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Abstract. Large-scale natural disasters cause external disturbances to
networking infrastructure that lead to large-scale network-service dis-
ruption. To understand the impact of natural disasters to networks, it is
important to localize and analyze network-service disruption after natu-
ral disasters occur.

This work studies an inference of network-service disruption caused by
the real natural disaster, Hurricane Katrina. We perform inference us-
ing large-scale Internet measurements and human inputs. We use clus-
tering and feature extraction to reduce data dimensionality of sensory
measurements and apply semi-supervised learning to jointly use sensory
measurements and human inputs for inference.

Our inference shows that after Katrina, approximately 26% of subnets
were inferred as unreachable. We find that 57% of unreachable subnets
were small subnets at the edges of networks, and 45% of these unreach-
abilities occurred after the landfall. The majority (73%) of unreachable
subnets lasted longer than four weeks showing that Katrina caused ex-
treme damage on networks and a slow recovery.

Network-service disruption is inevitable after large-scale natural disas-
ters occur. Thus, it is crucial to have effective inference techniques for
more understanding of network responses and vulnerabilities to natural
disasters.

1 Introduction

The Internet is composed of a large number of heterogeneous sub-networks (sub-
nets). Large-scale natural disasters cause damage on networking infrastructure
where subnets can become unreachable, resulting in large-scale network-service
disruption. Network-service disruption at subnets directly supporting emergency
units, e.g., hospitals and government agencies, can cause further damage to the
society.

Before a natural disaster occurs, we cannot exactly specify when or where
network-service disruption will take place or how long or how large service disrup-
tion will be. Hence, to effectively monitor and locate network-service disruption
after a natural disaster is crucial. We also need to understand how networks
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respond to natural disasters. Thus, an inference of network-service disruption
after natural disasters is an important problem to study.

In a general setting, there are devices (hardware or software), e.g., border
routers, in the Internet that perform data collection. They can be regarded
as “sensors,” and collected measurements can be considered as sensory mea-
surements. Sensory measurements are regularly collected on a daily basis from
large-scale networks, e.g., with tens of thousands of subnets. Therefore, they are
spatially and temporally large-scale. Moreover, most of the measurements do
not provide the complete status (failed or operational) of networks. Hence, we
consider sensory measurements as unlabeled data.

Besides sensory measurements, human inputs are also available after natural
disasters. A human input corresponds to a “network-911-call” from a disaster
responder to report network outages. Normally, a small number of human inputs
are available. Human inputs are made at a particular time instance but afterward
and often delayed. However, these human inputs provide valuable information
as they report the underlying status of networks. Thus, human inputs can be
considered as labeled data.

The current state of the art in inferring network-service disruption relies
solely on sensory measurements. This work introduces a novel use of sensory
measurements and human inputs for inference. Specifically, this work uses offline
sensory measurements and human inputs from the real and large-scale natural
disaster that is Hurricane Katrina. We use unsupervised learning, i.e., cluster-
ing and feature extraction, to reduce dimensionality of large-scale sensory mea-
surements. Clustering reduces the spatial dimensionality by 81%, and sensory
measurements are temporally extracted down to two features. To jointly use sen-
sory measurements and human inputs for inference, we apply semi-supervised
learning to derive the classifier to infer unreachable subnets.

We infer 25.87% of subnets as unreachable and find that the majority (49.21%)
of unreachable subnets occurred after the landfall. Moreover, approximately 73%
of subnet unreachabilities lasted longer than four weeks. This shows how Katrina
critically caused network damage.

The main contributions of this work lie in two aspects. The first is an applica-
tion of machine learning approaches to a novel networking problem, i.e., inference
of network-service disruption upon natural disasters using sensory measurements
and human inputs. The second is an analysis of network-service disruption caused
by natural disasters.

The paper is organized as followed. Section 2 presents background. Section
3 provides problem formulation. Sections 4 and 5 respectively show the use of
unsupervised and semi-supervised learning to sensory measurements and human
inputs. Section 6 presents results. Section 7 discusses related works, and Section
8 concludes the paper.
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2 Background

To provide the importance of network inference under large-scale external dis-
turbances, we present examples of recent natural disasters that caused network
damage. We also provide a review of network monitoring and discuss the het-
erogeneous data used in this work.

2.1 Natural Disasters and Network Damage

Intensive natural disasters can cause large-scale damage on networking infras-
tructure. We present four examples of network damage caused by recent natural
disasters.

The first example is Taiwan Earthquakes in 2006. The earthquakes broke
seven out of nine submarine cables that routed telecommunications services
throughout Asia and caused communications loss in at least 14 countries. The
impact spread out from Taiwan and China to more distant countries, e.g., India
and Pakistan [1, 2].

In 2007, California Wildfires destroyed communications infrastructure and
caused broadband, telephone, and Internet outages in local areas [3]. The next
example is Hurricane Gustav in September 2008. There were reports of network
outages after the hurricane [4].

The number of hurricanes in 2005 broke the record since 1969. There were
seven major hurricanes of category three and higher [5]. The most severe hurri-
cane was Hurricane Katrina that caused inconceivably large damage in Louisiana,
Mississippi, and Alabama and became the costliest hurricane in U.S. history.

Hurricane Katrina caused large-scale disruption in telecommunication net-
works. After Katrina, three million telephone lines were out of service. Further-
more, more than 1000 wireless-sites and 38 9-1-1 call centers went down [6].
Network connectivity was critical but it was either unavailable or unstable as
experienced by disaster responders [6, 7].

Despite the report of Katrina’s effect on telecommunications systems, there
were only a few public reports that showed Katrina’s impact on communications
at the Internet scale [8, 9]. More study is needed on detailed service disruption at
subnet level, as subnets directly connect to organizations such as hospitals and
government agencies that critically need network communications after disasters.

2.2 Network Monitoring

Network-service disruption can be characterized as unreachability of subnets.
This service disruption has been mostly studied for day-to-day network opera-
tions [10]. The inference of large-scale network failures is studied only in a few
cases, e.g., using simulation [11]. Questions arise pertaining to service disruption
caused by a real large-scale natural disaster. How to remotely infer unreachable
subnets? What measurements can be used?

Sensory measurements from Internet routing infrastructure can be used for
remote monitoring and service disruption inference [12, 13]. The Internet consists
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� Fig. 1. Example of AS network.

of interconnected autonomous systems (AS), and the routing protocol among
ASes is the Border Gateway Protocol (BGP) [14]. Each AS is served by at least
one Internet service provider (ISP) and is composed of one or several subnets
identified by prefixes (network addresses)3. In order to route traffic from one AS
to a specific subnet, a BGP router at each AS collects streams of routing messages
from peering BGP routers of its neighbor ASes. These messages are called BGP
update messages and are regarded as raw Internet sensory measurements in this
work. Figure 1 shows the example of AS network where X is an AS, S.X is the
BGP router of AS X, and X ∈ {A,B,...,G}. AS E has two subnets p and q. It
also shows that the BGP router S.C collects Internet sensory measurements from
peering BGP routers S.A, S.D, and S.E.

There are two types of BGP update messages: BGP withdrawal and BGP
announcement. When a subnet becomes unreachable, all BGP routers that can
no longer route Internet traffic to this subnet send BGP withdrawals to notify
all of their peering routers the unreachability. When a subnet becomes reach-
able again, there would be new BGP announcements for this subnet. Note that
besides network-service disruption, multiple withdrawals followed by new an-
nouncements can also be caused by other network events, e.g., a change of routes
or routing policies. Hence, a burst of multiple withdrawals followed by new an-
nouncements is a symptom rather than a one-to-one mapping of network-service
interruption [12, 13].

BGP update messages in this work are collected and stored by Oregon Route
Views [15] and are publicly-available. In 2005, Oregon Route Views had about 35
geographically-distributed peering BGP routers. Oregon Route Views provides
about 96 files of BGP update messages available per day, and the size of each
file is approximately 8 megabytes.

2.3 Heterogeneous Data

We obtain real sensory measurements and real human inputs from Hurricane
Katrina. In particular, we choose BGP update messages to be our sensory mea-
surements. BGP updates provide remote monitoring of service disruption when

3 We shall use subnet and prefix interchangeably.
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local measurements are not directly available because of an evacuation and lim-
ited accessibility to disaster area.

We identify geographic locations of subnets from Whois database [16] and
select 1009 subnets from 48 ASes in the disaster area. This results in 1009 time-
series sensory measurements, one per subnet. Figures 2(a) and 2(b) respectively
show a time-series with unknown status and a human-input time-series.

We choose our study duration, i.e., the Katrina interval, to be between Au-
gust 28 and September 4, 2005. Note that the mandatory evacuation was an-
nounced on August 28, 2005, one day prior to the Katrina landfall (August 29,
2005, 6:00 a.m., Central Daylight Time (CDT)), and most of network damage
assessment, reported by our collaborating ISP, occurred within the first week
after the landfall. In addition, we also select BGP update messages belonging
to the same subnets but between August 1-28, 2005 for comparison; this study
period is called the pre-Katrina interval.

8/29 8/30 8/31 9/1 9/2 9/3 9/4
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(a) Time-series with unknown status.
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(b) Human input time-series.

Fig. 2. Examples of time-series with unknown status and human-input time-series. (1
= BGP announcement, -1 = BGP withdrawal.)

With 1009 subnets and eight-day duration, our sensory measurements are
both spatially and temporally large-scale. As a burst of BGP messages is a
symptom rather than a one-to-one mapping of service disruption, sensory mea-
surements alone are insufficient to infer unreachability of all subnets.

Human inputs are reports of “this network is down”. We collect total 37
human inputs from two sources. The first 28 human inputs are from the online
message on NANOG mailing list posted by Todd Underwood from Renesys Cor-
poration [9]. The other nine human inputs are network outage reports from our
collaborating ISP. Human inputs provide valuable and mostly accurate informa-
tion on network outage status because humans most likely to report outage only
when they cannot get connected to networks. However, human inputs can be
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delayed from the exact time that outage occurs. Thirty-seven human inputs are
unlikely sufficient for inferring statuses for the other nearly 1000 subnets. Hence,
sensory measurements and human inputs complement each other in inference of
service disruption.

3 Problem Formulation

Consider an underlying network with n nodes, where a node corresponds to a
subnet. Let Zi(t) be a binary state of a node i, Zi(t) = 1 if a node i is outage
(unreachable); Zi(t) = −1 if a node i is normal (reachable); 1 ≤ i ≤ n, and
t∈[0, T ] is a time duration of interest. The state of a network is a collection of
all n states, Z(t) = {Zi(t)}

n

i=1
, t ∈ [0, T ], and considered to be unknown. For

our case, n = 1009, and T = 8 days (August 28-September 4, 2005). Service
disruption is defined to be the same as unreachability of an individual subnet4.

Let X(t) ∈ Rn be an n-dimensional random vector that can be viewed as
“response variables” corresponding to an underlying state Z(t). Intuitively, X(t)
shows symptoms of Z(t) and is related to both outage and normal states. A set
D of m samples is assumed to be available on X(t) and constitutes indirect
observations on Z(t). Hence, D is called unlabeled measurements. From Sec-
tion 2.3, D corresponds to sensory measurements. In general, D is large-scale
and insufficient for determining an underlying network state Z(t) unless D is
empowered by discriminative information.

Human inputs provide discriminative information. A set of k human inputs
are assumed to be available for a fraction of nodes, i.e., 0 ≤ k ≤ n. The simplest
form of a human input is a symbol that takes binary values, 1 and -1, at time
t
′

. Let t
′

be the time that human reports the unreachability and t be the exact
time that a network becomes unreachable. Generally, it is assumed that human
reports unreachability of a subnet correctly5, but a report can be delayed, i.e.,
t
′

> t. Thus, a human input can be regarded as a direct but delayed observation
on one specific nodal state Zi(t). A set of k human inputs is Dl, where k can
be small, i.e., 0 ≤ k � m. In this work, we use 24 human inputs (65%) to
be training data and the other 13 for validation. Hence, for our case, k = 24,
m = n − k = 985.

Problem: Given a set of unlabeled sensory measurements, D, and a set of
human inputs, Dl, how to infer Z(t) for t ∈ [0, T ]?

This is an inference problem where dichotomies between outage and normal
states of subnets can be learned from sensory measurements and human inputs.
Hence, we resort to machine learning approaches outlined below.

– We apply unsupervised learning algorithms that are clustering and feature
extraction. Clustering is used to reduce the spatial dimension of time-series

4 We shall use unreachability, outage, and service disruption interchangeably.
5 Note that this is a natural assumption as human only reports when a network is

outage.
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sensory measurements. We then extract the temporal features from time-
series measurements to a fewer observations in a low-dimensional feature
space and use these features as unlabeled data.

– We apply semi-supervised learning algorithm. We first convert human inputs
to human labels by assigning dichotomies to a small number of the temporal
features in the low-dimensional feature space. After that, a large set of unla-
beled data and a small set of labeled data are combined to infer the statuses
of subnets.

– We provide an initial understanding and analyze network-service disruption
upon Hurricane Katrina.

4 Unsupervised Learning

We now perform unsupervised learning to extract features from 1009 time-series
sensory measurements belonging to our selected 1009 subnets. The first step is
to cluster these time-series to reduce the spatial dimension. The second step is
to extract temporal features from patterns in the time-series.

4.1 Spatial Clustering

Features can be extracted directly from time-series measurements of each in-
dividual subnet. However, 1009 subnets are large-scale, and subnets may have
experienced correlated service disruption caused by the same disaster. Therefore,
we first reduce the spatial dimension of time-series measurements by grouping
similar time-series into clusters.

To measure the similarity of time-series from different subnets, we change the
discrete time-series of BGP update messages for a subnet i to be the continuous
waveform ri(t) such that: when BGP announcement arrives at time t, ri(t) =
1; otherwise, for BGP withdrawal, ri(t) = −1. Consider time t, suppose two
consecutive BGP updates arrive at time t1 and t2, ri(t) = ri(t1) for t1 ≤ t < t2.
For a subnet i without BGP update arrival, ri(t) = 1 for all t ∈ [0, T ].

The similarity between ri(t) and rj(t) of a subnet i and a subnet j is measured

by the average distance d(ri(t), rj(t)), where d(ri(t), rj(t)) = 1

T

∫ T

t=0
|ri(t) − rj(t)|dt

for 1 ≤ i, j ≤ n. The set of similarity measures, L = {d(ri(t), rj(t))}, where
1 ≤ i, j ≤ n, is used as the input for clustering.

We choose the average-linkage hierarchical clustering algorithm since a num-
ber of clusters does not need to be pre-chosen. After clustering, we further post-
process to obtain a fewer clusters by merging any two clusters if the similarity
between them is smaller than a parameter T̂ . The range of T̂ values is varied
and tested using the Davies-Bouldin index [17] to determine cluster compact-
ness. The suggested values of T̂ are between 45-90 minutes. This can also be
interpreted such that two time-series are merged into the same cluster if their
similarity measure is smaller than T̂ .

Clustering spatially reduces 1009 time-series to 191 clusters, resulting in 81%
reduction. Although, the simple hierarchical clustering algorithm gives the rea-
sonably good performance, other advanced clustering algorithms can be applied
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Table 1. Subsets of subnets. (LA = Louisiana, MS = Mississippi, AL = Alabama)

Subset 1 2 3 4 5 6 7

Geographic location LA LA LA LA LA MS AL

Number of subnets 166 53 49 115 180 232 214

Percent of reduction 84.3 56.6 67.4 81.8 76.7 81.5 90.7

Table 2. Example of geographic location and time-series pattern belonging to two
subnets in the same cluster.

Subnet Geographic Location Initial t where r(t) = −1 Duration of r(t) = −1

1 Hammond, LA 8/30 18:53:42 2 hrs 53 mins
9/3 23:39:09 17 mins
9/4 00:25:10 10 mins

2 Hammond, LA 8/30 18:53:42 2 hrs 53 mins
9/3 23:39:09 17 mins
9/4 00:10:24 10 mins
9/4 00:25:10 10 mins

to handle measurements with small similarity measures. The reduction percent
are also obtained for smaller subsets by separating 1009 subnets into seven sub-
sets based on the customers of seven local ISPs in the disaster area. Note that
subsets 5-7 belong to our collaborative ISP. The reduction percent of each sub-
set is shown in Table 1. In details, each cluster contains the subnets that have
a correlation coefficient of ri(t)’s between 0.9986-1.000. Table 2 shows the ex-
ample of two subnets from the same cluster. This shows that subnets from the
same cluster have a highly similar pattern of BGP updates, and the geographic
locations belonging to these subnets are similar.

4.2 Temporal Feature Extraction

Because the resulting clusters have correlation coefficient almost one, we ran-
domly choose one representative subnet per cluster and use this much smaller
set of 191 representative subnets to extract temporal features of time-series.

As described in Section 2.2, a burst of multiple BGP withdrawals followed
by new BGP announcements is a symptom of network-service disruption. Thus,
there are two features of this symptom. The first is the number of withdrawal
messages that peering BGP routers send in a given time-duration. The second is
the length of an unreachable duration between the last withdrawal of a burst and
the new announcements after a burst. Thus, a burst of withdrawals followed by
new announcements and a succeeding unreachable duration form a BGP-burst
pattern.

This duration can be used to infer whether a subnet is unreachable upon
a disaster or not. For instance, a BGP-burst pattern with a short unreachable
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duration can be caused by temporary service disruption, i.e., a change of routes
or routing policies, and a subnet becomes reachable soon after. However, a BGP-
burst pattern with a long unreachable duration is mostly caused by major service
disruption. But questions arise: how many withdrawals are considered to be a
burst, and how long is an unreachable duration of service disruption upon a large-
scale disaster? Hence, we formally define features corresponding to a BGP-burst
pattern.

Definition: Burst ratio S and unreachable duration Tfail

Let v be a time-duration in which a burst of BGP withdrawals is charac-
terized. Let nv be a number of accumulative BGP withdrawals belonging to
a subnet that peering BGP routers send within v time-duration, and np be a
number of peering BGP routers that could reach this subnet prior to the Ka-
trina interval. Note that a peering BGP router can send more than one BGP
withdrawal after a disruption.

The burst ratio is defined as S = nv

np
, and S measures percent of BGP with-

drawals from peering BGP routers. The unreachable duration Tfail is defined
as the time period between the last BGP withdrawal of a burst in v-duration
and the first new BGP announcement after a burst. Therefore, S is the spatial
variable indicating how many peering BGP routers fail to reach a subnet. Tfail

is the temporal variable that characterizes an unreachable duration.
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Fig. 3. Empirical distribution of BGP withdrawal inter-arrival time.

The parameter v is a time window such that if the inter-arrival time be-
tween two BGP withdrawals is larger than v minutes, these two withdrawals
are not considered to be in the same burst. It is reported that, in day-to-day
network operations, a burst generally lasts for 3 minutes [18] but can be up to
15 minutes [19]. However, there was no prior result on a burst caused by natural
disasters. We derive the empirical distribution of BGP withdrawal inter-arrival
time after Katrina as shown in Figure 3. We select v = 30 minutes that is large
enough not to partition a burst. However, such a large v, a time window may
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Fig. 4. S and Tfail of unlabeled and labeled data.

include more than one burst. This shows a disadvantage of using a fixed-size
time window to locate a burst. To be more precise in locating a burst, instead of
monitoring only a number of BGP withdrawals, we can explicitly examine the
content of every BGP withdrawal to check subnet reachabilities.

4.3 Feature Statistics

Statistics of S and Tfail belonging to time-series measurements are collected from
the Katrina interval, and the result is shown in Figures 4(a). We also collect S

and Tfail statistics from the pre-Katrina interval and find that there are less
features with large Tfail values in the pre-Katrina than in the Katrina interval.
This lack of large Tfail in the pre-Katrina interval results in the difficulty to
select the appropriate Katrina unreachable duration. Section 5 shows how to
use human inputs to derive the threshold of Katrina unreachable duration.

5 Semi-Supervised Learning

We extract 217 (S, Tfail) features from time-series measurements belonging to
191 representative subnets; these features can be used as unlabeled data. Note
that subnets can have more than one (S, Tfail) feature while some subnets do
not have (S, Tfail) features at all. However, can we use delayed human inputs
to identify a BGP-burst pattern and to obtain labeled (S, Tfail) features? If so,
sensory measurements and human inputs can be jointly used to infer service
disruption.
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Fig. 5. Empirical probability distribution of S and Tfail from the pre-Katrina interval.

5.1 Labeling Human Inputs

When a human input is delayed, there can be more than one BGP-burst pattern
in time-series of a subnet prior to a report time. For example, in Figure 2(b),
there are three BGP-burst patterns before the report time. Also, among 24
human inputs, 11 human inputs have more than one BGP-burst pattern before
a report time. This shows that it can be a complex process to correlate a delayed
human report with a BGP-burst pattern. This work selects, for simplicity, the
BGP-burst pattern immediately preceding a human report6. With 24 human
inputs, we have 24 (S, Tfail) features that are labeled with “1” (outage).

To classify subnets into two dichotomies, outage and normal, we obtain
(S, Tfail) features labeled as “-1” (normal) by using the pre-Katrina statistics.
The assumption is made such that the majority of (S,Tfail) features in the
pre-Katrina interval are normal. Figure 5 shows the empirical probability dis-
tribution of S and Tfail from the pre-Katrina interval. Small values, S < 0.1
and Tfail < 3 minutes, occurred with a large probability. This means that only
a small (10%) percent of peering BGP routers send out BGP withdrawals per-
taining to a subnet while the rest of peering BGP routers can still reach this
subnet. Moreover, with small Tfail, this can be interpreted that a subnet quickly
becomes reachable after a BGP burst. Hence, subnets with S < 0.1 and Tfail < 3
minutes are considered to be reachable. We extract 460 features of such values
and then label these features as normal. Figure 4(b) shows (S, Tfail) features
labeled as normal and outage.

In total, we have 217 unlabeled features, {(Si, Tfaili
)}217

i=1, 24 features labeled

as outage {(Si, Tfaili
), 1}

24

i=1
, 460 features labeled as normal, {(Si, Tfaili

),−1}
460

i=1
.

5.2 Learning Labeled and Unlabeled Data

Labeled and unlabeled data have been jointly used and studied in prior works as
semi-supervised learning. Prior work showed that learning with a small number

6 That is, humans are prompt in reporting a network outage.
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of labeled data along with unlabeled data can reduce classification error from
using only unlabeled data [20]. There are three major algorithms used in semi-
supervised learning (see [21] and references in there), i.e., generative models,
transductive support vector machine, and graph-based methods. The generative
models and the graph-based methods require probabilistic models. Thus, these
two algorithms are infeasible because the human inputs we obtained are too few
to estimate prior probability of outages accurately. Hence, we use the transduc-
tive support vector machine (TSVM) by Joachims [22] that only relies on labeled
and unlabeled data.

Our goal is to train the (S, Tfail) classifier to determine whether subnets are
unreachable or not. To avoid over-fitting, we choose the simple semi-supervised
learning that applies TSVM to S and to Tfail separately. The resulting two one-
dimensional linear classifiers (one for S and the other for Tfail) are used together
as the two-dimensional classifier to infer statuses of subnets.

Let xi be labeled data and x∗
j be unlabeled data where 1 ≤ i ≤ k, and

1 ≤ j ≤ m, xi or x∗
j is a generic variable in the algorithm that corresponds to

either S or Tfail. Let yi be the class label for xi that is assigned according to
Section 5.1, y∗

j be an unknown class label for x∗
j that is to be assigned by the

classifier, and yi, y∗
j ∈ {1,−1}. Let ξi be the so-called slack variable of xi and ξ∗j

be the slack variable of x∗
j . The use of slack variables allows misclassified samples

(see [23]).
Let w be the weight and b be the bias of a linear classifier to be obtained

from minimizing

||w||2

2
+ C

k∑

i=1

ξi + C∗
−

∑

j:y∗

j =−1

ξ∗j + C∗
+

∑

j:y∗

j =+1

ξ∗j (1)

subject to
yi(w·xi + b) ≥ 1 − ξi, (2)

y∗
j (w·x∗

j + b) ≥ 1 − ξ∗j , (3)

ξi ≥ 0, ξ∗j ≥ 0 (4)

where 2

||w|| is the margin width of the classifier.
∑k

i=1
ξi and

∑m

j=1
ξ∗j are bounds

of classification error. C, C∗
− and C∗

+ are tradeoff parameters between the margin
width and the classification error (see [22] for details).

The outputs of the algorithm are w and b; −b
w

is a threshold for either S or
Tfail to determine the class labels, {y∗

j }
m

j=1
.

5.3 Experimental Setting and Validation

As unlabeled data is abundant, we separate the unlabeled features into 10 dif-
ferent subsets. Hence, 10 different classifiers are trained, and each training uses
one separated subset of 21 (or 22) unlabeled features, all 24 features labeled as
outage, and one subset of 30 randomly-chosen features labeled as normal. Other
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Fig. 6. Scatter plot of inferred S and Tfail. (Solid vertical line: S = S
∗, Solid horizontal

line: Tfail = T
∗

fail.) Plot only shows values of Tfail up to 1200 minutes.

Table 3. Empirical probability distributions of Tfail from the pre-Katrina and the
Katrina intervals. (For both intervals, probabilities of Tfail >75 minutes and Tfail <

T
∗

fail are very small.)

Tfail (minutes) 0-15 15-25 25-35 35-45 45-55 55-65 65-75

Pre-Katrina 0.6291 0.0488 0.0438 0.0006 0.0006 0.0938 0.0000

Katrina 0.4238 0.0054 0.0018 0.0301 0.0247 0.0467 0.0015

parameters used in the TSVM algorithm are initialized such that C = 0.1,
C∗ = 0.1, and num+ = 0.5 (these parameters are related to convergence of the
TSVM algorithm, and see [22] for details on a choice of parameters).

Let S∗ and T ∗
fail be the thresholds such that if any subnet has features

S > S∗ and Tfail > T ∗
fail, this subnet is inferred as unreachable upon Katrina.

Ten thresholds of S resulting from training 10 different classifiers are averaged
to yield S∗. We follow the same process to find the value of T ∗

fail. This results
in S∗ = 0.6153 and T ∗

fail = 1 hour 38 minutes.

We use the rest of 13 human inputs for validation. The result shows that
the features belonging to these 13 human inputs have S > S∗ and Tfail > T ∗

fail

and thus are inferred as unreachable. The inferred unreachable statuses of these
human inputs are consistent to the reports that these subnets were outages.
Hence, the values of S∗ and T ∗

fail to infer unreachable subnets are valid.

6 Inferred Service Disruption

The thresholds learned are now used to infer service disruption caused by Katrina
for the other 985 subnets.
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6.1 Statistics of Subnet Statuses

The decision boundaries, S = S∗ and Tfail = T ∗
fail, partition the feature space

into two main regions shown in Figure 6:

– Outage region where S>S∗ and Tfail>T ∗
fail (upper right region in Figure

6). This region contains the inferred unreachable subnets.

– Normal region that has either S≤S∗ or Tfail≤T ∗
fail. This region contains the

inferred reachable subnets.

There are two sub-regions marked as regions A and B in Figure 6. These
two sub-regions contain the features that are inferred as normal but show the
interesting characteristics of network resilience and responses upon Katrina.

Region A is located where S > S∗ and T≤T ∗
fail. The subnets in this region

experienced brief Tfail and resumed reachability soon after. Table 3 shows the
empirical probability distribution of Tfail of both pre-Katrina and Katrina inter-
vals. There are significantly more Tfail with moderate values, 35-55 minutes, in
the Katrina interval while Tfail of such values were scarce during the pre-Katrina
interval. This shows that Katrina caused networks to respond differently from
day-to-day network operations.

Region B is located where S≤S∗, and we study some corresponding subnets
in this region and find that these subnets maintained reachabilities; hence, there
might have been parts of the Internet that were not highly affected by Katrina.

We quantify the percent of subnets in these four regions. The results show
that 25.87% of subnets were inferred as unreachable, and 57.09% of these un-
reachable subnets were at the network edges. There were approximately 42% of
subnets from both regions A (12%) and B (30%). With subnets that maintained
reachabilities or responded with brief disruption duration, this provides the signs
of network resilience upon a large-scale disaster.

6.2 Spatial-Temporal Damage Maps

We now obtain the spatial damage map presented in Figure 7. The spatial map
shows network-service disruption of different degree, based on the average dis-
ruption duration of the inferred unreachable subnets in each geographic location.
The worst service disruption occurred near the coast of Louisiana. Nonetheless,
our results show that not all subnets in the entire disaster area suffered from ser-
vice disruption. This suggests that available network resources in the area could
have been utilized if this information was shared among disaster responders.

We use Tfail to identify the initial time when service disruption started and
the duration of service disruption. The temporal map in Figure 8 and Table
4 show that 49.21% of service disruption occurred after the landfall while only
5.12% occurred on August 28, 2005 (the mandatory evacuation day). There were
also substantial service disruption (45.67%) occurred during six hours before the
landfall.
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Fig. 7. Impact degree of network-service disruption. (N): Tfail < T
∗

fail, (H): T
∗

fail <

Tfail < 24 hours, and (D): Tfail≥ 24 hours.

Table 4. Percent of unreachable subnets with different initial time.

Before Between Between Between Between
Aug. 29 Aug. 29 Aug. 29 Aug. 30-31 Sept. 1-4

Initial time 12.00 a.m. 12:00-6:00 a.m. 6:00 a.m.-11:59 p.m.

Percent of
Unreachable subnets 5.12 45.67 37.01 6.69 5.50

For the unreachable subnets that occurred during six hours before the land-
fall, our collaborative ISP expected that these subnets were likely to be intention-
ally withdrawn by network operators, not disrupted by Katrina. On the other
hand, there was the report of network connectivity loss because of the lack of
power supply on August 29, 2005 at 3:00 a.m. [24]. Thus, it is inconclusive what
exactly caused subnet unreachabilities during six hours before the landfall.

Figure 9 shows the initial time and the duration of unreachable subnets lo-
cated in different cities that were critically damaged by Katrina. These cities
are near the coast of Louisiana. The results show that unreachable subnets lo-
cated in the same city did not necessarily occur in the same time or last with
approximately the same duration.

The percent of unreachable subnets with different unreachable duration is
shown in Table 5. Approximately 73% of unreachable subnets lasted longer than
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Table 5. Percent of of unreachable subnets with different unreachable duration.

Les than 1-3 3-7 1-2 2-4 Longer than
Unreachable duration 1 day days days weeks weeks 4 weeks

Percent of
Unreachable subnets 7.09 6.30 2.76 3.54 7.48 72.83

four weeks. This means that these subnets did not recover even after four weeks
and also shows how much Katrina severely caused extreme damage on networks.

Communications are critical after the occurrence of natural disasters. The
application of this work can be used in the future to infer network-service dis-
ruption upon other disasters.

7 Related Work

There have been studies of BGP update messages related to the widely affected
network-service disruption; the examples of these studies are the September 11
attack in 2001 [25], the Code-Red and the Nimda worm attacks in 2003 [26],
and the Middle East cable break in 2008 [27]. In [8], Cowie et al. presented that
some disrupted networks after Hurricane Katrina were not recovered after 10
days had passed. Among these studies, little has been done on detailed study of
service disruption at subnet level using public available sensory measurements.
Furthermore, human data has not been used in these prior works.

There have been studies of machine learning applications to BGP update
messages. They were done either for day-to-day network operations or with dif-
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Fig. 9. Initial and duration time of inferred unreachable subnets in cities near the coast
of Louisiana.

ferent methods. For example, Andersen et al. applied clustering algorithm to
BGP update messages to infer a BGP topology [28] while Chang et al. tempo-
rally and spatially clustered ASPATHs to identify the cause of path changes [29].
Xu et al. proposed the algorithm to infer significant BGP events by applying the
principal component analysis (PCA) to BGP updates [13].

Human data has been used in supervised learning to infer root causes of
network failures using probabilistic models [30–32]. These studies use data from
day-to-day operations. Moreover, they rely on complete knowledge of network
status and complete underlying inference models. However, natural disasters are
rare events. Thus, knowledge of network-service disruption caused by natural
disasters is incomplete, and no underlying model of service disruption is avail-
able.

Semi-supervised learning has been widely studied [20, 21] and applied in many
applications such as text classification [22, 33], remote sensing [34], and image
processing [35, 36]. Nonetheless, semi-supervised learning has yet been applied
in networking problem in previous studies.

The preliminary version of this work [37] provides an initial study of this
problem. This work provides the in-depth study of the problem, the detailed
inference results, and the analysis of the results.

8 Conclusion

Natural disasters caused large-scale network-service disruption. This work has
presented the inference techniques of network-service disruption after a natural
disaster and has analyzed the inference results. We have studied unreachabilities
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of subnets from Hurricane Katrina by obtaining real sensory measurements and
real human inputs.

We have introduced the joint use of sensory measurements and human inputs
to infer network-service disruption. First, we have used clustering and feature
extraction to reduce data dimensionality of sensory measurements. The results
show that clustering has reduced the spatial dimension of sensory measurements
by 81%, and feature extraction has reduced the temporal dimension down to two
informative features. Then, we have applied semi-supervised learning to both
sensory measurements and human inputs to derive the classifier of unreachable
subnets.

We have inferred 25.87% of total subnets as unreachable. We have also pre-
sented the spatial and the temporal damage maps that are practical values to
disaster response and recovery. Moreover, we have analyzed these Katrina un-
reachable subnets and found that 49.21% of unreachable subnets occurred after
the landfall while substantial unreachabilities (45.67%) took place during six
hours before the landfall.

Among all unreachable subnets, 72.83% were unreachable longer than four
weeks. This shows that Katrina network-service recovery was extremely slow.
Our collaborative ISP have suggested that inaccessibility to the physical area,
intensive damage on networking infrastructure, and small demand of network
services from customers are the main factors that slowed the recovery.

We have found that 57.09% of unreachable subnets were at the network
edges where important emergency organizations such as hospitals and govern-
ment agencies are mostly located. Because the Internet is highly involved in
every aspect of people’s daily lives, network customers need and demand reli-
able network services and network reachabilities. Therefore, it is important to
understand how large-scale natural disasters affect networks. This provides fu-
ture directions for our study to gain further in-depth knowledge on network
vulnerability and resilience to natural disasters.
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