
A Note on SIMON-32/64 Security

John Matthew Macnaghten, James Luke Menzies and Mark Munro

Alba3 Group
Edinburgh, Scotland,

jmm-jlm-mm@protonmail.com

Abstract. This paper presents the results of a new approach to the
cryptanalysis of SIMON-32/64, a cipher published by NSA in 2013 [4].
Our cryptanalysis essentially considers combinatorial properties. These
properties allow us to recover a secret key from two plaintext/ciphertext
pairs, in a time ranging from a few hours to a few days, with rather
limited computing resources.
The efficiency of our cryptanalysis technique compared to all known
cryptanalyses (including key exhaustive search) is a justification for not
revealing the cryptanalysis techniques used. We have adopted a zero-
knowledge-inspired method of proof which was initiated in [11].

1 Introduction

SIMON et SPECK are two lightweight block ciphers proposed by NSA in
2013 [4]. These ciphers have been developped to achieve the best possible
performances in both software and hardware implementation. In 2014,
these algorithms were proposed for inclusion in ISO/IEC 29192. As from
their publication, these algorithms have elicited mistrust from the inter-
national cryptology community. The NSA is strongly suspected of having
introduced backdoors. This suspicion motivated the IOC to reject Simon
and Speck algorithms as part of the standardization process. Similarly,
when the Linux community discovered that the SIMON algorithm had
been introduced in the Linux 4.16 kernel (in the fscrypt functionality, a
transparent encryption library of the system files), it was immediately
removed from the next version (4.17).

In this paper, we will focus on the SIMON-32/64 version that allowed
us to validate our combinatorial analysis technique. Although its key size
is reduced, this algorithm seems to be of interest to the IoT and embedded
systems community [25, 13] for real use.

Unlike statistical or algebraic cryptanalysis techniques, we consider
particular combinatorial structures Σ whose core elements (blocks) are
made up of particular bits from the secret key, the plaintext and the
ciphertext. These structures are defined by very strong combinatorial

properties linking these core elements. In some cases, a block encryption
system S may represent a more or less noisy version of one or more struc-
tures Σ1, Σ2, By considering an appropriate combinatorial similarity
measure dc then if the values dc(S,Σi) are large enough, it is possible to
find key bits knowing certain bits of plaintext and ciphertext by exploit-
ing the combinatorial properties that link them within the elements of
the Σi structures.

Our analysis technique is not public at this stage of development.
There is still a lot of work to be done to obtain an optimized, more
efficient and industry-level version, which would be transposable more
generally to other cryptographic systems. However, since we know that
an algorithm is no longer secure and can no longer be used, it is essential
to make this information public, without necessarily revealing the method
used. We have therefore chosen to be inspired by a proof technique derived
from zero-knowledge protocols and initiated in [11]. Unfortunately, this
idea is proposed in a relatively unfinished and complicated way. We have
taken up the principle and adapted it to our needs. The principle is pretty
simple: we choose randomly several pairs of plaintext/ciphertext (Pi, Ci)
taken from a current reference text (so in fact Pi and Ci are blocks of
plaintext) and we look for the keys Ki such that Ci = EKi(Pi). The
nature of the text and the choice of these non-random blocks of data
ensures that the result can only be obtained by a particular and more
efficient method than the exhaustive key search would.

Although the 64-bit size is below usual cryptographic security stan-
dards [10], an effective 64-bit exhaustive search in a limited time is totally
out of reach for us. It is even more so if you want to repeat the attack sev-
eral times. Such cryptanalysis on 64-bit keys might only be possible by a
very few intelligence agencies in the world such as the NSA (USA), GCHQ
(UK), FSO/Spetssvyaz (Federation of Russia) or GSD/3PLA (China).

Our main result is that we can find a 64-bit key in about three days
(average time) on two Odroid MC1 clusters (8 Gb) [18] from two pairs of
plaintext/ciphertext. To date the probability of success is still very low
(p = 0.025) but we are optimistic about the possibility of significantly
increasing it in the upcoming months. Indeed we have a second algorithm,
which is theoretically proven, with a success rate of 0.25. It is not yet
fully tested and executed because it requires a higher computing power,
although it is still reasonable for operational cryptanalysis (which can be
repeated over time).

This article is organized as follows. Section 2 briefly presents the struc-
ture of the algorithms of the SIMON family as well as the best attacks

known about the different members of this family. In Section 3, we present
a new vision of encryption systems which is useful for our zero-knowledge
cryptanalysis proof. This vision is to be discussed in regard to some in-
teresting combinatorial properties. It also shows that some parameter
configurations are strongly to be avoided. In Section 4, we give the main
cryptanalysis results we obtained for SIMON-32/64. Finally, in Section 5
we conclude and present the future developments of our work.

2 SIMON Family and Known Attacks

Rounds Key size Data blocksize

32 64 32
36, 36 72, 96 48
42, 44 96, 128 64
52, 54 96, 144 96

68, 69, 72 128, 192, 256 128

Table 1. SIMON family parameters

SIMON uses a very simple round function which is iterated over many
rounds (the number of rounds is actually significantly larger than for
usual block ciphers). The system exhibits a very compact structure that
supposedly simplifies the analysis. Basically SIMON is a two-branch bal-
anced Feistel network. A plaintext to be encrypted P is processed by the
round function for a certain number of rounds, and finally the ciphertext
C is output. The round function uses different keys referred to as round
keys, derived from the original key (key schedule). All round functions
are designed using only modular Addition, Rotation and XOR. Round
function definition and key expansions are given in [4]. Data blocksize
usually equals to 32, 48, 64, 96 or 128 bits. Table 1 summarizes the dif-
ferent block and key sizes, in bits, and corresponding number of rounds.
SIMON supports a variety of block and key sizes: 32-, 48-, 64-, 128-bit
blocs with 64-, 96-, 128-, 256-bit key. The number of rounds depends on
the selected parameters. Our study presently focuses on SIMON-32/64.
Table 2 sums up the known attacks on SIMON-32/64 version.

No attack takes into account the full version of SIMON-32/64 so far
(27 rounds at most). The time and data complexity is still to high to
allow effective and repeated cryptanalyses over time.

Attack type # attacked rounds Computation Data Success probability Ref.

Related-Key 27 261.34 260 0.5 [15]
Linear Crypt.

Differential Crypt. 18 246 231.2 0.632 [1]

Related-key Rectangle 18 254.55 230.86 ≈ 1.0 [1]

Impossible differential 13 250.10 230 ≈ 1.0 [1]

Differential Crypt. 16 226.48 229.4 - [2]

Impossible differential 14 244.18 233.29 - [2]

Differential 21 255.25 231 0.51 [26]

Differential 22 258.76 232 0.31 [19]

Linear 23 261.84 231.19 0.27 [5]

Integral 21 263 231 1.0 [27]

Integral 22 263 231 1.0 [12]

Integral 24 263 232 1.0 [6]

Impossible differential 20 262.8 232 - [8]

Zero correlation 21 259.4 232 - [24]

Meet-in-the-middle 18 262.57 8 1.0 [23]

Correlated sequence 27 262.94 3 1.0 [22]

Algebraic attack 11 30” to 3’ 50 ≈ 0.2 [21]

Table 2. SIMON-32/64 known attacks

In the case of SIMON-32/54 the size of the key is relatively small
(64 bits). What is the feasibility of an attack by exhaustive testing on
the key? The only reference for this magnitude of cryptanalysis is [9]. In
2002, a 64-bit RC4 key was obtained in 1,754 days (300,000 participants).
Today, to keep up with the evolution of computing power since 2002, it
is necessary to divide by 210, or about 3 days with the same number of
participants.

3 A New Model for Block Cipher Systems

Throughout this section we use the following notations. We denote the
iterated logarithm (base e) by ln(.), i.e. ln(1) = ln(x) and ln(k+1) =
ln(ln(k)(x) for all k ≥ 1; f << g means f = o(g) and f >> g means
f = ω(g). We use the term polyln(x) to denote the class of functions⋃
k≥1((ln(x))k). We say that an event E occurs with high probability if

P [E] = 1− o(1).

Let us model a block cipher system E as a function of P×K → C where
P (respectively K and C) describes the plaintext space (respectively key
and ciphertext spaces). Let us set, in the general case, |P| = |C| = 2|C| and

|K| = 2|K| where |C|, |P | and |K| denotes the ciphertext, plaintext and
the key size respectively. For most block cipher systems, |C| = |P | = |K|.

The binary representation of the elements of these spaces allows us to
move on to the following notion for a system of block encryption S:

F|P |2 × F|K|2 → F|C|2 (1)

(P,K) 7→ C

When selecting a key K, we then consider the restriction to the next
bijection:

F|P |2 → F|C|2 (2)

P 7→ C = EK(P)

In the case of our protocol of cryptanalysis with zero-knowledge proof,
we use an opposite view. We fix a pair of plaintext block and ciphertext
block (P,C). We then consider the next application:

F|K|2 → F|C|2 (3)

K 7→ C = EK(P)

This application is no longer a bijection because it is neither surjective
nor injective. Let us look at its properties. We get the following proposal.

Proposition 1. Let us consider a fixed plaintext block P . The probability
that there is no C such as C = EK(P) regardless of the key K is p =
(1− 1

|C|)
|K|.

Proof. We have to interpret Function 3 when we go through all the keys
K ∈ K as a “bins and balls” problem [20]. The value EK(P) represents a
ball and we look at which bin C it is assigned to, under the assumption
that Function 3 behaves strictly randomly (minimum expected minimum
property for an encryption system).

Let Xi = Xi(m,n) be the random variable which counts the num-
ber of balls in the i-th bin whenever we throw m balls independently
and uniformly at random into n bins. Clearly, Yi is a binomially dis-
tributed random variable. Equivalently we have Xi ∼ B(m, 1n). We then
have P [Xi = k] =

(
m
k

)
(1
n)k(1− 1

n)m−k. Hence the result by taking k = 0,
m = |K| and n = |C|. QED

From Proposition 1, we can now discuss the result depending on the
respective value of m and n. In the rest of the paper we will set m = 2|K|

and n = 2|C|.

Corollary 1. Whenever the key and ciphertext block sizes are equal (m =
n), only 0.6321 of the ciphertext blocks can be obtained from a fixed plain-
text block when going through all the keys. Whenever the size of the keys
is larger than that of the ciphertext block (m >> n) then all encrypted
blocks can be obtained with a probability close to 1, all the more quickly
as m is high compared to n.

Proof Straightforward from Proposition 1 QED
Now that we have determined the probability with which a block of ci-

phertext can be obtained from a fixed plaintext block by running through
the space of keys, it is necessary to evaluate the number of collisions of
Function 3. Indeed, for our proof technique to be admissible, each ci-
phertext block C must be obtained only from a limited number of pairs
(P,Ki1), (P,Ki2), (P,Ki3), . . . (P,Kir) for a fixed block of plaintext P .

It is possible to use the formula used in the proof of Proposition 1
which allows to calculate P [Xi = k] for different values of k. However,
only the maximum number of collisions does really matter. The larger the
r value is, the less difficult it is to find a K key for a given (P,C) pair. We
use the general Theorem 1 due to [20] in the context of the balls-into-bins
model.

Theorem 1. Let M be the random variable that counts the maximum
number of balls in any bin, if we throw m balls independently and uni-
formly at random into n bins. Then P [M > kα] = o(1) if α > 1 and
P [M > kα] = 1− o(1) if 0 < α < 1 where,

kα =

ln(n)

ln(
n. ln(n)

m
)

(
1 + α.

ln(2)(
n. ln(n)

m
)

ln(
n. ln(n)

m
)

)
if n

polyln(n) ≤ m << n. ln(n),

(dc − 1 + α). ln(n), if m = c.n. ln(n)

for some constant c,
m
n + α

√
2.mn . ln(n), if n. ln(n) << m ≤ n.polyln(n),

m
n +

√
2m. ln(n)

n .

(
1− 1

n .
ln(2)(n)
2 ln(n)

)
, if m >> n.(ln(n))3.

Here dc denotes a suitable constant depending only on c.

Proof. See [20] for the proof. QED
The application of Theorem 1 to the study of collisions of the func-

tion 3 makes it possible to establish the following proposition.

Proposition 2. When the key size |K| is equal to the ciphertext block

size |C|, then the maximum number of collisions is r = ln(n)

ln(2)(n)
.(1 + o(1))

with a high probability.

When |K| = 2.|C| then r = m
n +

√
2m. ln(n)

n .

(
1− 1

α .
ln(2)(n)
2 ln(n)

)
.

Proof. By applying Theorem 1. For the case |K| = |C|, the reader will
refer to [20, Section 4]. The proof is relatively technical and cannot be
deduced directly from Theorem 1.

For the case |K| = 2.|C|, we have m >> n.(ln(n))3. The last case of
Theorem 1 applies directly. QED

Before applying these results to Simon-32/64, we compared the theory
with reality by considering two smaller algorithms: the miniAES [7] and
mSimon32. The latter algorithm has been designed on purpose for this
study. It is a reduced version of Simon-32/64 accepting a 32-bit key. In
both cases (see Table 3), these algorithms present extreme results that are
not compatible with the theory. This suggests that these two algorithms
have strong combinatorial irregularities.

Alg. rtmax (theory) romax (observed) # of cases where rtmax < romax
Mini-AES 5 9 39
mSimon32 8 14 4,824

Table 3. Evaluation of Mini-AES and mSimon32 with respect to Proposition 2. Results
are average values computed on few hundreds of plaintexts

Let us now apply Proposition 2 SIMON-32/64. So we have two cases:

– Either we consider a single 32-bit ciphertext block for a twice as large
key. In this case, r = 232 + 218. The maximum number of collisions is
very high.

– Or we consider two blocks of data simultaneously (concatenated), and
|K| = 2.|C|. So the maximum number of possible collisions is 11 <
r <12. Note that by considering the Binomial distribution formula,
we get Table 4 for 99.9% of the keys, with for each value the Known-
plaintext Unicity Distance [17, p. 235, 7.35].

In the subsequent section, in the case of SIMON-32/64, we consider a 64-
bit data block composed of two different 32-bit blocks (see Section 4).

4 Application to SIMON-32/64

Now that the theoretical framework has been defined, we present the
results of a four-month full-scale experiment. However, it is important to

r P [Ci = r] KPUD

0 0.36787944117144232160 -
1 0.36787944117144232159 2
2 0.18393972058572116079 3
3 0.06131324019524038691 3
4 0.01532831004881009672 3
5 0.00306566200976201934 3

Table 4. Collision probability for a fixed C and Known-plaintext Unicity Distance
(KPUD)

mention that the chosen proof protocol requires testing more fixed (P,C)
pairs than in the case of plaintext/ciphertext pairs for which we are sure
they are actually the product of encryption/decryption by at least one
K key. Indeed, according to Table 4, about P [r = 0] = 0.36788 of the
ciphertext blocks cannot be obtained from a fixed plaintext block P when
you go through all the keys. Algorithm 1 describes our general procedure.
The reference text used is the King James’ Bible [14].

Input : A public reference text T , N the number of pairs (Pi, Ci) of
64-bit datablocks to decrypt

Output: At least one key Ki found such that Ci = EKi(Pi) whenever Ki

does exist

1 for i← 1 to N do
2 Draw at random a 64-bit block Pi and a 64-bit block Ci in T
3 if Pi has the form (P ′i , P

′
i) then

4 Continue

5 end
6 Find at least one key Ki such that Ci = EKi(Pi)
7 Print Pi,Ki, Ci

8 end

Algorithm 1: Decryption Algorithm of randomly chosen mean-
ingful pairs (Pi, Ci)

Testing this analysis procedure on plaintext blocks that we have en-
crypted using known keys (hence we are sure that the key does exist) al-
lowed us to determine the probability of success ps = 0.025. From Propo-
sition 1, the probability of success of Algorithm 1 is therefore palg1

s =
ps × (1− P [r = 0]) = 0.016. With our second theoretical algorithm (still
not fully tested), the success rate would amount to 0.1580.

The condition in Line 3 is important because in the case where P is
in the form (P ′, P ′) it is very easy to find several Ki keys according to
Proposition 2.

As an example, Table 5 shows some examples found in a few hours of
calculation.

Clair (text - Hexa) Crypto (text - Hexa) K # keys found
YHWHYHWH YHWHYHWH 0x0019F32123313010

0x5948574859485748 0x5948574859485748 0x1257930310310132 8,846
0x7386E21032220307

0x801D720E84B8077E
0xE009E842A2A2855F
0xF63C412201020001

” ” ******** 0x800826680374D290
0x2020202020202020 0x2A2A2A2A2A2A2A2A 0xAF0035E6FDD8C589 11,060

0xE0271B23198503CB
0xC016A3911A903C4F
0xC1D4D9597868496B

Table 5. Examples of K for different P = (P ′, P ′) and C = (C′, C′) (computation time 24 hours) - YHWH
is the Tetragrammaton, in the Latin script, is the four-letter biblical name of the God of Israel

Algorithm 1 was run on two Odroid MC1 clusters [18] for nearly 120
days with the following parameters: reference text [14] and N = 1, 000.
We found 19 keys confirming the probability palg1

s . The result is presented
in Table 6. It should be noted that if we consider Table 4, we should have

P (hexa) C (hexa) K
”ving tee” (0x76696E6720746565) ”y will I” (0x792077696C6C2049) 0xF76C496859696B5A
” itfor t” (0x206974666F722074) ”way, for” (0x0005801333213003) 0x0005801333213003

”oaring o” (0x6F6172696E67206F) ”a, the g” (0x612C207468652067) 0x59BC08C69E3927AE
”et of hi” (0x6574206F66206869) ”ur the d” (0x7572207468652064) 0x93D444F3D0951DB5

”mthee. {” (0x6D746865652E207B) ”t] infam” (0x745D20696E66616D) 0x000C801220001031
”ons: {1:” (0x6F6E733A207B313A) ”t] he wo” (0x745D20686520776F) 0x8C908C41B1F6CA37
”ey forth” (0x657920666F727468) ”shak. {1” (0x7368616B2E207B31) 0x2D3448495B5B596B
”sar, Che” (0x7361722C20436865) ”seed be ” (0x7365656420626520) 0xE90C0C73B2E5E907
”een Esth” (0x65656E2045737468) ”rgetteth” (0x7267657474657468) 0x34AC4979785A7B58
”ave [him” (0x617665205B68696D) ”ns in ju” (0x6E7320696E206A75) 0xB28488C79E18249E
”e flesh.” (0x6520666C6573682E) ”nor dead” (0x6E6F722064656164) 0x4F108C4183C6FB34

”re enemi” (0x726520656E656D69) ”k uponhi” (0x6B2075706F6E6869) 0x2D30C84A4849584A
”h meinto” (0x68206D65696E746F) ”h; thats” (0x683B207468617473) 0x0009801311321010
”de you s” (0x646520796F752073) ”fessed t” (0x6665737365642074) 0x4F140C7081F5DB27
”er. {2:3” (0x65722E207B323A33) ”can say ” (0x63616E2073617920) 0xE65CC84B686B5949
”fferedbu” (0x6666657265646275) ”ax hotag” (0x617820686F746167) 0xA04488C59E1B15AE

”ame: {25” (0x616D653A207B3235) ”LORDhard” (0x4C4F524468617264) 0x45900C40A2F5C926
”re; [but” (0x72653B205B627574) ” for] go” (0x20666F725D20676F) 0x0001011212222301

Table 6. Cryptanalysis results for the reference text [14] and N = 1, 000 (≈ 120 days)

found several keys for some pairs. This is not the case. Our hypothesis is
that the result of Proposition 2 assumes that the blocks of plaintext and
ciphertext are uniformly distributed variables. However, in our case, the

choice for P and C does not correspond to this assumption, which may
explain the fact that we are only in cases where r = 1.

5 Conclusion and Future Work

The other versions of the SIMON family also seem to have the same
weaknesses that can be exploited by our combinatorial analysis technique.
However, it is important to remain cautious and to validate this through
experiments. This is the subject of our current work. This should also
improve the probability of success that we still estimate much too weak
too weak (practical success rate of 0.025 and theoretical success rate [not
fully tested yet] of 0.25). Many parameters, configurations and structures
are possible and we are far from having explored them all. The goal
is that what is still only a Proof-of-Concept algorithm evolves into a
product mature enough for industrial use (cryptanalysis, evaluation and
certification).

However, our results allow us to state that the SIMON-32/64 algo-
rithm should no longer be considered secure. The attack we are able to
carry out makes it possible – albeit with a still low probability of success –
to cryptanalyze it in a finite time compatible with effective cryptanalysis
requirements.

We will also apply our analysis technique to other recent algorithms
of larger key sizes. At this point, we are able to easily process and analyze
any algorithm with key size up to 64 bits. If we note C(n) the complexity
of our attack depending on the key size n, hithertho it seems that 2n−C(n)
grows with n. Equally, this would indicate that for larger key sizes, the
gain over exhaustive research is greater.

We are also working on several open issues related to the formalization
of Section 3. In particular, is it possible to have a distinguisher to identify
pairs P,C for which r = 0 (Proposition 2 and Table 4)? It would also
be interesting if this distinguisher could be discriminating enough with
respect to the different values of r.

From a more general point of view, we are convinced that it is impor-
tant for cryptanalysts to have the conditions to publish proof of cryptanal-
ysis without revealing the techniques used. The motivations can be of sev-
eral kinds: protection of industrial know-how, legal limitations or respon-
sible disclosure. It would be interesting and useful if the authors of cryp-
tographic algorithms made systematically pairs of plaintext/ciphertext
blocks for different keys, under their responsibility and control, available
to the cryptology community, as they usually do with vector sets to val-

idate the implementation of their algorithms. A set of of pairs (Pi, Ci)
produced by a few millions of different keys Ki would be very useful.

Acknowledgement

We would like to thank Oleg Ivanovich Popov for his insightful comments
and advice as well as his constant support during the discussions we had
with him.

References

1. F. Abed, E. List, S. Lucks and J. Wenzel. Differential cryptanalysis of round-
reduced SIMON and SPECK. In: Cid C., Rechberger C. (eds.), FSE 2014. LNCS,
vol. 8540, p. 525545. Springer, Heidelberg, 2014.

2. H. A. Alkhzaimi and M. M. Lauridsen. Cryptanalysis of the SIMON Family of
Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013.

3. L. Armasu. NSA-Designed SPECK Algorithm to Be Removed From Linux
4.20. Tom’s Hardware, 4 Sep. 2018. https://www.tomshardware.com/news/

nsa-speck-removed-linux-4-20,37747.html

4. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and L. Wingers.
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013.

5. H. Chen and X. Wang. Improved linear hull attack on round-reduced SIMON with
dynamic key-guessing techniques. In: Peyrin T. (eds), FSE 2016. LNCS, vol. 9783,
p. 428449. Springer, Heidelberg, 2016)

6. Z. Chu, H. Chen, X. Wang, X. Dong and L. Li. Improved integral attacks on SI-
MON32 and SIMON48 with dynamic key-guessing techniques. Security and Com-
munication Networks, 2018. https://doi.org/10.1155/2018/5160237

7. R. Chung-Wei Phan. Mini Advanced Encryption Standard (Mini-AES): A Testbed
for Cryptanalysis Students, Cryptologia, 26(4), p. 283-306, 2002.

8. P. Derbez and P.-A. Fouque. Automatic search of meet-in-the-middle and impos-
sible differential attacks. In: Robshaw M., Katz J. (eds), Crypto 2016. LNCS, vol.
9815, p. 157184. Springer, Heidelberg, 2016.

9. Distributed.net. RC5-64 HAS BEEN SOLVED!. 25 Sep. 2002. http://www1.

distributed.net/images/9/92/20020925_-_PR_-_64_bit_solved.pdf

10. Ecrypt-CSA. Algorithms, Key Size and Protocols Report. Project 645421 -
H2020-ICT-2014, 28 Feb. 2018. http://www.ecrypt.eu.org/csa/documents/D5.
4-FinalAlgKeySizeProt.pdf

11. E. Filiol. Zero-knowledge-like Proof of Cryptanalysis of Bluetooth Encryption.
Cryptology ePrint Archive, Report 2006/303, 2006.

12. K. Fu, L. Sun and M. Wang. New integral attacks on SIMON. IET Information
Security 11(5), p. 277286, 2016.

13. J. Hosseinzadeh and M. Hosseinzadeh. A Comprehensive Survey on Evaluation
of Lightweight Symmetric Ciphers: Hardware and Software Implementation. Ad-
vances in Computer Science: an International Journal, [S.l.], p. 31-41, Jul. 2016.
ISSN 2322-5157. Available at: http://www.acsij.org/acsij/article/view/529.

14. King James’ Bible. https://www.gutenberg.org/cache/epub/10/pg10.txt

15. J.-K. Lee, B. Koo and W.-H. Kim. Related-Key Linear Cryptanalysis on SIMON.
Cryptology ePrint Archive, Report 2018/152, 2018.

16. K. McCarthy. ISO blocks NSA’s latest IoT encryption systems amid murky tales of
backdoors and bullying. The Register, 25 Apr. 2018. https://www.theregister.
co.uk/2018/04/25/nsa_iot_encryption/

17. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press Series on Discrete Mathematics and its Applications,
Boca raton, 1997.

18. Odroid MC1 Cluster. https://www.hardkernel.com/shop/

odroid-mc1-my-cluster-one-with-32-cpu-cores-and-8gb-dram/

19. K. Qiao, L. Hu and S. Sun. Differential analysis on SIMECK and SIMON with
dynamic key-guessing techniques. In: Camp O., Furnell S., Mori P. (eds), ICISSP
2016. LNCS, vol. 691, p. 6485. Springer, Cham, 2016.

20. M. Raab and A. Steger. Balls into Bins A Simple and Tight Analysis. In: Luby
M., Rolim J. and Serna M. (eds). Randomization and Approximation Techniques
in Computer Science, p. 159-170. Springer, Berlin, Heidelberg, 1998.

21. H. Raddum. Algebraic Analysis of the SIMON Block Cipher Family. In: Lauter K.
and Rodŕıguez-Henŕıquez, F. (eds), Progress in Cryptology - LATINCRYPT 2015,
p. 157-169. Springer, Cham, 2015.

22. R. Rohit and G. Gong. Correlated Sequence Attack on Reduced-Round SIMON-
32/64 and SIMECK-32/64. Cryptology ePrint Archive, Report 2018/699, 2018.

23. L. Song, L. Hu, B. Ma and D. Shi. Match box meet-in-the-middle attacks on the
SIMON family of block ciphers. In: Eisenbarth T., Öztörk E. (eds), LightSec 2014.
LNCS, vol. 8898, p. 140151. Springer, Cham, 2014.

24. L. Sun, K. Fu and M. Wang. Improved zero-correlation cryptanalysis on SIMON.
In: Lin D., Wang X., Yung M. (eds), Inscrypt 2015. LNCS, vol. 9589, p. 125143.
Springer, Cham, 2014.

25. S. Taneja and M. Alioto. Ultra-Low Power Crypto-Engine Based on Simon 32/64
for Energy- and Area-Constrained Integrated Systems. ArXiv Preprint 1811.08507,
26 Nov. 2018. http://arxiv.org/abs/1811.08507

26. N. Wang, X. Wang, K. Jia and J. Zhao. Differential attacks on reduced SIMON
versions with dynamic key-guessing techniques. Cryptology ePrint Archive, Report
2014/448, 2014. https://eprint.iacr.org/2014/448.pdf

27. Q. Wang, Z. Liu, K. Varc, Y. Sasaki, V. Rijmen and Y. Todo, Y. Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier W., Mukhopadhyay D. (eds),
Indocrypt 2014. LNCS, vol. 8885, p. 143160. Springer, Cham, 2014.

