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ABSTRACT
BitTorrent, the immensely popular file swarming system,
suffers a fundamental problem: content unavailability. Al-
though swarming scales well to tolerate flash crowds for pop-
ular content, it is less useful for unpopular content as peers
arriving after the initial rush find the content unavailable.

Our primary contribution is a model to quantify content
availability in swarming systems. We use the model to an-
alyze the availability and the performance implications of
bundling, a strategy commonly adopted by many BitTor-
rent publishers today. We find that even a limited amount of
bundling exponentially reduces content unavailability. Sur-
prisingly, for swarms with highly unavailable publishers, the
availability gain of bundling can result in a net improve-
ment in download time, i.e., peers obtain more content in
less time. We empirically confirm the model’s conclusions
through experiments on PlanetLab using the mainline Bit-
Torrent client.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Measurement; Performance; Reliability; Theory

1. INTRODUCTION
Despite the tremendous success of BitTorrent (estimated

to account for 30–50% of all Internet traffic today), it suf-
fers from a fundamental problem: availability. Although
peer-to-peer swarming in BitTorrent scales impressively to
tolerate massive flash crowds for popular content, swarming
does little to disseminate unpopular content as their avail-
ability is limited by the presence of a seed or publisher. The
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extent of publisher unavailability is severe, e.g., our measure-
ment study shows that 40% of the swarms have no publishers
available more than 50% of the time.

To appreciate the availability problem, consider a swarm
for an episode of a popular TV show. When a publisher first
posts the episode, a flash crowd of peers joins the swarm to
download it. The original publisher goes offline at some
point, but peers may continue to obtain the content from
other peers while the swarm is active. If a peer arrives af-
ter the initial popularity wave, when the population of the
swarm has dwindled down to near-zero, it finds the content
unavailable and must wait until a publisher reappears.

Our primary contribution is a mathematical model to
study content availability in swarming systems such as Bit-
Torrent. We use an M/G/∞ queue to model the self-scaling
property of BitTorrent swarms, i.e., more peers bring in
more capacity to the system. The key insight is to model
uninterrupted intervals during which the content is available
as busy periods of that queue. The busy period increases ex-
ponentially with the arrival rate of peers and publishers and
the time spent by peers and publishers in the swarm.

Our model enables us to analyze the impact of bundling, a
common strategy adopted by BitTorrent publishers wherein,
instead of disseminating individual files via isolated swarms,
a publisher packages a number of related files and dissemi-
nates it via a single larger swarm. To appreciate why bundling
improves content availability, consider a bundle of K files.
Assume that the popularity of the bundle is roughly K times
the popularity of an individual file as a peer requesting any
file requests the entire bundle. The size of the bundle is
roughly K times the size of an individual file. Our model
suggests that the busy period of the bundled swarm is a fac-

tor eΘ(K2) larger than that of an individual swarm. Indeed,
if busy periods supported by peers alone last until a pub-
lisher reappears, the content will be available throughout.

Surprisingly, in some cases, the improved availability can
reduce the download time experienced by peers, i.e., peers
download more content in less time. The download time of
peers in the system consists of the waiting time spent while
content is unavailable and the service time spent in actively
downloading content. If the reduction in waiting time due
to bundling is greater than the corresponding increase in
service time, the download time decreases. We validate this
conclusion in Section 4 through large-scale controlled exper-
iments using the mainline BitTorrent client over Planetlab.
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Our experiments also show that the conclusions of our model
qualitatively hold even with realistic arrival patterns, peer
upload capacities, and heterogeneous popularities.

In summary, we make the following contributions.

Measurement: We present a large-scale measurement study
of real BitTorrent swarms that shows that (1) content avail-
ability is a serious problem due to publisher unavailability,
(2) bundling of content is a widely prevalent, and (3) bun-
dled content is more available than unbundled content.

Availability model: We present a novel queuing-theoretic
model to analyze content availability and download times in
BitTorrent-like swarming systems. To our knowledge, this
is the first model that relates content availability to arrivals
and departures of peers as well as publishers.

Implications of bundling: We use the model to analyze
the implications of bundling, a widely prevalent yet little
studied phenomenon, and show that (1) bundling improves
availability, and (2) bundling can reduce download times for
unpopular content when publishers are highly unavailable.

Experimental validation: We validate the model using
large-scale controlled experiments with the mainline BitTor-
rent client on PlanetLab showing that the model accurately
predicts download times in swarms with intermittently avail-
able publishers for both bundled and individual content.

2. MEASURING CONTENT AVAILABILITY
AND BUNDLING IN BITTORRENT

In this section, we present a large-scale measurement study
of BitTorrent that shows that 1) content unavailability is a
serious problem in BitTorrent today, and 2) bundling of con-
tent is widely prevalent and bundled contents shows greater
availability. We begin with a brief overview of how swarming
in BitTorrent works and why content becomes unavailable.

2.1 Why unavailability?
A swarm consists of a set of peers concurrently sharing

(downloading or uploading) content (a file or a bundle of
files) of common interest with the help of a coordinating
tracker. Content is divided into blocks and peers obtain
meta-data about constituent blocks as well as identities of
other peers in the swarm from the tracker. A peer exchanges
blocks with other peers using a tit-for-tat incentive strategy
until it completes its download. Peers that have not yet
completed their downloads are called leechers while peers
that possess all blocks in the content are called seeds.

Content is available if either at least one seed is present or
sufficiently many active leechers are present so as to collec-
tively make all constituent blocks available. Seeds may be-
come unavailable in practice due to several reasons. Publish-
ing sites serving a large number of files may take down seeds
after the initial popularity wave subsides in order to reduce
bandwidth costs. A seed may also be an average user pub-
lishing home-generated content that can not afford to stay
online all the time. Seeds illegally uploading copyrighted
material often disappear quickly for obvious reasons. Even
for legitimate content, maintaining highly available seeds en-
tails administrative effort and cost, which runs counter to
the goals of content publishers that value BitTorrent as a
cheap alternative to a client-server approach.

Throughout this section, we measure content availability
by equating it with seed availability. In the next section, we

model content availability resulting both from seeds as well
as from leechers alone. In the rest of this paper, we use the
terms publishers and peers interchangeably with seeds and
leechers respectively.

2.2 Measuring unavailability
How available is content in BitTorrent swarms today? To

answer this question, we conducted a seven-month long mea-
surement study of BitTorrent swarms as follows. We de-
veloped and deployed BitTorrent monitoring agents at 300
nodes on Planetlab from August 3, 2008 to March 6, 2009.
Once every hour, a host at the University of Massachusetts
Amherst receives an RSS feed advertised by GoogleReader
of recently created torrent URLs from Mininova (a large tor-
rent hosting site), and sends each URL to a subset of the
monitoring agents on Planetlab. The agents fetch the tor-
rent metadata by joining the swarm and begin to monitor
its peers. Our agents leverage the Peer Exchange (PEX)
protocol extension, that enables it to discover new neigh-
bors from other peers in addition to the tracker. To avoid
copyright issues, our agents collect information only about
the control plane without actually uploading or downloading
content, which suffices for our purposes as we equate content
availability with seed availability.

To distinguish seeds from leechers, our agents record the
bitmaps received from connected peers. The bitmaps are
part of the BitTorrent protocol and a peer uses them to
convey the blocks it possesses to its neighbors. Each en-
try in the trace collected by the agents consists of a swarm
identifier, a peer identifier (IP address and port number)
and its bitmap recorded roughly periodically for each dis-
covered peer in the swarm. Our traces consist of more than
14 million distinct IP addresses and 66K distinct swarms.

Figure 1 shows the distribution of seed availability for the
monitored swarms. The solid curve shows the availability
in the first month after the creation of the swarm, when we
expect the content to be more popular. The extent of pub-
lisher unavailability is severe: less than 35% of the swarms
had at least one seed available all the time. The availability
of swarms over the entire duration of the measurement is
even lower as shown by the dotted curve: almost 80% of the
swarms are unavailable 80% of the time.
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Figure 1: CDF of seed availability in 45,693 swarms
each monitored for at least one month.
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2.3 Content bundling
Bundling of content is a common practice in BitTorrent

today. In this section, we study the extent of bundling and
its impact on availability. The trace used in this section is a
snapshot of BitTorrent swarms taken on May 6, 2009. For
each of the 1,087,933 swarms in this snapshot, we record its
content category (e.g., movies, TV, books etc.), names and
sizes of constituent files, creation date, and instantaneous
number of seeds and leechers. Note that we could afford to
monitor many more swarms in this dataset than the previous
one as we did not have to measure details of peer arrivals
and departures inside each swarm.

2.3.1 Extent of bundling
We analyze the extent of bundling in three of the nine cat-

egories present in Mininova, namely, music, TV shows and
books. These three categories together account for 45.98%
of the swarms and 31.93% of the peers in the system. We
chose these three categories because it is easier to automati-
cally detect bundling by checking for the presence of multiple
files with known extensions (e.g., .mp3 for songs, .mpg for
TV shows and .pdf for books). Detecting bundling is non-
trivial in some categories, e.g., a DVD for a single movie is
often organized as a collection of video files that are never
distributed individually, making it difficult to check for the
presence of multiple movies without manual inspection.

Among music swarms, albums are common. We classify
a music swarm as a bundle if it has two or more files with
common audio file extensions such as .mp3, .mid and .wav,
which results in 193,491 of the 267,117 monitored swarms
being classified as bundles.

Among TV show swarms, many bundles consist of sets of
episodes in a season. We classify swarms that have two or
more files with common video file extensions such as .mpg

and .avi as bundles, which results in 25,990 of the 164,930
monitored swarms being classified as bundles.

Among book swarms, we observe that collections, i.e., tor-
rents containing the keyword “collection” in their titles, usu-
ally consist of a bundle of contents connected by a broad
theme, e.g., the “Ultimate Math Collection (1)” of size 5.81
GB has 642 books. We classified 841 of the 66,387 monitored
swarms as collections. Classifying swarms that contain 2 or
more files with common file extensions such as .pdf and
.djvu as bundles results in an additional 6,270 bundles.

2.3.2 Bundled content is more available
In this section, we present evidence suggesting that bundling

is correlated with higher availability. We first consider book
swarms. We find that 62% of all book swarms had no seed
available on May 6, 2009, whereas that number drops to
36% if we consider only collections. Furthermore, the aver-
age number of downloads for a typical book swarm is 2,578,
whereas for collections it is 4,216.

One reason for higher seed availability may be that con-
tent publishers are intrinsically more willing to support seeds
for bundled content. The higher number of downloads for
bundled content may be either because of higher demand for
bundled content (as any peer seeking any of the constituent
files may opt to download the bundle), or because of higher
availability, or both. Higher seed availability in turn may
in part be because of the increased number of downloads
as some peers may choose to altruistically disseminate the
content further. Although it is difficult to discern cause and

Figure 2: Illustration of busy and idle periods.

effect in our measurement data, our analytic model in the
next section quantifies how the higher demand and higher
seed availability for bundled content produce improved con-
tent availability.

We next analyze our traces more closely for content that
is available both in isolation and as part of a larger bundle.
We observe that among the unavailable collections, some of
them were subsets of bigger collections, e.g., the 23 swarms
consisting of collections of Garfield comics from 1978 to 2000
had no seeds. However, each of these collections can be
found in a single super-collection aggregating all Garfield
comics. The super-collection had seven seeds. After a man-
ual inspection of all 841 book collections, we concluded that
210 had no seeds and were not subsets of other collections,
which results in 210/841 = 25% unavailability for content
disseminated through collections (compared to 62% above
for a typical swarm).

As another example, we consider swarms for the popular
TV show “Friends”. There were a total of 52 swarms asso-
ciated with this show. Among them, 23 had one or more
seeds available, and the remaining 29 had no seeds. The
23 available swarms consisted of 21 bundles (and 2 single
episodes), whereas the 29 unavailable swarms consisted of
only 7 bundles. These observations suggest a strong corre-
lation between bundling and higher availability. The next
section presents an analytic model that quantifies the causal
relationship between the two.

3. MODEL
In this section, we develop a model for content availabil-

ity in BitTorrent. The key insight underlying the model is
to view BitTorrent as a coverage process or equivalently an
M/G/∞ queuing system. The model shows that 1) bundling
improves availability, and 2) for swarms with highly unavail-
able publishers, the availability benefit of bundling more
than offsets the increased time to actively download more
content, resulting in a net decrease in user-perceived down-
load times.

3.1 Model overview
Figure 2 illustrates how content availability in BitTorrent

depends upon the arrivals and departures of publishers and
peers. Each horizontal line segment represents the time in-
terval during which a peer (represented using thin lines) or

123



a publisher (represented using thick lines) stays online. A
swarm is initiated by the arrival of a publisher, which also
marks the start of the first busy period. The swarm’s lifetime
is divided into alternating busy and idle periods. Content
is available during busy periods and unavailable during idle
periods. If a publisher is always online, the first busy period
lasts forever and content remains always available.

A busy period ends when the following two conditions are
satisfied: 1) there are no publishers online, and 2) the cover-
age, i.e., the number of peers currently online, drops below
a fixed small threshold (causing some blocks to become un-
available). For example, Figure 2 shows that after all pub-
lishers leave at time t1, the busy period continues with the
help of peers alone until a publisher reappears at time t2.
A busy period may alternate any number of times between
a phase consisting of one or more publishers (Phase 1) and
a phase consisting of peers alone (Phase 2). Peers arriving
during either phase in a busy period will find the content
available. At t4, there are no publishers and the number
of peers drops below the coverage threshold (assumed 3 in
this example). This initiates an idle period that lasts until a
publisher reappears at time t5. Extant peers at the end of a
busy period as well as peers arriving during the idle period
find the content unavailable (represented by dotted lines).
Because of idle waiting, these peers experience longer down-
load times defined as the times since a peer arrives until it
completes the download.

Our goal is to understand how content availability and
the download times experienced by peers in a swarm depend
upon 1) its popularity or the peer arrival rate λ; 2) the mean
time s/µ that a peer takes during a busy period to actively
download the content of size s at a rate equal to the effective
average capacity µ of the swarm; and 3) the arrival rate r
of publishers and the mean time u that a publisher stays
online. We have implicitly assumed that u must be long
enough for at least one copy of the file to be served in each
busy period. For simplicity, we have assumed that peers are
selfish and leave as soon as they complete their download;
§3.3.4 extends the model to incorporate altruistic lingering.

To appreciate why bundling improves content availability,
consider the special case of a highly unavailable publisher,
i.e., its arrival rate r and mean residence time u are small.
Then, the length of a busy period is determined primarily
by peer arrivals and departures. Assuming Poisson peer
arrivals and a coverage threshold of one, the length of a

busy period can be shown to be eλs/µ−1
λ

. Bundling K files
increases the peer arrival rate for the bundle to Kλ as each
peer desiring any of the constituent files requests the entire
bundle, and increases the time spent by each peer in the
swarm to Ks/µ. As a result, the length of the busy period

for the bundled swarm is eK2λs/µ−1
Kλ

, which translates to

a reduction in unavailability by a factor eΘ(K2). For highly
unavailable publishers, the availability gains of bundling can
outweigh the cost of the increased time to download K times
as much content resulting in a reduction in the download
time, i.e., peers obtain more content in less time.

The rest of this section formalizes the above claims and
derives closed-form expressions for the total download time
experienced by peers with and without bundling. Unless
otherwise stated, we assume that inter-arrival times of peers
and publishers, residence time of publishers, and file down-
load times are all exponentially distributed.

Variable Description (units)
λk peer arrival rate (1/s)

Λ =
PK

i=1 λk bundled peer arrival rate (1/s)
sk file size (bits)

S =
PK

i=1 sk bundle size (bits)
µ mean download rate of peers (bits/s)
rk arrival rate of publishers (1/s)
R arrival rate of publishers

for the bundle (1/s)
uk mean publisher residence time (s)
U mean bundled publisher residence time (s)

Metric Description (units)
Pk unavailability
P unavailability of bundle
Tk download time (s)
T bundle download time (s)

Table 1: Variables denoted by lower case charac-
terize swarm k ∈ {1, 2, · · · , K} in isolation, while
variables denoted by capital letters characterize the
bundle of K files. Metrics for the swarms in isolation
and for bundles are denoted by plain and stylized
letters, respectively. Subscripts are dropped when
homogeneous files are considered.

3.2 A simple model for content availability
We present a simple instance of the above model to an-

alyze content availability and show that bundling improves
availability. The model makes several simplifying assump-
tions (which we progressively relax in subsequent sections),
but brings out the key insight underlying all of our results.

Assumptions: Content is available if and only if there
is at least one publisher online. A peer arriving during an
idle period finds the file unavailable and immediately leaves,
i.e., it does not queue up until a publisher arrives. ¦

Availability of an individual swarm.
In swarm k, let rk and uk denote the arrival rate and

residence time of publishers (refer to Table 1 for notation).
Swarm k cycles through busy and idle periods, with average
length E[Bk] and 1/rk, respectively. The probability Pk that
a peer arrives to swarm k to find the content unavailable is

Pk =
1/rk

E[Bk] + 1/rk
, k = 1, . . . , K (1)

and

E[Bk] =
erkuk − 1

rk
(2)

The above follows from classical results for the busy period
of an M/G/∞ queue.

Availability of a bundled swarm.
Let R and U denote the arrival rate and residence time

of publishers for the bundle, respectively. The probability
P that a peer arrives to find the content unavailable in the
bundled swarm is

P =
1/R

E[B] + 1/R
(3)

where the average length of a busy period for a bundle of K
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files is

E[B] =
eRU − 1

R
(4)

Consider the special case when the publisher arrival rates
are the same for all files, i.e., rk = r and their residence
times are also the same, i.e., uk = u for all K files. If R and
U scale as R = Kr and U = Ku, then

E[B] =
eK2ru − 1

Kr
(5)

P =
1/(Kr)

(eK2ru − 1)/(Kr) + 1/(Kr)
(6)

Note that E[B] is a factor eΘ(K2) larger than the correspond-
ing value for an individual swarm. It can also be verified
that − log Pk = Θ(1) and − logP = Θ(K2). Thus, bundling

reduces content unavailability by a factor e−Θ(K2).

Availability with publishers and peers.
Assumptions: The busy period is defined w.r.t. a cov-

erage threshold of one, i.e., a peer arriving during a busy
period always finishes the download in that busy period and
the last peer to finish ends the busy period. ¦

Content may be available even if there are no publishers
online. Let the aggregate arrival rate of peers and publishers
to the individual swarm and to the bundle be λk + rk and
Λ + R, respectively. For simplicity, we first consider the
special scenario in which publishers stay for a time equal to
that of disseminating one copy of the file, i.e., uk = sk/µ
(an assumption we relax in the following section),

E[Bk] =
e(rk+λk)sk/µ − 1

rk + λk
, k = 1, . . . , K (7)

and

E[B] =
e(R+Λ)S/µ − 1

Λ + R
(8)

If, for all K files, λk = λ and sk = s then Λ = Kλ and

S = Ks. The bundled busy period is E[B] = eΘ(K2). Thus,

bundling reduces the unavailability by e−Θ(K2) even if the
bundled publisher arrival rate is equal to the publisher ar-
rival rate of the individual swarms.

3.3 A model for content availability and down-
load time

Next, we quantify content availability and the mean down-
load time experienced by peers when 1) peers may wait for
content to become available, 2) the mean residence time of
the publisher may differ from the service time of peers and
3) the coverage threshold may be greater than one.

We begin by presenting the theoretical background re-
quired by our model. Our results rely on those reported
by Browne and Steele [2] on the busy period of an M/G/∞
queue where the customer initiating the busy period has an
exceptional residence time.

Let customers arrive according to a Poisson process with
rate β. The residence time of the customer initiating a
busy period is draw from an exponential distribution with
mean θ. The residence time of all other customers, X, takes
the form of one of two exponentially distributed random
variables, X1 or X2, with averages α1 and α2, respectively;

X = X1 with probability q1 and X = X2 with probability
q2 = 1 − q1. The expected busy period is

E[B] = θ+

∞
X

i=1

βi

i!

i
X

j=0

 

i

j

!

qj
1q

i−j
2 α1+j

1 α1−j+i
2 θ

α1α2 + jθα2 + θα1i − θα1j
(9)

The reader can find the derivation of (9) in the Appendix.
The proofs of the results that follow, when not included
in the Appendix, are in the technical report [10]. In the
rest of this section, unless otherwise stated, we assume that
all files have the same size and demand, and that the pub-
lisher arrival rates and residence times are the same across all
swarms. Assuming homogeneous swarms allows us to drop
the subscripts of variables referring to individual swarms.
In [10] we show that most of our results extend to the case
where different swarms have different characteristics.

3.3.1 Availability with impatient peers
Assumptions: Publishers arrive to individual swarms

at rate r and stay in the system for a mean time u. For the
bundled swarm, publishers arrive with rate R and stay for a
mean time U . Peers that arrive during an idle period leave
immediately. ¦

We are interested in determining the probability that a
request leaves without being served. Denote this as P and P
for the individual and bundled systems, respectively. Then

P =
1/r

E[B] + 1/r
P =

1/R

E[B] + 1/R
(10)

The average busy period for each individual swarm, E[B],
is obtained from (9) by setting the parameters as follows:
β = λ + r, θ = u , α1 = s/µ, q1 = λ/(λ + r), α2 = u.

For the bundled swarm, the aggregate peer arrival rate is
Λ = Kλ and the size is S = Ks. The average busy period,
E[B], is obtained from (9) as follows: β = Λ + R, θ = U ,
α1 = S/µ, q1 = Λ/(Λ + R), α2 = U .

The following lemma concerns the number of peers served
in a busy period. Assuming that both the bundle publisher
arrival rate, R, and publisher residence time, U , are inde-
pendent of K, we have

Lemma 3.1. The mean number of peers served in a busy

period, E[N ], increases as eΘ(K2) by bundling K files.

Note that this result is qualitatively similar to the case
when publishers and peers stay online for the same mean
time (Section 3.2).

We now consider the scenario where peers have skewed
preferences. Given K contents, let pk denote the probabil-
ity that a request is for content k, k = 1, . . . , K. Assume
that pk = c/kδ, δ > 0 (Zipf’s law). Letting Λ denote the
aggregate peer arrival rate for all K swarms, the arrival rate
for swarm k is λk = pkΛ. Under the assumption that the
mean time to download the bundle scales as K/µ, one can
show that the lemma above still holds (details in [10]).

In the theorem below we relate the asymptotics of the
busy period to the probability that a request is not served.
Under the same assumptions of Lemma 3.1 we have,

Theorem 3.1. (Availability theorem) Bundling K files

together decreases unavailability by a factor eΘ(K2).

Although the above result assume the publisher arrival
rate for the bundle, R, to be constant and independent of
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K, we show in [10] that even if R = Ω(e−cK2
), c > 0, the

availability of the bundle is still greater than the availability

of the individual swarm by a factor eΘ(K2). When enough
files are bundled, the long busy periods of the bundled swarm
make it nearly self-sustaining, so peers can almost always
download the content even in the absence of publishers.

3.3.2 Mean download time with patient peers
Assumptions: Peers that arrive during an idle pe-

riod wait for a publisher to become available. The other
assumptions are the same as in Section 3.3.1. ¦

We wish to compare the download time of peers with and
without bundling. To this aim, we first compute the aver-
age busy period length in an individual swarm, E[B]. When
content is unavailable and a publisher arrives to start a busy
period, the group of waiting peers immediately begins to be
served. Neglecting the possible impact of this group of
peers on the duration of the busy period, the average busy
period E[B] can be obtained from (9) by setting β = λ + r,
α1 = s/µ, q1 = λ/(λ + r), α2 = θ = u. In the technical re-
port [10] we also provide an expression for E[B] accounting
for the possible impact of the group of peers that begins to
be served when the publisher arrives.

The mean download time, E[T ], is given by

Lemma 3.2. The mean download time of a file when peers
are patient is

E[T ] =
s

µ
+

1

r
P (11)

where P = 1/r
1/r+E[B]

.

For the bundled swarm, the mean busy period length,
E[B], can be obtained from (9) by setting β = Λ + R,
α1 = S/µ, q1 = Λ/(Λ + R), α2 = θ = U . Once E[B] is
obtained, the mean download time for the bundle, E[T ],
can be derived from (11) replacing s, r and E[B] by their
bundle counterparts S, R and E[B].

In the following theorem we relate the mean download
times of bundles and individual swarms,

Theorem 3.2. (Download time theorem) Bundling
K files,

(a) can increase the mean download time of each file by at
most a factor K;

(b) can decrease the mean download time of each file by a
factor Θ(1/R) which grows unbounded as R → 0.

When service times dominate download times, bundling can
increase the download time by up to a factor of K as peers
download K times as much content. Nevertheless, when
wait times dominate download times as is the case with
highly unavailable publishers, peers may experience arbi-
trarily smaller download times when downloading bundles.

3.3.3 Threshold coverage
Assumptions: Same as those described in §3.1. ¦

If a peer leaves the system carrying the last copy of a
chunk, content may become unavailable even if the number
of peers online, i.e., the coverage, is greater than one. Our
aim now is to determine the availability and the mean down-
load time experienced by peers in the general case where

content becomes unavailable when no publisher is online and
the coverage reaches a threshold m.

Let B(n, m) be the expected length of a residual busy pe-
riod that begins with n leechers and ends as soon as the
population size reaches m. The mean busy period corre-
sponds to B(1, 0). B(n, m) is given by

Lemma 3.3. For all n,

B(n, 0) =

n
X

i=1

s

iµ
+

s

µ

∞
X

i=1

“sλ

µ

”i (n + i)! − n!i!

i!(n + i)!i
(12)

For m < n, B(n, m) is obtained using the recursion B(n, m) =
B(n, 0) − B(m, 0).

We use Lemma 3.3 to estimate the unavailability probabil-
ity and the expected download time of peers in the scenario
described in §3.1 and depicted in Figure 2. We assume that
1) the distribution of the residual busy period is concen-
trated around its mean and 2) publishers stay long enough
in the system so that, when Phase 2 begins, the population
of peers is in steady state. We denote the mean residual
busy period starting when the system transitions to Phase
2 by B(m),

B(m) =
∞
X

i=0

e
− λs

µ (λs
µ

)
i

i!
B(i, m) (13)

Noting that the number of times that the system cycles
through Phases 1 and 2 before transitioning to Phase 3 is
described by a geometric random variable with mean erB(m)

yields

Theorem 3.3. For a threshold coverage of m, the mean
download time of a file when peers are patient is s/µ + P/r
where

P = exp(−r(u + B(m))) (14)

The corresponding expression for bundled swarms is ob-
tained by replacing s, λ, r and u by their bundled coun-
terparts, S, Λ, R and U . In particular, if R = Kr and
U = Ku the availability and download time theorems still
hold. In Section 4.3.1, we validate the mean download time
estimated using the above theorem against experiments.

3.3.4 Altruistic lingering
Assumptions: Peers remain in the system for an av-

erage amount of time 1/γ after completing their downloads.
The other assumptions are the same as in Section 3.3.2. ¦

Peers may stay online as seeds after completing their down-
loads, either because they are altruistic or because publish-
ers provide them incentives to do so. In the technical re-
port [10] we show how to parameterize a general version of
equation (9) to derive the availability probability and the
mean download time of peers that stay online as seeds after
completing their downloads. Furthermore, we show that the
availability and the download time theorems still hold.

To illustrate the consequences of peers staying longer in
the system, consider two swarms with file sizes s1 and s2 and
popularities λ1 and λ2. We wish to compare the performance
of the individual swarms with that of a bundle with similar
availability [s1λ1/µ + λ1/γ = (λ1 + λ2)(s1 + s2)/µ]. The
mean residence time for requestors of content 1 is equal to

s1

µ
+

1

γ
=

(λ1 + λ2)(s1 + s2)

µλ1
=

s1 + s2

µ

“

1 +
λ2

λ1

”

(15)
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Figure 3: Bundles may reduce download time.

For the bundled swarm, the mean download time of peers is
given by (s1 + s2)/µ.

Assume swarm 1 is associated with a small and unpopular
content while the swarm 2 content is large and popular, s1 ¿
s2, λ1 ¿ 1 ¿ λ2. Since content 1 is very unpopular (peer
interarrival time very large), high availability depends on
peers staying for a long time in the system after concluding
their downloads (in equation (15), 1 + λ2/λ1 → ∞ as λ1 →
0). If swarm 1 is bundled with swarm 2, on the other
hand, the overhead incurred by the peers only interested in
content 2 is marginal (since s1 ¿ s2) but the gains for peers
interested in content 1 is remarkable, since requestors for
content 1 experience the same availability and performance
as those requesting file 2.

3.4 When can bundling reduce download time?
In this section we use the proposed model to illustrate

when bundling reduces mean download time. We numer-
ically evaluate equations (11) and (9) by setting the pa-
rameters as described in the legend of Figure 3. Figure 3
shows the expected download time as a function of the bun-
dle size. For seven of the scenarios (1/R ∈ [500 − 1100]),
increasing K to its optimal value, K = 3, leads to a decrease
in the expected download time, while setting K = 1 is the
best strategy for the remaining four. In each curve, as K
increases the mean download time first increases, then de-
creases and finally increases again. The initial performance
degradation occurs because small bundles may increase ser-
vice times without sufficiently increasing the busy period.
Figure 3 also shows that the benefits of bundling increase
as the value of R decreases.

4. EXPERIMENTAL EVALUATION
In this section, we report on controlled experiments us-

ing real BitTorrent clients to validate the two main conclu-
sions of our model: 1) bundling improves availability, and
2) bundling can reduce download times when publishers are
highly unavailable. We use an instrumented version of the
mainline BitTorrent client [8] and experiment with private
torrents deployed on Planetlab. Our experimental setup
thus emulates realistic wide-area network conditions, client
implementation artifacts, and the impact of realistic upload
capacity distributions and arrival patterns that are difficult
to capture in an analytic model.

4.1 Experimental setup
Our experiments were conducted using approximately 150

Planetlab hosts and two hosts at the University of Mas-

sachusetts at Amherst one of which is designated as the con-
troller of the experiment and another as a Bittorrent tracker.
The controller causes peer arrivals, publisher arrivals, and
publisher departures by dispatching via ssh a command to
start or stop the BitTorrent client on a randomly chosen
unused Planetlab host. At the end of the experiment, the
controller collects the remote traces logged by the instru-
mented BitTorrent clients. Each client’s trace logs the in-
stantaneous download and upload rates every second as well
as the fraction of the file downloaded up to that time.

Experimental parameters. Our experiments consist of tor-
rents that publish either a single file of size S = 4 MB or
a bundle of K files of aggregate size KS. The peer arrival
rate for a bundle is assumed to be the sum of the arrival
rates of its constituent files. The uplink capacity of each
peer is µ = 33 KBps (µ = 50 KBps in §4.3). The pub-
lisher’s upload capacity is 50KBps for individual as well as
bundled torrents. There is only one publisher that alter-
nates between being on and off. The peer arrival rate λ and
on/off behavior of the publisher are varied according to the
experimental goals as described below.

4.2 Bundling improves availability
Our model suggests that bundling increases availability by

increasing the length of busy periods and thereby reducing
the reliance on a stable publisher. As an extreme case, we
consider a publisher that initiates a swarm and then goes
offline never to come back, and look at how long the swarm
remains available after the publisher goes offline. We ensure
that the publisher stays online long enough for at least one
peer to fully download the file. Each peer leaves the system
immediately after downloading the file.

We set λ=1/150 peers/second for each file and all other
parameters to their default values, and study how the avail-
ability of the publisher-less swarm varies with the level of
bundling K.
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Figure 4: Availability of seedless swarms and the
tradeoff in the choice of the bundle size.

Figure 4 shows the number of peers served between 0 and
1500 seconds of the experiment for K=1, 2, 4, 6, 8 and
10. No peer completes its download in the first 300 seconds
of the experiment: the publisher is either waiting for the
first peer to arrive or is serving the first peer in each case.
However, when the first peer completes its download and
the publisher goes offline, the curves for K = 1, 2, 4 exhibit
a very different trend compared to K = 6, 8, 10. For K =
1, 2, 4, only a small number of additional peers are able to
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complete their download before parts of the content become
unavailable. On the other hand, for K = 6, 8, 10, the number
of completed downloads increases linearly, i.e., the swarm is
self-sustaining even in the absence of a publisher.

In steady state, the length of time the swarm remains
self-sustaining after the publisher goes offline is given by the
mean residual busy period, B(m). To compute B(m) we
use eq. (13) with µ = 33KBps, s = 4MB and λ = 1/150
peers/s. A threshold coverage of m = 9 leads to the fol-
lowing values of B(m) for K = 1 to 8, (0, 0, 47, 569, 2816,
8835, 256446, 75276). These values capture the fact that for
K ≥ 5 the swarms remained self-sustaining throughout our
measurement.

Although the system goes from being unavailable to being
available as K increases from 4 to 6, further increasing K
only results in increased download times. The average
download time of peers when K = 10 is roughly 66% higher
than that for K = 6 (not shown in Figure 4). This suggests
a delicate tradeoff in choosing K—it should be large enough
to bridge gaps in publisher unavailability, but beyond that
point bundling only increases download times. We study
this tradeoff in more detail next.

4.3 Bundling can improve download time
In this section, we consider an intermittently available

publisher with capacity 100KBps that alternately remains
on and off for (exponentially distributed) mean times of 300s
and 900s respectively. The arrival rate of peers for each file
is λ = 1/60 peers/second and the capacity of each peer is
µ=50 KBps. We study how the average download time of
peers varies with the level of bundling.

Figures 5(a)–(c) show peer arrivals and departures over
time. Each line segment starts at the instant that the peer
arrives and terminates when the peer departs. For each
value of K the experiment lasts for 10 runs of 1200s each.
Figure 5(a) shows that for K = 2, many peers complete
their downloads at roughly the same time. These flash de-
partures indicate that the swarm is not self-sustaining. They
happen because extant as well as newly arriving peers get
stuck soon after the publisher goes off, and must wait until
the publisher reappears and serves the missing blocks allow-
ing them to complete their downloads. On the other hand,
setting K=3 (Figure 5(b)) reduces the likelihood of peers
being blocked, and setting K = 4 (Figure 5(c)) nearly elim-
inates blocking as the swarm sustains itself during periods
of publisher unavailability.

Figure 6(a) shows the mean download time as function of
K. For K = 1 and 2, the mean download time remains large
as it is dominated by the time peers spend waiting for the
publisher. The large variance is due to the variance in the
downtime of the publisher. When K = 3, the mean down-
load time reduces significantly, however the variance remains
large as the download times are still partly determined by
peers waiting for the publisher to reappear. The optimal
bundle size is K = 4. The mean and the median download
time as well as the variance are the lowest for this value of
K as bundling eliminates gaps in publisher availability. For
values of K > 4 the download time increases linearly with
respect to K as the download time is dominated by the time
to actively download increasingly bigger bundles. The vari-
ance continues to remain low as the swarm is increasingly
self-sustaining with increasing K.

4.3.1 Evaluation of the analytical model
Next, we validate our analytical model (Section 3.3.3)

against the experimental results above. We compute the
mean download time using Theorem 3.3, adapting (14) to
account for the fact that there is only one publisher in the
system to obtain

P =
exp

“

−R
P∞

i=0

exp(− K2λs
µ

)( K2λs
µ

)
i

i!
B(i, m)

”

UR + 1
(16)

The derivation of the formula is in [10]. Setting s/µ = 80s,
λ = 1/60 peers/s, 1/r = 900 arrivals/s, u = 300s and m = 9,
our model predicts the results observed in Figure 6(a) pretty
well. The model leads to an optimal bundle size of K = 5,
whereas the optimal observed in the experiments was K = 4,
and correctly captures the trend of the download time curve.

4.3.2 Heterogeneous upload rates

Next, we repeat the above experiment with heteroge-
neous peer upload capacities. The upload rate distribution
was taken from the measured data used to generate Fig-
ure 1 in the BitTyrant study [14]. The average upload rate
is 280KBps and the median is 50KBps. Using realistic peer
upload capacities does not qualitatively change the behav-
ior of the system (compare Figures 6(a) and Figures 6(b)).
However, the optimal bundle size is now K = 5. This is
consistent with the increase in the average upload capacity
compared to the values obtained from the experiments with
homogeneous capacities (µ=50 KBps). The larger upload
capacity implies that a larger bundle is needed to increase
the length of its busy periods so as to make the swarm self-
sustaining during periods of publisher unavailability—a con-
clusion that agrees with our model.

4.3.3 Heterogeneous file popularites
Next, we study the impact of bundling when different files

have different popularities. We consider a bundle of four
files. We assume that the popularities of the files inside the
bundle are distributed as follows: λ1 = 1/8, λ2 = 1/16, λ3 =
1/24 and λ4 = 1/32. We run 5 experiments, the first four
corresponding to swarms with individual files (experiments
1, 2, 3 and 4) and the last one to a bundle of all the files
(experiment 5). In experiment i (1 ≤ i ≤ 4) we set λi as
described above, and in experiment 5 we set λ =

P4
i=1 λi =

1/3.84. All other parameters are set to their default values.
The mean download times are illustrated in Figure 6(c).

The boxplots and lines show the distribution quartiles and
5th and 95th percentiles. For the individual files, as we
move to the right in Figure 6(c) (i.e., as the popularity of the
files decreases) the mean download time increases. When we
consider a bundle of four files (experiment 5, extreme right in
6(c)) the mean download time is 405s. The mean download
time of the bundle is larger than the mean download time
of 329s experienced for file 1 in isolation but smaller than
the mean download times for files 2, 3 and 4 in isolation.
These results are explained as follows. File 1 is the most
popular and stands little to gain in availability, so the cost of
downloading more content outweighs the availability benefit
of bundling. However, for the less popular files 2, 3 and 4,
bundling reduces the download time by keeping the swarm
self-sustaining during periods of publisher unavailability. In
summary, if contents have different popularities, bundling
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Figure 6: Download time versus bundling strategy. (a) exponential up and down times; (b) heterogeneous
upload rates; (c) heterogeneous demand (λi = 1

8i
, i = 1, . . . , 4), files bundled in experiment 5.

may increase the download times of peers downloading the
most popular contents but can benefit those downloading
unpopular files. In this example, bundling slightly increases
the download times of 48% of peers who download the most
popular content but significantly benefits the majority of the
population.

4.3.4 Arrival patterns
Our model as well as experiments so far assumed Poisson

peer arrivals at a steady rate. To evaluate the sensitivity
of our conclusions to the Poisson assumption, we repeated
experiments similar to those in Figure 6 using scaled versions
of real arrival patterns observed in our measurement traces
collected in §2. We found that using trace-driven arrivals
does not qualitatively change our conclusions (refer to [10]
for details).

However, we believe our model’s conclusions may not hold
if the mean arrival rate is not steady for a long enough dura-
tion of time. In particular, our model will overestimate the
length of the busy period and consequently availability if the
arrival rate decreases significantly before the end of the busy
period determined by the current arrival rate. Neverthe-
less, we found a significant number of swarms with relatively
steady arrival rates in our measurement traces. For example,
out of the 1,155 swarms associated with the TV show“Lost”,
911 were published more than one month before we started
our measurement. Figure 7(a) shows a typical new swarm
in its first month and a typical old swarm after two years
of its creation. The arrival rates of old swarms show much
less variation compared to the arrival rates of new swarms.
Our model can be used to predict the availability, download
times, and the impact of bundling for such swarms.
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5. RELATED WORK
A large body of prior work has studied availability, perfor-

mance and incentive issues in BitTorrent [3]. To our knowl-
edge, this paper presents the first analytical model for con-
tent availability in BitTorrent-like swarming systems. We
were also unable to find prior work studying the availability
and performance implications of bundling in BitTorrent.

Ramachandran et al. [18] study the blocked leecher prob-
lem, where extant as well as arriving peers may have to wait
for a long period of time for some blocks of the file that are
no longer available. To address the problem, they propose
BitStore, a token-based incentive architecture to obtain the
missing blocks cached at other peers that had previously
downloaded the file.

Neglia et al. [13] perform a large-scale measurement study
to investigate availability in BitTorrent. They find that
tracker availability is a serious enough problem that many
torrents use replicated or DHT-based trackers for fault tol-
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erance. Our focus is not on the availability of the tracker (or
control plane), but on content availability (or data plane).

Both Susitaival et al. [20] and Wong et al. [22] relate the
busy period of the M/G/∞ queue to content availability in
BitTorrent. Menasche et al. [12] model the availability of
chunks in a swarm using a set of M/G/∞ queues in tan-
dem, under assumptions similar to those of coupon collector
systems. Our model differs from [20, 22, 12] in two ways as
it 1) quantifies content availability while accounting for pub-
lisher dynamics, and 2) quantifies the impact of bundling on
availability and download time.

In the context of enterprise swarming, Menasche et al. [11]
studied the strategic interaction between publishers, who are
always available, and peers. Publishers control their pricing
and bundling strategies while peers decide which content to
download. The authors show that in the monopoly there al-
ways exist a unique equilibrium between the single publisher
and the peers.

Qiu and Srikant [17] building upon earlier work by Veciana
et al. [21] present a fluid model to analyze the download
time performance of BitTorrent in steady-state. In contrast,
our model accounts for both performance and availability
similar in spirit to performability [7]. A naive adaptation
of the fluid model in [17] to bundles suggests strictly longer
download times under bundling, whereas our model shows
that bundling can decrease download times by improving
availability.

Many recent works have studied performance and fairness
of a single swarm [8, 9, 1, 4]. Collaboration across swarms
was studied by Guo et al. [6] suggesting many unexplored
inter-torrent opportunities for block exchanges. Piatek et
al. [15] suggest that propagating peer reputations limited
to one hop can incent exchanges across swarms. Sirivianos
et al. [19] propose an architecture where a commercial con-
tent provider provides “credits” to incent more cooperation
between peers. Bundling is complementary to inter-swarm
collaboration based on micropayment schemes to improve
content availability. Micropayment schemes require a cen-
tral bank to enable transactions and a tracking mechanism
across swarms for peers to locate each other. In contrast,
bundles are easy to set up and require no change to existing
trackers or clients and is already in widespread use.

Economics of bundling.
Product bundling is a common commercial marketing strat-

egy. The economics literature distinguishes between two
forms of bundling [5]. In pure bundling or tying, a con-
sumer can purchase the entire bundle or nothing at all. In
mixed bundling, consumers have a choice to select parts of
the package.

Both forms of bundling exist and have their pros and cons
in BitTorrent’s “bandwidth market” as well. Publishers can
implement pure bundling by distributing bundled content as
a zip archive. By forcing peers to download the whole bun-
dle, pure bundling may make unpopular files more available,
while subsidizing bandwidth costs for the publisher. How-
ever, it can delay those seeking exclusively popular files by
forcing them to download content they do not want.

Mixed bundling is more common and can also improve
availability. Publishers typically bundle files according to
user interests, thus bundling can serve as a mutually benefi-
cial recommendation system. A user seeking one episode
of a TV show may decide to fetch the entire season for

possible future viewing. A publisher might recommend a
movie as part of a bundle to a user who may preview it and
choose to pay for it after all [16, 22]. Even a small frac-
tion of users opting to download more content than they
strictly sought can significantly improve availability. Both
mixed and pure bundling in BitTorrent have a beneficial
side-effect: they replicate unpopular or rare content implic-
itly increasing their durability in the long run, i.e., it reduces
the likelihood of rare content being lost permanently.

Our work opens up several avenues of future work. First,
bundling may increase the traffic in the network, which mo-
tivates studying the implications of bundling for ISP pricing
as well as its impact on content locality. Second, although
our work sheds some light on what files make good candi-
dates for bundling, more work is needed to understand how
a content provider should optimally bundle files to meet per-
formance or cost objectives, especially when the demand for
a bundle may be different from the aggregate demand for its
constituent files.

6. CONCLUSIONS
Peer-to-peer swarming in BitTorrent scales impressively

to tolerate massive flash crowds, but falls short on avail-
ability. Although it is commonly observed that BitTorrent
accounts for up to half of all Internet traffic today, it is less
well known that half of the swarms are unavailable half of
the time—an observation that does not bode well for the
increasing commercial interest in integrating swarming with
server-based content dissemination. Our work is a first step
towards developing a foundational understanding of content
availability in swarming systems.

By viewing BitTorrent as a queueing system, we were
able to model content availability. The model suggests two
important implications for bundling of content, a common
practice among swarm publishers today. First, bundling
improves content availability. Second, when the publisher
is highly unavailable, bundling reduces the download time
experienced by peers to obtain unpopular content. The lat-
ter implication is particularly intriguing as peers take less
time to download more content. Although the model makes
several simplifying assumptions, we were able to empirically
validate its conclusions through large-scale controlled exper-
iments with the mainline BitTorrent client over Planetlab.
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APPENDIX
Background
Our results rely on those reported by Browne and Steele [2]
on the busy period of an M/G/∞ queue where the customer
initiating the busy period has an exceptional residence time.

Let customers arrive according to a Poisson process with
rate β. If we allow customers initiating a busy period to
draw their residence times from a distribution H(·) with
Laplace transform h(·) and mean θ while all other customers
draw their residence times from a distribution G(·), the ex-
pected busy period length is given by

E[B] = θ +

∞
X

i=1

βi

i!

Z ∞

0

(1 − H(x))
h

Z ∞

x

“

1 − G(u)
”

du
ii

dx

(17)

When G(x) = 1 − e−x/α, i.e., all customers except the first
draw their service times from an exponential distribution
with mean α, the equation above reduces to

E[B] = θ +

∞
X

i=1

(βα)iα[1 − h(i/α)]

i!i
(18)

If the customer initiating a busy period also draws its service
time from an exponential distribution,

E[B] = θ + αθ

∞
X

i=1

(βα)i

i!(α + iθ)
(19)

Finally, if θ = α,

E[B] = (eβα − 1)/β (20)

Proofs
Throughout the proofs, let λ̂ = max{λk}, λ̆ = min{λk},
ŝ = max{sk}, s̆ = min{sk}.

Derivation of equation (9)

Proof. We use equation (17) to obtain (9). Let the
download time of customers that arrive during the busy pe-
riod be given by

X =

(

X1 with probability q1

X2 with probability q2 = 1 − q1

where E[Xi] = αi. Then,

G(u) = 1 − q1e
− 1

α1
u − q2e

− 1
α2

u
(21)

and

E[B] = θ +
∞
X

i=1

βi

i!

Z ∞

0

I(z, i)dz (22)

where

I(z, i) = (1 − H(z))

i
X

j=0

 

i

j

!

h“

q1
e
− 1

α1
z

1
α1

”j“

q2
e
− 1

α2
z

1
α2

”i−ji

(23)
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Substituting (23) into (22) and using integration by parts
yields

E[B] = θ +
X βi

i!

i
X

j=0

 

i

j

!

qj
1
1

α
j
1

qi−j
2
1

α
i−j
2

h1 − h( j
α1

+ i−j
α2

)
j

α1
+ i−j

α2

i

(24)
and if customers initiating a busy period draw their service
times from an exponential distribution with mean θ, h(s) =
θ−1/(θ−1 + s), which yields (9).

Proof of Lemma 3.1

Proof. Since all the terms in Bk, k = 1, . . . , K, are lower
bounded and upper bounded by terms that do not depend
on K, E[Bk] is bounded hence E[Bk] = Θ(1).

To show that log E[B] = Θ(K2) we consider a special
process where the following conditions hold,

• during the busy period, customers arrive with rate β,
where β = R +

PK
k=1 λk,

• the residence times of all customers, including the first,
arriving in a busy period are drawn from an exponen-
tially distributed random variable with mean α,

• α and β are upper bounded by

α ≤ Kŝ/µ β ≤ Kλ̂ + R (25)

• α and β are lower bounded by

α ≥ Ks̆/µ β ≥ Kλ̆ (26)

The average busy period, E[B?], of the special process is
given by (20)

E[B?] = (eβα − 1)/β (27)

First, we show that log E[B?] = O(K2).

E[B?] ≤
h

exp(K2ŝλ̂/µ + o(K2)) − 1
i.

(Kλ̆) (28)

lim
K→∞

log E[B?]

K2
< ∞ (29)

Next, we show that log E[B?] = Ω(K2).

E[B?] ≥
h

exp(K2s̆λ̆/µ) − 1
i.

(Kλ̂ + R) (30)

lim
K→∞

K2

log E[B?]
< ∞ (31)

Therefore, log E[B?] = Θ(K2).
To extend the result above to the parameterization of E[B]

made in Section 3.3.1 we proceed as follows. For the upper
bound, log E[B] = O(K2), consider a modified process in
which the residence times of all customers arriving during
a busy period are drawn from an exponential random vari-
able with mean α = max(U, Kŝ/µ). Denote the busy pe-

riod of the modified process by bB. For K sufficiently large,
α = Kŝ/µ. Noting that conditions (25) hold it follows

from (28)-(29) that log E[ bB] = O(K2). Since E[ bB] ≥ E[B],
log E[B] = O(K2).

For the lower bound, log E[B] = Ω(K2), consider a mod-
ified process in which the residence times of all customers

arriving during a busy period are drawn from an exponen-
tial random variable with mean α = (U, Ks̆/µ). Denote

the busy period of the modified process by eB. For K suf-
ficiently large, α = Ks̆/µ. Therefore, conditions (25)-(26)

hold and (30)-(31) imply that log E[ eB] = Ω(K2). Since

E[ eB] ≤ E[B], log E[B] = Ω(K2).
Finally, given that E[N ] = E[ΛB] we also have

log E[N ] = Θ(K2) (32)

From (28) and (30), the mean number of customers served
in a busy period of the special process, E[N ?], satisfies

Kλ̆
exp(K2s̆λ̆/µ)−1

Kλ̂ + R
≤ E[N ?] ≤ λ̂

exp(K2ŝλ̂/µ + o(K2))−1

λ̆
(33)

which yields (32) applying an argument similar to the one
used to show that log E[B] = Θ(K2).

Proof of Theorem 3.1

Proof. Since all the terms in Pk, k = 1, . . . , K, are lower
bounded and upper bounded by terms that do not depend
on K, E[Bk] is bounded hence Pk = Θ(1).

We rewrite − logP as

− logP = − log
1/R

E[B] + 1/R

= − log(1/R) + log(eΘ(K2) + 1/R)

where the last equality follows from Lemma 3.1.
We now show that − logP = Θ(K2). First, we show that

− logP = O(K2),

lim
K→∞

− logP
K2

= κ1 + lim
K→∞

log(eΘ(K2) + 1/R)

K2
< ∞ (34)

Then, we show that − logP = Ω(K2),

lim
K→∞

K2

− logP = lim
K→∞

h

κ2 +
log (eΘ(K2) + 1/R)

K2

i−1

< ∞

(35)
from which we conclude that − logP = Θ(K2).

Proof of Lemma 3.3

Proof. Due to the memoryless property of the expo-
nential random variable, the virtual customer that starts
the residual busy period is characterized by a random vari-
able Y = max{X1, . . . , Xn} where X1, . . . , Xn are exponen-
tial random variables with mean s/µ. Therefore, Y is an
hypoexponential distribution with parameters (s/µ, s/(2µ),
. . . , s/(nµ)), which has Laplace transform

Qn
i=1(iµ/s)/(s +

iµ/s) and mean
Pn

i=1 s/(iµ). Equation (18) can be used to
compute B(n, 0) for any value of n (eq. (12)).

Let us denote by Ti,j the time it takes for a residual
busy period which starts with i peers to reach a popu-
lation size of j < i peers, where B(i, j) = E[Ti,j ]. For
n > l and n > k > l, we have that Tn,l = Tn,k + Tk,l.
Therefore, in general E[Tn,l] = E[Tn,k] + E[Tk,l] and in
particular, E[Tn,l] = E[Tn,0] − E[Tl,0]. Equation (12) and
B(n, l) = B(n, 0)−B(l, 0) provide a way to compute B(n, l)
for arbitrary values of n and l < n.

The reader can find the proofs of the other results pre-
sented in this paper in [10].
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