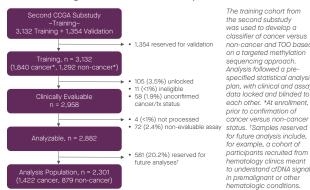
Genome-wide Cell-free DNA (cfDNA) Methylation Signatures and Effect on Tissue of Origin (TOO) Performance

ASCO 2019 May 31–June 4, 2019 Chicago, IL, USA

Minetta C. Liu, MD¹; Arash Jamshidi, PhD²; Oliver Venn, DPhil²; Alexander P. Fields, PhD²; M. Cyrus Maher, PhD, MS, MPH²; Gordon Cann, PhD²; Sam Gross, PhD²; Joerg Bredno, PhD²; Meredith Halks-Miller, MD²; Jan Schellenberger, PhD²; Kathryn N. Kurtzman, MD²; Eric T. Fung, MD, PhD²; Tara Maddala, PhD²; Geoffrey R. Oxnard, MD³; Eric A. Klein, MD⁴; David R. Spigel, MD⁵; Anne-Renee Hartman, MD²; Alexander M. Aravanis, MD, PhD²; Michael V. Seiden, MD, PhD⁶ ¹Mayo Clinic, Rochester, MN. ²GRAIL, Inc., Menlo Park, CA. ³Dana Farber Cancer Institute, Boston, MA. ⁴Cleveland Clinic, Cleveland, OH. ⁵Tennessee Oncology, Nashville, TN. ⁶US Oncology Research, The Woodlands, TX. Corresponding author: liu.minetta@mayo.edu

BACKGROUND

- o In order to provide a clinical benefit to patients, an effective multi-cancer detection tool should detect clinically significant cancers across stages with very high specificity and localize cancer to its tissue of origin (TOO).12
- Multi-cancer detection across stages was demonstrated at 98% specificity in a pre-specified case-control substudy from the Circulating Cell-free Genome Atlas (CCGA) study (NCT02889978)
- o This prospective, multi-center, longitudintal, observational study for the development of a noninvasive blood-based assay for cancer detection includes a discovery³, training/validation, and validation phase (Figure 1)
- Here, we report multi-cancer detection and TOO determination from initial analyses of an optimized targeted methylation assay in 2,301 participants from the second CCGA substudy.
- Prior methylation-based approaches may be limited by the number of captured CpGs; previous array-based studies captured <2% of genomic CpGs.4
- Sequencing to identify cancer-specific methylation patterns allows genome-wide fragment-level analysis.
- o Importantly, we show how a methylation database that interrogated genome-wide fragment-level methylation patterns across 789 cancer cell methylomes representing 20 tumor types (97% of SEER cancer incidence) improved performance of this multi-cancer test.


Figure 1. The CCGA Study

A. CCGA Divided into Three Substudies

Includes participant samples used in evaluatina the classifiers; approximately 2,700 participants not included in evaluating classifiers (eg, used as tissue references or in panel design) not epresented. †Reported here. WGBS, whole-genome bisulfite sequencing; WGS, whole-genome seguencing

B. Detail of Training Cohort from Second Substudy

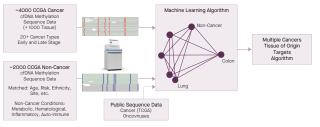
ferences: 1. Medicine 1of, Council NR: Huming y use sub-reserve 2003. https://www.nap.edu/catalog/iLe0asturus-Hwatt M, eds.). Washington, DC: The National Academics Press; 2003. https://www.nap.edu/catalog/iLe0asturus-e-potential-of-cancer-prevention-and-early-detection; 2. Arwanis AM, et al. Cell. 2017;48(4):571-584. doi:10.1016/j. ell.201701.030; 3. Lu MC, et al. Annals of Oncology; 29(suppl.]);% The National Software (Councer Software); ell.201701.030; 3. Lu MC, et al. Annals of Oncology; 29(suppl.]);% The National Software (Councer Software); Description (Councer Software); 2019; 2 : 1. Medicine Lof, Council NR. Fulfilling the Potential of Cancer Prevention and Early Detection. (Curry SJ, Byers 2018-24/18)-4437-4443. doi:10.1158/1078-0432.00R-18-0143: 6. Adalsteinsson VA. et al. Nati

Funding and Author Disclosures: Study funded by GRAIL, Inc. The Mayo Clinic was compensated for MCL's advisory board activities for GRAIL, Inc. AJ, OV, APF, MCM, GC, HA, SG, JB, MH-M, JS, KK, ETF, TM, A-RH, and AA are employees or

METHODS

CCGA Study

- o 15.254 participants have been enrolled (56% cancer, 44% non-cancer)
- The training phase (reported here) of this second pre-specified sub-study included prospectively collected blood samples (N=3.132) from 1.840 participants (pts) with newly diagnosed, untreated cancer (>20 tumor types, all stages) and 1,292 participants with no cancer diagnosis (Figure 1).
- o Plasma cfDNA was subjected to a bisulfite sequencing assay targeting the most informative regions of the methylome, as identified from a unique methylation database (see below) and prior prototype whole-genome and targeted sequencing assays³ to identify cancer- and tissue-defining methylation signal.


Methylation Database

- o Genomic DNA from formalin-fixed, paraffin-embedded (FFPE) tumor tissues and isolated cells from tumors was subjected to whole-genome bisulfite sequencing to generate a large database of cancer-defining methylation signals for use in panel design and in training to optimize performance.
- o How the methylation database contributes to target selection is indicated in Figure 2.

Classification

- o Fragment methylation states were treated as being drawn from a mixture of latent methylation patterns.
- o Observed fragments were assigned a relative probability of originating from cancer.
- o Similarly, for TOO, observed fragments were assigned a relative probability of originating from a particular tissue.
- Fragments characteristic of cancer and TOO were combined across targeted regions to classify cancer versus non-cancer and identify TOO.
- For binary cancer classification, clinical sensitivity was estimated at 99% specificity.
- For TOO, two independent models, one with and one without the methylation database, were fitted; reported TOO results reflect percent agreement between predicted and true TOO among cases classified as cancer at 99% specificity.

Figure 2. Methylation Database

A large methylation sequence database of cancer and non-cancer was generated to enable target selection for a single test able to classify multiple cancers at high specificity and identify TOO.

GRAIL, Inc. with equity in the company. AJ, KK, HA, and GC hold stock in Illumina, Inc. GRO is an advisory board consultant for Inivata Ltd.; an honorarium recipient from Guardant Health, Inc., Sysmex Corporation, and Bio-Rad Laboratories nc.; and a consultant for DropWorks, Inc., AstraZeneca plc, and GRAIL, Inc. EAK is a consultant GRAIL, Inc., Genomic Health, Inc., and GenomeDx Biosciences Inc. MVS is an employee of, and shareholder in, McKesson Corporation. The remaining author has nothing to disclos Copies of this poster obtained through Quick Response (QR) Code are for pers not be reproduced without permission from ASCO® and the author of this poster

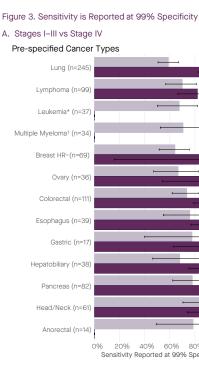
@GRAIL, Inc., 2019. GRAIL is a registered trademark of GRAIL, Inc. All rights reserved

Assay Selection

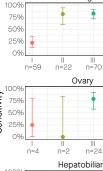
- The first pre-specified substudy³ identified methylation patterns as most informative, and least subject to confounding singal from clonal hematopoiesis.5,6
- The targeted assay was comparable to WGBS only when the targeted assay accounted for CH (WGBS vs targeted w/CH: p=0.61: WGBS vs targeted w/out CH: p<0.001); WGBS outperformed WGS regardless of whether the assay accounted for CH (p<0.001 for each comparison).
- The WGBS assay also outperformed the targeted (p<0.001) and WGS (p<0.001) assays in TOO accuracy.

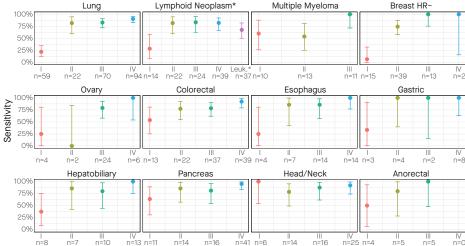
Participant Demographics

- o Overall, the cancer and non-cancer groups were comparable (Table 1). o Participants with lung cancer tended to be slightly older, and more were ever-smokers
- A broad range of stages were represented in participants with cancer (Table 1)

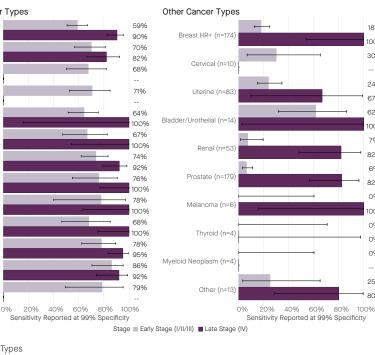

Table 1. Participant Demographics and Stage Distribution

	Cancer*	Non-cancer
Total	1,422	879
Age, Mean ± SD	62.0 ± 11.8	54.2 ± 13.6
Age Group, ≥ 50 yrs, n (%)	1,220 (85.8)	576 (65.5)
Sex, Female, n (%)	712 (50.1)	583 (66.3)
Race/Ethnicity, n (%)		
White, Non-Hispanic	1,174 (82.6)	713 (81.1)
African American	97 (6.8)	67 (7.6)
Hispanic, Asian, Other	151 (10.6)	99 (11.3)
Never-smoker, n (%) ⁺	633 (45.3)	495 (57.1)
Body Mass Index, Normal/Underweight, n (%)‡	381 (26.8)	216 (24.6)
Dx by Screening, n (%)	350 (24.6)	-
Clinical Stage, n (%)§		
1	398 (28.0)	-
ll	366 (25.7)	-
111	290 (20.4)	-
IV	327 (23.0)	-
Non-informative/Missing ¹	41 (2.9)	-


Cancer and non-cancer groups were comparable with respect to age, race, sex, and body mass index, *Includes anorectal, bladder, brain, breast, cervical, colorectal, esophageal, gastric, head and neck, hepatobiliary, lung, lymphoid neoplasm (chronic lymphocytic leukemia, hairy cell leukemia, lymphoma), multiple myeloma, myeloid neoplasm (chronic myeloid leukemia), ovariar pancreatic prostate renal sarcoma and uterine cancers. †Excludes 38 participants missing smoking status information, #Excludes two participants missing BMI values, §Invasive cancer only ¹Staging information not available


Sensitivity

- o Sensitivity was estimated at 99% specificity (Figure 3).
- Demographic information alone (baseline modeling) classified <5% of participants correctly
- Overall sensitivity was 76.1% (95% CI: 73.1-78.9%) in a pre-specified list of clinically significant cancers (anorectal, breast [HR-negative], colorectal, esophageal, gastric, head and neck, hepatobiliary, lung, lymphoid neoplasm [chronic lymphocytic leukemia, hairy cell leukemia, lymphoma], multiple mveloma, ovarian, pancreatic)
- Sensitivity was 68.8% (95% CI: 64.8-72.6%) in early stage (I-III) cancers in this pre-specified cohort.
- Overall sensitivity was 55.1% (95% CI: 52.5-57.7%) across all cancer types and stages.
 - In early stage (I–III) cancers, sensitivity was 43.8% across all cancer types in the sub-study (95% CI: 40.7-46.8%)


B. Prespecified Cancer Types

CONCLUSIONS

- Initial results from the ongoing second sub-study of CCGA showed targeted methylation simultaneously detected multiple cancer types, at early stages, at a specificity (99%) appropriate for population screening.
- Detection of multiple cancers was achieved with a single, fixed, low false positive rate. This approach also accurately localized the TOO, which could streamline subsequent diagnostic work-up.

Tissue of Origin

30%

21%

o Classifier performance was higher with the methylation database versus without. o Of 1,422 total samples, 784 with vs. 763 without were called cancer, 735 vs. 716 returned a TOO result, and 663 vs. 642, respectively, were correctly localized (p=0.0066, Stuart-Maxwell test). o The assay assigned a TOO in 93.8% (735/784) of cases, with the methylation database. • 90.2% (663/735) of these TOO predictions were correct (Figure 4). This was consistent regardless of stage (stage I-III predictions: 89.9% [384/427]; stage IV predictions: 90.1% [255/283]) Figure 4. Tissue of Origin Performance I vmphoid Neoplasm³ Multiple Myeloma Breast Ovary Upper Gl Hepatobiliary Pancreatic Head/Neck Anorectal Cervical Uterine Bladder/Urothelial Renal Prostate Mveloid Neoplasr Non-cano Percent of Total Predicted 100% 50% 0% Actual Cancer Type

Agreement between the true (x-axis) and predicted (y-axis) TOO per sample using the TOO classifier with the methylation database in stage I-IV samples Color corresponds to the proportion of predicted TOO (y-axis) which were correct (x-axis), as indicated to the right of the plot. Percent correct predictions from the total predictions for each cancer type (n>5) is indicated to the right of the plot. Numbers in each box represent the total number of calls. *Lymphoi neoplasm includes chronic lymphocytic leukemia, hairy cell leukemia, lymphoma. †Myeloid neoplasm includes chronic myelocytic leukemia. Numbers in each box represent the total number of calls.

- An effective multi-cancer test ideally should simultaneously detect clinically significant cancers across stages with very high specificity (and thus would have a single fixed, low false positive rate), and accurately determine TOO.
- To demonstrate the potential of this approach, simultaneous detection (sensitivity reported at 99% specificity) and TOO determination for the pre-specified list of cancer types, in aggregate, at individual stages, is displayed in Figure 5.

Figure 5. Detection and TOO Determination by Stage

Sensitivity (reported at 99% specificity, top panel) and tissue of origin (bottom panel) for the pre-specified list of cancers is reported by individual stage Numbers in each stage are indicated. *Leukemia includes chronic lymphocytic leukemia and hairy cell leukemia (unstaged

- Incorporating data from a large methylation database improved performance.
- o Targeted methylation was selected for further development in preparation for clinical validity studies.
- This was based on methylation (WGBS) outperforming WGS and targeted sequencing approaches (for details of WGBS cancer detection and survival, please see Poster 1545)
- o Together, these findings support the potential clinical applicability of this targeted methylation approach as a multi-cancer detection test for numerous clinically significant cancer types.