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Introduction

These notes were written for a final year undergraduate course taught at Manchester Uni-

versity in 1988/9 and also taught in later years by Dr M. McCrudden. I rewrote them in 2000 to

make them available to interested graduate students. The approach taken is very down to earth

and makes few assumptions beyond standard undergraduate analysis and algebra. Because of

this the course was as self contained as possible, covering basic number theory and analytic

ideas which would probably be familiar to more advanced readers. The problem sets are based

on those for produced for the course.

I would like to thank Tony Bruguier, Javier Diaz-Vargas, Eugenio Finat, Juan López, Filippo

Nuccio Mortarino Majno di Capriglio and Jeremy Scofield for pointing out numerous errors and

improvements.
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CHAPTER 1

Congruences and modular equations

Let n ∈ Z (we will usually have n > 0). We define the binary relation ≡
n

by

Definition 1.1. If x, y ∈ Z, then x≡
n
y if and only if n | (x− y). This is often also written

x ≡ y (mod n) or x ≡ y (n).

Notice that when n = 0, x≡
n
y if and only if x = y, so in that case ≡

0
is really just equality.

Proposition 1.2. The relation ≡
n

is an equivalence relation on Z.

Proof. Let x, y, z ∈ Z. Clearly ≡
n

is reflexive since n | (x − x) = 0. It is symmetric since

if n | (x − y) then x − y = kn for some k ∈ Z, hence y − x = (−k)n and so n | (y − x). For

transitivity, suppose that n | (x − y) and n | (y − z); then since x − z = (x − y) + (y − z) we

have n | (x− z). �

If n > 0, we denote the equivalence class of x ∈ Z by [x]n or just [x] if n is understood; it is

also common to use x for this if the value of n is clear from the context. From the definition,

[x]n = {y ∈ Z : y≡
n
x} = {y ∈ Z : y = x+ kn for some k ∈ Z},

and there are exactly |n| such residue classes, namely

[0]n, [1]n, . . . , [n− 1]n.

Of course we can replace these representatives by any others as required.

Definition 1.3. The set of all residue classes of Z modulo n is

Z/n = {[x]n : x = 0, 1, . . . , n− 1}.

If n = 0 we interpret Z/0 as Z.

Consider the function

πn : Z −→ Z/n; πn(x) = [x]n.

This is onto and also satisfies

π−1n (α) = {x ∈ Z : x ∈ α}.
We can define addition +

n
and multiplication ×

n
on Z/n by the formulæ

[x]n +
n

[y]n = [x+ y]n, [x]n×
n

[y]n = [xy]n,

which are easily seen to be well defined, i.e., they do not depend on the choice of representatives

x, y. The straightforward proof of our next result is left to the reader.

Proposition 1.4. The set Z/n with the operations +
n

and ×
n

is a commutative ring and the

function πn : Z −→ Z/n is a ring homomorphism which is surjective (onto) and has kernel

kerπn = [0]n = {x ∈ Z : x≡
n

0}.
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Now let us consider the structure of the ring Z/n. The zero is 0 = [0]n and the unity

is 1 = [1]n. We may also ask about units and zero divisors. In the following, let R be a

commutative ring with unity 1 (which we assume is not equal to 0).

Definition 1.5. An element u ∈ R is a unit if there exists a v ∈ R satisfying

uv = vu = 1.

Such a v is necessarily unique and is called the inverse of u and is usually denoted u−1.

Definition 1.6. z ∈ R is a zero divisor if there exists at least one w ∈ R with w 6= 0 and

zw = 0. There may be lots of such w for each zero divisor z.

Notice that in any ring 0 is always a zero divisor since 1 · 0 = 0 = 0 · 1.

Example 1.7. Let n = 6; then Z/6 = {0, 1, . . . , 5}. The units are 1, 5 with 1
−1

= 1 and

5
−1

= 5 since 52 = 25≡
6

1. The zero divisors are 0, 2, 3, 4 since 2×
6

3 = 0.

In this example notice that the zero divisors all have a factor in common with 6; this is true

for all Z/n (see below). It is also true that for any ring, a zero divisor cannot be a unit (why?)

and a unit cannot be a zero divisor.

Recall that if a, b ∈ Z then the greatest common divisor (gcd) or highest common factor

(hcf) of a and b is the largest positive integer dividing both a and b. We often write gcd(a, b)

for this. When a = 0 = b we have gcd(0, 0) = 0.

Theorem 1.8. Let n > 0. Then Z/n is a disjoint union

Z/n = {units} ∪ {zero divisors}

where {units} is the set of units in Z/n and {zero divisors} the set of zero divisors. Furthermore,

(a) z is a zero divisor if and only if gcd(z, n) > 1;

(b) u is a unit if and only if gcd(u, n) = 1.

Proof. If h = gcd(x, n) > 1 we have x = x0h and n = n0h, so

n0x≡
n

0.

Hence x is a zero divisor in Z/n.

Let us prove (b). First we suppose that u is a unit; let v = u−1. Suppose that gcd(u, n) > 1.

Then uv≡
n

1 and so for some integer k,

uv − 1 = kn.

But then gcd(u, n) | 1, which is absurd. So gcd(u, n) = 1. Conversely, if gcd(u, n) = 1 we must

demonstrate that u is a unit. To do this we will need to make use of the Euclidean Algorithm.

Recollection 1.9. [Euclidean Property of the integers] Let a, b ∈ Z with b 6= 0; then there

exist unique q, r ∈ Z for which a = qb+ r with 0 6 r < |b|.

From this we can deduce
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Theorem 1.10 (The Euclidean Algorithm). Let a, b ∈ Z then there are unique sequences of

integers qi, ri satisfying

a = q1b+ r1

r0 = b = q2r1 + r2

r1 = q3r2 + r3

...

0 6= rN−1 = qN+1rN

where we have 0 6 ri < ri−1 for each i. Furthermore, we have rN = gcd(a, b) and then by back

substitution for suitable s, t ∈ Z we can write

rN = sa+ tb.

Example 1.11. If a = 6, b = 5, then r0 = 5 and we have

6 = 1 · 5 + 1, so q1 = 1, r1 = 1,

5 = 5 · 1, so q2 = 5, r2 = 0.

Therefore we have gcd(6, 5) = 1 and we can write 1 = 1 · 6 + (−1) · 5.

Now we return to the proof of Theorem 1.8. Using the Euclidean Algorithm, we can write

su + tn = 1 for suitable s, t ∈ Z. But then su≡
n

1 and s = u−1, so u is indeed a unit in Z/n.

These proves part (b). But we also have part (a) as well since a zero divisor z cannot be a unit,

hence has to have gcd(z, n) > 1. �

Theorem 1.8 allows us to determine the number of units and zero divisors in Z/n. We

already have |Z/n| = n.

Definition 1.12. (Z/n)× is the set of units in Z/n. (Z/n)× becomes an abelian group

under the multiplication ×
n

.

Let ϕ(n) = |(Z/n)×| = order of (Z/n)×. By Theorem 1.8, this number equals the number

of integers 0, 1, 2, . . . , n− 1 which have no factor in common with n. The function ϕ is known

as the Euler ϕ-function.

Example 1.13. n = 6: |Z/6| = 6 and the units are 1, 5, hence ϕ(6) = 2.

Example 1.14. n = 12: |Z/12| = 12 and the units are 1, 5, 7, 11, hence ϕ(12) = 4.

In general ϕ(n) is quite a complicated function of n, however in the case where n = p, a

prime number, the answer is more straightforward.

Example 1.15. Let p be a prime (i.e., p = 2, 3, 5, 7, 11, . . .). Then the only non-trivial

factor of p is p itself, so ϕ(p) = p − 1. We can say more: consider a power of p, say pr with

r > 0. Then the integers in the list 0, 1, 2, . . . , pr − 1 which have a factor in common with pr

are precisely those of the form kp for 0 6 k 6 pr−1 − 1, hence there are pr−1 of these. So we

have ϕ(pr) = pr−1(p− 1).
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Example 1.16. When p = 2, we have the groups (Z/2)× = {1},
(
Z/22

)×
= {1, 3} ∼= Z/2,(

Z/23
)×

= {1, 3, 5, 7} ∼= Z/2× Z/2, and in general(
Z/2r+1

)× ∼= Z/2× Z/2r−1

for any r > 1. Here the first summand is {±1} and the second can be taken to be
〈
3
〉
.

Now for a general n we have

n = pr11 p
r2
2 · · · p

rs
s

where for each i, pi is a prime with

2 6 p1 < p2 < · · · < ps

and ri > 1. Then the numbers pi, ri are uniquely determined by n. We can break down Z/n
into copies of Z/prii , each of which is simpler to understand.

Theorem 1.17. There is a unique isomorphism of rings

Φ: Z/n ∼= Z/pr11 × Z/pr22 × · · · × Z/prss

and an isomorphism of groups

Φ× : (Z/n)× ∼= (Z/pr11 )× × (Z/pr22 )× × · · · × (Z/prss )×.

Thus we have

ϕ(n) = ϕ(pr11 )ϕ(pr22 ) · · ·ϕ(prss ).

Proof. Let a, b > 0 be coprime (i.e., gcd(a, b) = 1). We will show that there is an

isomorphism of rings

Ψ: Z/ab ∼= Z/a× Z/b.

By Theorem 1.10, there are u, v ∈ Z such that ua+ vb = 1. It is easily checked that

gcd(a, v) = 1 = gcd(b, u).

Define a function

Ψ: Z/ab −→ Z/a× Z/b; Ψ([x]ab) = ([x]a, [x]b) .

This is easily seen to be a ring homomorphism. Notice that

|Z/ab| = ab = |Z/a||Z/b| = |Z/a× Z/b|

and so to show that Ψ is an isomorphism, it suffices to show that it is onto.

Let ([y]a, [z]b) ∈ Z/a × Z/b. We must find an x ∈ Z such that Ψ ([x]ab) = ([y]a, [z]b). Now

set x = vby + uaz; then

x = (1− ua)y + uaz≡
a
y,

x = vby + (1− vb)z≡
b
z,

hence we have Ψ ([x]ab) = ([y]a, [z]b) as required.

To prove the result for general n we proceed by induction upon s. �
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Example 1.18. Consider the case n = 120. Then 120 = 8 · 3 · 5 = 23 · 3 · 5 and so the

Theorem predicts that

Z/120 ∼= Z/8× Z/3× Z/5.

We will verify this. First write 120 = 24 · 5. Then gcd(24, 5) = 1 since

24 = 4 · 5 + 4 =⇒ 4 = 24− 4 · 5 and 5 = 4 + 1 =⇒ 1 = 5− 4,

hence

1 = 5 · 5− 24.

Therefore we can take a = 24, b = 5, u = −1, v = 5 in the proof of the Theorem. Thus we have

a ring isomorphism

Ψ1 : Z/120 −→ Z/24× Z/5; Ψ1 ([25y − 24z]120) = ([y]24, [z]5) ,

as constructed in the proof above. Next we have to repeat this procedure for the ring Z/24.

Here we have

8 = 2 · 3 + 2 =⇒ 2 = 8− 2 · 3 and 3 = 2 + 1 =⇒ 1 = 3− 2,

so

gcd(8, 3) = 1 = (−8) + 3 · 3.

Hence there is an isomorphism of rings

Ψ2 : Z/24 −→ Z/8× Z/3; Ψ2 ([9x− 8y]24) = ([x]8, [y]3) ,

and we can of course combine these two isomorphisms to obtain a third, namely

Ψ: Z/120 −→ Z/8× Z/3× Z/5; Ψ ([25(9x− 8y)− 24z]120) = ([x]8, [y]3, [z]5) ,

as required. Notice that we have

Ψ−1 ([1]8, [1]3, [1]5) = [1]120,

which is always the case with this procedure.

We now move on to consider the subject of equations over Z/n. Consider the following

example.

Example 1.19. Let a, b ∈ Z with n > 0. Then

(1.1) ax≡
n
b

is a linear modular equation or linear congruence over Z. We are interested in finding all

solutions of Equation (1.1) in Z, not just one solution.

If u ∈ Z has the property that au≡
n
b then u is a solution; but then the integers of form

u + kn, k ∈ Z are also solutions. Notice that there are an infinite number of these. But each

such solution gives the same congruence class [u+ kn]n = [u]n. We can equally well consider

(1.2) [a]nX = [b]n

as a linear equation over Z/n. This time we look for all solutions of Equation (1.2) in Z/n
and as Z/n is itself finite, there are only a finite number of these. As we remarked above, any
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integer solution u of (1.1) gives rise to solution [u]n of (1.2); in fact many solutions of (1.1) give

the same solution of (1.2). Conversely, a solution [v]n of (1.2) generates the set

[v]n = {v + kn : k ∈ Z}

of solutions of (1.1), so there is in fact an equivalence of these two problems.

Now let us attempt to solve (1.2), i.e., try to find all solutions in Z/n. There are two cases:

(1) the element [a]n ∈ Z/n is a unit;

(2) the element [a]n ∈ Z/n is a zero divisor.

In case (1), let [c]n = [a]−1n be the inverse of [a]n. Then we can multiply (1.2) by [c]n to obtain

X = [bc]n

which has exactly the same solutions as (1.2) (why?). Moreover, there is exactly one such

solution namely [bc]n! So we have completely solved equation (1.2) and found that X = [bc]n is

the unique solution in Z/n.

What does this say about solving (1.1)? There are certainly infinitely many solutions,

namely the integers of form bc+ kn, k ∈ Z. But any given solution u must satisfy [u]n = [bc]n

in Z/n, hence u≡
n
bc and so u is of this form. So the solutions of (1.1) are precisely the integers

this form.

So in case (1) of (1.2) we have exactly one solution in Z/n,

X = [a]−1n [b]n

and (1.1) has all integers of the form cb+ kn as its solutions.

In case (2) there may be solutions of (1.2) or none at all. For example, the equation

nx≡
n

1,

can only have a solution in Z if n = 1. There is also the possibility of multiple solutions in Z/n,

as is shown by the example

2x≡
12

4.

By inspection, this is seen to have solutions 2, 8. Notice that this congruence can also be solved

by reducing it to

x≡
6

2,

since if 2(x− 2)≡
12

0 then x− 2≡
6

0, which is an example of case (1) again.

So if [a]n is not a unit, uniqueness is also lost as well as the guarantee of any solutions.

We can more generally consider a system of linear equations

a1x ≡
n1

b1, a2x ≡
n2

b2, . . . , akx ≡
nk
bk,

where we are now trying to find all integers x ∈ Z which simultaneously satisfy these congru-

ences. The main result on this situation is the following.

Theorem 1.20 (The Chinese Remainder Theorem). Let n1, n2, . . . , nk be a sequence of

coprime integers, a1, a2, . . . , ak a sequence of integers satisfying gcd(ai, ni) = 1 and b1, b2, . . . , bk

be sequence of integers. Then the system of simultaneous linear congruences equations

a1x ≡
n1

b1, a2x ≡
n2

b2, . . . , akx ≡
nk
bk,
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has an infinite number of solutions x ∈ Z which form a unique congruence class

[x]n1n2···nk ∈ Z/n1n2 · · ·nk.

Proof. The proof uses the isomorphism

Z/ab ∼= Z/a× Z/b

for gcd(a, b) = 1 as proved in the proof of Theorem 1.17, together with an induction on k. �

Example 1.21. Consider the system

3x≡
2

5, 2x≡
3

6, 7x≡
5

1.

Since 8≡
5

3, this system is equivalent to

x≡
2

1, x≡
3

0, x≡
5

3.

Solving the first two equations in Z/6, we obtain the unique solution x≡
6

3. Solving the simul-

taneous pair of congruences

x≡
6

3, x≡
5

3,

we obtain the unique solution x≡
30

3 in Z/30.

Theorem 1.17 is often used to solve polynomial equations modulo n, by first splitting n into

a product of prime powers, say n = pr11 p
r2
2 · · · p

rd
d , and then solving modulo prkk for each k.

Theorem 1.22. Let n = pr11 p
r2
2 · · · p

rd
d , where the pk’s are distinct primes with each rk > 1.

Let f(X) ∈ Z[X] be a polynomial with integer coefficients. Then the equation

f(x)≡
n

0

has a solution if and only if the equations

f(x1) ≡
p
r1
1

0, f(x2) ≡
p
r2
2

0, . . . , f(xd) ≡
p
rd
d

0,

all have solutions. Moreover, each sequence of solutions in Z/prkk of the latter gives rise to a

unique solution x ∈ Z/n of f(x)≡
n

0 satisfying

x ≡
p
rk
k

xk ∀k.

Example 1.23. Solve x2 − 1≡
24

0.

We have 24 = 8 · 3, so we will try to solve the pair of congruences equations

x21 − 1≡
8

0, x22 − 1≡
3

0,

with x1 ∈ Z/8, x2 ∈ Z/3. Now clearly the solutions of the first equation are x1≡
8

1, 3, 5, 7; for

the second we get x2≡
3

1, 2. Combining these using Theorem 1.17, we obtain

x≡
24

1, 5, 7, 11, 13, 17, 19, 23.

The moral of this is that we only need worry about Z/pr where p is a prime. We now

consider this case in detail.

Firstly, we will study the case r = 1. Now Z/p is a field, i.e., every non-zero element has an

inverse (it’s a good exercise to prove this yourself if you’ve forgotten this result). Then we have
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Proposition 1.24. Let K be a field, and f(X) ∈ K[X] be a polynomial with coefficients in

K. Then for α ∈ K,

f(α) = 0 ⇐⇒ f(X) = (X − α)g(X) for some g(X) ∈ K[X].

Proof. This is a standard result in basic ring theory. �

Corollary 1.25. Let K be a field and let f(X) ∈ K[X] with deg f = d > 0. Then f(X)

has at most d distinct roots in K.

As a particular case, consider the field Z/p, where p is a prime, and the polynomials

Xp −X, Xp−1 − 1 ∈ Z/p[X].

Theorem 1.26 (Fermat’s Little Theorem). For any a ∈ Z/p, either a = 0 or (a)p−1 = 1

(so in the latter case a is a (p− 1) st root of 1). Hence,

Xp −X = X(X − 1)(X − 2) · · · (X − p− 1).

Corollary 1.27 (Wilson’s Theorem). For any prime p we have

(p− 1)! ≡ −1 (mod p).

We also have the more subtle

Theorem 1.28 (Gauss’s Primitive Root Theorem). For any prime p, the group (Z/p)× is

cyclic of order p− 1. Hence there is an element a ∈ Z/p of order p− 1.

The proof of this uses for example the structure theorem for finitely generated abelian

groups. A generator of (Z/p)× is called a primitive root modulo p and there are exactly ϕ(p−1)

of these in (Z/p)×.

Example 1.29. Take p = 7. Then ϕ(6) = ϕ(2)ϕ(3) = 2, so there are two primitive roots

modulo 7. We have

23≡
7

1, 32≡
7

2, 36≡
7

1,

hence 3 is one primitive root, the other must be 35 = 5.

One advantage of working with a field K is that all of basic linear algebra works just as well

over K. For instance, we can solve systems of simultaneous linear equations in the usual way

by Gaussian elimination.

Example 1.30. Take p = 11 and solve the system of simultaneous equations

3x+ 2y − 3z≡
11

1,

2x + z≡
11

0,

i.e., find all solutions with x, y, z ∈ Z/11.

Here we can multiply the first equation by 3
−1

= 4, obtaining

x+ 8y − 1z≡
11

4,

2x + z≡
11

0,
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and then subtract twice this from the second to obtain

x+ 8y − 1z≡
11

4,

6y + 3z≡
11

3,

and we know that the rank of this system is 2. The general solution is

x≡
11

5t, y≡
11

5t+ 6, z≡
11
t,

for t ∈ Z.

Now consider a polynomial f(X) ∈ Z[X], say

f(X) =
d∑

k=0

akX
k.

Suppose we want to solve the equation

f(x)≡
pr

0

for some r > 1 and let’s assume that we already have a solution x1 ∈ Z which works modulo p,

i.e., we have

f(x1)≡
p

0.

Can we find an integer x2 such that

f(x2)≡
p2

0

and x2≡
p
x1? More generally we would like to find an integer xr such that

f(xr)≡
pr

0

and xr ≡
p
x1? Such an xr is called a lift of x1 modulo pr.

Example 1.31. Take p = 5 and f(X) = X2+1. Then there are two distinct roots modulo 5,

namely 2, 3. Let’s try to find a root modulo 25 and agreeing with 2 modulo 5. Try 2 + 5t where

t = 0, 1, . . . , 4. Then we need

(2 + 5t)2 + 1≡
25

0,

or equivalently

20t+ 5≡
25

0,

which has the solution

t≡
5

1.

Similarly, we have t≡
5

3 as a lift of 3.

Example 1.32. Obtain lifts of 2, 3 modulo 625.

The next result is the simplest version of what is usually referred to as Hensel’s Lemma.

In various guises this is an important result whose proof is inspired by the proof of Newton’s

Method from Numerical Analysis.
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Theorem 1.33 (Hensel’s Lemma: first version). Let f(X) =
∑d

k=0 akX
k ∈ Z[X] and

suppose that x ∈ Z is a root of f modulo ps (with s > 1) and that f ′(x) is a unit modulo p.

Then there is a unique root x′ ∈ Z/ps+1 of f modulo ps+1 satisfying x′≡
ps
x; moreover, x′ is

given by the formula

x′ ≡
ps+1

x− uf(x),

where u ∈ Z satisfies uf ′(x)≡
p

1, i.e., u is an inverse for f ′(x) modulo p.

Proof. We have

f(x)≡
ps

0, f ′(x) 6≡
p

0,

so there is such a u ∈ Z. Now consider the polynomial f(x+ Tps) ∈ Z[T ]. Then

f(x+ Tps) ≡ f(x) + f ′(x)Tps + · · · (mod (Tps)2)

by the usual version of Taylor’s expansion for a polynomial over Z. Hence, for any t ∈ Z,

f(x+ tps) ≡ f(x) + f ′(x)tps + · · · (mod p2s).

An easy calculation now shows that

f(x+ tps) ≡
ps+1

0 ⇐⇒ t≡
p
−uf(x)/ps. �

Example 1.34. Let p be an odd prime and let f(X) = Xp−1 − 1. Then Gauss’s Primitive

Root Theorem 1.28, we have exactly p−1 distinct (p−1) st roots of 1 modulo p; let α = a ∈ Z/p
be any one of these. Then f ′(X)≡

p
−Xp−2 and so f ′(α) 6= 0 and we can apply Theorem 1.33.

Hence there is a unique lift of a modulo p2, say a2, agreeing with a1 = a modulo p. So the

reduction function

ρ1 :
(
Z/p2

)× −→ (Z/p)×; ρ1(b) = b

must be a group homomorphism which is onto. So for each such α1 = α, there is a unique

element α2 ∈ Z/p2 satisfying αp−12 = 1 and therefore the group
(
Z/p2

)×
contains a unique

cyclic subgroup of order p − 1 which ρ1 maps isomorphically to (Z/p)×. As we earlier showed

that |Z/p2| has order (p− 1)p, this means that there is an isomorphism of groups(
Z/p2

)× ∼= (Z/p)× × Z/p,

by standard results on abelian groups.

We can repeat this process to construct a unique sequence of integers a1, a2, . . . satisfying

ak ≡
pk
ak+1 and ap−1k ≡

pk
1. We can also deduce that the reduction homomorphisms

ρk :
(
Z/pk+1

)×
−→

(
Z/pk

)×
are all onto and there are isomorphisms(

Z/pk+1
)× ∼= (Z/p)× × Z/pk.

The case p = 2 is similar only this time we only have a single root of X2−1 − 1 modulo 2 and

obtain the isomorphisms

(Z/2)× = 0, (Z/4)× ∼= Z/2, (Z/2s)× ∼= Z/2× Z/2s−2 if s > 2.
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It is also possible to do examples involving multivariable systems of simultaneous equations

using a more general version of Hensel’s Lemma.

Theorem 1.35 (Hensel’s Lemma: many variables and functions). Let

fj(X1, X2, . . . , Xn) ∈ Z[X1, X2, . . . , Xn]

for 1 6 j 6 m be a collection of polynomials and set f = (fj). Let a = (a1, . . . , an) ∈ Zn be a

solution of f modulo pk. Suppose that the m× n derivative matrix

Df(a) =

(
∂fj
∂Xi

(a)

)
has full rank when considered as a matrix defined over Z/p. Then there is a solution a′ =

(a′1, . . . , a
′
n) ∈ Zn of f modulo pk+1 satisfying a′≡

pk
a.

Example 1.36. For each of the values k = 1, 2, 3, solve the simultaneous system

f(X,Y, Z) = 3X2 + Y ≡
2k

1,

g(X,Y, Z) = XY + Y Z ≡
2k

0.

Finally we state a version of Hensel’s Lemma that applies under slightly more general

conditions than the above and will be of importance later.

Theorem 1.37 (Hensel’s Lemma: General Version). Let f(X) ∈ Z[X], r > 1 and a ∈ Z,

satisfy the equations

f(a) ≡
p2r−1

0,(a)

f ′(a) 6≡
pr

0.(b)

Then there exists a′ ∈ Z such that

f(a′) ≡
p2r+1

0 and a′≡
pr
a.
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CHAPTER 2

The p-adic norm and the p-adic numbers

Let R be a ring with unity 1 = 1R.

Definition 2.1. A function

N : R −→ R+ = {r ∈ R : r > 0}

is called a norm on R if the following are true.

(Na) N(x) = 0 if and only if x = 0.

(Nb) N(xy) = N(x)N(y) ∀x, y ∈ R.

(Nc) N(x+ y) 6 N(x) +N(y) ∀x, y ∈ R.

Condition (Nc) is called the triangle inequality.

N is called a seminorm if (Na) and (Nb) are replaced by the following conditions. The reader

is warned that the terminology of norms and seminorms varies somewhat between algebra and

analysis.

(Na′) N(1) = 1.

(Nb′) N(xy) 6 N(x)N(y) ∀x, y ∈ R.

A (semi)norm N is called non-Archimedean if (Nc) can be replaced by the stronger statement,

the ultrametric inequality :

(Nd) N(x+ y) 6 max{N(x), N(y)} ∀x, y ∈ R.

If (Nd) is not true then the norm N is said to be Archimedean.

Exercise: Show that for a non-Archimedean norm N , (Nd) can be strengthened to

(Nd′) N(x+ y) 6 max{N(x), N(y)} ∀x, y ∈ R with equality if N(x) 6= N(y).

Example 2.2. (i) Let R ⊆ C be a subring of the complex numbers C. Then setting

N(x) = |x|, the usual absolute value, gives a norm on R. In particular, this applies to the cases

R = Z,Q,R,C. This norm is Archimedean because of the inequality

|1 + 1| = 2 > |1| = 1.

(ii) Let I = [0, 1] be the unit interval and let

C(I) = {f : I −→ R : f continuous}.

Then the function |f |(x) = |f(x)| is continuous for any f ∈ C(I) and hence by basic analysis,

∃xf ∈ I such that |f |(xf ) = sup{|f |(x) : x ∈ I}.

Hence we can define a function

N : C(I) −→ R+; N(f) = |f |(xf ),

which turns out to be an Archimedean seminorm on C(I), usually called the supremum semi-

norm. This works upon replacing I by any compact set X ⊆ C.
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Consider the case of R = Q, the ring of rational numbers a/b, where a, b ∈ Z and b 6= 0.

Suppose that p > 2 is a prime number.

Definition 2.3. If 0 6= x ∈ Z, the p-adic ordinal (or valuation) of x is

ordp x = max{r : pr|x} > 0.

For a/b ∈ Q, the p-adic ordinal of a/b

ordp
a

b
= ordp a− ordp b.

Notice that in all cases, ordp gives an integer and that for a rational a/b, the value of ordp a/b

is well defined, i.e., if a/b = a′/b′ then

ordp a− ordp b = ordp a
′ − ordp b

′.

We also introduce the convention that ordp 0 =∞.

Proposition 2.4. If x, y ∈ Q, the ordp has the following properties:

(a) ordp x =∞ if and only if x = 0;

(b) ordp(xy) = ordp x+ ordp y;

(c) ordp(x+ y) > min{ordp x, ordp y} with equality if ordp x 6= ordp y.

Proof. (a) and (b) are easy and left to the reader; we will therefore only prove (c). Let x, y

be non-zero rational numbers. Write x = pr
a

b
and y = ps

c

d
, where a, b, c, d ∈ Z with p - a, b, c, d

and r, s ∈ Z. Now if r = s, we have

x+ y = pr
(a
b

+
c

d

)
= pr

(ad+ bc)

bd

which gives ordp(x+ y) > r since p - bd.

Now suppose that r 6= s, say s > r. Then

x+ y = pr
(a
b

+ ps−r
c

d

)
= pr

(ad+ ps−rbc)

bd
.

Notice that as s− r > 0 and p - ad, then

ordp(x+ y) = r = min{ordp x, ordp y}.

The argument for the case where at least one of the terms is 0 is left as an exercise. �

Definition 2.5. For x ∈ Q, let the p-adic norm of x be given by

|x|p =

p− ordp x if x 6= 0,

p−∞ = 0 if x = 0.

Proposition 2.6. The function | |p : Q −→ R+ has the properties

(a) |x|p = 0 if and only if x = 0;

(b) |xy|p = |x|p|y|p;
(c) |x+ y|p 6 max{|x|p, |y|p}, with equality if |x|p 6= |y|p.

Hence, | |p is a non-Archimedean norm on Q.
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Proof. This follows easily from Proposition 2.4. �

Let p be a prime and n > 1. Then from the p-adic expansion

n = n0 + n1p+ · · ·+ n`p
`

with 0 6 ni 6 p− 1, we obtain the number

αp(n) = n0 + n1 + · · ·+ n`.

Example 2.7. Then p-adic ordinal of n! is given by

ordp(n!) =
n− αp(n)

p− 1
,

hence

|n!|p = p−(n−αp(n))(p−1).

Proof. See the exercises. �

Now consider a general norm N on a ring R.

Definition 2.8. The distance between x, y ∈ R with respect to N is

dN (x, y) = N(x− y) ∈ R+.

It easily follows from the properties of a norm that

dN (x, y) = 0 if and only if x = y;(Da)

dN (x, y) = dN (y, x) ∀x, y ∈ R;(Db)

dN (x, y) 6 dN (x, z) + dN (z, y) if z ∈ R is a third element.(Dc)

Moreover, if N is non-Archimedean, then the second property is replaced by

dN (x, y) 6 max{dN (x, z),dN (z, y)} with equality if dN (x, z) 6= dN (z, y).(Dd)

Proposition 2.9 (The Isosceles Triangle Principle). Let N be a non-Archimedean norm on

a ring R. Let x, y, z ∈ R be such that dN (x, y) 6= dN (z, y). Then

dN (x, y) = max{dN (x, z),dN (z, y)}.

Hence, every triangle is isosceles in the non-Archimedean world.

Proof. Use (Dd) above. �

Now let (an)n>1 be a sequence of elements of R, a ring with norm N .

Definition 2.10. The sequence (an) tends to the limit a ∈ R with respect to N if

∀ε > 0 ∃M ∈ N such that n > M =⇒ N(a− an) = dN (a, an) < ε.

We use the notation

lim
n→∞

(N)an = a

which is reminiscent of the notation in Analysis and also keeps the norm in mind.

Definition 2.11. The sequence (an) is Cauchy with respect to N if

∀ε > 0∃M ∈ N such that m,n > M =⇒ N(am − an) = dN (am, an) < ε.
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Proposition 2.12. If lim
n→∞

(N)an exists, then (an) is Cauchy with respect to N .

Proof. Let a = lim
n→∞

(N)an. Then we can find a M1 such that

n > M1 =⇒ N(a− an) <
ε

2
.

If m,n > M1, then N(a−am) < ε/2 and N(a−an) < ε/2, hence by making use of the inequality

from (Nc) we obtain

N(am − an) = N ((am − a) + (a− an))

6 N(am − a) +N(a− an)

<
ε

2
+
ε

2
= ε. �

Exercise: Show that in the case where N is non-Archimedean, the inequality

N(am − an) <
ε

2

holds in this proof.

Consider the case of R = Q, the rational numbers, with the p-adic norm | |p.

Example 2.13. Take the sequence an = 1 + p+ p2 + · · ·+ pn−1. Then we have

|an+k − an|p =
∣∣∣pn + pn+1 + · · ·+ pn+k−1

∣∣∣
p

=
∣∣∣pn(1 + p+ p2 · · ·+ pk−1)

∣∣∣
p

=
1

pn
.

For each ε > 0, we can choose an M for which pM > 1/ε, so if n > M we have

|an+k − an|p <
1

pM
6 ε.

This shows that (an) is Cauchy.

In fact, this sequence has a limit with respect to | |p. Take a = 1/(1− p) ∈ Q; then we have

an = (pn − 1)/(p− 1), hence ∣∣∣∣an − 1

(1− p)

∣∣∣∣
p

=

∣∣∣∣ pn

(p− 1)

∣∣∣∣
p

=
1

pn
.

So for ε > 0, we have ∣∣∣∣an − 1

(1− p)

∣∣∣∣
p

< ε

whenever n > M (as above).

From now on we will write lim
n→∞

(p) in place of lim
n→∞

(N). So in the last example, we have

lim
n→∞

(p)(1 + p+ · · ·+ pn−1) =
1

(1− p)
.

Again consider a general norm N on a ring R.
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Definition 2.14. A sequence (an) is called a null sequence if

lim
n→∞

(N)an = 0.

Of course this assumes the limit exists! This is easily seen to be equivalent to the the fact that

in the real numbers with the usual norm | |,

lim
n→∞

N(an) = 0.

Example 2.15. In the ring Q together with p-adic norm | |p, we have an = pn. Then

|pn|p =
1

pn
→ 0 as n→∞

so lim
n→∞

(p)an = 0. Hence this sequence is null with respect to the p-adic norm.

Example 2.16. Use the same norm as in Example 2.15 with an = (1 + p)p
n − 1. Then for

n = 1,

|a1|p = |(1 + p)p − 1|p

=

∣∣∣∣(p1
)
p+ · · ·+

(
p

p− 1

)
pp−1 + pp

∣∣∣∣
p

=
1

p2
,

since for 1 6 k 6 p− 1,

ordp

(
p

k

)
= 1.

Hence |a1|p = 1/p2.

For general n, we proceed by induction upon n, and show that

|an|p =
1

pn+1
.

Hence we see that as n→∞, |an|p → 0, so this sequence is null with respect to the p-adic norm

| |p.

Example 2.17. R = Q, N = | |, the usual norm. Consider the sequence (an) whose n-th

term is the decimal expansion of
√

2 up to the n-th decimal place, i.e., a1 = 1.4, a2 = 1.41,

a3 = 1.414, etc. Then it is well known that
√

2 is not a rational number although it is real, but

(an) is a Cauchy sequence.

The last example shows that there may be holes in a normed ring, i.e., limits of Cauchy

sequences need not exist. The real numbers can be thought of as the rational numbers with all

the missing limits put in. We will develop this idea next.

Let R be a ring with a norm N . Define the following two sets:

CS(R,N) = the set of Cauchy sequences in R with respect to N,

Null(R,N) = the set of null sequences in R with respect to N.
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So the elements of CS(R,N) are Cauchy sequences (an) in R, and the elements of Null(R,N)

are null sequences (an). Notice that

Null(R,N) ⊆ CS(R,N).

We can add and multiply the elements of CS(R,N), using the formulae

(an) + (bn) = (an + bn), (an)× (bn) = (anbn),

since it is easily checked that these binary operations are functions of the form

+,× : CS(R,N)× CS(R,N) −→ CS(R,N).

Claim: The elements 0CS = (0), 1CS = (1R) together with these operations turn CS(R,N) into

a ring (commutative if R is) with zero 0CS and unity 1CS. Moreover, the subset Null(R,N) is

a two sided ideal of CS(R,N), since if (an) ∈ CS(R,N) and (bn) ∈ Null(R,N), then

(anbn), (bnan) ∈ Null(R,N)

as can be seen by calculating lim
n→∞

(N)anbn and lim
n→∞

(N)bnan.

We can then define the quotient ring CS(R,N)/Null(R,N); this is called the completion of

R with respect to the norm N , and is denoted R̂N or just R̂ if the norm is clear. We write {an}
for the coset of the Cauchy sequence (an). The zero and unity are of course {0R} and {1R}
respectively. The norm N can be extended to R̂N as the following important result shows.

Theorem 2.18. The ring R̂N has sum + and product × given by

{an}+ {bn} = {an + bn}, {an} × {bn} = {anbn},

and is commutative if R is. Moreover, there is a unique norm N̂ on R̂N which satisfies N̂({a}) =

N(a) for a constant Cauchy sequence (an) = (a) with a ∈ R; this norm is defined by

N̂({cn}) = lim
n→∞

N(cn)

as a limit in the real numbers R. Finally, N̂ is non-Archimedean if and only if N is.

Proof. We will first verify that N̂ is a norm. Let {an} ∈ R̂. We should check that the

definition of N̂({an}) makes sense. For each ε > 0, we have an M such that whenever m,n > M

then N(am, an) < ε. To proceed further we need to use an inequality.

Claim:

|N(x)−N(y)| 6 N(x− y) for all x, y ∈ R.

Proof. By (Nc),

N(x) = N ((x− y) + y) 6 N(x− y) +N(y)

implying

N(x)−N(y) 6 N(x− y).

Similarly,

N(y)−N(x) 6 N(y − x).

Since N(−z) = N(z) for all z ∈ R (why?), we have

|N(x)−N(y)| 6 N(x− y). �
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This result tells us that for ε > 0, there is an M for which whenever m,n > M we have

|N(am)−N(an)| < ε,

which shows that the sequence of real numbers (N(an)) is a Cauchy sequence with respect to

the usual norm | |. By basic Analysis, we know it has a limit, say

` = lim
n→∞

N(an).

Hence, there is an M ′ such that M ′ < n implies that

|`−N(an)| < ε.

So we have shown that N̂({an}) = ` is defined.

We have

N̂({an}) = 0 ⇐⇒ lim
n→∞

N(an) = 0

⇐⇒ (an) is a null sequence

⇐⇒ {an} = 0,

proving (Na). Also, given {an} and {bn}, we have

N̂({an}{bn}) = N̂({anbn}) = lim
n→∞

N(anbn)

= lim
n→∞

N(an)N(bn)

= lim
n→∞

N(an) lim
n→∞

N(bn)

= N̂({an})N̂({bn}),

which proves (Nb). Finally,

N̂({an}+ {bn}) = lim
n→∞

N(an + bn)

6 lim
n→∞

(N(an) +N(bn))

= lim
n→∞

N(an) + lim
n→∞

N(bn)

= N̂({an}) + N̂({bn}),

which gives (Nc). Thus N̂ is certainly a norm. We still have to show that if N is non-

Archimedean then so is N̂ . We will use the following important Lemma.

Lemma 2.19. Let R be a ring with a non-Archimedean norm N . Suppose that (an) is a

Cauchy sequence and that b ∈ R has the property that b 6= lim
n→∞

(N)an. Then there is an M such

that for all m,n > M ,

N(am − b) = N(an − b),

so the sequence of real numbers (N(an − b)) is eventually constant. In particular, if (an) is not

a null sequence, then the sequence (N(an)) is eventually constant.

Proof. Notice that

|N(am − b)−N(an − b)| 6 N(am − an),
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so (N(an − b)) is Cauchy in R. Let ` = limn→∞N(an − b); notice also that ` > 0. Hence there

exists an M1 such that n > M1 implies

N(an − b) >
`

2
.

Also, there exists an M2 such that m,n > M2 implies

N(am − an) <
`

2
,

since (an) is Cauchy with respect to N . Now take M = max{M1,M2} and consider m,n > M .

Then

N(am − b) = N ((an − b) + (am − an))

= max{N(an − b), N(am − an)}

= N(an − b)

since N(an − b) > `/2 and N(am − an) < `/2. �

Let us return to the proof of Theorem 2.18. Let {an}, {bn} have the property that

N̂({am}) 6= N̂({bm});

furthermore, we can assume that neither of these is {0}, since otherwise the inequality in (Nd)

is trivial to verify. By the Lemma with b = 0 we can find integers M ′,M ′′ such that

n > M ′ =⇒ N(an) = N̂({an})

and

n > M ′′ =⇒ N(bn) = N̂({bn}).

Thus for n > max{M ′,M ′′}, we have

N(an + bn) = max{N(an), N(bn)}

= max{N̂({an}), N̂({bn})}.

This proves (Nd) for N̂ and completes the proof of Theorem 2.18. �

Definition 2.20. A ring with norm N is complete with respect to the norm N if every

Cauchy sequence has a limit in R with respect to N .

Example 2.21. The ring of real numbers (resp. complex numbers) is complete with respect

to the usual norm | |.

Definition 2.22. Let R be a ring with norm N , and let X ⊆ R; then X is dense in R if

every element of R is a limit (with respect to N) of elements of X.

Theorem 2.23. Let R be a ring with norm N . Then R̂ is complete with respect to N̂ .

Moreover, R can be identified with a dense subring of R̂.

Proof. First observe that for a ∈ R, the constant sequence (an) = (a) is Cauchy and so

we obtain the element {a} in R̂; this allows us to embed R as a subring of R̂ (it is necessary

to verify that the inclusion R ↪→ R̂ preserves sums and products). We will identify R with its

image without further comment; thus we will often use a ∈ R to denote the element {a} ∈ R̂.
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It is easy to verify that if (an) is a Cauchy sequence in R with respect to N , then (an) is also a

Cauchy sequence in R̂ with respect to N̂ . Of course it may not have a limit in R, but it always

has a limit in R̂, namely the element {an} by definition of R̂.

Now suppose that (αn) is Cauchy sequence in R̂ with respect to the norm N̂ . Then we must

show that there is an element α ∈ R̂ for which

(2.1) lim
m→∞

(N̂)αm = α.

Notice that each αm is in fact the equivalence class of a Cauchy sequence (amn) in R with

respect to the norm N , hence if we consider each amn as an element of R̂ as above, we can write

(2.2) αn = lim
m→∞

(N̂)anm.

We need to construct a Cauchy sequence (cn) in R with respect to N such that

{cn} = lim
m→∞

(N̂)αm.

Then α = {cn} is the required limit of (αn).

Now for each m, by Equation (2.2) there is an Mm such that whenever n > Mm,

N̂(αm − amn) <
1

m
.

For each m we now choose an integer k(m) > Mm; we can even assume that these integers are

strictly increasing, hence

k(1) < k(2) < · · · < k(m) < · · · .
We define our sequence (cn) by setting cn = ank(n). We must show it has the required properties.

Lemma 2.24. (cn) is Cauchy with respect to N and hence N̂ .

Proof. Let ε > 0. As (αn) is Cauchy there is an M ′ such that if n1, n2 > M ′ then

N̂(αn1 − αn2) <
ε

3
.

Thus

N̂(cn1 − cn2) = N̂
(
(an1 k(n1) − αn1) + (αn1 − αn2) + (αn2 − an2 k(n2))

)
6 N̂(an1 k(n1) − αn1) + N̂(αn1 − αn2) + N̂(αn2 − an2 k(n2)).

If we now choose M = max{M ′, 3/ε}, then for n1, n2 > M , we have

N̂(cn1 − cn2) <
ε

3
+
ε

3
+
ε

3
= ε,

and so the sequence (cn) is indeed Cauchy. �

Lemma 2.25. lim
m→∞

(N̂)αm = {cn}.

Proof. Let ε > 0. Then denoting {cn} by γ we have

N̂(γ − αm) = N̂
(
(γ − amk(m)) + (amk(m) − αm)

)
6 N̂(γ − amk(m)) + N̂(amk(m) − αm)

= lim
n→∞

N(ank(n) − amk(m)) + N̂(amk(m) − αm).

Next choose M ′′ so that M ′′ > 2/ε and whenever n1, n2 > M ′′ then

N(an1 k(n1) − an2 k(n2)) <
ε

2
.
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So for m,n > M ′′ we have

N(amk(m) − ank(n)) + N̂(amk(m) − αm) <
ε

2
+
ε

2
= ε.

Hence we see that

N̂(γ − αm) < ε ∀m > M ′′. �

Lemmas 2.24 and 2.25 complete the proof of Theorem 2.23. �

We will now focus attention upon the case of R = Q equipped with the p-adic norm N = | |p
for a prime p.

Definition 2.26. The ring of p-adic numbers is the completion Q̂ of Q with respect to

N = | |p; we will denote it Qp. The norm on Qp will be denoted | |p.

Definition 2.27. The unit disc about 0 ∈ Qp is the set of p-adic integers,

Zp = {α ∈ Qp : |α|p 6 1}.

Proposition 2.28. The set of p-adic integers Zp is a subring of Qp. Every element of Zp
is the limit of a sequence of (non-negative) integers and conversely, every Cauchy sequence in

Q consisting of integers has a limit in Zp.

Proof. Let α, β ∈ Zp. Then

|α+ β|p 6 max{|α|p, |β|p} 6 1

and hence α+ β ∈ Zp. Similarly, αβ ∈ Zp by (Nb). Thus Zp is a subring of Qp.

From the definition of Qp, we have that if α ∈ Zp, then α = {an} with an ∈ Q and the

sequence (an) being Cauchy. By Lemma 2.19, we know that for some M , if n > M then

|an|p = c for some constant c ∈ Q. But then we have |α|p = c and so c 6 1. So without loss of

generality, we can assume that |an|p 6 1 for all n. Now write an = rn/sn with rn, sn ∈ Z and

rn, sn 6= 0. Then we can assume sn 6 ≡
p

0 as ordp rn − ordp sn > 0. But this means that for each

m we can solve the equation snx ≡
pm

1 in Z (see Chapter 1), so let unm ∈ Z satisfy snunm ≡
pm

1.

We can even assume that 1 6 unm 6 pm − 1 by adding on multiples of pm if necessary. Thus

for each m we have

|snunm − 1|p 6
1

pm
.

Then find for each m, ∣∣∣∣rnsn − rnunm
∣∣∣∣
p

=

∣∣∣∣rn(1− snunm)

sn

∣∣∣∣
p

6
1

pm
.

Now for each m, there is an km for which

|α− akm |p <
1

pm
,

therefore ∣∣α− rkmukm (m+1)

∣∣
p

=
∣∣(α− akm) + (akm − rkmukm (m+1))

∣∣
p

6 max{|α− akm |p,
∣∣akm − rkmukm (m+1)

∣∣
p
}

<
1

pm
.
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Hence

lim
n→∞

(p)(α− rknukn (n+1)) = 0,

showing that α is a limit of non-negative integers as required. �

Now we will describe the elements of Qp explicitly, using the p-adic digit expansion. We will

begin with elements of Zp. So suppose that α ∈ Zp. By Proposition 2.28 we know that there is

an integer α0 satisfying the conditions

|α0 − α|p < 1, 0 6 α0 6 (p− 1).

The p-adic integer α − α0 has norm 6 1/p and so the p-adic number (α − α0)/p is in Zp.
Repeating the last step, we obtain an integer α1 satisfying

|α− (α0 + α1p)|p <
1

p
, 0 6 α1 6 (p− 1).

Again repeating this, we find a sequence of integers αn for which

|α− (α0 + α1p+ · · ·+ αnp
n))|p <

1

pn
, 0 6 αn 6 (p− 1).

The sequence (βn) for which

βn = α0 + α1p+ · · ·+ αnp
n

is Cauchy with respect to | |p. Moreover its limit is α since

|α− βn|p <
1

pn
.

So we have an expansion

α = α0 + α1p+ α2p
2 + · · ·

reminiscent of the decimal expansion of a real number but with possibly infinitely many positive

powers of p. This is the (standard) p-adic expansion of α ∈ Zp and the αn are known as the

(standard) p-adic digits. It has one subtle difference from the decimal expansion of a real

number, namely it is unique. To see this, suppose that

α = α′0 + α′1p+ α′2p
2 + · · ·

is a second such expansion with the properties of the first. Let d be the first integer for

which αd 6= α′d. Then we can assume without loss of generality that αd < α′d and hence

1 6 α′d − αd 6 (p− 1). If

β′n = α′0 + α′1p+ · · ·+ α′np
n,

then

β′d − βd = (α′d − αd)pd,
hence ∣∣β′d − βd∣∣p =

1

pd
.

Notice that ∣∣β′d − βd∣∣p =
∣∣(β′d − α) + (α− βd)

∣∣
p

6 max{
∣∣β′d − α∣∣p, |α− βd|p}

<
1

pd
,
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which clearly contradicts the last equality. So no such d can exist and there is only one such

expansion.

Now let α ∈ Qp be any p-adic number. If |α|p 6 1, we have already seen how to find its

p-adic expansion. If |α|p > 1, suppose |α|p = pk with k > 0. Consider β = pkα, which has

|β|p = 1; this has a p-adic expansion

β = β0 + β1p+ β2p
2 + · · ·

as above. Then

α =
β0
pk

+
β1
pk−1

+ · · ·+ βk−1
p

+ βk + βk+1p+ · · ·+ βk+rp
r + · · ·

with 0 6 βn 6 (p− 1) for each n.

Our discussion has established the following important result.

Theorem 2.29. Every p-adic number α ∈ Qp has a unique p-adic expansion

α = α−rp
−r + α1−rp

1−r + α2−rp
2−r + · · ·+ α−1p

−1 + α0 + α1p+ α2p
2 + · · ·

with αn ∈ Z and 0 6 αn 6 (p−1). Furthermore, α ∈ Zp if and only if α−r = 0 whenever r > 0.

We can do arithmetic in Qp in similar fashion to the way it is done in R with decimal

expansions.

Example 2.30. Find

(1/3 + 2 + 2 · 3 + 0 · 32 + 2 · 33 + · · · ) + (2/32 + 0/3 + 1 + 2 · 3 + 1 · 32 + 1 · 33 + · · · ).

The idea is start at the left and work towards the right. Thus if the answer is

α = a−2/3
2 + a−1/3 + a0 + a13 + · · · ,

then

a−2 = 2, a−1 = 1, a0 = 2 + 1 = 0 + 1 · 3≡
3

0,

and so

a1 = 2 + 2 + 1 = 2 + 1 · 3≡
3

2

where the 1 is carried from the 30 term. Continuing we get

a2 = 0 + 1 + 1 = 2, a3 = 2 + 1 = 0 + 1 · 3≡
3

0,

and so we get

α = 2/32 + 1/3 + 0 + 2 · 3 + 2 · 32 + 0 · 33 + · · ·

as the sum to within a term of 3-adic norm smaller than 1/33.

Notice that the p-adic expansion of a p-adic number is unique, whereas the decimal expansion

of a real need not be. For example

0.999 · · · = 1.000 · · · = 1.

We end this section with another fact about completions.

Theorem 2.31. Let R be field with norm N . Then R̂ is a field. In particular, Qp is a field.
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Proof. Let {an} be an element of R̂, not equal to {0}. Then N̂({an}) 6= 0. Put

` = N̂({an}) = lim
n→∞

N(an) > 0.

Then there is an M such that n > M implies that N(an) > `/2 (why?), so for such an n we

have an 6= 0. So eventually an has an inverse in R. Now define the sequence (bn) in R by bn = 1

if n 6M and bn = a−1n if n > M . Thus this sequence is Cauchy and

lim
n→∞

(N)anbn = 1,

which implies that

{an}{bn} = {1}.
Thus {an} has inverse {bn} in R̂. �
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CHAPTER 3

Some elementary p-adic analysis

In this chapter we will investigate elementary p-adic analysis, including concepts such as

convergence of sequences and series, continuity and other topics familiar from elementary real

analysis, but now in the context of the p-adic numbers Qp with the p-adic norm | |p.
Let α = {an} ∈ Qp. From Chapter 2 we know that for some M ,

|α|p =
1

pordp aM
,

which is an integral power of p. So for t ∈ Z, an inequality of form

|α|p <
1

pt

is equivalent to

|α|p 6
1

pt+1
.

Let (αn) be a sequence in Qp.

Proposition 3.1. (αn) is a Cauchy sequence in Qp if and only if (αn+1 − αn) is a null

sequence.

Proof. See Problem set 3. �

Next we will now consider series in Qp. Suppose that (αn) is a sequence in Qp. For each n

we can consider the n-th partial sum of the series
∑
αn,

sn = α1 + α2 + · · ·+ αn.

Definition 3.2. If the sequence (sn) in Qp has a limit

S = lim
n→∞

(p)sn

we say that the series
∑
αn converges to the limit S and write

∞∑
n=1

αn = S.

S is called the sum of the series
∑
αn. If the series has no limit we say that it diverges.

Example 3.3. Taking αn = npn we have

sm =
m∑
n=1

npn

and

sn+1 − sn = (n+ 1)pn+1.
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This has norm ∣∣(n+ 1)pn+1
∣∣
p

= |n+ 1|p
∣∣pn+1

∣∣
p
6

1

pn+1
,

which clearly tends to 0 as n → ∞ in the real numbers. By Proposition 3.1, (sn) is a Cauchy

sequence and therefore it has a limit in Qp.

In real analysis, there are series which converge but are not absolutely convergent. For

example, the series
∑

(−1)n/n converges to − ln 2 but
∑

1/n diverges. Our next result shows

that this cannot happen in Qp.

Proposition 3.4. The series
∑
αn in Qp converges if and only if (αn) is a null sequence.

Proof. If
∑
αn converges then by Proposition 3.1 the sequence of partial sums (sn) is

Cauchy since

sn+1 − sn = αn

is a null sequence. Conversely, if (αn) is null, then by Proposition 3.1 we see that the sequence

(sn) is Cauchy and hence converges. �

So to check convergence of a series
∑
αn in Qp it suffices to investigate whether

lim
n→∞

(p)αn = 0.

This means that convergence of series in Qp is generally far easier to deal with than convergence

of series in the real or complex numbers.

Example 3.5. The series
∑
pn converges since in R we have

|pn|p =
1

pn
→ 0.

In fact, ∑
pn = lim

m→∞
(p)

m∑
n=0

pn =
1

(1− p)
.

Example 3.6. The series
∑

1/n diverges in Qp since for example the subsequence

βn =
1

np+ 1

of the sequence (1/n) has |βn|p = 1 for every n.

As a particular type of series we can consider power series (in one variable x). Let x ∈ Qp

and let (αn) be a sequence. Then we have the series
∑
αnx

n. As in real analysis, we can

investigate for which values of x this converges or diverges.

Example 3.7. Take αn = 1 for all n. Then

lim
n→∞

(p)xn

= 0 if |x|p < 1,

> 1 otherwise.

So this series converges if and only if |x|p < 1. Of course, in R the series
∑
xn converges if

|x| < 1, diverges if |x| > 1, diverges to +∞ if x = 1 and oscillates through the values 0 and −1

if x = −1.
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Example 3.8. For the series
∑
nxn, we have

|nxn|p = |n|p|x
n|p 6 |x|p

n

which tends to 0 in R if |x|p < 1. So this series certainly converges for every such x.

Just as in real analysis, we can define a notion of radius of convergence for a power series

in Qp. For technical reasons, we will have to proceed with care to obtain a suitable definition.

We first need to recall from real analysis the idea of the limit superior (lim sup) of a sequence

of real numbers.

Definition 3.9. A real number ` is the limit superior of the sequence of real numbers (an)

if the following conditions are satisfied:

(LS1) For real number ε1 > 0,

∃M1 ∈ N such that n > M1 =⇒ `+ ε1 > an.

(LS2) For real number ε2 > 0 and natural number M2,

∃m > M2 such that am > `− ε2.

We write

` = lim sup
n

an

if such a real number exists. If no such ` exists, we write

lim sup
n

an =∞.

It is a standard fact that if the sequence (an) converges then lim sup an exists and

lim sup
n

an = lim
n→∞

an.

In practise, this gives a useful method of computing lim sup an in many cases.

Now consider a power series
∑
αnx

n where αn ∈ Qp. Then we can define the radius of

convergence of
∑
αnx

n by the formula

(3.1) r =
1

lim sup |αn|p
1/n

.

Proposition 3.10. The series
∑
αnx

n converges if |x|p < r and diverges if |x|p > r, where

r is the radius of convergence. If for some x0 with |x0|p = r the series
∑
αnx

n
0 converges (or

diverges) then
∑
αnx

n converges (or diverges) for all x ∈ Qp with |x|p = r.

Proof. This is proved using Proposition 3.4. First notice that if |x|p < r, then

|αnxn|p = |αn|p|x|p
n → 0

as n→∞. Similarly, if |x0|p > r, then

|αnxn|p = |αn|p|x|p
n 6→ 0

as n→∞. Finally, if there is such an x0, then

|αnxn0 |p = |αn|p|x0|p
n → 0

as n→∞ and so for every x with |x|p = r we have

|αnxn|p = |αnxn0 |p → 0. �
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Example 3.11. Show that the radii of convergence of the p-adic series

expp(x) =

∞∑
n=0

xn

n!
, logp(x) =

∞∑
n=1

(−1)n−1xn

n

are p−1/(p−1) and 1, respectively.

Solution. By Example 2.7,

|1/(n!)|1/np = p(n−αp(n))/n(p−1) = p(1−αp(n)/n)(p−1)

and

lim sup |1/(n!)|1/np = p1/(p−1),

so the radius of convergence of expp(x) is p−1/(p−1).

Also,

|1/n|1/np = pordp(n)/n

and

lim sup |1/n|1/np = 1,

hence the radius of convergence of logp(x) is 1. �
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CHAPTER 4

The topology of Qp

We will now discuss continuous functions on Qp and related topics. We begin by introducing

some basic topological notions.

Let α ∈ Qp and δ > 0 be a real number.

Definition 4.1. The open disc centred at α of radius δ is

D (α; δ) = {γ ∈ Qp : |γ − α|p < δ}.

The closed disc centred at α of radius δ is

D (α; δ) = {γ ∈ Qp : |γ − α|p 6 δ}.

Clearly

D (α; δ) ⊆ D (α; δ).

Such a notion is familiar in the real or complex numbers; however, here there is an odd

twist.

Proposition 4.2. Let β ∈ D (α; δ). Then

D (β; δ) = D (α; δ) .

Hence every element of D (α; δ) is a centre. Similarly, if β′ ∈ D (α; δ), then

D (β′; δ) = D (α; δ).

Proof. This is a consequence of the fact that the p-adic norm is non-Archimedean. Let

γ ∈ D (α; δ); then

|γ − β|p = |(γ − α) + (α− β)|p
6 max{|γ − α|p, |α− β|p}

< δ.

Thus D (α; δ) ⊆ D (β; δ). Similarly we can show that D (β; δ) ⊆ D (α; δ) and therefore these two

sets are equal. A similar argument deals with the case of closed discs. �

Let X ⊆ Qp (for example, X = Zp).

Definition 4.3. The set

DX (α; δ) = D (α; δ) ∩X
is the open ball of radius δ in X centred at α. Similarly,

DX (α; δ) = D (α; δ) ∩X

is the closed ball in X of radius δ centred at α.

We will now define a continuous function. Let f : X −→ Qp be a function.
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Definition 4.4. We say that f is continuous at α ∈ X if

∀ε > 0∃δ > 0 such that γ ∈ DX (α; δ) =⇒ f(γ) ∈ D (f(α); ε) .

If f is continuous at every point in X then we say that it is continuous on X.

Example 4.5. Let f(x) = γ0 + γ1x + · · · + γdx
d with γk ∈ Qp be a polynomial function.

Then as in real analysis, this function is continuous at every point. To see this, we can either

use the old proof with | |p in place of | |, or the following p-adic version.

Let us show that f is continuous at α. Then

|f(x)− f(α)|p = |x− α|p

∣∣∣∣∣
d∑

n=1

γn(xn−1 + αxn−2 + · · ·+ αn−1)

∣∣∣∣∣
p

.

If we also assume that |x|p < |α|p, then

|f(x)− f(α)|p 6 |x− α|p max{
∣∣αn−1γn∣∣p : 1 6 n 6 d}

6 |x− α|pB,

say, for some suitably large B ∈ R (in fact it needs to be at least as big as all the numbers∣∣αn−1γn∣∣p with 1 6 n 6 d). But if ε > 0 (and without loss of generality, ε < |α|p) we can take

δ = ε/B. If |x− α|p < δ, we now have

|f(x)− f(α)|p < ε.

Example 4.6. Let the power series
∑
αnx

n have radius of convergence r > 0. Then the

function f : D (0; r) −→ Qp for which

f(x) =

∞∑
n=1

αnx
n

is continuous by a similar proof to the last one.

It is also the case that sums and products of continuous functions are continuous as in real

analysis.

What makes p-adic analysis radically different from real analysis is the existence of non-

trivial locally constant functions which we now discuss. First recall the following from real

analysis.

Recollection 4.7. Let f : (a, b) −→ R be a continuous function. Suppose that for every

x ∈ (a, b) there is a t > 0 such that (x− t, x+ t) ⊆ (a, b) and f is constant on (x− t, x+ t), i.e.,

f is locally constant. Then f is constant on (a, b).

We can think of (a, b) as a disc of radius (b− a)/2 and centred at (a+ b)/2. This suggests

the following definition in Qp.

Definition 4.8. Let f : X −→ Qp be a function where X ⊆ Qp. Then f is locally constant

on X if for every α ∈ X, there is a real number δα > 0 such that f is constant on the open disc

DX (α; δα).

This remark implies that there are no interesting examples of locally constant functions on

open intervals in R; however, that is false in Qp.
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Example 4.9. Let X = Zp, the p-adic integers. From Theorem 2.29, we know that for

α ∈ Zp, there is a p-adic expansion

α = α0 + α1p+ · · ·+ αnp
n + · · · ,

where αn ∈ Z and 0 6 αn 6 (p− 1). Consider the functions

fn : Zp −→ Zp; fn(α) = αn,

which are defined for all n > 0. We claim these are locally constant. To see this, notice that fn

is unchanged if we replace α by any β with |β − α|p < 1/pn; hence fn is locally constant.

We can extend this example to functions fn : Qp −→ Qp for n ∈ Z since for any α ∈ Qp we

have an expansion

α = α−rp
−r + · · ·+ α0 + α1p+ · · ·+ αnp

n + · · ·

and we can set fn(α) = αn in all cases; these are still locally constant functions on Qp.

One important fact about such functions is that they are continuous.

Proposition 4.10. Let f : X −→ Qp be locally constant on X. Then f is continuous on X.

Proof. Given α ∈ X and ε > 0, we take δ = δα and then f is constant on DX (α; δα). �

This result is also true in R.

Example 4.11. Let us consider the set Y = D (0; 1) ⊆ Zp. Then we define the characteristic

function of Y by

χ
Y

: Zp −→ Qp; χ
Y

(α) =

1 if α ∈ Y ,

0 if α /∈ Y .

This is clearly locally constant on Zp since it is constant on each of the open discs D (k; 1) with

0 6 k 6 (p− 1) and these exhaust the elements of Zp. This can be repeated for any such open

ball D (α; δ) with δ > 0.

Another example is provided by the Teichmüller functions. These will require some work

to define. We will define a sequence of functions with the properties stated in the next result.

Proposition 4.12. There is a unique sequence of locally constant, hence continuous, func-

tions ωn : Zp −→ Qp, satisfying

ωn(α)p = ωn(α) for n > 0,(T1)

α =
∞∑
n=0

ωn(α)pn.(T2)

Proof. First we define the Teichmüller character ω : Zp −→ Qp which will be equal to ω0.

Let α ∈ Zp; then the sequence (αp
n
) is a sequence of p-adic integers and we claim it has a limit.

To see this, we will show that it is Cauchy and use the fact that Qp is complete.

By Theorem 2.29, α has a unique p-adic expansion

α = α0 + α1p+ α2p
2 + · · ·

with αk ∈ Z and 0 6 αk 6 (p− 1). In particular,

|α− α0|p < 1.
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By Fermat’s Little Theorem 1.26, in Z we have

αp0≡p α0,

hence |αp0 − α0|p < 1. Making use of the fact that
∣∣∣αkαp−1−k0

∣∣∣
p
6 1 together with the triangle

inequality, we obtain

|αp − αp0|p =
∣∣∣(α− α0)(α

p−1 + αp−2α0 + · · ·+ αp−10 )
∣∣∣
p

6 |α− α0|p < 1.

Thus we have

|αp − α|p = |(αp − αp0) + (αp0 − α0) + (α0 − α)|p
6 max{|αp − αp0|p, |α

p
0 − α0|p, |α0 − α|p}

< 1.

We will show by induction upon n > 0 that

(4.1)
∣∣∣αpn+1 − αpn

∣∣∣
p
<

1

pn
.

Clearly this is true for n = 0 by the above. Suppose true for n. Then

αp
n+1

= αp
n

+ β,

where |β|p < 1/pn. Raising to the power p gives

αp
n+2

= (αp
n

+ β)p

= αp
n+1

+ pαp
n(p−1)β + · · ·+

(
p

k

)
αp

nkβp−k + · · ·+ βp,

where all of the terms except the first in the last line have | |p less than 1/pn+1. Applying the

p-adic norm gives the desired result for n+ 1.

Now consider αp
n
. Then

αp
n

= (αp
n − αpn−1

) + (αp
n−1 − αpn−2

) + · · ·+ (αp − α) + α

= α+
n−1∑
k=0

(αp
k+1 − αpk).

Clearly the difference αp
n+1 −αpn is a null sequence and by Proposition 3.1 the sequence (αp

n
)

is Cauchy as desired.

Now we define the Teichmüller function or character,

ω : Zp −→ Qp; ω(α) = lim
n→∞

(p)αp
n
.

This function satisfies

|α− ω(α)|p < 1, ω(α)p = ω(α).

The inequality follows from Equation (4.1), while the equation follows from the fact that(
lim
n→∞

(p)αp
n
)p

= lim
n→∞

(p)(αp
n
)p

= lim
n→∞

(p)(αp
n+1

).
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We now set ω0(α) = ω(α) and define the ωn by recursion using

ωn+1(α) = ω

(
α− (ω0(α) + ω1(α)p+ · · ·+ ωn(α)pn)

pn+1

)
. �

For α ∈ Zp, the expansion

α = ω0(α) + ω1(α)p+ · · ·+ ωnp
n + · · ·

is called the Teichmüller expansion of α and the ωn(α) are called the Teichmüller digits of α.

This expansion is often used in place of the other p-adic expansion. One reason is that the

function ω is multiplicative. We sum up the properties of ω in the next proposition.

Proposition 4.13. The function ω : Zp −→ Qp is locally constant and satisfies the condi-

tions

ω(αβ) = ω(α)ω(β),

|ω(α+ β)− ω(α)− ω(β)|p < 1.

Moreover, the image of this function consists of exactly p elements of Zp, namely the p distinct

roots of the polynomial Xp −X.

Proof. The multiplicative part follows from the definition, while the additive result is an

easy exercise with the ultrametric inequality. For the image of ω, we remark that the distinct

numbers in the list 0, 1, 2, . . . , p− 1 satisfy

|r − s|p = 1.

If r 6= s, then

|ω(r)− ω(s)|p = 1.

Hence, the image of the function ω has at least p distinct elements, all of which are roots in

Qp of Xp −X. As Qp is a field, there are not more than p of these roots. So this polynomial

factors as

Xp −X = X(X − ω(1))(X − ω(2)) · · · (X − ω(p− 1))

and the p roots are the only elements in the image of ω. �

Example 4.14. For the prime p = 2, the roots of X2 −X are 0,1. In fact, the Teichmüller

expansion is just the p-adic expansion discussed in Chapter 2.

Example 4.15. For the prime p = 3, the roots of X3 −X are 0,±1. So we replace the use

of 2 in the p-adic expansion by that of −1. Let us consider an example.

Setting α = 1/5, we have 5≡
3
−1 and so ω(5) = −1 since

|5− (−1)|3 < 1.

Hence ω(1/5) = −1 too, so ω0(1/5) = −1. Now consider

(1/5)− (−1)

3
=

6

15
=

2

5
,

and notice that 2≡
3
−1, hence ω1(1/5) = ω(2/5) = 1. Next consider

(2/5)− 1

3
=
−3

15
=
−1

5
,
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giving ω2(1/5) = ω(−1/5) = 1. Thus

1

5
= (−1) + 1 · 3 + 1 · 32 + · · ·

where we have stopped at the term in 32 and ignored terms of 3-norm less than 1/32.

Example 4.16. If p = 5, there are three roots of X5 −X in Z, namely 0,±1 and two more

in Z5 but not in Z. On the other hand, (Z/5)× =
〈
2
〉

as a group. Thus, we can take ω(2) = γ

say, to be generator of the group of (5− 1) = 4-th roots of 1 in Z5. So the roots of X5 −X in

Z5 are

ω(0) = 0, ω(1) = 1, ω(2) = γ, ω(3) = γ3, ω(4) = γ2.

Suppose that we wish to find the Teichmüller expansion of 3 up to the term in 52. Then we

first need to find an integer which approximates γ to within a 5-norm of less than 1/52. So let

us try to find an element of Z/53 which agrees with 2 modulo 5 and is a root of X4≡
53

1. We

can use Hensel’s Lemma to do this.

We have a root ofX4−1 modulo 5, namely 2. Set f(X) = X4−1 and note that f ′(X) = 4X3.

Now f ′(2)≡
5

4 · 8≡
5

2 and we can take u = 3. Then x = 2 − 3f(2) = −43≡
25

7 is a root of f(X)

modulo 25. Repeating this we obtain

7− 3f(7) = 7− 75 = −68 ≡
125

57

which is a root of the polynomial modulo 125. We now proceed as before.

This method always works and relies upon the same ideas as Hensel’s Lemma of Chapter 1

and Problem Set 3.

Theorem 4.17 (Hensel’s Lemma). Let f(X) ∈ Zp[X] be a polynomial and let α ∈ Zp be a

p-adic number for which

|f(α)|p < 1,
∣∣f ′(α)

∣∣
p

= 1.

Define a sequence in Qp by setting α0 = α and in general

αn+1 = αn − (f ′(αn))−1f(αn).

Then each αn is in Zp and moreover

|f(αn)|p <
1

pn
.

Hence the sequence (αn) is Cauchy with respect to | |p and

f( lim
n→∞

(p)αn) = 0.

Proof. The proof is left to the reader who should look at the earlier version of Hensel’s

Lemma mentioned above. We remark that the definition of αn+1 can be modified to

αn+1 = αn − (f ′(α))−1f(αn).

One reason for using only α rather than αn is that it may reduce the amount of calculation

needed when using this formula. �
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Example 4.18. Let f(X) = Xp−1− 1. Then from our earlier discussion of ω we know that

there are (p− 1) roots of 1 in Zp. Suppose that we have an α such that |α− γ|p < 1 for one of

these roots γ. By an easy norm calculation, |f(α)|p < 1. So we can take the sequence defined

in Theorem 4.17 which converges to a root of f(X), i.e., a (p− 1)-st root of 1 in Zp.

We now prove another general fact about locally constant functions on Zp.

Theorem 4.19. Let f : Zp −→ Qp be locally constant. Then the image of f ,

im f = f(Zp) = {f(α) : α ∈ Zp},

is a finite set.

Proof. For each α ∈ Zp there is a real number δα > 0 for which f is constant on the open

disc D (α; δα). We can assume without loss of generality that

δα =
1

pdα

with dα > 0 an integer. Now for each α there is an integer nα such that

|α− nα|p <
1

pdα

and so f(nα) = f(α). By Proposition 4.2 we also have

D
(
α; 1/pdα

)
= D

(
nα; 1/pdα

)
.

In fact we can assume that nα satisfies

0 6 nα 6 p
dα+1 − 1,

since adding a multiple of pdα+1 to nα does not change the open disc D
(
nα; 1/pdα

)
.

Now

Zp =
∞⋃
k=0

D
(
k; 1/pdk

)
and f is constant on each of these open discs. But also

Zp =

pd0+1−1⋃
k=0

D
(
k; 1/pd0

)
.

Now take

d = max{dk : 0 6 k 6 pd0+1 − 1}

and observe that for each k in the range 0 6 k 6 pd0+1 − 1, f is locally constant on the disc

D
(
k; 1/pd

)
. Hence

Zp =

pd−1⋃
k=0

D
(
k; 1/pd

)
,

where f is constant on each of these discs. Since there is only a finite number of these discs,

the image of f is the finite set

f(Zp) = {f(k) : 0 6 k 6 pd − 1}. �

A similar argument establishes a closely related result.
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Theorem 4.20 (The Compactness of Zp). Let A ⊆ Zp and for each α ∈ A let δα > 0. If

Zp =
⋃
α∈A

D
(
α; 1/pδα

)
,

then there is finite subset A′ ⊆ A such that

Zp =
⋃
α∈A′

D
(
α; 1/pδα

)
.

A similar result holds for each of the closed discs D (β; t) where t > 0 is a real number.

We leave the proof as an exercise. In fact these two results are equivalent in the sense that

each one implies the other (this is left as an exercise for the reader).

The next result is a direct consequence.

Theorem 4.21 (The Sequential Compactness of Zp). Let (αn) be a sequence in Zp. Then

there is a convergent subsequence of (αn), i.e., a sequence (βn) where βn = αs(n) with s : N −→ N
a strictly increasing sequence and which converges. A similar result holds for each of the closed

discs D (β; t) where t > 0 is a real number.

Proof. We have

Zp =

p⋃
k=1

D (k; 1) .

Hence, for one of the numbers 1 6 k 6 p, say a1, the disc D (a1; 1) has αn ∈ D (a1; 1) for

infinitely many values of n. Then

D (a1; 1) =

p2⋃
k=1

D (k; 1/p)

and again for one of the numbers 1 6 k 6 p2, say a2, we have αn ∈ D (a2; 1/p) for infinitely

many values of n. Continuing in this way we have a sequence of natural numbers an for which

D
(
an; 1/pn−1

)
contains αm for infinitely many values of m. Moreover, for each n,

D
(
an; 1/pn−1

)
⊆ D (an; 1/pn) .

Now for each n > 1, choose s(n) so that αs(n) ∈ D
(
an; 1/pn−1

)
. We can even assume that

s(n) < s(n + 1) for all n. Hence we have a subsequence (βn) with βn = αs(n) which we must

still show has limit. But notice that

|βn+1 − βn|p <
1

pn
,

since both of these are in D (an+1; 1/pn). Hence the sequence (βn) is null and so it has a limit

in Zp. �

Recall the notion of uniform continuity:

Definition 4.22. Let f : X −→ Qp be a function. Then f is uniformly continuous on X if

∀ε > 0∃δ > 0 such that ∀α, β ∈ X, with |α− β|p < δ then |f(α)− f(β)|p < ε.

Clearly if f is uniformly continuous on X then it is continuous on X. In real or complex

analysis, a continuous function on a compact domain is uniformly continuous. This is true

p-adically too.
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Theorem 4.23. Let t > 0, α ∈ Qp and f : D (α; t) −→ Qp be a continuous function. Then f

is uniformly continuous.

The proof is a direct translation of that in real or complex analysis.

Similarly, we also have the notion of boundedness.

Definition 4.24. Let f : X −→ Qp be a function. Then f is bounded on X if

∃b ∈ R such that ∀x ∈ X, |f(x)|p 6 b.

Again we are familiar with the fact that a continuous function defined on a compact set is

bounded.

Theorem 4.25. Let f : D (α; t) −→ Qp be a continuous function. Then f is bounded, i.e.,

there is a b ∈ R such that for all α ∈ D (α; t), |f(α)|p 6 b.

Again the proof is a modified version of that in classical analysis.

Now let us consider the case of a continuous function f : Zp −→ Qp. By Theorem 4.20, Zp
is compact, so by Theorem 4.25 f is bounded. Then the set

Bf = {b ∈ R : ∀α ∈ Zp, |f(α)|p 6 b}

is non-empty. Clearly Bf ⊆ R+, the set of non-negative real numbers. As Bf is bounded below

by 0, this set has an infimum, inf Bf > 0. An easy argument now shows that

sup{|f(α)|p : α ∈ Zp} = inf Bf .

We will write bf for this common value.

Theorem 4.26. Let f : Zp −→ Qp be a continuous function. Then there is an α0 ∈ Zp such

that bf = |f(α0)|p.

Proof. For all α ∈ Zp we have |f(α)|p 6 bf . By definition of supremum, we know that for

any ε > 0, there is a α ∈ Zp such that

|f(α)|p > bf − ε.

For each n, take an αn ∈ Zp such that

|f(αn)|p > bf −
1

n

and consider the sequence (αn) in Zp. By Theorem 4.21, there is a convergent subsequence

(βn) = (αs(n)) of (αn), where we can assume that s(n) < s(n+ 1). Let α′ = lim
n→∞

(p)αs(n). Then

for each n we have

bf >
∣∣f(αs(n))

∣∣
p
> bf −

1

s(n)

and so
∣∣f(αs(n))

∣∣
p
→ bf as n→∞. Since

lim
n→∞

∣∣∣∣∣f(α′)
∣∣
p
−
∣∣f(αs(n))

∣∣
p

∣∣∣ 6 lim
n→∞

∣∣f(α′ − αs(n))
∣∣
p

= 0,

by a result used in the proof of Theorem 2.18), we have bf = |f(α′)|p. �

Definition 4.27. Let f : Zp −→ Qp be continuous. The supremum seminorm of f is

‖f‖p = bf .
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Consider the set of all continuous functions Zp −→ Qp,

C(Zp) = {f : Zp −→ Qp : f continuous}.

This is a ring with the operations of pointwise addition and multiplication, and with the constant

functions 0, 1 as zero and unity. The function ‖ ‖p : C(Zp) −→ R+ is in fact a non-Archimedean

norm on C(Zp).

Theorem 4.28. C(Zp) is a ring with non-Archimedean seminorm ‖ ‖p. Moreover, C(Zp)
is complete with respect to this seminorm.

We do not give the proof, but leave at least the first part as an exercise for the reader.

Now recall the notion of the Fourier expansion of a continuous function f : [a, b] −→ R; this

is a convergent series of the form

a0 +
∞∑
n=1

(
an cos

2pix

n
+ sin

2πx

n

)
which converges uniformly to f(x). In p-adic analysis there is an analogous expansion of a

continuous function using the binomial coefficient functions

Cn(x) =

(
x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!
.

We recall that these are continuous functions Cn : Zp −→ Qp which actually map Zp into itself

(see Problem Set 4).

Theorem 4.29. Let f ∈ C(Zp). Then there is a unique null sequence (αn) in Qp such that

the series
∞∑
n=0

αnCn(x)

converges to f(x) for every x ∈ Zp. Moreover, this convergence is uniform in the sense that the

sequence of functions
n∑

m=0

αmCm ∈ C(Zp)

is a Cauchy sequence converging to f with respect to ‖ ‖p.

The expansion in this result is called the Mahler expansion of f and the coefficients αn are

the Mahler coefficients of f . We need to understand how to determine these coefficients.

Consider the following sequence of functions f [n] : Zp −→ Qp:

f [0](x) = f(x)

f [1](x) = f [0](x+ 1)− f [0](x)

f [2](x) = f [1](x+ 1)− f [1](x)

...

f [n+1](x) = f [n](x+ 1)− f [n](x)

...

f [n] is called the n-th difference function of f .
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Proposition 4.30. The Mahler coefficients are given by

αn = f [n](0) (n > 0).

Proof. (Sketch) Consider

f(0) =
∑

αnCn(0) = α0.

Now by Pascal’s Triangle,

Cn(x+ 1)− Cn(x) = Cn−1(x).

Then

f [1](x) = f [0](x+ 1)− f [0](x)

=
∞∑
n=0

αn+1Cn(x)

and repeating this we obtain

f [m+1](x) = f [m](x+ 1)− f [m](x)

=
∞∑
n=0

αn+mCn(x).

Thus we have the desired formula

f [m](0) = αm. �

The main part of the proof of Theorem 4.29 is concerned with proving that αn → 0 and we

will not give it here.

The functions Cn have the property that

(4.2) ‖Cn‖p = 1.

To see this, note that if α ∈ Zp, we already have |Cn(α)|p 6 1. Taking α = n, we get Cn(n) = 1,

and the result follows. Of course this means that the series
∑
αnCn(α) converges for all α ∈ Zp

if and only if αn → 0.

Example 4.31. Consider the case of p = 3 and the function f(x) = x3. Then

f [0](x) = x3, f [0](0) = 0,

f [1](x) = 3x2 + 3x+ 1, f [1](0) = 1,

f [2](x) = 6x+ 6, f [2](0) = 6,

f [3](x) = 6, f [3](0) = 6,

f [4](x) = 0, f [4](0) = 0,

and for n > 3,

f [n](x) = 0, f [n](0) = 0.

So we have

x3 = C1(x) + 3C2(x) + 6C3(x).

In fact, for any polynomial function of degree d, the Mahler expansion is trivial beyond the

term in Cd.
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The following formula for these an can be proved by induction on n.

(4.3) f [n](0) =

n∑
k=0

(−1)k
(
n

k

)
f(n− k).

Example 4.32. Take p = 2 and the continuous function f : Z2 −→ Q2 given by

f(n) = (−1)n if n ∈ Z.

Then

f [0](0) = 1, f [1](0) = 0, f [2](0) = −1,

and in general

f [n](0) = (−1)n
n∑
k=0

(
n

k

)
= (−2)n.

Therefore

f(x) =

∞∑
n=0

(−2)nCn(x).

Of course, this is just the binomial series for (1− 2)x in Q2.

The exponential and logarithmic series. In real and complex analysis the exponential

and logarithmic power series

exp(X) =
∞∑
n=0

Xn

n!
,

log(X) =
∞∑
n=1

(−1)n−1
Xn

n

are of great importance. We can view each of these as having coefficients in Qp for any prime p.

The first issue is to determine the p-adic radius of convergence of each of these series. Further

details on this material can be found in [5].

By Example 3.11, the p-adic radii of convergence of the p-adic power series

expp(X) =
∞∑
n=0

1

n!
Xn, logp(X) =

∞∑
n=1

(−1)n−1

n
Xn

are p−1/(p−1) and 1 respectively.

Theorem 4.33. There are p-adic continuous functions expp : D
(
0; p1/(p−1)

)
−→ Qp and

logp : D (1; 1/p) −→ Qp, where for x ∈ D
(
0; p1/(p−1)

)
and y ∈ D (1; 1/p),

expp(x) =

∞∑
n=0

xn

n!
,

logp(y) =

∞∑
n=1

(−1)n−1
(y − 1)n

n

= −
∞∑
n=1

(1− y)n

n
.

Furthermore, for x1, x2 ∈ D
(
0; p−1/(p−1)

)
and y1, y2 ∈ D (1; 1),

expp(x1 + x2) = expp(x1) expp(x2),

logp(y1y2) = logp(y1) + logp(y2).
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A useful variation on the exponential function is the Artin-Hasse exponential function, given

by a power series

(4.4) Ep(X) =
∏
p-n

(1−Xn)−µ(n)/n,

where the product is taken over natural numbers n not divisible by p, and µ is the Möbius

function for which µ(1) = 1 and if n > 1,∑
d|n

µ(d) = 0.

For example, for any prime q and r > 1,

µ(qr) =

−1 if r = 1,

0 if r > 1.

Using the Binomial Expansion, it is easy to see that Ep(X) is a power series whose coefficients

lie in Zp ⊆ Qp, hence its radius of convergence is at least 1.

There is a factorisation

exp(X) =
∏
n>1

(1−Xn)−µ(n)/n,

and so the expression in (4.4) has exactly the factors of exp(X) which do not involve powers

of p in the denominators of coefficients of powers of X. Another useful formula is

Ep(X) = exp(Lp(X)),

where

Lp(X) =

∞∑
n=0

1

pn
Xpn .

Notice that if p is odd, this is part of the series log(X), namely the terms involving exponents

of X which are powers of p.

Summary. This ends our discussion of elementary p-adic analysis. We have not touched

many important topics such as differentiability, integration and so on. For these I suggest you

look at Koblitz [5]. I particularly recommend his discussion of p-adic integration, Γ-function

and ζ-function.

The world of p-adic analysis is in many ways very similar to that of classical real analysis,

but it is also startlingly different. I hope you have enjoyed this sampler. We will now move on

to consider something more like the complex numbers in the p-adic context.
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CHAPTER 5

p-adic algebraic number theory

In this section we will discuss a complete normed field Cp which contains Qp as a subfield and

has the property that every polynomial f(X) ∈ Cp[X] has a root in Cp; furthermore the norm

| |p restricts to the usual norm on Qp and is non-Archimedean. In fact, Cp is the smallest such

normed field, in the sense that any other one with these properties contains Cp as a subfield.

We begin by considering roots of polynomials over Qp.

Let f(X) ∈ Qp[X]. Then in general f need not have any roots in Qp.

Example 5.1. For a prime p, consider the polynomial X2 − p. If α ∈ Qp were a root then

we would have α2 = p and so |α|p
2 = 1/p. But we know that the norm of a p-adic number has

to have the form 1/pk with k ∈ Z, so since |α|p = p−1/2 this would give a contradiction.

We will not prove the next result, the interested reader should consult [5].

Theorem 5.2. There exists a field Qalg
p containing Qp as a subfield and having the following

properties:

(a) every α ∈ Qalg
p is algebraic over Qp;

(b) every polynomial f(X) ∈ Qalg
p [X] has a root in Qalg

p .

Moreover, the norm | |p on Qp extends to a unique non-Archimedean norm N on Qalg
p satisfying

N(α) = |α|p
whenever α ∈ Qp. This extension is given by

N(α) =
∣∣minQp,α(0)

∣∣
p

1/d
,

where d = degQp(α) = deg minQp,α(X) is the degree of the minimal polynomial of α over Qp.

The minimal polynomial minQp,α(X) of α over Qp is the monic polynomial in Qp[X] of

smallest positive degree having α as a root and is always irreducible. We will denote by | |p the

norm on Qalg
p given in Theorem 5.2, i.e.,

|α|p =
∣∣minQp,α(0)

∣∣
p

1/d
.

Let us look at some elements of Qalg
p . Many examples can be found using the next two

results.

Theorem 5.3. Let r = a/b be a positive rational number where a, b are coprime. Then the

polynomial Xb − pa ∈ Qp[X] is irreducible over Qp and each of its roots α ∈ Qalg
p has norm

|α|p = p−a/b.

Proof. This is a special case of [6, VIII theorem 16]. �

Corollary 5.4. If r = a/b is not an integer, then none of the roots of Xb− pa in Qalg
p are

in Qp.
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Proof. We have |α|p = p−a/b which is not an integral power of p. But from Chapter 2 we

know that all elements of Qp have norms which are integral powers of p, hence α /∈ Qp. �

The Eisenstein test of the next result provides an important criterion for finding irreducible

polynomials over Qp.

Theorem 5.5 (The Eisenstein test). Suppose that the polynomial

f(X) = Xd + αd−1X
d−1 + · · ·+ α1X + α0 ∈ Zp[X]

satisfies the conditions

• |αk|p < 1 for each k in the range 0 6 k 6 d− 1,

• |α0|p = 1/p.

Then f(X) is irreducible over Qp.

The proof can be found in many books or courses on basic ring theory.

Example 5.6. Consider the polynomial

f1(X) = Xp−1 +Xp−2 + · · ·+X + 1.

Notice that

Xp − 1 = (X − 1)f1(X)

and so f1(X) is the polynomial whose roots are all the primitive p-th roots of 1. Now consider

the polynomial g1(X) = f1(X + 1). Then

Xg1(X) = (X + 1)p − 1

= Xp +

p−1∑
k=1

(
p

k

)
Xk

and so

g1(X) = Xp−1 +

p−1∑
k=1

(
p

k

)
Xk−1.

Each of the binomial coefficients

(
p

k

)
for 1 6 k 6 p− 1 is divisible by p; also

(
p

1

)
= p, hence

it is not divisible by p2. By the Eisenstein test, g1(X) is irreducible over Qp and an easy

argument also shows that f1(X) is irreducible. Thus the primitive roots of 1 in Qalg
p are roots

of the irreducible polynomial f1(X) and have degree (p − 1) over Qp. If ζp is a root of f1(X),

then |ζp|p = 1. The remaining roots are of the form ζrp with 1 6 r 6 p− 1.

The roots of g1(X) have the form ζrp − 1 for 1 6 r 6 p− 1 and g1(0) = p, so∣∣ζrp − 1
∣∣
p

= p−1/(p−1).

This example can be generalised as follows.

Theorem 5.7. Let d > 1. Then the polynomial

fd(X) = f1(X
pd−1

)
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is irreducible over Qp and its roots are the primitive pd-th roots of 1 in Qalg
p . If ζpd is such a

primitive root, any other has the form ζk
pd

where 1 6 k 6 pd − 1 and k is not divisible by p.

Moreover, we have ∣∣ζpd∣∣p = 1,∣∣ζpd − 1
∣∣
p

= p−(p−1)p
d−1

.

Proof. This is proved by applying the Eisenstein test to the polynomial

gd(X) = fd(X + 1),

which satisfies the conditions required and has gd(0) = p. �

Corollary 5.8. If p is an odd prime, then 1 is the only p-th power root of 1 in Qp.

If p = 2, the only square roots of 1 in Q2 are ±1.

The proof is immediate.

What about other roots of 1? We already know that there all the (p−1)-st roots of 1 are in

Qp; let us consider the d-th roots of 1 for any d > 1 not divisible by p. We begin by considering

the case where d has the form d = pr − 1.

Proposition 5.9. For each r > 1, a primitive (pr− 1)-st root of 1, ζ say, has degree r over

Qp and has minimal polynomial

minQp,ζ(X) =
∏

06t6r−1
(X − ζpt).

Moreover, |ζ|p = |ζ − 1|p = 1.

The proof is omitted.

Now suppose that d is any natural number not divisible by p and ξ is any d-th root of 1.

Then for some m we have

pm≡
d

1;

we denote the smallest such m greater than 0 by md. Then for any primitive (pmd − 1)-th root

of 1, ζpmd−1 say, we can take

ξ = ζ
t(pmd−1)/md
pmd−1 ,

where t is an integer coprime to (pmd − 1)/md. This uses the fact that the group of roots of

Xn−1 in Qalg
p is always cyclic by a result from the basic theory of fields. From this it is possible

to deduce

Proposition 5.10. Let d > 0 be a natural number not divisible by p. Then any primitive

d-th root of 1, ξ, has degree over Qp dividing md. Furthermore,

|ξ|p = 1, |ξ − 1|p = 1.

Corollary 5.11. ξ ∈ Qp if and only if md = 1.

The proofs can be found in [5]. A complete statement is contained in

Theorem 5.12. Let ξ ∈ Qalg
p be a primitive d-th root of 1. Let d = d0p

t where d0 is not

divisible by p. Then ξ ∈ Qp if and only if one of the following conditions holds:

• p is odd, t = 0 and md = 1,
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• p = 2 and d = 2.

Definition 5.13. Let α ∈ Qalg
p . Then α is ramified if |α|p is not an integral power of p,

otherwise it is unramified. Let e(α) be the smallest positive natural number such that αe(α) is

unramified; then e(α) is called the ramification degree of α.

Example 5.14. Let π be a square root of p. Earlier we saw that |π|p = p−1/2, hence π is

ramified. In fact we have e(α) = 2.

This example generalises in an obvious way to roots of the polynomials Xb − pa of Theo-

rem 5.3.

Now we can consider Qalg
p together with the norm | |p in the light of Chapter 2. It is

reasonable to ask if every Cauchy sequence in Qalg
p has a limit with respect to | |p.

Proposition 5.15. There are Cauchy sequences in Qalg
p with respect to | |p which do not

have limits. Hence, Qalg
p is not complete with respect to the norm | |p.

For an example of such a Cauchy sequence, see [5].

We can form the completion of Qalg
p and its associated norm which are denoted

Cp = Q̂alg
p | |p

, | |p.

Proposition 5.16. If 0 6= α ∈ Cp, then

|α|p =
1

pt
,

where t ∈ Q.

Proof. We know this is true for α ∈ Qalg
p . By results of Chapter 2, if

α = lim
n→∞

(p)αn

with αn ∈ Qalg
p , then for sufficiently large n,

|α|p = |αn|p. �

Next we can reasonably ask whether an analogue of the Fundamental Theorem of Algebra

holds in Cp.

Theorem 5.17. Cp is algebraically closed in the sense that every non-zero polynomial

f(X) ∈ Cp[X] has a root in Cp. By construction, Cp is complete with respect to the norm

| |p.

Again, we refer to [5] for a proof. Of course we have now obtained a complete normed

field containing Qp which is algebraically closed and this is the p-adic analogue of the complex

numbers. It is helpful to compare the chains of fields

Q ⊆ R ⊆ C, Q ⊆ Qp ⊆ Qalg
p ⊆ Cp,

which are the sequences of fields we need to construct in order to reach the fields C and Cp
in the real and p-adic worlds. This field Cp is the home of p-adic analysis proper and plays

an important rôle in Number Theory and increasingly in other parts of Mathematics. We will

confine ourselves to a few simple observations on Cp.
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Consider a power series
∑
αnx

n where αn ∈ Cp. Then we can define the radius of conver-

gence exactly as in Chapter 3, using the formula

r =
1

lim sup |αn|p
1/n

.

Proposition 5.18. The series
∑
αnx

n converges if |x|p < r and diverges if |x|p > r, where

r is the radius of convergence. If for some x0 with |x0|p = r the series
∑
αnx

n
0 converges (or

diverges) then
∑
αnx

n converges (or diverges) for all x with |x|p = r.

The proof is the same as that in Chapter 3.

Example 5.19. Consider the logarithmic series

logp(x) = −
∞∑
n=1

(1− x)n

n

discussed in Chapter 3. We showed that the radius of convergence is 1 for this example. Consider

what happens when x = ζp, a primitive root of 1 as above. Then |ζp − 1|p = p1/(p−1), so logp(ζp)

is defined. Now by the multiplicative formula for this series,

logp((ζp)
p) = p logp(ζp),

and hence

p logp(ζp) = logp(1) = 0.

Thus logp(ζp) = 0. Similarly, for any primitive pn-th root of 1, ζpn say, we have that logp(ζpn)

is defined and is 0.

Example 5.20. Consider the exponential series

expp(x) =
∞∑
n=0

xn

n!
.

In Chapter 3, the radius of convergence was shown to be p−1/(p−1). Suppose α ∈ Cp with

|α|p = p−1/(p−1). Then ∣∣∣∣αnn!

∣∣∣∣
p

= pordp n/(p−1).

By considering the terms of the form αp
n
/(pn!), we obtain∣∣∣∣αpnpn!

∣∣∣∣
p

= pn/(p−1)

which diverges to +∞ as n→∞. So the series
∑
αn/n! diverges whenever |α|p = p−1/(p−1).

In Cp we have the unit disc

Op = {α ∈ Cp : |α|p 6 1}.

Proposition 5.21. The subset Op ⊆ Cp is a subring of Cp.

The proof uses the ultrametric inequality and is essentially the same as that for Zp ⊆ Qp.

We end with yet another version of Hensel’s Lemma, this time adapted to use in Cp.
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Theorem 5.22 (Hensel’s Lemma: Cp version). Let f(X) ∈ Op[X]. Suppose that α ∈ Op
and d > 0 is a natural number satisfying the two conditions

|f(α)|p 6
1

p2d+1
,
∣∣f ′(α)

∣∣
p

=
1

pd
.

Setting α1 = α− f(α)f ′(α)−1, we have

|f(α1)|p 6
1

p2d+3
.

The proof is left as an exercise. This result generalises our earlier versions of Hensel’s

Lemma.
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Problems

Problem Set 1

1-1. For each of the following values n = 19, 27, 60, in the ring Z/n find

(i) all the zero divisors,

(ii) all the units and their inverses.

1-2. Let f(X) = X2 − 2 ∈ Z[X]. For each of the primes p = 2, 3, 7, determine whether or not

there is a root of f(X):

(i) mod p, (ii) mod p2, (iii) mod p3, (iv) mod p4.

Can you say anything more?

1-3. Solve the following system of simultaneous linear equations over Z/n for each of the values

n = 2, 9, 10:

3x + 2y − 11z ≡
n

1

7x + 2z ≡
n

12

− 8y + z ≡
n

2

1-4. Find a generator for the cyclic group of units (Z/n)× in each of the following rings:

(i) Z/23, (ii) Z/27, (iii) Z/10.

1-5. (a) For a prime p, n > 1 and x≡
p

0, consider

sn = 1 + x+ x2 + · · ·+ xn−1 ∈ Z.

What element of Z/pn does sn represent?

(b) Let p be an odd prime. Let n > 0, x≡
p

0 and a be an integer such that 2a≡
pn

1. Show that

rn = 1 +
∑

16k6n−1

(
2k

k

)
(a2x)k

satisfies the equation

(rn)2(1− x)≡
pn

1.

For p = 2, show that this equation holds if x≡
8

0.
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Problem Set 2

2-1. Use Hensel’s Lemma to solve each of the following equations:

X2 + 6 ≡
625

0;(i)

X2 +X + 8 ≡
2401

0.(ii)

N.B. 2401 = 74.

2-2. Determine each of the following numbers:

ord3 54, ord5(−0.0625), ord7(−700/197), | − 128/7|2, | − 13.23|3, |9!|3.

2-3. Let p be a prime and n > 0.

(a) Show that ordp((p
n)!) = 1 + p+ · · ·+ pn−1.

(b) When 0 6 a 6 p− 1, show that

ordp(ap
n!) = a(1 + p+ · · ·+ pn−1).

(c) Let r = r0 + r1p + · · · + rdp
d, where 0 6 rk 6 p − 1 for each k, and set αp(r) =

∑
06i6d

ri.

Show that

ordp(r!) =
r − αp(r)
p− 1

.

Use this to determine |r!|p.

2-4. (a) Show that for 0 6= x ∈ Q, ∏
p

|x|p =
1

|x|
,

where the product is taken over all primes p = 2, 3, 5, . . ..

(b) If x ∈ Q and |x|p 6 1 for every prime p, show that x ∈ Z.

2-5. Let p be a prime and x ∈ Q. Consider the sequence en where

en =
∑

06i6n

xi

i!
.

Show that en is a Cauchy sequence with respect to | |p if (a) p > 2 and |x|p < 1, or (b) p = 2

and |x|2 < 1/2. In either case, does this sequence have a limit in Q?

Problem Set 3

3-1. Let F be any field and let R = F [X] be the ring of polynomials over F on the variable

X. Define an integer valued function

ordX f(X) = max{r : f(X) = Xrg(X) for some g(X) ∈ F [X]},

and set ordX 0 =∞. Then define

N(f(X)) = e− ordX f(x).

Prove that ordX satisfies the conditions of Proposition 2.4 with ordX in place of ordp. Hence

deduce that N satisfies the conditions required to be a non-Archimedean norm on R.
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3-2. Which of the following are Cauchy sequences with respect to the p-adic norm | |p where

p is a given prime?

(a) n!, (b) 1/n!, (c) xn (this depends on x), (d) ap
n

(this depends on a), (e) ns for s ∈ Z (this

depends on s).

In each case which is a Cauchy sequence find the limit if it is a rational number.

3-3. Let f(X) ∈ Z[X] and let p be a prime. Suppose that a0 ∈ Z is a root of f(X) modulo p

(i.e., f(a0)≡
p

0). Suppose also that f ′(a0) is not congruent to 0 mod p. Show that the sequence

(an) defined by

an+1 = an − uf(an),

where u ∈ Z satisfies uf ′(a0)≡
p

1, is a Cauchy sequence with respect to | |p converging to root of

f in Qp.

3-4. Let p be a prime with p≡
4

1.

(a) Let c ∈ Z be a primitive (p − 1)-st root of 1 modulo p. By considering powers of c, show

that there is a root of X2 + 1 modulo p.

(b) Use Question 3-3 to construct a Cauchy sequence (an) in Q with respect to | |p such that∣∣a2n + 1
∣∣
p
<

1

pn
.

(c) Deduce that there is a square root α of −1 in Q5.

(d) For p = 5 find α1 ∈ Q so that

|α2
1 + 1|5 <

1

3125
.

3-5. Let R be a ring equipped with a non-Archimedean norm N . Show that a sequence (an) is

Cauchy with respect to N if and only if (an+1 − an) is a null sequence. Show that this is false

if N is Archimedean.

3-6. Determine each of the following 5-adic numbers to within an error of norm at most 1/625:

α = (3/5 + 2 + 4× 5 + 0× 25 + 2× 125 + · · · )− (4/5 + 3× 25 + 3× 125 + · · · ),

β = (1/25 + 2/5 + 3 + 4× 5 + 2× 25 + 2× 125 + · · · )× (3 + 2× 5 + 3× 125 · · · ),

γ =
(5 + 2× 25 + 125 + · · · )

(3 + 2× 25 + 4× 125 + · · · )
.

3-7. Discuss the convergence of the following series in Qp:∑
n!;

∑ 1

n!
;
∑ 22n − 1

2n − 1
for p = 2;

∑(
pn+1

pn

)
.

3-8. Find the radius of convergence of each of the following power series over Qp:∑ Xn

n!
;
∑

pnXn;
∑ Xpn

pn
;
∑

nkXn with 0 6 k ∈ Z fixed;
∑

n!Xn;
∑ Xn

n
.

3-9. Prove that in Q3,
∞∑
n=1

32n(−1)n

42nn
= 2

∞∑
n=1

32n

4nn
.
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3-10. For n > 1, let

Cn(X) =
X(X − 1) · · · (X − n+ 1)

n!

and C0(X) = 1; in particular, for a natural number x,

Cn(x) =

(
x

n

)
.

(a) Show that if x ∈ Z then Cn(x) ∈ Z.

(b) Show that if x ∈ Zp then Cn(x) ∈ Zp.
(c) If αn ∈ Qp, show that the series

∞∑
n=0

αnCn(x),

converges for all x ∈ Zp if and only if

lim
n→∞

αn = 0.

(d) For x ∈ Z, determine
∑∞

n=0Cn(x)pn.

3-11. (a) Let
∑
αn be a series in Qp. Prove that the p-adic Ratio Test is valid, i.e.,

∑
αn

converges if

λ = lim
n−→∞

∣∣∣∣αn+1

αn

∣∣∣∣
p

exists and λ < 1.

(b) If
∑
γnX

n is a power series in Qp, deduce that the p-adic Ratio Test for Power Series is

valid, i.e., if

λ = lim
n→∞

∣∣∣∣ γnγn+1

∣∣∣∣
p

exists then
∑
γnX

n converges if |x|p < λ and diverges if |x|p > λ.

Use these tests to determine the radii of convergence of the following series.∑(
pn+1

p

)n
Xn;

∑
n!Xn;

∑
pnXn;

∑ Xn

pn
;
∑(

pn

n

)
Xn.

3-12. Prove Pascal’s Triangle, i.e., the identity(
X + 1

n

)
=

(
X

n

)
+

(
X

n− 1

)
.

holds for each natural number n > 1.

Let f(X) = c0+c1X+· · ·+cdXd be a polynomial. Show that there are numbers a0, a1, . . . , ad

with each a Z linear combination of the cn, such that

f(X) = a0 + a1

(
X

1

)
+ · · ·+ ad

(
X

d

)
.

Show also that these an can be determined using the sequence of polynomials

f [n](X) = f [n−1](X + 1)− f [n−1](X),

where f [0](X) = f(X) and an = f [n](0).
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Problem Set 4

4-1. For n > 0, let ωn : Zp −→ Qp denote the n-th Teichmüller function. So for x ∈ Zp we have

x = ω0 + ω1p+ · · ·+ ωnp
n + · · · and ωn(x)p = ωn(x) for each n.

For x, y ∈ Zp, verify the inequalities∣∣∣∣ω1(x)−
(
x− xp

p

)∣∣∣∣
p

< 1, |ω0(x+ y)− ω0(x)− ω0(y)|p < 1,∣∣∣∣∣ω1(x+ y)−

(
ω1(x) + ω1(y)−

p−1∑
k=1

1

p

(
p

k

)
ω0(x)kω0(y)p−k

)∣∣∣∣∣
p

< 1.

What can you say about ω0(xy), ω1(xy)? What about ωn(x+ y), ωn(xy) for n > 1?

4-2. Write out a proof that for real numbers a, b with a < b, a locally constant function

f : R −→ R is constant on (a, b). If your proof uses differentiability find one which doesn’t,

hence is more ‘elementary’.

4-3. Let f : Zp −→ Qp be a continuous function. Prove that f is bounded, i.e., there is a

positive B ∈ R such that for all x ∈ Zp, |f(x)|p < B.

4-4. Calculate ‖f‖p for each of the following functions f : Zp −→ Qp:(
px

n

)
; xp − x; x(x+ 1)(x+ 2) · · · (x+ n− 1) for n > 0 a natural number; xn for n ∈ Z.

4-5. For the prime p = 3 show that the function f(x) = 1/(x4 + 1) is defined on Z3. Determine

the Mahler coefficients a0, a1, a2, a3, a4 for f .

4-6. For the prime p = 2, find the Mahler expansion of the continuous function f : Z2 −→ Q2

which for an integer t ∈ Z is given by

f(t) =


t

2
if t is even,

t− 1

2
if t is odd.

Hint: consider the Mahler expansion of (−1)x as a function of x ∈ Z2.

4-7. Determine the Mahler expansion of f(x+ 1) in terms of that of f(x) where f : Zp −→ Qp

is a continuous function. Generalise this to f(x+ α) where α ∈ Zp.

Hint: find a formula for

(
x+ y

n

)
in terms of

(
x

r

)
and

(
y

s

)
.

4-8. (a) Let y ∈ Zp with |y|p < 1. For any x ∈ Zp show that if (xn) is a sequence of integers

converging to x in Zp, then lim
n→∞

(1 + y)xn exists.

(b) Prove that the function

f(x) = lim
n→∞

(1 + y)xn

is continuous on Zp. What is the Mahler expansion of f?
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Problem Set 5

5-1. Find |x|3 for each of the following elements x of Cp :

±
√

2,
3
√

2,
3
√

3,
6
√

1, γ − 1 where γ2 = −1.

5-2. Show that there is no root of the polynomial X4−2 in any of the fields Qp where p = 2, 3, 5.

What about the polynomial X4 − 4?
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