize energy systems control which include TES [433-

435]. For instance, the total cost (including the capital investment cost, operational cost 

and the penalty cost for CO2 emission) of an air conditioning system with an ice storage 

tank in a commercial building has been optimized [434]. The results of the conventional 

system (without ice storage) and optimized system (with ice storage) were compared and 

the validity of the optimization method was confirmed. 

The expression for individual modeling of GA is composed of two types, bit string 

and real-coded, as shown in Figure 5.8. The bit string GA is suitable for discrete 

optimization, whereas real-coded GA (RCGA) is suitable for continuous optimization. 

 
Figure 5.8: Coding of a chromosome using the genetic algorithms 

The bit string GA uses the selection, crossover and mutation operators to find the 

optimal solution. The algorithm first conducts an initialization of the population, composed 

of individuals (assume the same value for the decision variables as shown in Figure 5.8). 

The individuals are scattered across the entire search space by using uniformly allocated 

random numbers. Second, some individuals are selected as parent individuals to create new 

solutions, the so-called child individuals. This selection is performed using a selection 

method such as roulette-wheel selection, tournament selection or elitist selection. The 

roulette-wheel selection method involves the calculation of the selected probability of each 

individual: 
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where pi  [0,1] denotes the selected probability of the i-th individual, fi denotes the 

objective function value of the i-th individual and Npop denotes the number of populations. 
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The elitist selection method leads to the preferential selection of the individual with 

the preferred value. This selection method can always locate the optimum point near the 

current best individual but is likely to be trapped in a local optimum. 

Third, the crossover method uses the crossover probability (pc) and employs methods 

such as one-point or two-point crossover, as illustrated in Figure 5.9. 

 
Figure 5.9: One-point (top) and two-point crossover (bottom) 

Finally, the mutation method is performed for all individuals with the mutation 

probability (pm) by employing methods such as bit string mutation, flip bit and uniform. 

The crossover probability is usually high and lies in the range of 0.7  0.9, which is larger 

than the mutation probability, for which the range is 0.001  0.05. The advantage of the 

mutation method is that individuals can easily be retrieved from the local optimum. 

The RCGA uses the same approach as the bit string GA when using the crossover 

method for selection. In particular, the selection procedure is referred to as the “generation 

alternation model”, which is based on methods such as the minimal generation gap (MGG) 

[436] and just generation gap (JGG) [437]. In the MGG method, parent individuals are 

randomly selected, after which child individuals are generated using the crossover method. 

Then, the elitist method is used to replace the parent individuals by the top layer of 

individuals, which includes both parents and children. The advantage of the MGG method 

is its ability to obtain an optimal solution in the proximity of the preferred individuals; 

however, undesirably the solution is often a local optimum. Therefore, the JGG method 

was developed to resolve this problem. In the JGG method, all parent individuals are 

replaced by child individuals who have superior objective values compared to those of the 

other children. This strategy maintains the diversity of the population. Although there are 

many crossover methods for use with the RCGA, the real-coded ensemble crossover (REX) 

[438] and adaptation of expansion rate REX (AREX) [437, 438] are common. REX 

generates child individuals as: 
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ix   Np) around the center, Np and Nc are the number of parent and child individuals, 

respectively, εi,j denotes certain distributed random numbers with the average 0 and the 

variance σ2, and α indicates the expansion rate (equal to 1). On the other hand, AREX (an 

updated version of REX) adopts REX and changes the way the value of α is updated as: 
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where α(g) denotes the α value for the g-th generation, cα denotes the learning rate parameter 

for the expansion rate update, Lcdp denotes the length of the crossover descent path, i:Nc 

denotes i-th higher rank individual of the top child individuals, 𝑁𝑐𝛼
 denotes the number of 

top individuals of all child individuals, and Lcdp as well as Lavg represent the Mahalanobis 

distance to handle the ill-scale problem efficiently. 

Due to its powerful mathematical theory, the RCGA can be applied to continuous 

optimization problems with a high degree of accuracy. However, it results in a long 

calculation time when the problem has a complicated objective function, such as an energy 

system, due to the large number of population and generated child individuals. 

5.2.7 Particle swarm optimization 

Particle swarm optimization (PSO) was developed in 1995 [439] and used to 

optimize an operating energy system including TES. For instance, PSO has been applied 

to an air conditioning system with ice storage tank in an office building to minimize the 

LCC [440]. This method has also been applied to the heating and power generation system 
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with water storage tank in a hotel building to minimize combination of primary energy 

saving ratio, annual total cost and CO2 emission [441]. 

Performance comparison between PSO and GA has been conducted and it was 

inferred that PSO could find more effective solution compared to GA [441]. PSO mimics 

the collective behavior of birds or fish. An individual uses three types of vector when it 

moves to other positions; the current velocity vector (𝑣𝑖
 ⃗⃗ ⃗⃗  ), the best position vector for all 

particles (𝑥𝑔𝑏⃗⃗ ⃗⃗ ⃗⃗  ⃗), and the past best position vector for itself (𝑥𝑝𝑏𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). Each individual 𝑥𝑖
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where w is an inertia weight factor to control the velocity, and has the same meaning as the 

step length, c1 and c2 are acceleration constants, r1 and r2 are uniform random numbers [0, 

1], and vmax is the maximum velocity. Although the inertia weight factor w was not included 

when the method was first proposed [439], it was later added to the PSO method in 1998 

[442]. Recently, a simplified version of the PSO was defined to include weight factor as: 
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Although PSO has the advantage of high calculation and convergence speeds, it has 

a tendency to get trapped in a local optimum in multi-modal functions, a disadvantage 

which can be avoided by adding a mutation method to PSO [443]: 
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where xi,j denotes the j-th vector component value of the i-th individual, L(nj) denotes a 

range of j-th decision variables and N represents normal distributed random number. 

In addition, modification of the velocity has been proposed as [444]: 
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where Ui  [0,1] denotes a uniformly distributed random number. 

Evolutionary PSO (EPSO) [445] is a hybrid PSO method with an evolutionary 

strategy where the inertia weight factor 𝑤𝑖
 

 and the best position vector of all particles xgbg 

are updated: 
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where τ  [0,1] denotes a learning dispersion constant, which is determined at the initial 

iteration by a uniformly distributed random number and τ' denotes the noise dispersion 

parameter, which is a small value. 

5.3 Objective functions 

Different objective functions can be applied in building and district optimization 

problems. The evaluation criteria are generally based on cost, energy, occupant satisfaction 

(thermal comfort) and life cycle analysis (LCA). In buildings, the most commonly used 

objective functions are energy consumption comprising 60% of cases, followed by various 

cost estimates (construction, operation, life cycle) and finally the set of objectives related 

to the comfort of the occupants (see Figure 5.10). Nevertheless, the objective functions can 

be categorized in two main categories of environmental and cost. Moreover, some studies 

considered a combination of these objective functions (multi-objective optimization). A 

summary of the studies on DHSs is provided in Table 5.1. 
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Figure 5.10: Common objective functions for building level optimization [400] 

5.3.1 Environmental 

The interaction between buildings or districts with the environment has triggered 

several optimization studies. More specifically, minimization of GHG and pollutant 

production as well as maximization of energy efficiency are presented in this section. 

Besides, LCA considers interaction with the environment. In addition, interior environment 

in terms of thermal comfort of occupants can also be classified in this category. 

5.3.1.1 GHG and pollutant production 

Efforts from many nations with regards to reduction of GHG emissions can be found 

such as the agreement of the European Union and other industrialized countries to reduce 

CO2 levels by 5% between 2008 and 2012 [446]. An additional incentive was introduced 

by the European Union where GHG emissions need to be reduced by 20% by 2020 

compared to 1990 levels [447]. 

DHSs are reported to reduce the GHG emissions [448-450] as they allow the use of 

CHP in addition to other technologies. Even in Norway where 60% of electricity 

production is hydroelectric, DHSs can be installed to make use of biomass from waste 

handling sectors and wood industries. Results of studies related to DHSs often present 

impacts on the environment in terms of reducing the total emitted CO2 (i.e. the assessed 

GHG) by knowing the type of fuel used and the quantity of energy produced. Although 

CO2 is most commonly used as the indicator of GHG emissions, some studies focused on 

other pollutants. For instance, energy and environmental aspects of replacing current 

heating systems with DHSs using CHP plants by monitoring pollutants such as sulfur 

oxides (SOx), nitrogen oxides (NOx) and particulate matters (PM) have been investigated 

[451, 452]. 
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5.3.1.2 Energy efficiency and exergy 

Reducing of energy consumption in the building sector is very important in the fight 

against climate change and the improvement of supply security [453]. Indeed, buildings 

account for about 40% of global energy consumption, and savings can be achieved 

relatively easily by reducing the needs (e.g. insulation, solar shading in the summer), 

improving the efficiency of the systems and using renewable energies. 

Energy is generally calculated by considering the primary energy to consider all 

forms of energy (e.g. electricity and wood). A balance must be made between production 

and consumption to meet the needs (e.g. heating, cooling, ventilation, hot water, lighting, 

and specific electricity) over the period. This usually corresponds to the year, or even the 

lifetime, for instance consideration of the embodied energy associated with the building 

construction. 

However, energy analysis does not consider irreversibility in thermal processes. 

Instead, exergy is often employed to identify less efficient components of a system and to 

optimize thermal energy systems. Exergy is typically known as the amount of available 

work that can be obtained when a system reaches thermodynamic equilibrium with its 

surroundings through reversible processes [177]. It determines the thermodynamic 

efficiency of the system and also the quantity of entropy generation [4]. In comparison to 

energy efficiency analysis, exergy efficiency analysis methods can identify inefficient 

processes within a thermal system [454]. Analyzing the quality of energy is a key aspect in 

optimization process of DHSs. For instance, to find when and where RES (such as 

geothermal wells and solar collectors) can be connected to a DHS or what the temperature 

of the supply and return for the brine should be. 

Energy analysis has been applied to investigate the performance of a small DHS 

[455] where among the four considered scenarios, the final energy efficiency was almost 

the same for all scenarios (within 1% difference). The exergy analysis, however, 

demonstrated that a low temperature DHS (50 °C) with two heat exchangers (one for hot 

water and one for space heating) was 25% more exergy efficient than a single heat 

exchanger coupled to a medium temperature supply line (100 °C). In another study, exergy 

assessment of an educational building equipped with a boiler and a central heating system 

was conducted [456]. Presenting the building characteristics, the main energy losses were 

determined. Exergy efficiency analysis was also demonstrated to be superior to the R1 

formula in evaluating CHP waste incinerating plants as the R1 formula fails to consider 

climatic conditions and the size of the plant, while exergy assesses both the quantity and 

quality of the produced energy [190]. A novel evaluation parameter for exergy has been 

introduced [163]. Instead of analyzing exergy levels based on reference temperature or 

exterior temperature, the utilization rate was introduced, which is defined as the ratio of 

the final consumer exergy demand over the exergy input into the system. 
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5.3.1.3 Life cycle analysis 

There is a very complex interaction between a building and the environment. LCA is 

a comprehensive approach to assess building-related environmental impacts throughout its 

life [457-461]. 

A complete life cycle assessment method has been described for buildings and 

associated systems considering LCA, global cost (life cycle cost), and optimization [462]. 

This makes it possible to deal with the complexity of a global design approach by 

considering multiple evaluation criteria in an iterative manner (Figure 5.11). 

 

 
Figure 5.11: Global approach for the optimized design of buildings over their lifetime [462] 

5.3.1.4 Thermal comfort 

The study of the thermal interactions between an individual and the indoor 

environment is complex and requires the intervention of several disciplines: 

• The mechanism of internal heat generation and the reactions of the human body 

to external climatic conditions are in the realm of physiology. 

• Comfort and the qualification of indoor environments are subject to 

psychological behavior. 

• Heat exchange between the human body and the environment are managed by 

physical laws. 

To assess thermal comfort, two methods can be applied, static or adaptive. 

 Static 

The static approach considers the individual as a passive receiver of thermal 

stimulations. The principle of this approach is based on the fact that the thermal effects of 

an ambiance are felt at the level of the skin by phenomena of heat and mass transfer. These 

exchanges are conditioned by physiological responses necessary to maintain the internal 

temperature of the human body around 37 °C. The most commonly used comfort indexes 
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which are based on this method are the predicted mean vote (PMV) and the predicted 

percentage of dissatisfied (PPD). 

 Adaptive 

The adaptive approach of thermal comfort is based on the following principle: "If a 

change of ambiance induces a degradation of comfort, the occupant reacts so as to find the 

comfort" [463]. Therefore, the principle of the adaptive approach considers that the 

individual can adapt to an environment (within certain limits) by implementing 

(consciously or not) physiological, psychological and behavioral mechanisms. The comfort 

temperature is then calculated as a function of the running mean of outdoor temperature. 

5.3.2 Cost 

The European directive on the energy performance of buildings (EPBD – 

2010/31/EU) introduced the key-concept of nearly zero energy building (nZEB), of which 

the energy performance level should be set according to cost optimality criteria [464]. This 

means that, in an nZEB, the cost-optimal balance between the involved investments and 

the saved energy costs throughout the life cycle of the building should be reached. 

The specifications of the so-called cost optimal methodology can be found in the 

guidelines accompanying the regulation related to the EPBD recast. The objective of such 

cost-optimal analysis is to minimize the global cost (life cycle cost), as defined in the 

European Standard EN 15459. 

Calculation of global cost considers the initial investment CI and for every 

component or system j the annual costs for every year i (referring to the starting year) and 

the final value. Global cost is directly linked to the duration of the calculation period τ as 

[465]: 
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where CG (τ) represents the global cost referred to starting year τ0, CI is the initial 

investment cost, Ca,i (j) is the annual cost for component j at the year i (including running 

costs and periodic or replacement costs), Rd (i) is the discount rate for year i, and Vf,τ (j) is 

the final value of component j at the end of the calculation period (referred to the starting 

year τ0). 

In order to refer the costs to the starting year, the present value factor fpv or the 

discount rate Rd are used. The discount rate coefficient Rd depends on the interest rate RR: 
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However, for annual costs it is necessary to consider the present value factor, which 

depends on the real interest rate (RR) and on the number of years (n) as: 
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In particular, for the replacement costs and the final value, the discount rate 

coefficient Rd is utilized, while for running costs the present value factor fpv is used. The 

composition of the global cost objective function is shown in Figure 5.12. 

 
Figure 5.12: Organization of costs included in the global cost objective function [466] 

To be able to calculate the global cost objective function, it is necessary to follow a 

step by step procedure. First, it is necessary to gather some financial and project data. Then, 

cost regarding components, systems and energy should be valued. Finally, the global cost 

of the different energy efficiency measures can be calculated. 

• Step 1: Gathering financial data 

The financial data consist of duration of calculation and discount rate. The duration 

of calculation represents the number of years which are considered for the global cost 

calculation method. According to the guidelines [466], considering a 50 years lifetime for 

building, the calculation period is usually set to 30 years. The discount rate depends on the 

market interest rate and the inflation rate and should consider a medium/long-term vision. 

This is usually set to 4.5%; however, it may vary according to the context and the objective 
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of the calculation. For the cost optimal analysis purpose, such interest rates are subject to 

sensitivity analysis. 

• Step 2: Gathering project data 

The project data are (1) information about the environment of the project, (2) 

meteorological data and (3) constraints/opportunity related to energy. 

• Step 3: Evaluating components and systems costs 

Data concerning components and systems should be collected and, if needed, 

information about their lifespan, maintenance and operation can be found in the Annex A 

of EN 15459 [467]. 

The investment costs should be calculated considering materials and installation 

costs of each of the components of the building which may affect its energy performance 

(envelope, energy system, RES). The running costs which may be considered are those for 

maintenance and repairs of systems, insurance and taxes.  

• Step 4: Evaluation of energy costs 

According to standard EN 15459 [467], energy costs should be separated into two 

parts. The first part is directly related to energy consumption according to meters or fuel 

consumption of the building. The method for determination of energy consumption can be 

coupled to the energy content of the fuel according to data from the provider. The second 

part is fixed according to the quantity of energy subscribed with energy utilities or rental 

for energy systems (e.g. gas tank, electricity transformation). The selected tariff for 

electricity should be coupled with energy consumption of the building which are estimated 

by dynamic simulation or other calculation methods. 

• Step 5: Global cost calculation 

Replacement costs throughout the calculation period should be calculated based on 

timing of and costs for replacement of systems and components. Present value factor or 

discount rate must be used to refer costs to the starting year. The final value at the end of 

the calculation period (Vf,τ) is determined by summing up the final value of all systems and 

envelope components. The final value of a specific system or component is calculated from 

its remaining lifetime (by the end of the calculation period) from the last replacement, 

assuming linear depreciation over its lifespan. The final value is determined as remaining 

lifetime divided by lifespan and multiplied by the last replacement cost and refers to the 

starting year with an appropriate discount rate. Figure 5.13 illustrates the concept of the 

final value given by the EN 15459 [467]. 
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Figure 5.13: Illustration of the final value concept according to EN 15459 [467] 

Finally, according to Equation (5.20), the total global cost can be determined by 

summing up the global costs of initial investment costs, periodic and replacement costs, 

annual costs and energy costs and subtracting the global cost of the final value. 

The investment cost (capital cost) in heat production, operation, maintenance, heat 

transmission and distribution can be the driving force behind the design of a DHS. The 

potential of a DHS installation is measured by the difference between the economic savings 

in terms of the energy consumption and investment to construct and operate the system. A 

DHS is less cost effective in countries such as Canada [62] and Norway [449] where 

heating and electricity is relatively cheap. In most developed countries, heating, cooling 

and electricity are available in all buildings, hence, cost is often a driver to determine if 

replacing individual end-user systems by a DHS is a viable solution. In areas where 

buildings are sparse, a DHS may not offer any economic advantage. The concept of linear 

heat density is often used to determine the potential economic viability of a DHS such as 

in the analysis of a DHS in Denmark and its growth potential [468]. In Canada, DHSs are 

not economically viable below the linear heat density of 1.5 MWh/m.yr [62]. 

Many studies are available showing the methodology behind such an analysis. One 

approach (established in Denmark) takes advantage of the publicly available heat 

production, fuel costs, investment costs and heat distribution costs [468]. This information 

combined with a map of the DHS across Denmark can help render a cost density map of 

DHS. Besides, an MILP model for the design of a DHS has been developed [469]. The 

model identifies scenarios that are cost efficient and also identifies the potential for 

integrating photovoltaic systems. It also shows the optimal operation and size of elements 

of the system such as turbines, chillers, PV units and piping. It should be noted that DHS 

cost optimization has a non-continuous objective function; therefore, GA perform better 

for such applications [165]. 

Another approach for DHS cost analysis is to develop an extensive energy model of 

a DHS to obtain the energy consumption of all components of the system in operation 
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[161]. Based on known DHS cost per energy unit, the total operation cost of the system 

can be obtained. However, this scenario is a non-convex mixed integer problem; therefore, 

the regular branch-and-bound optimum solving approach cannot be used. The applied 

method was a bi-level approach where integer variables are determined by GA and 

continuous various are solved with linear programming (a hybrid method as mentioned in 

Section 5.1.3). 

5.3.3 Multi-objective 

Multi-objective optimization does not produce a single optimal solution, but a variety 

of near optimal solutions, which then have to be narrowed down based on the situation and 

experience of the decision-making process [470]. For instance, an MILP optimization was 

carried out to minimize both the GHG emissions and the LCC of building energy systems 

and envelopes at the community level [471]. Another study took three objectives into 

account (energy savings, costs and indoor thermal comfort) and applied GA to define the 

optimal energy measures of a building as a whole, including both energy systems and 

envelope [472]. According to the literature, it is less common to optimize more than three 

objective functions simultaneously [472]. 

Among multi-objective optimization studies, exergoeconomic/thermoeconomic 

analysis received considerable attention. An exergoeconomic/thermoeconomic analysis is 

an approach where an economic value is assigned for various energy/exergy inefficiencies 

and it has been extensively applied over the last 30 years [473]. Two types of such analyses 

are cost accounting and optimization methods [454]. The first type includes the exergy cost 

method, the average cost approach and the last-in-first-out method (the specific exergy 

costing method), while the second type includes thermoeconomic and engineering 

functional analysis [178]. 

In DHSs, many processes of exergy destruction/energy reduction such as heat 

production, heat transportation through pipes, heat exchange between the distribution 

network and end-users as well as heat utilization by end-users can be attributed as a 

monetary value. For instance, an exergoeconomic analysis of a central heating system of a 

dormitory has been conducted [474]. It was found that although most of the building energy 

losses are through the envelopes, the highest exergy loss is at the generation and primary 

energy transformation stage. Moreover, an exergy analysis of a GDHS was conducted and 

a cost to the useful energy of the system was obtained [184]. Besides, an exergoeconomic 

analysis of a GDHS using the specific exergy costing (SPECO) approach was conducted, 

and cost flows for all components of the system were displayed [178]. A detailed 

comprehensive review of exergoeconomic analysis of GDHS has been presented [475]. 

Some other examples of multi-objective optimization are tabulated in Table 5.1.
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Table 5.1: Recent studies of district heating systems classified by optimized variable 

Optimization 

variable 
Ref. 

Optimization 

approach/ software 
Location Remarks 

Greenhouse gas and 

pollutant production 

[186] Sensitivity analysis Denmark 
▪ Models of DHS with CHP and waste incinerators need to include heat and electricity production as well as 

the local configuration of the DHS as this influences the efficiencies and CO2 production rates of the system. 

[476] EnergyPlan Denmark 

▪ Potential for a 100% renewable energy system in Denmark is studied. 

▪ In this situation, it is environmentally and economically beneficial for buildings not connected to the DHS 

to be equipped with heat pumps rather than other technologies. 

Energy efficiency 

and exergy 

[477]  
Exergetic analysis and 

parametric study 
Turkey ▪ Component inefficiencies are acknowledged to have an influence on other components upstream. 

[478]  MINLP Northeastern US ▪ 5-11% increase of energy efficiency with proposed modeling approach with respect to the reference case. 

Cost 

[62]  Parametric study Ottawa, Canada ▪ Investigation of the potential of renewable energy integration to a DHS in Ottawa, Canada. 

[468]  GIS mapping of DHS Denmark ▪ Future building energy demands as well as government incentives affect the economic viability of the system. 

[161]  MINLP Northeast US 
▪ Other optimization methods such as branch-and-bound do not guarantee a global optimum while a 

computationally expensive bi-level method does. 

[469]  MILP Teheran, Iran ▪ It was found that MILP is very well suited for determining optimal operation of a DHS. 

[360]  MILP Italy 
▪ Study of the feasibility of reducing CHP run time with solar collector bay and storage. With respect to cost, 

the objective function only uses solar energy in summer. 

[479]  GA - 
▪ Smart metering can be used as input into static energy models and with GA, optimum operating conditions 

can be calculated for multiple CHPs simultaneously. 

Exergoeconomic 

and 

thermoeconomic 

[474]  Annex 49 tool Izmir, Turkey 
▪ The highest exergy destruction (entropy generation) occurs at the source of energy generation rather than 

through the building envelope. 

[178]  SPECO Afyon, Turkey 
▪ Specific components of a system can be evaluated based on exergy destruction or cost efficiency and the 

influence of specific components on the cost or efficiency of the system can be identified. 

[454]  SPECO - 

▪ Four CHP technologies were analyzed using energy, exergy and exergoeconomic analysis. 

▪ Exergy efficiencies are higher for gas turbines than for steam turbines. 

Gas turbines and biomass integrated gasification combined cycle (BIGCC) CHP have a lower exergy cost. 

Multi-objective 

[480] CPEA Switzerland 
▪ The application of multi-objective optimization showed that a centralized heat pump is slightly more 

expensive than decentralized heat pumps but produces considerably less CO2. 

[481] 
Deterministic model 

with MILP 
Switzerland 

▪ A trade-off between energy efficiency, CO2 emissions and annual costs can be made such that environmental 

impacts can be reduced by 50-65%, annual costs by 22-27%, with an efficiency of 75%. Exergy was not 

taken into consideration in this study. 

[482] GA (NSGA) - 
▪ Multi-objective GA is well adapted for the optimization of a hybrid organic Rankine plant employing low-

grade energy sources. 

[196] GA (NSGA) - 
▪ Creating a Pareto front considerably reduces near optimal solutions and makes it easier for decision makers 

to select a solution based on experience. 

[470] GA (NSGA) China 
▪ An operation strategy which follows the thermal demand always performs better than a strategy which 

follows electrical demand. 
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5.4 Decision parameters 

Decision parameters can shape the nature of optimization problems. The input parameters 

for a system optimization can be divided in two categories [483] of environment parameters and 

decision parameters, as shown in Figure 5.14. 

 

Figure 5.14: Inputs and outputs for a system optimization 

The environment parameters create the scenario in which the optimization is performed. For 

building and district optimization problems, the environment parameters usually include the 

climate conditions (e.g. hourly, daily, monthly or annual profiles of temperature, humidity, solar 

radiation, wind speed), the market characteristic (e.g. cost evolution of materials and technologies, 

energy prices, discount rates) and the available technologies in the project location. Although such 

parameters may have a significant impact on the system performance, they cannot be controlled 

by system designers nor be optimized. However, they should be considered as the boundary 

conditions creating the scenario in which the system is optimized. Such a scenario is often fixed 

prior to optimization, but it may be subject to uncertainty, especially when optimizing the system 

performance in the medium/long-term. However, the uncertainty may be considered by running 

multiple optimization processes with different sets of environment parameters [484]. 

On the other hand, system designers can control the decision parameters by optimizing their 

values according to the objective function(s). The features of optimization problems are strictly 

correlated to the choice of decision parameters, as they are the main inputs to the system to be 

optimized. When defining optimization problems related to the component/building/district energy 

efficiency, the choice of decision parameters should be made coherently with the scale and the 

objective of the problem. In fact, as shown in Table 5.2, the number, nature and type of decision 

parameter influence the nature of the optimization problem itself by determining its complexity 

and therefore the selection of the most suitable solving method [394]. 

System 
Decision 

parameters p 

Environment 

parameters e 

Objective f 

Constraints g and h 
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Table 5.2: Classification of optimization problems according to the criteria of decision parameters 

Criteria Categories of optimization problems 

Number of decision 

parameters 

Depending on the number of decision parameters: 

One-dimensional or multi-dimensional optimization 

Nature of decision 

parameters 

Decision parameters can be independent or mutually dependent:   

• Static/dynamic optimization if decision parameters are independent/are functions of other 

parameters 

• Deterministic optimization if decision parameters are subject to small/no uncertainty 

• Probabilistic-based design optimization in presence of uncertainty 

Types of decision 

parameters 

Decision parameters can be: 

• Continuous (accept any real value in a range) 

• Discrete (accept only integer values or discrete values) 

• Both continuous and discrete 

Depending on the number of the selected decision parameters (n) the design space of the 

optimization problem is n-dimensional. Each decision parameter is constrained to certain values 

within its defined range and step of variation. Clearly, the greater the number of defined variables, 

the more complex the problem is. However, when the number of decision variables is high, it 

increases the potential for minimization of objective function, due to the higher potential for 

exploitation of synergies of decision parameters given by their mutual relationships. 

The involved decision parameters may be related to different scales and therefore defined in 

different ways [400]. Such variables may be related to different parts of a same component, as it 

is for the parameters related to the thicknesses of each wall layer, or to the length and the number 

of fins of heat exchangers inside a thermal storage. Other variables may represent a set of different 

packages of building and system components with the related set of physical properties, as it is for 

the parameters related to the choice of a window type, which may include defined packages of 

thermal and visual properties of the glass and frame. Other variables may be chosen among 

different alternatives of complex systems which require additional components. For instance, the 

heating system alternatives include not only the heat generator but also the defined set of 

appropriate pipes, pumps and other components of the distribution and regulation system, or a 

parameter related to the PV array may represent the choice among different PV panel technologies 

with the required set of circuits and batteries. 

Overall, the optimization problems related to energy efficient buildings and districts, 

regardless of the optimization objective, must be solved in adherence with the reality, which is the 

technical feasibility of the resulting optimal design of building and system components and 

coupling among components. In this perspective, the decision parameters should be selected based 

on their market availability and should be optimized to the order of their variability on the market. 

Moreover, their variability should consider the uncertainty scale of the variable itself due to the 

manufacturing and construction process and the marginal improvement of the building energy 

performance produced by the variable variations. In this context, most optimization problems in 

the field of energy efficient buildings and districts deal with discrete variables [485]. 
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5.4.1 Building and district optimization 

In energy efficient buildings and districts optimization problems, various decision 

parameters may be interrelated on multiple levels. The first interrelation is on their impact on the 

performance of the whole system, which is considered in the objective function. In fact, the same 

value of a parameter may have a different impact on the objective function according to the value 

of other parameters to which it is combined [486]. 

5.4.1.1 Passive parameters 

The decision parameters related to the building envelope mostly affect the building/district 

performance in terms of passive reduction of energy needs for heating, cooling and lighting. In 

most optimization studies related to building and district energy efficiency, construction of opaque 

envelopes is referred to in terms of material and thickness of each layer and/or wall package 

alternatives, and to the type and dimension of window packages (glass and frame) [487-489]. 

According to the mentioned principle of feasibility, the insulation thickness of the opaque 

envelope components, depending on the material properties, can vary with a step of 1-2 cm, in a 

range imposed by construction feasibility (e.g. the technology solution for installing a 60 cm-thick 

layer of insulation is not commonly available on the market) and energy performance benefit. A 

sensitivity analysis for studying the variation impact of each parameter can be useful for 

determining the range. For instance, depending on the building location and the related energy 

need repartition in heating and cooling, the marginal improvement in energy performance tends to 

decrease when increasing insulation. 

When performing optimization with financial objectives, it is common to assign each 

decision parameter a dedicated cost function [490]. In Figure 5.15, an example of cost function for 

a slab insulation is illustrated [491]. As shown, the specific cost of an insulation (expressed in 

terms of thermal resistance unit) decreases when the overall thermal resistance increases following 

an exponential function (the black curve). In the figure, the derived cost function representing the 

specific cost of 1 m2 of slab insulation as a function of thermal resistance is shown in red. 
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Figure 5.15: An example of cost function for slab insulation in the French market 

Concerning the window type, it is known that the glazing overall impact on energy 

performance is based on the combination of its thermal and visual performances. If these properties 

were optimized independently, the result would probably be a glazing type which is not available 

on the market, as these properties are interdependent, and it is technically hard to create glazing 

with the entire set of desired characteristics. Since the glazing types available on the market are 

different packages with defined physical properties, the window type variables are usually 

composed of a set of different window packages selected from the market. 

As shown in Figure 5.16, for a given window type it is possible to create linear cost functions 

which have different gradients according to the type of glazing and frame. However, constraints 

to the variability range should be imposed based on building layout, regulations (e.g. minimum 

amount of daylight), and the step of variation should account for the standard dimension of 

modular glass panels available on the market. 
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Figure 5.16: Example of cost function for window packages in the Italian market 

Other variables (usually set in preliminary design studies when the building geometry is not 

determined yet) are related to the building orientation, the ratio between transparent and opaque 

envelope, the depth and orientation of shadings, etc. 

It is important to note that the number and variability of the parameters related to building 

envelopes depend on the scale of the optimization problem. The decision parameters described so 

far are usually defined for the building scale optimization problems. They may also be used at the 

district level, but often the district level requires some simplifications to maintain the problem 

complexity to a manageable order. Therefore, instead of defining the thickness of each layer of 

each wall in each building of the district as a different decision parameter, the average thermal 

transmittance of each building opaque envelope is set as a decision parameter in a district scale 

optimization problem. 

Other typical decision parameters at the district level are those affecting the urban heat 

island, such as the type and color of reflecting surfaces, or those affecting the cast shadows of 

different buildings and ability of the district to catch and use the solar energy for instance by the 

building geometry and orientation, and roof area. 

5.4.1.2 Active parameters 

Concerning energy systems in optimization problems, one or several alternatives can be 

evaluated (e.g. heat pump, gas condensing boiler, wood boiler) with their cost of investment, 

maintenance, replacement and the related energy costs according to the required type of energy. It 

has to be noted that some of these costs can vary according to the size of the system required to 

match the maximum building energy load, which is in turn related to the building envelope 

configuration. Therefore, the energy and cost models should account for this variability [492, 493]. 
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For each energy system alternative which can be selected for each energy use (level 1 of 

decision parameters), several level 2 decision parameters may be identified. A summary of the 

most common “active” decision parameters is presented for energy production systems (Table 5.3) 

as well as the storage systems, energy use systems (terminals) and ventilation systems (Table 5.4). 

Table 5.3: Decision parameters for energy systems in high performing buildings: energy production 

systems 

Decision parameters 

  Level 1: type of system Level 2: features of the system components 

Energy 

production 

system 

Heating Combined solar 

heating system 
• Area of solar thermal panel  

• Type of solar thermal panel 

• Volume of the water storage 

• Orientation of the solar panels 

• Type and power of energy supply integration (electric 

resistance, gas boiler, heat pump, biomass, etc.) 

Boiler • Type (electric, gas condensing, biomass, pellets, etc.) 

• Operating temperature (depending on terminals) 

• Efficiency 

Heat pump • Type (electric, absorption, etc.) 

• Efficiency 

• Source temperature 

• Operating temperature (depending on terminals) 

• Type of geothermal boreholes (if present) 

• Length of geothermal boreholes (if present) 

Electric 

resistances 
• Heating capacity 

District heating • Operating temperature 

• Energy source (solar, biomass, fossil, etc.) 

• Maximum available power 

Cooling Reversible heat 

pump 
• Efficiency 

• Maximum capacity 

• Operating temperatures (condenser and evaporator) 

Absorption chiller • Source type (solar or not) 

• Source temperature 

• Operating temperatures (condenser and evaporator) 

Adsorption chiller • Source type (solar or not) 

• Source temperature 

• Operating temperatures (condenser and evaporator) 

Desiccant cooling • Heating source (usually solar) 

• Dimension and efficiency of solar field 

District cooling • Operating temperature 

• Energy source (solar, biomass, fossil, etc.) 

Electricity PV • Area of PV panels 

• Type of PV panels 

• Orientation of PV panels 

Micro wind 

turbines 
• Maximum power 

• Surface of blades 

Grid • Demand distribution over time 
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Table 5.4: Decision parameters for energy systems in high performing buildings: storage, terminal units, 

ventilation 

5.4.2 Constraints 

The constraints applied in optimization of districts can be classified in three major groups 

[301] as illustrated in Figure 5.17. Note that the first two categories can also be applied to 

buildings. Component constraints usually state input/output energy for each module. Constraints 

for energy balances ensure that the amount of input energy is equal to the output, for each time 

interval and for each node (site) including supply and demand sides. Some common inequality 

constraints for different components are tabulated in Table 5.5. Equality constraint are highly 

dependent to the model; however, for some components such as TES, similar models are typically 

employed. Network constraints only apply to DHSs, stipulating various kinds of constraints related 

to energy distribution such as energy losses through wires and pipes (see Table 5.6). Table 5.7 

summarizes the constraints used in recent studies for optimization of district energy systems. 

Decision parameters  
Level 1: type of system Level 2: features of the system components 

Storage 

systems 

Thermal Water storage 

(sensible heat) 
• Temperature 

• Insulation level 

• Volume 

• Length and geometry of heat exchangers 

Geothermal storage (sensible heat) • Type of ground  

• Thermally activated volume 

Phase change materials (latent) • Phase change temperature 

• Insulation level 

Thermo-chemical • Type of material 

• Coverage ratio 

Terminal 

units 

Electric Batteries • Type of batteries 

• Capacity of batteries 

Heating Electric radiators • Capacity 

Water radiators • Capacity 

Radiant surfaces  • Area (floor, ceiling, walls, etc.) 

Fan coil units • Capacity 

Cooling Cold surfaces (floor, walls, beams, ceiling) • Area (floor, ceiling, beams, walls, etc.) 

Fan-coils • Capacity  

Lighting Type of lighting (bulbs, LED, etc.)  • Power 

Ventilation 

systems 

  Natural • Openings dimension and location 

Mechanical • Efficiency 

• Flow rate 

• Temperature 

Double-flux • Efficiency 

• Air tightness of the conduits 

• Flow rate 

• Temperature 

Canadian wells • Dimension 

• Depth 
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Figure 5.17: Classification of constraints in programming building and district energy optimization 

•Equality constraints: 
Relation between fuel, 
product, and subproduct

•Inequality constraints: 
Load and size range 
Capacity

Components 
constraints

•Equality constraints: 
Heating balance
Cooling balance
Electricity balance
Time-dependant storage

Energy 
balance

•Equality and inequality 
constraints:
Thermal flow in pipelines
Sizing
Losses
Direction
Heating and cooling 
circulation
Capacity

Network 
constraints
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Table 5.5: Formulation for some common inequality constraints at district level: component inequality constraints 

Constraint Formulation Description 

Number of components 
imaxii ynny   The component number ni should be lower than a maximum value nmax where yi is a binary variable 

Power and heat generation 
GT

max
GTGT yPP   

BBB yQQ max  

The generated power by gas turbines PGT and the produced heat of boilers QB are less than their 

maximum capacity at each point of the operation time. yGT and yB are binary variables showing ON 

and OFF modes 

Supply heat and flowrate 
SA

max

SASASA

min

SA yGGyG   

EC

max

ECECEC

min

EC yPPyP   

GSA is steam flowrate and PEC is supplied electricity. 

Energy storage max

TESTES

min

TES SSS   

max

EESEES

min

EES SSS   

TES: thermal energy storage 

EES: electrical energy storage 

Power ramping 







1

1

t

CHP

t

CHP

t

CHP

P

PP
 

Power by the plant between two successive time points are 
t

CHPP  and 
1t

CHPP . 

Charging and discharging 1 outin yy  Battery or some TES cannot be simultaneously charged and discharged. Therefore, two binary 

variables of yin and yout for charging and discharging are introduced, respectively.  

Charging supply 





n

i

inisto MyE
1

,
 

The storage may be allowed to be charged from certain systems. Esto,i is the energy flow delivered 

by component i among n allowable units. 

Grid interaction 1 outin yy  Supplying electrical energy to the grid or its withdrawal cannot be implemented at the same time. 

PV area on the roof 





n

i

roofiPVi AAn
1

,  

Total PV area (ni number of APV,i) which cannot violate the available roof surface area Aroof. 

Solar absorption chiller 

solar
abs P

COP

P
  

Pabs is the chiller required energy with COP as the coefficient of performance and Psolar as the 

generated solar heat. 

Up-time and down-time 

down

t

down

up

t

upt

ON

TT

TT
y











1

0
1

 
The running time of a power or heat generation unit can be controlled by a binary variable 

1t

ONy  

at instant t + 1 based on the instant t. 

Priority operation 1 t

i

t

i PP   Priority for the operation of the power or heating engines t

iP  at point t may be considered to prevent 

generation of multiple solutions. 

Allowable modes 11  t

tr

t

tr yy  In the case of successive permitted and unpermitted operation modes of a component, especially a 

CHP, a binary transition variable is defined as ytr. 
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Table 5.6: Formulation for some common inequality constraints at district level: Network inequality constraints 

Constraint Formulation Description 

Energy flow direction 
ijij MyE ,,   Binary variables yi,j and yj,i for two buildings 

Delivery capacity  
ijij MyE ,,   Maximum delivery capacity is M for energy flow Ej,i 

Thermal energy circulation  jiij yiOROR ,11   Creation of a loop results in production and circulation of energy which is not demanded. For 

example, CHP can operate at a higher rate in order to sell electricity while the actual buildings 

demand is lower. OR is the order of a building. 

Table 5.7: Some common constraints employed in recent district optimization studies 

Constraint [494] [495] [469] [496] [17] [360] [496] [497] [498] [499] 

Number of each/all equipment ✓   ✓   ✓ ✓ ✓  

CHP/boiler/chiller capacity (min/max) ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓  

Storage capacity ✓     ✓   ✓ ✓ 

PV area ✓ ✓ ✓ ✓       

PV rated capacity ✓ ✓ ✓ ✓   ✓    

Storage flow capacity ✓    ✓      

One-direction energy flow ✓ ✓ ✓ ✓       

Maximum pipeline capacity ✓          

Heating/ cooling circulation ✓ ✓  ✓   ✓    

Electricity balance ✓  ✓    ✓  ✓ ✓ 

Heating balance ✓  ✓   ✓ ✓  ✓ ✓ 

Storage balance ✓ ✓    ✓   ✓ ✓ 

CHP/PGU/Boiler relationship ✓  ✓   ✓     

Grid interaction   ✓ ✓ ✓  ✓ ✓   ✓ 

Pipe heat interchange (capacity)  ✓ ✓        

Input energy limitations   ✓        

Up/down time      ✓     
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The mentioned constraints are generally applicable to both district and building levels. 

Focusing on the component constraints, another important constraint is related to the combination 

feasibility of the different technologies for the different energy uses. Therefore, constraints on 

level 1 parameters (type of the system) should be defined according to such feasibility. 

Here, some tables provide a summary of the most commonly used technologies with the 

feasibility evaluation of the combination of each level 1 parameter to the others. Table 5.8 reports 

the evaluation of the technical feasibility of the combinations among the different energy 

production systems for heating, cooling and electricity. Table 5.9 reports the same information for 

storage systems, the terminal units for electricity, heating, cooling and lighting, and the ventilation 

systems. Table 5.10 analyzes the possible combinations among the energy production systems, the 

terminal units, the storage systems and the ventilation systems. 

For all these systems, the relevance of the coupling among components has been evaluated. 

It is shown that the number of optimally feasible combinations is strongly reduced compared to all 

possible combinations. The selection of the feasible combination of decision parameters related to 

energy systems should be conducted considering the following general principles: 

• Multifunction systems are characterized by integrating several complementary systems. 

Compact systems (double flow, heat pump, DHW and heating sometimes including solar 

thermal), combined solar systems, PVT solar panels (thermal photovoltaic), cogeneration 

and reversible heat pumps are considered [500]. 

• Among the other combinations which were considered as feasible, the high-performance 

systems in middle seasons (air heat pumps, solar thermal) can be advantageously combined 

with systems whose performances degrade at low power (conventional boilers, stoves). 

• The sorption cooling systems can be advantageously combined with solar systems (thermal 

and PV) to match the demand with the resource. If cooling is needed in the absence of 

sunshine, cogeneration systems can provide the heat while generating electricity [501]. 

• Low temperature heat terminal units (radiant floor, fan coil) are recommended for some 

heat production systems (solar thermal, heat pump). In addition, the air heat diffusion can 

be optimally combined with double flow ventilation systems. 

• Canadian wells can improve the performance of all air systems. Air-source heat pumps can 

take advantage of the exhaust air heat of some ventilation systems. 

• It is also recommended to couple moderately electricity-consuming systems (heat pumps) 

with local production systems (PV, wind, micro-hydro). 

• The need for storage systems (thermal or electrical) appears for most systems, especially 

if the resource or demand is intermittent.
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Table 5.8: Feasibility of combinations of decision parameters among energy systems in high-performance 

buildings: energy production systems 
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Table 5.9: Feasibility of combinations of decision parameters among energy systems in high-performance 

buildings: storage, terminal units, ventilation systems 
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Table 5.10: Feasibility of combinations of decision parameters among energy systems in high-

performance buildings 
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5.5 Available tools 

Application of an optimization tool is vital for the performance analysis of a building or 

district energy system both in the design stage and real-time operation. According to the U.S. 

Department of Energy, some tools for optimization of buildings/systems, dedicated to economic, 

energy and environmental performance are shown in Table 5.11. 

Table 5.11: Some tools for optimization of buildings [502] 

 Tool Capabilities 

AFT Mercury Optimization, pipe optimization, pump selection, duct design, duct sizing, chilled water systems, hot 

water systems 

BEopt Residential buildings, energy simulation, optimization, retrofit, new construction 

CHP Capacity 

Optimizer 

CHP, cogeneration, capacity optimization, distributed generation 

EA-QUIP Building modeling, energy savings analysis, retrofit optimization (work scope development), 

investment analysis, online energy analysis tool, multifamily building analysis 

EnerCAD Building energy efficiency, early design optimization, architecture oriented, LCA 

HAMLab Heat air and moisture, simulation laboratory, hygrothermal model, PDE model, ODE model, building 

and systems simulation, optimization 

HOMER Remote power, distributed generation, optimization, off-grid, grid-connected, stand-alone 

TOP Energy Simulation and optimization of energy systems, energy efficiency, time series analysis, variant 

comparison, Sankey diagrams, material and energy flow analysis, process optimization 

Umberto Material and energy flow analysis, process optimization, environmental impact assessment, material 

flow cost accounting, life cycle assessment, life cycle costing 

MyVerdafero Utility optimization, building performance, portfolio analysis 

GenOpt System optimization, parameter identification, nonlinear programming, optimization methods, 

HVAC systems 

Overall, the optimization tools for building applications have been deeply reviewed in the 

literature [395]. Therefore, this section is mainly focused on district level tools. The models 

representing a district energy system or a poly-generation system are generally developed within 

a mathematical programming tool rather than a compact separate software package. In this section, 

some optimization tools and their capabilities are briefly introduced. Most tools used for district 

energy optimization consist of algebraic modeling language (AML) which means they are high-

level languages and usually have similar mathematical notation to describe optimization problems. 

5.5.1 AIMMS 

Advanced interactive multidimensional modeling system (AIMMS) includes algebraic 

modeling language and graphical user interface. Multiple solvers are included in the tool and it 

can tackle a wide range of problems including robust, stochastic and constraints programming. 

AIMMS has integrated development environment tools which allows software development. 

AIMMS provides free license for academic applications. 
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5.5.2 GAMS 

General algebraic modeling system (GAMS) is another AML tool used to model and solve 

linear, nonlinear, MILP and MINLP problems. Similar to AIMMS, GAMS provides programmers 

with an environment for software development. 

5.5.3 CPLEX 

CPLEX can solve linear and MILP problems. CPLEX can also deal with certain types of 

problems where the objective function is nonlinear but quadratic whether the problem is 

constrained or not. It includes free license for academic applications. 

5.5.4 AMPL 

AMPL is an AML tool used to handle linear and nonlinear convex quadratic problems with 

both integer and continuous variables. The tool supports a variety of optimization problems such 

as semidefinite programming and is suitable for large-scale linear and nonlinear programming. It 

also has free license for academic usage. 

5.5.5 Xpress 

Xpress contains its own modeling language called Xpress-Mosel. It can be used for linear 

and mixed integer problems, convex quadratic constrained and unconstrained problems, second-

order cone problems as well as mixed integer counterparts. It offers free academic license. 

5.5.6 MATLAB/Simulink 

MATLAB is a multi-disciplinary computational environment which can solve all kinds of 

linear, nonlinear, mixed-integer and quadratic problems using Optimization Toolbox. 

5.5.7 LINGO 

LINGO is a comprehensive optimization AML tool for building models capable of solving 

linear, mixed-integer linear and nonlinear, nonlinear (both convex and nonconvex problems), 

constrained and unconstrained quadratic, stochastic, second-order cone as well as semidefinite 

problems. 

5.5.8 HOMER 

HOMER offers modeling, optimization and parametric sensitivity of grid-connected and 

standalone RES focusing on electrical energy conversion. Storage technologies include batteries, 

flywheels and hydrogen without any TES. The only available thermal components are simplified 

models of CHP, boiler and biomass. Different kinds of electrical and thermal demand profile/data 

can be used as input to show daily or seasonal variations [503]. 

5.5.9 SynCity 

SynCity adopts the same approach for mathematical programming as GAMS to optimize 

carbon emission, required energy and total cost of a district. The tool includes built-in models 

which receive neighborhood layout as the input. Time and location of demands for electricity, fuel 

consumption for transportation and heating are calculated based on the simulated daily activities 

of people. The tool proposes optimal solution for network configuration, activity locations and 
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transportation map. The tool takes the concept of “energy hub” for design, operation and energy 

consumption optimization at site and district levels [504]. 

5.5.10 Neplan 

Neplan is used for designing, modeling and optimization of distribution networks of water, 

electricity, gas and thermal piping. The tool can analyze energy flow, energy loss and hydraulics 

for a district to size the heating units, circulating pump and heat exchangers. Another major 

advantage of the tool is its interface for geographic information system (GIS). 

5.5.11 MODEST 

MODEST (model for optimization of dynamic energy systems and time-dependent components 

and boundary conditions) is among the available tools for cost optimization of DHSs [450]. 

MODEST is an optimization tool intended to model costs and essentially minimize an objective 

function on the basis of a linear-programming technique [448]. This tool has been extensively used 

for DHS design such as Linkoping, Sweden and Gjovik, Norway [449] as well as Stockholm, 

Sweden cases [450]. 

5.5.12 GenOpt 

Unlike other optimization software, GenOpt has been developed to minimize an objective 

function which is evaluated by an external simulation program. It can be coupled to any simulation 

program which reads its input from text files and writes its output to text files. Since one of the 

main application fields for GenOpt is building energy use or operation and cost optimization, it 

has been designed such that it addresses the special properties of optimization problems in this 

area. In particular, GenOpt is designed for optimization problems with the following properties: 

• The cost function may have to be defined based on approximate numerical solutions of 

differential algebraic equations, which may fail to be continuous; 

• Evaluating the cost function requires much more computational time than determining the 

values for the next iteration; 

• Analytical properties of the cost function (such as formula for the gradient) are not 

available. 

GenOpt has the following advantages: 

• GenOpt can be coupled to any simulation program which calculates the cost function 

without having to modify or recompile either of the programs, provided that the simulation 

program reads its input from text files and writes its output to text files; 

• The user can select an optimization algorithm from an algorithm library, or implement a 

customized algorithm without having to recompile and understand the whole optimization 

environment; 

• GenOpt does not require an expression for the gradient of the cost function. 

With GenOpt, it is easy to couple a new simulation program, specify the optimization 

variables and minimize the cost function. Therefore, in designing complex systems, as well as 
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system analysis, a generic optimization program such as GenOpt offers valuable assistance. 

However, the efficiency and success of an optimization is strongly affected by properties and 

formulation of the cost function, by selection of an appropriate optimization algorithm and by 

selection of initial values of parameters prior to optimization. 

A great advantage of GenOpt is the possibility of linking it to TRNSYS. TRNSYS has a 

dedicated interface for GenOpt, which is named TRNOPT. However, it only allows the variables 

of the simulation model which are defined in the “dck” file format (the main TRNSYS input file, 

created with the Simulation Studio interface) to be set as optimization parameters for running 

GenOpt. Therefore, within TRNOPT, it is not possible to deal with variables located in the BUI 

file (the input file created by TRNBuild, the TRNSYS interface for editing the Type 56 for multi-

zone buildings) and to define the equations implementing relationships among different 

optimization variables. 

To do so, it is necessary to create simulation templates by directly editing the “bui” and the 

“dck” simulation input files with variables readable by GenOpt. Moreover, it is required to create 

(1) the configuration file, which refers to the call of the TRNSYS software, (2) the command file, 

in which the variables are defined as optimization parameters, and (3) the initialization file, which 

contains specifications concerning the locations of input, configuration and command files and the 

position of the objective function value. The whole simulation-optimization framework is shown 

in Figure 5.18. 
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Figure 5.18: TRNSYS-GenOpt coupling framework 

5.6 Problem classification 

In this section, the most recent studies regarding district optimization are critically reviewed. 

As illustrated in Figure 5.19, district optimization problems can be classified into four main topics 

of (1) optimal superstructures, (2) optimal operation and planning along a representative period 

including some demand side models, (3) distributed integration and (4) subsystem building blocks. 
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Figure 5.19: Classification of district optimization problems 

A summary of optimization methods, objective functions, type of district energy and the 

commercial solver is shown in Table 5.12 for some recent district optimization studies. According 

to the table, determination of the optimal design and operation of district systems is usually an 

MILP formulation. In such formulation, decision vector contains both binary and continuous 

variables and a linear relationship holds among them. Binary variables characterize the existence 

of a component (also pipeline and wire) or the operation status (ON/OFF) of a generation plant, 

while all other decision variables are continuous. However, various solvers were used to simulate 

the performance. Table 5.13 presents the energy sources and technologies in separate groups. Gas 

boilers and CHP are among the most common technologies. Gas boilers are essential for providing 

backup energy to the system in the presence of an intermittent distributed system and/or storage 

system. In the following sections, each topic is briefly discussed.
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Table 5.12: Summary of optimization approach in some recent district optimization studies 

Ref. Optimization type Method/Algorithm Objective(s) DH type Solver 

Superstructures 

[505] Single-objective MILP Total annualized cost of micro-grid Centralized GAMS 

[495] Multi-objective MILP Both economic and environmental aspects Decentralized Not mentioned 

[494] Single-objective 

Multi-objective 

MILP Annual cost and carbon dioxide emission Decentralized MATLAB  

Gurobi 

[506] Single-objective MILP Selection of new users Centralized CPLEX 

[469] Single-objective MILP Costs savings and reduction in CO2 emissions Decentralized CPLEX 

AIMMS 

Operation and planning 

[507] Single-objective MILP Operating costs for heat production Centralized CPLEX 

[508] Single-objective LP Costs of the net acquisition for heat and power 

in deregulated power market 

Centralized LP2 

[360] Single-objective MILP Dispatching strategy for the different power 

sources 

Centralized MATLAB 

[259] Single-objective Newton’s method Total mass flow rate total thermal conductance Centralized Not mentioned 

Distributed integration 

[171] Single-objective NLP Cost per unit of thermal energy used Centralized Not mentioned 

[17] Single-objective LP Overall net acquisition cost for energy Centralized LP2 

EnergyPro 

[509] Single-objective MILP Profit of CHP plant by selling electricity Centralized GAMS 

[510] Multi-objective NLP Costs of power and heat supply and CO2 

emission equivalents 

Decentralized  Not mentioned 

Subsystem building blocks 

[511] Single-objective Calculus-based Pipe investment cost Centralized and 

Decentralized 

Not used 

[512] Single-objective Genetics algorithm Calibration Centralized MATLAB 
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Table 5.13: Summary of technologies under consideration in some recent district optimization studies 

Ref. SH CHP HP PV GB OB WB TS CH BA OT 

[505] ✓  ✓  ✓ ✓      ✓ 

[495] ✓ ✓   ✓   ✓ ✓   

[494]    ✓ ✓   ✓ ✓   

[469]  ✓   ✓ ✓    ✓   

[507]     ✓ ✓ ✓ ✓    

[508] ✓ ✓   ✓ ✓ ✓ ✓    

[360] ✓ ✓   ✓   ✓    

[171]  ✓     ✓     

[17] ✓ ✓      ✓  ✓  

[509]  ✓  ✓ ✓    ✓   

[510] ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓  

[513] ✓ ✓   ✓   ✓   ✓ 

[514]        ✓ ✓   

[515] ✓ ✓ ✓ ✓ ✓      ✓ 

[498]  ✓   ✓   ✓ ✓   

[516]  ✓      ✓ ✓  ✓ 

[517]  ✓  ✓ ✓   ✓ ✓  ✓ 

[271] ✓ ✓   ✓   ✓ ✓   

[518] ✓ ✓  ✓ ✓   ✓  ✓  

[499]    ✓    ✓  ✓ ✓ 

[519]  ✓         ✓ 

[520] ✓    ✓      ✓ 

[521]  ✓     ✓     

[479]     ✓       

[522]  ✓     ✓ ✓ ✓  ✓ 

[523]  ✓          

[524]  ✓   ✓   ✓    

[525]    ✓      ✓ ✓ 

[526]    ✓      ✓ ✓ 

[527]   ✓         

Keys: SH: Solar heat, HP: heat pump, PV: photovoltaic units, GB: gas boiler, OB: oil boiler, 

WB: biomass wood boiler, TS: thermal storage, CH: chiller, BA: battery, OT: other (fuel 

cell, geothermal, wind). 
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5.6.1 Optimal superstructures 

A superstructure is a flowsheet (or a scheme) gathering all the different feasible 

configurations, among which the optimal one can be chosen. Several studies concentrated on the 

optimal superstructure of a poly-generation energy system at the district level. The main outputs 

for the optimization problem in this category include the existence and size of each 

component/technology. This is usually followed by an optimal operation for a case study in which 

the objective is to decide which engine, chiller, CHP, etc., at which capacity and at which point 

during the time horizon should operate. In this section, a review on the most recent studies is 

carried out. 

A MILP model has been introduced to find the optimal selection of the system components 

among several candidate technologies (micro CHP units, PV arrays, boilers, central power grid), 

including the optimal design of a heating piping network, which allows heat exchange among the 

different nodes [505]. However, its application was limited to 10 buildings and the district had no 

loops. Similarly, a model was proposed for determination of the energy generation components 

among various candidates, the site and size of each selected technology, optimal running schedule 

as well as optimal layout of heating network [495]. A comparison was made between three 

different scenarios: CON (conventional), DES + HN (heating network), DES + TS (thermal 

storage). However, such a model was only validated by measured data at three typical substations 

in a sample DH network, which was not typical for most systems all over the world. 

A model has been proposed to minimize the total annual cost and CO2 emission and achieve 

the optimal design and operation to meet the yearly energy demands for heating, cooling and power 

[494]. Different weights were used for the objective function to evaluate environmental and 

economic benefits. However, the model was validated with four simple buildings. 

Selection of the set of new users to be connected to an existing district network has been 

optimized during time horizons of five and ten years [506]. The model maximized revenues and 

minimized operating and investment costs using fundamental of graph theory. The model was 

tested for a DH network in Emilia-Romagna, Italy, with 33 users (20 existing and 13 new). 

However, loops and multiple sources were not considered in the model. Cost of pumping, insertion 

of new tees, size of heat exchangers and optimal piping diameters were not included. Consumption 

variation of existing users is of paramount importance which was not analyzed in the model. 

A model to optimize a tri-generation system based on combined cooling, heating and power 

(CCHP) in a district consisting of seven buildings in Tehran, Iran has been developed [469]. Four 

separate scenarios (i.e. conventional, CCHP without network, CCHP with network and CCHP/PV 

with network) were compared based on several component candidates to achieve minimum 

equivalent CO2 emission and cost. The PV units were installed and operated with high subsidy and 

grid-selling price resulting in much lower energy cost in comparison to other scenarios. However, 

no thermal/electrical storage was considered in the model to shift energy purchases. Moreover, no 

loop equation was included in the model. 
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5.6.2 Operation and planning 

The second category of studies focused on the optimal operation status and load planning of 

each component for an existing neighborhood at each point of time. In this category, the exchange 

of electricity, heating and cooling using the distribution network is the main output. The models 

typically quantify the economic and environmental impacts due to the overall operation of the 

energy system in comparison with individual buildings or a reference/base system. The reference 

scenario usually describes a conventional energy supply corresponding to the system. The 

electrical demand is supplied by the grid network and thermal demand is provided by gas-fired 

boilers. Normally, no renewable technology, CHP/CCHP system or piping network is introduced 

in the reference model. The layout of the network and the heating, cooling and power units are 

usually predefined for operational optimization, while the optimization procedure aims to find 

which engine, heating and cooling plant, and at which capacity should operate at any time. 

A new process integration technique has been introduced [507] which allows (1) modeling 

of DHSs with loops (closed paths for fluid flow), without introducing any simplification or 

modification to their physical structure, (2) modeling of DHSs containing multiple sources of 

thermal energy production and (3) redesign of the DHS structure, particularly adding or removing 

consumers. The method was applied to a DHS in Kiruna, Sweden. However, this complex model 

takes a long time for simulation which was not addressed in the study by comparing the running 

time to that of the conventional models. Moreover, the results were not compared with simplified 

models to examine the accuracy. For example, it was stated that the model was able to analyze 

flow distribution of the DHS and identify the location of bottlenecks in the network. But no 

information was provided for comparison of these characteristics with conventional design 

techniques. Moreover, a constant return temperature was considered in the entire network. 

An energy integration system named smart hybrid renewable energy for communities 

(SHREC) has been proposed consisting of heating and power markets under the context of district 

heating network and electricity grid [508]. The design included CHP, heat-only boiler, condensing 

plant, heat pump, renewable energy and energy storage system to be used in a community in 

southern Finland. The model was successful regarding heat losses from the storage tank and 

smooth operation of CHPs. The latter was achieved due to the integration of power ramping 

constraint to the model. 

A different configuration for using RES in district heating networks has been investigated 

[360]. Renewable share in a DHS can be obtained from different sources such as burning 

renewable fuel, using geothermal source, using a renewable electric energy and converting it into 

heat through a reversible heat pump, inserting a solar heating contribution to the heating network, 

etc. However, due to the variable and non-controllable nature of renewable heating which must be 

handled by fulfilling users demand and coordinating its output with other controllable sources, 

TES is often necessary for exploiting RES at their best. The definition of a management strategy 

to run a plant at its minimal cost or using the largest possible share of renewable is not easy to 

achieve even with a limited number of components. 
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Newton’s method has been used to minimize the cost of a DHS (a multi-floor building) based 

on separate mass flow rate (pumping cost) and thermal conductance (heat exchanger cost) [259]. 

In each case, the value of another objective was assumed to be constant. The model considered 

both the inner (user side) and outer loops. The problem can be formulated almost easily for large 

networks; however, the running time is questionable. Therefore, a tool is required for the model to 

be applicable in larger districts. 

5.6.3 Distributed integration 

Distributed integration deals with the connection of energy resources to the energy system 

to serve as reliable, sufficient, economic and environmentally friendly suppliers. In this context, 

among district energy production technologies, operation of CHP systems received attention. 

A quasi-steady state model has been proposed based on thermodynamics, combustion 

processes and heat transfer to accurately estimate the performance of a biomass CHP plant 

integrated with a DHS [171]. Optimization was carried out to calibrate the model based on an 

existing plant. However, heat storage was not included which could considerably enhance the 

benefits of the CHP plant as it increases the equivalent utilization period. Moreover, the behavior 

of the integrated network was not considered. Besides, the model prediction is valid only for 

certain measurement accuracies (specific steam and flue gas mass flow rates and temperatures, and 

for a specific DH network). 

In a study, a CHP based DHS with RES was investigated [17]. A modeling and optimization 

method was developed for planning and operating of such CHP-DHSs. The objective of the 

optimization was to minimize the overall costs of the net acquisition for heat and power in a 

deregulated power market. A planning model consisting of energy balances and constraints for 

system control and operation as well as an efficient algorithm was developed. The same system 

was also optimized with a higher share of RES and a larger TES to simulate the future situation. It 

should be noted that intermittent solar generation was included in the model. To make the model 

more accurate and realistic, constraints on the energy storage and power ramping were also 

included. This large CHP-DHS planning problem was solved using an efficient LP solver. The 

results indicated that the developed modeling and optimization method was efficient and flexible 

for planning and operating CHP-DHSs, for optimizing the combination of system components and 

for sizing problems. It was also found that the storage efficiencies should be well-considered when 

optimizing the operation of CHP-DHSs. The optimal operation of the TES was influenced by both 

the heat demand and power price. It was concluded that TES would be used more intensively in 

the future with more fluctuating CHP load and a higher share of RES.  

In a study, the optimal integration of a CHP plant as a utility producer at the neighborhood 

level was investigated [509]. The optimum operation for the combination of CHP with PV was 

also investigated for predominantly cold climates. The fluctuations in energy rates, ambient 

conditions and demand level were considered. Moreover, the day-ahead price was considered in 

the economic study. When the day-ahead electricity rates rise, operation of the gas turbine is 
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economically beneficial since a huge profit is earned by selling electricity to the grid. For a CHP 

alone system (without PV), the net profit is approximately halved while the gas turbine should run 

continuously to supply the neighborhood demand. 

A decomposed optimization solution has been proposed to a multi-objective problem with 

integrated economic and ecological objective functions to reduce computational complexity of 

similar problems [510]. The optimization model comprised of three stages: (1) heating network 

design, (2) generation plants, storage systems and renovation measures, and (3) operation of the 

generation plants and storage systems. The Pareto frontiers for a network were compared with 

individual buildings for an existing district system in Lampertheim, Germany. The meshed 

network was not considered in the model and electricity interchange among subnetwork buildings 

were prohibited. There was also no discussion on how the proposed decomposed optimization has 

reduced the computational complexity of the system. 

5.6.4 Subsystem building blocks 

The last category consists of optimization studies focusing on specific technical aspects of 

components or building blocks of a system. In this category, the focus is typically on determining 

the optimal piping and hydraulic resistance in a network. 

An analytical model has been proposed to find the optimal pressure drop and related 

minimum annual cost for the distribution network in a DHS based on operating variables and 

different strategies [511]. In this model, all terms were rewritten based on only one parameter 

(pressure drop per length) and simple calculus methods were applied to find the optimum value. 

The model considered different types of annual cost for piping network beside investment 

including repairing, depreciation, distribution, management, labor, pumping and heat loss. 

However, the model requires several parameters (especially for regression) to be useful. 

Optimization (using GA) was used to calibrate a model for steady-state distribution of 

thermal energy through pipes in a network [512]. The mathematical model was simple and taking 

advantage of temperature and flow measurements for three cases resulted in reduced uncertain 

parameters (aggregated heat conduction coefficient) and more accurate model. However, the 

proposed procedure is only applicable when data for at least three operation modes are available. 

Moreover, hydraulic losses were not included in the model. 

5.7 Computational time deduction 

Due to the complexity of building and district heating systems (several components, highly 

nonlinear relations between system inputs and outputs, etc.), the optimization process could be 

very time consuming where in some cases the optimization lasts several days. The mechanism of 

the optimization process (Figure 5.20) can be described as a repeated communication (several 

cycles) between a system model, an optimization algorithm and processing units which compute 

the values of the objective function(s). The whole process is realized based on a calculation 

machine. The total optimization time is the summation of the time consumed by each unit. 
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Therefore, to reduce the calculation time, it is necessary to act at the level of each or some of these 

units by: 

• Reducing the simulation period of the modeled system (e.g. 12 days simulation period 

instead of 12-month period) 

• Parallelizing the calculations using different machines 

• Using an efficient and convenient algorithm 

• Simplifying the model 

• Reducing the number of decision variables to consider only the main effective ones 

• Using a powerful calculation machine 

In the following sections, some common methods are presented to reduce optimization 

computational time. 

 
Figure 5.20: Flowchart of the general optimization process and the interaction between the computation 

and management units 

5.7.1 Simulated period reduction 

To design a building or a district heating system, it is common to consider at least one year 

of weather data and energy demand profiles (i.e. heating/cooling) of the desired city (in which the 

system and buildings are installed) to compute the objective function(s). In fact, the simulation 
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period should include all boundary condition patterns which the system will face during its 

operation. Assuming cyclic weather conditions over years, one-year simulation fulfils this 

condition. However, for optimizations that consider the system degradation over time for some 

extended systems, the simulation period could be equal to the entire system life period. 

Reducing the simulation period for computing the objective function(s) is a promising 

method to significantly reduce the computational time of optimization (see Figure 5.21). However, 

to obtain a satisfactory solution, the reduced simulation period should include all boundary 

conditions patterns for at least one year. It is necessary to mention that the solution of an 

optimization process based on a reduced period is not equal to the solution which would be 

obtained using a complete simulation period; however, it can achieve an acceptable tradeoff 

between accuracy and calculation time. 

 
Figure 5.21: Representation of the two approaches for system optimization (the only difference is the 

period of boundary conditions data, note that the solutions are different). 

According to the literature, such approaches were used very few times for buildings and 

districts. In a study, the computation and optimization time in DHSs was reduced by limiting the 

investigation to a certain period of time instead of dealing with yearly dataset [528]. K-means 

clustering algorithm was utilized to determine typical periods which allow achieving the accurate 

representation of the yearly consumption profiles, while significantly reducing the number of data 

points. To make sure that the global optimum was reached, five performance indicators were 

proposed which represented five ϵ-constraints in ϵ-constraints optimization technique. The 

accuracy of the models was verified by two case studies and it was concluded that the method is 

scalable and efficient. 

There is no generic approach to determine the optimal period to be considered for any 

system. In fact, this period depends on the considered system and weather data. For energy 

performance evaluation of solar thermal systems, some methods have been proposed to test the 

system in a short period of time and then extrapolate the results to the whole year [529-531]. The 
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proposed methods are based on a reference model of solar combisystems and an algorithm which 

iteratively selects a limited number of days (6 or 12 depending on the considered methodology). 

For the considered system, these days reflect the entire year weather data in a way that energy 

consumption of the system during the reduced period is equivalent to its annual energy 

consumption. These methods could be extrapolated to system optimization applications to reduce 

the calculation time. In fact, for future work, these methods could be a hot topic for building and 

district heating optimization. 

5.7.2 Parallelism models 

Nowadays, calculation machines can fulfill different tasks simultaneously. Since some 

operations during the optimization process can be independently carried out, a way to reduce the 

calculation time is to divide these operations among calculation units. Different approaches were 

suggested to parallelize the optimization process. However, only the master-slave model has been 

used for building and district applications. This model is divided into a calculation management 

unit called master and several other calculation units called slaves. The master is in charge of data 

processing as well as interpretation of the results computed by each slave (Figure 5.22). 

 

Figure 5.22 Representation of a master-slave model and the interaction between the units 

The task to divide between the master and slaves can follow different patterns. For selected 

algorithms where the objective function should be computed several times for each iteration before 

going forward to the next one, parallelizing the objective function calculation could be the best 

approach. In this case, each slave computes the objective function for a specific value of the 

decision vector of variables and the master supervises the process and selects the best solution 

prior to going forward to the next iteration. Another approach which allows using several 

optimization algorithms, uses a specific optimization algorithm for each slave to look for the 

minimum (Figure 5.23). The master in this case selects the best solution for each iteration and 

transmits it to each slave as the initial point of the next iteration. The approach which divides tasks 

according to the objective function is widely used for multi-objective functions. In this case, each 

slave is responsible for the minimization of a specific function. 
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Figure 5.23 Master-slave model: parallelism approach based on dividing tasks according to optimization 

algorithms 

In a study, a parallel master-slave model of micro-PSO was developed [532]. The proposed 

algorithm was implemented in five different test problems and two different computer-sets. It was 

concluded that by reducing the search space into subspaces of smaller dimension and by searching 

subspaces individually to find the suboptimal components by small subswarms, the run-time can 

be reduced, and the solution quality can be improved. In another study, master-slave swarm 

shuffling evolution algorithm was used for estimation of parameters in hydrological models [533]. 

The self-adaptive shuffling evolution strategies were combined with particle swarm and the 

searching direction of particles were controlled. It was concluded that the method can improve the 

accuracy and reduce the verification period. Decomposition of the optimization problem for a DHS 

to a master and slave problem has also been investigated [270]. The multi-objective evolutionary 

algorithms were used to minimize the costs and emissions. Fluid temperature in pipes, insulation 

thickness around the pipes, temperature difference between supply and return pipes, and type and 

size of the used technology in the system were used as the decision parameters in the master 

problem. The financial considerations were left to the slaves. A case study was carried out and it 

was concluded that the results could be improved if the objectives of the slaves cover emission 

and costs as well. 

5.7.3 Surrogate modeling 

A current trend in energy building design optimization is to reduce computational time using 

surrogate models (SM) to mimic time-costly transient simulation models. For instance, SM can be 

used to reduce the computational time for optimization of two objective functions to minimize cost 

and environmental impact of a building envelope [534]. 

SM may be classified based on their employed techniques: radial basis function, Kriging 

(KR), artificial neural network (ANN), support vector regression (SVR), multivariate adaptive 

regression splines (MARS), etc. Radial basis function surrogate modeling was used in a multi-

objective optimization to maximize solar yield and minimize investment costs of a solar domestic 

hot water system [535]. KR is a non-parametric technique, suitable for the identification of long-

term temporal and spatial trends [536]. Furthermore, one of its special features is the ability to 

Master

Unit1:
Slave1
using 

algorithm1

Unit3:
Slave3 
using 

algorithm3

Unit2:
Slave2 
using 

algorithm2

Unit4:
Slave4 
using 

algorithm4

R
es

u
lt

s

O
rd

er
s

R
es

u
lt

s

O
rd

er
s

R
es

u
lt

s

O
rd

er
s

R
es

u
lt

s

O
rd

er
s



 

185 

predict not only numerical values, but also uncertainty boundaries. KR is commonly used to 

predict building energy performance [537-540]. ANN is a parametric technique which has the 

ability to learn complex patterns [541] and simulate nonlinear systems [542]. Moreover, ANN is 

efficient in building studies [543]. It is the dominant technique for building energy performance 

analysis [544]. However, in the case of time-consuming transient simulation models, KR requires 

a far lower training time compared to ANN since less samples would be needed. Besides, the main 

advantage of SVM over ANN is related to the fact that the statistical learning process is cast as a 

convex optimization problem [545]. SVM was used to perform a model-based multi-objective 

optimization to minimize thermal discomfort (in terms of PMV) and annual energy consumption 

[546]. MARS is an adaptive non-parametric regression method [547]. MARS has found 

surprisingly little application in building-related studies to date [548]. For instance, MARS has 

been compared to other SM in a model-based multi-objective optimization problem, using a PSO 

algorithm to minimize the energy consumption of an HVAC system [549]. Besides, sequential 

design strategies for SM have been studied in the context of deterministic computer experiments, 

to perform either prediction or optimization [550]. For instance, a hybrid technique (MARS and 

artificial bee colony) was used in adaptive design of an SM to predict heating and cooling loads of 

buildings [548]. Besides, a covariate matrix adaption evolutionary strategy (CMA-ES-SA) 

optimization was applied to minimize cooling and heating demands of a building [551]. 

5.7.4 Satisfaction functions 

In a multi-objective optimization, Pareto front can be a useful tool for decision makers to 

choose a solution; however, it is rather impractical for more than two performance criteria. There 

are many different multi-criteria decision-making analysis (MCDA) methods which can be used 

to post-process optimal solutions. Among these MCDA methods are technique for order of 

preference by similarity to ideal solution (TOPSIS) [552, 553], analytical hierarchy process (AHP) 

[554-556], elimination and choice expressing the reality (ELECTRE) [557], complex proportion 

assessment (COPRAS) [556, 558], stochastic multi-criteria acceptability analysis (SMAA) [559] 

and stochastic multi-criteria acceptability analysis [560]. Furthermore, it is not common in energy 

building design literature to use decision making tools before post-processing (i.e. integrated in 

the optimization algorithm). However, this could help reduce calculation time if the optimal 

solutions of little interest were not considered. 

A new algorithm can be developed to reduce the calculation time. To do so, the new 

individuals of the adaptive sequential design are filtered with satisfaction functions [561]. It means 

that only the useful part of the Pareto front will be determined. In the case of a two-objective Pareto 

front, Figure 5.24 illustrates MCDA method with satisfaction functions. For each objective, the 

decision-maker first defines the shape of the corresponding satisfaction function. The illustrative 

figure shows that there is no individual in the area corresponding to 100% satisfaction for both 

criteria. However, the first individual can be obtained with a 90% satisfaction. On the other hand, 

some individuals have zero satisfaction and are ultimately of no value to the decision-maker. The 

"useful" area of the Pareto front can be reduced by requiring a minimum level of satisfaction for 
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the new points. The advantage is to accelerate convergence by limiting the scope of the optimal 

solutions to a useful area for the decision-maker. 

 
Figure 5.24: Illustration of decision making aid with satisfaction functions 

5.8 Examples 

5.8.1 Building level 

5.8.1.1 Building life cycle optimization 

The energy building design for nZEB is challenging in many ways. One challenge is to meet 

the large amount of energy requirements using RES [562-564]. That is problematic because RES 

highly depends on the climate of the building site. This means that the energy supply from RES 

does not always match the energy demands [565]. Therefore, designers cannot easily size, for 

example, the required installed power of the RES and the storage capacities (thermal and electrical) 

to meet the energy needs.  

Another challenge is to reduce the relatively high value of embodied energy compared to 

nZEBs annual energy consumption [566-569]. Once the operational energy needs of a building 

during its lifetime are balanced by the use of RES, then the embodied energy (i.e. the energy used 

during its construction) becomes significant [570-572]. This leads nZEB designers to perform 

LCA which is a more comprehensive approach including embodied energy assessment. 

Considering the building lifetime, designers should also account for the climate change. To do so, 

more dynamic simulations on possible climate scenarios are required. These extra simulations add 

to the computational time. 
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Another issue is the complexity of modeling an nZEB as a whole (envelope, systems, etc.) 

which further increases computational time. Therefore, nZEB optimization should reduce the 

required computational time [573]. However, nZEB designers should consider many performance 

criteria, such as the cost, thermal comfort, embodied energy, CO2 emissions, energy consumption, 

RES production, durability, etc. All of these factors lead to the need for a global approach of nZEB 

optimization [400]. Thus, designers should perform a multi-objective optimization that will result 

in many possible optimal solutions, which can be presented by a Pareto front. 

 Background 

To address the issues for the life cycle optimization of nZEBs, an energy building design 

optimization methodology has been developed. To reduce the required computational time, a KR 

model was trained to surrogate nZEB performance criteria during the optimization process. The 

error estimation of the KR model was used for an adaptive sequential design to improve the model 

accuracy. Α GA method (NSGA-II) was implemented to find the global optimal solutions. Finally, 

some network visualization was developed for MCDA. This approach can help designers find one 

solution in the case of multi-objective optimization. Moreover, the partitions can provide useful 

information regarding the characteristics of the optimal solutions. 

 System description 

The case study concerns the design optimization of two buildings located in Chambery 

(Savoie, France). The two residential buildings (34 apartments) have been modeled using 

TRNSYS. Each building was modeled with only two zones (i.e. heated and unheated). 

In terms of climate change, some scenarios have been developed to predict the future global 

surface warming (see Figure 5.25). In this example, A2 scenario was selected according to which 

both irradiance and temperature clearly tend to increase over the next years. Maximum temperature 

will rise 12 degrees, whereas the rising rate of irradiance will be lower. Consequently, the climate 

change will decline heating demands from 1995 to 2050 by 30% (6427 kWh/year) (Figure 5.26). 

Therefore, it is necessary to consider the climate change for life cycle optimization. 

In order to use future climate conditions, morphing methodology [574] was used for climate 

change transformation of weather data. The climate change world weather file generator 

(CCWorldWeatherGen) [575] was used. Based on global grid of scenario A2 for 2020, 2050 and 

2080, it transformed a present day weather file to the future weather data. 
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Figure 5.25: The future climate change scenarios [576] 

 

Figure 5.26: The heat demand (kWh) and internal temperature (max and mean) variations 

Optimization has been carried out with the initial configuration of the two buildings 

(concrete, external insulation, collective gas boiler, solar hot water system, exhaust mechanical 

ventilation system). Other configurations can be considered for optimization, too. They concern 

heating and DHW systems as well as the envelope. In total, 64 possible combinations were 

identified for systems by considering building characteristics and the geographical location: 
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• Combined solar systems with different auxiliary heating systems 

• Collective solar water heaters with different auxiliary heating systems 

• Boilers using different sources of energy (gas, electricity and wood). Systems using oil as 

primary energy were not considered due to operating costs and excessive CO2 emissions. 

• Individual systems (one boiler per apartment) and collective systems (one boiler for the 

whole building) 

• Collective or individual thermodynamic water heaters 

• Heating network 

• Air-to-water and water-to-water heat pumps 

• Compact multifunction systems (ventilation with heat recovery, heat pumps, production of 

hot water, coupling with solar collectors, etc.) 

Regarding the envelope alternatives, the main possible combinations were: 

• Type of insulation (exterior, interior, distributed) 

• Nature of the insulation (glass wool, Rockwool, polyurethane, wood-wool, polystyrene) 

according to the nature of the wall (façade, roof, etc.) 

• Type of windows (double/single glazing, PVC, etc.), surfaces and orientations 

It is not possible to combine all system-related configurations with those of the envelope. 

Clearly, modeling associated with system variants is much more time-consuming than that of the 

envelope. For instance, once the geometry and the thermal zones have been modeled on a 

configuration, changing the insulation position is simple. The main difficulty is to automatically 

change the thermal bridges. Besides, it is important to limit the number of systems by defining 

levels of relevance. Therefore, 9 systems were selected: 

• Collective gas boilers (with/without solar DHW) 

• Individual gas boilers (with/without solar DHW) 

• Water-to-water heat pumps 

• Collective pellet boilers (with/without solar DHW) 

• Individual electric heating with solar DHW 

• Heating network 

 Methodology 

The main idea behind the methodology is to decrease computational time by performing 

multi-objective optimization with minimum calls for transient simulations. As the SM needs to be 

calibrated, the methodology (see Figure 5.27) is based on an adaptive sequential design which 

combines: 

• Time consuming transient simulations (TRNSYS software) feed a database. The objective 

functions f (x, y) are calculated with the simulations results. The decision parameters are 

denoted by x while y shows the remaining variables. 

• The database {x, f (x)} is used to calibrate the surrogate models. 
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• Each SM (i.e. KR model) calculates one objective function f*(x) with the decision 

parameters x as inputs. 

• Multi-objective optimization is performed with the SM of f*(x). 

The main challenge is determining new points xnew to properly calibrate the SM to find 

optimal solutions. The objective is to reduce the error of the SM, particularly in the Pareto area. 

Overall, the new individuals can be chosen based on four strategies: 

• Strategy 1: the maximal error in the whole research space (in the range of each decision 

parameter) 

• Strategy 2: the maximal error in the Pareto area only 

• Strategy 3: hybrid strategy (first Strategy 1 and then Strategy 2) 

• Strategy 4: same as Strategy 3 but with the maximal error in the Pareto area only and a 

minimum satisfaction level. The satisfaction functions (as mentioned in Section 5.7.4) are 

determined by decision makers. 

In this example, Strategy 1 was used. The stopping criterion for the adaptive design was 

achieved when no improvement in the Pareto front occurred. 

 
Figure 5.27: General presentation of the adaptive sequential design (LHS: Latin hypercube sampling) 
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5.8.1.1.3.1 The objective functions  

Four main classes of performance were considered namely environment, cost, reliability and 

comfort. The life cycle of the building was considered for energy consumption and comfort taking 

climate change into account. Consumption was calculated for several years, which made it possible 

to evaluate the overall consumption after defining assumptions of energy retrofits. The life cycle 

was also addressed in the LCC. Finally, the performance criterion was limited to LCA in terms of 

CO2 emissions (construction and energy consumption) for two reasons. The first is simply related 

to the importance of this criterion with respect to the greenhouse effect. The second reason 

concerns the interoperability difficulties between the selected LCA software (EQUER) and 

TRNSYS simulation tool. LCA can only be carried out a posteriori on some optimal solutions. 

Therefore, seven objective functions (Table 5.14) were considered which can be evaluated using 

the satisfaction functions defined by the decision maker. 

Table 5.14: The objective functions 

Environment Primary energy consumption (Ep): boiler and electrical appliances (pumps, controller and 

fan) 

CO2 emissions over the lifetime (CO2): they depend on both the decision parameters 

(systems and envelope) and energy consumption 

Cost Life cycle cost (LCC) 

Durability Number of hours when the temperature in the solar collector exceeds a limit value (Tmax) 

Number of boiler operating cycles (Ncycle) 

Comfort Thermal comfort in the summer (Tint) corresponding to the number of hours when the 

internal temperature exceeds comfort temperature 

Compliance with the setting temperature for hot water (Tecs) corresponding to the number 

of hours when the hot water temperature exceeds a temperature level 

5.8.1.1.3.2 Decision parameters  

The decision parameters for the building envelope and the systems depend closely on the 

configurations. Each parameter has a min/max variation range. Table 5.15 shows the considered 

nine decision parameters. 

Table 5.15: The decision parameters 

5.8.1.1.3.3 Satisfaction functions 

In this example, satisfaction functions were used for decision making aid (as shown in Figure 

5.27). In the case study of the two buildings, a sigmoid-type satisfaction function was considered 

for each of the seven performance functions: Ep (primary energy), CO2 (emissions), LCC (life 

cycle cost), Ncycle (boiler durability), Tmax (solar system durability), Tint (summer comfort) and Tecs 

(water temperature). 

Envelope Wall insulation of façade (LA: 0.1-0.5 m) 

Wall insulation of top floor; ceiling with attic/terrace (IB/IC: 0.1-0.5 m) 

Wall insulation of ground floor (ID: 0.1-0.5 m) 

Systems Collector area (S: 12-56 m²) and slope (Slope: 20-50°)  

Storage volume (V: 1-4 m3) 

Boiler output rate (P: 70-250 kW) 

Heating system temperature (T: 35, 45, and 60 °C) 
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An overall satisfaction was considered by calculating a weighted (using AHP method) 

average of the satisfaction functions. This overall satisfaction of an individual also considered that 

a solution with a high standard deviation σSk) between the satisfaction functions must be 

penalized. Overall satisfaction was calculated by: 

     
jkjkg SSjS    (5.23) 

where α is a fixed parameter penalizing the dispersion of the satisfactions Sk for each individual j 

(αwas considered -0.2). 

 Results 

The KR models for each performance function were developed using MATLAB. The 

optimization was also performed in MATLAB based on GA (using NSGA-II). Transient 

simulations were performed in TRNSYS where the building was modeled using Type 56 with 

respect to the envelope. The resulting Pareto front consists of 62 individuals. These optimal 

solutions can be classified according to the overall satisfaction defined above. Individual 2 had the 

most efficient solution (see Figure 5.28). 

 
Figure 5.28: The satisfaction functions [0, 1] for all the optimal solutions 

The defined overall satisfaction obviously simplifies the problem by transforming a multi-

criteria optimization into a single criterion. However, if it is desirable to keep the seven satisfaction 

functions for the decision maker choice, it will be very difficult to interpret conventional graphical 

representations of the heat map, matrix scatter plot or radar type. To tackle this issue, network 

visualization can be used with Gephi software (ForceAtlas 2 algorithm). Each link between the 

node of a solution and the node of a criterion corresponds to the satisfaction level of the solution 

(an individual) for that criterion. The closer the individual node is to the criterion node, the better 

is the satisfaction level. Besides, the diameter of the node of an individual defines the overall 

satisfaction level. However, the diameters of the nodes representing the criteria are constant. As 
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shown in Figure 5.29, individual 2 had the largest diameter and therefore had the best overall 

performance. It is quite close to all the nodes representing the performance functions, excluding 

the performance related to the comfort (Tint). The automatic partition achieved by the Gephi 

software reveals three large classes (represented by three different colors) in a logical manner. For 

instance, LCC, Ep and CO2 belong to the same classification. These three criteria were closely 

related in the case of the building under consideration, which did not have PV production (it is not 

an nZEB building). The second and third classifications are respectively related to the two 

functions for durability (Tmax and Ncycle), and the two functions for comfort (Tecs and Tint). 

 
Figure 5.29: Links between the 62 individuals of the Pareto front and the performance criteria where a 

short distance between an individual node and criterion node means that high level of satisfaction 

Another possible representation is to connect the nodes of the optimal solutions with the 

nodes of the associated values for each decision parameter. For instance, the variation range shown 

in Table 5.15 can be divided into three for each of the nine decision parameters (+/++/+++). In 

Figure 5.30, it is easy to see that the best solutions were obtained for: 

• A large storage volume (V+++) 

• A large thermal solar collector area (S+++) 

• A large slope of collector area (slope+++), corresponding to the range 40-50° 

• High insulation resistance for the envelope (IA+++, IB+++, IC+++), excluding the ground 

floor (ID++) which should not be very insulated for cost issue 

• A low heating system temperature (T+), which reduces heat losses 

• A non-oversized boiler output (P+) 
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Figure 5.30: The 62 optimal solution nodes linked to the corresponding values of the decision parameters 

where variation range was divided into 3 partitions of +/++/+++ 

Comparing solutions 1 and 2 (Figure 5.31), the difference in decision parameters is only 

related to the insulation thickness at the ground floor (ID++ for solution 2 and ID+++ for solution 

1). A lower thickness for the ground floor results in a lower investment cost and therefore a better 

LCC for solution 2. Figure 5.31 shows that the distance between the criterion LCC and the node 

for solution 2 is shorter than that of solution 1. Therefore, solution 2 had better overall satisfaction. 

 
Figure 5.31: Comparison of solutions 1 and 2 

Through this example, we can see that network modeling offers a new MCDA method. It is 

particularly powerful when there are many decision parameters and optimal solutions. 
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5.8.1.2 Single family house envelope optimization 

In the context of the European Union efforts to reduce the growing energy expenditure, it is 

widely recognized that the building sector has an important role, accounting 40% of the total 

energy consumption in the EU and 36% of its CO2 emissions [577]. The energy performance of 

building directive (EPBD) recast [464] imposes adoption of measures to improve energy efficiency 

for all new buildings to be nZEB by 2020. This practice represents the first effective way for the 

implementation of the greenhouse emission reduction policy requirements [578]; however, the 

challenge of refurbishment of the existing building stock should also be addressed in order to reach 

the objective of reducing GHG emissions in the building sector by 90% by 2050 compared to 1990 

[579]. Moreover, measures related to environmental sustainability could not be pursued without 

considering the financial feasibility, as nowadays the design of an nZEB is not yet profitable in 

terms of costs; however, it is recognized that improving energy performance of building is a cost-

effective way of addressing the problem of climate change and improving energy security, given 

the great European energy saving potential [580-582]. 

Furthermore, even if the results in terms of energy efficiency are evaluated at a global (or at 

least European) scale, it is remarkable that an efficient nZEB design is strictly related to the local 

scale. The optimal design solutions, from both energy and cost points of view, depend on many 

variables such as climatic data, available technologies and materials, population lifestyle, the age 

of the building and its use (commercial buildings, residential, etc.) [583]. Consequently, EPBD 

recast has set out that member states ensure that minimum energy performance requirements are 

set with a view of achieving cost optimal levels for buildings, building units and building elements 

using a comparative methodology framework established by the European Commission. 

This methodology, which is defined in the guidelines [466] accompanying the regulation 

[584] supplementing the EPBD and in the EU Standard 15459 [467], consists of different steps. 

First, a reference building (RB) must be identified as a representative model of the national 

building stock. Secondly, a set of energy efficiency measures (EEMs) must be defined to improve 

energy performance of the building. EEMs can be combined in packages of measures. Then the 

energy consumptions related to the various packages of EEMs are calculated through energy 

simulations, and the costs of the different packages are estimated to identify the one having the 

lowest global cost and, consequently, representing the cost optimal level. Finally, the distance 

between the cost optimal performance and the nZEB target can be assessed and evaluated, 

orienting policies for reducing the distance. 

The main challenge of this calculation methodology is to find a balance between two 

contradictory requirements. On the one hand, all measures with a possible impact on the primary 

or final energy use of a building should be considered. On the other hand, the calculation exercise 

should remain manageable and proportionate, as applying several variants to an RB can quickly 

result in thousands of calculations. Test runs performed for the European Commission [585] 

revealed that the number of packages/variants arbitrarily selected among the all possible design 

solutions and applied to each RB should certainly not be lower than 10. Therefore, this approach 
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clearly cannot guarantee the absolute cost-optimal solution since it explores only some of the 

available combinations of design options. Clearly, more packages (and variation of the measures 

included in the analyzed package) result in more accurate calculated economic optimum. 

Furthermore, the methodology requires the calculation of investment and replacement costs 

related to all the building envelope and HVAC system variables as well as the operation cost, such 

as maintenance and energy costs. Due to the high number of independent variables involved in the 

calculation, the cost-optimal level is a complex optimization problem, whose objective function is 

the global cost function. To achieve the optimal solution with less time and computational labor 

while exploring many design options, a simulation-based optimization method may be used [394]. 

It consists of a computer-automated model where a building simulation program is coupled to an 

optimization engine. In this way, the optimization problem is solved using iterative methods driven 

by optimization algorithms [586] which construct sequences of progressively better 

approximations to a solution, which is a point satisfying an optimality condition within the search-

space. 

 Background 

Coupling of TRNSYS simulation program with GenOpt (see Section 5.5.12) creates a system 

of tools and approaches capable of supporting the application of the cost-optimal methodology 

with high accuracy. In this example, simulation-based optimization methods are investigated with 

application of the cost-optimal methodology in the French context. The idea is to provide a method 

which can increase the number of the analyzed design options. The method should be able to (1) 

deal with a huge number of simulations corresponding to several packages of EEMs, (2) maintain 

a manageable calculation, and (3) focus on design options which minimize the global cost function. 

In particular, this example addresses: 

• Setting up a simulation-based optimization method for cost optimal analysis, 

• Analyzing data related to the French market and creating the cost functions for each 

selected design variable, 

• Finding the French cost-optimal range for the single-family house typology, 

• Identifying the most cost-effective measures on envelope system for a given technical 

system and evaluating the impact of the energy system on the envelope design from a 

financial point of view. 

 System description 

The case-study building (CSB) was a two-story high-performance single-family house (see 

Figure 5.32) located in Amberieu-en-Bugey, in the French Rhône-Alpes region. In terms of 

sustainable urban design, this building type is less sustainable, since it leads to higher consumption 

of resources (energy and land) compared to other residential typologies. In the future, the design 

of new buildings should consider the district perspective and the benefits in terms of resource 

savings related to more densely populated areas. However, the CSB was selected as a reference 

since it represents a consistent part of the current French building stock. In fact, 72% of the French 

useful building areas have residential functionality and around 55% of the total French residential 
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building stock (25.8 million of dwellings) is composed of two-story single-family houses, of which 

60% is located in the H1 climate zone (according to the French regulation, the H1 zone is the 

northeastern France, including the Rhône-Alpes region). 

 
Figure 5.32: Pictures of the reference building 

The CSB benefited from low consumption due to its high efficiency energy system. It is 

composed of a mechanical dual flow ventilation system combined with controlled air-handling 

units with thermodynamic recovery. It incorporates an air-to-air reversible heat pump, whose 

global COP can reach 8 depending on the air flow rate, the compressor speed and the heating 

power. In winter, the system uses the energy from the exhaust air to heat the fresh air before 

sending it in the main rooms. In summer, the fresh air is cooled and dehumidified. When the 

outdoor temperature is cool, an over-ventilation system limits the operation of the heat pump and 

consequently the energy consumption. Before entering the system, the external air is pre-treated 

by a Canadian well. 

 Methodology 

According to the guideline accompanying the regulation supplementing 2010/31/EU, a set 

of EEMs must be defined and applied to the established RB. The measures selected for this 

example concern the building envelope system (ES) and the building technical systems (TS). 

5.8.1.2.3.1 Building envelope systems 

The implementation of envelope-related EEMs may consist of changing the whole envelope 

technology (e.g. a light-wooden or a massive envelope system) or varying the properties of one or 

more layers within a defined technology (e.g. wall layer thickness). These EEMs within the same 

envelope system are expressed in this example through parameters, identifying the geometry 

features and the construction features which can influence the final energy need of the building. 

These are referred to the insulation thickness, the window type and dimensions, the solar protection 

dimension and the amount of internal mass, as represented in Figure 5.33. The range and the step 

of their variation were set according to regulation requirements (e.g. the minimum window area is 

set to the limit imposed by the French national regulation), technical feasibility (e.g. the maximum 

insulation thickness is set to the current technical practice) and market criteria (e.g. the window 

types are selected among those available on the French market). Table 5.16 reports all the 

parameters settings for each ES. Window types are reported in Table 5.17. The same parameters 
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of ES1 were considered also for ES2 and ES3, the only differences in parameters settings are due 

to technical feasibility and modeling limits of the EIFS package. 

 
Figure 5.33: Representation of parameters on the south front and section 

Table 5.16: Definition, variability range and step for parameters of the envelope systems 

 Parameter name and description Unit Min Max Step RB 

ES1 

ResO: Thermal resistance of wall internal insulation [m2Kh/kJ] 0.25 5.00 0.25 1.75 

ResR: Thermal resistance of roof insulation layer [m2Kh/kJ] 0.25 5.00 0.25 3.50 

ResS: Thermal resistance of slab insulation layer [m2Kh/kJ] 0.25 3.00 0.25 2.50 

WT: Window type of north, east and west walls [-] 1 4 1 3 

WTS: Window type of south wall [-] 1 4 1 3 

WTR: Window type of roof [-] 1 4 1 3 

Blr: Ground floor south window width (h = 2.15 m) [m] 2.20 7.80 0.20 4.20 

Bm: First floor south window width (h = 0.80 m) [m] 0.20 7.80 0.20 2.20 

Hr: Roof window height (w = 2.28 m) [m] 0.00 4.72 0.59 4.72 

ES2 
ResO: Thermal resistance of wall external insulation [m2Kh/kJ] 0.25 2.25 0.25 - 

Other parameters are the same as ES1      

ES3 

ResO: Thermal resistance of wall additional insulation [m2Kh/kJ] 0.25 2.25 3.00 - 

ResR: Thermal resistance of roof additional insulation [m2Kh/kJ] 0.25 3.00 0.25 - 

Other parameters are the same as ES1      

Table 5.17: Description of window types used for parameters WT, WTR and WTS 

5.8.1.2.3.2 Building technical systems 

Concerning the building technical systems, four alternatives were selected as EEMs, among 

those commonly used in France, and modeled in TRNSYS. The TSs include the primary system 

and the terminals for heating, cooling and ventilation, as reported in Table 5.18. The TS1 is the 

one having the highest efficiency (variable COP up to 8) and corresponds to the one currently used 

in the CSB and was described earlier. The TS2 is a typical French all-electrical system which is 

very common in existing residential buildings. It was simply modeled assuming an efficiency of 

one. The TS3 includes a gas condensing boiler whose design power varies from 4 to 15 kW. Its 

 Type Description U-value [W/(m2K)] g-value 

All 

ESs 

1 4/16/4  Double glazing  2.00 0.70 

2 4/16/4  Double glazing, low emissivity with Argon 1.43 0.58 

3 4/16/4/16/4 Triple glazing 0.70 0.50 

4 4/16/4/16/4 Triple glazing, with Argon 0.40 0.40 
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efficiency was modeled according to Table 5.18 as a function of its design capacity and operating 

capacity. Finally, for the pellet boiler TS4 a simple model having a medium efficiency of 0.85 was 

considered. The efficiency (in terms of EER) of the cooling system of TS2, TS3 and TS4 was 

assumed to be equal to 3. 

Table 5.18: Energy efficiency measures concerning building technical systems (TSs) 

 Heating and cooling Ventilation 

TS1 Air-to-air reversible heat pump with Canadian well for pretreating air Mechanical unit with heat recovery 

TS2 All-electrical system with electric radiators and cooling fans Natural 

TS3 Gas condensing boiler with radiant heating floor and cooling fans Natural 

TS4 Wood-pellet boiler for heating and cooling fans Natural 

5.8.1.2.3.3 Packages 

The correct application of the methodology implies the creation of many packages of EEMs 

to be applied to the RB. The three envelope systems were combined with the four energy systems 

in 12 ES/TS combination (see Table 5.19), which where denoted with two numbers indicating ES 

and TS, respectively. Furthermore, the parameters may assume different values according to their 

variation range and step. Each set of parameter values within each ES/TS combination is 

considered a package of EEMs. 

Table 5.19: Combination of envelope and technical systems 

 TS1 TS2 TS3 TS4 

ES1 1.1 1.2 1.3 1.4 

ES2 2.1 2.2 2.3 2.4 

ES3 3.1 3.2 3.3 3.4 

5.8.1.2.3.4 Financial calculations 

The financial calculation was carried out according to the global cost method, which is 

described in the European Standard EN 15459 (see Section 5.3.2). In this example, according to 

the guidelines [466] accompanying Directive 2010/31/EU, the real interest rate (RR) is set to 4%. 

The rate of evolution of prices is set equal to the inflation rate of 2% from the guideline. The 

calculation period (τ) is equal to 30 years and the related present value factor (fpv) is equal to 17.29. 

The choice of the energy system for a building influences the global cost calculation not only 

for the investment cost, but also for the energy cost. All detailed costs related to the energy system 

are reported in Table 5.20. The investment cost of each TS is split into supply cost and installation 

cost, which is expressed in terms of workdays. The investment cost in the third column (CI) results 

from multiplying the unit cost (CU, taken from the estimates provided by the consultancy firm) by 

the number of units. In some cases, the number of units varies for each simulation run in function 

of the maximum power (Pmax) required to satisfy the energy needs calculated by TRNSYS for that 

building configuration, which depends on the variation of parameters affecting the overall building 

energy performance. However, when the TS has a variable power, the cost is fixed for all building 

configurations. 

The replacement costs (CR) calculation results from multiplying the investment cost (CI) by 

the discount rate Rd as reported in the Table 5.20. The final value (Vf,τ), reported in the last column 
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of Table 5.20, is calculated as remaining lifetime at the end of the calculation period (e.g. the 

remaining lifetime is 10 years when lifespan is 20 years and the calculation period is 30 years) 

divided by lifespan and multiplied by the replacement cost and referred to the starting year by the 

appropriate discount rate. When the lifespan of a component is 15 years the final value is equal to 

0, as the life of the replaced component end together with the calculation period (30 years). 

Table 5.20: Investment, installation and replacement costs of the technical systems 

Description CU [€] Number of units CI [€] i [yr] Rd CR [€] Vf,τ [€] 

All-in-one system 

TS1 

Supply 14,000 1 14,000 20 0.46 6,440 2,170 

Installation 450 2 (workdays) 900 20 0.46 414 140 

Radiator1 

TS2 

Supply 300 Var=int(Pmax,heat/0.5)+1 n*300 20 0.46 Var=CI*0.46 Var=CI*0.16 

Installation 450 2 (workdays) 900 20 0.46 414 140 

Condensing boiler2 

and radiant floor 

TS3 

Supply (boiler) 7,178 1 7,178 20 0.46 3,301 1,112 

Supply (floor) 978 1 978 20 0.46 450 152 

Installation 450 5 (workdays) 2,250 20 0.46 1,035 349 

Pellet boiler3 and pipes 

TS4 

Supply 7,788 1 7,788 20 0.46 3,582 1,207 

Installation 450 2 (workdays) 900 20 0.46 414 140 

Fans4 

TS2, TS3, TS4 

Supply 1,500 Var=int(Pmax,cool/2.5)+1 n*1,500 15 0.56 Var=CI*0.56 0 

Installation 450 0.5 (workdays) 225 15 0.56 126 0 
1 P = 0.5 kW 2 P = 4-15 kW 3 P = 2-10 kW 4 P = 2.5 kW 

Details about calculation of maintenance and energy costs, which are considered as annual 

costs, are reported in Table 5.21. The energy prices are set according to the current French price 

levels of a major energy provider and among the electricity fees, the double-time band one is 

chosen, as it is the most common in residential buildings. The annual energy costs, resulted from 

multiplying the calculated energy consumption by the energy unit cost, is then multiplied by the 

present value factor (equal to 17.29 for 30 years of calculation period) to obtain the total energy 

costs over the calculation period referred to the starting year of calculation. Maintenance costs are 

calculated as a percentage (values are taken from Appendix A of the European Standard EN 15459) 

of the investment cost of the TS and then multiplied by the present value factor for 30 years. 

Table 5.21: Annual costs calculation assumptions 

 Results 

According to the cost-optimal methodology, the results should be analyzed with the 

following principles: 

Type  Unit cost [€/kWh] Total cost (30 years) 

Maintenance 

TS1 2.5% CI 6,441 

TS2 1.5% CI CI (rad + fan) * 0.015 * 17.29 

TS3  2% CI CI (boiler + floor + fan) * 0.02 * 17.29 

TS4 2% CI CI (boiler + pipes + fan) * 0.02 * 17.29 

Electricity 

cost 

 

Night (10pm – 7am) 0.0567 Qelectricity_night*0.0567*17.29 

Day (7am – 10pm) 0.0916 Qelectricity_day*0.0916*17.29 

Contract and taxes 0.0228 Qelectricity_tot*0.0228*17.29 

Gas 
Night and day 0.0570 Qgas_tot*0.0570*17.29 

Contract and taxes 0.0228 Qgas_tot*0.0228*17.29 

Pellet Material 0.0700 Qpellet_tot*0.0700*17.29 
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• All the selected packages of EEMs should be assessed with respect to their financial and 

environmental impacts. 

• The financial optimum is provided by the package with the lowest cost. 

• At the same cost level, the package with the lowest energy use should be selected. 

Therefore, results are shown in cost-optimal diagrams where the global cost (the objective 

function) is reported versus the primary energy consumption. The French primary energy 

conversion factors used for the calculation are 2.58 for electricity, 1 for gas and 0.6 for pellet 

(considering the French low consumption buildings label conversion coefficient for biomass). All 

values on the cost-optimal diagrams are normalized to the gross floor area of the heated volume, 

which is equal to 155 m2. 

Figure 5.34 reports all the resulted clouds of points and their corresponding cost optimal 

points. The red line corresponds to the estimated primary energy consumption limit for heating, 

cooling and ventilation for the French new buildings set by the thermal regulation RT 2012. It is 

interesting to note that, from the global cost minimization perspective, a higher efficiency of the 

energy system moves the envelope design towards a less performing envelope design. The two 

clouds related to combinations 1.1 and 1.3 are partially overlapped and the two optimal points are 

very close to each other, both leading to high energy performances and low values for insulation 

parameters. However, the reasons for the low primary energy needs are different. For combination 

ES/TS 1.1, it is due to the high system efficiency (the medium COP is around 4), while for the 

case of ES/TS 1.4 the 0.6 primary energy conversion coefficient moves the cloud towards lower 

primary energy consumptions. This advantageous conversion coefficient was established in the 

context of the French BBC (low consumption buildings) labels, to consider the benefit derived 

from the use of RES such as biomass. However, the new French thermal regulation RT2012 sets 

a value of one for all the coefficients of the sources other than electricity since these benefits are 

not countable yet. Considering a conversion coefficient equal to one, the cost optimal performance 

of ES/TS 1.4 would be equal to 78.1 kWh/m2year, which is not acceptable for RT 2012 regulation. 

The same analysis applies for ES2 and ES3, as the clouds acceptable for the French regulation are 

all related to TS1 and TS4 (the all-in-one system and pellet stove system, respectively), when 

considering the primary energy conversion coefficient of 0.6 for pellets. In this context, the 

resulted optimal configuration accepted by the French regulation is referred to ES/TS 3.4, 

indicating the combination of ES3 (wooden structure) with TS4 (wood-pellet boiler). 
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Figure 5.34: All the resulted cost-optimal clouds, with indicated cost optimal levels 

However, if the new primary energy conversion coefficients of RT2012 are applied, the only 

acceptable clouds of points are the ones related to the TS1. In these conditions, the points having 

the lowest global costs (with respect to points on the same vertical line) are included in the cloud 

of ES/TS 3.1, which is related to the wooden structure. 

Since the regulation is moving towards lower consumption limits, this example highlights 

that the all-in-one technical system (composed by the most currently advanced energy systems for 

high-performing buildings) is the best choice both from technical and financial points of view. 

Therefore, the cost-optimal configuration of the RB should use this type of energy system together 

with a light wooden envelope, whose decision parameters corresponds to the resulted optimal 

values. 

Table 5.22 reports the parameter values, the energy performance, the global cost and the part 

of global cost related to energy of four relevant cost-optimal points, each representing a step of the 

RB optimization. The first column is for the RB, whereas the second column represents the cost-

optimized ES/TS 1.1 building configuration (which uses the same energy system and envelope 

system as the RB, with different parameter values). The third column reports the optimal building 

configuration which substitutes the light envelope (ES3) to the massive internal insulated envelope 

(ES1). The last column indicates values related to the ES/TS 3.4 optimal configuration. The energy 

performance in brackets is obtained for the primary energy conversion factor of one for biomass. 
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As shown, the OPT 3.1 building configuration leads to the lowest energy performance with 

a little increase of global cost, fully meeting the regulation requirements. It is composed by low 

insulation for roof and outwall (it is important to remember that the wooden structure is internally 

insulated and that the insulation parameter only refers to the additional external insulation layer) 

and quite consistent insulation (23 cm) for slab. The optimal windows are high performing (type 

3) and their dimensions are higher than in the RB. 

Table 5.22: Set of parameter values related to relevant cost optimal points 

 Parameter name and description Unit RB OPT 1.1 OPT 3.1 OPT 3.4 

TS1 

ResO: Thermal resistance of wall internal insulation  [m2.K.h/kJ] 1.75 0.25 0.25 0.25 

ResR: Thermal resistance of roof insulation layer [m2.K.h/kJ] 3.50 0.75 0.50 0.50 

ResS: Thermal resistance of slab insulation layer [m2.K.h/kJ] 2.50 0.75 2.00 0.25 

WT: Window Type of North - East -West walls [-] 3 1 3 4 

WTS: Window Type of South wall [-] 3 1 3 1 

WTR: Window Type of Roof [-] 3 1 3 4 

Blr: Ground floor south window width (h = 2.15 m) [m] 4.20 2.20 2.20 2.20 

Bm: First floor south window width (h = 0.80 m) [m] 2.20 1.60 7.80 7.80 

Hr: Roof window height (w = 2.28 m) [m] 4.72 0.00 0.00 0.59 

 Energy performance [kWh/m2y] 32.1 45.1 37.1 42.4 (70.7) 

 Cost related to energy (including technical system) [€/m2] 202 209 202 178 

 Global cost (objective function) [€/m2] 582 499 470 453 

5.8.2 District level 

5.8.2.1 Hybrid community district heating system 

In older DHS generations (the first to third generation), high heat loss in the system due to 

the use of a high-temperature distribution network was considered as a major issue among design 

engineers. In this regard, more focus was given to enhancing the system efficiency by controlling 

the system heat loss and subsequently, system optimization was done. As a result, most 

optimization studies focused on achieving the optimal design by minimizing the system heat loss. 

However, the new DHS generation (the 4GDHS) utilizes a low temperature distribution network; 

therefore, achieving higher system efficiency is possible by adopting an appropriate control 

strategy as well as equipment size optimization. In general, two major design methods can be 

considered for designing a 4GDHS. In the first method (conventional design method), component 

sizing is carried out based on the peak load estimated for a typical design day. However, in the 

second method, optimal equipment size is defined during the design stage using the available 

optimization tool. Since the conventional design methods mostly result in over-sizing of the 

equipment and poor system efficiency, the second method (using optimization tool) has received 

attention among design engineers to design 4GDHSs. 

 Background 

Previously, DHS optimization was mainly focused on finding the optimal equipment size at 

the design stage for a given scenario using static optimization algorithms [587-590]. Both user 

defined codes and commercial simulation software were used to model district components and 

the interaction between them. In either case, both simulation and optimization processes operate 

exclusively from one another. In effect, the result of the simulation tool is then processed as the 
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input file for the optimization tool. By using the non-interactive model, i.e., separate simulation 

and optimization models (static model), there exists a higher probability of decreasing the 

effectiveness of the optimization tool towards predicting the optimal equipment size. 

In dynamic optimization, on the other hand, the optimization and simulation should be 

performed simultaneously. Due to the complexity of coupling simulation and optimization tools 

in dynamic optimization problems, user-defined codes are used for system modeling (modeling 

the district components and the interaction between them) [591-594]. Since dynamic optimization 

of the system using detailed user-defined codes are computationally expensive (and in many cases 

unfeasible), different simplification approaches have been adopted by designers to decrease the 

computational time. These simplifying approaches are utilized for simplification of district energy 

models, using the decreased input file by using the representative weather or demand file for the 

design period instead of using the whole year profile, or a combination of the two. 

In this example, a dynamic optimization model is developed which explores optimal 

equipment size using detailed demand profile. The developed model predicts the detailed demand 

profile of a DHS. It uses the predicted data along with detailed energy model of the DHS and 

detailed model of the equipment and interaction between them to dynamically optimize the entire 

model and subsequently the optimal equipment size is obtained. The equipment size obtained from 

the model is later compared with the one obtained from the conventional method as well as using 

a static optimization tool. In this regard, data from an existing H-CDHS with an integrated TES 

system have been used to optimize its boiler house to minimize its overall cost and CO2 emission. 

 Methodology 

TRNSYS was selected as the simulation platform to define the relationship between various 

system components and to couple the prediction and optimization tools. Besides, a previously 

developed simplified load prediction method was used to dynamically predict the system demand 

load [278]. Results obtained from the prediction tool were fed to the TRNSYS file using a text 

format. The optimization process was then performed for an operational mode by coupling the 

simulation (TRNSYS software) and optimization tools (MATLAB/Simulink). 

5.8.2.1.2.1 Load prediction 

To accurately optimize an H-CDHS, the first step is to predict the hourly energy demand 

profile of the entire H-CDHS, including the energy consumption data and its corresponding losses. 

There are different ways to obtain a community’s energy demand profile: (1) direct measurement, 

(2) a comprehensive energy simulation tool used when data is absent, or (3) simplified prediction 

methods for high-level computational costs. 

In this example, the simplified 4-step prediction model (presented earlier in Section 4.3) was 

used to predict energy demand profile of the community [278]. The procedure was previously 

validated in Section 4.5 using both an inter-model comparison and a series of measured data. Using 

the validated model, the community demand profile was predicted for two different scenarios: 



 

205 

• Scenario 1: optimizing the existing district by considering the demographic distribution 

regarding users’ energy consumption habits. 

• Scenario 2: optimizing the community as a newly built district using design criteria and 

thermostat control to simulate the overall energy behavior. 

Before performing the optimization scenarios, in the first step, the community demand 

profile was predicted. To predict the community demand profile, occupants were divided into four 

different groups based on their energy consumption habits (i.e. non-typical high usage (NTHU), 

non-typical medium usage (NTMU), non-typical low usage (NTLU) and typical thermostat control 

usage (TTCU)). Once consumption habits of these groups were available, the prediction model 

was trained using the proportion of each group within the community. 

In Scenario 1, the proportion of the different occupant types within the community remained 

constant and the results served as a basis of comparison for the optimization process. Leaving 

occupants demographic distribution untouched, the district energy demand profile for Scenario 1 

was predicted using the weather data file measured on site. Scenario 1 has been used (1) to validate 

the accuracy of the energy simulation tool (TRNSYS), (2) to compare the effect of optimized 

equipment size and control strategy on energy consumption pattern of the existing community’s 

CO2 emission and cost, and (3) to calculate the potential cost and emission reductions. 

Conversely, in Scenario 2, both weather file and occupants’ demographic distribution were 

replaced by design condition. In Scenario 2, redefining the weather file (i.e. TMY3) as the 

prediction model input and training it based on the design condition, typical thermostat control 

usage (TTCU) profile, can show the potential savings in the initial investment cost of major 

equipment (boilers and thermal storage) post-optimization. The assumption works better for newly 

built communities (design stage) with unknown energy use behavior of occupants. Having no data 

regarding potential district users, the district load was determined based on the energy required to 

keep the buildings at a thermostat set point defined by a code for each building type. After 

obtaining both scenarios typical usage behavior, a prediction model was trained based on the 

fraction of each community group’s data. Using the design weather data (i.e. TMY) and onsite 

measured weather data, the demand heating profile for both scenarios was predicted. 

5.8.2.1.2.2 Energy modeling 

To predict the district energy demand profile and the interaction between its different 

components, TRNSYS was used and the majority of district network components and their 

interaction was defined. To represent other components, such as biomass boilers and building 

stock, existing types in TRNSYS were modified. In general, TRNSYS has three major loops: 

• Generation loop 

The first loop (generation loop) consists of the auxiliary gas and biomass boilers, a controller, 

and a heat exchanger, which feeds energy into the system, as shown in Figure 5.35. Since no 

specific biomass boiler type exists in TRNSYS, Type 700 was modified to represent the biomass 
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boiler by adjusting its efficiency, partial efficiency and the control signal. After adjusting the 

boilers’ type, two controllers were assigned to the generation loop to adjust the flow pattern 

between the generation/consumption loops and the storage loop. The first controller compared the 

predicted demand load of the network with the total capacity of the boiler house and the need for 

the TES system as a backup. The second controller decides which boiler (biomass or gas) should 

provide the required energy. 

 

Figure 5.35: Simultaneous charging and discharging configuration 

• Consumption loop 

The consumption loop was constructed with Type 682, which represents the demand profile 

of all units (Figure 5.35). This type reads the predicted demand profile through an external link 

containing the predicted results. The distribution network heat loss was modeled using Type 952.  

• Storage loop 

The storage loop was formed with two different configurations, the first of which was 

modeled by simultaneously charging and discharging the thermal storage (see Figure 5.35).  

In other words, both the boiler house and distribution network were connected to the TES 

system. While the boiler house provided energy to the TES system, the latter supplied the energy 

to the distribution network. The second configuration was modeled using a step-wise energy 

storing procedure (Figure 5.36). Here, a controller monitored the direction of the flow to/from the 

TES tank. As a result, the tank could be either charged or discharged. More detailed explanation 

on the controller will follow in the next section. 
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Figure 5.36: Step-wise charging and discharging configuration 

Comparing the preliminary results obtained from the total heat loss of different 

configurations, it is inferred that the step-wise charging and discharging configuration had a lower 

heat loss than simultaneous charging/discharging configuration due to the TES system size and 

flow direction. Moreover, the step-wise charging and discharging configuration has a higher 

overall energy efficiency compared with the simultaneous charging/discharging due to the 

ON/OFF frequency of the generation loop in this configuration. As a result, the second 

configuration has been used as a base for optimization in this example. 

5.8.2.1.2.3 Optimization formulation 

For the design stage, a dynamic multi-objective optimization method was chosen to size the 

main components of the district network boiler house in the two defined scenarios. The model was 

based on mixed linear complementarity problem (MLCP) to minimize the objective functions 

(investment and operational cost or LCC and CO2 emission). To improve model accuracy, other 

input data and model characteristics, including minimum and maximum output level constraints 

and partial load efficiencies, were defined on an hourly basis. The system operational and fuel 

costs were also considered. 

A controller type (Ctrl-3) (see Figure 5.36) was developed and used in developing the 

TRNSYS model to compare the energy generated at each time-step with that in the boiler house 

(Ctrl-2) (see Figure 5.36) in accordance with the network demand load (Type 24) and flow 

direction. By comparing the demand load and generation capacity, controller first fed the network 

and then it decided whether to use the disparity between generation and demand to charge or 

discharge the TES. This implies that the controller regulated flow direction based on the general 

heat balance equation, while other constraints (e.g. minimum operative temperature (TTS(t)) were 

set for the TES to ensure a minimum required temperature for DHW usage: 
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The general equations used for TES modeling, such as total energy at different time-steps 

and boundary conditions applied to it were: 
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After setting up the controllers, the optimization objective function was set up in the aim of 

optimizing the size of the biomass boiler(s) and TES system, and minimize the current net cost 

and CO2 emissions: 

  ECObjMin ,  (5.33) 

where C and E are the cost and emission objectives. To make the objective function linear and 

convert it from 2D to 1D, the optimization was employed using: 
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where α and β are the cost and emission importance factors in final objective function. The cost 

associated function considers the initial cost of the entire H-CDHS in addition to the present worth 

of the life cycle operational cost. To define the initial cost, the main boiler house equipment was 

divided into two modular modifiable parts (boilers and TES) and fixed non-modifiable equipment 
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(pumps and underground distribution pipelines). Only the modular modifiable equipment cost was 

considered in the initial cost function. The initial cost of fixed non-modifiable equipment was 

excluded. For operational costs, the present fuel life cycle value required for generating heat, the 

selling price of energy and the buyout price of energy for surrounding houses for a 30-year period 

were considered. 
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where i and n are the annual interest rate and year number, respectively, and OCAnnual is the annual 

operation cost. The cost function was defined as: 

      

























 

 







 


N

n

M

m

n

mntax

N

n

n
N

n

M

m

n

mn iEiINiFCICC
1 1

,,

11 1

, 111  (5.36) 

where IC is the linearized initial cost of the boiler house, n is the number of the year, FC is fuel 

costs of different boilers, m is the boiler number, IN is the annual income from selling heat to off-

site users, and Etax are the energy taxes. The initial investment cost included the fixed and 

proportional variable expenses. The fixed component included the market value of the smallest 

size of the equipment available on the market while the proportional cost was determined by 

linearizing the extra cost associated with the higher capacity of the equipment: 
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The second objective function was defined to minimize the total CO2 emission. The emission 

associated function was calculated as: 

 
 


N

n

M

m

AuxAuxnmnmn PRFIEVIEPRFEVEE
1 1

,,  
(5.38) 

where En,m represents the fuel emissions (kg CO2/kg fuel) used for each boiler (n) in a year (m) of 

the operation, IEAux is the emission of the imported energy fed to the system from outside in month 

(m) of the operation (kg CO2/kg fuel), PRFEn is the primary resource factor of the fuel, and Vn,m is 

the fuel volume (m3) used in each month (m) by the boiler (n).When calculating the costs, the wood 

price was discounted to consider the governmental incentive on the price of wood pellets to 

encourage the small community to use biomass boilers. 

 Results 

In this section, the results for each scenario is presented. Scenario 1 was defined based on 

the current situation of the H-CDHS regarding occupants behavior. Keeping a similar occupancy 

distribution to that of a real case scenario, the potential annual cost saving and CO2 emission of 

the district over its life cycle was determined using the optimal equipment size and flow control 

(Table 5.23). 
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Table 5.23: Optimization results for Scenario 1 

Technology Existing situation Scenario 1 

Biomass boiler 870 kW 477 kW 

Auxiliary boiler 1.3 MW 0.609 MW 

Thermal storage 50 m3 16.3 m3 

Peak heating load 1300kW 978 kW 

Biomass percentage of peak 66.9% 49% 

Percentage from biomass NA 95% 

The optimization results for this scenario clearly show that the boiler capacity, biomass or 

auxiliary boiler are about 40% of the peak demand load. Considering that only one boiler operates 

at a time, this fact is only achieved by utilizing a TES system, which balances the demand and 

supply heat between the generation and consumption loops. 

Comparing the optimized model results with field measurements show a dramatic drop in 

CO2 emission (171.9 tons of CO2/year) as well as a considerable reduction in the total cost of the 

system (79,056 ₤/year). These cost and CO2 reductions are partially due to the lower efficiency of 

the oversized equipment working under partial load while other parts can be associated to the non-

optimal control strategy of the system and missing TES. 

Since specific weather data and occupants’ behavior were considered in the Scenario 1 with 

existing data for 2016-17, the demand energy load of the community could change anytime based 

on the number of tenants or weather conditions. Consequently, after optimizing the system and 

determining the optimal equipment size, two new cases (high and low usage) were defined to study 

the effects of change in community demand load on boiler house performance. These cases 

included a change in the fraction of occupant types in the community compared with the existing 

condition. In the high usage case, the fraction of NTLU and NTMU users dropped, adding to 

NTHU and TTCU users to represent a higher demand load (see Table 5.24). In low usage case, the 

number of NTHU users dropped and added to the lower energy consumers such as NTLU and 

NTMU (see Table 5.24). 

Table 5.24: Fraction of the occupants’ types in different scenarios 

 Scenario 1 High usage Low usage 

NTLU 16% 10% 23% 

NTMU 24% 15% 39% 

NTHU 53% 65% 33% 

TTCU 5% 10% 5% 

Peak Load 978 kW 1,086 kW 884 kW 

 By changing the fraction of occupants, the energy demand profiles of the newly defined 

cases were predicted and fed to the energy model (see Figure 5.36). The boiler house equipment 

size remained similar to the Scenario 1. After modeling these newly defined cases, the system 

performance under new conditions was determined. Comparing the percentage of the biomass 

boiler and TES, which can cover the demand load of the community between the Scenario 1 and 

high usage case (see Table 5.25), shows that in the High scenario with 12% higher pick, the 

percentage coverage time by biomass boiler dropped by a negligible percentile of 1.1%. 
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Table 5.25: Performance of the optimized system under new demand profile load 

Technology Low scenario  Scenario 1 High scenario  

Biomass boiler 477 kW 477 kW 477 kW 

Auxiliary boiler 609 MW 609 MW 609 MW 

Thermal storage 16.3 m3 16.3 m3 16.3 m3 

Peak load 884 kW 978 kW 1,086 kW 

Biomass percentage of peak 54% 49% 44% 

Percentage from biomass 97.8% 95.0% 93.9% 

In Scenario 2, the weather file was changed, and the occupant distribution was altered to the 

TTCU to represent the design criteria for newly build buildings. Table 5.26 presents the optimal 

equipment sizes, resulting from the optimization of the boiler house for Scenario 2. 

Table 5.26: Optimization results for Scenario 2 

Technology Existing situation Scenario 2 

Biomass boiler 870 kW 661 kW 

Auxiliary boiler 1.3 MW 0.738 MW 

Thermal storage 50 m3 32.8 m3 

Peak heating load 1,300 kW 1,189 kW 

Biomass percentage of peak 66.9% 55.6% 

Percentage from biomass N/A 98.8% 

Similar to Scenario 1, the capacity of the boiler optimal size, biomass and auxiliary boiler 

was used less than 60% of their capacity to respond to the peak demand load. While using static 

optimized sizing tools such as Biomass Boiler Sizing Tool (version 6.8.2) for a same coverage 

percentage (98.8% coverage) suggested the biomass boiler with the capacity size of 62% of the 

peak load and 40.5 m3 TES tank. Table 5.27 presents the equipment size and cost associated with 

each design method. 

Table 5.27: Comparison of the equipment size, cost for different design strategies 

Technology Conventional Static optimization tool Proposed dynamic optimization 

Size Size reduction [%] * Size Size reduction [%] * 

Biomass boiler [kW] 870 737 15.3% 661 24.0% 

Auxiliary boiler [MW] 1.3 0.891 31.5% 0.738 43.2% 

Thermal storage [m3] 50 40.5 19.0% 32.5 35.0% 

Cost [£] 734,440 602,224 18.0% 538,372 26.7% 
*Reductions calculated comparing with conventional method 

Considering that only one boiler operated at a time, 98.8% coverage by biomass boiler was 

achieved using only TES to balance between the generation and consumption loop. As shown in 

Table 5.27, this solution can reduce the size of both auxiliary and main biomass boilers into a 

fraction of their original size and, as a result, decrease the system heat loss while improving the 

district’s energy efficiency. The reduction in major equipment size of the district using the 

proposed dynamic optimization method caused a ₤196068 or 26.7% drop only in the initial 

investment cost of the system. Moreover, knowing that the partial capacity efficiency of the 

biomass boiler is lower than its efficiency in the full capacity, two scenarios could be assumed for 

a non-optimal size equipment. First, the biomass boiler operates at its full capacity all the time 

while keeping the generation efficiency at maximum value. This can result in generation of an 
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excessive amount of unused heat, which eventually is accounted as loss. Second, the boiler 

operates at partial load only to meet the network demand. This decreases generation efficiency due 

to a lower partial capacity efficiency of the boilers [595]. In both scenarios, the overall system 

efficiency drops. 

5.8.2.2 Piecewise linear characterization curves for energy optimization 

The application of energy system optimization at the district level can lead to tangible 

infrastructural decisions by designers. Considering this, energy systems must be realistically 

represented such that results can reliably direct the decision-making process. Most current models 

use MILP to optimize energy systems at the district level. In addition to allowing fast solutions of 

large-scale problems, MILP models can efficiently represent energy distribution networks. 

However, they are unable to handle nonlinear characteristics of energy supply technologies. 

Cooling technologies particularly exhibit nonlinearity in their operation, when operating below 

nominal load and at different external/internal temperatures. For instance, in a study [596], 

commercial properties were not considered for optimization in MILP due to the need to model 

cooling technologies. Metaheuristic techniques are used to include system nonlinearities, but can 

become intractable for large-scale problems, taking far longer than MILP to reach a reasonable 

solution [597]. 

By describing a nonlinear curve of an energy supply technology as multiple connected linear 

pieces, it is possible to compromise between model fidelity and computational efficiency. Bicubic 

and cubic technology part-load curves could be represented in piecewise form [598]. In fact, 

piecewise curves could contain up to ten pieces without significantly affecting computational time. 

An important factor is the location at which pieces meet (the “breakpoints”) [598]. Piecewise 

linearization was undertaken to compare MILP and metaheuristics for operation schedule 

optimization [597]. Six breakpoints were applied to linearize part load curves, specifically located 

at discontinuities and the point of maximum efficiency. The subsequent piecewise MILP model 

led to an objective function value similar to the same system optimized metaheuristically with 

nonlinear curves. 

 Background 

In this example, a more complex case is presented while investigating breakpoint 

positioning. A sequential least-squares programming (SLSQP) algorithm is used to minimize the 

error between piecewise and nonlinear technology part-load consumption curves. This nonlinear 

optimization is compared to both placing pieces equidistantly along the x-axis and to a single value 

for efficiency (SVE). At full load, all curves converge on the nominal efficiency of a technology; 

however, at any part-load value it is possible to quantify the error between the “actual” nonlinear 

case and “expected” linearized cases. The minimization of this error is compared to computational 

time penalty when applied to a district energy system case study. 

 System description 

A district planning case is considered, due to the non-negligible requirement for electricity, 

heating and cooling when combining different building types. This district is notional and consists 
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of 10 domestic properties, one large hotel, one large office, and one power plant (Figure 5.37). 

Within the district, a range of technologies is available to meet demand of each energy type (Table 

5.28). Distribution networks exist for low voltage electricity, gas, and heat. Table 5.29 provides 

further information on attributes of each property type. Multiple technologies exist to meet each 

type of energy demand. In this case study, the technology choice facilitates the need for 

optimization, due to different energy interdependencies. Grid electricity (GE) and the boiler (NB), 

air source heat pump (AHP), and electric chiller (EC) can provide their respective energy demands 

without interdependency but have relatively high generation costs. Solar photovoltaic (PV) and 

solar thermal (ST) panels benefit from government subsidies, such as the feed-in tariff, but have 

fixed output once maximum capacity has been selected and the available roof space is limited. 

CHP produces both heat and power simultaneously, giving a low generation cost but a high initial 

capital investment (including a district heat network), while the heat recovery absorption 

refrigerator (HRAR) can be powered by either waste heat or gas. Finally, storage facilities exist 

for each energy type. By temporally decoupling supply and demand, storage reduces the effect of 

interdependencies. CHP can produce electricity without worrying about heat demand, and the PV 

and ST supply can be maximized knowing that all production can be effectively used on-site. 

 

Figure 5.37: Graphical representation of the case study district network 

Table 5.28: Model supply technologies and their consumption/production energy 

Technology AHP EC HRAR CHP NB PV ST B TES 

Consumption E E G, H G G S S E H/C 

Production C C C E, H H E H E H/C 

Technology keys: AHP: air source heat pump, EC: electric chiller, HRAR: heat recovery absorption refrigerator, 

CHP: combined heat and power, NB: boiler, PV: photovoltaic, ST: solar thermal 

Consumption/production keys: E: electricity, G: gas, S: solar radiation, C: cooling, H: heating 
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Table 5.29: Characteristics of the buildings in the case study district 
 

 Dwelling Hotel Office Plant 

Annual energy 

demand (MWh) 

Electricity 7.2 1,595.5 481.3 0 

Heat 17.5 1,641.6 86.5 0 

Cooling 0.0 1,757.9 99.1 0 

Available roof area (m2) 130 1300 900 0 

Available technologies 
NB, PV, ST, 

B, TES 

mCHP, NB, PV, HRAR, 

AHP, EC, ST, B, TES 

NB, PV, ST, HRAR, 

AHP, EC, B, TES 

CHP, GE 

Keys: AHP: air source heat pump, EC: electric chiller, HRAR: heat recovery absorption refrigerator, CHP: 

combined heat and power, NB: boiler, PV: photovoltaic, ST: solar thermal 

To create a notional district, data on energy demand, technology characteristic curves and 

costs have been brought together from multiple sources: 

• The district is located in the southeastern England, UK. However, due to availability, U.S. 

Department of Energy representative building demand data [599] is used to acquire hourly 

heat, cooling and electricity demand of representative buildings. Seattle, Washington 

climate conditions were chosen for climate similarity with London, UK. 

• Characteristic curves for technologies are based on recommendations from society of 

heating, air conditioning and sanitary engineers of Japan (SHASE) [600]. It is assumed that 

energy supply technologies do not vary drastically between countries. 

Costs curves are calculated based on values given in the SPON’S mechanical and electrical 

services price book [601]. Storage device costs have been aggregated from online suppliers. 

 Methodology 

5.8.2.2.3.1 Piecewise linearization 

Typically, in energy modeling, the efficiency of a technology is given as a single value based 

on nominal conditions [494, 602, 603]. In reality, efficiency varies depending on the output of the 

technology as a function of its maximum capacity, among other factors [604]. This nonlinearity 

can be addressed by metaheuristic optimization, which allows nonlinear inputs. However, given 

the non-deterministic nature of metaheuristic methods, mathematical programming (usually in the 

form of MILP) is still the dominant energy modeling method. To integrate nonlinear technology 

characteristics with MILP, it is possible to approximate a nonlinear curve by segmenting it into 

several straight lines. These straight lines create a linear but discontinuous curve which can be 

handled in a linear program. For application within the MILP environment, two approaches are 

discussed in this section: special ordered sets and constraint bound. 

Special ordered sets of type 2 (SOS2) [605] are often used in MILP to piecewise linearize. 

Sampling points (‘breakpoints’) xi (i = 1, …, n) are defined along a curve, including the start and 

end of the curve, with corresponding y-axis values f (xi) (i = 1, …, n) (Figure 5.38). A continuous 

decision variable, αi is associated with each breakpoint i, such that αi  [0,1] (i = 1, …, n). By 

defining the α variables to be SOS2, constraints are applied so only two adjacent α variables can 

be non-zero at any time. For any decision variable x, the corresponding decision variable value of 

f (x) is calculated by interpolating from adjacent breakpoints (xi, f (xi)) and (xi+1, f (xi+1)), based on 
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the relative weighting applied by αi and αi+1. In energy planning, part-load efficiency is a function 

of two decision variables of load rate and maximum capacity. If maximum capacity is a 

discontinuous variable, then an SOS2 can be described for discrete values of capacity. 

If maximum capacity is a continuous variable, more complex methods are required, but 

special ordered sets are still applicable. The 3D surface describing the relationship between 

maximum capacity (x), load-rate (y) and consumption (f (x, y)) can be discretized. The most 

common approach is to have 𝑛 breakpoints x1,…,xn on the 𝑥 axis and 𝑚 sampling points y1,…,ym 

on the y axis [606] where f (x, y) is evaluated for each breakpoint. Any point (x̅, y̅) can be evaluated 

within the rectangle bounded by (xi, yj), (xi+1, yj), (xi, yj+1), and (xi+1, yj+1), which contains two 

triangles created by its diagonal [(xi, yj), (xi+1, yj+1)] (Figure 5.39). By convex combination of the 

function values evaluated at the vertices of the triangle containing (x̅, y̅), f (x̅, y̅) can be ascertained. 

 
Figure 5.38: Graphical representation of SOS2 piecewise linearization where f (x) is the sum of weighted 

values αif (xi) and αi+1f (xi+1), with all other values of α being zero 
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Figure 5.39: Graphical representation of 3D piecewise linearization where f (x̅, y̅) is the sum of weighted 

decision variables λ and μ applied to f (xi, yj), f (xi+1, yj+1) and f (xi+1, yj) 

In creating special ordered sets, many new decision variables are defined, more so when a 

3D surface exists. This inevitably increases computational time, perhaps beyond what is feasible 

for a given problem. In certain cases, it is also possible to force a continuous decision variable to 

follow a piecewise curve, by applying constraints of the form y = m x + C, as depicted in Figure 

5.40a. The constraint lines intersect the nonlinear curve where the gradient (m) equals the curve 

instantaneous gradient. In the case of energy systems, the global minimum will only exist where 

each technology has chosen to minimize its consumption at every given value of energy output. 

This means that the consumption curve given in Figure 5.40a will always follow the lower bound, 

which describes the piecewise curve. However, if the gradient of the technology characteristic 

curve is not strictly increasing/decreasing, this method cannot function. Figure 5.40b shows that 

certain lines describing the piecewise curve will override others at incorrect segments of load rate, 

due to the changing direction of gradient. Here, the consumption curve does not describe the 

piecewise curve. Although limited in its use cases, this method can also be extended easily to the 

3D case, where the constraints are of the form f (x, y) = m y + C x, given a maximum capacity (x) 

and load-rate (y). On inspection of the characteristic curves used in this example, most met the 

gradient criterion for this method. The only technology which did not was the CHP, which has an 

undulating gradient when describing both its gas consumption and its heat output. However, as 

will be discussed in the next section, it is possible to account for this when optimizing the piecewise 

curves, to allow the bound by constraints method to viably be used for solving the given problem. 
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Figure 5.40: Application of bounding a technology nonlinear curve under multiple straight lines to create 

a piecewise linear curve where (a) shows its effective use on a curve of continuously decreasing gradient, 

while (b) shows its ineffectiveness when applied to a more complex curve 

5.8.2.2.3.2 Optimization 

For a limited number of breakpoints, there will be at least one optimal placement to describe 

a piecewise curve which best fits the nonlinear curve. The process of locating these breakpoints 

optimally can be simplified by automation. The piecewise curve with least error relative to the 

nonlinear curve, for a given number of breakpoints, can be ascertained when optimizing. 

Additionally, the constraint that the gradient must be strictly increasing or decreasing can be 

applied, creating piecewise curves which meet the requirements set out earlier. 

Breakpoint allocation is undertaken during model pre-processing, by parameter 

optimization. Heuristic algorithms have been used to piecewise linearize [607, 608]. In this 

example, SLSQP [609] is used to minimize the RMSE between each nonlinear curve and its 

piecewise counterparts. To improve the chances of reaching the global optimum, 20 runs were 

undertaken for each minimization. This process took 17.1 seconds to optimize 108 piecewise 

curves describing characteristics of 8 technologies (27 nonlinear curves, three to six breakpoints). 

For the case of the EC, Figure 5.41a shows the resulting 5-breakpoint curve. Curve fit is better 

when breakpoints are optimized, most notably in the trough. Any form of piecewise linearization 

is an improvement on the SVE case, although there is continual improvement on error 

minimization when optimizing breakpoint location, as Figure 5.41b depicts for the EC. 

Some technologies, such as the boiler, have a relatively static efficiency over the operating 

range. In this case, there is little advantage to piecewise linearize, and even less reason to undertake 

parameter optimization. Cooling technologies tend to function more nonlinearly. This nonlinearity 

can be a barrier to including cooling in a linear program [596], although it is usually considered to 

be caused by system temperatures rather than variable load-rate. From Figure 5.41a it is evident 
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that the EC acts nonlinearly with variable load rate. However, Figure 5.42 shows this nonlinearity 

is not as pronounced for other cooling supply technologies, unless operating at low load rates. 

Below a distinct discontinuity, the energy consumption becomes constant, irrespective of output. 

For the CHP, there is a reasonable disparity between the realistic operation and SVE, particularly 

when considering the heat to power ratio (Figure 5.43). The CHP characteristic curves are also not 

strictly increasing/decreasing which is not apparent for the other technologies. The result of this 

difference can be seen in the difference between the two optimized curves. However, the difference 

is relatively small, becoming non-negligible only for parts of the heat to power (HTP) ratio curve. 

 

 

(a) (b) 

Figure 5.41: Comparison of different methods to describe electricity consumption of an EC, from 

nonlinear to SVE where (a) shows consumption curve and piecewise linearization with five breakpoints, 

(b) shows root-mean-square error between the methods and the nonlinear curve 

 

Figure 5.42: Comparison of different methods for describing the primary fuel consumption of an AHP 

and HRAR, from nonlinear to SVE, at different load rates where piecewise curves have five breakpoints 
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Figure 5.43: Comparison of different methods for describing the gas consumption and heat output of a 

CHP, from nonlinear to SVE, at different load rates where five breakpoints are given for piecewise curves 

As with cooling, the performance of TES is primarily temperature dependent [17]. Varying 

load rates also have an effect, due in part to the use of pumps during charging/discharging [610], 

but also due to thermal stratification required for minimal heat loss. If the flow rate of 

charging/discharging is too high, it will likely disrupt the stratified layers in the tank, leading to 

mixing and associated exergetic losses [611]. As temperature dependence is not considered in this 

example, nonlinear characteristics of storage technologies are not included. However, thermal 

energy flow is limited for the tanks to simulate avoiding mixing effects. 

5.8.2.2.3.3 Model configuration 

The case study was modeled in Calliope [612], an open-source modeling framework which 

uses a python-based toolchain [613]. MILP optimization was run via CPLEX [614], with a 3% 

mixed integer optimality gap tolerance. Multiple model configurations were run, for different 

demand seasons, linearization techniques and breakpoints of piecewise linearization (Figure 5.44). 

The objective function was combined minimization of capital and operational costs. 

 

Figure 5.44: Configurations of modeling runs 
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5.8.2.2.3.4 Case study simplification 

The initial district was to be modeled over all hourly time steps in a year. This created a 

problem of a size that could not be handled by the testing hardware. To maintain model tractability, 

individual weeks were considered instead. Two separate weeks were chosen based on maximum 

heat requirement (week 1) and maximum cooling requirement (week 28). The initial network in 

Figure 5.37 was also aggregated to the network seen in Figure 5.45, reducing decision variables 

from 8,649,607 to 410,905. To do so, all dwellings were merged into a single domestic property, 

and the hotel and office were merged into a commercial property. Total energy demand and 

available roof area remained constant. These simplifications were necessary to run the model 

multiple times and all the configurations given in Figure 5.43 could be analyzed in a timely fashion. 

 
Figure 5.45: Graphical representation of the simplified case study district network 

Initially, SOS2 was chosen as the method for representing the piecewise curves. However, 

model convergence was poor, particularly when within 10% of the relaxed LP solution. To ensure 

that all relevant technologies could be piecewise linearized, constraint bounds were applied. This 

leads to a greater error in describing the CHP curve, particularly at a greater number of breakpoints. 

After four breakpoints, it is not possible to reduce HTP curve error further, leading to double the 

error between SOS2 and constraint bounds at six breakpoints (Figure 5.46). However, both 

methods still provide a low error, lower than their equidistant counterparts. The technology 

characteristics considered for piecewise linearization were (1) CHP HTP and gas consumption, (2) 

EC and AHP electricity consumption, and (3) HRAR heat consumption. Other available 

characteristics were the boiler gas consumption and the pumps associated with distributing thermal 

energy from supply to demand. These characteristics were ignored due to the linearity of the former 

and the small scale of the latter. 



 

221 

 
Figure 5.46: Root-mean-square error between linearization methods and the nonlinear characteristic curve 

of CHP HTP, for full range of breakpoints 

 Results 

Application of piecewise curves increases the objective function value by as much as 5.2%. 

Table 5.30 shows that differences in objective function values are small when increasing the 

number of piecewise breakpoints, with optimized curve averages of £4,036 +1%/-0.5% in winter 

and -£2,394 +0%/-0.6% in summer. The summer negative cost represents the ability for the system 

to gain more revenue from subsidies and export than it spends on investment and operation in that 

period. There are no equidistant solutions beyond three breakpoints due to model infeasibility. It 

is not possible to place constraints on breakpoint location when placing equidistantly. Thus, the 

strictly increasing/decreasing gradient requirement for being bound by constraints cannot be met 

for CHP HTP and gas consumption. 

Table 5.30: Objective function value in GBP for all run configurations 

Breakpoints 2 3 4 5 6 

Linearization SVE O E O E O E O E 

 Winter 

Result 3,989 4,036 4,048 4,074 Fail 4,019 Fail 4,016 Fail 

+NL +465 +23 +12 +40 N/A +32 N/A +32 N/A 

 Summer 

Result  -2,507 -2,380 -2,377 -2,398 Fail -2,398 Fail -2,401 Fail 

+NL +294 -17 -28 -2 N/A -1 N/A 0 N/A 

Keys: O: optimized, E: equidistant, +NL: monetary cost due to applying nonlinear consumption curves ex-post 

Each linear model run has been compared to its nonlinear counterpart, by applying the 

relevant nonlinear consumption curves to the technology outputs obtained using the linear 

optimization. In doing so, there is a potential difference between “expected” (MILP objective 

function value) and “actual” (nonlinear consumption curves applied ex-post) system costs (+NL). 

Although the optimal SVE objective function value is lower than piecewise models, the “actual” 

system costs end up being higher. +NL is 12% in both seasonal weeks for SVE, decreasing to less 
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than 1% when including piecewise curves. In summer, this effect is most pronounced, where +NL 

reduces to zero at six breakpoints. 

While the accuracy of the objective function value is improved, piecewise linearized cases 

take much longer to solve than the SVE case (Table 5.31). This is more the case in the summer 

week, which peaks at 17,521 seconds (three breakpoints, equidistant), two orders of magnitude 

longer than the basic model. Even at the least number of breakpoints, the solution time is 2.5x and 

14.9x longer than the basic model in winter and summer, respectively. 

Table 5.31: Model runtime in seconds for all configurations, including pre-processing and subsequent 

MILP solving in CPLEX 

Breakpoints 2 3 4 5 6 

Linearization SVE O E O E O E O E 

Winter 366 926 610 880 Fail 847 Fail 1,408 Fail 

Summer 300 4,483 17,521 7,202 Fail 15,230 Fail 6,816 Fail 

Keys: O: optimized, E: equidistant 

There is generally an increase in solution time with increased number of breakpoints, the 

only anomaly being the drastic decrease in model solution time between having five and six 

breakpoints in summer. Here, the model solves in less than half the time with an additional 

breakpoint. In this instance, the five-breakpoint case had solved within 10% of the relaxed LP 200 

seconds sooner than the six-breakpoint case but failed to converge on the last few percent for an 

extended period. Equidistant breakpoints decrease the solution time by a small amount in the 

winter week and increase it substantially in the summer week. As mentioned, it is the final few 

percent of convergence that leads to the vastly inflated solution time. 

The change of objective function value when applying piecewise characteristic curves results 

from changes in both investment and operation. Varying the “penalty” for part load operation leads 

to different technology choices. For instance, in meeting cooling demand in the SVE case, the EC 

is chosen to operate as the only technology throughout. When applying piecewise curves, Figure 

5.47 shows that AHP is better suited for part load requirements, leaving the EC for almost 

exclusive use at its full load. Generally, there is more use of technologies in full/zero load 

configurations when piecewise curves are included. This means that a greater variety of 

technologies are purchased to avoid running any one of them at part load. 
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Figure 5.47: Technology output histograms for SVE and optimized piecewise model runs where full and 

zero loads are given as single points, with all other part load operation given in 10% increments 

Purchased technology capacities also vary (Figure 5.48). In both seasons, EC capacity is 

reduced in the piecewise results and AHP is purchased to account for the deficit. In the winter 

week, boiler size is also reduced, balanced by a larger heat storage capacity (Table 5.32). Storage 

is used more in piecewise models, leading to lower cumulative system capacity. The results also 

show that the utility of the local distribution network is dictated by technology choices. For 

example, more power is distributed to the commercial properties in summer due to the purchase 

of a smaller CHP and heat networks are avoided. Besides, a small plant CHP is purchased in all 

cases, but it dumps heat in favor of distributing it. The system is limited in how much heat it can 

dump, so the plant CHP could be feasibly larger if that constraint were lifted. 
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Figure 5.48: Energy supply technology investment portfolios at each location and in each season 

Table 5.32: Capacity of distribution network to, and storage at, both demand locations 

 Distribution Storage 

 Gas Heat Power Cooling Power Heat 

 SVE P SVE P SVE P SVE P SVE P SVE P 

Winter             

Commercial 1,304 1,224 0 0 71 75 0 24 7 0 0 59 

Domestic 69 67 0 0 41 37 0 0 7 7 145 145 

Summer             

Commercial 788 622 0 0 40 135 0 7 7 7 230 289 

Domestic 6 9 8 0 40 43 0 0 7 7 5 8 

Keys: P: piecewise 
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6 Chapter 6: Key performance indicators 

In a scenario of rapid spread of nZEBs, energy storage systems (ESSs) allow decoupling of 

energy supply and demand, avoiding or minimizing the overload of the grid, with considerable 

advantages in terms of reducing the impact on the network. Therefore, it is important that the size 

of storage is correctly captured in design, guidelines, standards and policy. By this way, storage 

can be appropriately adopted in buildings/districts to enhance the overall system performance and 

achieve the aims of resilient energy systems with minimum emissions. Generally, energy storage 

consists of both explicitly designed and inherent storage systems for storing thermal or electrical 

energy. Examples of explicit storage include hot water tanks, PCMs, batteries, etc. On the other 

hand, inherent storages are incorporated in buildings and district systems due to their normal 

functional characteristics such as in building elements and spaces, and in the mass of water within 

a district heating distribution system. 

In order to evaluate the effectiveness of energy storage technologies (both explicitly 

designed storage and inherent storage) in building/district applications, the key performance 

indicators (KPIs) represent important methods for analyzing interactions among economic, human 

activity, energy consumption and the reduced GHG emissions [30]. 

Prior to presenting further details about KPIs, some definitions are presented for the correct 

interpretation of this chapter as well as enabling comparison between energy storage technologies: 

• Innovative features: describe the main innovative features of the storage technology 

compared to the commercially available solutions. 

• Operational constraints: describe all the operational constraints which must be known 

for the operation of the storage. 

• Environmental aspects: describe all specific environmental hazards during the life cycle 

of the storage system. 

• Storage system: a system composed of a storage medium (a physical or chemical element 

in which the energy is stored) and other necessary accessories (e.g. envelope or accessories 

strictly necessary to operate the system). The main purpose of the storage system is to 

typically reduce nonrenewable based power generation and/or running cost of an nZEB or 

a group of low-energy buildings (district). 

• Energy source: generator or environment from which the energy is transferred to the 

storage system. 

• Charging period: the period during which energy is intentionally transferred from the 

energy source to the storage system. 

• Discharging period: the period during which energy is intentionally transferred from the 

storage system to the energy user. 

• Energy user: the thermal zone or to the building technical systems which are intended to 

use the energy. 
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• Stand by period: the period during which the storage system is intentionally not in the 

charging or discharging period. 

• Working cycle: it is a process which includes a complete charge of the storage system, the 

discharge of the storage system and eventually a certain inactivity time. It is defined 

according to the typical use of the storage system. 

In this chapter, first, the existing KPIs in literature are analyzed to evaluate their pros and 

cons. Subsequently, to allow a simplified but exhaustive analysis and comparison of Annex 31 

case studies, a specific set of KPIs are proposed and defined. These optimized KPIs are later used 

at the end of this chapter to evaluate Annex 31 case studies. A set of advanced KPIs are also 

defined to shed light on their potential future applications. 

6.1 Review of existing KPIs 

Although some researchers outlined the fundamental characteristics of storage systems in 

order to establish comparison criteria for selecting the best technology [615-617], few of them 

focused on the application of storage systems in buildings [616, 617]. Of the latter, some studies 

[616] defined indicators to compare the efficiency and performances of TES systems integrated in 

the building structures (e.g. PCM façade), which hence cannot be extended to all available energy 

storage technologies, while others especially focused on an economically optimized decision of 

electrical energy storage capacity. 

In general, even if some researchers used a set of fundamental indicators such as the storage 

capacity, the efficiency and the cost, their definition and calculation methods were not univocal. 

For instance, the storage capacity, one of the most used indicators, is defined as the energy which 

can be stored in reference conditions [618] or as the quantity of available energy retrievable 

without negatively affecting the storage device [619]. The efficiency, often called roundtrip 

efficiency [618], is the ratio between the amount of energy which comes out of storage and the 

amount put into the storage. This definition is often oversimplified since it does not consider the 

losses measured during the three main phases of charging, discharging and standby [619, 620]. 

Similarly, the cost is sometimes evaluated as the capital cost, without considering the 

operating cost [618], which can be further subdivided in labor associated with system operation, 

system maintenance and replacement, and finally decommissioning and disposal cost [31, 615, 

621]. Another useful parameter which is often not univocally defined is the lifetime or durability, 

which typically refers to the number of times the storage unit can release the energy level by which 

it was designed after each recharge, expressed as the maximum number of cycles Nt (one cycle 

corresponds to one charge and one discharge) [621, 622]. This is usually the principal cause of 

aging. The rate of degradation depends on the type of storage technology, operating conditions 

and other variables. This is especially important for electrochemical batteries [615]. The 

transportability indicator is also an interesting parameter introduced recently [621], which can 

affect the cost of installation as well as the feasibility of dismissing. However, the study does not 

define the useful features to evaluate and quantify the indicator in a metric. Moreover, to be highly 
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efficient, a storage system needs to be precisely adapted to the type of application (low to mid 

power in isolated areas, network connection, building connection, etc.) and to the type of 

production (permanent, portable, renewable, etc.). In such regards, an indicator called feasibility 

and adaptation to the generating source is introduced but not well defined [619, 621]. Another 

attractive feature of energy storage is the flexibility or modularity that it can provide. Modularity 

allows for more optimal levels and types of capacity and/or discharge duration because modular 

resources allow utilities to increase or decrease the storage capacity, when and where needed, in 

response to changing conditions [615, 621, 623]. 

6.2 Main KPIs 

Some of the existing KPIs that have been discussed earlier lack clear definition. Therefore, 

in this publication, some specific KPIs are clearly defined and used. These main KPIs allow the 

assessment of ESSs in buildings/districts which are presented and described in detail hereafter. 

6.2.1 Storage capacity 

This is the quantity of the energy contained in the storage system or available immediately 

after the full charging. The aim of the indicator is to easily evaluate the amount of energy which 

can be stored and released in reference conditions. It is defined based on two quantities: 

• Total capacity: the total energy which can be stored in reference conditions, noted by Ct 

[Wh]; 

• Maximum useful capacity: the maximum useful energy which can be actually retrieved in 

reference conditions without negatively affecting the storage system (i.e. permanent 

damages), noted by Cus,max [Wh]. 

The difference between Ct and Cus,max is mainly related to the depth of discharge and to the 

discharging efficiency (both are defined later). 

For TES systems, supply temperatures and flow rate should be indicated. Moreover, the 

average temperatures and flow rate of heating/cooling energy provided by the storage on the load 

side should be specified. For TES systems where useful energy is directly released in the internal 

environment of the building, the capacities should be referred to the nominal working temperature 

of the storage (maximum/minimum storage medium temperature for heating/cooling purposes, 

respectively) and the reference indoor temperature (e.g. 20 °C during the heating season and 26 

°C in the cooling season for commercial/tertiary buildings) of the environment to be heated/cooled. 

If the capacities change during the expected lifetime of the storage system (i.e. proportionally 

to the number of working cycles), the values should be specified for 0%, 30%, 50%, 70% and 

100% of the durability (see the next indicator). 

6.2.2 Recharging energy 

The recharging energy Cr is the amount of energy which should be supplied to the storage 

to reach the total storage capacity (Ct), with respect to a specific charging period. The aim of this 

indicator is to quantify the amount of energy which should be provided to obtain the full charge of 
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the storage system. The relation between the Cr and Cus,max is the charging/discharging efficiency. 

For TES systems, if the recharging energy is varying as a function of the charging duration, then 

the minimum and maximum values should be provided. 

6.2.3 Maximum charging and discharging power 

These indicators represent the maximum charging power (Pc,max) and maximum discharging 

power (Pd,max) [kW], which can be constantly released for the minimum charging/discharging 

periods (Dc,min/Dd,min) [h]. The indicators are useful to understand the capability of the ESS to 

manage peaks of generated power (e.g. by non-predictable RES) or needed by the building 

technical systems. 

If the power is significantly changing during the charging/discharging periods as a function 

of the state of charge, a power profile or the Pc,max and Pd,max values at 100%, 70%, 50% and 30% 

of the useful capacity Cus,max should be provided. 

For electrical energy storages, the maximum discharging power is determined by the power 

electronics equipment used to manage the ESS. The maximum charging power may also be 

different from (generally lower than) the maximum discharging power. 

6.2.4 Depth of discharge 

The depth of discharge (DOD [%]) describes how deeply the storage can be discharged 

providing usable energy (considering the reference conditions for which it is designed) and without 

negatively affecting its proprieties (i.e. permanent damages). It is expressed as a percentage of the 

total capacity, reciprocal of state of charge. This means a DOD of 100% indicates that the ESS can 

be fully discharged, until the state of charge is 0%. 

For TES systems, it should be referred to the nominal working temperature of the storage 

(maximum/minimum storage medium temperature for heating/cooling purposes, respectively) and 

the temperature of medium/environment to be heated/cooled. 

Note that the difference between the (Ct × DOD) and the Cus,max is related to the discharging 

efficiency and, consequently, the losses during the discharging period. If the storage has no losses 

during the discharge, then (Ct × DOD) = Cus,max. 

6.2.5 Durability 

This indicator refers to the assumed maximum number of working cycles (Nt) for which the 

storage system can release at least 75% of the designed useful capacity Cus,max, during a certain 

lifespan, expressed in years. The scope of the indicator is to estimate the useful working life of a 

certain technology, based on the intensity of use within an expected lifespan. It must be referred 

to the DOD if it influences the durability. Note that the durability is a specific characteristic of the 

storage system and not of the energy source. 

6.2.6 Specific cost of the storage 

The aim of this indicator (SCs) is to consider the overall cost of a certain ESS, normalized to 

the total amount of energy it can deliver during its expected lifetime. In detail, SCs [€/kWh] is the 
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ratio of the sum of the total turn-key costs (COt), the O&M costs (COOM) during the expected 

lifetime and, if available, the decommissioning cost (CODC), over the product between the average 

useful capacity Cus and the durability (total number of cycles Nt). 

tus
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
  (6.1) 

If Cus decreases as the number of working cycles increases, the average Cus should be 

considered for the maximum number of working cycles. Note that this indicator does not consider 

the costs related to the charging/discharging and self-discharge losses. These are subsequently 

considered in the specific cost of the stored energy (SCse), which is presented later. 

It is worth also noting that the cost is normalized only to the useful energy (Cus,max in the 

denominator). However, as described earlier, some ESSs (in particular electrical energy storages) 

provide two contributions, in terms of energy and power. This could lead to a disparity in treating 

thermal and electrical storage devices. The need for a unique set of indicators pushes towards the 

usage of the proposed formula based on the deliverable energy only. 

6.2.7 Maximum self-discharge rate 

The indicator SD [%] is the portion of the energy which was initially stored (Ct) and has been 

dissipated over a certain standby period of the storage (no charge or discharge power applied). The 

value should be provided for standby periods equal to 1h, 10h, 100h and 1000h. The aim of the 

indicator is to quantify the unwanted discharge occurring during the inactivity time (i.e. standby 

period), the period during which no energy/power is intentionally requested from/sent to the ESS. 

For TES systems, the self-discharge should be seen as thermal losses (or gains for cold 

storages such as ice/chilled water). The losses released to the environment to be heated/cooled 

during the standby period should also be considered. 

Note that for electrical energy storage devices, this indicator is important; however, under 

proper design and sizing, self-discharge should never occur. In fact, should it occur, it would mean 

that the chosen technology and the application (the timeframe of the application, rather than the 

energy or the power involved) are not matching. 

6.2.8 Storage size/weight 

The storage size (St) is the volume [m3] occupied by a storage system of a given useful 

capacity (Cus,max), and the storage weight (Wt) is defined as its total mass [kg]. If additional 

elements are required to operate the storage (envelope or accessories strictly necessary to operate 

the system), the volume and weight of such elements should also be specified. If the ESS is 

modular, the two parameters should be indicated for each module of the ESS. This allows 

evaluation of the capability to transport or install the ESS in narrow spaces. 

6.2.9 Energy storage factor 

This indicator (ES [%]) is the fraction of the total energy demand (calculated over a 

representative period, e.g. one day or one season) for a certain purpose (e.g. heating, cooling, DHW 
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production) and/or of the RES based power generation, related to the building/district in which the 

storage technology is installed, that is released by the energy storage. The scope of the indicator is 

to consider which part of the total energy is required by the building/district (or by a specific 

function such as heating or artificial lighting) and/or of the RES generation during a certain period 

is stored and later released from the storage system. 

ES is the ratio of the product of Cus,max and the number of the measured/expected equivalent 

cycles during the reference period (NRP) over the total energy demand for a certain purpose (e.g. 

heating, cooling, DHW), EDt [kWh], or the RES generation (GRES) [kWh]. 
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Note that the preferred periods and timeframes to be considered are typical and worst-case 

summer, spring and winter days, heating/cooling seasons and an entire year. In all cases, data can 

be used from the typical meteorological year (in the decision making/design phase) or measured 

data (in the monitoring phase). 

6.2.10 Generated energy/cost saving 

This indicator is the expected energy saving (Esav [kWh]) and/or cost saving (COsav [€]), 

generated using the ESS inside an nZEB or a group of buildings during a certain reference period 

(e.g. a day, a season, a year), which must be characterized by a specific number of equivalent 

working cycles. The comparison should be made with an nZEB or district with the same 

characteristics but without the storage system. The indicator highlights the economic benefit 

generated by the storage system thanks to different mechanisms, such as: 

• Shifting the building electric load from peak-hours (high tariff) to off-peak hours (low 

tariff). 

• Increasing the self-consumption of onsite RES production, decreasing both the energy 

exported to the grid and the energy imported from the grid. 

• Reducing the heating/cooling energy demand. 

• Bulk energy arbitrage which involves the possibility of purchasing inexpensive 

electricity available during low demand periods to charge the storage plant, so that the 

low-priced energy can be used or sold later when the price for electricity is higher. 

• Avoiding cost or revenue increase of central generation capacity: for areas where the 

supply of electric generation capacity is tight, energy storage could be used to offset the 

needs such as (1) purchase and install new generation and/or (2) “rent” generation 

capacity in the wholesale electricity marketplace. 

• Reducing reliability-related financial losses: storage reduces financial losses associated 

with power outages. This benefit is very end-user-specific and applies to commercial 
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and industrial (C&I) customers, primarily those for which power outages cause 

moderate to significant losses. 

Note that analogous to the energy storage factor, the preferred periods and timeframes to be 

considered are typical (e.g. worst-case summer, spring and winter days, heating/cooling seasons 

and an entire year). In all cases, data can be used from the typical meteorological year (in the 

decision making/design phase) or measured data (in the monitoring phase). 

6.3 Related KPIs 

The following indicators can be calculated based on the main indicators previously 

presented. 

6.3.1 Fastest charge/discharge durations 

These are the fastest charge and discharge durations (Dc,min and Dd,min) in hours, where the 

former is calculated as the ratio of Cr/Ct and the latter is the average maximum 

charging/discharging power which can be released constantly (Pc,max/Pd,max) during the 

charging/discharging durations, in the reference operating conditions. 
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where Dc,min and Dd,min refer to the same reference conditions defined for Pc,max and Pd,max, 

respectively. 

The indicators are useful to know the minimum timeframe in which an ESS can be charged 

or discharged. If the powers (Pc,max/Pd,max) significantly change during the charging/discharging 

periods as a function of the state of charge, the durations should be calculated according to the 

power profile, at 100%, 70%, 50% and 30% of the useful capacity Cus,max. 

6.3.2 Charging efficiency 

It is the efficiency of the charging phase of the storage system and is calculated as: 
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where DOD is assumed equal to 100% for the first charging cycle (empty storage). 

6.3.3 Discharging efficiency 

It is the efficiency of the discharging period of the storage system and is calculated as: 
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where DOD is 100% for the first charging cycle (empty storage). 

6.3.4 Total charging/discharging efficiency 

The indicator cd is the ratio of the useful capacity Cus,max over the recharged energy Cr to 

reach 100% of storage capacity, referred to specific charge/discharge durations. The obtained 

value indicates the total efficiency of a complete working cycle (charging/discharging). 

The value could be differentiated for the first recharging cycle (empty storage) and the 

subsequent cycles (thus considering the DOD) and must be calculated/measured immediately after 

the full charging period. 
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C max,
  (6.8) 

Note that if a standby period is also included, the indicator should be called roundtrip 

efficiency. 

6.3.5 Mass and volume densities of energy 

It represents the maximum amount of useful energy (Cus,max) per unit of mass or volume of 

the storage unit, calculated as the ratio of Cus,max and St or Wt. Such indicators demonstrate the 

importance of specific mass and volume for certain applications, in kWh/kg and kWh/m3, 

respectively. 

6.3.6 Specific cost of the stored energy 

The indictor SCse specifies the cost of each kWh released from the ESS [€/kWh]. It is useful 

to know the overall cost of the energy (i.e. generation/purchasing cost and additional cost due to 

the energy storage use) provided by a certain ESS applied in building/district. 
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where CGE is the specific generation/purchasing cost [€/kWh] of the energy sent to the storage 

and is dependent to the generation technology/energy supply and SDave [%] is the average self-

discharge for each working cycle, considering the type of use of the storage technology. 

6.4 Schematic representation 

Figure 6.1 shows a schematic representation of an ESS and the main abovementioned 

indicators. 
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t: time and Dc: duration of charging 

Figure 6.1: Schematic representation of an energy storage system and the main KPIs 

Following observations are made to clarify the mentioned concepts: 

• The Cr considers the amount of energy which must be provided to the storage system 

to reach the 100% of Ct. 

• The Cr could be different for the first working cycle (when the storage is completely 

empty) and the normal recharging cycles, if the DOD is lower than 100%. The Cr 

refers to the quantity of energy which should be provided to bring the state of charge 

(SOC [%]) from 100-DOD to 100%. 

• The Ct is the total energy stored at the end of the complete charging period. 
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• The Ct × DOD considers the total energy stored at the end of the complete charging 

period (Ct), net of the fraction which cannot be safely and/or effectively retrieved 

from the storage system. 

• The Cus,max considers the total energy stored at the beginning of the discharging 

period, which is the Ct × DOD deducted from the losses during the eventual inactivity 

time and the losses during the discharging period. It represents the final useful energy 

which can be effectively used. 

6.5 Advanced KPIs 

What has been presented so far will be used at the end of this chapter to evaluate and compare 

the Annex 31 case studies. However, other KPIs also exist which can be used to assess the 

advanced features of energy storages, with specific reference to the benefits generated by the 

storage on the district scale or national grid. In short, the mentioned main and related KPIs are 

intended to easily compare ESSs mainly under a user-side perspective, while the advanced KPIs 

presented in this section primarily highlight (but not only) the grid-side perspective. The advanced 

KPIs could be either evaluated by specific measurements only or obtained from modeling results, 

but typically require a deeper and more detailed analysis compared to the effort needed to 

determine the main and related KPIs described earlier. 

It is important to ensure that the value associated with storage is properly captured in the 

design and operation of low carbon buildings and districts. Therefore, these values should be 

clearly defined and quantified, and incorporated in the assessment of various design options so 

that an optimal system is achieved. Consequently, modeling tools should support quantification of 

the KPIs associated with explicit and inherent storages so that a storage is correctly comprehended 

in modeling tools which support policy formulation, design and regulatory processes. 

The following are the potential advantages of a storage system: 

• Short-term demand response: local load shedding or grid surplus absorption for short-term 

supply response (< 15 mins). 

• Long-term supply balancing: load shaping for grid supply/demand system balancing 

optimization (> 15 mins).  

• Supply optimization: local building or district supply optimization (in terms of cost, CO2, 

renewable energy, etc.). 

• Plant optimization: which applies at all levels (e.g. smaller generator if a storage is used). 

• Enhanced service: in terms of reduced fluctuations (e.g. thermal comfort). 

• Enhanced resilience: to loss of service. 

On the other hand, potential storage disadvantages include: 

• Increased energy use: due to the losses in storage cycle. 

• Discomfort: for instance due to lack of service or parasitic losses. 
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• Undesirable life cycle change: due to the indirect increase in the embodied energy, carbon 

emission, environmental impacts, etc. 

It is important to recognize in the KPIs that energy systems are dynamic and subject to 

stochastic and seasonal variations in demands and supply characteristics. Therefore, KPIs should 

be quantified for appropriate periods (e.g. time of day, typical summer period, typical winter 

period, annualized) and the quantification should consider the statistical uncertainties. Some 

advanced KPIs and the associated quantifications are discussed in this section. It is important to 

note that the presented equations are simplistic and illustrative. Therefore, more detailed models 

are expected to be used in practice. 

6.5.1 KPIs capturing storage advantages 

6.5.1.1 Short-term demand response 

Storage, whether explicit or inherent, allows the possibility to provide short-term response 

services to the grid through reduction or increase in the load based on a signal from the grid 

operator or local measurements of frequency or voltage condition. This functionality is often 

termed ‘demand or frequency response’ and typically requires the system to respond with an ON 

(load absorb/charging) or OFF (load shed/discharging) within a time of the order of seconds 

(depending on the size of the network and its reactance). This type of demand response (DR) is 

currently deployed for curtailment of renewable generators such as local PV when there is an 

oversupply. It can also be used to start up fossil fuel backups if there is a renewable shortfall. In 

the future, DR actions associated with storage would be used to minimize CO2 emissions. 

Infrastructure similar to that used for 'smart meters' or 'storage heaters' on 'white meter' tariffs 

could potentially be used to aggregate consumers to provide this service in the future. Local 

intelligence (or in the cloud) would allow individual systems to provide a response if capacity was 

available without compromising delivery of services to the customer. The aggregator would 

require some assessment of the likely response at any time to quantify the service they could 

provide to the grid. Performance metrics important for this short-term response service are 

presented in Table 6.1. 
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Table 6.1: Short-term demand response KPIs 

No. Parameter Symbol Unit 

1 Time to response tDR s 

2 Current power (grid side) Pi kW 

3 Maximum power (grid side) Pmax kW 

4 Average power (grid side) Pave kW 

5 State of charge (energy) SOC kWh 

6 State of temperature SOT °C 

7 Service delivery temperature SDT °C 

8 Service demand (projection) SD kWh (t) 

9 Storage service temperature (projection) ST °C (t) 

10 Storage load duty schedule (projection) SLD kW (t) 

11 Load grid to heat conversion rate (projection) GTH % (t) 

12 Load shed relative power (grid side) %Pdis % 

13 Load shed ramp rate Pr,dis kW/s 

14 Load shed duration tdis h 

15 Load shed energy Edis kWh 

16 Percentage of load shed energy %Edis % 

17 Load shed net energy cost COdis € 

18 Load shed recovery time RTdis h 

19 Maximum power (grid side for load absorb) PDR (=Pmax) kW 

20 load absorb relative power (grid side) %Pch % 

21 Load absorb ramp rate (grid side) Pr,ch kW/s 

22 Load absorb duration tch h 

23 Load absorb energy (grid side) Ech kWh 

24 Percentage of load absorb energy %Ech % 

25 Load absorb net energy cost COch € 

26 Load absorb recovery time RTch h 

The obtained response is primarily characterized from the grid side by the time to respond, 

the current power consumption (or the average power for aggregated loads), the maximum power 

consumption, the power ramp rates, the available durations (and associated energy) for power 

absorb (charge) or load shed (discharge) operations, the energy and financial costs associated with 

these response events, and the recovery time required before a repeat response is available. The 

response available as a fraction of the total load may also be a useful parameter. 

The duration of the required absorb or shed response is a key parameter. Very short responses 

of the order of seconds or a few minutes would in many circumstances be invisible to the end user 

due to the large system time constant. 

Longer responses would require the available durations to be assessed by 'local' intelligence 

(i.e. the storage or enhanced heating/cooling system controls) based on individual system 

parameters such as the current stored energy, storage temperature, service demands and storage 

temperature projections including system losses, storage normal duty cycle and grid to heat 

conversion rate (e.g. for a heat pump), etc. (parameters 5 to 11 in Table 6.1). The individual system 

would then only provide a response if there was no impact on comfort. 
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6.5.1.2 Long-term supply balancing 

The load shaping functionality is similar to the short-term DR but acts over longer periods 

in the order of 2 to 48 hours ahead based on forecasted grid conditions. Pricing signals are applied, 

either by standard schedules for peak and base tariffs or increasingly, time of use (TOU) hourly or 

half-hourly electricity cost schedules. In both cases, the intent is to reduce peak demands and 

provide less variation in demands to reduce the need to invest for peak capacity and to increase 

the utilization factors and return on investment for the existing capacity. Historically, there has 

been a need to shift the demand to night time to fill in the overnight demand gap and reduce the 

morning and evening peaks which has been enabled by the systems such as ‘storage heaters’ and 

thermal storages on ‘white meter’ tariffs in the UK. In the future, it is expected that the availability 

of TOU tariffs might increase where each 30-minute timeslot in a 24 or 48-hour period is given an 

independent price, re-forecasted periodically, allowing for storage to enable load shifting to low 

tariff periods. Storage used in this way can also enable surplus grid scale renewable energy to 

supply the grid which would otherwise be curtailed. Most of the performance parameters which 

were important for short-term DR are also important for load shaping; however, some further 

metrics are also useful (Table 6.2). 

Table 6.2: Load shaping for demand to supply optimization KPIs 

No. Parameter Symbol Unit 

1 Tariff base and peak or TOU (projection) COTOU €/MWh (t) 

2 Load flexibility ratio (absorb time/shed time) LF - 

3 Percentage of load flexibility  %LF % 

4 Forward projection of DR (vector) V - 

5 Periods with shed flexibility over x hours (e.g. 4, 8, etc.) FLEX(x) % 

The load flexibility in support of demand optimization has two dimensions. The first is the 

ability to absorb low tariff electricity during periods of availability, for which the time taken for 

complete charging (tch, parameter 22 in Table 6.1) is important since if it is too slow, then 

opportunities will be missed. The second is the ability to coast through periods of high cost (tdis, 

parameter 14 in Table 6.1) since if this is too short, then high cost electricity cannot be avoided. A 

load flexibility ratio is defined as the ratio of charge time to coast time to help characterize storage 

flexibility. 

The percentage of the load which can be shifted to periods of low tariff for defined high and 

low period situations would provide a useful but tariff specific output, so the tariff used must be 

clearly stated. The load shed duration could be used to provide alternative tariff independent 

metrics derived from an analysis of load shed durations for a range of potential flexibility periods. 

The current logic applied to the tariff periods is generally a simplistic switch ON of off-peak 

charging when low tariff periods commence and OFF when the off-peak period ends with 

maximum charging controlled thermostatically. If the storage reaches its lower control limit during 

peak times, then peak electricity is used to boost. In the future, TOU tariffs will potentially support 

more sophisticated local optimization through some forward projection of performance (e.g. a 

multi-parameter vector) and option selection. 
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6.5.1.3 Supply optimization 

Local supply optimization would take information regarding future RES availability, grid 

energy tariff pricing, grid associated carbon emissions, weather and end user demand forecasts 

over a future time horizon as inputs. The information is used to optimize the TES usage to achieve 

the best possible performance for a selected objective function. The required functionality for this 

service could potentially be built upon smart meter platforms or similar infrastructure. The 

parameters described in the previous sections should provide inputs to the optimization. 

A set of performance metrics quantifying the benefits of the storage can be envisaged (in 

Table 6.3) such as saving in grid supplied energy (%GEsav), reduction in carbon emissions 

(%CO2sav), reduction in total energy cost (%COsav), reduction in life cycle cost (%LCCsav) and 

reduction in life cycle energy (%LCEsav). In reality, the objective function for the optimization is 

likely to be some combination of these. 

Table 6.3: Local building or district supply optimization KPIs 

No. Parameter Symbol Unit 

1 Percentage of grid supplied energy reduction (modeling) %GEsav,m % 

2 Percentage of carbon emission saving (modeling) %CO2sav,m % 

3 Percentage of cost reduction (modeling) %COsav,m % 

4 Percentage of LCC saving (modeling) %LCCsav,m % 

5 Percentage of energy saving (modeling) %Esav,m % 

6 Percentage of grid supplied energy reduction (actual) %GEsav,a % 

7 Percentage of carbon emission saving (actual) %CO2sav,a % 

8 Percentage of cost reduction (actual) %COsav,a % 

9 Percentage of LCC saving (actual) %LCCsav,a % 

10 Percentage of life cycle energy saving (actual) %LCEsav,a % 

Design estimations of performance should be clearly differentiated from actual measured 

performance to allow insight into performance gaps which may exist due to practical problems. 

Based on evidence from the building industry, there is large scope for such performance gaps 

unless the prevalent industry issues are addressed [390]. Actual verification of system performance 

would appear to be essential for validation [391]. 

6.5.1.4 Plant optimization 

Storage has significant capital cost reduction and revenue enhancing benefits at both larger 

and smaller scale. At larger scale, the savings in capital cost required for generation, transmission 

and distribution expansions associated with increased electrification of heat and transport, and 

increased implementation of variable renewable generation technologies is substantial. Storage 

can also enable increased revenue from renewable generation through avoidance of curtailment. 

The need for flexible backup generation to accommodate variable renewables can potentially be 

avoided through TES. 

At the smaller scale, newly installed TES systems can allow peak loads to be satisfied by a 

significantly less expensive smaller thermal or electrical generator (e.g. with a heat pump) running 

for longer hours achieving better asset utilization. Where heat or electrical generation capacity is 

already installed, storage can allow larger loads to be served with longer operating hours, 
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increasing asset utilization and maximizing revenues. The TES allows the system to operate in a 

more continuous mode rather than short cycling. This improves operational efficiency and can 

reduce maintenance requirements and extend the asset lifetime. TES allows demands to be served 

immediately from storage rather than waiting for the heat generation system to come up to 

operating speed, which often requires considerable time. To capture these benefits in generic 

terms, the metrics presented in Table 6.4 are proposed. 

Table 6.4: Plant optimization KPIs 

No. Parameter Symbol Unit 

1 Percentage of source system size reduction %SSSR % 

2 Percentage of apparent peak load reduction %APLR % 

3 Percentage of total capital cost reduction %TCCR % 

4 Percentage of increased source system utilization %ISSU % 

5 Percentage of reduced unit service cost %RUSC % 

6 Percentage of reduction in system response time %RSTT % 

7 Percentage of reduction in source system short cycling %RSSC % 

6.5.1.5 Enhanced service 

Storage has the potential to provide capacity within a system by reducing the fluctuations 

that would otherwise not be seen by building occupants. This capacity potentially provides a 

comfort benefit or extends the period that the system can withstand a loss of service improving its 

resilience. These properties are captured in several DR and load shifting KPIs provided earlier; 

however, there remains a potential to express these more directly in thermal comfort and resilience 

metrics as shown in Table 6.5. 

Table 6.5: Enhanced service KPIs 

No. Parameter Symbol Unit 

1 Percentage of reduction or increase in discomfort %RD % 

2 Comfort after loss of service CLS h 

3 Parasitic losses from storage (internal gains) LOSS kW 

6.5.2 KPIs capturing storage disadvantages 

Negative aspects of storage should be explicitly captured in KPIs and be considered in 

design, too. These include the potential for increased energy use through the incorporation of 

storage systems, having an energy penalty due to charging, discharging and standby losses. These 

losses should be closely scrutinized at the design and post design stages. This increase in energy 

use is captured in parameters 25 and 17 in Table 6.1; however, experience from the building 

domain suggests that often these parameters are underestimated as parasitic losses due to pipe 

connection points, pumps and other service connections are neglected from calculations. 

Underestimating these energy costs could significantly undermine the benefits and must be 

avoided. 

Parasitic losses also have the potential to cause discomfort and further unintended secondary 

energy use. For instance, parasitic losses from TES systems in the summer can cause overheating 

which stimulates the use of cooling systems. Experience from implementation of solar thermal 

systems in Passivhaus dwellings in the UK has revealed that gains associated with the TES systems 
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cause overheating particularly due to poor insulation on connecting pipework rather than the 

storage itself [390]. 

Manufacturing the storage systems and the infrastructure required for their implementation 

should be carefully considered as part of a comprehensive LCA including production, disposal, 

recycling, etc. These considerations are covered by the KPIs described above but should be 

managed throughout the design and post design phases to ensure that positive intended outcomes 

are achieved from storage. 

6.6 Description of case studies 

This section contains the description of demonstration case studies of Annex 31 related to 

energy storage solutions designed for the application at the building/district level. To facilitate the 

analysis and the comparison of different case studies, first, a simplified project form is illustrated 

which was defined to collect the required information. Thereafter, the information for each case 

study is presented in detail. Finally, the specific KPIs are calculated for each case study. 

Title of the project:  

Keywords:  
 

Contact person:  

Address:  

Phone:  Email:  
 

Institutions involved:  

Industry collaboration:  
 

Type of activity: 

(mark the appropriate) 

X Demonstration in laboratory (TRL* ≤ 6) 

X Demonstration in operational environment (TRL ≥ 7) 
 

Type of project: 

(mark the appropriate) 

X Demonstration of a stand-alone energy storage 

technology/solution 

X Demonstration of an energy storage technology/solution applied 

in a building 
*TRL: technology readiness level 
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Description of the energy storage solution (max 4000 characters) 

Technology type: 

• Mechanical 

• Electrical 

• Electrochemical 

• Thermal 

• Potential 

Storage medium: 

Describe the storage medium and the required accessories included in the storage system. 

Innovative features: 

Describe the main innovative features of the storage technology compared to the commercial available 

solutions. 

Operational constraints: 

Describe all the operational constraints that must be known for the operation of the storage. 

Environmental aspects: 

Describe all specific hazards for the environment during the life cycle of the storage system. 
 

Description of the demonstration activity (max 4000 characters) 

Brief description of the demonstration activity, with particular reference to: 

• Purpose of the demonstration 

• Demonstration context (e.g. description of the building in which the energy storage is installed) 

• Obtained or expected results 

• Budget and funding of the demonstration activity 
 

References 

Web sites, published works, etc. related to the demonstration activity. 

In this section, based on the previously defined project form, a description of each case study 

included in the Annex 31 activities is reported. All the case studies are related to demonstration 

activities realized/monitored by Annex members in laboratory or in operational environment. 

6.6.1 HIKARI project, France 

Title of the project: HIKARI 

Keywords: ZEB, PCM, storage 
 

Contact person: David Corgier 

Address: Savoie Technolac BP 209, 73 374 Le Bourget du Lac, France 

Phone: +33 6 42 84 20 34 Email: david.corgier@cmdl.fr 
 

Institutions involved: ENTPE 

Industry collaboration: BOUYGUES IMMOBILIER/ CMDL MANASLU Ing 
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Type of activity:  Demonstration in laboratory (TRL ≤ 6) 

X Demonstration in operational environment (TRL ≥ 7) 
 

Type of project:  Demonstration of a stand-alone energy storage 

technology/solution 

X Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

The different energy storages are hereunder described: 

1. Hot water storage: 

• 28 m3 water tanks made of 7 tanks in series 

• Lifetime: infinite 

• Energy storage: 650 kWh (in winter season) 

2. Cold water storage: 

• 4 tanks with a total volume of 90 m3 in parallel filled with PCM, 

• PCM reference: ECIOJOULE 108 from JX Nippon Oil (melting temperature range 8 °C) 

• Lifetime: to be evaluated 

• Energy storage: 700 kWh 

• Cost: €300,000 for the PCM material and €200,000 for the tank 

3. Battery system: 

• 50 kW in charging and discharging, 

• SCIB and Lead Acid coupled technology, 

• Capacity: 100 kWh 

• Lifetime: to be evaluated 

• Cost: €350,000 
 

Description of the demonstration activity 

• Purpose of the demonstration: demonstration of a positive energy plot made of 3 buildings. 

• Demonstration context: The city of Lyon and Grand Lyon have launched in 2011 a tender to 

study, to build and to monitor during a period of 24 months a 12,000 m² plot. This latest should 

be representative of the future targeting a positive energy balance over the year. 
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Figure 6.2: HIKARI project description with surface sharing 

The surface sharing for each building for dwellings, office area and retail shops is hereunder described 

in Table 6.6. 

Table 6.6: HIKARI surface sharing between buildings and activities  

Building name (see Figure 6.2) Offices Dwellings Retail shops Total 

1 – HIGASHI  5,434 m² N/A 567 m² 6,001 m² 

2 – MINAMI N/A 2,959 m² 289 m² 3,248 m² 

3 – NISHI 2,338 m² 570 m² 153 m² 3,061 m² 

Total 7,772 m² 3,529 m² 1,009 m² 12,310 m² 

 

• Obtained or expected results: to evaluate the actual performance of the buildings and equipment 

within a 2-year operating period to validate the design concept and quality of execution and 

facility management. 

• Budget and funding of the demonstration activity: Construction budget 33 million euros, with a 

NEDO participation around 5 million euros, demonstration activity: €350,000, with an ADEME 

funding of 50% in cooperation with ENTPE 
 

References 

Website [624] 
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6.6.2 LOCCIONI project, Italy 

Title of the project: Leaf Lab Thermal Storage 

Keywords: Sensible thermal storage 
 

Contact person: Antonio Giovannelli 

Address: Via Collefreddo 8/9 Maiolati Spontini (AN) Italy 60030 

Phone: +39 0731 816 537 Email: a.giovannelli@loccioni.com 
 

Institutions involved:  

Industry collaboration: Loccioni Group (www.loccioni.com) 
 

Type of activity:  Demonstration in laboratory (TRL ≤ 6) 

X Demonstration in operational environment (TRL ≥ 7) 
 

Type of project:  Demonstration of a stand-alone energy storage 

technology/solution 

X Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

A 450 m3 insulated water storage used as thermal storage by charging energy with heat pumps, powered 

by a solar PV system. 

• Long lifetime: it is only an underground water storage and the heat pumps are the same for building 

conditioning 

• Limited cost: the storage concrete structure was realized during the building construction (not 

many additional costs) 

• Large storage capacity: 523.25 kWh 

• CO2 emission reduction by using the energy generated through solar PV system 

• Costs reduction by reducing the grid energy consumption 
 

Description of the demonstration activity 

• The storage system is charged by using the same heat pumps used for the building conditioning 

that allow to increase/decrease the temperature of the water in the storage. It is possible to charge 

the storage when exceeding photovoltaic energy is available to use this energy for cooling/heating 

the building during the following days. 

• The new building (Leaf Lab) is an nZEB with a PV system (240 kWp) on the roof and heat pumps 

coupled with the groundwater for conditioning. 

• The ESS allows to avoid the energy consumption from the grid during the first two or three days 

of the week by charging the storage during the weekend. Obviously, the number of days without 

energy consumption from the grid depends on the amount of stored energy and external 

conditions. 
 

References 

Publications [625-627] 
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6.6.3 Electrically heated floor, Canada 

Title of the project: Load management using electrically heated floor 

Keywords: Load management, electrically heated floor, floor heating system 
 

Contact person: Fariborz Haghighat 

Address: 1455 De Maisonneuve Blvd. W., Montreal, QC, Canada, H3G 1M8 

Phone: +1 514-848-2424 (3192) Email: fariborz.haghighat@concordia.ca 
 

Institutions involved: Concordia University (Montreal, QC, Canada) 

Industry collaboration: Hydro-Québec, Ouellet Canada 
 

Type of activity: X Demonstration in laboratory (TRL ≤ 6) 

 Demonstration in operational environment (TRL ≥ 7) 
 

Type of project:  Demonstration of a stand-alone energy storage 

technology/solution  

X Demonstration of an energy storage technology/solution applied 

in a building  
 

Description of the energy storage solution 

• The energy storage solution is an electrically heated floor (EHF). It consists of wires embedded in 

a concrete layer with an insulation layer at the bottom. Currently, the system is installed for comfort 

reasons (to have hot feeling under foots). The objective of this research is to develop its storage 

capability. 

• The storage capacity is limited to the maximal floor surface temperature allowed by ASHRAE (29 

°C). A lifetime of approximately 20 years is expected. 

• Actual costs of the material are around $2.5 (CAD)/cm/m2 for the insulation, $2.5 (CAD)/cm/m2 

for the concrete and $65 (CAD)/m2 for the EHF turnkey cost. Therefore, for a conventional 

assembly in Québec, the cost is about $115 (CAD)/m2. 

 

Description of the demonstration activity 

• The goal of this project is to study whether EHF can store enough energy to significantly reduce 

the peak consumption. Moreover, in all houses with low thermal mass, especially in Canada, the 

only place with thermal mass is the basement floor. Thus, one goal of this project is to study the 

possibility for storing and release energy in the basement floor. 

• A first simulation study has been done on a building (without basement) in Canada. Considering 

that peak periods are mainly during morning and evening, it was assumed that the peak period is 

from 6:00 AM to 8:00 PM to not create a new peak during the afternoon. The results for January 

show that 84% of the energy for space conditioning was consumed during the night, with the rest 

of the consumption only during the afternoon.  
 

References 

Publications [392, 628] 
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6.6.4 PCM wall, Turkey 

Title of the project: Enhancing thermal properties of concrete mixes by using phase change 

materials for energy efficient buildings 

Keywords: Passive thermal energy storage in buildings, microencapsulated PCM, 

composite wall 
 

Contact person: Halime Paksoy 

Address: Çukurova University, Adana, 01330, Turkey 

Phone: +90 322 3386418 Email: hopaksoy@cu.edu.tr 
 

Institutions involved: Cukurova University, Erciyes University, Niğde University 

Industry collaboration: Kambeton Prefabricated Panel Production Company 
 

Type of activity:  Demonstration in laboratory (TRL ≤ 6) 

X Demonstration in operational environment (TRL ≥ 7) 
 

Type of project:  Demonstration of a stand-alone energy storage 

technology/solution 

X Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

• Innovative features: new microencapsulated PCM (mPCM) which is durable to be mixed was 

developed. The core material in the microcapsule was fatty acid based mixture with melting 

temperature of 22 °C. The fatty acids, which are bio-based and have limited flammability are more 

advantageous compared to paraffinic PCMs. The developed mPCM was added in concrete to build 

a novel composite prefabricated panel. The composite panels with sizes 2 × 2 × 0.12 m3 had two 

layers each of which had 0.06 m thickness. One of the layers contained 10% mPCM-concrete 

mixture and the other layer was prepared without PCM. 

• Capacity and expected lifetime: south and west walls of the test building were built with the 

composite panel. Total mass of mPCM used was 17 kg. With a latent heat storage capacity of 85 

kJ/kg, the total added storage capacity of the composite panels was 1,445 kJ. 

• Costs (actual and/or expected): mPCM was synthesized in the laboratory and does not have an 

actual cost. Other microencapsulated products (e.g. Micronal) had an approximate cost of 5 €/kg. 

• Environmental impact: with the expected energy savings in heating and cooling, CO2 emissions 

will also be reduced. The assessment will be done once the measurements are completed. The used 

fatty acid has vegetable origin and is not a fossil fuel derivative as paraffins. This is also an 

important feature in terms of carbon footprint of the building and storage technology. 
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Description of the demonstration activity 

• Purpose of the demonstration: 

(1) developing new mPCM and preparation methods to be used for thermal enhancement of 

concrete mixes, 

(2) incorporating the developed materials in prefabricated panels with a new approach, 

(3) demonstrating thermal performance of the novel prefabricated panels in test buildings 

• Demonstration context: 

Three buildings shown in Figure 6.3 were built in Adana, Turkey using the novel composite 

panels. One of the layers contained 10% of mPCM-concrete mixture and the other layer was 

prepared without PCM. The dimensions of the buildings were 2 × 2 × 2 m3. One of the buildings 

was the reference, the second one had PCM without microencapsulation and the third one had 

microencapsulated PCM. South and west walls were built using the composite panels. 

 
Figure 6.3: Picture of test buildings for demonstration of the novel composite walls in Adana, Turkey 

T-type thermocouples were placed inside and outside of the test buildings for temperature 

measurements at 11 different points and connected to a data acquisition system, which recorded 

at 5-minute intervals. All the instrumentation was connected to a data-server system with internet 

connection in a separate control building. Temperature distribution on the wall surfaces was also 

investigated with an infrared camera (Testo 875-2i). Thermal camera images were used to observe 

thermal effects of mPCMs in the vertical section of panels. Pyranometer (EKO MS-410 Class 1) 

was placed on the test building to collect total solar irradiation data with 10 minutes intervals. 
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• Obtained or expected results: 

Thermal camera image comparison of reference and composite mPCM panels is shown in Figure 

6.4. Images were taken on November 5, 2014 at noon. Maximum values of solar irradiation were 

observed at this time frame can reach above 900 W/m2. As can be seen in right image of the figure, 

there is an increasing temperature gradient in the reference panel. The highest temperature was 

measured as 35 °C, on the left side where the sun is shining and, the lowest temperature was 

around 27 °C, on the right side facing inwards. In the left image, the highest temperature was also 

measured as 35 °C on left side. Moreover, along the first 6 cm of the composite panel, where no 

mPCM was used, similar temperature gradient as the base case is observed; however, in the second 

half of the composite panel, temperature increase is slowed down, and the lowest temperature was 

around 22 °C, on the right side facing inwards. This difference of 5 °C between inside surface of 

reference and composite walls is attributed to the heat stored by mPCM which melts isothermally 

during this process. 

 
Figure 6.4: Thermal camera images of mFDM panel (left) and the reference case (right) 

• Budget and funding of the demonstration activity: 

Project grant from Turkish Scientific Research Council with two full time PhD students. 
 

References 

Publication [629] 
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6.6.5 KOMCEE, Japan 

Title of the project: 21 KOMCEE “Komaba Centre for Educational Excellence” 

Keywords: ZEB, active thermal storage, ground source heat pump, ground water heat 

pump 
 

Contact person: Ryozo Ooka 

Address: IIS, The University of Tokyo, 4-6-1 Komaba, Megro-ku, Tokyo, Japan 

Phone: +81-3-5452-6435 Email: ooka@iis.u-tokyo.ac.jp 
 

Institutions involved: The University of Tokyo 

Industry collaboration:  
 

Type of activity:  Demonstration in laboratory (TRL ≤ 6) 

X Demonstration in operational environment (TRL ≥ 7) 
 

Type of project:  Demonstration of a stand-alone energy storage 

technology/solution 

X Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

Hot/cold water storage 

• 300 m3 water tank constructed within the ground pit of the building 

• Perfect mixing type 

• Lifetime: infinite 

• Energy storage: 3,500 kWh at maximum (temperature difference: 10 K) 
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Description of the demonstration activity 

• Location: Komaba campus, the University of Tokyo.  

• University building 

• Five floors with one underground level floor 

• Total floor area: 4,477 m2 

• Several studios and convention rooms such as halls and meeting rooms 

 
Figure 6.5: Picture of the considered university building, (left) and process flow diagram (right) 

 

References 

None 

 

6.6.6 Integral solar collector, France 

Title of the project: Integral solar collector storage with phase change material and honeycomb 

Keywords: Integral collector storage, phase change material, honeycomb, heat pipe 
 

Contact person: Gilles Fraisse 

Address: Savoie Technolac, 73376 Le Bourget du Lac, France 

Phone: +33 4 79 75 88 95 Email: fraisse@univ-smb.fr 
 

Institutions involved: Université Savoie Mont Blanc 

Industry collaboration: DATE/ SMCI/ INSULA France 
 

Type of activity:  Demonstration in laboratory (TRL ≤ 6) 

X Demonstration in operational environment (TRL ≥ 7) 
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Type of project: X Demonstration of a stand-alone energy storage 

technology/solution 

 Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

Market development of solar thermal systems in France is penalized by the investment cost 

compared to other solutions which use fossil fuels or electricity. Moreover, standard solar systems are 

more suitable for new systems rather than renovation (additional space required for storage), which is the 

major energy issue in the building sector. The research activities should encourage the development of 

innovative solutions leading to lower cost suitable for renovation. In this context, integrated collector 

storages (ICS) are very interesting since they allow financial savings compared to conventional solar 

thermal systems due to their simplicity, passive operation and faster installation. The ICS exist since the 

end of 19th century. Currently, about ten companies produce ICS of various geometries, using water as 

the storage medium [630]. The ICS are suitable both for new buildings and renovation in existing 

buildings. In ISC, the storage is not located inside the building (few spaces available in existing buildings 

and square meters cost in new buildings). Therefore, ICS are promising systems for the development of 

solar thermal market. However, the main drawback of such systems is related to the high thermal losses 

since the storage is generally not insulated behind the collector absorber. Consequently, the ICS are rather 

used in hot climates. 

The work focused on a new concept of ICS using PCMs within a parallelepiped cavity 

(honeycomb), using thermosyphon heat pipes to transfer solar energy from the flat plate collector to the 

storage (see Figure 6.6). The storage cavity is fully thermally insulated to minimize heat losses. The 

interest of the heat pipes is their passive operation and “thermal diode” behavior. The use of PCM allows 

reducing the thickness of the storage cavity as compared to water. Architectural integration is thus greatly 

improved knowing that it is a major problem for most currently available ICS. Moreover, using PCM 

inside the storage excludes the freezing problem. Finally, a coil type heat exchanger allows discharging 

the energy contained in the ICS. 

 

Figure 6.6: The new concept of integral collector storage 
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Description of the demonstration activity 

This new type of ICS has been tested in real conditions at National Solar Energy Institute (INES). 

The aim of this test was to study the dynamic behavior of ICS in real conditions. This experimental study 

will also be used to validate a numerical model. 

 
Figure 6.7: Picture of the integral collector storage 

Temperature measurements have been carried out using thermocouples at different points within 

the ICS: the absorber, heat pipe, storage cavity and air-gap. 

A pyranometer has also been installed near the collector to measure the irradiance of the collector. 

An acquisition unit stores all the data. The water discharge rate was 9.3 liters per minute for 19 minutes 

at 6 AM This choice has been made to completely discharge the collector to focus only on the storage 

phase. Complementary tests with more realistic water withdrawal are currently being conducted. The 

results for the first week of observation are shown in Figure 6.8. 

 
Figure 6.8: Temperature and solar radiation profile (from May 24 to 29) 
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The results shown in Figure 6.8 are for the first five days of experimentation. During these days, 

the collector irradiance exceeded 1,000 W/m² (tilt of 30°). The average absorber temperature reached 90 

to 95 °C during noon, following the solar radiation fairly well. Concerning the storage, its temperature 

increased along the day to a peak at about 70 °C during the afternoon. This allowed validating the correct 

operation of the heat pipes. A stabilization period of several hours appeared at the beginning of each 

night at about 55 °C, which is the phase change temperature of the PEG 6000, showing its crystallization. 

A similar phenomenon was observed during the morning when it is melting. The melting was faster due 

to the solar gains rate. Finally, the water withdrawal decreased the storage temperature (which dropped 

to about 35 °C before rising again). This experimental study is funded by the ADEME in the framework 

of the agreement n° 1205C0129 (project CSIS). 

 

References 

Publications [631-633] 

 

6.6.7 WWHC District, UK  

Title of the project: West Whitlawburn Housing Co-operative biomass district heating with 

thermal storage 

Keywords: Sensible thermal storage, district heating, housing, fuel poverty, biomass, heat 

pump, renewable, 4th generation, performance gap, design tool 
 

Contact person: Andrew Lyden 

Address: 16 Richmond Street, Glasgow G1 1XQ 

Phone: +44 7540395205 Email: andrew.lyden@strath.ac.uk 
 

Institutions involved: University of Strathclyde 

Industry collaboration: West Whitlawburn Housing Co-operative 
 

Type of activity:  Demonstration in laboratory (TRL ≤ 6) 

X Demonstration in operational environment (TRL ≥ 7) 
 

Type of project:  Demonstration of a stand-alone energy storage 

technology/solution 

X Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

A thermal storage (a hot water tank) has been included in a DHS serving 600 dwellings mainly in 

high rise and tenement blocks which uses a biomass boiler as the main heat source. The purpose of the 

thermal storage is both to allow for heat generated by the biomass to meet daily demand peaks which 

exceed the boiler capacity, and to reduce the boiler cycling such that it can run at a steadier output which 

optimizes performance. This thermal storage differs from a separate much smaller buffer tank, primarily 

utilized for protection from rapid cycling which can cause damage to the boiler. District heating provides 

the boiler with a smoother, diversified load but this is still subject to daily peaks. The thermal storage 

allows for the separation of the stochastic district heating load and the required output from the biomass 
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boiler which can be run at a more fixed value optimizing efficiency and maintenance schedules and 

minimizing the use of backup gas boilers. The biomass-supplied heat is supported by a Government 

renewable heat incentive (RHI) payment so the thermal storage increases the financial returns from the 

system and reduces the overall cost of heating. 

The capacity of the hot water tank is 50 m3 and runs at high and low temperatures of 85 °C and 70 

°C, respectively. This means that there is an energetic capacity of 871 kWh or 58 kWh/K. The expected 

lifetime of the thermal storage has not been analyzed. 

The current biomass and thermal storage operation is configured to fill and empty the storage 

depending on its mean temperature. Figure 6.9 shows a 9-hour period of the thermal storage mean 

temperature and the biomass flow rate. When the thermal storage reaches a temperature of 85 °C and the 

biomass output exceeds the load, the boiler switches OFF (evident by the flow rate drop in Figure 6.9). 

The thermal storage then meets the load until the mean temperature drops to 70 °C when the biomass 

turns back ON. The thermal storage then returns to the high mean temperature (85 °C). This operation 

mode allows the biomass to operate at a fixed point, feeding both the load and the storage, separating the 

district load and the boiler load. Options for more advanced control schemes will be investigated. Figure 

6.10 shows an excerpt of the nodal analysis of the thermal storage at 7 different heights in the tank. 

 
Figure 6.9: Current biomass and thermal storage operation 
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Figure 6.10: Temperature levels in thermal storage 

The negative environmental impact of a hot water tank is seen as minimal, with the physical 

dimensions of the storage tank not particularly taller than the boiler house and lower than the flues 

meaning the visual impact is the same as the boiler house. There should be a positive environmental 

impact due to the higher usage of the biomass boiler, displacing the use of gas boilers. Here, it is presumed 

that gas has a worse environmental impact than biomass. The biomass boiler should also be working more 

efficiently due to the thermal storage, resulting in a higher heat output per input mass unit of biomass. 

 

Description of the demonstration activity 

• Purpose and context 

West Whitlawburn Housing Co-operative (WWHC) is a fully mutual, tenant owned and controlled 

housing co-operative with charitable status, located in the south of Glasgow in Cambuslang, South 

Lanarkshire. It is an area of multiple deprivations and its aim was to provide affordable, sustainable and 

community-controlled energy to the households. 

WWHC own and manage 644 properties: 432 multi-story flats, 112 low-rise tenement flats and 

100 houses (Figure 6.11). Previously, heat was supplied via electric storage and panel heaters in the 

individual dwellings. Due to the build construction types of the multi-story and low-rise tenement flats, 

gas heating could not be installed. All these properties have had fabric upgrades including building, 

windows and roofs. The largest investment was adding substantial external cladding to multi-story flats. 

 
Figure 6.11: Picture of WWHC multi-story flats 
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The solution to tackle the rising problem of fuel poverty in the community was decided to be a 

biomass based DHS with a centralized energy center supplying domestic heat and hot water to dwellings 

via a district heating network. To allow for optimal performance of the biomass boiler, a thermal storage 

was included. Work on this scheme was completed in December 2014, though extensive remedial work 

has been necessary which began in June 2015 and is ongoing. 

There is a 740 kW Viessman Pyrotec biomass boiler (Figure 6.12) which operates with the 50 m3 

water tank and three 1.2 MW gas boilers (Figure 6.13) which help with peak demand, provide backup 

in the event of a breakdown, and ensure demand is met during maintenance. 

 

 
Figure 6.12: Picture of Viessman Pyrotec (740 kW) 

  
Figure 6.13: Picture of the thermal storage with 50,000 liters capacity (left) and the boiler house (right) 

The system is being used as a base for academic research and knowledge transfer to industry. 

Monitoring data is being gathered on the system operation and this is informing the creation of models 

which will be used to develop design and control strategy improvements to optimize performance. These 

will be tested on the system and the results will be reported. 
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• Research focus and results 

A methodology and supporting software tool for optimizing the design of biomass heating systems 

and thermal storage has recently been developed and released for industry use [317], called the Biomass 

Design Support Tool. This is being retrospectively applied to the WWHC system with the aim of further 

developing and extending this methodology and toolset to better support delivery of biomass plus storage 

systems which operate effectively without gaps between design and operational performance. The 

biomass design tool suggests that the system performance should be much better than is being seen (e.g. 

for the current system around 95% of the heat should be from biomass while in reality it was 77% from 

March 2016 to February 2017). 

Energy performance certificates are a requirement for flats in the UK. These have been improved 

due to the installation of the DHS. The multi-story flats have moved from D to C and A for energy 

efficiency and environmental impact, respectively. 

The community looked at an individual flat and found there to be a 34% reduction in consumption 

and 16% reduction in cost for that particular tenant. 

The secondary aim of the research is to develop a methodology and supporting toolset for the 

incorporation of heat pumps and thermal storage within single building or 4GDHS which maximize the 

use of renewable generation (wind and solar). The methodology should address design and operation and 

avoid performance gaps. Several large-scale district systems have been announced in Scotland [634] but 

these do not yet consider optimization of thermal storage, use of renewables, performance gaps, or 

4GDHS concepts. 

The third aim of the research is to establish a methodology for realistically capturing demand 

behaviors for use in design and control of district level systems with storage. This will be incorporated 

into the methodology and toolsets to be developed for design. 

• Budget and funding of the demonstration activity 

Funding for the WWHC district heating network came from various sources and different times. 

A substantial amount was contributed by Npower, through the Energy Company Obligation (ECO), who 

became WWHC’s utility partner. An overall of £6.75 million capital funding package was obtained by 

funding from Npower through ECO, the Warm Homes Fund, and European Regional Development grant 

funding. Further funding came from the Big Lottery Community Spaces funding to extend the district 

heating network. 
 

References 

Websites [317, 634-636] and publications [232, 637] 
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6.6.8 Tsukuba-Mirai, Japan 

Title of the project: Tsukuba-Mirai Technology Center of SANKEN Environmental Engineering 

Keywords: Stratified water thermal storage, solar collector 
 

Contact person: SANKEN Environmental Engineering 

Address:  

Phone:  Email:  
 

Institutions involved:  

Industry collaboration: SANKEN Environmental Engineering 
 

Type of activity: X Demonstration in laboratory (TRL ≤ 6) 

 Demonstration in operational environment (TRL ≥ 7) 
 

Type of project: X Demonstration of a stand-alone energy storage 

technology/solution 

 Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

The system is consisted of 28 flat plate solar collectors with total space of 96 m2 and a stainless-

steel tank with 4 m3 of volume. The stratified water TES system is connected to the solar collector directly. 

The charging and discharging operations depend on inside temperature of the storage. 
 

Description of the demonstration activity 

The objective of this project is to make the most of the solar thermal energy usage with the 

stratified TES tank. The annual solar thermal energy usage in 2013 was 59.1 GJ. COP of the solar thermal 

system (including pumps) in winter, especially November to March, was 36-40 and the coefficient of 

utilization of solar energy was 89-96%. The COP in July and October was 22-23 and the coefficient was 

72-80%. 

Energy costs: 17 yen/kWh in summer, 16 yen/kWh in other seasons. 

Cost per stored kWh annual thermal: 0.55 yen/kWh to discharge annual thermal energy from tank. 
 

References 

Website [638] 
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6.6.9 Nagoya University, Japan 

Title of the project: Building for researches and experiments at Nagoya University 

Keywords: Stratified water thermal storage, demand prediction 
 

Contact person: Hideki Tanaka 

Address:  

Phone:  Email:  
 

Institutions involved: Nagoya University 

Industry collaboration: None 
 

Type of activity: X Demonstration in laboratory (TRL ≤ 6) 

 Demonstration in operational environment (TRL ≥ 7) 
 

Type of project: X Demonstration of a stand-alone energy storage 

technology/solution 

 Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

• The storage total capacity is 3,535 kWh 

• Design temperature degree 13 K (5–18 °C: cooling, actual charge temp: 5.3 °C) 

• Actual temperature degree 12.7 K 

• Storage tank volume: 126 m³ × 2 tanks 

 

Description of the demonstration activity 

The project has three main purposes: 

1) Reduction of the peak-time demand. 

2) Energy saving by the utilization of groundwater and heat pump. 

3) Load forecasting for optimal operations of the TES system. 

Especially, energy saving by 20% compared to an ordinary building. The building has total floor 

space of 7,000 m2 and air-conditioned area of 3,200 m2. The designed COP of the heat source machine 

(heat pump) was 6.3. The system COP (SCOP) was designed to 2.33 in a design stage and measured to 

2.02 in practice. Annual primary energy consumption per square meter was 1.93 GJ/m2 (reference case: 

2.32 GJ/m2 of common buildings in Japan). 
 

References 

None 
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6.6.10 T-building, Japan 

Title of the project: T-building 

Keywords: Several stratified water thermal storages, utilization of middle temperature 

chilled and hot water for space cooling and heating 
 

Contact person: Ryozo Ooka 

Address: IIS, The University of Tokyo, 4-6-1 Komaba, Megro-ku, Tokyo, Japan 

Phone: +81-3-5452-6435 Email:  
 

Institutions involved:  

Industry collaboration: MORI building, NIHON SEKKEI, SHINRYO CORPORATION 
 

Type of activity: X Demonstration in laboratory (TRL ≤ 6) 

 Demonstration in operational environment (TRL ≥ 7) 
 

Type of project: X Demonstration of a stand-alone energy storage 

technology/solution 

 Demonstration of an energy storage technology/solution applied 

in a building 
 

Description of the energy storage solution 

The capacities of three thermal storage tanks are 1,600 m3, 2,000 m3 and 900 m3 for ST1, ST2 and 

ST3, respectively. 

Measured data: 

ST1: 20,556 kWh for cooling and 24,722 kWh for heating 

ST2: 17,222 kWh for cooling 

ST3: 19,167 kWh for cooling 

 

Description of the demonstration activity 

The purpose of this project is to minimize daily primary energy consumption. The optimal 

operations could reduce the primary energy consumption in summer and intermediate day by 6.2% and 

19.4%, respectively. 

Measured data: 

Annual SCOP for cooling system at 6 °C water was 1.81. 

The SCOP for cooling system at middle temperature was 2.05. 

The SCOP for heating system at middle temperature was 1.28. 

The SCOP for hot water system at 44 °C was 0.94 due to the utilization of boilers. 
 

References 

Publication: presented in a Japanese conference. 
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6.7 KPI calculation for the Annex 31 case studies 

In general, where possible the KPIs were calculated considering the results of monitoring 

activities. If the indicator is derived from predicted or simulated data, it was marked with an 

asterisk. In few cases, some indicators were not calculated since the available information at this 

state was not considered sufficiently reliable.
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Table 6.7: KPI values for HIKARI project, France, storage 1: chilled water storage (thermal storage) 

No. KPI Value Comment 

1a Storage total capacity 700 kWht  

1b Storage useful capacity 686 kWht  

2 Recharging energy 714 kWht  

3a Maximum charge power 45 kWt  

3b Maximum discharge power 70 kWt  

4 Depth of discharge (DOD) 100%  

5 Durability (number of cycles) Over 20 years With 1 cycle per day. To be confirmed by long-term monitoring. 

6 Specific cost of the storage 0.1 €/kWht 

0.3 €/kWhe 

€500,000 (€150,000 for the tank and €350,000 for the materials and baskets). 

O&M costs are negligible. The value for €/kWhe assumes chiller EER of 3. 

7 Maximum self-discharge rate 0.5%  

8a Storage size 92 m3  

8b Storage weight 90,000 kg  

9a Energy storage factor on demand 20 – 80%  

9b Energy storage factor on RES production Not applicable No RES are connected to the storage. 

10 Generated energy/cost saving N/A  
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Table 6.8: KPI values for HIKARI project, France, storage 2: electrical energy storage (electrochemical storage) 

No. KPI Value Comment 

1a Storage total capacity 100 kWhe  

1b Storage useful capacity 95 kWhe To be verified by monitoring 

2 Recharging energy 102 kWhe To be verified by monitoring 

3a Maximum charge power 50 kWe  

3b Maximum discharge power 50 kWe  

4 Depth of discharge (DOD) 80%  

5 Durability (number of cycles) 6,000 With a remaining capacity of 82% (to be confirmed by long-term monitoring) 

6 Specific cost of the storage 1.05 €/kWhe + 

O&M costs 

Total cost of €500,00. O&M costs will be accounted after long-term monitoring. 

7 Maximum self-discharge rate Negligible To be confirmed by monitoring 

8a Storage size 28 m3  

8b Storage weight 7,300 kg  

9a Energy storage factor on demand N/A  

9b Energy storage factor on RES production Not applicable No RES connected to the storage 

10 Generated energy/cost saving N/A  
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Table 6.9: KPI values for LOCCIONI project, Italy 

No. KPI Value Comment 

1a Storage total capacity 6,800 kWh 523.25 kWh/K. Maximum charging temperature: 45 °C (winter), 4 °C (summer) 

1b Storage useful capacity 6,800 kWh  

2 Recharging energy N/A To be defined by monitoring 

3a Maximum charge power 430 kW  

3b Maximum discharge power 390 kW  

4 Depth of discharge (DOD) 100% To be confirmed by monitoring 

5 Durability (number of cycles) Over 30 years  With 1 cycle per day. To be confirmed by monitoring 

6 Specific cost of the storage N/A  

7 Maximum self-discharge rate 0.5%/24 h To be confirmed by monitoring 

8a Storage size 450 m3  

8b Storage weight 550,000 kg  

9a Energy storage factor on demand 25% From Dec. 2016 to Mar. 2017 

9b Energy storage factor on RES production Not applicable  

10 Generated energy/cost saving Variable  
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Table 6.10: KPI values for electrically heated floor, Canada 

No. KPI Value Comment 

1a Storage total capacity 85.86 kWh For the coldest day of Jan. 2009 (Jan. 15, 2009) 

1b Storage useful capacity 41.5 kWh For the coldest day of Jan. 2009 (Jan. 15, 2009) 

2 Recharging energy 107.42 kWh For the coldest day of Jan. 2009 (Jan. 15, 2009) 

3a Maximum charge power 12,478 W For the coldest day of Jan. 2009 (Jan. 15, 2009) 

3b Maximum discharge power 6,727 W For the coldest day of Jan. 2009 (Jan. 15, 2009) 

4 Depth of discharge (DOD) 62% For the coldest day of Jan. 2009 (Jan. 15, 2009) 

5 Durability (number of cycles) 4,240 Concrete durability of 20 years, and 1 cycle per day for 7 months per year 

6 Specific cost of the storage 0.048 €/kWh  

7 Maximum self-discharge rate 53% For the coldest day of Jan. 2009 (Jan. 15, 2009) 

8a Storage size 11,85 m3  

8b Storage weight 26,070 kg  

9a Energy storage factor on demand 41.5% For the coldest day of Jan. 2009 (Jan. 15, 2009) 

9b Energy storage factor on RES production Not applicable  

10 Generated energy/cost saving Variable  
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Table 6.11: KPI values for PCM wall, Turkey 

No. KPI Value Comment 

1a Storage total capacity 384 Wh  

1b Storage useful capacity 384 Wh   

2 Recharging energy N/A To be defined by monitoring 

3a Maximum charge power 3 W Outside temperature higher than 25 °C during 57 days in the fall 

3b Maximum discharge power 1 W Outside temperature higher than 25 °C during 57 days in the fall 

4 Depth of discharge (DOD) 100%  

5 Durability (number of cycles) 10 years 1 cycle per day 

6 Specific cost of the storage 25€/kg - 0.28 €/kWh  

7 Maximum self-discharge rate N/A To be defined by monitoring 

8a Storage size 0.04 m3  

8b Storage weight 16 kg  

9a Energy storage factor on demand N/A To be defined by monitoring 

9b Energy storage factor on RES production Not applicable  

10 Generated energy/cost saving N/A To be defined by monitoring 
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Table 6.12: KPI values for KOMCEE, Japan 

No. KPI Value Comment 

1a Storage total capacity 1,732 kWh  

1b Storage useful capacity 1,160 kWh   

2 Recharging energy 1,765.6 kWh  

3a Maximum charge power 357.2 kW  

3b Maximum discharge power 250 W  

4 Depth of discharge (DOD) 65.7%  

5 Durability (number of cycles) N/A To be defined by monitoring 

6 Specific cost of the storage N/A  

7 Maximum self-discharge rate 53%/96 h  

8a Storage size 298.2 m3  

8b Storage weight 298,200 kg  

9a Energy storage factor on demand N/A To be defined by monitoring 

9b Energy storage factor on RES production N/A To be defined by monitoring 

10 Generated energy/cost saving N/A To be defined by monitoring 
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Table 6.13: KPI values for integral solar collector, France 

No. KPI Value Comment 

1a Storage total capacity 16.9 kWh  

1b Storage useful capacity 16.9 kWh   

2 Recharging energy N/A To be defined by monitoring 

3a Maximum charge power 4 kW (4 m² at 1000 W/m²) 

3b Maximum discharge power 25 W  

4 Depth of discharge (DOD) 100%  

5 Durability (number of cycles) 1,825 (PCM - PEG 6000 - lifetime is around 5 years [639] 

6 Specific cost of the storage 0.020 €/kWh PCM + Honeycomb: 157 €/m² 

7 Maximum self-discharge rate 3%  

8a Storage size 0.160 m3 Modular elements, can be added to infinity 

8b Storage weight 192 kg  

9a Energy storage factor on demand 100%  

9b Energy storage factor on RES production 70%  

10 Generated energy/cost saving N/A To be defined by monitoring 
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Table 6.14: KPI values for biomass district heating with thermal storage, UK 

No. KPI Value Comment 

1a Storage total capacity 871 kWh Return temperature into storage is 85 – 70 °C 

1b Storage useful capacity 871 kWh  Charge/discharge efficiency is considered negligible 

2 Recharging energy 871 kWh  

3a Maximum charge power 740 kW  

3b Maximum discharge power 1,896 W  

4 Depth of discharge (DOD) 100%  

5 Durability (number of cycles) N/A To be defined by monitoring 

6 Specific cost of the storage N/A  

7 Maximum self-discharge rate N/A To be defined by monitoring 

8a Storage size Missing information  

8b Storage weight Missing information  

9a Energy storage factor on demand 15.83% Monitored for 1 day (Mar. 26, 2016) 

9b Energy storage factor on RES production 16.04% Monitored for 1 day (Mar. 26, 2016) 

10 Generated energy/cost saving N/A To be defined by monitoring 
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Table 6.15: KPI values for Tsukuba-Mirai, Japan 

No. KPI Value Comment 

1a Storage total capacity 160 kWh Reference temp: 23 °C, operation: Feb. 11, 2017 7:59 AM to 3:35 PM 

1b Storage useful capacity 136 kWh  Ambient tank temperature: 7 °C, discharge operation: Feb. 12, 2017 7:46 AM to 

6:31 PM 

2 Recharging energy 166 kWh  

3a Maximum charge power 32 kW  

3b Maximum discharge power 47 kW  

4 Depth of discharge (DOD) N/A To be defined by monitoring 

5 Durability (number of cycles) N/A To be defined by monitoring 

6 Specific cost of the storage 0.0075 €/kWh 150 million yen was required for primary cost of the tank with 1600 kWh capacity 

7 Maximum self-discharge rate 6%/16 h Average temperature in tank: about 61 °C, ambient temperature: 7 °C, reference 

period: Feb. 11, 2017 3:35 PM to Feb. 12, 2017 7:45 AM 

8a Storage size 4 m3  

8b Storage weight 4,290 kg  

9a Energy storage factor on demand N/A To be defined by monitoring. Utilization rate of stored energy in winter was 93%. 

9b Energy storage factor on RES production N/A To be defined by monitoring 

10 Generated energy/cost saving N/A To be defined by monitoring 
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Table 6.16: KPI values for Nagoya University, Japan 

No. KPI Value Comment 

1a Storage total capacity 3,535 kWh Design temperature: 13 K (5 -18 °C, cooling) 

1b Storage useful capacity 4,470 kWh  Actual temperature: 17.7 K (5.3 - 23 °C, cooling), discharge ratio by limiting 

temperature of charging and discharging: 13.8% 

2 Recharging energy 4,470 kWh  

3a Maximum charge power 260 kW  

3b Maximum discharge power 280 kW  

4 Depth of discharge (DOD) N/A To be defined by monitoring 

5 Durability (number of cycles) N/A To be defined by monitoring 

6 Specific cost of the storage N/A To be defined by monitoring 

7 Maximum self-discharge rate Cooling: 0% 

Heating: 29% 

 

8a Storage size 252 m3  

8b Storage weight 252,000 kg  

9a Energy storage factor on demand N/A To be defined by monitoring 

9b Energy storage factor on RES production N/A To be defined by monitoring 

10 Generated energy/cost saving N/A To be defined by monitoring 
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Table 6.17: KPI values for T-building, Japan 

No. KPI Value Comment 

1a Storage total capacity Cooling: 20,556 kWh 

Heating: 24,722 kWh 

Cooling reference temperature: 19 °C, water temperature in TES: 12 °C, 

temperature difference: 7 °C 

Heating reference temperature: 31 °C, water temperature in TES: 39 °C, 

temperature difference: 8 °C 

1b Storage useful capacity Cooling: 20,556 kWh 

Heating: 24,722 kWh 

Cooling reference temperature: 19 °C, water temperature in TES: 12 °C, 

temperature difference: 7 °C 

Heating reference temperature: 31 °C, water temperature in TES: 39 °C, 

temperature difference: 8 °C 

2 Recharging energy N/A To be defined by monitoring 

3a Maximum charge power Cooling: 1,722 kW 

Heating: 1,709 kW 

 

3b Maximum discharge power Cooling: 3,106 kW 

Heating: 6,782 kW 

 

4 Depth of discharge (DOD) 100%  

5 Durability (number of cycles) N/A To be defined by monitoring 

6 Specific cost of the storage N/A  

7 Maximum self-discharge rate Cooling: 11.9% Reference period: Apr. 1, 2015 to Mar. 31, 2016 

8a Storage size 2,706 m3  

8b Storage weight 2,706,000 kg  

9a Energy storage factor on demand 70%  

9b Energy storage factor on RES production N/A To be defined by monitoring 

10 Generated energy/cost saving N/A To be defined by monitoring 
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The proposed simplified project form eased the collection of necessary information about 

the different case studies among the Annex 31 members. The features and the performances of the 

analyzed ESSs are heterogeneous. The total storage capacity ranges from less than 1 kWh to over 

10,000 kWh. In 6 demonstrations, a sensible thermal storage is used, whereas in 3 a latent thermal 

storage and in one case a sensible thermal storage and an electrochemical storage are coupled. To 

provide a general overview of the completeness of the information retrieved, Table 6.18 presents 

the percentage of the analyzed case studies in which (with the available data) such indicators could 

be calculated. 

Table 6.18: Percentage of the case studies in which the KPI was correctly calculated using the available 

information 

No. KPI Completeness 

1a Storage total capacity 100% 

1b Storage useful capacity 100% 

2 Recharging energy 80% 

3a Maximum charge power 100% 

3b Maximum discharge power 100% 

4 Depth of discharge (DOD) 70% 

5 Durability (number of cycles) 50% 

6 Specific cost of the storage 50% 

7 Maximum self-discharge rate 70% 

8a Storage size 90% 

8b Storage weight 90% 

9a Energy storage factor on demand 60% 

9b Energy storage factor on RES production 20% 

10 Generated energy/cost saving 10% 

As it can be observed, several indicators were easily calculated in all cases, using the 

information already monitored/retrieved. Other KPIs could not be determined for several 

applications, with particular reference to durability, specific cost of the storage, energy storage 

factors and generated energy/cost saving. The reason was that the requested information for their 

calculation were not monitored/available. 

The detailed analysis of the encountered problems allowed identifying the main barriers: 

• The determination of some quantities requires a long-term testing phase (e.g. in the case of 

durability) but many of the analyzed demonstrations are very recent; however, a reliable 

indication about durability should always be provided, by means of accelerated aging tests 

carried out by ESS manufacturers in the typical operating conditions of building 

applications. 

• Other KPIs (e.g. energy storage factors) involve a comprehensive monitoring of the energy 

flows in the building where the ESS is installed and not just of the ESS itself. Such 
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quantities are sometimes neglected in the specific monitoring activity of the ESS or are 

acquired with an insufficient level of detail. In such cases, a comprehensive monitoring 

campaign aimed at recovering the data needed to calculate the proposed KPIs should be 

always designed. 

• Problems encountered in the calculation of economic parameters (e.g. specific cost of the 

storage and generated cost of saving) are often related to the uncertain/enhanced costs of 

demonstration activities. This reveals the need to strengthen the capability to precisely 

determine the actual cost/benefit ratio related to the application of ESSs in buildings, by 

separating the extra costs due to experimental activities to the other expenses. This effort 

is fundamental for the selection of the most appropriate technology and to trigger the 

commercial penetration of ESS in the building sector. 
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7 Chapter 7: Conclusion 

7.1 Concluding remarks 

Effective utilization of RES and the development of optimized districts hold greater potential 

in meeting the increasing energy demand as well as reducing the GHG emissions from 

buildings/districts. However, the main drawback of RES is their intermittent nature, while for 

DHSs, the main challenge is the effective energy management between the supply and demand. In 

this context, TES systems could play a vital role in addressing the drawbacks of both RES and 

DHSs. Although TES is a significant technology, determining its optimal operation and integrating 

it with buildings/districts are stalled by the high computational demand (or even lack of) tools and 

optimization techniques. 

Annex 31 aimed to reduce the existing gap in developing effective tools for modeling and 

optimization for building/district with energy storage systems. The main focus of the annex was 

held on emphasizing the need for the development of simplified modeling and optimization tools 

related to predicting, operating and evaluating the performance of buildings and districts when 

energy storage is included. In addition, the current state-of-the-art regarding energy storage in 

buildings/districts were presented. The basic introduction on energy consumption pattern in 

buildings/districts, necessity of energy storage and the various energy storage technologies were 

briefly discussed in Chapters 1 and 2 of Annex 31. In Chapters 3 and 4, fundamentals along with 

the general capabilities and limitations of the available modelling and optimization tools for 

analyzing/determining the optimal operation of TES systems at building and district levels were 

critically assessed. Exclusive examples/case studies related to simplified modeling at the building 

scale were given in Chapter 3 and two levels of model validation at the district level were 

illustrated in Chapter 4. Chapter 5 was dedicated to critically review the types of optimization 

methods (deterministic, stochastic, hybrid), algorithms (MILP, MINLP, DP, etc.), objective 

functions and the optimization tools (AIMMS, GAMS, AMPL, etc.). The methodologies to reduce 

the optimization computational time at building and district levels were discussed in detail. 

Further, two unique examples with one addressing the issues for the life cycle optimization of 

nZEBs and other proposing a dynamic optimization model to explore the optimal equipment size 

using detailed demand profile at the district scale were presented. In Chapter 6, the existing KPIs 

from the literature were analyzed to evaluate their pros and cons. Subsequently, a specific set of 

KPIs were defined to conduct a simplified but exhaustive analysis and comparison of Annex 31 

case studies. A set of advanced KPIs were also defined to shed light on their potential future 

applications. 

In summary, Annex 31 discussed the multi-disciplinary field of energy storage at 

building/districts covering a wide spectrum of challenges in modeling, optimization and 

performance evaluation. Since among energy storage systems, sensible and latent thermal systems 

received considerable attention, the majority of this publication was dedicated to them. Several 

up-to-date challenges in the field of energy storage were also presented as examples in each chapter 

to enlighten the concept and to present the current state-of-the-art. 
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7.2 Achievements 

The main achievements of Annex 31 can be summarized as: 

• Effective integration of TES systems with buildings and districts were discussed distinctly 

with some real case examples. 

• Computationally efficient modeling and optimization tools were developed to assess the 

performance of buildings and districts with energy storage. 

• KPIs which consider storage capacity, recharging energy, maximum charging and 

discharging power, depth of discharge, durability, specific cost of storage, maximum self-

discharge rate, storage size/weight, energy storage factor, and generated energy/cost saving 

were developed for assessing the impacts of energy storage systems integrated with 

buildings and districts.  

• The dissemination of knowledge and experience acquired in Annex 31 will guide 

researchers toward the integration of optimally sized energy storage systems with buildings 

and districts. 

7.3 Recommendations for the future work 

The following points present the recommendations for the future research for each title 

presented in this publication: 

• Building level modeling: the existing comprehensive models are already well-established 

and saturated. However, the discrepancies between the simulations and real case scenarios 

can be further reduced. In this context, it is recommended to upgrade the existing models 

so that users can easily model the buildings within the urban setting (as opposed to the 

existing stand-alone approach). 

• District level modeling: despite development of several tools for district level modeling, 

existing models lack the capability of modeling the entire DHS elements (i.e. energy 

resources, distribution network as well as demand profile prediction). In addition, data 

collection and processing for large-scale communities (city or regional level) are very 

computationally intensive or even not feasible. Therefore, developing a smart systematic 

approach which can easily gather data from different sources (i.e. city databanks, utility 

industries, etc.) and then model the entire district system is required. 

• Optimization: Existing optimization approaches are either focused on energy mapping or 

equipment sizing. Hence, a simplified dynamic optimization approach which can 

simultaneously optimize both of them at the design stage is currently missing. 

• Key performance indicators: more precise and standardized monitoring procedures are 

needed to have a comprehensive view of the benefits related to energy storage in 

buildings/districts. In this sense, the developed KPIs allow to push for more detailed and 

widespread assessments in the future.
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