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Zusammenfassung

Automatisierte Recommender-Systeme berechnen Produktvorschliage, welche
genau auf die Interessen und Bediirfnisse ihrer Benutzer zugeschnitten sind
und stellen somit exzellente Mittel dar, um der stetig wachsenden Informa-
tionsflut Herr zu werden. Allerdings sieht sich deren praktische Einsetzbarkeit
bis dato weithin auf Szenarien beschrankt, bei denen man alle fiir die zur
Berechnung von Empfehlungen relevante Information als in einem einzigen
Knoten gekapselt annehmen konnte.

Seit einigen Jahren nehmen verteilte Infrastrukturen, wie zum Beispiel Peer-
to-Peer und Ad-Hoc Netzwerke, das Semantic Web, der Grid etc., immer
deutlichere Konturen an und ersetzen klassische Client/Server-Modelle be-
reits in vielerlei Hinsicht. Diese Infrastrukturen kénnten gleichwohl von den
von Recommender-Systemen bereitgestellten Diensten profitieren und somit
einen Paradigmenwechsel hin zu dezentralisierten Recommender-Systemen
einlduten.

Im Rahmen dieser Dissertation untersuchen wir zunachst die neuen Her-
ausforderungen, denen es sich im Hinblick auf die Konzeption dezentraler
Recommender-Systeme zu stellen gilt, und schlagen diverse neue Ansétze
vor, mit deren Hilfe man speziell jene Probleme zu bewéltigen vermag. Das
Spektrum der vorgestellten Methoden reicht dabei von der Verwendung von
méchtigen Taxonomien zur Klassifikation von Produkten zwecks kiinstlicher
Verdichtung der Daten, bis hin zu Vertrauensmetriken, die entworfen wurden,
um Fragen der Skalierbarkeit derartiger Systeme zu 16sen. Empirische Unter-
suchungen beziiglich der Korrelation interpersonellen Vertrauens und Interes-
sengleichheit stellen den Mortel dar, welcher jene einzelnen Bausteine zusam-
menfiigt und die schlussendliche Realisierung eines exemplarischen Frame-
works fiir dezentrale Recommender-Systeme ermoglicht.

Wahrend die angesprochenen Bausteine, im namentlichen Taxonomie-basier-
tes Filtern, Topic Diversification und die Appleseed Vertrauensmetrik, notwen-
dige Komponenten fiir die Konzeption eines auf sozialem Vertrauen basierten,
dezentralen Recommender-Systems darstellen, so sind diese gleichermaflen
wichtige wissenschaftliche Beitrige per se und auch auflerhalb der Fragestel-
lung “Dezentrale Recommender-Systeme” von praktischer Relevanz.






Abstract

Automated recommender systems make product suggestions that are tailored
to the human user’s individual needs and represent powerful means to combat
information glut. However, their practical applicability has been largely con-
fined to scenarios where all information relevant for recommendation making
is kept in one single, authoritative node.

Recently, novel distributed infrastructures are emerging, e.g., peer-to-peer and
ad-hoc networks, the Semantic Web, the Grid, etc., and supersede classical
client/server approaches in many respects. These infrastructures could like-
wise benefit from recommender system services, leading to a paradigm shift
towards decentralized recommender systems.

In this thesis, we investigate the challenges that decentralized recommender
systems bring up and propose diverse techniques in order to cope with those
particular issues. The spectrum of methods proposed ranges from the employ-
ment of product classification taxonomies as powerful background knowledge,
alleviating the sparsity problem, to trust propagation mechanisms designed
to address the scalability issue. Empirical investigations on the correlation of
interpersonal trust and interest similarity provide the component glue that
melds these results together and renders the eventual creation of a decentral-
ized recommender framework feasible.

While these building bricks, namely taxonomy-driven filtering, topic diversi-
fication, and the Appleseed trust metric, are vital for the conception of our
trust-based decentralized recommender, they are also valuable contributions
in their own right, addressing issues not only confined to the universe of de-
centralized recommender systems.
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Chapter 1

Introduction

“Networks straddle the world |[...]. But the sheer volume of information
dissolves the information. We are unable to take it all in.”

— Giinther Grass (*1927)
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1.1 Motivation

Total information overload becomes increasingly severe in our modern times of om-
nipresent mass-media and global communication facilities, exceeding the human per-
ception’s ability to dissect relevant information from irrelevant. Consequently, since
more than 60 years [van Rijsbergen, 1975], significant research efforts have been
striving to conceive automated filtering systems that provide humans with desirable
and relevant information only. Search engines count among these filtering systems
and have gained wide-spread acceptance, rendering information search feasible even
within chaotic and anarchical environments such as the Web.

During the last 10 years, recommender systems [Resnick and Varian, 1997; Kon-
stan, 2004] have been gaining momentum as another efficient means of reducing
complexity when searching for relevant information. Recommenders intend to pro-
vide people with suggestions of products they will appreciate, based upon their past
preferences, history of purchase, or demographic information [Resnick et al., 1994].
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1.1.1 Collaborative Filtering Systems

Most successful industrial and academic recommender systems employ so-called col-
laborative filtering techniques [Goldberg et al., 1992]. Collaborative filtering systems
mimic social processes, when asking like-minded friends or family members for their
particular opinion on new book releases, in an automated fashion. Their principal
mode of operation can be broken down into three major steps:

e Profiling. For each user a; part of the community, an interest profile for
the domain at hand, e.g., books, videos, etc., is computed. In general, these
profiles are represented as partial rating functions r; : B — [—1,+1]*, where
ri(k) € [—1,+1] gives a;’s rating for product b, taken from the current domain
of interest. Ratings are expressions of value for products. High values r;(k) —
+1 denote appreciation, while low values r;(k) — —1 indicate dislike.

e Neighborhood formation. Neighborhood formation aims at finding the
best-M like-minded neighbors of a;, based on their profiles of interest. Roughly
speaking, the more ratings two users a;, a; have in common, and the more their
corresponding ratings 7;(k),r;(k) have similar or identical values, the higher
the similarity between a; and a;.

e Rating prediction. Predictions for products by, still unknown to a; depend on
mainly two factors. First, the similarity of neighbors a; having rated by, and
second, the rating r;(k) they have assigned to product by. Eventually, top-N
recommendation lists for users a; are compiled based upon these predictions.

Hence, the intuition behind collaborative filtering is that if user a; has agreed with
his neighbors in the past, he will do so in the future as well.

1.1.2 Towards Decentralization

With few exceptions [Foner, 1999; Olsson, 2003; Miller, 2003; Sarwar, 2001], recom-
mender systems have been crafted with centralized scenarios in mind, i.e., central
computational control and central data storage. On the other hand, decentralized in-
frastructures are becoming increasingly popular on the Internet and the Web, among
those the Semantic Web, the Grid, peer-to-peer networks for file-sharing and collab-
orative tasks, and ubiquitous computing. All these scenarios comprise an abundant
wealth of metadata information that could be exploited for personalized recommen-
dation making. For instance, think of the Semantic Web as an enormous network
of inter-linked personal homepages published in machine-readable fashion. All these
homepages contain certain preference data, such as the respective user’s friends and
trusted peers, and appreciated products, e.g., CDs, DVDs, and so forth. Through
weblogs, best described as online diaries, parts of this vision have already become
true and gained wide-spread acceptance.
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We could exploit this existing information infrastructure, the user’s personal pref-
erences with respect to peers and products, in order to provide personalized recom-
mendations of products he might have an interest in. This personal recommender
would thus be an application running on one local node, namely the respective
user’s personal computer, and collect data from throughout the Semantic Web. Our
devised recommender would thus exhibit the following characteristics:

Centralized computation. All computations are performed on one single node. Since
we assume these nodes to be people’s PCs, limitations are set concerning
the computational power, i.e., we cannot suppose large clusters of high-speed
servers as is the case for e-commerce stores and larger online communities.

Decentralized data storage. Though computations are localized, data and preference
information are not. They are distributed throughout the network, e.g., the
Semantic Web, and peers generally maintain partial views of their environment
only.

Though having referred to the Semantic Web in the above example, the devised
example also translates to other decentralized infrastructures, such as the before-
mentioned peer-to-peer file-sharing systems.

1.2 Research Issues

Now, when thinking of personal recommender systems exhibiting features as those
depicted above, several research issues spring to mind that are either non-existent
or less severe when dealing with conventional, centralized approaches:

e Ontological commitment. The Semantic Web and other decentralized in-
frastructures feature machine-readable content distributed all over the Web.
In order to ensure that agents can understand and reason about the respec-
tive information, semantic interoperability via ontologies or common content
models must be established. For instance, FOAF [Golbeck et al., 2003], an
acronym for “Friend of a Friend”, defines an ontology for establishing simple
social networks and represents an open standard systems can rely upon.

e Interaction facilities. Decentralized recommender systems have primarily
been subject to multi-agent research projects [Foner, 1997; Olsson, 1998; Chen
and Singh, 2001]. In these settings, environment models are agent-centric,
enabling agents to directly communicate with their peers and thus making
synchronous message exchange feasible. The Semantic Web, being an aggrega-
tion of distributed metadata, opts for an inherently data-centric environment
model. Messages are exchanged by publishing or updating documents encoded
in RDF, OWL, or similar formats. Hence, communication becomes restricted
to asynchronous message exchange only.
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e Security and credibility. Closed communities generally possess efficient
means to control the users’ identity and penalize malevolent behavior. De-
centralized systems devoid of central authorities, e.g., peer-to-peer networks,
open marketplaces and the Semantic Web, likewise, cannot prevent deception
and insincerity. Spoofing and identity forging thus become facile to achieve
[Lam and Riedl, 2004; O’Mahony et al., 2004]. Hence, some subjective means
enabling each individual to decide which peers and content to rely upon are
needed.

e Computational complexity and scalability. Centralized systems allow for
estimating and limiting the community size and may thus tailor their filtering
systems to ensure scalability. Note that user similarity assessment, which is
an integral part of collaborative filtering [Goldberg et al., 1992], implies some
computation-intensive processes. The Semantic Web will once contain millions
of machine-readable homepages. Computing similarity measures for all these
“individuals” thus becomes infeasible. Consequently, scalability can only be
ensured when restricting these computations to sufficiently narrow neighbor-
hoods. Intelligent filtering mechanisms are needed, still ensuring reasonable
recall, i.e., not sacrificing too many relevant, like-minded agents.

e Sparsity and low profile overlap. As indicated in Section 1.1.1, interest
profiles are generally represented by vectors showing the user’s opinion for ev-
ery product. In order to reduce dimensionality and ensure profile overlap, hence
combatting the so-called sparsity issue [Sarwar, 2001], some centralized sys-
tems like MovieLens (http://www.movielens.org) and Ringo [Shardanand and
Maes, 1995] prompt people to rate small subsets of the overall product space.
These mandatory assessments, provisional tools for creating overlap-ensuring
profiles, imply additional efforts for prospective users. Other recommenders,
such as FilmTrust (http://trust.mindswap.org/FilmTrust/) and Jester [Gold-
berg et al., 2001], operate in domains where product sets are comparatively
small. On the Semantic Web, virtually no restrictions can be imposed on agents
regarding which items to rate. Instead, “anyone can say anything about any-
thing”, as stated by Tim Berners-Lee. Hence, new approaches to ensure profile
overlap are needed in order to make profile similarity measures meaningful.

1.3 Proposed Approach

In this thesis, we attack some of the above-mentioned issues and integrate our tech-
niques and results into one coherent framework:

Endeavors to ensure semantical interoperability through ontologies constitute the
cornerstone of Semantic Web conception and have been subject to numerous research
projects. Consequently, we do not concentrate on this aspect but suppose data com-
patibility from the outset, relying upon common quasi-standards, e.g., FOAF and
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Topic Diversification

i chd )

Trust Propagation Models Taxonomy-driven Filtering

Decentralized Recommender Systems

Figure 1.1. Dependency graph modelling the contributions of this thesis

friends. Our interest rather focuses on handling computational complexity, security,
data-centric message passing, and sparsity. To this end, we introduce two funda-
mental approaches, namely taxonomy-driven profiling and filtering and spreading
activation-based trust propagation. While taxonomy-driven profiling addresses the
sparsity issue mentioned in Section 1.2, trust networks and trust propagation attack
the security and computational complexity issues.

Interdependencies between contributions made are depicted in Figure 1.1. Edges
point from contributions ezerting an impact to those they influence. Hence, our
method for taxonomy-driven filtering, presented in Chapter 4, affects topic diver-
sification and our evaluation framework for analyzing interactions between trust
and similarity, likewise. Taxonomy-driven filtering makes use of product classifica-
tion taxonomies as powerful background knowledge to make user profiles denser
and create overlap between two user profiles even when those two users have not
rated any product in common. Within the taxonomy-driven filtering framework, we
present topic diversification, used therein in order to avoid overfitting when learning
preferences.

However, we found that topic diversification also works as an efficient means to
increase user satisfaction when applied on top of conventional collaborative filtering
algorithms. Its in-depth investigation, outlined in Chapter 4, does not contribute to
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the overall problem setting of crafting decentralized recommender systems, though,
which is indicated through dashed lines in Figure 1.1.

Chapter 6 presents a framework we conceived in order to analyze correlations
between interpersonal trust and attitudinal similarity. To this end, owing to the
extreme sparsity of the dataset we conducted our empirical study upon, we applied
our taxonomy-driven profiling approach in order to make similarity computations
more meaningful.

In Chapter 5 we introduce Appleseed, a local group trust metric based on spread-
ing activation models, designed for computing subjective neighborhoods of most
trustworthy peers on the network. Taxonomy-driven filtering, Appleseed, and knowl-
edge about positive impacts of trust relationships on interest similarity constitute
necessary prerequisites for the decentralized recommender framework we propose in

Chapter 7.

1.3.1 Contributions

The contributions made in this thesis refer to various disciplines, e.g., information
filtering and retrieval, network analysis, and social psychology. Note that all these
building bricks are contributions in their own right, being important not only for the
overall decentralized recommender framework, but also for numerous other appli-
cations, e.g., reputation systems [Kinateder and Rothermel, 2003; Chen and Singh,
2001], open rating systems [Guha, 2003], and dimensionality reduction in filtering
systems [Sarwar et al., 2000b].

e Taxonomy-driven filtering. Taxonomy-driven filtering relies upon very large
product classification taxonomies as powerful background knowledge to render
recommendation computations feasible in environments where sparsity pre-
vails. Our proposed approach features two important contributions:

Interest profile assembly and similarity measurement. Our method for assem-
bling profiles based on topic interests rather than product ratings consti-
tutes the nucleus of taxonomy-driven filtering. Hereby, hierarchical rela-
tionships between topics provide an essential inference mechanism. The
resulting profiles serve as means for computing user-user, user-product,
and product-product similarity.

Recommender framework for sparse data. We embedded the taxonomy-driven
profiling and similarity measuring technique into an adaptive framework
for computing recommendations. The respective system, devised for cen-
tralized data storage and computation, also introduces a new product-
user relevance predictor. Empirical evidence, featuring both online and
offline evaluations for two different datasets, shows our approach’s supe-
rior performance over common benchmark systems for sparse product-
rating matrices.
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e Topic diversification. Originally conceived as an auxiliary procedure for the
taxonomy-driven recommender, topic diversification appeared as an excellent
means to increase user satisfaction when applied to recommendation lists com-
puted by arbitrary recommenders. Ample offline analysis and an online study
involving more than 2, 100 users underline its suitability as a supplement pro-
cedure for item-based collaborative filtering algorithms [Sarwar et al., 2001;
Karypis, 2001; Deshpande and Karypis, 2004], mitigating the so-called “port-
folio effect” [Ali and van Stam, 2004] these systems suffer from.

e Trust propagation based on spreading activation models. Trust met-
rics have been introduced for modelling the so-called Public Key Infrastructure
(PKI) [Zimmermann, 1995] and are nowadays gaining momentum through the
emergence of decentralized infrastructures such as the Semantic Web [Richard-
son et al., 2003; Golbeck et al., 2003] and P2P [Kamvar et al., 2003; Aberer
and Despotovic, 2001]. We propose a scalable, attack-resistant [Levien, 2004;
Twigg and Dimmock, 2003] trust metric based upon spreading activation mod-
els which is able to compute neighborhoods of most-trustworthy peers.

e Interpersonal trust and interest similarity. While the proverbial saying
that “birds of a feather flock together” suggests that bonds of trust are mostly
forged among like-minded individuals, no empirical evidence has been given so
far. Social psychology has conducted considerable research on interactions be-
tween interpersonal attraction and attitudinal similarity [Berscheid, 1998], but
not with respect to interpersonal trust. We therefore present a framework for
analyzing interdependencies between trust and similarity and provide empiri-
cal, statistically significant evidence from an online book-reading community
showing that trust and similarity do correlate within this context.

e Decentralized recommender framework. Our final contribution aims at
the seamless integration of all previous results and techniques, excepting topic
diversification, into one coherent framework for decentralized recommendation
making. Empirical results based on offline analysis are given in order to com-
pare its efficiency with two non-decentralized recommenders not making use
of trust-based neighborhood formation.

1.3.2 Published Work

Large portions of contributions made in this work have been published in interna-
tional conferences [Ziegler and Lausen, 2004c,a,b; Ziegler et al., 2004, 2005], refer-
eed workshops [Ziegler, 2004a; Ziegler, Schmidt-Thieme, and Lausen, 2004; Ziegler,
2004b], and journals [Ziegler and Lausen, 2005]. Results of Chapter 3 have been pub-
lished in [Ziegler, Lausen, and Schmidt-Thieme, 2004; Ziegler, Schmidt-Thieme, and
Lausen, 2004], and Chapter 4 largely relates to [Ziegler et al., 2005]. The contents
of Chapter 5 have appeared in [Ziegler and Lausen, 2004c| and have been extended
in [Ziegler and Lausen, 2005]. Portions of Chapter 6 are documented in [Ziegler and
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Lausen, 2004a], while [Ziegler, 2004a; Ziegler and Lausen, 2004b; Ziegler, 2004b]
cover Chapter 7 and, in part, Chapter 1.



Chapter 2

On Recommender Systems

“Attitude is a little thing that makes a big difference.”

— Winston Churchill (1874-1965)
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2.1 Introduction

Recommender systems [Resnick and Varian, 1997] have gained wide-spread accep-
tance and attracted increased public interest during the last decade, levelling the
ground for new sales opportunities in e-commerce [Schafer et al., 1999; Sarwar et al.,
2000a]. For instance, online retailers such as Amazon.com (http://www.amazon.com)
successfully employ an extensive range of different types of recommender systems.
Their principal objective is that of complexity reduction for the human being,
sifting through very large sets of information and selecting those pieces that are
relevant for the active user!. Moreover, recommender systems apply personalization
techniques, considering that different users have different preferences and different
information needs [Konstan et al., 1997]. For instance, supposing the domain of book
recommendations, historians are supposedly more interested in medieval prose, e.g.,

IThe term “active user” refers to the person for whom recommendations are made.
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Geoffrey Chaucer’s Canterbury Tales, than literature about self-organization, which
might be more relevant for Al researchers.

2.2 Collecting Preference Information

Hence, in order to generate personalized recommendations that are tailored to the
active user’s specific needs, recommender systems must collect personal preference
information, e.g., the user’s history of purchase, click-stream data, demographic
information, and so forth. Traditionally, expressions of preference of users a; for
products by are generally called ratings r;(by). Two different types of ratings are
distinguished:

Explicit ratings. Users are required to explicitly specify their preference for any par-
ticular item, usually by indicating their extent of appreciation on 5-point or
7-point likert scales. These scales are then mapped to numeric values, for in-
stance continuous ranges ;(b;) € [—1, +1]. Negative values commonly indicate
dislike, while positive values express the user’s liking.

Implicit ratings. Explicit ratings impose additional efforts on users. Consequently,
users often tend to avoid the burden of explicitly stating their preferences
and either leave the system or rely upon “free-riding” [Avery and Zeckhauser,
1997]. Alternatively, garnering preference information from mere observations
of user behavior is much less obtrusive [Nichols, 1998]. Typical examples for im-
plicit ratings are purchase data, reading time of Usenet news [Resnick et al.,
1994], and browsing behavior [Gaul and Schmidt-Thieme, 2002; Middleton
et al., 2004]. While easier to collect, implicit ratings bear some serious im-
plications. For instance, some purchases are gifts and thus do not reflect the
active user’s interests. Moreover, the inference that purchasing implies liking
does not always hold.

Owing to the difficulty of acquiring explicit ratings, some providers of product
recommendation services adopt bilateral approaches. For instance, Amazon.com
computes recommendations based on explicit ratings whenever possible. In case of
unavailability, observed implicit ratings are used instead.

2.3 Recommender System Types and Techniques

Two principal paradigms for computing recommendations have emerged, namely
content-based and collaborative filtering [Goldberg et al., 1992]. Content-based fil-
tering, also called cognitive filtering [Malone et al., 1987], computes similarities be-
tween the active user a;’s basket of appreciated products, and products from the
product universe that are still unknown to a;. Product-product similarities are based

10
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on features and selected attributes. Whereas collaborative filtering, also called so-
cial filtering [Resnick et al., 1994], computes similarities between users, based upon
their rating profile. Most similar users then serve as “advisers” suggesting the most
relevant products to the active user.

Advanced recommender systems tend to combine collaborative and content-based
filtering, trying to mitigate the drawbacks of either approach and exploiting syner-
getic effects. These systems have been coined “hybrid systems” [Balabanovié¢ and
Shoham, 1997]. Burke [2002] provides an extensive survey of hybridization methods.

2.3.1 Content-based Techniques

Content-based approaches to recommendation making are deeply rooted in infor-
mation retrieval [Baudisch, 2001]. Typically, these systems learn Bayesian classifiers
through content features [Lang, 1995; Ghani and Fano, 2002; Lam et al., 1996; Sol-
lenborn and Funk, 2002], or perform nearest-neighbor vector-space queries [Pazzani,
1999; Alspector et al., 1998; Mukherjee et al., 2001; Ferman et al., 2002]. Bayesian
classifiers use Bayes’ theorem of conditional independence:

P(F|R) - P(R)
P(F)

Moreover, Bayesian classifiers make the “naive” assumption that product descrip-

tion features are independent, which is usually not the case. Given the class label,

the probability of bx belonging to class R;, given its n feature values Fi,..., F,, is
defined as follows:

P(R|F) = (2.1)

1 n
P(Ri| Fy,.... F) = - P(R;) .JHlp(mRi) (2.2)
Variable Z represents a scaling factor only dependent on F, ..., F,. Probabilities

P(R;) and P(F; | R;) can be estimated from training data.

For vector-space queries, attributes, e.g., plain-text terms or machine-readable
metadata, are extracted from product descriptions and used for user profiling and
product representation. For instance, Fab [Balabanovi¢ and Shoham, 1997] repre-
sents documents in terms of the 100 words with the highest TF-IDF weights [Baeza-
Yates and Ribeiro-Neto, 1999], i.e., the words that occur more frequently in those
documents than they do on average.

2.3.2 Collaborative Filtering

Content-based filtering only works when dealing with domains where feature ex-
traction is feasible and attribute information readily available. Collaborative filter-
ing (CF), on the other hand, uses content-less representations and does not face

11
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that same limitation. For instance, Jester [Goldberg et al., 2001] uses collaborative
filtering to recommend jokes to its users. While content-based filtering considers
the descriptive features of products, collaborative filtering uses the ratings that
users assign to products. Hence, CF algorithms typically operate on a set of users
A={ay,aq,...,a,}, aset of products B = {by, by, ..., b,}, and partial rating func-
tions r; : B — [—1,+1]* for each user a; € A. Negative values r;(by,) denote dislike,
while positive values express a;’s liking of product b;. Bottom values r;(by) = L
indicate that a; has not rated by,.

Owing to their high quality output and minimal information requirements, CF
systems have become the most prominent representatives of recommender systems.
Many commercial vendors, e.g., Amazon.com [Linden et al., 2003] and TiVo [Ali
and van Stam, 2004], use variations of CF techniques to suggest products to their
customers. Besides simple Bayesian classifiers [Miyahara and Pazzani, 2000; Breese
et al., 1998; Lang, 1995; Lam et al., 1996], horting [Aggarwal et al., 1999], and
association rule-based techniques [Sarwar et al., 2000a], mainly two approaches have
acquired wide-spread acceptance, namely user-based and item-based collaborative
filtering. In fact, the term “collaborative filtering” is commonly used as a synonym
for user-based CF, owing to this technique’s immense popularity.

The following two sections roughly depict algorithmic implementations of both
user-based and item-based CF.

2.3.2.1 User-based Collaborative Filtering

The Ringo [Shardanand and Maes, 1995] and GroupLens [Konstan et al., 1997]
projects have been among the first recommender systems to apply techniques known
as “user-based collaborative filtering”. Representing each user a}s rating function r;
as a vector, they first compute similarities ¢(a;, a;) between all pairs (a;, a;) € Ax A.
To this end, common statistical correlation coefficients are used, typically Pearson
correlation [Resnick et al., 1994], and the cosine similarity measure, well-known from
information retrieval [Baeza-Yates and Ribeiro-Neto, 1999]. As its name already
suggests, the cosine similarity measure quantifies the similarity between two vectors
0;,v; € [—1,+1]/B by the cosine of their angles:

1B
E k_ovi,k'vj,k
1
( 1Bl 5 ZIBI 9 \2
U'k. U,k
Zk:o v k=0

Pearson correlation, derived from a linear regression model [Herlocker et al., 1999],
is similar to cosine similarity, but measures the degree to which a linear relationship
exists between two variables. Symbols v;, 7; denote the averages of vectors v;, vj:

(2.3)

sim(v;, v;) =
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|B| ) . V. —?}_
Dy (Vi =) U;m ) o

(ZkB:o (vi = w)”- Zk:o (Ve = U_j)2> ’

Either using the cosine similarity measure or Pearson correlation to compute sim-
ilarities c(a;, a;) between all pairs (a;,a;) € A x A, neighborhoods prox(a;) of top-M
most similar neighbors are built for every peer a; € A. Next, predictions are com-
puted for all products by that a;’s neighbors have rated, but which are yet unknown
to a;, i.e, more formally, predictions w;(by) for b, € {b € B | 3a; € prox(a;) : ;(b) #
1}

sim(0;, v;) =

ajelnox<an(77(bk) —75) - clai, ay)

Zaj € prox(a;) C<ai’ aj)

Predictions are thus based upon weighted averages of deviations from a;’s neigh-
bors’ means. For top-N recommendations, a list P,, : {1,2,..., N} — B is com-
puted, based upon predictions w;. Note that function P,, is injective and reflects
recommendation ranking in descending order, giving highest predictions first.

w;(by) = 7; + (2.5)

Performance Tuning

In order to make better predictions, various researchers have proposed several mod-
ifications to the core user-based CF algorithm. The following list names the most
prominent ones, but is certainly not exhaustive:

e Inverse user frequency. In information retrieval applications based on the
vector-space model, word frequencies are commonly modified by a factor known
as the “inverse document frequency” [Baeza-Yates and Ribeiro-Neto, 1999].
The idea is to reduce the impact of frequently occurring words, and increase
the weight for uncommon terms when computing similarities between docu-
ment vectors. Inverse user frequency, first mentioned by Breese et al. [1998],
adopts that notion and rewards co-votes for less common items much more
than co-votes for very popular products.

e Significance weighting. The computation of user-user correlations c(a;, a;)
only considers products that both users have rated, i.e., by € ({b|r;(b) # L} N
{b|r;(b) # L}). Hence, even if a; and a; have co-rated only one single product
by, they will have maximum correlation if 7;(by) = r;(by) holds. Clearly, such
correlations, being based upon few data-points only, are not very reliable.
Herlocker et al. [1999] therefore proposed to penalize user correlations based
on fewer than 50 ratings in common, applying a significance weight of s/50,
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where s denotes the number of co-rated items. Default voting [Breese et al.,
1998] is another approach to address the same issue.

e Case amplification. While both preceding modifications refer to the similar-
ity computation process, case amplification [Breese et al., 1998] addresses the
rating prediction step, formalized in Equation 2.5. Correlation weights ¢(a;, a;)
close to one are emphasized, and low correlation weights punished:

oy ) oclai,a)P, if c(a;,a;) >0
C (az,ay) - { —(—C(&i,ag‘))p, else (2.6)
Hence, highly similar users have much more impact on predicted ratings than
before. Values p around 2.5 are typically assumed.

Filtering Agents

Some researchers [Sarwar et al., 1998; Good et al., 1999] have taken the concept of
user-based collaborative filtering somewhat further and added filterbots as additional
users eligible for selection as neighbors for “real” users. Filterbots are automated
programs behaving in certain, pre-defined ways. For instance, in the context of the
GroupLens Usenet news recommender [Konstan et al., 1997], some filterbots rated
Usenet articles based on the proportion of spelling errors, while others focused on
text length, and so forth. Sarwar has shown that filterbots can improve recommen-

dation accuracy when operating in sparsely populated CF systems [Sarwar et al.,
1998].

2.3.2.2 Item-based Collaborative Filtering

Item-based CF [Karypis, 2001; Sarwar et al., 2001; Deshpande and Karypis, 2004]
has been gaining momentum over the last five years by virtue of favorable computa-
tional complexity characteristics and the ability to decouple the model computation
process from actual prediction making. Specifically for cases where |A| > |B|, item-
based CF’s computational performance has been shown superior to user-based CF
[Sarwar et al., 2001]. Its success also extends to many commercial recommender
systems, such as Amazon.com’s [Linden et al., 2003] and TiVO [Ali and van Stam,
2004].

As with user-based CF, recommendation making is based upon ratings r;(by) that
users a; € A provide for products b, € B. However, unlike user-based CF, similarity
values ¢ are computed for items rather than users, hence ¢ : B x B — [—1,+1].
Roughly speaking, two items b, b, are similar, i.e., have large c(bg, b ), if users who
rate one of them tend to rate the other, and if users tend to assign identical or
similar ratings to them. Effectively, item-based similarity computation equates to
the user-based case when turning the product-user matrix 90°. Next, neighborhoods
prox(by) € B of top-M most similar items are defined for each by,. Predictions w;(by)
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are computed as follows:

2 ey (elbisbe) - 1i(be))

Zbe €B, (b be )|

, (2.7)

where

By, :={b. € B|b, € prox(by) A r;(be) # L}

Intuitively, the approach tries to mimic real user behavior, having user a; judge
the value of an unknown product b, by comparing the latter to known, similar items
be and considering how much a; appreciated these b..

The eventual computation of a top-N recommendation list P, follows the user-
based CF’s process, arranging recommendations according to w; in descending order.

2.3.3 Hybrid Recommender Systems

Hybrid approaches are geared towards unifying collaborative and content-based fil-
tering under one single framework, leveraging synergetic effects and mitigating in-
herent deficiencies of either paradigm. Consequently, hybrid recommenders operate
on both product rating information and descriptive features. In fact, numerous ways
for combining collaborative and content-based aspects are conceivable, Burke [2002]
lists an entire plethora of hybridization methods. Most widely adopted among these,
however, is the so-called “collaboration via content” paradigm [Pazzani, 1999], where
content-based profiles are built to detect similarities among users.

Sample Approaches

One of the earliest hybrid recommender systems is Fab [Balabanovi¢ and Shoham,
1997], which suggests Web pages to its users. Melville et al. [2002] and Hayes and
Cunningham [2004] use content information for boosting the collaborative filtering
process. Torres et al. [2004] and McNee et al. [2002] propose various hybrid sys-
tems for recommending citations of research papers. Huang et al. [2002, 2004] use
content-based features in order to construct correlation graphs to explore transitive
associations between users. Model-driven hybrid approaches have been suggested by
Basilico and Hofmann [2004], proposing perceptron learning and kernel functions,
and by Schein et al. [2002], using more traditional Bayesian classifiers.

2.4 Evaluating Recommender Systems

Evaluations of recommender systems are indispensable in order to quantify how
useful recommendations made by system S, are compared to S, over the complete
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set of users A. Online evaluations, i.e., directly asking users for their opinions, are,
in most cases, not an option. Reasons are manifold:

Deployment. In order to perform online evaluations, an intact virtual community
able to run recommender system services is needed. On the other hand, suc-
cessfully deploying an online community and making it become self-sustaining
is cumbersome and may exceed the temporal scope of most research projects.

Obtrusiveness. Even if an online community is readily available, evaluations cannot
simply be performed at will. Many users may regard questionnaires as an
additional burden, providing no immediate reward for themselves, and perhaps
even decide to leave the system.

Hence, research has primarily relied upon offline evaluation methods, which are
applicable to datasets containing past product ratings, such as, for instance, the
well-known MovieLens and EachMovie datasets, both publicly available.? Machine
learning cross-validation techniques are applied to these datasets, e.g., hold-out, K-
folding, or leave-one-out testing, and evaluation metrics run upon. The following
sections give an outline of popular metrics used for offline evaluations. An extensive
and more complete survey is provided by Herlocker et al. [2004].

2.4.1 Accuracy Metrics

Accuracy metrics have been defined first and foremost for two major tasks: first, to
judge the accuracy of single predictions, i.e., how much predictions w;(b) for prod-
ucts by, deviate from a;’s actual ratings r;(by). These metrics are particularly suited
for tasks where predictions are displayed along with the product, e.g., annotation
in context [Herlocker et al., 2004]. Second, decision-support metrics evaluate the ef-
fectiveness of helping users to select high-quality items from the set of all products,
generally supposing binary preferences.

2.4.1.1 Predictive Accuracy Metrics

Predictive accuracy metrics measure how close predicted ratings come to true user
ratings. Most prominent and widely used [Shardanand and Maes, 1995; Herlocker
et al., 1999; Breese et al., 1998; Good et al., 1999], mean absolute error (MAE)
represents an efficient means to measure the statistical accuracy of predictions w;(by)
for sets B; of products:

’l“ib — W; bk
|E|:Zbke&w () — wi(be)

| Bil

(2.8)

2See http://www.grouplens.org for EachMovie, MovieLens, and other datasets.
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Related to MAE, mean squared error (MSE) squares the error before summing.
Hence, large errors become much more pronounced than small ones. Very easy to
implement, predictive accuracy metrics are inapt for evaluating the quality of top-N
recommendation lists: users only care about errors for high-rank products. On the
other hand, prediction errors for low-rank products are unimportant, knowing that
the user has no interest in them anyway. However, MAE and MSE account for both
types of errors in exactly the same fashion.

2.4.1.2 Decision-Support Metrics

Precision and recall, both well-known from information retrieval, do not consider
predictions and their deviations from actual ratings. They rather judge how relevant
a set of ranked recommendations is for the active user.

Typically, before using these metrics, K-folding is applied, dividing every user a;’s
rated products b, € R; = {b € B|r;(b) # L} into K disjoint slices of preferably
equal size. Folding parameters K € {4,5,...,10} are commonly assumed. Next,
K — 1 randomly chosen slices are used to form a;’s training set RY. These ratings
then define a;’s profile from which final recommendations are computed. For rec-
ommendation generation, a;’s residual slice (R; \ RY) is retained and not used for
prediction. This slice, denoted 77", constitutes the test set, i.e., those products the
recommendation algorithms intend to predict.

Precision, Recall, and F1

Sarwar et al. [2000b] present an adapted variant of recall, recording the percentage
of test set products b € T} occurring in recommendation list P* with respect to the
overall number of test set products |T7|:

T NP
75|
Symbol SPF denotes the image of map PP, i.e., all items part of the recommen-
dation list.

Accordingly, precision represents the percentage of test set products b € T oc-
curring in P with respect to the size of the recommendation list:

Recall = 100 - (2.9)

[T N SPY|

Precision = 100 - |%Pf|

(2.10)

Another popular metric used extensively in information retrieval and recom-
mender systems research [Sarwar et al., 2000b; Huang et al., 2004; Montaner, 2003]
is the standard F1 metric. F'1 combines precision and recall in one single metric,
giving equal weight to both of them:
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Pl — 2 - Recall - Precision

2.11
Recall 4 Precision ( )

Breese Score

Breese et al. [1998] introduce an interesting extension to recall, known as weighted
recall or Breese score. The underlying idea refers to the intuition that the expected
utility of a recommendation list is simply the probability of viewing a recommended
product that is actually relevant, i.e., taken from the test set, times its utility, which
is either 0 or 1 for implicit ratings. Breese furthermore posits that each successive
item in a list is less likely to be viewed by the active user with exponential decay.
The expected utility of a ranked list P of products is as follows:

BT =Y - (212)

be (T2 NSPT) (P~ (b)—1)/(a—1)

Parameter a denotes the viewing half-life. Half-life is the number of the product
on the list such that there is a 50% chance that the active agent, represented by
training set RY, will review that product. Finally, the weighted recall of P* with

(] 7

respect to 17" is defined as follows:
H(P, T7)

T 1
Zk:l 2(k=1)/(a—1)

Interestingly, when assuming o = oo, Breese score is identical to unweighted

BScore(Pf, T}") = 100 - (2.13)

recall.

Other popular decision-support metrics include ROC [Schein et al., 2002; Melville
et al., 2002; Good et al., 1999], the so-called receiver operating characteristic. ROC
measures the extent to which an information filtering system is able to successfully
distinguish between signal and noise. Less frequently used, NDPM [Balabanovié¢ and
Shoham, 1997] compares two different, weakly ordered rankings.

2.4.2 Beyond Accuracy

Though accuracy metrics are an important facet of usefulness, there are traits of
user satisfaction they are unable to capture. Still, non-accuracy metrics have largely
been denied major research interest so far and have only been treated as marginally
important supplements for accuracy metrics.
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2.4.2.1 Coverage

Among all non-accuracy evaluation metrics, coverage has been the most frequently
used [Herlocker et al., 1999; Middleton et al., 2004; Good et al., 1999]. Coverage mea-
sures the percentage of elements part of the problem domain for which predictions
can be made.

For instance, supposing the user-based collaborative filtering approach presented
in Section 2.3.2.1, coverage for the entire set of users is computed as follows:

C 100 >, |{b€B|3a; € prox(ai) : r;(b) # L}
overage — . i
| B - |A]

(2.14)

2.4.2.2 Novelty and Serendipity

Some recommenders produce highly accurate results that are still useless in practice,
e.g., suggesting bananas to customers in a grocery store: almost everyone appreciates
bananas, so their recommending implies high accuracy. On the other hand, owing
to their high popularity, most people intuitively purchase bananas upon entering a
grocery store. They do not require an additional recommendation since they “already
know” [Terveen and Hill, 2001].

Novelty and serendipity metrics thus measure the non-obviousness of recommen-
dations made, penalizing “cherry-picking” [Herlocker et al., 2004].
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Chapter 3

Taxonomy-driven Filtering

“We can love nothing but what agrees with us, and we can only follow
our taste or our pleasure when we prefer our friends to ourselves.”

— Francois de la Rochefoucauld (1694-1778)
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3.1 Introduction

One of the primary issues that recommender systems are facing is rating sparsity,
particularly pronounced for decentralized scenarios (see Section 1.2). Hence, high-
quality product suggestions are only feasible when information density is high, i.e.,
large numbers of users voting for small numbers of items and issuing large numbers of
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explicit ratings each. Small-sized, decentralized and open Web communities, where
ratings are mainly derived implicitly from user behavior and interaction patterns,
poorly qualify for blessings provided by recommender systems.

In this chapter, we explore an approach that intends to alleviate the information
sparsity issue by exploiting product classification taxonomies as powerful background
knowledge. Semantic product classification corpora for diverse fields are becoming
increasingly popular, facilitating smooth interaction across company boundaries and
fostering meaningful information exchange. For instance, the United Nations Stan-
dard Products and Services Classification (UNSPSC) contains over 11,000 codes
[Obrst et al., 2003]. The taxonomies that Amazon.com (http://www.amazon.com)
provides feature even more abundant, hierarchically arranged background knowl-
edge: the book classification taxonomy alone comprises 13,500 topics, its pendant
for categorizing movies and DVDs has about 16,400 concepts. Moreover, all prod-
ucts available on Amazon.com bear several descriptive terms referring to these tax-
onomies, thus making product descriptions machine-readable.

Our novel taxonomy-based similarity metric, making inferences from hierarchical
relationships between classification topics, represents the core of our hybrid filtering
framework to compensate for sparsity. Quality recommendations become feasible in
communities suffering from low information density, too.

We collected and crawled data from the very sparse All Consuming book read-
ers’ community (http://www.allconsuming.net) and conducted various experiments
indicating that the taxonomy-driven method significantly outperforms benchmark
systems. Repeating the offline evaluations for the dense MovieLens dataset, our ap-
proach’s performance gains shrink considerably, but still exceed benchmark scores.

3.2 Related Work

Many attempts have been made to overcome the sparsity issue. Sarwar et al. [2000b]
propose singular value decomposition (SVD) as an efficient means to reduce the
dimensionality of product-user matrices in collaborative filtering. Results reported
have been mixed. Personal filtering agents [Good et al., 1999], surrogates for human
users, represent another approach and have been shown to slightly improve results
when deployed into sparse, human-only communities. Srikumar and Bhasker [2004]
combine association rule mining and user-based CF to cope with sparsity.

The idea of using taxonomies for information filtering has been explored before,
the most prominent example being directory-based browsing of information mines,
e.g., Yahoo (http://www.yahoo.com), Google Directory (http://www.google.com),
and ACM Computing Reviews (http://www.reviews.com). Moreover, Sollenborn and
Funk [2002] propose category-based filtering, similar to the approach pursued by
[Baudisch, 2001]. Pretschner and Gauch [1999] personalize Web search by using
ontologies that represent user interests for profiling.
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However, these taxonomy-based approaches do not exploit semantic “is-a” rela-
tionships between topics for profiling. Middleton et al. [2001, 2002] recommend re-
search papers, using ontologies to inductively learn topics that users are particularly
interested in. Knowing a user’s most liked topics then allows efficient product set
filtering, weeding out those research papers that do not fall into these favorite topics.
In contrast to our own technique proposed, Middleton uses clustering techniques for
categorization and does not make use of human-created, large-scale product classi-
fication taxonomies.

3.3 Approach Outline

Following the “collaboration via content” paradigm [Pazzani, 1999], our approach
computes content-based user profiles which are then used to discover like-minded
peers. Once the active agent’s neighborhood of most similar peers has been formed,
the recommender focuses on products rated by those neighbors and generates top-
N recommendation lists. The rank assigned to a product b depends on two factors.
First, the similarity weight of neighbors voting for b, and, second, b’s content de-
scription with respect to the active user’s interest profile. Hence the hybrid nature
of our approach.

3.3.1 Information Model

Before delving into algorithmic details, we introduce the formal information model,
which can be tied easily to arbitrary application domains. Note that the model at
hand also serves as foundation for subsequent chapters.

e Agents A = {aj,as,...,a,}. All community members are elements of A.
Possible identifiers are globally unique names, URISs, etc.

e Product set B = {by,bs,...,b,}. All domain-relevant products are stored
in set B. Unique identifiers either refer to proprietary product codes from
an online store, such as Amazon.com’s ASINs, or represent globally accepted
standard codes, e.g., ISBNs.

e User ratings Ry, Rs, ..., R,. Every agent a; is assigned a set R; C B which
contains his implicit product ratings. Implicit ratings, such as purchase data,
product mentions, etc., are far more common in electronic commerce systems
and online communities than explicit ratings [Nichols, 1998].

e Taxonomy C over set D = {d;,ds,...,d;}. Set D contains categories for
product classification. Each category d. € D represents one specific topic that
products b, € B may fall into. Topics express broad or narrow categories. The
partial taxonomic order C' : D — 2P retrieves all immediate sub-categories
C(d.) C D for topics d. € D. Hereby, we require that C(d.) N C(dy) = 0
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holds for all d.,d;, € D,e # h, and hence impose tree-like structuring, similar
to single-inheritance class hierarchies known from object-oriented languages.
Leaf topics d. are topics with zero outdegree, formally C(d.) = L, i.e., most
specific categories. Furthermore, taxonomy C' has exactly one top element, T,
which represents the most general topic and has zero indegree.

e Descriptor assignment function f : B — 2P. Function f assigns a set
Dy C D of product topics to every product by € B. Note that products may
possess several descriptors, for classification into one single category may be
too imprecise.

3.3.2 Taxonomy-driven Profile Generation

Collaborative filtering techniques represent user profiles by vectors v; € [—1, +1]18,

where v; 5, indicates the user’s rating for product b, € B. Similarity between agents
a; and a; is computed by applying Pearson correlation or cosine similarity to their
respective profile vectors (see Section 2.3.2). Clearly, for very large |B| and com-
paratively small |A|, this representation fails, owing to insufficient overlap of rating
vectors.

We propose another, more informed approach which does not represent users
by their respective product-rating vectors of dimensionality |B|, but by vectors of
interest scores assigned to topics taken from taxonomy C' over product categories
deD.

User profile vectors are thus made up of |D| entries, which corresponds to the
number of distinct classification topics. Moreover, making use of profile vectors
representing interest in topics rather than product instances, we can exploit the
hierarchical structure of taxonomy C' in order to generate overlap and render the
similarity computation more meaningful: for every topic di, € f(by) of products by
that agent a; has implicitly rated, we also infer an interest score for all super-topics
of d, in user a;’s profile vector. However, score assigned to super-topics decays with
increasing distance from leaf node di,. We furthermore normalize profile vectors
with respect to the amount of score assigned, according the arbitrarily fixed overall
score s.

Hence, suppose that v; = (v;1,vi2,...,v;p|)" represents the profile vector for
user a;, where v, gives the score for topic d € D. Then we require the following
equation to hold:

)T

DI

Va; € A: Zvi’k =S5 (31)

k=1

By virtue of agent-wise normalization for a;’s profile, the score for each product
br € R; amounts to s / | R;|, inversely proportional to the number of distinct products
that a; has rated. Likewise, for each topic descriptor dy, € f(by) categorizing product
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3.3 Approach Outline

br, we accord topic score sc(dy,) = s/ (|Ri| - | f(bx)|). Hence, the topic score for by is
distributed evenly among its topic descriptors.

Let (po,p1,- - -,pq) denote the path from top element py = T to descendant p, =
d, within the tree-structured taxonomy C' for some given dy_ € f(bx). Then topic
descriptor dj, has ¢ super-topics. Score normalization and inference of fractional
interest for super-topics imply that descriptor topic score sc(dy, ) may not become
fully assigned to dy,, but in part to all its ancestors p,_1, . . . po, likewise. We therefore
introduce another score function sco(p,,) that represents the eventual assignment of
score to topics p,, along the taxonomy path leading from p, = dj, to po = T

Z sco(pp,) = sc(dy,) (3.2)

In addition, based on results obtained from research on semantic distance in tax-
onomies (e.g., see [Budanitsky and Hirst, 2000] and [Resnik, 1999]), we require that
interest score sco(p,,) accorded to p,,, which is super-topic to p,,,1, depends on the
number of siblings, denoted sib(py,41), of Ppy1: the fewer siblings p,,41 possesses,
the more interest score is accorded to its super-topic node p,,:

 sco(pun)
Sib(pm—f—l) +1

We assume that sub-topics have equal shares in their super-topic within taxonomy
C. Clearly, this assumption may imply several issues and raise concerns, e.g., when
certain sub-taxonomies are considerably denser than others [Resnik, 1995, 1999].

sco(pm) = K (3.3)

Propagation factor x permits to fine-tune the profile generation process, depending
on the underlying taxonomy’s depth and granularity. For instance, we apply x = 0.75
for Amazon.com’s book taxonomy.

Equations 3.2 and 3.3 describe conditions which have to hold for the computation
of leaf node p,’s profile score sco(p,) and the computation of scores for its taxonomy
ancestors pg, where k € {0,1,...,¢ — 1}. We hence derive the following recursive
definition for sco(p,):

d
sco(pg) =K - el kE), (3.4)
9q
where 1
=1, =14+ —=—,
g0 & sib(pg) + 1
and Vn € {2,...,q}
1

Gn = Gn-1+ (gn*1 o gniQ) . Sib(qunJrl) +1
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Figure 3.1. Fragment from the Amazon.com book taxonomy

Computed scores sco(p,,) are used to build a profile vector v; for user a;, adding
scores for topics in v;. The procedure is repeated for every product b, € R; and
every dke S f(bk)

Example 1 (Profile computation) Suppose taxonomy C' as depicted in Figure 3.1,
and propagation factor k = 1. Let a; have implicitly rated four books, namely Matrix
Analysis, Fermat’s Enigma, Snow Crash, and Neuromancer. For Matrix Analysis,
five topic descriptors are given, one of them pointing to leaf topic ALGEBRA within
our small taxonomy.

Suppose that s = 1000 defines the overall accorded profile score. Then the score
assigned to descriptor ALGEBRA amounts to s/ (4 -5) = 50. Ancestors of leaf AL-
GEBRA are PURE, MATHEMATICS, SCIENCE, and top element BOOKS. Therefore,
score 50 must be distributed among these topics according to Equation 3.2 and 3.3.
The application of Equation 3.4 yields score 29.091 for topic ALGEBRA. Likewise,
applying Equation 3.3, we get 14.545 for topic PURE, 4.848 for MATHEMATICS,
1.212 for SCIENCE, and 0.303 for top element BOOKS. These values are then used
to build profile vector v; for a;.

3.3.3 Neighborhood Formation

Taxonomy-driven profile generation computes flat profile vectors v; € [0, s]!P! for
agents a;, assigning score values between (0 and maximum score s to every topic d
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3.3 Approach Outline

from the set of product categories D. In order to generate neighborhoods of like-
minded peers for the active user a;, a proximity measure is required.

3.3.3.1 Measuring Proximity

Pearson’s correlation coefficient and cosine similarity count among the most promi-
nent correlation measures for CF (see Section 2.3.2.1). For our taxonomy-driven
method, we opted for Pearson correlation, which Herlocker et al. [2002] have found
to perform better on collaborative filtering than cosine similarity.

Clearly, people who have implicitly rated many products in common also have high
similarity. For generic collaborative filtering approaches, the proposition’s inversion
also holds, i.e., people who have not rated many products in common have low
similarity.

On the other hand, applying taxonomy-driven profile generation, high similarity
values can be derived even for pairs of agents that have [little or even no products
in common. Clearly, the measure’s quality substantially depends on the taxonomy’s
design and level of nesting. According to our scheme, the more score two profiles v;
and v; have accumulated in same branches, the higher their measured similarity.

Example 2 (Interest correlation) Suppose the active user a; has rated only one
single book b,,, bearing exactly one topic descriptor that classifies b, into ALGE-
BRA. User a; has read a different book b,, whose topic descriptors point to diverse leaf
nodes! of HISTORY, denoting history of mathematics. Then c(a;, a;) will still be rea-
sonably high, for both profiles have significant overlap in categories MATHEMATICS
and SCIENCE.

Negative correlation occurs when users have completely diverging interests. For in-
stance, in our information base mined from All Consuming, we had one user reading
books mainly from the genres of Science Fiction, Fantasy, and Artificial Intelligence.
The person in question was negatively correlated to another one reading books about
American History, Politics, and Conspiracy Theories.

3.3.3.2 Selecting Neighbors

Having computed proximity weights ¢(a;, a;) for the active user a; and agents a; €
A\ {a;}, neighborhood formation takes place. Agent a;’s neighborhood, denoted by
prox(a;), contains a;’s most similar peers for use in computing recommendation lists.
Herlocker et al. [1999] name two techniques for neighborhood selection, namely
correlation-thresholding and best-M-neighbors. Correlation-thresholding puts users
a; with similarities ¢(a;,a;) above some given threshold ¢ into prox(a;), whereas
best-M-neighbors picks the M best correlates for a;’s neighborhood.

1Leaf nodes of HISTORY are not shown in Figure 3.1.
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We opted for best-M-neighbors, since correlation-thresholding implies diverse un-
wanted effects when sparsity is high [Herlocker et al., 1999].

3.3.4 Recommendation Generation

Candidate products for a;’s personalized recommendation list are taken from his
neighborhood’s implicit ratings, avoiding products that a; already knows:

B; = J{R) | a; € prox(a;)} \ B; (3.5)

Candidates by € B; are then weighted according to their relevance for a;. The
relevance of products b, € B; for a;, denoted w;(bx), depends on various factors.
Most important, however, are two aspects:

e User proximity. Similarity measures c(a;, a;) of all those agents a; that “rec-
ommend” product by to the active agent a; are of special concern. The closer
these agents to a;’s interest profile, the higher the relevance of b, for a;. We
borrowed the latter intuition from common collaborative filtering techniques
(see Section 1.1.1).

e Product proximity. Second, measures ¢;(a;, by) of product by’s closeness with
respect to a;’s interest profile are likewise important. The purely content-based
metric supplements the overall recommendation generation process with more
fine-grained filtering facilities: mind that even highly correlating agents may
appreciate items beyond the active user’s specific interests. Otherwise, these
agents would have identical interest profiles, not just similar ones.

The computation of ¢,(a;, bx) derives from the user similarity computation
scheme. For this purpose, we create a dummy user ag with Ry = {by} and
define ¢y(a;, by) := c(a;, ag).

The relevance w;(by) of product by for the active user a; is then defined by the
following formula:

g+ (@i, bi) - Za'eA‘(bk) las,a;)
j i(0k

[ b - )
wilbe) | Ai(br)| + Tr

(3.6)
where
A;(by) = {a; € prox(a;) | by € R;}
and
q=(10+[f(bx)| - I'r)

Variables Tr and I'r represent fine-tuning parameters that allow for customiz-
ing the recommendation process. Parameter T g penalizes products occurring infre-
quently in rating profiles of neighbors a; € prox(a;). Hence, large T p makes popular
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items acquire higher relevance weight, which may be suitable for users wishing to
be recommended well-approved and common products instead of rarities. On the
other hand, low Tp treats popular and uncommon, new products in exactly the
same manner, helping to alleviate the latency problem [Sollenborn and Funk, 2002].
For experimental analysis, we tried values between 0 and 2.5.

Parameter I'7 rewards products b, that carry many content descriptors, i.e., have
large |f(bx)|. Variable I'y proves useful because profile score normalization and
super-topic score inference may penalize products b containing several, detailed
descriptors d € f(by), and favor products having few, more general topic descrip-
tors. Reward through I'r is assigned linearly by virtue of (|f(bx)| - I'r). Consider
that the implementation of exponential decay appears likewise reasonable, therefore
reducing YTg’s gain in influence when |f(bg)| becomes larger. However, we have not
tried this extension.

Eventually, product relevance weights w;(by) computed for every b, € B; are used
to produce the active user a;’s recommendation list. The injective function P, :
{1,2,...,|B;|} — B reflects recommendation ranking according to w; in descending
order. For top-N recommendations, all entries P,,(k), k > N are discarded.

3.3.5 Topic Diversification

A technique we call topic diversification constitutes another cornerstone contribution
of this chapter. The latter method represents an optional procedure to supplement
recommendation generation and to enhance the computed list’s utility for agent a;.

The idea underlying topic diversification refers to providing an active user a; with
recommendations from all major topics that a; has declared specific interest in. The
following example intends to motivate our method:

Example 3 (Topic overfitting) Suppose that a;’s profile contains books from Me-
dieval Romance, Industrial Design, and Travel. Suppose Medieval Romance has a
60% share in a;’s profile, Industrial Design and Travel have 20% each. Consequently,
Medieval Romance’s predominance will result in most recommendations originating
from this super-category, giving way for Industrial Design and Travel not before
all books from like-minded neighbors fitting well into the Medieval Romance shape
have been inserted into a;’s recommendations.

We observe the above issue with many recommender systems using content-based
and hybrid filtering techniques. For purely collaborative approaches, recommenda-
tion diversification according to the active user a;’s topics of interest becomes even
less controllable. Remember that collaborative filtering does not consider the content
of products but only ratings assigned.
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3.3.5.1 Recommendation Dependency

In order to implement topic diversification, we assume that recommended products
P,,(0) and P, (p), along with their content descriptions, effectively do exert an
impact on each other, which is commonly ignored by existing approaches: usually,
only relevance weight ordering o < p = w;(P,,(0)) > w;(P,,(p)) must hold for
recommendation list items.

To our best knowledge, Brafman et al. [2003] are the only researchers assuming
dependencies between recommendations. Their approach considers recommendation
generation as inherently sequential and uses Markov decision processes (MDP) in
order to model interdependencies between recommendations. However, apart from
the idea of dependence between items P,,(0), Py, (p), Brafman’s focus significantly
differs from our own, emphasizing the economic wtility of recommendations with
respect to past and future purchases.

In case of our topic diversification technique, recommendation interdependence
signifies that an item b’s current dissimilarity with respect to preceding recom-
mendations plays an important role and may influence the “new” ranking order.
Algorithm 3.1 depicts the entire procedure, a brief textual sketch is given in the
next few paragraphs.

3.3.5.2 Topic Diversification Algorithm

Function P,,. denotes the new recommendation list, resulting from the application
of topic diversification. For every list entry z € [2, N|, we collect those products b
from the candidate products set B; that do not occur in positions o < z in P,
and compute their similarity with set {P,..(k) | k € [1, z[ }, which contains all new
recommendations preceding rank z. We hereby compute the mentioned similarity
measure, denoted ¢*(b), by applying our scheme for taxonomy-driven profile gener-
ation and proximity measuring presented in Section 3.3.2 and 3.3.3.1.

Sorting all products b according to ¢*(b) in reverse order, we obtain the dissimi-
larity rank P:°V. This rank is then merged with the original recommendation rank
P, according to diversification factor Op, yielding final rank P,,.. Factor Op de-
fines the impact that dissimilarity rank PV exerts on the eventual overall output.
Large Op € [0.5, 1] favors diversification over a;’s original relevance order, while low
Or € [0,0.5] produces recommendation lists closer to the original rank P,,. For
experimental analysis, we used diversification factors ©r € [0,0.9].

Note that the ordered input lists P,,, must be considerably larger than the eventual
top-V list. Algorithm 3.1 uses constant z for that purpose. In our later experiments,
we assumed x = 4, hence using top-80 input lists for final top-20 recommendations.
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procedure diversify (P, : {1,...,|B;|} — B, ©p € [0,1]) {
By {Puy(k) | k€ [z NT}; Paye(1) — Puy(1):
for z — 2 to N do
set Bl «— B; \ {Py,«(k) | k€ [1,2] };
Vb € B': compute ¢*(b, {Py,«(k) | k € [1,2]});
compute Pe~ : {1,2,...,|Bl|} — B} using c*;
for all b € B} do
PV (b) — |B]| — P2 (b);
wy(b) = Ppl(b)- (1 — Op) + P (b) - Op;
end do
Papa(z) — minfuw; (b) | b€ B
end do

return P, ,;

}

Algorithm 3.1. Sequential topic diversification

3.3.5.3 Osmotic Pressure Analogy

The effect of dissimilarity bears traits similar to that of osmotic pressure and se-
lective permeability known from molecular biology (e.g., see Tombs [1997]): steady
insertion of products b,, taken from one specific area of interest d,, into the rec-
ommendation list equates to the passing of molecules from one specific substance
through the cell membrane into cytoplasm. With increasing concentration of d,,
owing to the membrane’s selective permeability, the pressure for molecules b from
other substances d rises. When pressure gets sufficiently high for one given topic d,,
its best products b, may “diffuse” into the recommendation list, even though the
original rank P, (b,) might be inferior to the rank of candidates from the prevail-
ing domain d,. Consequently, pressure for d, decreases, paving the way for another
domain for which pressure peaks.

Topic diversification hence resembles the membrane’s selective permeability, which
allows cells to maintain their internal composition of substances at required levels.

3.4 Offline Experiments and Evaluation

The following sections present empirical results that were obtained from evaluating
our approach. Core engine parts of our system, along with most other software tools
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for data extraction and screen scraping, were implemented in Java, small portions in
Perl. Remote access via Web interfaces was rendered feasible through PHP frontends.

Besides our taxonomy-driven approach, we also implemented three other recom-
mender algorithms for comparison.

3.4.1 Data Acquisition

Experimentation, parameterization, and fine-tuning were conducted on “real-world”
data, obtained from All Consuming (http://www.allconsuming.net), an open com-
munity addressing people interested in reading books. We extracted additional, tax-
onomic background knowledge, along with content descriptions of those books, from
Amazon.com. Crawling was started on January 12 and finished on January 16, 2004.

The entire dataset comprises 2,783 users, representing either “real”, registered
members of All Consuming, or personal weblogs collected by the community’s spi-
ders, and 14, 591 ratings addressing 9, 237 diverse book titles. All ratings are implicit,
i.e., non-quantifiable with respect to the extent of appreciation of the respective
books. On average, users provided 5.24 book ratings.

After the application of various data cleansing procedures and duplicate removal,
Amazon.com’s tree-structured book classification taxonomy contained 13,525 dis-
tinct concepts. Our crawling tools collected 27,202 topic descriptors from Ama-
zon.com, relating 8,641 books to the latter concept lattice. Consequently, for 596
of those 9,237 books mentioned by All Consuming’s users, no content information
could be obtained from Amazon.com, signifying only 6.45% rejects. We eliminated
these books from our dataset. On average, 3.15 topic descriptors were found for
books available on Amazon.com, thus making content descriptions sufficiently ex-
plicit and reliable for profile generation.

To make the analysis data obtained from our performance trials more accurate, we
relied upon an external Web-service? to spot ISBNs referring to the same book, but
different editions, e.g., hardcover and paperback. Those ISBNs were then mapped
to one single representative ISBN.

3.4.2 Evaluation Framework

Since our taxonomy-driven recommender system operates on binary preference in-
put, i.e., implicit rather than explicit ratings, predictive accuracy metrics (see Sec-
tion 2.4.1.1) are not suitable for evaluation. We hence opted for decision-support
accuracy metrics (see Section 2.4.1.2), namely precision, recall, and Breese score.

2See http://www.oclc.org/research/projects /xisbn/.
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3.4.2.1 Benchmark Systems

Besides our own, taxonomy-driven proposal, we implemented three other recommen-
dation algorithms: one “naive”, random-based system offering no personalization at
all and therefore defining the bottom line, one purely collaborative approach, typ-
ically used for evaluations, and one hybrid method, exploiting content information
provided by our dataset.

Bottom Line Definition

For any given user a;, the naive system randomly selects an item b € B\ R; for a;’s
top-N list P; : {1,2,..., N} — B. Clearly, as is the case for every other presented
approach, products may not occur more than once in the recommendation list, i.e.,
Vo,pe {1,2,...,N},0# p: PJ(o) # Pi(p) holds.

The random-based approach shows results obtained when no filtering takes place,
representing the base case that “non-naive” algorithms are supposed to surpass.

Collaborative Filtering Algorithm

The common user-based CF algorithm, featuring extensions proposed by Herlocker
et al. [2002], traditionally serves as benchmark when evaluating recommender sys-
tems operating on explicit preferences. Sarwar et al. [2000b] propose an adaptation
specifically geared towards implicit ratings, known as “most frequent items”. We
used that latter system as CF benchmark, computing relevance weights w;(by) for
books b, from a;’s candidates set B; according to the following scheme:

wilbe) = Y el ay) (3.7)

aj€ A;(by)

Set A;(bx) C prox(a;) contains all neighbors of a; who have implicitly rated by.

We measure user similarity c¢(a;, a;) according to Pearson correlation (see Section
2.3.2.1). Profile vectors v;, v; for agents a;, a;, respectively, represent implicit ratings
for every product by € B, hence v;,v; € {0, 1},

Hybrid Recommender Approach

The third system exploits both collaborative and content-based filtering techniques,
representing user profiles v; through collections of descriptive terms, along with their
frequency of occurrence.

Descriptive terms for books by correspond to topic descriptors f(by), originally
relating book content to taxonomy C' over categories D. Consequently, profile vectors
0; € NPl for agents a; take the following shape:

Vd € D :vig=|{br € Ri|d € f(bp)}] (3.8)
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Neighborhoods are formed by computing Pearson correlations between all pairs
of content-driven profile vectors and selecting best-M neighbors. Relevance is then
defined as below:

) 3, )
| Ai(br)|

Mind that Equation 3.9 presents a special case of Equation 3.6, assuming 'y = 0
and YTg = 0. Essentially, the depicted hybrid approach constitutes a simplistic adap-
tation of our taxonomy-driven system. Differences largely refer to the underlying
algorithm’s lack of super-topic score inference, one major cornerstone of our novel
method, and the lack of parameterization.

w;(by) = (3.9)

3.4.2.2 Experiment Setup

The evaluation framework intends to compare the utility of recommendation lists
generated by all four recommender systems, applying precision, recall, and Breese
score (see Section 2.4.1.2). In order to obtain global metrics, we averaged the respec-
tive metric values for all evaluated users.

First, we selected all users a; with more than five ratings and discarded those
having fewer ratings, owing to the fact that reasonable recommendations are beyond
feasibility for these cases.

For cross-validation, we applied 5-folding, effectively performing 80/20 splits of
every user a;’s implicit ratings R; into five pairs of training sets R? and test sets
T7F, where T = R; \ R¥. Consequently, we computed five complete recommendation
lists for every a;, i.e., one list for each RY,z € {1,...,5}.

3.4.2.3 Parameterization

We defined | prox(a;)| = 20, i.e., requiring neighborhoods to contain exactly 20 peers,
and we provided top-20 recommendations for each active user a;’s training set R7.
Similarities between profiles, based upon R and the original ratings R; of all other
agents a;, were computed anew for each training set RY of a;.

For performance analysis, we parameterized our taxonomy-driven recommender
system’s profile generation process by assuming propagation factor x = 0.75, which
encourages super-topic score inference. We opted for £ < 1 since Amazon.com’s
book taxonomy is deeply-nested and topics tend to have numerous siblings, which
makes it rather difficult for topic score to reach higher levels.

For recommendation generation, we adopted parameter Tz = 0.25, i.e., books
occurring infrequently in ratings issued by the active user’s neighbors were therefore
not overly penalized. Generous reward was accorded for books b, bearing detailed
content descriptions, i.e., having large |f(bx)|, by assuming I'r = 0.1. Hence, a 10%
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Figure 3.2. Unweighted precision and recall metrics

bonus was granted for every additional topic descriptor. For topic diversification, we
adopted O = 0.33.

No parameterizations were required for the random-based, purely collaborative,
and hybrid approaches.

3.4.2.4 Result Analysis

We measured performance by computing precision, recall, and Breese score, assum-
ing half-life « = 5 and a = 10, for all four recommenders and all combinations of
training and test sets. Results are displayed in Figure 3.2 and 3.3.

For each indicated chart, the horizontal axis expresses the minimum number of
ratings that users were required to have issued so they were considered for recom-
mendation generation and evaluation. Note that larger x-coordinates hence imply
that fewer agents were considered for computing the respective data points.

Results obtained seem to prove our hypothesis that taxonomy-driven recommen-
dation generation outperforms common approaches when dealing with sparse prod-
uct rating information: all four metrics position our novel approach significantly
above its purely collaborative and hybrid counterparts.

We observe one considerable cusp common to all four charts and particularly
pronounced for the taxonomy-based curves. The sudden drop happens when users
bearing exactly 36 implicit ratings become discarded. On average, for the taxonomy-
driven recommendation generation, these agents have high ranks with respect to all
four metrics applied. Removal thus temporarily lowers the curves.

More detailed, metric-specific analysis follows in subsequent paragraphs.

35



Chapter 3 Taxonomy-driven Filtering

---— Random ——— Pure CF —--— Random ———Pure CF

10
(&)
5
(&)

""" Hybrid —— Taxonomic -+~ Hybrid —— Taxonomic

Breese, Half-Life
w £
Breese, Half-Life
w S

T T T T T T T T T T == T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55

Minimum Required Ratings / User Minimum Required Ratings / User

Figure 3.3. Weighted recall, using half-life « = 10 and o = 5

Precision

Surprisingly, precision increases even for the random recommender when ignoring
users with few ratings. The reason for this phenomenon lies in the nature of the
precision metric: for users a; with test sets T/* smaller than the number |P?| of
recommendations received, i.e., |T7¥| < 20, there is no possibility of achieving 100%
precision.

Analysis of unweighted precision, given on the left-hand side of Figure 3.2, shows
that the gap between our taxonomy-driven approach and its collaborative and hy-
brid pendants becomes even larger when users are required to have rated many
books. Agents with small numbers of ratings tend to perturb prediction accuracy
as no proper “guidance” for neighborhood selection and interest definition can be
provided.

Differences between the collaborative and the hybrid method are less significant
and rather marginal. However, the first steadily outperforms the former when making
recommendations for agents with numerous ratings.

Unweighted and Weighted Recall

Unweighted recall, shown on the right-hand side of Figure 3.2, presents a slightly
different scenario: even though the performance gap between the taxonomy-driven
recommender and both other, non-naive methods still persists, it does not become
larger for increasing x. Collaborative filtering, slightly inferior to its hybrid pendant
at first, overtakes the latter when considering agents with numerous ratings only.
Similar observations have been made by Pazzani [1999].

Figure 3.3 allows more fine-grained analysis with respect to the accuracy of rank-
ings. Remember that unweighted recall is equivalent to Breese score when assuming
half-life & = oo (see Section 2.4.1.2). While pure collaborative filtering shows largely
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insensitive to decreasing «, hybrid and taxonomy-driven recommenders do not. As-
suming o = 10, the first derivative of the latter two systems improves over their
corresponding recall curves for increasing x-coordinates. This notable development
becomes even more pronounced when further decreasing half-life to @ = 5.
Consequently, in case of content-exploiting methods, relevant products b € ISP N
T7 have the tendency to appear “earlier” in recommendation lists PF, i.e., have
comparatively small distance from the top rank. On the other hand, for collaborative
filtering, relevant products seem to be more uniformly distributed among top-20

ranks.

3.5 Deployment and Online Study

On February 9, 2004, we deployed our taxonomy-driven recommender system into
the All Consuming community?®, providing personalized recommendations for regis-
tered users based upon their book rating profile. Access facilities are offered through
diverse PHP scripts that query an RDBMS containing rating profiles, neighborhood
information, and precomputed recommendations, likewise.

Besides our taxonomy-driven approach, we also implanted both other non-naive
approaches documented before into All Consuming. Registered users could hence
access three distinct lists of top-20 recommendations, customized according to their
personal rating profile. We utilized the depicted system setup to conduct online
performance comparisons, going beyond offline statistical measures.

3The computed recommendation lists can be reached through All Consuming’s News-section, see
http://cgi.allconsuming.net/news.html.
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3.5.1 Online Study Setup

For the online evaluation, we demanded All Consuming members to rate all recom-
mendations provided on a 5-point likert scale, ranging from —2 to +2. Hereby, raters
were advised to give mazimum score for recommended books they had already read,
but not indicated in their reading profile. Moreover, users were given the oppor-
tunity to return an owverall satisfaction verdict for each recommendation list. The
additional rating served as an instrument to also reflect the make-up and quality of
list composition. Consequently, members could provide 63 rating statements each.

3.5.2 Result Analysis

54 All Consuming members, not affiliated with our department and university, vol-
unteered to participate in our online study by December 3, 2004. They provided
2,164 ratings about recommendations they were offered, and 131 additional, overall
list quality statements. Since not every user rated all 60 books recommended by our
three diverse systems, we assumed neutral votes for recommended books not rated.
Furthermore, in order not to bias users towards our taxonomy-driven approach, we
assigned letters A, B, C to recommendation lists, not revealing any information
about the algorithm operating behind the scenes.

While 50 users rated one or more recommendations computed according to the
purely collaborative method, named A, 46 did so for the taxonomy-driven approach,
labelled B, and 42 for the simplistic hybrid algorithm. In a first experiment, depicted
on the left side of Figure 3.4, we compared the overall recommendation list state-
ments and average ratings of personalized top-20 recommendations for each rater
and each recommender system. Results were averaged over all participating users. In
both cases, the taxonomy-driven system performed best and the purely collaborative
worst.

Second, we counted all those raters perceiving one specific system as best. Again,
the comparison was based upon the overall statements and average recommendation
ratings, likewise. In order to guarantee fairness, we discarded users not having rated
all three systems for each metric. The right-hand chart of Figure 3.4 shows that the
taxonomy-driven method outperforms both other recommendation techniques.

Eventually, we may conclude that results obtained from the online analysis back
our offline evaluation results. In both cases, the taxonomy-driven method has been
shown to outperform benchmark systems for the sparse All Consuming dataset.

3.6 Movie Data Analysis

The dataset we obtained from crawling the All Consuming community exhibits
two properties we believe pivotal for the superiority of our technique over common
benchmark methods:
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¢ Rating information sparseness. Compared to the number of ratings, the
number of unique ISBNs is relatively large. Moreover, most users have issued
few ratings, these being implicit only. Hence, the probability of having product
rating profiles with numerous overlapping products is low, implying bad per-
formance scores for standard collaborative filtering approaches. On the other
hand, taxonomy-driven profiling has been conceived to directly address these
issues and to render sparse profile vectors dense.

e Fine-grained domain classification. Books address most aspects of our
everyday life, e.g., education, business, science, entertainment, and so forth.
Therefore, the construction of highly nested and detailed classification tax-
onomies becomes feasible. Moreover, owing to comparatively high costs of
consumption*, people deliberately consume products matching their specific
interests only. Inspection of purchase and book reading histories clearly re-
veals these diverse interests and makes profile compositions easily discernable,
which is essential for finding appropriate neighbors.

However, we would like to test our approach on domains where the two afore-
mentioned assumptions do not hold anymore. We hence opted for the popular
MovieLens dataset [Sarwar et al., 2001, 2000b], which contains explicit ratings about
movies and has a very high density.

Movies bear intrinsic features that make them largely different from books. For
instance, their cost of consumption tends to be much lower. Consequently, people
are more inclined to experience products that may not perfectly match their profile
of interest. We conjecture that such exploratory behavior makes interest profiles,
inferred from implicit or explicit ratings, less concise and less accurate.

Moreover, movies are basically geared towards the entertainment sector only, not
spanning other areas of life, e.g., science, business, and so forth. We believe both
aspects disadvantageous for taxonomy-driven profiling.

3.6.1 Dataset Composition

The small MovieLens dataset contains 943 users who have issued 100,000 explicit
ratings on a 5-point likert scale, referring to 1,682 movies. The average number
of ratings per user hence amounts to 106.04, meaning that the average user has
rated 6.31% of all ratable products. These numbers highly contrast All Consuming’s
figures, where the average user has rated 5.24 books and thus only 0.04% of the
entire product set.

In order to make taxonomy-driven recommendations feasible, we crawled Ama-
zon.com’s movie taxonomy, extracting 16,481 hierarchically arranged topics. This
number clearly exceeds the book taxonomy’s 13,525 concepts. In addition, both

4Note that reading books takes much more time than watching DVDs or listening to CDs.
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lattices exhibit subtly different characteristics with respect to structure: the movie
taxonomy’s average distance from root to leafs amounts to 4.25, opposed to 5.05
for books. However, the average number of inner node siblings is higher for movies
than for books, contrasting 18.53 with 16.65. Hence, we may conclude that the book
taxonomy is deeper, though more condensed, than its movie pendant.

We were able to obtain taxonomic descriptions for 1519 of all 1682 movies on
MovieLens from Amazon.com, collecting 9281 descriptors in total. On average, 5.52
topic descriptors were found for those movies for which content information could
be provided. The remaining 163 movies were removed from the dataset, along with
all 8668 ratings referring to them.

3.6.2 Offline Experiment Framework

We opted for roughly the same analysis setup as presented for the All Consuming
offline evaluations. Since MovieLens features explicit ratings, we denote user a;’s
ratings by function 7; : B — {1,2,...,5}* rather than R; C B. We tailored our
evaluation metrics and benchmark recommenders in order to account for explicit
ratings.

3.6.2.1 Benchmark Systems

The parameters for the taxonomy-driven approach were slightly modified in order
to optimize results. For topic diversification, we supposed ©p = 0.25. Super-topic
score inference was promoted by assuming x = 1.0. Moreover, only movies by that
had been assigned an excellent rating of 4 or 5, i.e., by € {b € B|r;(b) > 4}, were
considered for the generation of a;’s profile.

The random-based recommender was kept in order to mark the absolute bottom
line.

Collaborative Filtering Algorithm

Instead of “most frequent items” [Sarwar et al., 2000b], we used the original Group-
Lens collaborative recommender [Konstan et al., 1997; Resnick et al., 1994], which
had been specifically designed with ezplicit ratings in mind (see Section 2.3.2.1). We
extended the system by implementing modifications proposed by Herlocker et al.
[1999], i.e., significance weighting, deviation from mean, and best-M neighborhood
formation, in order to render the recommender as competitive as possible. We found
that the application of significance weighting, i.e., penalizing high correlation values
based upon less than 50 products in common, increased the system’s performance
substantially.
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Most Popular Products Recommender

Breese et al. [1998] compare benchmarks against an efficient, though non-personali-
zed recommender. The algorithm simply proposes overall top-/N most rated products
to the active user a;. However, these products are required not to occur in a;’s
training set R?, i.e., P N RY = (), implying that recommendation lists P, P? for

two different users a;, a; are not completely identical.

3.6.2.2 Setup and Metrics

Again, we applied 5-folding cross-validation and assumed neighborhoods of dimen-
sion | prox(a;)| = 20 for all users a;. In contrast to the All Consuming experimental
setup, we provided top-10 recommendations instead of top-20.°

Moreover, the input test sets we provided to precision and recall slightly differed
from the input provided in preceding experiments: in order to account for the fact
that all ratings were explicit, i.e., that we actually knew if user a; had liked product
by experienced earlier, only test set products by € {b € T}* | r;(b) > 4} were counted
as hits, i.e., those products that a; had assigned positive ratings:

[SP"0{b e T [ri(b) > 4}
{b e T |ri(b) = 4}

Accordingly, the computation of precision with rating-constrained test set input
looks as follows:

Recall = 100 - (3.10)

[SPTN{be T [ri(b) > 4}
[P

Precision = 100 - (3.11)
We also computed F1 scores (see Section 2.4.1.2), based upon the above-given
versions of precision and recall.

3.6.2.3 Result Analysis

Precision and recall values considering the complete 943 users dataset were computed
for all four recommender systems. The respective scores are given by Figure 3.5. One
can see that the obtained metric values tend to be higher than their equivalents for
the All Consuming community data. Apart from the random recommender®, all
algorithms achieved more than 10% recall and 12% precision. The reasons for these
comparatively high scores lie primarily in the much larger density of MovieLens as
opposed to All Consuming, indicated before in Section 3.6.1.

SWe found little variation in precision/recall scores when decreasing the recommendation list size
from 20 to 10.

6The random recommender maintained precision/recall values far below 1% and is not displayed
in Figure 3.5.
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Figure 3.5. Performance analysis for the complete MovieLens dataset

The taxonomy-driven approach, having an F1 metric score of 17.59%, outperforms
the purely collaborative system as well as the non-personalized recommender for top-
N most popular products. The latter method also shows inferior to the collaborative
filter, made explicit by an F1 score of 11.34% versus 13.98%.

However, the relative performance gap between our taxonomy-driven approach
and its benchmark recommenders is definitely more pronounced for the All Con-
suming book rating data than for MovieLens. Conjectures about possible reasons
have already been mentioned in Section 3.6, counting domain-dependence and rating
sparsity among the major driving forces.

Dataset Size Sensitivity

In a second experiment, we tested the sensitivity of all presented non-naive recom-
menders with respect to the numbers of users eligible for neighborhood formation.
Neither the product set size nor the number of ratings per user were modified. We
created 8 subsets of the MovieLens user base, selecting the first - 50 users from the
complete set, x € {1,2,...,8}. Results are shown in Figure 3.6.

For the smallest set, i.e., |A| = 50, the non-personalized recommender for overall
most appreciated products shows to be the best predictor, while the purely collabo-
rative filtering system performs worst among the three non-random recommenders.
However, for 100 users already, the two personalized approaches overtake the non-
personalized system and exhibit steadily increasing F'1 scores for increasing numbers
of users x. Interestingly, the gradient for the taxonomy-driven method’s curve is still
slightly superior to the collaborative filtering recommender’s.

We regard this observation as an indication that neighborhood formation relying

42



3.7 Conclusion

20

—-— Pure CF —a- Most Popular
18 +
--%-- Taxonomic

o
= 16 +
5
x
= %
141 S
LL - o=
i ,0—..__0_ _____ O -~
& PN
12 T~ - ~

50 100 150 200 250 300 350 400

Dataset Size

Figure 3.6. Movielens dataset size sensitivity

upon taxonomy-based user profiles makes sense for denser rating data, too. The
accuracy still does not degrade below the purely collaborative system’s benchmark,
even though the gap appears much smaller than for sparser rating information sce-
narios.

3.7 Conclusion

In this chapter, we presented a novel, hybrid approach to automated recommen-
dation making, based upon large-scale product classification taxonomies which are
readily available for diverse domains on the Internet. Cornerstones of our approach
are the generation of profiles via inference of super-topic score and the recommen-
dation framework itself.

Offline performance trials were conducted on “real-world” data in order to demon-
strate our algorithm’s superiority over less informed approaches when rating infor-
mation sparseness prevails. Moreover, we conducted online studies, asking All Con-
suming community members to rate and compare diverse recommender systems. In
addition to sparse book rating information, we tested our approach’s performance
when dealing with substantially different data, running benchmark comparisons on
the well-known MovieLens dataset. Results suggested that taxonomy-driven recom-
mending still performs better on denser data than competing systems. However, the
performance gap becomes comparatively small and does no longer justify additional
efforts for acquiring costly domain knowledge, which taxonomy-driven filtering sub-
stantially depends on.
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Chapter 4

Topic Diversification Reuvisited

“All life is an experiment. The more experiments you make the better.”

— Ralph Waldo Emerson (1803-1883)
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4.1 Introduction

Chapter 3 has introduced topic diversification as an efficient means to avoid topic
overfitting in our taxonomy-driven filtering approach. However, the topic diversifi-
cation method can be applied to any recommender system that generates ordered
top-V lists of recommendations, as long as taxonomic domain knowledge is available
for the recommendation domain in question.

Winners Take All

The main reason for the a posteriori application of topic diversification to con-
ventional recommender systems lies in the fact that most recommender algorithms
are highly susceptible to winners-take-all behavior: soon as the user’s profile bucket
contains one subset of similar products that appears larger than any other similarity-
based subset, the chances that all computed recommendations will derive from that
cluster are high. The observation can be made for algorithms using content-based
similarity measures, and techniques based on collaborative similarity metrics, e.g.,
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item-based CF (see Section 2.3.2.2), likewise. For instance, many people complain
that Amazon.com’s (http://www.amazon.com) recommendations, computed accord-
ing to the item-based CF scheme [Linden et al., 2003], appear too “similar” with
respect to content. Hence, customers that have purchased many books written by
Herrmann Hesse may happen to obtain recommendation lists where all top-5 entries
contain books from that respective author only. When considering pure accuracy,
all these recommendations seem excellent, since the active user clearly appreciates
Hesse’s novels. On the other hand, assuming that the active user has several interests
other than Herrmann Hesse, e.g., historical novels in general and books about world
travel, the recommended set of items appears poor, owing to its lack of diversity.

Some researchers, e.g., Ali and van Stam [2004], have noticed the depicted issue,
commonly known as the “portfolio effect”, for other recommender systems before.
However, to our best knowledge, no solutions have been proposed so far.

Reaching Beyond Accuracy

Topic diversification can solve the portfolio effect issue, balancing and diversifying
personalized recommendation lists to reflect the user’s entire spectrum of interests.
However, when running offline evaluations based upon accuracy metrics such as
precision, recall, and MAE (see Section 2.4.1), we may expect the performance of
topic diversification-enhanced filters to show inferior to that of their respective non-
diversified pendants. Hence, while believed beneficial for actual user satisfaction, we
conjecture that topic diversification will prove detrimental to accuracy metrics.

For evaluation, we therefore pursue a twofold approach, conducting one large-scale
online study that involves more than 2,100 human subjects, and offline analysis runs
based on 361,349 ratings. Both evaluation methods feature the application of diverse
degrees of diversification to the two most popular recommendation techniques, i.e.,
user-based and item-based CF (see Section 2.3.2). The bilateral evaluation approach
renders the following types of result analysis possible:

e Accuracy and diversity. The application of precision and recall metrics to
user-based and item-based CF with varying degrees of diversification, Op €
[0.1,0.9], exposes the negative impacts that topic diversification exerts on accu-
racy. Proposing the offline intra-list similarity measure, we are able to capture
and quantify the diversity of top-/N recommendation lists, with respect to one
given similarity metric. Contrasting the measured accuracy and diversity, their
overall negative correlation becomes revealed.

e Topic diversification benefits and limitations. The online study shows
that users tend to appreciate diversified lists. For diversification factors O €
[0.3,0.4] (see Section 3.3.5.2), satisfaction significantly exceeds the respective
non-diversified cases. However, online results also reveal that too much diversi-
fication, ©r € [0.6,0.9], appears harmful and detrimental to user satisfaction.
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e Accuracy versus satisfaction. Several researchers have argued that “accu-
racy does not tell the whole story” [Cosley et al., 2002; Herlocker et al., 2004].
Nevertheless, no evidence has been given to show that some aspects of actual
user satisfaction reach beyond accuracy. We close this gap by contrasting our
online and offline results, showing that for ©p — 0.4, accuracy deteriorates
while satisfaction improves.

4.2 Related Work

Few efforts have addressed the problem of making top-/N lists more diverse. Consid-
ering literature on collaborative filtering and recommender systems in general only,
none have been presented before, to our best knowledge.

However, some work related to our topic diversification approach can be found
in information retrieval, specifically meta-search engines. A critical aspect of meta-
search engine design is the merging of several top-N lists into one single top-N list.
Intuitively, this merged top-N list should reflect the highest quality ranking possible,
also known as the “rank aggregation problem” [Dwork et al., 2001]. Most approaches
use variations of the “linear combination of score” model (LC), described by Vogt
and Cottrell [1999]. The LC model effectively resembles our scheme for merging the
original, accuracy-based ranking with the current dissimilarity ranking, but is more
general and does not address the diversity issue. Fagin et al. [2003] propose metrics
for measuring the distance between top-N lists, i.e., inter-list similarity metrics, in
order to evaluate the quality of merged ranks. Oztekin et al. [2002] extend the linear
combination approach by proposing rank combination models that also incorporate
content-based features in order to identify the most relevant topics.

More related to our idea of creating lists that represent the whole plethora of the
user’s topic interests, Kummamuru et al. [2004] present their clustering scheme that
groups search results into clusters of related topics. The user can then conveniently
browse topic folders relevant for his search interest. The commercially available
search engine Northern Light (http://www.northernlight.com) incorporates similar
functionalities. Google (http://www.google.com) uses several mechanisms to suppress
top-N list items that are too similar in content, showing them only upon the user’s
explicit request. Unfortunately, no publications on that matter are available.

4.3 Empirical Analysis
We conducted offline evaluations to understand the ramifications of topic diversi-
fication on accuracy metrics, and online analysis to investigate how our method

affects actual user satisfaction. We applied topic diversification with factors ©p €
{0,0.1,0.2,...0.9} to lists generated by both user-based CF and item-based CF,
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observing effects that occur when steadily increasing ©p and analyzing how both
approaches respond to diversification.

For online as well as offline evaluations, we used data gathered from BookCrossing
(hitp:/ /www.bookcrossing.com). This community caters for book lovers exchanging
books around the world and sharing their experiences with other readers.

Data Collection

In a 4-week crawl, we collected data about 278, 858 members of BookCrossing and
1,157,112 ratings, both implicit and explicit, referring to 271,379 distinct [SBNs.
Invalid ISBNs were excluded from the outset.

The complete BookCrossing dataset, anonymized for privacy reasons, is available
via the author’s homepage (http://www.informatik.uni-freiburg.de/~ cziegler/BX/ ).

Next, we mined Amazon.com’s book taxonomy, comprising 13,525 distinct topics.
In order to be able to apply topic diversification, we mined supplementary content in-
formation, focusing on taxonomic descriptions that relate books to taxonomy nodes
from Amazon.com (http://www.amazon.com). Since many books on BookCrossing
refer to rare, non-English books, or outdated titles not in print anymore, we were
able to garner background knowledge for only 175, 721 books. In total, 466, 573 topic
descriptors were found, giving an average of 2.66 topics per book.

Condensation Steps

Owing to the BookCrossing dataset’s extreme sparsity, we decided to condense the
set in order to obtain more meaningful results from CF algorithms when computing
recommendations. Hence, we discarded all books missing taxonomic descriptions,
along with all ratings referring to them. Next, we also removed book titles with
fewer than 20 overall mentions. Only community members with at least 5 ratings
each were kept.

The resulting dataset’s dimensions were considerably more moderate, comprising
10, 339 users, 6, 708 books, and 361, 349 book ratings.

4.3.1 Offline Experiments

We performed offline experiments comparing precision, recall, and intra-list similar-
ity scores for 20 different recommendation list setups. Half these lists were based
upon user-based CF with different degrees of diversification, the others on item-
based CF. Note that we did not compute MAE metric values since we are dealing
with implicit rather than explicit ratings.

The before-mentioned intra-list similarity metric intends to capture the diver-
sity of a list. Diversity may refer to all kinds of features, e.g., genre, author, and
other discerning characteristics. Based upon an arbitrary function ¢;p5 : B X B —
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[—1,4+1] measuring the similarity c;.s(bg, be) between products by, b. according to
some custom-defined criterion, we define intra-list similarity for an agent a;’s list
P,, as follows:

bi, b
Zbk €S Pu,; Zbe €SPy, , by #be CILS( k> 6)
2
Higher metric scores express lower diversity. An interesting mathematical feature

of ILS(P,,) we are referring to in later sections is permutation-insensitivity, i.e., let

Sy be the symmetric group of all permutations on N = | P,,| symbols:

ILS(P,.) = (4.1)

Voi,0; € Sy : ILS(P,, o 0;) = ILS(P,, o 0;) (4.2)

Hence, simply rearranging positions of recommendations in a top-V list P, does
not affect P,,’s intra-list similarity.

4.3.1.1 Experiment Setup

For cross-validation of precision and recall metrics of all 10,339 users, we adopted
4-folding. Hence, rating profiles R; were effectively split into training sets RY and
test sets 17, x € {1,...,4}, at a ratio of 3 : 1. For each of the 41,356 different
training sets, we computed 20 top-10 recommendation lists.

To generate the diversified lists, we computed top-50 lists based upon pure, i.e.,
non-diversified, item-based CF and pure user-based CF. The high-performance SUG-
GEST recommender engine! was used to compute these base case lists. Next, we ap-
plied the diversification algorithm to both base cases, applying O factors ranging
from 10% up to 90%. For eventual evaluations, all lists were truncated to contain
10 books only.

4.3.1.2 Result Analysis

We were interested in seeing how accuracy, captured by precision and recall, behaves
when increasing O from 0.1 up to 0.9. Since topic diversification may make books
with high predicted accuracy trickle down the list, we hypothesized that accuracy
will deteriorate for ©p — 0.9. Moreover, in order to find out if our novel algorithm
has any significant, positive effects on the diversity of items featured, we also applied
our intra-list similarity metric. An overlap analysis for diversified lists, ©r > 0.1,
versus their respective non-diversified pendants indicates how many items stayed
the same for increasing diversification factors.

Wisit http://www-users.cs.umn.edu/~karypis/suggest/ for further details.
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Figure 4.1. Precision and recall metrics for increasing O p

Precision and Recall

First, we analyzed precision and recall for both non-diversified base cases, i.e., when
Or = 0. Table 4.1 states that user-based and item-based CF exhibit almost iden-
tical accuracy, indicated by precision values. Their recall values differ considerably,
hinting at deviating behavior with respect to the types of users they are scoring for.

Item-based CF User-based CF

Precision 3.64 3.69
Recall 7.32 5.76

Table 4.1. Precision and recall for non-diversified CF

Next, we analyzed the behavior of user-based and item-based CF when steadily in-
creasing O by increments of 10%, depicted by Figure 4.1. The two charts reveal that
diversification has detrimental effects on both metrics and on both CF algorithms.
Interestingly, corresponding precision and recall curves have almost identical shape.

The loss in accuracy is more pronounced for item-based than for user-based CF.
Furthermore, for either metric and either CF algorithm, the drop is most distinctive
for O € [0.2,0.4]. For lower O, negative impacts on accuracy are marginal. We
believe this last observation due to the fact that precision and recall are permutation-
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Figure 4.2. Intra-list similarity and original list overlap for increasing ©p

insensitive, i.e., the mere order of recommendations within a top-/NV list does not
influence the metric value, as opposed to Breese score (see Section 2.4.1.2). However,
for low ©, the pressure that the dissimilarity rank exerts on the top-/V list’s makeup
is still too weak to make many new items diffuse into the top-N list. Hence, we
conjecture that rather the positions of current top-/N items change, which does not
affect either precision or recall.

Intra-List Similarity

Knowing that our diversification technique bears a significant, negative impact on
accuracy metrics, we wanted to know how our approach affected the intra-list simi-
larity measure. Similar to the precision and recall experiments, we computed metric
values for user-based and item-based CF with O € [0,0.9] each. We instantiated
the metric’s embedded similarity function ¢;pg with our taxonomy-driven metric c*,
defined in Section 3.3.5.2. Results obtained are provided by Figure 4.2.

The topic diversification method considerably lowers the pairwise similarity be-
tween list items, thus making top-N recommendation lists more diverse. Diversifi-
cation appears to affect item-based CF stronger than its user-based counterpart, in
line with our findings about precision and recall. For lower O, curves are less steep
than for © € [0.2,0.4], which also well aligns with our precision and recall analy-
sis. Again, the latter phenomenon can be explained by one of the metric’s inherent
features: like precision and recall, intra-list similarity is permutation-insensitive.

51



Chapter 4 Topic Diversification Revisited

Original List Overlap

The right-hand side of Figure 4.2 depicts the number of recommended items staying
the same when increasing ©r with respect to the original list’s content. Both curves
exhibit roughly linear shapes, being less steep for low O, though. Interestingly, for
factors O < 0.4, at most 3 recommendations change on average.

Conclusion

We found that diversification appears largely detrimental to both user-based and
item-based CF along precision and recall metrics. In fact, this outcome aligns with
our expectations, considering the nature of those two accuracy metrics and the way
that the topic diversification method works. Moreover, we found that item-based
CF seems more susceptible to topic diversification than user-based CF, backed by
results from precision, recall and intra-list similarity metric analysis.

4.3.2 User Survey

Offline experiments helped us in understanding the implications of topic diversifica-
tion on both CF algorithms. We could also observe that the effects of our approach
are different on different algorithms. However, knowing about the deficiencies of
accuracy metrics, we wanted to assess real user satisfaction for various degrees of
diversification, thus necessitating an online survey.

For the online study, we computed each recommendation list type anew for users
in the denser BookCrossing dataset, though without K-folding. In cooperation with
BookCrossing, we mailed all eligible users via the community mailing system, asking
them to participate in our online study. Each mail contained a personal link that
would direct the user to our online survey pages. In order to make sure that only
the users themselves would complete their survey, links contained unique, encrypted
access codes.

During the 3-week survey phase, 2, 125 users participated and completed the study.

4.3.2.1 Survey Outline and Setup

The survey consisted of several screens that would tell the prospective participant
about this study’s nature and his task, show all his ratings used for making recom-
mendations, and would finally present a top-10 recommendation list, asking several
questions thereafter.

For each book, users could state their interest on a 5-point rating scale. Scales
ranged from “not much” to “very much”, mapped to values 1 to 4, and offered the
user to indicate that he had “already read the book”, mapped to value 5. In order
to successfully complete the study, users were not required to rate all their top-10
recommendations. Neutral values were assumed for non-votes instead. However, we
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required users to answer all further questions, concerning the list as a whole rather
than its single recommendations, before submitting their results. We embedded those
questions we were actually keen about knowing into ones of lesser importance, in
order to conceal our intentions and not bias users.

The one top-10 recommendation list for each user was chosen among 12 candi-
date lists, either user-based or item-based featuring no diversification, i.e., O = 0,
medium levels, O € {0.3,0.4,0.5}, and high diversification, ©r € {0.7,0.9}. We
opted for those 12 instead of all 20 list types in order to acquire enough users com-
pleting the survey for each slot. The assignment of a specific list to the current user
was done dynamically, at the time of the participant entering the survey, and in
a round-robin fashion. Thus, we could guarantee that the number of users per list
type was roughly identical.

4.3.2.2 Result Analysis

For the analysis of our inter-subject survey, we were mostly interested in the follow-
ing three aspects. First, the average rating users gave to their 10 single recommen-
dations. We expected results to roughly align with scores obtained from precision
and recall, owing to the very nature of these metrics. Second, we wanted to know
if users perceived their list as well-diversified, asking them to tell whether the lists
reflected rather a broad or narrow range of their reading interests. Referring to the
intra-list similarity metric, we expected the users’ perceived range of topics, i.e., the
list’s diversity, to increase with increasing ©Op. Third, we were curious about the
overall satisfaction of users with their recommendation lists in their entirety, the
measure to compare performance.

Both last-mentioned questions were answered by each user on a 5-point likert
scale, higher scores denoting better performance. Moreover, we averaged the even-
tual results by the number of users. Statistical significance of all mean values was
measured by parametric one-factor ANOVA (see, e.g., [Armitage and Berry, 2001]),
where p < 0.05 is assumed if not indicated otherwise.

Single-Vote Averages

Users perceived recommendations made by user-based CF systems on average as
more accurate than those made by item-based CF systems, as depicted in Figure
4.3(a). At each featured diversification level O, the differences between the two CF
types are statistically significant, p < 0.01.

Moreover, for each algorithm, higher diversification factors obviously entail lower
single-vote average scores, which confirms our hypothesis stated before. The item-
based CF’s cusp at ©r € [0.3,0.5] appears as a notable outlier, opposed to the
trend, but differences between the 3 means at O € [0.3,0.5] are not statistically
significant, p > 0.15. However, the differences between all factors © are significant
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Figure 4.3. Single-vote averages (a), covered range (b), and overall value (c)

for item-based CF, p < 0.01, and for user-based CF, p < 0.1.

Hence, topic diversification negatively correlates with pure accuracy. Besides, users
perceived the performance of user-based CF as significantly better than item-based
CF for all corresponding levels Op.

Covered Range

Next, we analyzed whether the users actually perceived the variety-augmenting ef-
fects caused by topic diversification, illustrated before through measurement of intra-
list similarity. Users’ reactions to steadily incrementing O are displayed in Figure
4.3(b). First, between both algorithms on corresponding O levels, only the differ-
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4.3 Empirical Analysis

ence of means at ©r = 0.3 shows statistical significance.

Studying the trend of user-based CF for increasing ©p, we notice that the per-
ceived range of reading interests covered by users’ recommendation lists also in-
creases. Hereby, the curve’s first derivative maintains an approximately constant
level, exhibiting slight peaks between O € [0.4,0.5]. Statistical significance holds
for user-based CF between means at O = 0 and ©p > 0.5, and between O = 0.3
and O = 0.9.

Contrary to that observation, the item-based curve exhibits a drastically different
behavior. While soaring at ©r = 0.3 to 3.186, reaching a score almost identical to
the user-based CF’s peak at ©r = 0.9, the curve barely rises for ©r € [0.4,0.9],
remaining rather stable and showing a slight, though insignificant, upward trend.
Statistical significance was shown for ©p = 0 with respect to all other samples from
OF € [0.3,0.9]. Hence, our online results do not perfectly align with findings obtained
from offline analysis. While the intra-list similarity chart in Figure 4.2 indicates that
diversity increases when increasing O, the item-based CF chart defies this trend,
first soaring then flattening. We conjecture that the following three factors account
for these peculiarities:

Diversification factor impact. Offline results for the intra-list similarity metric al-
ready indicated that the impact of topic diversification on item-based CF is
much stronger than on user-based CF. Consequently, the item-based CF’s
user-perceived interest coverage is significantly higher at ©r = 0.3 than the
user-based CF’s.

Human perception. We believe that human perception can capture the level of di-
versity inherent to a list only to some extent. Beyond that point, increasing
diversity remains unnoticed. For the application scenario at hand, Figure 4.3
suggests this point around score value 3.2, reached by user-based CF only at
Or = 0.9, and approximated by item-based CF already at ©p = 0.3.

Interaction with accuracy. Analyzing results obtained, we have to bear in mind that
covered range scores are not fully independent from single-vote averages. When
accuracy is poor, i.e., the user feels unable to identify recommendations that
are interesting to him, chances are high his discontentment will also negatively
affect his diversity rating. For ©r € [0.5,0.9], single-vote averages are remark-
ably low, which might explain why perceived coverage scores do not improve
for increasing Op.

However, we may conclude that users do perceive the application of topic diver-
sification as an overly positive effect on reading interest coverage.

Overall List Value

The third feature variable we were evaluating, the overall value users assigned to
their personal recommendation list, effectively represents the “target value” of our
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studies, measuring actual user satisfaction. Owing to our conjecture that user sat-
isfaction is a mere composite of accuracy and other influential factors, such as the
list’s diversity, we hypothesized that the application of topic diversification would
increase satisfaction. At the same time, considering the downward trend of precision
and recall for increasing O, in accordance with declining single-vote averages, we
expected user satisfaction to drop off for large © . Hence, we supposed an arc-shaped
curve for both algorithms.

Results for the overall list value are provided by Figure 4.3(c). Analyzing user-
based CF, we observe that the curve does not follow our hypothesis. Slightly im-
proving at O = 0.3 over the non-diversified case, scores drop for O € [0.4,0.7],
eventually culminating in a slight but visible upturn at @ = 0.9. While lacking rea-
sonable explanations and being opposed to our hypothesis, the curve’s data-points
actually bear no statistical significance for p < 0.1. Hence, we conclude that topic
diversification has a marginal, largely negligible impact on overall user satisfaction,
initial positive effects eventually being offset by declining accuracy.

On the contrary, for item-based CF, results obtained look very different. In com-
pliance with our previous hypothesis, the curve’s shape roughly follows an arc, peak-
ing at ©p = 0.4. Taking the three data-points defining the arc, we obtain statistical
significance for p < 0.1. The endpoint’s score at Or = 0.9 being inferior to the
non-diversified case’s, we observe that too much diversification appears detrimental,
most likely owing to substantial interactions with accuracy.

Eventually, for overall list value analysis, we come to conclude that topic diver-
sification has no measurable effects on user-based CF, but significantly improves
item-based CF performance for diversification factors © around 40%.

4.3.2.3 Multiple Linear Regression

Results obtained from analyzing user feedback along various feature axes already
indicated that users’ overall satisfaction with recommendation lists not only depends
on accuracy, but also on the range of reading interests covered. In order to more
rigidly assess that indication by means of statistical methods, we applied multiple
linear regression to our survey results, choosing the overall list value as dependent
variable. As independent input variables, we provided single-vote averages and cov-
ered range, both appearing as first-order and second-order polynomials, i.e., SVA
and CR, and SVA? and CR?, respectively. We also tried several other, more complex
models, without achieving significantly better model fitting.

Analyzing multiple linear regression results, shown in Table 4.2, confidence values
P(> |t|) clearly indicate that statistically significant correlations for accuracy and
covered range with user satisfaction exist. Since statistical significance also holds
for their respective second-order polynomials, i.e., CR? and SVA2, we conclude that
these relationships are non-linear and more complex, though.

As a matter of fact, linear regression delivers a strong indication that the intrinsic

o6



4.3 Empirical Analysis

utility of a list of recommended items is more than just the average value of accuracy
votes for all single items, but also depends on the perceived diversity.

Estimate Error t¢-Value P(> |t])

(const) 3.27 0.023 139.56 < 2e— 16

SVA 12.42 0.973 1278 < 2e—16
SVA? -6.11 0.976 -6.26  4.76e — 10
CR 19.19 0.982 1954 < 2e—-16
CR? -3.27 0.966 -3.39 0.000727

Multiple R?: 0.305, adjusted R?: 0.303

Table 4.2. Multiple linear regression results

4.3.3 Limitations

There are some limitations to the study, notably referring to the way topic diversifi-
cation was implemented. Though the Amazon.com taxonomies were human-created,
there might still be some mismatch between what the topic diversification algorithm
perceives as “diversified” and what humans do. The issue is effectively inherent to
the taxonomy’s structure, which has been designed with browsing tasks and ease
of searching rather than with interest profile generation in mind. For instance, the
taxonomy features topic nodes labelled with letters for alphabetical ordering of au-
thors from the same genre, e.g., BOOKS — FICTION — ... — AUTHORS, A-Z — G.
Hence, two Sci-Fi books from two different authors with the same initial of their last
name would be classified under the same node, while another Sci-Fi book from an
author with a different last-name initial would not. Though the problem’s impact is
largely marginal, owing to the relatively deep level of nesting where such branchings
occur, the procedure appears far from intuitive.

An alternative approach to further investigate the accuracy of taxonomy-driven
similarity measurement, and its limitations, would be to have humans do the clus-
tering, e.g., by doing card sorts or by estimating the similarity of any two books
contained in the book database. The results could then be matched against the
topic diversification method’s output.
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4.4 Summary

This chapter provided empirical analyses in order to evaluate the application of
our topic diversification method to common collaborative filtering algorithms, and
introduced the novel intra-list similarity metric.

Contrasting precision and recall metrics, computed both for user-based and item-
based CF and featuring different levels of diversification, with results obtained from
a large-scale user survey, we showed that the user’s overall liking of recommendation
lists goes beyond accuracy and involves other factors, e.g., the users’ perceived list
diversity. We were thus able to provide empirical evidence that lists are more than
mere aggregations of single recommendations, but bear an intrinsic, added value.

Though effects of diversification were largely marginal on user-based CF, item-
based CF performance improved significantly, an indication that there are some
behavioral differences between both CF classes. Moreover, while pure item-based CF
appeared slightly inferior to pure user-based CF in overall satisfaction, diversifying
item-based CF with factors ©p € [0.3,0.4] made item-based CF outperform user-
based CF'. Interestingly, for ©r < 0.4, no more than three items changed with respect
to the original list, shown in Figure 4.2. Small changes thus have high impact.

We believe our findings especially valuable for practical application scenarios,
knowing that many commercial recommender systems, eg., Amazon.com [Linden
et al., 2003] and TiVo [Ali and van Stam, 2004], are item-based, owing to the algo-
rithm’s computational efficiency. For these commercial systems, topic diversification
could be an interesting supplement, increasing user satisfaction and thus the cus-
tomers’ incentive to purchase recommended goods.
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Chapter 5
Trust Propagation Models

“Perhaps there is no single variable which so thoroughly influences in-
terpersonal and group behavior as does trust.”

— Golembiewski and McConkie, 1975
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5.1 Introduction

While previous chapters have primarily presented methods to overcome several spe-
cific recommender systems issues, the current chapter moves into another direction
and focuses on trust metrics, i.e., network-based tools for predicting the extent of
interpersonal trust shared between two human subjects. Though not directly related
to recommender systems research, the contributions made therein are of utter rele-
vance for their later integration into the decentralized recommender framework. Our
main contributions are the following:

Trust metric classification scheme. We analyze existing trust metrics and classify
them according to three non-orthogonal features axes. Advantages and draw-
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backs with respect to decentralized scenarios are discussed and we formulate
an advocacy for local group trust metrics.

Appleseed trust metric. Compelling in its simplicity, our Appleseed local group trust
metric borrows many ideas from spreading activation models [Quillian, 1968],
taken from cognitive psychology, and relates their concepts to trust evaluation
in an intuitive fashion. Moreover, extensions are provided that make our trust
metric handle distrust statements, likewise.

On Trust and Trust Propagation

In our world of information overload and global connectivity leveraged through the
Web and other types of media, social trust [McKnight and Chervany, 1996] between
individuals becomes an invaluable and precious good. Trust exerts an enormous
impact on decisions whether to believe or disbelieve information asserted by other
peers. Belief should only be accorded to statements from people we deem trust-
worthy. Hence, trust assumes the role of an instrument for “complexity reduction”
[Luhmann, 1979]. However, when supposing huge networks such as the Semantic
Web, trust judgements based on personal experience and acquaintanceship become
unfeasible. In general, we accord trust, defined by Mui et al. [2002] as the “subjec-
tive expectation an agent has about another’s future behavior based on the history
of their encounters”, to only small numbers of people. These people, again, trust
another limited set of people, and so forth. The network structure emanating from
our person (see Figure 5.1), composed of trust statements linking individuals, consti-
tutes the basis for trusting people we do not know personally. Playing an important
role for the conception of decentralized infrastructures, e.g., the Semantic Web, the
latter structure has been dubbed the “Web of Trust” [Golbeck et al., 2003].

Its effectiveness has been underpinned through empirical evidence from social
psychology and sociology, indicating that transitivity is an important characteristic
of social networks [Holland and Leinhardt, 1972; Rapoport, 1963]. To the extent that
communication between individuals becomes motivated through positive affect, the
drive towards transitivity can also be explained in terms of Heider’s famous “balance
theory” [Heider, 1958], i.e., individuals are more prone to interact with friends of
friends than unknown peers.

Adopting the most simple policy of trust propagation, all those people who are
trusted by persons we trust are considered likewise trustworthy. Trust would thus
propagate through the network and become accorded whenever two individuals can
reach each other via at least one trust path. However, owing to certain implications
of interpersonal trust, e.g., attack-resistance, trust decay, etc., more complex metrics
are needed to sensibly evaluate social trust. Subtle social and psychological aspects
must be taken into account and specific criteria of computability and scalability
satisfied.
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Figure 5.1. Sample web of trust for agent a

In this chapter, we aim at designing one such complex trust metric!, particularly
tailored to social filtering tasks (see Section 2.3) by virtue of its ability to infer
continuous trust values through fixpoint iteration, rendering ordered trust-rank lists
feasible. Before developing our trust metric model, we analyze existing approaches
and arrange them into a new classification scheme.

5.2 Computational Trust in Social Networks

Trust represents an invaluable and precious good one should award deliberately.
Trust metrics compute quantitative estimates of how much trust an agent a; should
accord to his peer a;, taking into account trust ratings from other persons on the
network. These metrics should also act “deliberately”, not overly awarding trust to
persons or agents whose trustworthiness is questionable.

5.2.1 Classification of Trust Metrics

Applications for trust metrics and trust management [Blaze et al., 1996] are rife.
First proposals for metrics date back to the early nineties, where trust metrics have

INote that trust concepts commonly adopted for webs of trust, and similar trust network applica-
tions, are largely general and do not cover specifics such as “situational trust” [Marsh, 1994a],
as has been pointed out before [Golbeck et al., 2003]. For instance, agent a; may blindly trust
a; with respect to books, but not trust a; with respect to trusting others, for a; has been found
to accord trust to other people too easily. For our trust propagation scheme at hand, we also
suppose this largely uni-dimensional concept of trust.
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Figure 5.2. Trust metric classification

been deployed in various projects to support the “Public Key Infrastructure” (PKI)
[Zimmermann, 1995]. The metrics proposed by Levien and Aiken [1998], Reiter and
Stubblebine [1997b], Maurer [1996], and Beth et al. [1994] count among the most
popular ones for public key authentication. New areas and research fields apart from
PKI have come to make trust metrics gain momentum. Peer-to-peer networks, ubig-
uitous and mobile computing, and rating systems for online communities, where
maintenance of explicit certification authorities is not feasible anymore, have raised
the research interest in trust. The whole plethora of available metrics can hereby be
defined and characterized along various classification axes. We identify three princi-
pal dimensions, namely network perspective, computation locus, and link evaluation.
These axes are not orthogonal, though, for various features impose restrictions on
the feature range of other dimensions (see Figure 5.2).

Network Perspective

The first dimension impacts the semantics assigned to the values computed. Trust
metrics may basically be subdivided into those with global, and those with local
scope. Global trust metrics take into account all peers and trust links connecting
them. Global trust ranks are assigned to an individual based upon complete trust
graph information. Many global trust metrics, such as those presented by Kamvar
et al. [2003], Guha [2003], and Richardson et al. [2003], borrow their ideas from the
renowned PageRank algorithm [Page et al., 1998] to compute Web page reputation,
and to some lesser extent from HITS [Kleinberg, 1999]. The basic intuition behind
these approaches is that nodes should be ranked higher the better the rank of nodes
pointing to them. Obviously, the latter notion likewise works for trust and page
reputation.
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Trust metrics with local scope, on the other hand, take into account personal
bias. Interestingly, some researchers claim that only local trust metrics are “true”
trust metrics, since global ones compute overall reputation rather than personalized
trust? [Mui et al., 2002]. Local trust metrics take the agent for whom to compute
trust as an additional input parameter and are able to operate on partial trust
graph information. The rationale behind local trust metrics is that persons an agent
a; trusts may be completely different from the range of individuals that agent a;
deems trustworthy. Local trust metrics exploit structural information defined by
personalized webs of trust. Hereby, the personal web of trust for individual a; is
given through the set of trust relationships emanating from a; and passing through
nodes he trusts either directly or indirectly, as well as the set of nodes reachable
through these relationships. Merging all webs of trust engenders the global trust
graph. Local trust metrics comprise Levien’s Advogato trust metric [Levien and
Aiken, 2000], metrics for modelling the PKI [Beth et al., 1994; Maurer, 1996; Reiter
and Stubblebine, 1997b] and the Semantic Web trust infrastructure [Golbeck and
Hendler, 2004], and Sun Microsystems’s Poblano [Chen and Yeager, 2003]. The latter
work borrows from Abdul-Rahman and Hailes [1997].

Computation Locus

The second axis refers to the place where trust relationships between individuals are
evaluated and quantified. Local® or centralized approaches perform all computations
in one single machine and hence need to be granted full access to all relevant trust
information. The trust data itself may be distributed over the network. Most of the
before-mentioned metrics count among the class of centralized approaches.

Distributed metrics for the computation of trust and reputation, such as those
described by Richardson et al. [2003], Kamvar et al. [2003], and Sankaralingam et al.
[2003], equally deploy the load of computation on every trust node in the network.
Upon receiving trust information from his predecessor nodes in the trust graph, an
agent a; merges the data with his own trust assertions and propagates synthesized
values to his successor nodes. The entire process of trust computation is necessarily
asynchronous and its convergence depends on the eagerness or laziness of nodes to
propagate information. Another characteristic feature of distributed trust metrics
refers to the fact that they are inherently global. Though the individual computation
load is lower with respect to centralized computation approaches, nodes need to store
trust information about any other node in the system.

2Recall the definition of trust given before, expressing that trust is a “subjective expectation”.
3Note that in this context, the term “local” refers to the place of computation and not the network
perspective.
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Link Evaluation

The third dimension distinguishes scalar and group trust metrics. According to
Levien [2004], scalar metrics analyze trust assertions independently, while group
trust metrics evaluate groups of assertions “in tandem”. PageRank [Page et al.,
1998] and related approaches count among global group trust metrics, for the repu-
tation of one page depends on the ranks of referring pages, thus implying the parallel
evaluation of relevant nodes, thanks to mutual dependencies. Advogato [Levien and
Aiken, 2000] represents an example for local group trust metrics. Most other trust
metrics are scalar ones, tracking trust paths from sources to targets and not perform-
ing parallel evaluations of groups of trust assertions. Hence, another basic difference
between scalar and group trust metrics refers to their functional design. In general,
scalar metrics compute trust between two given individuals a; and a;, taken from
set A of all agents.

On the other hand, group trust metrics generally compute trust ranks for sets
of individuals in A. Hereby, global group trust metrics assign trust ranks for every
a; € A, while local ones may also return ranked subsets of A. Note that complete
trust graph information is only important for global group trust metrics, but not
for local ones. Informally, local group trust metrics may be defined as metrics to
compute neighborhoods of trusted peers for an individual a;. As input parameters,
these trust metrics take an individual a; € A for which to compute the set of peers
he should trust, as well as an amount of trust the latter wants to share among his
most trustworthy agents. For instance, in [Levien and Aiken, 2000], the amount of
trust is said to correspond to the number of agents that a; wants to trust. The
output is hence given by a trusted subset of A.

Note that scalar trust metrics are inherently local, while group trust metrics do
not impose any restrictions on features for other axes.

5.2.2 Trust and Decentralization

Section 1.1.2 has mentioned the Semantic Web as sample scenario for our decen-
tralized recommender framework. Hence, for the conception of our trust metric, we
will also assume the Semantic Web as working environment and representative for
large-scale decentralized infrastructures. Note that all considerations presented are
also of utter relevance for large, decentralized networks other than the Semantic
Web, e.g., very large peer-to-peer networks, the Grid, etc.

Before discussing specific requirements and fitness properties of trust metrics along
those axes proposed before, we need to define one common trust model on which to
rely upon. Some steps towards one such standardized model have already been taken
and incorporated into the FOAF [Dumbill, 2002] project. FOAF is an abbreviation
for “Friend of a Friend” and aims at enriching personal homepages with machine-
readable content encoded in RDF statements. Besides various other information,
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these publicly accessible pages allow their owners to nominate all individuals part
of the FOAF universe they know, thus weaving a “web of acquaintances” [Golbeck
et al., 2003]. Golbeck et al. [2003] have extended the FOAF schema to also contain
trust assertions with values ranging from 1 to 9, where 1 denotes complete distrust
and 9 absolute trust towards the individual for whom the assertion has been issued.
Their assumption that trust and distrust represent symmetrically opposed concepts
is in line with Abdul-Rahman and Hailes [2000].

The model that we adopt is quite similar to FOAF and its extensions, but only
captures the notion of trust and lack of trust, instead of trust and distrust. Note
that zero trust and distrust are not the same [Marsh, 1994b] and may hence not
be intermingled. Explicit modelling of distrust has some serious implications for
trust metrics and will hence be discussed separately in Section 5.4. Mind that only
few research endeavors have investigated the implementation of distrust so far, e.g.,
Josang et al. [2003], Guha [2003], and Guha et al. [2004].

5.2.2.1 Trust Model

As is the case for FOAF, we assume that all trust information is publicly acces-
sible for any agent in the system through machine-readable personal homepages
distributed over the network. Agents a; € A = {ay,as,...,a,} are associated with
a partial trust function W; € T' = {W, W, ..., W, } each, where W; : A — [0, 1]+
holds, which corresponds to the set of trust assertions that a; has stated.

In most cases, functions W;(a,;) will be very sparse as the number of individuals an
agent is able to assign explicit trust ratings for is much smaller than the total number
n of agents. Moreover, the higher the value of W;(a;), the more trustworthy a; deems
aj. Conversely, W;(a;) = 0 means that a; considers a; to be not trustworthy. The
assignment of trust through continuous values between 0 and 1, and their adopted
semantics, is in perfect accordance with [Marsh, 1994a|, where possible stratifications
of trust values are proposed. Our trust model defines one directed trust graph with
nodes being represented by agents a; € A, and directed edges from nodes a; to nodes
a; representing trust statements W(a;).

For convenience, we introduce the partial function W : A x A — [0, 1]*, which we
define as the union of all partial functions W, € T'.

5.2.2.2 Trust Metrics for Decentralized Networks

Trust and reputation ranking metrics have primarily been used for the PKI [Re-
iter and Stubblebine, 1997a,b; Levien and Aiken, 1998; Maurer, 1996; Beth et al.,
1994], rating and reputation systems part of online communities [Guha, 2003; Levien
and Aiken, 2000; Levien, 2004], peer-to-peer networks [Kamvar et al., 2003; Sankar-
alingam et al.; 2003; Kinateder and Rothermel, 2003; Kinateder and Pearson, 2003;
Aberer and Despotovic, 2001], and also mobile computing [Eschenauer et al., 2002].
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Each of these scenarios favors different trust metrics. For instance, reputation sys-
tems for online communities tend to make use of centralized trust servers that com-
pute global trust values for all users on the system [Guha, 2003]. On the other hand,
peer-to-peer networks of moderate size rely upon distributed approaches that are in
most cases based upon PageRank [Kamvar et al., 2003; Sankaralingam et al., 2003].

The Semantic Web, however, as an example for a large-scale decentralized envi-
ronment, is expected to be made up of millions of nodes, i.e., millions of agents. The
fitness of distributed approaches to trust metric computation, such as depicted by
Richardson et al. [2003] and Kamvar et al. [2003], hence becomes limited for various
reasons:

Trust data storage. Every agent a; needs to store trust rating information about any
other agent a; on the Semantic Web. Agent a; uses this information in order to
merge it with own trust beliefs and propagates the synthesized information to
his trusted agents [Levien, 2004]. Even though one might expect the size of the
Semantic Web to be several orders of magnitude smaller than the traditional
Web, the number of agents for whom to keep trust information will still exceed
the storage capacities of most nodes.

Convergence. The structure of the Semantic Web is diffuse and not subject to some
higher ordering principle or hierarchy. Furthermore, the process of trust prop-
agation is necessarily asynchronous (see Section 1.2). As the Semantic Web is
huge in size with possibly numerous antagonist or idle agents, convergence of
trust values might take a very long time.

The huge advantage of distributed approaches, on the other hand, is the immediate
availability of computed trust information about any other agent a; in the system.
Moreover, agents have to disclose their trust assertions only to peers they actually
trust [Richardson et al., 2003]. For instance, suppose that a; declares his trust in a;
by Wi(a;) = 0.1, which is very low. Hence, a;, might want a; not to know about that
fact. As distributed metrics only propagate synthesized trust values from nodes to
successor nodes in the trust graph, a; would not have to openly disclose his trust
statements to a;.

As it comes to centralized, i.e., locally computed, metrics, full trust information
access is required for agents inferring trust. Hence, online communities based on
trust require their users to disclose all trust information to the community server,
but not necessarily to other peers [Guha, 2003]. Privacy thus remains preserved. On
the Semantic Web and in the area of ubiquitous and mobile computing, however,
there is no such central authority that computes trust. Any agent might want to
do so. Our own trust model, as well as trust models proposed by Golbeck et al.
[2003], Eschenauer et al. [2002], and Abdul-Rahman and Hailes [1997], are hence
based upon the assumption of publicly available trust information. Though privacy
concerns may persist, this assumption is vital, owing to the afore-mentioned deficien-
cies of distributed computation models. Moreover, centralized global metrics, such
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as depicted by Guha [2003] and Page et al. [1998], also fail to fit our requirements:
because of the huge number of agents issuing trust statements, only dedicated server
clusters could be able to manage the whole bulk of trust relationships. For small
agents and applications roaming the Semantic Web, global trust computation is not
feasible.

Scalar metrics, e.g., PKI proposals [Reiter and Stubblebine, 1997a,b; Levien and
Aiken, 1998; Maurer, 1996; Beth et al., 1994] and those metrics described by Golbeck
et al. [2003], have poor scalability properties, owing to exponential time complexity
[Reiter and Stubblebine, 1997a].

Consequently, we advocate local group trust metrics for the Semantic Web and
other large-scale decentralized networks. These metrics bear several welcome prop-
erties with respect to computability and complexity, which may be summarized as
follows:

Partial trust graph exploration. Global metrics require a priori full knowledge of the
entire trust network. Distributed metrics store trust values for all agents in the
system, thus implying massive data storage demands. On the other hand, when
computing trusted neighborhoods, the trust network only needs to be explored
partially: originating from the trust source, one only follows those trust edges
that seem promising, i.e., bearing high trust weights, and which are not too far
away from the trust source. Inspection of personal, machine-readable home-
pages is thus performed in a just-in-time fashion. Hence, prefetching bulk trust
information is not required.

Computational scalability. Tightly intertwined with partial trust graph exploration
is computational complexity. Local group trust metrics scale well to any social
network size, as only tiny subsets of relatively constant size* are visited. This
is not the case for global trust metrics.

5.3 Local Group Trust Metrics

Local group trust metrics, in their function as means to compute trust neighbor-
hoods, have not been subject to mainstream research so far. Significant research
has effectively been limited to the work done by Levien [2004] who has conceived
and deployed the Advogato group trust metric. This section provides an overview
of Advogato and introduces our own Appleseed trust metric, eventually comparing
both approaches.

4Supposing identical parameterizations for the metrics in use, as well as similar network structures.
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5.3.1 Outline of Advogato Maxflow

The Advogato maximum flow trust metric has been proposed by Levien and Aiken
[2000] in order to discover which users are trusted by members of an online com-
munity and which are not. Trust is computed through one centralized community
server and considered relative to a seed of users enjoying supreme trust. However,
the metric is not only applicable to community servers, but also to arbitrary agents
which may compute personalized lists of trusted peers, not only one single global
ranking for the whole community they belong to. In this case, the active agent
himself constitutes the singleton trust seed. The following paragraphs briefly intro-
duce Advogato’s basic concepts. For more detailed information, refer to [Levien and
Aiken, 2000], [Levien and Aiken, 1998], and [Levien, 2004].

5.3.1.1 Trust Computation Steps

Local group trust metrics compute sets of agents trusted by those being part of the
trust seed. In case of Advogato, its input is given by an integer number n, which is
supposed to be equal to the number of members to trust [Levien and Aiken, 2000],
as well as the trust seed s, which is a subset of the entire set of users A. The output
is a characteristic function that maps each member to a boolean value indicating
his trustworthiness:

Trusty : 24 x Nf — (A — {true, false}) (5.1)

The trust model underlying Advogato does not provide support for weighted trust
relationships in its original version.® Hence, trust edges extending from individual
to y express blind, i.e., full, trust of x in y. The metrics for PKI maintenance suppose
similar models. Maximum integer network flow computation [Ford and Fulkerson,
1962] has been investigated by Reiter and Stubblebine [1997b,a] in order to make
trust metrics more reliable. Levien adopted and extended this approach for group
trust in his Advogato metric:

Capacities Cy : A — N are assigned to every community member x € A based
upon the shortest-path distance from the seed to z. Hereby, the capacity of the
seed itself is given by the input parameter n mentioned before, whereas the capacity
of each successive distance level is equal to the capacity of the previous level [
divided by the average outdegree of trust edges e € E extending from [. The trust
graph we obtain hence contains one single source, which is the set of seed nodes
considered as one single “virtual” node, and multiple sinks, i.e., all nodes other than
those defining the seed. Capacities Cy(z) constrain nodes. In order to apply Ford-
Fulkerson maximum integer network flow [Ford and Fulkerson, 1962], the underlying
problem has to be formulated as single-source/single-sink, having capacities Cp :

5Though various levels of peer certification exist, their interpretation does not perfectly align with
weighted trust relationships.
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Figure 5.3. Trust graph before conversion for Advogato

E — N constrain edges instead of nodes. Hence, Algorithm 5.1 is applied to the old
directed graph G = (A, E,C4), resulting in a new graph structure G' = (A’, E', Cp).

Figure 5.4 depicts the outcome of converting node-constrained single-source/mul-
tiple-sink graphs (see Figure 5.3) into single-source/single-sink ones with capacities
constraining edges.

Conversion is followed by simple integer maximum network flow computation
from the trust seed to the super-sink. Eventually, the trusted agents x are exactly
those peers for whom there is flow from “negative” nodes = to the super-sink. An
additional constraint needs to be introduced, requiring flow from z~ to the super-
sink whenever there is flow from x~ to 2. The latter constraint assures that node x
does not only serve as an intermediate for the flow to pass through, but is actually
added to the list of trusted agents when reached by network flow. However, the
standard implementation of Ford-Fulkerson traces shortest paths to the sink first
[Ford and Fulkerson, 1962]. The above constraint is thus satisfied implicitly already.

Example 4 (Advogato trust computation) Suppose the trust graph depicted in
Figure 5.3. The only seed node is a with initial capacity C'4(a) = 5. Hence, taking
into account the outdegree of a, nodes at unit distance from the seed, i.e., nodes b
and ¢, are assigned capacities Cy(b) = 3 and C4(c) = 3, respectively. The average
outdegree of both nodes is 2.5 so that second level nodes e and h obtain unit capacity.
When computing maximum integer network flow, agent a will accept himself, b, c,
e, and h as trustworthy peers.
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Figure 5.4. Trust graph after conversion for Advogato

5.3.1.2 Attack-Resistance Properties

Advogato has been designed with resistance against massive attacks from malicious
agents outside of the community in mind. Therefore, an upper bound for the number
of “bad” peers chosen by the metric is provided in [Levien and Aiken, 2000], along
with an informal security proof to underpin its fitness. Resistance against malevolent
users trying to break into the community can already be observed in the example
depicted by Figure 5.1, supposing node n to be “bad”: though agent n is trusted
by numerous persons, he is deemed less trustworthy than, for instance, x. While
there are fewer agents trusting x, these agents enjoy higher trust reputation® than
the numerous persons trusting n. Hence, it is not just the number of agents trusting
an individual ¢, but also the trust reputation of these agents that exerts an impact
on the trust assigned to i. PageRank [Page et al., 1998] works in a similar fashion
and has been claimed to possess properties of attack-resistance similar to those of

6With respect to seed node a.
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function transform (G = (A, E,Cy)) {
set B/« (), A" «— 0;
for all z € A do

add node 7 to A’;
add node 2~ to A’;
if Ca(z) > 1 then
add edge (z~,2%) to E';
set Cgr(z™,a") « Ca(z) — 1;
for all (z,y) € E do
add edge (z*,y~) to E;
set Cpr (2T, y™) « oc;
end do
add edge (z~,supersink) to E';
set C'p/(z~, supersink) « 1;
end if
end do
return G' = (A, F',Cp);
¥

Algorithm 5.1. Trust graph conversion

the Advogato trust metric [Levien, 2004]. In order to make the concept of attack-
resistance more tangible, Levien proposes the “bottleneck property” as a common
feature of attack-resistant trust metrics. Informally, this property states that the
“trust quantity accorded to an edge s — t is not significantly affected by changes to
the successors of t” [Levien, 2004].

Attack-resistance features of various trust metrics are discussed in detail in [Levien
and Aiken, 1998| and [Twigg and Dimmock, 2003].

5.3.2 The Appleseed Trust Metric

The Appleseed trust metric constitutes the main contribution of this chapter and
is our novel proposal for local group trust metrics. In contrast to Advogato, being
inspired by maximum network flow computation, the basic intuition of Appleseed
is motivated by spreading activation models. Spreading activation models have first
been proposed by Quillian [1968] in order to simulate human comprehension through
semantic memory, and are commonly described as “models of retrieval from long-
term memory in which activation subdivides among paths emanating from an acti-
vated mental representation” [Smith et al., 2003]. By the time of this writing, the
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procedure energize (e € Ry, s € A) {
energy(s) < energy(s) + e;
e —e/ Z(s,n)eE W (s, n);
if e > T then
V(s,n) € E : energize (¢/ - W(s,n),n);
end if
}

Algorithm 5.2. Recursive energy propagation

seminal work of Quillian has been ported to a whole plethora of other disciplines,
such as latent semantic indexing [Ceglowski et al., 2003] and text illustration [Hart-
mann and Strothotte, 2002]. As an example, we will briefly introduce the spreading
activation approach adopted by Ceglowski et al. [2003], used for semantic search in
contextual network graphs, in order to then relate Appleseed to that work.

5.3.2.1 Searches in Contextual Network Graphs

The graph model underlying contextual network search graphs is almost identical
in structure to the one presented in Section 5.2.2.1, i.e., edges (z,y) € E C A x A
connecting nodes =,y € A. Edges are assigned continuous weights through W : £ —
[0, 1]. Source node s, the node from which we start searching, is activated through an
injection of energy e, which is then propagated to other nodes along edges according
to some set of simple rules: all energy is fully divided among successor nodes with
respect to their normalized local edge weight, i.e., the higher the weight of an edge
(x,y) € E, the higher the portion of energy that flows along that edge. Furthermore,
supposing average outdegrees greater than one, the closer node x to the injection
source s, and the more paths lead from s to x, the higher the amount of energy
flowing into x. To eliminate endless, marginal and negligible flow, energy streaming
into node x must exceed threshold 7" in order not to run dry. The described approach
is captured formally by Algorithm 5.2, which propagates energy recursively.

5.3.2.2 Trust Propagation

Algorithm 5.2 shows the basic intuition behind spreading activation models. In order
to tailor these models to trust computation, later to become the Appleseed trust
metric, serious adaptations are necessary. For instance, procedure energize(e, s) reg-
isters all energy e that has passed through node z, stored in energy(z). Hence,
energy(x) represents the relevance rank of x. Higher values indicate higher node
rank. However, at the same time, all energy contributing to the rank of z is passed
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Figure 5.5. Node chains and rank sinks

without loss to successor nodes. Interpreting energy ranks as trust ranks thus im-
plies numerous issues of semantic consistency as well as computability. Consider the
graph depicted on the left-hand side of Figure 5.5. Applying spreading activation
according to Ceglowski et al. [2003], trust ranks of nodes b and d will be identical.
However, intuitively, d should be accorded [less trust than b, since d’s shortest-path
distance to the trust seed is higher. Trust decay is commonly agreed upon [Guha,
2003; Jgsang et al., 2003], for people tend to trust individuals trusted by immediate
friends more than individuals trusted only by friends of friends. The right-hand side
of Figure 5.5 depicts even more serious issues: all energy, or trust’, respectively,
distributed along edge (a,b) becomes trapped in a cycle and will never be accorded
to any other nodes but those being part of that cycle, i.e., b, ¢, and d. These nodes
will eventually acquire infinite trust rank. Obviously, the bottleneck property [Levien,
2004] does not hold. Similar issues occur with simplified versions of PageRank [Page
et al., 1998], where cycles accumulating infinite rank have been dubbed “rank sinks”.

5.3.2.3 Spreading Factor

We handle both issues, i.e., trust decay in node chains and elimination of rank sinks,
by tailoring the algorithm to rely upon our global spreading factor d. Hereby, let
in(z) denote the energy influx into node z. Parameter d then denotes the portion of
energy d-in(z) that node x distributes among successors, while retaining (1—d)-in(x).
For instance, suppose d = 0.85 and energy quantity in(z) = 5.0 flowing into node
x. Then, the total energy distributed to successor nodes amounts to 4.25, while
the energy rank energy(z) of x increases by 0.75. Special treatment is necessary for
nodes with zero outdegree. For simplicity, we assume all nodes to have an outdegree
of at least one, which makes perfect sense, as will be shown later.

)

"The terms “energy” and “trust” are used interchangeably in this context.
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The spreading factor concept is very intuitive and, in fact, very close to real models
of energy spreading through networks. Observe that the overall amount of energy in
the network, after initial activation in’, does not change over time. More formally,
suppose that energy(xz) = 0 for all € A before injection in® into source s. Then
the following equation holds in every computation step of our modified spreading
algorithm, incorporating the concept of spreading factor d:

Z energy(z) = in" (5.2)
z€eA

Spreading factor d may also be seen as the ratio between direct trust in x and
trust in the ability of x to recommend others as trustworthy peers. For instance,
Beth et al. [1994] and Maurer [1996] explicitly differentiate between direct trust
edges and recommendation edges.

We commonly assume d = 0.85, though other values may also seem reasonable. For
instance, having d < 0.5 allows agents to keep most of the trust they are granted
for themselves and only pass small portions of trust to their peers. Observe that
low values for d favor trust proximity to the source of trust injection, while high
values allow trust to also reach more distant nodes. Furthermore, the introduction
of spreading factor d is crucial for making Appleseed retain Levien’s bottleneck
property, as will be shown in later sections.

5.3.2.4 Rank Normalization

Algorithm 5.2 makes use of edge weight normalization, i.e., the quantity e,_., of
energy distributed along (z,y) from x to successor node y depends on the relative
weight of x — y, i.e., W(x,y) compared to the sum of weights of all outgoing edges
of z:

W(z,y)
Z(a},s) €l W(I’ 8)

Normalization is common practice in many trust metrics, among those PageRank
[Page et al., 1998], EigenTrust [Kamvar et al., 2003], and AORank [Guha, 2003].
However, while normalized reputation or trust seem reasonable for models with
plain, non-weighted edges, serious interferences occur when edges are weighted, as is
the case for our trust model adopted in Section 5.2.2.1.

For instance, refer to the left-hand side of Figure 5.6 for unwanted effects: the
amounts of energy that node a accords to successors b and d, i.e., e, ., and e,_.q4,
respectively, are identical in value. Note that b has issued only one trust statement
W(b,c) = 0.25, stating that b’s trust in ¢ is rather weak. On the other hand, d
assigns full trust to individuals e, f, and g. Nevertheless, the overall trust rank for
d will be much higher than for any successor of d, for ¢ is accorded e,_.; - d, while

(5.3)

epy = d - in(z) -
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0.7

Figure 5.6. Issues with trust normalization

e, f, and g only obtain e,_.4 - d - 1/3 each. Hence, ¢ will be trusted three times as
much as e, f, and g, which is not reasonable at all.

5.3.2.5 Backward Trust Propagation

The above issue has already been discussed by Kamvar et al. [2003], but no solution
has been proposed therein, arguing that “substantially good results” have been
achieved despite the drawbacks. We propose to alleviate the problem by making use
of backward propagation of trust to the source: when metric computation takes place,
additional “virtual” edges (z,s) from every node = € A\ {s} to the trust source s
are created. These edges are assigned full trust W(z,s) = 1. Existing backward
links (z,s), along with their weights, are “overwritten”. Intuitively, every node is
supposed to blindly trust the trust source s, see Figure 5.6. The impacts of adding
backward propagation links are threefold:

Mitigating relative trust. Again, we refer to the left-hand graph in Figure 5.6. Trust
distribution in the underlying case becomes much fairer through backward
propagation links, for ¢ now only obtains e, -d-(0.25/(140.25)) from source
s, while e, f, and g are accorded e, .4 - d - (1/4) each. Hence, trust ranks of
both e, f, and g amount to 1.25 times the trust assigned to c.

Awvoidance of dead ends. Dead ends, i.e., nodes x with zero outdegree, require spe-
cial treatment in our computation scheme. Two distinct approaches may be
adopted. First, the portion of incoming trust d - in(z) supposed to be passed
to successor nodes is completely discarded, which contradicts our intuition
of no energy leaving the system. Second, instead of retaining (1 — d) - in(x)
of incoming trust, x keeps all trust. The latter approach is also not sensible
as it encourages users to not issue trust statements for their peers. Luckily,
with backward propagation of trust, all nodes are implicitly linked to the trust
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source s, so that there are no more dead ends to consider.

Favoring trust prozimity. Backward links to the trust source s are favorable for
nodes close to the source, as their eventual trust rank will increase. On the
other hand, nodes further away from s are penalized.

5.3.2.6 Nonlinear Trust Normalization

In addition to backward propagation, we propose supplementary measures to de-
crease the negative impact of trust spreading based on relative weights. Situations
where nodes y with poor ratings from x are awarded high overall trust ranks, thanks
to the low outdegree of z, have to be avoided. Taking the squares of local trust
weights provides an appropriate solution:

W(x,y)*
2
Z(z,s) €eE W(.T, 8)

As an example, refer to node b in Figure 5.6. With squared normalization, the
total amount of energy flowing backward to source a increases, while the amount of
energy flowing to the poorly trusted node ¢ decreases significantly. Accorded trust
quantities e, ., and e, amount to d-in(b)-(1/1.0625) and d-in(b)-(0.0625/1.0625),
respectively. A more severe penalization of poor trust ratings can be achieved by
selecting powers above two.

(5.4)

€py = d -in(z) -

5.3.2.7 Algorithm QOutline

Having identified modifications to apply to spreading activation models in order to
tailor them for local group trust metrics, we are now able to formulate the core
algorithm of Appleseed. Input and output are characterized as follows:

Trust, : A X Ry x [0,1] x RY — (trust : A — Ry) (5.5)

The first input parameter specifies trust seed s, the second trust injection e,
parameter three identifies spreading factor d € [0, 1], and the fourth argument binds
accuracy threshold T,, which serves as convergence criterion. Similar to Advogato,
the output is an assignment function of trust with domain A. However, Appleseed
allows rankings of agents with respect to trust accorded. Advogato, on the other
hand, only assigns boolean values indicating presence or absence of trust.

Appleseed works with partial trust graph information. Nodes are accessed only
when needed, i.e., when reached by energy flow. Trust ranks trust(x), which corre-
spond to energy(z) in Algorithm 5.2, are initialized to 0. Any unknown node u hence
obtains trust(u) = 0. Likewise, virtual trust edges for backward propagation from
node x to the source are added at the moment that x is discovered. In every itera-
tion, for those nodes = reached by flow, the amount of incoming trust is computed
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as follows:

. . Wi(p, )
in(z) =d- in(p) - (5.6)
(MZ);E ( st)eE W (p, S)>

Incoming flow for x is hence determined by all flow that predecessors p distribute
along edges (p, ). Note that the above equation makes use of linear normalization
of relative trust weights. The replacement of linear by nonlinear normalization ac-
cording to Section 5.3.2.6 is straight-forward, though. The trust rank of = is updated
as follows:

trust(z) « trust(z) + (1 — d) - in(x) (5.7)

Trust networks generally contain cycles and thus allow no topological sorting of
nodes. Hence, the computation of in(x) for reachable x € A becomes inherently
recursive. Several iterations for all nodes are required in order to make the com-
puted information converge towards the least fixpoint. The following criterion has
to be satisfied for convergence, relying upon accuracy threshold T, briefly introduced
before.

Definition 1 (Termination) Suppose that A; C A represents the set of nodes that
were discovered until step ¢, and trust;(z) the current trust ranks for all x € A.
Then the algorithm terminates when the following condition is satisfied after step ¢:

Vo € A; : trust;(x) — trust;_1(z) < T, (5.8)

Informally, Appleseed terminates when changes of trust ranks with respect to the
preceding iteration ¢ — 1 are not greater than accuracy threshold T..

Moreover, when supposing spreading factor d > 0, accuracy threshold T, > 0, and
trust source s part of some connected component G C G containing at least two
nodes, convergence, and thus termination, is guaranteed. The following paragraph
gives an informal proof:

Proof 1 (Convergence of Appleseed) Assume that f; denotes step i’s quantity of
energy flowing through the network, i.e., all the trust that has not been captured
by some node z through function trust;(z). From Equation 5.2 follows that in"
constitutes the upper boundary of trust energy floating through the network, and f;
can be computed as follows:

f; =in’ — Z trust;(x) (5.9)

z€eA

Since d > 0 and 3(s,x) € E,x # s, the sum of the current trust ranks trust;(z) of
all x € A is strictly increasing for increasing i. Consequently, lim; ., f; = 0 holds.
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function Trust, (s € A, in® € R}, d € [0,1], T. € RY) {
set ing(s) < in®, trustg(s) « 0, i « 0;
set Ay — {s};
repeat
set 1 «— 1+ 1;
set A; «— A;_1;
Vo € A1 : set in;(z) « 0;
for all x € A;_1 do
set trust;(x) « trust;_i(z) + (1 — d) - in;—1 (x);
for all (z,u) € E do
if u ¢ A; then
set A; — A; U{u};
set trust;(u) «— 0, in;(u) < 0;
add edge (u, s), set W(u,s) « 1,
end if
set w — W(z,u) / 3 uwyep Wiz, u);
set in;(u) < in;(u) + d - in;—1 () - w;
end do
end do
set m = maxy ¢ 4, {trust;(y) — trust;—1(y)};
until (m < T)
return (trust : {(z, trust;(x)) | x € A;});

}

Algorithm 5.3. Outline of the Appleseed trust metric

Moreover, since termination is defined by some fixed accuracy threshold 7. > 0,
there exists some step k such that lim; ., f; < T.. O

5.3.2.8 Parameterization and Experiments

Appleseed allows numerous parameterizations of input variables, some of which are
subject to discussion in the section at hand. Moreover, we provide experimental re-
sults exposing the observed effects of parameter tuning. Note that all experiments
have been conducted on data obtained from “real” social networks: we have written
several Web crawling tools to mine the Advogato community Web site and extract
trust assertions stated by its more than 8, 000 members. Hereafter, we converted all
trust data to our trust model proposed in Section 5.2.2.1. The Advogato community
server supports four different levels of peer certification, namely OBSERVER, AP-
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PRENTICE, JOURNEYER, and MASTER. We mapped these qualitative certification
levels to quantitative ones, assigning W (x,y) = 0.25 for z certifying y as OBSERVER,
W(zx,y) = 0.5 for an APPRENTICE, and so forth. The Advogato community under-
goes rapid growth and our crawler extracted 3,224, 101 trust assertions. Preprocess-
ing and data cleansing were thus inevitable, eliminating reflexive trust statements
W (x,z) and shrinking trust certificates to reasonable sizes. Note that some eager
Advogato members have issued more than two thousand trust statements, yielding
an overall average outdegree of 397.69 assertions per node.Clearly, this figure is be-
yond dispute. Hence, applying our set of extraction tools, we tailored the test data
obtained from Advogato to our needs and extracted trust networks with specific
average outdegrees for the experimental analysis.

Trust Injection

Trust values trust(z) computed by the Appleseed metric for source s and node = may
differ greatly from explicitly assigned trust weights W (s, z). We already mentioned
before that computed trust ranks may not be interpreted as absolute values, but
rather in comparison with ranks assigned to all other peers. In order to make assigned
rank values more tangible, though, one might expect that tuning the trust injection
in® to satisfy the following proposition will align computed ranks and explicit trust
statements:

V(s,x) € E: trust(z) € [W(s,z) — e, W(s,z) + €] (5.10)

However, when assuming reasonably small €, the approach does not succeed. Re-
call that computed trust values of successor nodes x of s do not only depend on
assertions made by s, but also on trust ratings asserted by other peers. Hence, a per-
fect alignment of explicit trust ratings with computed ones cannot be accomplished.
However, we propose a heuristic alignment method, incorporated into Algorithm
5.4, which has proven to work remarkably well in diverse test scenarios. The basic
idea is to add another node i and edge (s,7) with W(s,i) = 1 to the trust graph
G = (A, E,W), treating (s,4) as an indicator to test whether trust injection in°
is “good” or not. Consequently, parameter in® has to be adapted in order to make
trust(i) converge towards W (s,7). The trust metric computation is hence repeated
with different values for in® until convergence of the explicit and the computed trust
value of i is achieved. Eventually, edge (s,7) and node i are removed and the com-
putation is performed one more time. Experiments have shown that our imperfect
alignment method yields computed ranks trust(x) for direct successors x of trust
source s which come close to previously specified trust statements W (s, z).
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function Trustp., (s € 4, d € [0,1], T. € R") {
add node i, edge (s,7), set W(s,i) « 1;
set in® « 20, € «— 0.1;
repeat
set trust « Trust, (s, in, d, T.);
in® « adapt (W (s, i), trust(i),in°);
until trust(i) € [W(s,i) — e, W(s,i) + €]
remove node ¢, remove edge (s, i);
return Trust, (s, in®, d, T,);

}

Algorithm 5.4. Heuristic weight alignment method

Spreading Factor

Small values for d tend to overly reward nodes close to the trust source and penalize
remote ones. Recall that low d allows nodes to retain most of the incoming trust
quantity for themselves, while large d stresses the recommendation of trusted in-
dividuals and makes nodes distribute most of the assigned trust to their successor
nodes.

Experiment 1 (Spreading factor impact) We compare distributions of computed
rank values for three diverse instantiations of d, namely d; = 0.1, d = 0.5, and
ds = 0.85. Our setup is based upon a social network with an average outdegree of 6
trust assignments, and features 384 nodes reached by trust energy spreading from
our designated trust source. We furthermore suppose in® = 200, 7, = 0.01, and
linear weight normalization. Computed ranks are classified into 11 histogram cells
with nonlinear cell width. Obtained output results are displayed in Figure 5.7. Mind
that we have chosen logarithmic scales for the vertical axis in order to render the
diagram more legible. For d;, we observe that the largest number of nodes = with
ranks trust(z) > 25 is generated. On the other hand, virtually no ranks ranging
from 0.2 to 1 are assigned, while the number of nodes with ranks smaller than 0.05
is again much higher for d; than for both dy and d3. Instantiation d3 = 0.85 exhibits
behavior opposed to that of di. No ranks with trust(z) > 25 are accorded, while
interim ranks between 0.1 and 10 are much more likely for d3 than for both other
instantiations of spreading factor d. Consequently, the number of ranks below 0.05
is lowest for ds.

The experiment demonstrates that high values for parameter d tend to distribute
trust more evenly, neither overly rewarding nodes close to the source, nor penalizing
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Figure 5.7. Spreading factor impact

remote ones too rigidly. On the other hand, low d assigns high trust ranks to very
few nodes, namely those which are closest to the source, while the majority of nodes
obtains very low trust rank. We propose to set d = 0.85 for general use.

Convergence

We already mentioned before that the Appleseed algorithm is inherently recursive.
Parameter 7, represents the ultimate criterion for termination. We demonstrate
through an experiment that convergence is reached very fast, no matter how large
the number of nodes trust is flowing through, and no matter how large the initial
trust injection.

Experiment 2 (Convergence rate) The trust network we consider has an average
outdegree of 5 trust statements per node. The number of nodes for which trust
ranks are assigned amounts to 572. We suppose d = 0.85, T, = 0.01, and linear
weight normalization. Two separate runs were computed, one with trust activation
in; = 200, the other with initial energy iny, = 800. Figure 5.8 demonstrates the rapid
convergence of both runs. Though the trust injection for the second run is 4 times
as high as for the first, convergence is reached in only few more iterations: run one
takes 38 iterations, run two terminates after 45 steps.

For both runs, we assumed accuracy threshold 7. = 0.01, which is extremely
small and accurate beyond necessity already. However, experience taught us that
convergence takes place rapidly even for very large networks and high amounts of
trust injected, so that assuming the latter value for T, poses no scalability issues.
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Figure 5.8. Convergence of Appleseed

In fact, the amount of nodes taken into account for trust rank assignment in the
above example well exceeds practical usage scenarios: mind that the case at hand
demands 572 files to be fetched from the Web, complaisantly supposing that these
pages are cached after their first access. Hence, we claim that the actual bottleneck
of group trust computation is not the Appleseed metric itself, but downloads of trust
resources from the network. This bottleneck might also be the reason for selecting
thresholds T, greater than 0.01, in order to make the algorithm terminate after fewer
node accesses.

5.3.2.9 Implementation and Extensions

We implemented Appleseed in Java, based upon Algorithm 5.3. We applied moderate
fine-tuning and supplemented our metric with an architectural cushion in order to
access “real” machine-readable RDF homepages. Other notable modifications to the
core algorithm are discussed briefly:

Mazimum number of unfolded nodes. We supplemented the set of input parameters
by yet another argument M, which specifies the maximum number of nodes to
unfold. This extension hinders trust energy from inordinately covering major
parts of the entire network. Note that accessing the personal, machine-readable
homepages, which contain trust information required for metric computation,
represents the actual computation bottleneck. Hence, expanding as few nodes
as possible is highly desirable. When choosing reasonably large M, for instance,
three times the number of agents assumed trustworthy, we may expect to not
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miss any relevant nodes: mind that Appleseed proceeds breadth-first and thus
considers close nodes first, which are more eligible for trust than distant ones.

Upper-bounded trust path lengths. Another approach to sensibly restrict the num-
ber of nodes unfolded relies upon upper-bounded path lengths. The idea of
constraining path lengths for trust computation has been adopted before by
Reiter and Stubblebine [1997a] and within the X.509 protocol [Housely et al.,
1999]. Depending on the overall trust network connectivity, we opt for max-
imum path lengths around three, aware of Milgram’s “six degrees of separa-
tion” paradigm [Milgram, 1992]. In fact, trust decay is inherent to Appleseed,
thanks to spreading factor d and backward propagation. Stripping nodes at
large distances from the seed therefore only marginally affects the trust metric
computation results while simultaneously providing major speed-ups.

Zero trust retention for the source. Third, we modified Appleseed to hinder trust
source s from accumulating trust energy, essentially introducing one novel
spreading factor d, = 1.0 for the seed only. Consequently, all trust is divided
among peers of s and none retained, which is reasonable. Convergence may be
reached faster, since trust;,;(z) — trust;(z) tends to be maximal for seed node
s, thanks to backward propagation of trust (see Section 5.3.2.5). Furthermore,
supposing the same trust quantity in® injected, assigned trust ranks become
greater in value, also enlarging gaps between neighbors in trust rank.

Testbed Conception

Trust metrics and models for trust propagation have to be intuitive, i.e., humans
must eventually comprehend why agent a; has been accorded a higher trust rank than
a; and come to similar results when asked for personal judgement. Consequently, we
implemented our own testbed, which graphically displays social networks. We made
use of the YFILES [Wiese et al., 2001] library to perform complex graph drawing and
layouting tasks®. The testbed allows for parameterizing Appleseed through dialogs.
Detailed output is provided, both graphical and textual. Graphical results comprise
the highlighting of nodes with trust ranks above certain thresholds, while textual
results return quantitative trust ranks of all accessed nodes, the number of iterations,
and so forth. We also implemented the Advogato trust metric and incorporated the
latter into our testbed. Hereby, our implementation of Advogato does not require a
priori complete trust graph information, but accesses nodes “just in time”, similar
to Appleseed. All experiments were conducted on top of the testbed application.

5.3.3 Comparison of Advogato and Appleseed

Advogato and Appleseed are both implementations of local group trust metrics. Ad-
vogato has already been successfully deployed into the Advogato online community,

8See Figure 7.2 for a sample visualization.
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though quantitative evaluation results have not been provided yet. In order to eval-
uate the fitness of Appleseed as an appropriate means for group trust computation,
we relate our approach to Advogato for qualitative comparison:

(F.1)

(F.2)

(F.3)

84

Attack-resistance. This property defines the behavior of trust metrics in case
of malicious nodes trying to invade into the system. For evaluation of attack-
resistance capabilities, we have briefly introduced the “bottleneck property”
in Section 5.3.1.2, which holds for Advogato. In order to recapitulate, suppose
that s and t are nodes and connected through trust edge (s,t). Node s is
assumed good, while ¢ is an attacking agent trying to make good nodes trust
malevolent ones. In case the bottleneck property holds, manipulation “on the
part of bad nodes does not affect the trust value” [Levien, 2004]. Clearly,
Appleseed satisfies the bottleneck property, for nodes cannot raise their impact
by modifying the structure of trust statements they issue. Bear in mind that
the amount of trust accorded to agent t only depends on his predecessors
and does not increase when ¢ adds more nodes. Both, spreading factor d and
normalization of trust statements, ensure that Appleseed maintains attack-
resistance properties according to Levien’s definition.

Eager truster penalization. We have indicated before that issuing multi-
ple trust statements dilutes trust accorded to successors. According to Guha
[2003], this does not comply with real world observations, where statements of
trust “do not decrease in value when the user trusts one more person |[...]".
The malady that Appleseed suffers from is common to many trust metrics,
most notably those based upon finding principal eigenvectors [Page et al.,
1998; Kamvar et al., 2003; Richardson et al., 2003]. On the other hand, the
approach pursued by Advogato does not penalize trust relationships asserted
by eager trust dispensers, for node capacities do not depend on local infor-
mation. Remember that capacities of nodes pertaining to level [ are assigned
based on the capacity of level [ — 1, as well as the overall outdegree of nodes
part of that level. Hence, Advogato encourages agents issuing numerous trust
statements, while Appleseed penalizes overly abundant trust certificates.
Deterministic trust computation. Appleseed is deterministic with respect
to the assignment of trust rank to agents. Hence, for any arbitrary trust graph
G = (A, E, W) and for every node x € A, linear equations allow for char-
acterizing the amount of trust assigned to x, as well as the quantity that x
accords to successor nodes. Advogato, however, is non-deterministic. Though
the number of trusted agents, and therefore the computed maximum flow size,
is determined for given input parameters, the set of agents is not. Changing
the order in which trust assertions are issued may yield different results. For
example, suppose C'4(s) = 1 holds for trust seed s. Furthermore, assume s has
issued trust certificates for two agents, b and c. The actual choice between b or
¢ as trustworthy peer with maximum flow only depends on the order in which
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nodes are accessed.

(F.4) Model and output type. Basically, Advogato supports non-weighted trust
statements only. Appleseed is more versatile by virtue of its trust model based
on weighted trust certificates. In addition, Advogato returns one set of trusted
peers, whereas Appleseed assigns ranks to agents. These ranks allow to select
most trustworthy agents first and relate them to each other with respect to
their accorded rank. Hereby, the definition of thresholds for trustworthiness is
left to the user who can thus tailor relevant parameters to fit different appli-
cation scenarios. For instance, raising the application-dependent threshold for
the selection of trustworthy peers, which may be either an absolute or a rela-
tive value, allows for enlarging the neighborhood of trusted peers. Appleseed
is hence more adaptive and flexible than Advogato.

The afore-mentioned characteristics of Advogato and Appleseed are briefly sum-
marized in Table 5.1.

Feature F.1  Feature F.2  Feature F.3  Feature F'.4
Advogato yes no no boolean

Appleseed yes yes yes ranking

Table 5.1. Characteristics of Advogato and Appleseed

5.4 Distrust

The notion of distrust is one of the most controversial topics when defining trust
metrics and trust propagation. Most approaches completely ignore distrust and only
consider full trust or degrees of trust [Levien and Aiken, 1998; Mui et al., 2002; Beth
et al., 1994; Maurer, 1996; Reiter and Stubblebine, 1997a; Richardson et al., 2003].
Others, among those Abdul-Rahman and Hailes [1997], Chen and Yeager [2003],
Aberer and Despotovic [2001], and Golbeck et al. [2003], allow for distrust ratings,
though, but do not consider the subtle semantic differences that exist between those
two notions, i.e., trust and distrust. Consequently, according to Gans et al. [2001],
“distrust is regarded as just the other side of the coin, that is, there is generally
a symmetric scale with complete trust on one end and absolute distrust on the
other.” Furthermore, some researchers equate the notion of distrust with lack of trust
information. However, in his seminal work on the essence of trust, Marsh [1994a]
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has already pointed out that those two concepts, i.e., lack of trust and distrust,
may not be intermingled. For instance, in absence of trustworthy agents, one might
be more prone to accept recommendations from non-trusted persons, being non-
trusted probably because of lack of prior experiences [Marsh, 1994b], than from
persons we explicitly distrust, the distrust resulting from bad past experiences or
deceit. However, even Marsh pays little attention to the specifics of distrust.

Gans et al. [2001] were among the first to recognize the importance of distrust,
stressing the fact that “distrust is an irreducible phenomenon that cannot be offset
against any other social mechanisms”, including trust. In their work, an explicit
distinction between confidence, trust, and distrust is made. Moreover, the authors
indicate that distrust might be highly relevant to social networks. Its impact is
not inherently negative, but may also influence the network in an extremely pos-
itive fashion. However, the primary focus of this work is on methodology issues
and planning, not considering trust assertion evaluations and propagation through
appropriate metrics.

Guha et al. [2004] acknowledge the immense role of distrust with respect to trust
propagation applications, arguing that “distrust statements are very useful for users
to debug their web of trust” [Guha, 2003]. For example, suppose that agent a; blindly
trusts a;, which again blindly trusts a,. However, a; completely distrusts aj. The
distrust statement hence ensures that a; will not accept beliefs and ratings from ay,
irrespective of him trusting a; trusting a.

5.4.1 Semantics of Distrust

The non-symmetrical nature of distrust and trust, being two dichotomies, has al-
ready been recognized by recent sociological research [Lewicki et al., 1998]. In this
section, we investigate the differences between distrust and trust with respect to
inference opportunities and the propagation of beliefs.

5.4.1.1 Distrust as Negated Trust

Interpreting distrust as the negation of trust has been adopted by many trust met-
rics, among those trust metrics proposed by Abdul-Rahman and Hailes [1997, 2000],
Josang et al. [2003], and Chen and Yeager [2003]. Basically, these metrics compute
trust values by analyzing chains of trust statements from source s to target ¢, even-
tually merging them to obtain an aggregate value. Each chain hereby becomes syn-
thesized into one single number through weighted multiplication of trust values along
trust paths. Serious implications resulting from the assumption that trust concate-
nation relates to multiplication [Richardson et al., 2003], and distrust to negated
trust, arise when agent a; distrusts a;, who distrusts a:°

9We oversimplify by using predicate calculus expressions, supposing that trust, and hence distrust,
is fully transitive.
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—trust(a;, aj) A —trust(a;, a) = trust(a;, ax) (5.11)

Josang et al. [2003] are aware of this rather unwanted effect, but do not question
its correctness, arguing that “the enemy of your enemy could well be your friend”.
Guha [2003], on the other hand, indicates that two distrust statements cancelling
out each other commonly does not reflect desired behavior.

5.4.1.2 Propagation of Distrust

The conditional transitivity of trust [Abdul-Rahman and Hailes, 1997] is commonly
agreed upon and represents the foundation and principal premiss that trust metrics
rely upon. However, no consensus in literature has been achieved with respect to
the degree of transitivity and the decay rate of trust. Many approaches therefore
explicitly distinguish between recommendation trust and direct trust [Jgsang et al.,
2003; Abdul-Rahman and Hailes, 1997; Maurer, 1996; Beth et al., 1994; Chen and
Yeager, 2003] in order to keep apart the transitive fraction of trust from the non-
transitive. Hence, in these works, only the wultimate edge within the trust chain,
i.e., the one linking to the trust target, needs to be direct, while all others are
supposed to be recommendations. For the Appleseed trust metric, this distinction
is made through the introduction of spreading factor d. However, the conditional
transitivity property of trust does not equally extend to distrust. The case of double
negation through distrust propagation has already been considered. Now suppose,
for instance, that a; distrusts a;, who trusts a;. Supposing distrust to propagate
through the network, we come to make the following inference:

distrust(a;, a;) A trust(a;, a;) = distrust(a;, ax) (5.12)

The above inference is more than questionable, for a; penalizes a; simply for being
trusted by an agent a; that a; distrusts. Obviously, this assumption is not sound
and does not reflect expected real-world behavior. We assume that distrust does not
allow for making direct inferences of any kind. This conservative assumption well
complies with [Guha, 2003].

5.4.2 Incorporating Distrust into Appleseed

We compare our distrust model with Guha’s approach, making similar assumptions.
Guha computes trust by means of one global group trust metric, similar to PageRank
[Page et al., 1998]. For distrust, he proposes two candidate approaches. The first one
directly integrates distrust into the iterative eigenvector computation and comes up
with one single measure combining both trust and distrust. However, in networks
dominated by distrust, the iteration might not converge [Guha, 2003]. The second
proposal first computes trust ranks by trying to find the dominant eigenvector, and
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then computes separate distrust ranks in one single step, based upon the iterative
computation of trust ranks. Suppose that D,, is the set of agents who distrust a;:

TrustRank(a;)

a; GDai

DistrustRank(a;) = (5.13)

| Da,

The problem we perceive with this approach refers to superimposing the compu-
tation of distrust ranks after trust rank computation, which may yield some strange
behavior: suppose an agent a; who is highly controversial by engendering ambiguous
sentiments, i.e., on the one hand, there are numerous agents that trust a;, while
on the other hand, there are numerous agents who distrust a;. With the approach
proposed by Guha, a;’s impact for distrusting other agents is huge, resulting from
his immense positive trust rank. However, this should clearly not be the case, for a;
is subject to tremendous distrust himself, thus levelling out his high trust rank.

Hence, for our own approach, we intend to directly incorporate distrust into the
iterative process of the Appleseed trust metric computation, and not superimpose
distrust afterwards. Several pitfalls have to be avoided, such as the risk of non-
convergence in case of networks dominated by distrust [Guha, 2003]. Furthermore, in
absence of distrust statements, we want the distrust-enhanced Appleseed algorithm,
which we denote by Trust,-, to yield results identical to those engendered by the
original version Trust,.

5.4.2.1 Normalization and Distrust

First, the trust normalization procedure has to be adapted. We suppose normaliza-
tion of weights to the power of ¢, as has been discussed in Section 5.3.2.6. Let in(x),
the trust influx for agent x, be positive. As usual, we denote the global spreading
factor by d, and quantified trust statements from z to y by W (x, y). Function sign(z)
returns the sign of value z. Note that from now on, we assume W : E — [—1, +1],
for degrees of distrust need to be expressible. Then the trust quantity e,_., passed
from x to successor y is computed as follows:

epy = d -in(z) - sign(W(z,y)) - w, (5.14)

where

The accorded quantity e,_,, becomes negative if W(x,y) is negative, i.e., if =
distrusts y. For the relative weighting, the absolute values |W (z,s)| of all weights
are considered. Otherwise, the denominator could become negative, or positive trust
statements could become boosted unduly. The latter would be the case if the sum
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Figure 5.9. Network augmented by distrust

of positive trust ratings only slightly outweighed the sum of negative ones, making
the denominator converge towards zero. An example demonstrates the computation
process:

Example 5 (Distribution of Trust and Distrust) We assume the trust network as
depicted in Figure 5.9. Let the trust energy influx into node a be in(a) = 2, and global
spreading factor d = 0.85. For simplicity reasons, backward propagation of trust to
the source is not considered. Moreover, we suppose linear weight normalization, thus
q = 1. Consequently, the denominator of the normalization equation is [0.75] + | —
0.5] +[0.25| 4 |1] = 2.5. The trust energy that a distributes to b hence amounts to
ea—p = 0.51, whereas the energy accorded to the distrusted node c is e,_,. = —0.34.
Furthermore, we have e,_,, = 0.17 and e,_,. = 0.68.

Observe that trust energy becomes lost during distribution, for the sum of energy
accorded along outgoing edges of a amounts to 1.02, while 1.7 was provided for
distribution. The effect results from the negative trust weight W(a, c) = —0.5.

5.4.2.2 Distrust Allocation and Propagation

We now analyze the case where the influx in(z) for agent x is negative. In this case,
the trust allocated for = will also be negative, i.e., in(z) - (1 — d) < 0. Moreover,
the energy in(x) - d that x may distribute among successor nodes will be negative
as well. The implications are those which have been mentioned in Section 5.4.1, i.e.,
distrust as negation of trust and propagation of distrust. For the first case, refer to
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node f in Figure 5.9 and assume in(c) = —0.34, which is derived from Example 5.
The trusted agent a distrusts ¢ who distrusts f. Eventually, f would be accorded
d-(—0.34)-(—0.25), which is positive. For the second case, node g would be assigned
the negative trust quantity d - (—0.34) - (0.75), simply for being trusted by f, who is
distrusted. Both unwanted effects can be avoided by not allowing distrusted nodes
to distribute any energy at all. Hence, more formally, we introduce a novel function
out(z):

out(z) = { g" in(z), ;fl;él(x) 20 (5.15)

This function then has to replace d-in(xz) when computing the energy distributed
along edges from x to successor nodes y:

epy = out(x) - sign(W(z,y)) - w, (5.16)
where
W, y)|”
q
Z(LS)EE W, 5)]

This design decision perfectly aligns with assumptions made in Section 5.4.1 and
prevents the inference of unwanted side-effects mentioned before. Furthermore, one
can see easily that the modifications introduced do not affect the behavior of Algo-
rithm 5.3 when not considering relationships of distrust.

w =

5.4.2.3 Convergence

In networks largely or entirely dominated by distrust, the extended version of Apple-
seed is still guaranteed to converge. We therefore briefly outline an informal proof,
based on Proof 1:

Proof 2 (Convergence in presence of distrust) Recall that only positive trust in-
flux in(x) becomes propagated, which has been indicated in Section 5.4.2.2. Hence,
all we need to show is that the overall quantity of positive trust distributed in com-
putation step ¢ cannot be augmented through the presence of distrust statements. In
other words, suppose that G = (A, E, W) defines an arbitrary trust graph, contain-
ing quantified trust statements, but no distrust, i.e., W : E — [0,1]. Now consider
another trust graph G' = (A, E U D, W’), which contains additional edges D, and
weight function W =W U (D — [—1,0[). Hence, G’ augments G by additional dis-
trust edges between nodes taken from A. We now perform two parallel computations
with the extended version of Appleseed, one operating on G and the other on G’. In
every step, and for every trust edge (z,y) € E for G, the distributed energy e,_,,
is greater or equal to the respective counterpart on G’, because the denominator
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of the fraction given in Equation 5.16 can only become greater through additional
distrust outedges. Second, for the computation performed on G’, negative energy
distributed along edge (z,y) can only reduce the trust influx for y and may hence
even accelerate convergence. O

However, as can be observed from the proof, there exists one serious implication
arising from having distrust statements in the network: the overall accorded trust
quantity does not equal the initially injected energy anymore. Moreover, in networks
dominated by distrust, the overall trust energy sum may even be negative.

Experiment 3 (Network impact of distrust) We observe the number of iterations
until convergence is reached, and the overall accorded trust rank of 5 networks. The
structures of all these graphs are identical, being composed of 623 nodes with an
average indegree and outdegree of 9. The only difference applies to the assigned
weights, where the first graph contains no distrust statements at all, while 25% of
all weights are negative for the second, 50% for the third, and 75% for the fourth.
The fifth graph contains nothing but distrust statements. The Appleseed parameters
are identical for all 5 runs, having backward propagation enabled, an initial trust
injection in® = 200, spreading factor d = 0.85, convergence threshold T, = 0.01,
linear weight normalization, and no upper bound on the number of nodes to unfold.
The left-hand side of Figure 5.10 clearly demonstrates that the number of iterations
until convergence, given on the vertical axis, decreases with the proportion of dis-
trust increasing, observable along the horizontal axis. Likewise, the overall accorded
trust rank, indicated on the vertical axis of the right-hand side of Figure 5.10, de-
creases rapidly with increasing distrust, eventually dropping below zero. The same
experiment was repeated for another network with 329 nodes, an average indegree
and outdegree of 6, yielding similar results.

The effects observable in Experiment 3 only marginally affect the ranking itself,
for trust ranks are interpreted relative to each other. Moreover, compensation for

lost trust energy may be achieved by boosting the initial trust injection in®.

5.5 Discussion and Outlook

We provided a new classification scheme for trust metrics along three non-orthogonal
feature axes. Moreover, we advocated the need for local group trust metrics, even-
tually presenting Appleseed, this chapter’s main contribution. Appleseed’s nature
largely resembles Advogato, bearing similar complexity and attack-resistance prop-
erties, but offers one particular feature that makes Appleseed much more suitable
for certain applications than Advogato: the ability to compute rankings of peers ac-
cording to their trustworthiness rather than binary classifications into trusted and
untrusted agents.
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Figure 5.10. Network impact of distrust

Originally designed as an approach to social filtering within our decentralized
recommender framework, Appleseed suits other application scenarios as well, such
as group trust computation in online communities, open rating systems, ad-hoc and
peer-to-peer networks:

For instance, Appleseed could support peer-to-peer-based file-sharing systems in
reducing the spread of self-replicating inauthentic files by virtue of trust propagation
[Kamvar et al., 2003]. In that case, explicit trust statements, resulting from direct
interaction, would reflect belief in someone’s endeavor to provide authentic files.

We strongly believe that local group trust metrics, such as Advogato and Ap-
pleseed, will become subject to substantial research for diverse computing domains
within the near future, owing to their favorable time complexity and their intu-
itive computation scheme, as opposed to other classes of trust metrics (see Section
5.2.2.2). However, one has to bear in mind that their applicability is confined to
particular problem domains only, whereas scalar metrics are more versatile.
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Interpersonal Trust and Similarity

“The essence of trust building is to emphasize the similarities between
you and the customer.”

— Thomas Watson (1874-1956)
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6.1 Introduction

Recently, the integration of computational trust models [Marsh, 1994b; Mui et al.,
2002; McKnight and Chervany, 1996] into recommender systems has started gain-
ing momentum [Montaner et al., 2002; Kinateder and Rothermel, 2003; Guha, 2003;
Massa and Bhattacharjee, 2004], synthesizing recommendations based upon opinions
from most trusted peers rather than most similar!' ones. Likewise, for social filtering
within our decentralized recommender framework, we cannot rely upon conven-
tional collaborative filtering methods only, owing to the neighborhood computation
scheme’s poor scalability (see Section 1.2). Some more natural and, most important,

IRequiring the explicit application of some similarity measure.
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scalable neighborhood selection process becomes indispensable, e.g., based on trust
networks.

However, in order to provide meaningful results, one should suppose trust to
reflect user similarity to some extent. Clearly, recommendations only make sense
when obtained from like-minded people having similar taste. For instance, Abdul-
Rahman and Hailes [2000] claim that given some predefined domain and context,
e.g., communities of people reading books, its members commence creating ties of
friendship and trust primarily with persons resembling their own profile of interest.
Jensen et al. [2002] make likewise assumptions, supposing similarity as a strong
predictor of friendship: “If I am a classic car enthusiast, for example, my friends will
likely share my interests [...]. In other words, my circle of friends is likely to either
share the same values as I do, or at least tolerate them.”

Reasons for that phenomenon are manyfold and mostly sociologically motivated,
like people’s striving for some sort of social affiliation [Given, 2002]. For instance,
Pescovitz [2003] describes endeavors to identify trust networks for crime preven-
tion and security. Hereby, its advocates operate “on the assumption that birds of a
feather tend to flock together [...]”, an ancient and widely-known aphorism. How-
ever, though belief in the positive relation of trust and user similarity has been
widely adopted and presupposed, thus constituting the foundations for trust-based
recommender and rating systems, to our best knowledge, no endeavors have been
made until now to provide “real-world” empirical evidence.

Hence, we want to investigate and analyze whether the latter correlation actually
holds, relying upon data mined from the All Consuming community, which has been
introduced before in Section 3.4.1. Our studies involve several hundreds of members
indicating which books they like and which other community members they trust.
However, before presenting our framework for conducting trust-similarity correlation
experiments, we provide an outline of recommender systems employing trust models,
and an extensive survey giving results from socio-psychological research that bear
some significant relevance for our analysis.

6.2 Trust Models in Recommender Systems

Sinha and Swearingen [2001] have found that people prefer receiving recommenda-
tions from people they know and trust, i.e., friends and family-members, rather than
from online recommender systems. Some researchers have therefore commenced to
focus on computational trust models as appropriate means to supplement or replace
current collaborative filtering approaches.

Kautz et al. [1997] mine social network structures in order to render expertise
information exchange and collaboration feasible. Olsson [1998] proposes an architec-
ture combining trust, collaborative filtering and content-based filtering in one single
framework, giving only vague information and insight, though. Another agent-based
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approach has been presented by Montaner et al. [2002], who introduce the so-called
“opinion-based” filtering. Montaner claims that trust should be derived from user
similarity, implying that friends are exactly those people that resemble our very
nature. However, Montaner’s model only extends to the agent world and does not
reflect evidence acquired from real-world social studies concerning the formation of
trust. Similar agent-based systems have been devised by Kinateder and Rothermel
[2003], Kinateder and Pearson [2003], and Chen and Singh [2001].

Apart from research in agent systems, online communities have also discovered
opportunities through trust network leverage. Epinions (http://www.epinions.com)
provides information filtering facilities based upon personalized webs of trust [Guha,
2003]. Hereby, Guha states that the trust-based filtering approach has been greatly
approved and appreciated by Epinions” members. However, empirical and statistical
justifications underpinning these findings, like indications of a correlation between
trust and interest similarity, have not been subject to Guha’s work. Likewise, Massa
and Avesani [2004] operate on Epinions and propose superseding CF-based neigh-
borhoods by trust networks, making use of very basic propagation schemes. Initial
empirical data has been provided in their work, indicating that precision does not
decrease too much when using trust-based neighborhood formation schemes instead
of common CF.

Besides Epinions, All Consuming (see Section 3.4.1) represents another commu-
nity combining ratings and trust networks?. Unlike Epinions, All Consuming only
poorly exploits synergies between social filtering and trust.

6.3 Evidence from Social Psychology

Research in social psychology offers some important results for investigating inter-
actions between trust and similarity. However, most relevant studies primarily focus
on interpersonal attraction rather than trust, and its possible coupling with similar-
ity. Interpersonal attraction constitutes a major field of interest of social psychology,
and the positive impact of attitudinal similarity on liking has effectively become one
of its most reliable findings [Berscheid, 1998]. Studies have given extensive attention
to three different types of interpersonal relationships, namely same-sex friendships,
primarily among college students, cross-sex romantic relationships, again primarily
among college students, and marriage [Huston and Levinger, 1978]. Clearly, these
three types of relationships also happen to be essential components of trust, though
perfect equivalence does not hold. For instance, while friendship usually implies mu-
tual trust, marriage does not. Moreover, the complex notion of interpersonal trust,
already difficult to capture regarding the “lack of consensus” which has been pointed
out by McKnight and Chervany [1996], interacts with other sociological concepts not

2When describing the All Consuming dataset in Chapter 3, we did not consider inter-subject
trust information, owing to its irrelevance for the experiments at hand.
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reflected through interpersonal attraction. These elusive components comprise rep-
utation, skill, situational and dispositional aspects of interpersonal trust [Marsh,
1994a,b], and familiarity [Einwiller, 2003].

However, since explicit trust relationships have remained outside the scope of
empirical analysis on the correlation with attitudinal similarity, we are forced to
stick to interpersonal attraction instead. Clearly, results obtained must be treated
with care before attributing them to interpersonal trust as well. The following para-
graphs hence intend to briefly summarize relevant evidence collected from research
on interpersonal attraction.

6.3.1 On Interpersonal Attraction and Similarity

Early investigations date back until 1943, when Burgess and Wallin published their
work about homogamy of social attributes with respect to engaged couples [Burgess
and Wallin, 1943]. Similarity could be established for nearly every characteristic
examined. However, according to Berscheid [1998], these findings do not justify con-
clusions about positive effects of similarity on interpersonal attraction by themselves,
since “part of the association between similarity and social choice undoubtedly is due
not to personal preference, but to the fact that people tend to be thrown together
in time and space with others similar to themselves”.

First large-scale experimental studies were conducted by Newcomb [1961] and
Byrne [1961, 1971]. The former work focused on friendships between American col-
lege students and nowadays counts among the seminal works on friendship formation.
By means of his longitudinal study, Newcomb could reveal a positive association be-
tween attraction and attitudinal value similarity. Byrne, doing extensive research
and experiments in the area of attraction, conducted similar experiments, applying
the now-famous “bogus stranger technique” [Byrne, 1971]. The following section
roughly outlines the original setup of this technique.

6.3.1.1 The Bogus Stranger Technique

First, all participating subjects had to indicate their preference on 26 diverse topics,
ranging from more important ones, e.g., belief in super-natural beings, premarital
sex, etc., to less important ones, like television programs, music taste, and so forth.
Preference was expressed through 7-point likert scales. Two weeks later, the partic-
ipants were falsely informed that they were now in a study on how well people can
predict other people’s behavior. In order to make these predictions, they were told
that they would be given the attitude scales filled out by another participant. How-
ever, this was an outright lie. Actually, the scales were prepared by the experimenter,
i.e., Byrnes and his assistants, in such way as to either reflect high similarity or dis-
similarity with the subject’s own profile. Participants were asked some questions
thereafter about the respective “other participant”, including personal sentiments
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toward the person and how much they would appreciate working with him. More-
over, participants were requested to evaluate the “bogus stranger” with respect to
his intelligence, knowledge of current events, morality, and adjustment.

6.3.1.2 Analysis of Similarity-Attraction Associations

The result of Byrne’s bogus stranger experiment well aligned with Newcomb’s find-
ings and confirmed that attitude similarity is a determinant of attraction. Rather
than further document this fact, which counts among the most reliable findings in
social psychology today [Berscheid, 1998], researchers have ever since attempted to
identify the factors that mediate and define the limitations of positive association
between similarity and attraction.

For instance, along with other theorists, e.g., Festinger and Newcomb, Byrne con-
jectured that one’s mere discovery of some other person holding similar attitudes is
reinforcing in itself, arguing that “the expression of similar attitudes by a stranger
serves as a positive reinforcement, because consensual validation for an individual’s
attitudes and opinions and beliefs is a major source of reward for the drive to be log-
ical, consistent, and accurate in interpreting the stimulus world” [Byrne, 1971]. We
suppose likewise effects when forging bonds of trust. Hence, the sheer observation
that some other peer holds interests similar to our own, e.g., reading the same kinds
of books, intuitively renders the latter more trustworthy in our eyes and engenders
sentiments of “familiarity”. In fact, automated collaborative filtering systems exploit
this conjecture in order to make reliable predictions of product preference [Sinha and
Swearingen, 2001].

Social psychologists have identified some other likely factors accounting for the
similarity-attraction association. For example, the information that another person
possesses similar attitudes may suggest his sympathy towards the individual, and “it
is known that the anticipation of being liked often generates attraction in return”
[Berscheid, 1998]. Jones et al. [1972] provided some large-scale empirical analysis for
reciprocation of attraction from similar others.

6.3.1.3 Limitations

While positive association was attested for attitudinal similarity and interpersonal
attraction, evidence could not be expanded to similarity in general. Berscheid [1998]
therefore notes that despite “considerable effort to find a relationship between friend-
ship choice and personality (as opposed to attitude) similarity, for example, the
evidence for this hypothesis remains unconvincing |...]".

This inability to establish an association between personality similarity and at-
traction does not prove overly harmful to our hypothesis, since personal interests
represent traits of attitude rather than personality. However, even attitude similarity
fails to produce attraction under certain circumstances. Snyder and Fromkin [1980]
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reveal that perceiving very high similarity with another individual may even evoke
negative sentiments towards that respective person. Moreover, according to Heider
[1958], “similarity can evoke disliking when the similarity carries with it disagreeable
implications”, which common sense anticipates, likewise. Take narcist persons as an
example.

6.3.2 Conclusion

The preceding literature survey has shown that interactions between similarity traits
and interpersonal attraction are difficult to capture. Even though the tight coupling
between both concepts counts among social psychology’s most reliable findings, there
are numerous caveats to take into consideration, like subtle distinctions between var-
ious types of similarity, e.g., attitudinal similarity and personality similarity. More-
over, most studies argue that attitudinal similarity implies attraction, whereas the
latter proposition’s inversion, i.e., positing that similarity follows from attraction,
has been subject to sparse research only. Common sense supports this thesis, though,
since people tend to adopt attitudes of friends, spouses, etc.

6.4 Trust-Similarity Correlation Analysis

Even when taking reciprocal action between attitudinal similarity, and hence sim-
ilarity of interests, and interpersonal attraction for granted, evidence from socio-
psychological research does not provide sufficient support for positive interactions
between trust and interest similarity. Mind that trust and interpersonal attraction,
though subsuming several common aspects, e.g., friendship, familiarity, etc., are not
fully compliant notions.

We hence intend to establish a formal framework for investigating interactions
between trust and similarity, believing that given an application domain, such as,
for instance, the book-reading domain, people’s trusted peers are on average con-
siderably more similar to their sources of trust than arbitrary peers. More formally,
let A denote the set of all community members; trust(a;) the set of all users trusted
by a;, and sim : A x A — [—1, +1] some similarity function:

0 e trust(an) SIM (@i, a; o wn sim(a;, a;)
szet t(a;) ( ])>>ZZJGA\{Z} J (61)

| trust(a;)| |A| —1

a; €EA a; €A

For instance, given that agent a; is interested in Science-Fiction and Artificial
Intelligence, chances that a;, trusted by a;, also likes these two topics are much higher
than for peer a, not explicitly trusted by a;. Various social processes are involved,
such as participation in those social groups that best reflect our own interests and
desires.
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6.4.1 Model and Data Acquisition

In order to verify or refute our hypothesis for some specific domain, we need to
define an information model, determine metrics and methods for evaluation, and
apply our framework to real-world data.

6.4.1.1 Information Model

We assume the same model as the one presented in Section 3.3.1, but provide an
extension for trust networks. Function trust : A — 24 gives the set of all users that
agent a; trusts. Hence, for the scenario at hand, we assume trust as a relationship of
binary preference, dividing the set of agents A into trusted and non-trusted ones for
every a; € A. For user-user similarity computations c(a;, a;) : A x A — [—1,+1], we
employ our taxonomy-driven metric, presented in Section 3.3. Its huge advantage
over pure CF similarity measures (see Section 2.3.2) lies in its ability to also work for
sparse domains: when two users have no overlap in their purchased or rated products,
pure CF measures become unable to make any reasonable inferences with respect
to interest similarity, which is not the case for the taxonomy-driven method. Since
All Consuming, the dataset we conduct all experiments upon, offers comparatively
few ratings taken from a large product set, the ability to handle sparsity becomes
an indispensable feature for eligible similarity metrics.

The following section now relates our supposed information model to an actual
scenario, making use of variable and function bindings introduced above.

6.4.1.2 Data Acquisition

All Consuming is one of the few communities that allow members to express which
other users they trust, as well as which items, in our case books, they appreciate.
Hereby, users may import their list of trusted persons from other applications like
FOAF [Dumbill, 2002]. All Consuming also offers to automatically compile informa-
tion about books its members have read from their personal weblog. In contrast to
the All Consuming dataset described in Chapter 3, the one used in this chapter has
been crawled earlier, from October 13 to October 17, 2003.

Our tools mined data from about 2,074 weblogs contributing to the All Consum-
ing information base, and 527 users issuing 4.93 trust statements on average. These
users have mentioned 6,592 different books altogether. In order to obtain category
descriptors f(bg) for all discovered books by, classification information from the
Amazon.com online shop (http://www.amazon.com) was garnered. For each book,
we collected an average of about 4.1 classification topics, relating books to Ama-
zon.com’s book taxonomy.
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Figure 6.1. Histogram representation of the upper bound analysis

6.4.2 Experiment Setup and Analysis

This section describes the two experiments we performed in order to analyze possible
positive correlations between interest similarity and interpersonal trust. In both
cases, experiments were run on data obtained from All Consuming (see Section
6.4.1.2). Considering the slightly different information makeup the two experiments
were based upon, we expected the first to define an upper bound for the analysis,
and the second one a lower bound. Results obtained confirmed our assumption.

6.4.2.1 Upper Bound Analysis

Before conducting the two experiments, we applied extensive data cleansing and
duplicate removal to the All Consuming active user base of 527 members®. First,
we pruned all users a; having fewer than 3 books mentioned, removing them from
user base A and from all sets trust(a;) where a; € trust(a;). Next, we discarded all
users a; who did not issue any trust assertions at all. Interestingly, some users had
created several accounts. We discovered these “duplicates” by virtue of scanning
through account names for similarity patterns and by tracking identical or highly
similar profiles in terms of book mentions. Moreover, we stripped self-references, i.e.,
statements about users trusting themselves. Through application of data cleansing,

3All Consuming’s crawled weblogs were not considered for the experiments, owing to their lack
of trust web information.
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Figure 6.2. Scatter plot for the upper bound analysis

266 users were discarded from the initial test set, leaving 261 users for the upper
bound experiment to run upon. We denote the reduced set of users by A" and
corresponding trust functions by trust’(a;).

For every single user a; € A’, we generated his profile vector and computed the
similarity score c(a;,a;) for each trusted peer a; € trust’(a;). Next, we averaged
these proximity measures, obtaining value z.:

c(ai, a;
S Zajetrust%a» (a:,9,) (6.2)
v | trust/(a;)| '

Moreover, we computed a;’s similarity with any other user from dataset A’, except
a; himself. Again, we took the average of these proximity measures and recorded the
result s.:

g c(a;, aj)
L aj € A"\ {a;}
s, = A1 (6.3)

A comparison of pairs (2], s;) revealed that in 173 cases, users were more similar
to their trusted peers than arbitrary ones. The opposite held for only 88 agents.
Users had an average similarity score of 0.247 with respect to their trusted peers,
while only exhibiting 0.163 with complete A". In other words, users were more than

50% more similar to their trusted agents than arbitrary peers.
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Figure 6.3. Histogram representation of the lower bound analysis

Distributions of 2’ and s’

Figure 6.1 gives histogram representations for 2z’ and s, respectively. No agents have
higher average similarity than 0.4, i.e., s; < 0.4 holds for all a; € A’. This is not
the case for z/, as there remains a considerable amount of users a; exhibiting an
average trusted-peer similarity z; larger than 0.4. About 20 agents have z; > 0.6.
Interestingly, while the overall peer similarity s’ shows an almost perfect Gaussian
distribution curve, its counterpart 2z’ does not feature the typical bell shape. This
observation raises some serious concerns when conducting analysis of statistical sig-
nificance in Section 6.4.3.

Scatter Plot

In order to directly match every user’s overall similarity s, against his average
trusted-peer similarity z;, Figure 6.2 provides a scatter plot for the experiment at
hand. The dashed line, dividing the scheme into an upper and lower region, models
an agent a; having identical similarity values, i.e., s, = z. Clearly, the plot exhibits
a strong bias towards the upper region, which becomes particularly pronounced for
agents a; with s; > 0.15.
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Figure 6.4. Scatter plot for the lower bound analysis

6.4.2.2 Lower Bound Analysis

The first experiment proposed that users tend to trust people that are significantly
more similar to themselves than average users. However, we have to consider that
All Consuming offers a feature that suggests friends to newbie users a;. Hereby, All
Consuming chooses users who have at least one book in common with a;. Hence,
we have reason to suspect that our first experiment was biased and too optimistic
with respect to positive interactions between trust and similarity. Consequently, we
pruned user set A’ once again, eliminating trust statements whenever trusting and
trusted user had at least one book in common. We denote the latter user base by
A”, now reduced to 210 trusting users, and indicate its respective trust functions by
trust” (a;).

Clearly, our approach to eliminate All Consuming’s intrusion into the natural
process of trust formation entails the removal of many “real” trust relationships
between users a; and a;, i.e., relationships which had been forged owing to a; actually
knowing and trusting a;, and not because of All Consuming proposing a; as an
appropriate match for a;.

For the second experiment, we computed values s/ and 2/ for every a; € A”. We
supposed results to be biased to the disadvantage of our conjecture, i.e., unduly
lowering possible positive associations between trust and user similarity. Again, one
should bear in mind that for set A”, users did not have one single book in common
with their trusted peers.
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Results obtained from the second experiment corroborate our expectations, being
less indicative for existing positive interactions between interpersonal trust and at-
titudinal similarity. Nevertheless, similarity values 2! still exceeded s7: in 112 cases,
people were more similar to their trusted fellows than arbitrary peers. The opposite
held for 98 users. Mean values of z” and s” amounted to 0.164 and 0.134, respec-
tively. Hence, even for the lower bound experiment, users were still approximately
23% more similar to their trusted fellows than arbitrary agents.

Histogram Curves

The bell-shaped distribution of s”, depicted in Figure 6.3, looks more condensed
with respect to s’ and has its peak slightly below the latter plot’s curve. The dif-
ferences between z” and z’ are even more pronounced, though, e.g., the shape of
2""’s histogram looks more “regular” than z”’s pendant. Hence, the approximation
of z”’s distribution, applying polynomial regression of degree 5, strongly resembles
the Erlang-k distribution, supposing k£ = 2. For similarity degrees above 0.35, peaks
of z"’s histogram are considerably less explicit than for z” or have effectively disap-
peared, as is the case for degrees above 0.6.

Matching 2/ Against s/

Figure 6.4 gives the scatter plot of our lower bound analysis. The strong bias towards
the upper region has become less articulate, though still clearly visible. Interestingly,
the increase of ratio 2/ : s/ for s/ > 0.15 still persists.

6.4.3 Statistical Significance

We conclude our experimental analysis noticing that without exact knowledge of how
much noise All Consuming’s “friend recommender” adds to our obtained results, we
expect the true correlation intensity between trust and interest similarity to reside
somewhere within our computed upper and lower bound.

Moreover, we investigated whether the increase of mean values of 2’ with respect
to s’, and z” with respect to s”, bears statistical significance or not. For the analyses
at hand, common parametrical one-factor ANOVA could not be applied to 2z’ and
s', and 2" and §”, likewise, for diverse reasons:

Gaussian distribution. The distributions of both samples have to be normal, even
though small departures may be accommodated. While s’ and s” exhibit the
latter Gaussian distribution property, 2’ and z” obviously do not.

Equal variances. Data transformation, e.g., logarithmic, probits, etc., might be an
option for z”, bearing traits of Erlang-2. However, ANOVA also demands
largely identical variances o?. Since 2z”’s variance is 5.33 times the variance of
s”, this criterion cannot be satisfied.
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Hence, owing to these two limitations, we opted for Kruskal-Wallis non-parametric
ANOVA [Siegel and Castellan, 1988], which does not make any assumptions with
respect to distribution and variance.

n Rank Sum Mean Rank
2 261 73702.0 284.56
s 261 60719.0 234.44
Kruskal-Wallis Statistic 14.52
P 0.0001

Table 6.1. Kruskal-Wallis ANOVA test results for the upper bound experiment

Table 6.1 shows result parameters obtained from analyzing the upper bound ex-
periment. Since value p is much smaller than 0.05, very high statistical significance
holds, thus refuting the hypothesis that fluctuations between medians of s’ and 2z’
were caused by mere random.

For the lower bound experiment, on the other hand, no statistical significance was
detected, indicated by large p and a low Kruskal-Wallis statistic being much smaller
than 1 (see Table 6.2).

6.4.4 Conclusion

Both experiments suggest that the mean similarity of trusting and trusted peers
exceeds the arbitrary user similarity. For the upper bound analysis, strong statistical
significance was discovered, which was not the case for its lower bound pendant.
However, assuming the true distribution curves to reside somewhere in between
these bounds, and taking into account that both 2z’ and z” exhibit larger mean
values than s’ and s”, respectively, the results we obtained bear strong indications
towards positive interactions between interpersonal trust and interest similarity.

6.5 Discussion and Outlook

In this chapter, we articulated our hypothesis that positive mutual interactions
between interpersonal trust and user similarity exist when the community’s trust
network is tightly bound to some particular application, e.g., reading books. Before
presenting an evaluation framework to conduct empirical analyses, we provided an
extensive literature survey on relevant socio-psychological research. We then applied
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n Rank Sum Mean Rank
2" 210 43685.0 210.02
s" 210 43051.0 206.98
Kruskal-Wallis Statistic 0.07
P 0.796

Table 6.2. Kruskal-Wallis ANOVA test results for the lower bound experiment

our evaluation method, using the taxonomy-driven similarity computation technique
presented in Chapter 3, to the All Consuming community.

We believe that our positive results will have substantial impact for ongoing re-
search in recommender systems, where discovering similar users is of paramount im-
portance. Decentralized approaches will especially benefit from trust network lever-
age. Hereby, the outstanding feature of trust networks lies in their ability to allow
for sensible prefiltering of like-minded peers and to increase the credibility of recom-
mendations. Arbitrary social networks, on the other hand, only allow for reducing
the computational complexity when composing neighborhoods.

Though backing our experiments with information involving several hundreds of
people, we believe that additional efforts studying trust-similarity interactions in
domains other than book-reading are required in order to further corroborate our
hypothesis. Unfortunately, at the time of this writing, the large-scale penetration
of trust networks into communities, particularly those where users are given the
opportunity to rate products, still has to take place.
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Chapter 7

Decentralized Recommender Systems

“In nature we never see anything isolated, but everything in connection
with something else [...]”

— Johann Wolfgang von Goethe (1749-1832)
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7.1 Introduction

Preceding chapters, particularly Chapter 3 and Chapter 5, have presented methods
and techniques that are, among other things, able to address specific issues of de-
centralized recommender systems. Moreover, Chapter 6 has shown that, to a certain
extent, trust implies similarity and thus becomes eligible as a tool for CF neigh-
borhood formation, which is generally performed by applying some rating-based or
attribute-based similarity measure (see Section 2.3.2).

In this chapter, we integrate our prior contributions into one coherent, decen-
tralized recommender framework, sufficing the criteria stated in Section 1.1.2, i.e.,
distributed data storage and centralized computation. The presented architecture
illustrates one sample approach, others are likewise conceivable and may represent
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equally appropriate solutions. Outstanding features of our method are the strong
focus on trust and the usage of taxonomy-driven similarity measures.

Trust networks allow for circumventing the complexity issue that those recom-
mender systems that operate in large decentralized settings are facing. Mind that
similarity-based neighborhood computation impersonates a severe bottleneck, owing
to the O(|A|?) time complexity when composing neighborhoods for all |A| mem-
bers part of the system. Hence, these approaches do not scale. On the other hand,
network-based propagation approaches, e.g., Appleseed or Advogato (see Chapter
5), necessitate partial graph exploration only and scale to arbitrary network sizes.
Second, the low rating profile overlap issue [Sarwar et al., 2000b] that large commu-
nities with effectively unconstrained product sets are confronted with, investigated
in detail by Massa and Bhattacharjee [2004] for the well-known Epinions commu-
nity (http://www.epinions.com), is addressed through taxonomy-driven similarity
computations (see Chapter 3).

Besides describing the make-up of our decentralized recommender framework, we
conduct empirical analyses and compare results with benchmarks from two cen-
tralized architectures, namely one purely content-based system, and the taxonomy-
driven filtering system proposed in Chapter 3.

Advocacy for Trust-based Neighborhood Formation

As stated above, we investigate social network structures in order to easily assemble
personalized neighborhoods for active users a;. To give an example of network-based
neighborhood formation, a;’s neighborhood may comprise exactly those peers being
closest in terms of link distance, necessitating simple breadth-first search instead of
O(]A]|) complexity, which is required for computing similarity measures between one
single a; and all other individuals in the system. More specifically, we exclusively
focus on trust relationships, motivated by reasons given below:

e Security and attack-resistance. Closed communities generally possess ef-
ficient means to control the user’s identity and penalize malevolent behav-
ior. However, decentralized systems cannot prevent deception and insincerity.
Spoofing and identity forging thus become facile to achieve and allow for luring
people into purchasing products which may provide some benefit for attackers
a, [Lam and Riedl, 2004; O’Mahony et al., 2004]. For instance, to accomplish
such attacks, agents a, simply have to copy victim a,’s rating profile and add
excellent ratings for products by they want to trick a, into buying. Owing to
high similarities between rating profiles of a, and a,, by’s probability of be-
ing proposed to a, quickly soars beyond competing products’ recommendation
likelihood. On the other hand, only proposing products from people the ac-
tive user deems most trustworthy inherently solves this issue, hence excluding
perturbations from unknown and malevolent agents from the outset.
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¢ Recommendation transparency. One of the major disadvantages of rec-
ommender systems relates to their lacking transparency, i.e., users would like
to understand why they were recommended particular goods [Herlocker et al.,
2000]. However, algorithmic clockworks of recommenders effectively resemble
black boxes. Hence, when proposing products from users based upon complex
similarity measures, most of these “neighbors” probably being unknown to the
active user, recommendations become difficult to follow. On the other hand,
recommendations from trustworthy people clearly exhibit higher acceptance
probability. Recall that trust metrics operate on naturally grown social net-
work structures while neighborhoods based upon interest similarity represent
pure artifacts, computed according to some obscure scheme.

e Correlation of trust and similarity. Sinha and Swearingen [2001] have
found that people tend to prefer receiving recommendations from people they
know and trust, i.e., friends and family-members, rather than from online rec-
ommender systems. Moreover, positive mutual impact of attitudinal similarity
on interpersonal attraction counts among one of the most reliable findings of
modern social psychology [Berscheid, 1998], backing the proverbial saying that
“birds of a feather flock together”. In Chapter 6, we have provided first em-
pirical evidence confirming the positive correlation between trust and interest
similarity.

e Mitigating the new-user cold-start problem. One major weakness that
CF systems are faced with is the so-called new-user cold-start problem [Mid-
dleton et al., 2002]: newbie members generally have issued few product ratings
only. Consequently, owing to common product-user matrix sparseness and low
profile overlap, appropriate similarity-based neighbors are difficult to find, en-
tailing poor recommendations. The whole process is self-destructive, for users
discontinue to use the recommender system before the latter reaches accept-
able performance. Trust networks alleviate cold-start issues by virtue of com-
paratively high network connectivity. Neighborhood formation hence becomes
practicable even for users that explicitly trust one person only, taking into
account an abundant transitive trust closure (see Section 7.3.1.1 for details).

Note that when computing neighborhoods based upon types of social relationships
other than trust, e.g., geographical proximity, acquaintanceship, etc., the benefits
given above may not become fully exploited.

7.2 Related Work

Decentralized recommenders have been proposed in the past already. Foner [1997,
1999] has been the first to conceive of decentralized recommender systems, pursu-
ing an agent-based approach to the matchmaking of like-minded peers. Similarity
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is determined by means of feature extraction in documents, e.g., electronic mails,
articles, and so forth. Olsson [1998, 2003] builds upon Foner’s work and proposes
another multi-agent system that addresses the issue of peers self-organizing into
similarity-based clusters without central control. In both systems, the amount of
messages routed through the network may prove problematic, creating a severe bot-
tleneck. Kinateder and Rothermel [2003] propose an architecture for reputation-
based matchmaking that is similar to Foner’s and Olsson’s approach. However, no
empirical evaluations have been provided so far.

Miller [2003] explores various matchmaking techniques known from research in
peer-to-peer networks, e.g., the Gnutella protocol for random discovery, Chord, and
transitive traversal. Similarities between peers are computed based upon item-based
and user-based CF. Hence, the sparsity issue is not part of Miller’s investigations.

A taxonomization of decentralized recommender architectures along various di-
mensions is given by Sarwar [2001].

Systems using trust for recommendation making are still rare. Mui et al. [2001]
propose collaborative sanctioning as suitable surrogate for collaborative filtering.
The idea is to make recommendations based on user reputation rather than user
similarity. Montaner [2003] uses trust rather than reputation' in his multi-agent
framework. Trust is regarded as direct, non-propagatable and a mere consequence
of similarity. Massa and Avesani [2004] present a trust network-based recommender
system, making use of simple propagation schemes. Initial results appear promis-
ing, though, at the time of this writing, their architecture still undergoes several
adaptations for decentralized scenarios.

7.3 Framework Components

The following subsections and paragraphs briefly outline our decentralized, trust-
based recommender system’s core constituents. The information model assumed
represents the union of the filtering model given in Section 3.3.1, and the trust model
from Section 5.2.2.1, renaming trust functions W;(a;) to t;(a;) for convenience and
ease of reading. Consequently, the underlying model features agents a; € A, products
b, € B, implicit ratings R; C B, taxonomy C and descriptors f : B — 2P, and
explicit trust functions t; : A — [—1, +1]*.

7.3.1 Trust-based Neighborhood Formation

The computation of trust-based neighborhoods is one pivotal pillar of our approach.
Clearly, neighborhoods are subjective, reflecting every agent a;’s very beliefs about
the accorded trustworthiness of immediate peers.

1See Section 5.2.1 for distinguishing both concepts from each other.
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Figure 7.1. Reach of direct trust versus transitive closure

7.3.1.1 Network Connectivity

However, as has been indicated before, trust functions ¢; assigning explicit trust rat-
ings are generally sparse. When also taking into account indirect trust relationships,
thus exploiting the “conditional transitivity” property of trust [Abdul-Rahman and
Hailes, 1997], the assembly of neighborhoods that contain M most trustworthy peers
becomes possible even for larger M, e.g., M > 50. Figure 7.1 backs our hypothesis,
analyzing the connectivity of 793 users from the All Consuming community (see Sec-
tion 3.4.1). The chart shows the number of users, indicated on the y-axis, who satisfy
the minimum neighborhood size criterion given along the z-axis. For instance, while
49 people have issued 15 or more direct trust statements, 374 users are able to reach
15 or more peers when also considering the transitive closure of trust relationships.
While the trust outdegree curve decays rapidly, the transitive closure curve’s fallout
decelerates drastically as the number of candidate persons drops below 400, thus
revealing the presence of one highly connected trust cluster (see Figure 7.2)2.

The above result relates to the classical theorem on random graphs [Erdds and
Rényi, 1959].> Therein, Erdés and Rényi have proved that in large graphs G =

2The network has been visualized with our trust testbed viewer, presented in Section 5.3.2.9.

3Watts and Strogatz [1998] have shown that social networks exhibit diverse “small-world” prop-
erties that make them different from random graphs, such as high clustering coefficients C(p).
Barabdsi and Albert [1999] have investigated further distinctive features, such as the scale-free
nature of social networks, which is not present in random graphs. Even though, the afore-
mentioned theorem holds for random graphs and social networks alike.
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Figure 7.2. All Consuming’s largest trust cluster

(V, E), assuming E randomly assigned, the probability of getting a single gigantic
component jumps from zero to one as E/V increases beyond the critical value 0.5.
However, Erdos and Rényi have supposed undirected graphs, in contrast to our
assumption of directed trust relationships.

Massa and Bhattacharjee [2004] have conducted experiments on top of the well-
known Epinions rating community, revealing that “trust-aware techniques can pro-
duce trust scores for very high numbers of peers”. Neighborhood formation thus
becomes facile to achieve when considering reachability of nodes via trust paths.

7.3.1.2 Trust Propagation Models

Trust-based neighborhood computation for a;, using those “trust-aware techniques”
mentioned by Massa, implies deriving trust values for peers a; not directly trusted
by a;, but one of the persons the latter agent trusts directly or indirectly. The trust
network’s high connectivity allows assembling top-M trusted neighborhoods with
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potentially large M.

Numerous scalar metrics [Beth et al., 1994; Levien and Aiken, 1998| have been
proposed for computing trust between two given individuals a; and a;. We hereby
denote computed trust weights by ¢¢(a;) as opposed to explicit trust ¢;(a;). However,
our approach requires metrics that compute top-M nearest trust neighbors, and not
evaluate trust values for any two given agents. We hence opt for local group trust
metrics (see Chapter 5), e.g., Advogato and Appleseed. Advogato, Levien’s well-
known local group trust metric, can only make boolean decisions with respect to
trustworthiness, simply classifying agents into trusted and non-trusted ones.

Appleseed, on the other hand, allows more fine-grained analysis, assigning contin-
uous trust weights for peers within trust computation range. Rankings thus become
feasible. The latter metric operates on partial trust graph information, exploring the
social network within predefined ranges only and allowing the neighborhood forma-
tion process to retain scalability. High ranks are accorded to trustworthy peers, i.e.,
those agents which are largely trusted by others with high trustworthiness. These
ranks are used later on for selecting agents deemed suitable for making recommen-
dations.

7.3.2 Measuring User Similarity and Product-User Relevance

Trust allows selecting peers with overall above-average interest similarity (see Chap-
ter 6). However, for each active user a;, some highly trusted peers a; having com-
pletely opposed interests generally exist. The proposition that interpersonal attrac-
tion, and hence trust, implies attitudinal similarity does not always hold true. Sup-
plementary filtering, preferably content-based, e.g., considering a;’s major fields of
interest, thus becomes indispensable.

For this purpose, we apply taxonomy-driven methods to likewise compute user
similarity c¢(a;, a;) and product-user relevance c(a;, by), according to the computa-
tional schemes given in Section 3.3.3.1 and 3.3.4, respectively. These metrics have
been designed with decentralized scenarios in mind, for common filtering metrics
based upon rating vector similarity (see Section 2.3.2) tend to fail in these settings
[Massa and Bhattacharjee, 2004], owing to information sparseness implied by virtu-
ally unconstrained product sets and sparse, largely implicit, rating information.

7.3.3 Recommendation Generation

Candidate recommendations of products b, for the active user a; are taken from the
set of products that a;’s top-M neighbors have implicitly rated, discounting those
products that a; already knows. We obtain set B; of candidate products. Next, all
br € B; need to be weighted according to their relevance for a;. Relevance w;(by)
hereby depends on two factors:
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e Computed trust weights t{(a;) of peers a; mentioning b;. Trust-based
neighborhood formation supersedes finding nearest neighbors based upon in-
terest similarity. Likewise, similarity ranks c(a;,a;) become substituted by
trust weights t§(a;) for computing the predicted relevance of a; for a;.

e Content-based relevance c;(a;, by) of product by, for user a;. Besides mere
trustworthiness of peers a; rating product by, the content-based relevance of by,
for the active user a; is likewise important. For example, one may consider the
situation where even close friends recommend products not fitting our interest
profile at all.

We then define relevance w;(bg) of product by for the active user a; as follows,
borrowing from Equation 3.6:

o), )

7 b — 3
wilbe) A ()] + Tn

(7.1)

where

Al<bk) = {CL]' S prox(ai) ‘ by € R]}

and
q=(L.0+[f(w) - I'r)

In accordance with Section 3.3.4, prox(a;) denotes a;’s neighborhood, I'r and Tg
represent those fine-tuning parameters introduced therein. Function p(a;, a;) gives
a;’s significance for a;. In Equation 3.6, the latter parameter has been instantiated
with the taxonomy-based user-user similarity weight c(a;, a;).

Since we now suppose trust-based neighborhoods, p(a;, a;) := t$(a;) holds.

7.4 Offline Experiments and Evaluation

The following sections present empirical results obtained from evaluating our trust-
based approach for decentralized social filtering. Again, we gathered information
from the All Consuming online community featuring both trust network informa-
tion and product rating data. Our analysis mainly focused on pinpointing the impact
that latent information kept within the trust network, namely positive interactions
between interpersonal trust and attitudinal similarity (see Chapter 6), may have on
recommendation quality. We performed empirical offline evaluations, applying met-
rics introduced and used before, e.g., precision/recall according to Sarwar’s definition
[Sarwar et al., 2000b], and Breese score (see Section 2.4.1.2).
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7.4.1 Dataset Acquisition

Currently, few online communities provide both trust and product rating informa-
tion. To our best knowledge, Epinions and All Consuming count among the only
prospective candidates. Unfortunately, Epinions has two major drawbacks that are
highly pernicious for our purposes. First, owing to an immense product range diver-
sity, most ratable products lack content meta-information. Taxonomy-based filtering
thus becomes unfeasible. Second, rating information sparseness is beyond measure.
For instance, Massa and Bhattacharjee [2004] have pointed out that only 8.34% of
all ratable products have 10 or more reviews.

We therefore opted for the All Consuming community, which has its product range
thoroughly confined to the domain of books. For the experiments at hand, we per-
formed a third crawl, following those described in Chapter 6 and 3. Launched on May
10, 2004, the community crawl garnered information about 3,441 users, mentioning
10, 031 distinct book titles in 15,862 implicit book ratings. The accompanying trust
network consisted of 4,282 links. For 9,374 of all 10,031 books, 31,157 descriptors
pointing to Amazon.com’s book taxonomy were found. Book ratings referring to
one of those 6,55% of books not having valid taxonomic content descriptors were
discarded.

One can see that using the All Consuming dataset only partially exploits func-
tionalities our trust-based recommender system is able to unfold. For instance, the
Appleseed trust metric has been conceived with continuous trust and distrust state-
ments in mind, whereas All Consuming only offers statements of full trust.

7.4.2 Evaluation Framework

The principal objective of our evaluation was to match the trust-based neighborhood
formation scheme against other, more common approaches. Hereby, all benchmark
systems were devised according to the same algorithmic clockwork, i.e., based upon
the recommendation generation framework defined in Equation 7.1. Their only dif-
ference refers to the kind of neighborhood formation, depending on function p(a;, a;),
which identifies the relevance of peers a; for the active user a;. Besides the trust-
based recommender described in Section 7.3.3, the following two recommender se-
tups have been used for experimentation:

e Advanced hybrid approach. Hybrid filtering likewise exploits content-based
and collaborative filtering facilities. Designed to eliminate intrinsic drawbacks
of both mentioned types, this approach currently represents the most promis-
ing paradigm for crafting state-of-the-art recommender systems. The hybrid
recommender we propose features similarity-based neighborhood formation,
requiring p(a;, a;) := c(a;, a;). Consequently, aside from diversification fac-
tor O, the approach is identical to the taxonomy-driven filtering framework
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presented in Chapter 3. Therein, we have also substantiated its superior per-
formance over common benchmark recommender systems (see Section 3.4.2.4).
However, note that this recommender’s applicability is largely restricted to
centralized scenarios only, necessitating similarity computations c(a;, a;) for
all pairs (a;,a;) € A x A.

e Purely content-based filter. Purely content-driven recommender systems
tgnore aspects of collaboration among peers and focus on content-based in-
formation only. We simulate one such recommender by supposing p(a;, a;) =
rndjo1)(as, a;), where function rndp ;) : A x A — [0, 1] randomly assigns rele-
vance weights to pairs of agents. Neighborhood formation thus amounts to an
arbitrary sampling of users, devoid of meaningful similarity criteria. Discard-
ing collaboration, generated recommendations are not subject to mere random,
though. They rather depend on product features, i.e., measure ¢;(a;, by.), only.
Hence this recommender’s purely content-based nature.

Past efforts have shown that intelligent hybrid approaches tend to outperform
purely content-based ones [Huang et al., 2002; Pazzani, 1999]. We are particularly
interested in beneficial ramifications resulting from trust-based neighborhood forma-
tion as opposed to random neighborhoods. Supposing that latent semantic informa-
tion about interpersonal trust and its positive association with attitudinal similarity,
endogenous to the very network, has forged sufficiently strong bonds, we conjecture
that the overall recommendation quality of our trust-based approach surpasses fil-
tering based upon content only.

7.4.2.1 Experiment Setup

The evaluation framework we established intends to compare the wutility of recom-
mendation lists generated by all three recommenders and roughly complies with the
framework proposed in Chapter 3. Measurement is achieved by applying precision,
recall, and Breese’s half-life utility metric (see Section 2.4.1.2).

For cross-validation, we selected all users a; with more than five ratings and dis-
carded those having fewer, owing to the fact that reasonable recommendations are
beyond feasibility for these cases. Moreover, users having low trust connectivity were
likewise discounted. Next, we applied 5-folding, performing 80/20 splits of every user
a;’s implicit ratings R; into five pairs of training sets RY and test sets T7".

7.4.2.2 Parameterization

For our first experiment, neighborhood formation size was set to M = 20, and we
provided top-20 recommendations for each active user’s training set RY. Proximity
between profiles, based upon R{ and the original ratings R; of all other agents a;,
was computed anew for each training set R; of a;.
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Figure 7.3. Precision and recall, investigating neighborhood formation

In order to promote the impact that collaboration may have on eventual rec-
ommendations, we adopted Tr = 2.25, thus rewarding books occurring frequently
in ratings R; of the active user @;’s immediate neighborhood. For content-based
filtering, this parameter exerts marginal influence only. Moreover, we assumed prop-
agation factor k = 0.75, and topic reward I'r = 0.1.

7.4.3 Experiments

We conducted three diverse experiments. The first compares the effects of neigh-
borhood formation on recommendation quality when assuming raters with varying
numbers of ratings. The second investigates neighborhood size sensitivity for all
three candidate schemes, while the third measures overlap of neighborhoods.

7.4.3.1 Neighborhood Formation Impact

For the first experiment, performance was analyzed by computing unweighted pre-
cision and recall (see Figure 7.3), and Breese score with half-life &« = 5 and o = 10
(see Figure 7.4). For each indicated chart, the minimum numbers of ratings that
users were required to have issued in order to be considered for recommendation
generation and evaluation are expressed by the horizontal axis. Since all users with
fewer than five ratings were ignored from the outset, performance evaluations start
with all users having at least five ratings. Clearly, larger x-coordinates imply less
agents considered for measurement.

Remarkably, by looking at the differences between the curves, more important for
our analysis than the very shapes, all four charts confirm our principal hypothesis
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Figure 7.4. Breese score with o € {5, 10}, investigating neighborhood formation

that hybrid approaches outperform purely content-based ones. Hence, promoting
products that like-minded agents have voted for increases recommendation quality
considerably. Next, we observe that our trust-based recommender significantly ex-
ceeds its purely content-based counterpart, but cannot reach the hybrid method’s
superior score. These results again corroborate our assumption that trust networks
contain latent knowledge that reflects interest similarity between trusted agents.
Clearly, trust-based neighborhood formation can only approzimate neighborhoods
assembled by means of similarity, which therefore serves as upper bound definition.
However, recall that similarity-based neighborhood formation exhibits poor scalabil-
ity, owing to its O(]A|?) complexity that arises from computing proximity measures
c(a;, a;) for all pairs (a;,a;) € A x A. Hence, this neighborhood formation scheme
is not an option for decentralized recommender system infrastructures.

Trust-based clique formation, on the other hand, does scale and lends itself well to
decentralized settings. Moreover, it bears several welcome features that similarity-
based neighborhood formation does not (see Section 7.1).

The following few paragraphs investigate the shapes of the curves we obtained in a
more fine-grained fashion. As a matter of fact, the experiment at hand corroborates
our hypothesis that trust networks, in contrast to arbitrary connections between
agents, bear inherent information about similarity that improves recommendation
quality.

Precision

Interestingly, precision (see Figure 7.3) steadily increases even for content-based
filtering. The reason for this phenomenon lies in the very nature of precision: for
users a; with test sets 7" smaller than the number | P#| of recommendations received,
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there is not even a chance of achieving 100% precision (see Section 3.4.2.4).

Recall

Degradation takes place for all curves when increasing x, an effect that is particu-
larly pronounced for the hybrid recommender. Sample inspections of the All Con-
suming dataset suggest that infrequent raters favor bestsellers and popular books.
Consequently, recommending popular books, promoted by large factor T = 2.25,
represents an appropriate guess for that particular type of users. However, when
considering users possessing more refined profiles, simple “cherry picking” [Herlocker
et al., 2004] does not apply anymore.

Breese Score

Scores for half-life « = 5 and a = 10 (see Figure 7.4) only exhibit marginal variances
with respect to unweighted recall. However, degradation for increasing x becomes
less pronounced when supposing lower o, i.e., @ = 10 and eventually o = 5.

7.4.3.2 Neighborhood Size Sensitivity

The second experiment analyzes the impact of the neighborhood’s size on evaluation
metrics. Note that we omitted charts for weighted recall, owing to minor deviations

4Recall that unweighted recall equates Breese score with o = oo.
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from unweighted recall only. Figure 7.5 indicates scores for precision and recall for
increasing neighborhood size |M| along the horizontal axis.

Both charts exhibit similar tendencies for each neighborhood formation scheme.
As it comes to similarity-based neighborhood formation, the performance of the
hybrid approach steadily increases at first. Upon reaching its peak at |M| = 25,
further increasing neighborhood size |M| does not entail any gains in precision and
recall anymore. This result well aligns with Sarwar’s investigations for baseline col-
laborative filtering techniques [Sarwar et al., 2001]. Undergoing slight downward
movements between |M| = 10 and |M| = 15, the content-based scheme’s perfor-
mance curve catches up softly. Basically, increasing the neighborhood size for the
content-based filter equates to offering more candidate products® and easing “cherry-
picking” [Herlocker et al., 2004] by virtue of large YT = 2.25.

In contrast to both other techniques, the trust-based approach shows compar-
atively insensitive to increasing neighborhood size |M|. As a matter of fact, its
performance only marginally improves. We attribute this observation to trust’s “con-
ditional transitivity” [Abdul-Rahman and Hailes, 1997] property and Huang’s in-
vestigations on transitive associations for collaborative filtering [Huang et al., 2004]:
exploitation of transitive trust relationships, i.e., opinions of friends of friends, only
works to a certain extent. However, with increasing network distance from the trust
source, these peers do not satisfactorily reflect interest similarity anymore and thus
represent weak predictors only. Besides empirical evidence of a positive correlation
between interpersonal trust and interest similarity, as well as its positive impact on
recommendation quality, we regard this aspect as one of the most important findings
of our study at hand.

7.4.3.3 Neighborhood Overlap Analysis

Eventually, we compared neighborhoods formed by those three techniques. For any
unordered pair {p, ¢} of the three neighborhood formation techniques, we measured
the number of agents a; occurring in both x-sized neighborhoods of every active user
a; € A, and normalized the figure by clique size = and the number of agents |A|:

| prox, (a;) N proxg(a;)|
s"({p,q}) = ZaieA A= (7:2)

Figure 7.6 shows all three plots of s*({p,q}),x € [0,50]. All curves exhibit ten-
dencies of approximatively linear rise for increasing neighborhood size x, for the
probability of overlap rises when neighborhoods become larger. Consequently, sup-
posing clique size = = |A|, 100% overlap holds.

As expected, both curves displaying overlap with randomly formed neighborhoods
only marginally differ from each other. On the other hand, the overlap between

5Note that only products rated by neighbors are considered for recommendation.
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Figure 7.6. Overlap of z-sized neighborhoods for all formation scheme pairs

trust-based and similarity-based cliques exceeds these two baseline plots, showing
that trust-based and similarity-based neighborhoods are considerably more similar
to each other than pure random would allow. The above experiment again strongly
corroborates our hypothesis that interpersonal trust and attitudinal similarity cor-
relate.

7.5 Conclusion and Outlook

This chapter introduced an approach to exploit trust networks for product recom-
mending, making use of techniques and evidence stemming from preceding chap-
ters of this work. Superseding common collaborative approaches with trust-based
filtering becomes vital when envisaging decentralized recommender system infras-
tructures, lacking central authorities.

We devised a new hybrid recommender architecture, based on the framework pre-
sented in Chapter 3, that makes use of trust-based neighborhood formation and
taxonomy-driven selection of suitable products. Moreover, we provided empirical
evidence to show that network structures emanating from relationships of inter-
personal trust, in contrast to random associations between users, exhibit traits of
interest similarity which significantly improve recommendation quality. However,
we also found that trust’s tight coupling with similarity becomes lost when overly
exploiting transitive relationships.

For our experiments, we used data from the All Consuming book reading commu-
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nity which offers both rating and trust information about its users. Note that most
reputation and rating systems operating upon trust models only use synthesized
rather than real trust data, therefore allowing largely limited analysis of trust se-
mantics only. However, we would like to base our investigations upon richer datasets
in order to make our results more reliable. Unfortunately, few communities currently
exist that offer accessible bulk information about both trust relationships and prod-
uct rating data of its users. We expect this situation to change within the next years
to come, owing to the steadily increasing public interest in trust networks, which
is particularly promoted by the advent of weblogs and the Semantic Web. In this
area, i.e., weblogs and the Semantic Web, we also see the main applicability of our
proposed architecture. As the below paragraph demonstrates, current developments
and trends already point into the right direction, providing an infrastructure that
allows to easily leverage personal, decentralized product recommendation services
into the Web.

Deployment Scenario

Referring to the information model the envisioned decentralized recommender op-
erates upon, the model’s single components can be instantiated as follows:

e Trust networks. FOAF (see Section 1.2) defines machine-readable home-
pages based upon RDF ¢ and allows weaving acquaintance networks. Golbeck
et al. [2003] have proposed some modifications making FOAF support “real”
trust relationships instead of mere acquaintanceship.

e Rating information. Moreover, FOAF networks seamlessly integrate with
so-called “weblogs”, which are steadily gaining momentum. These personal-
ized online diaries are especially valuable with respect to product rating in-
formation. For instance, some crawlers extract certain hyperlinks from web-
logs and analyze their makeup and content. Those links that refer to product
pages from large catalogs like Amazon.com count as implicit votes for these
goods. Mappings between hyperlinks and some sort of unique identifier are re-
quired for diverse catalogs, though. Unique identifiers exist for some product
groups like books, which are given International Standard Book Numbers, i.e.,
ISBNs. Efforts to enhance weblogs with explicit, machine-readable rating in-
formation have also been proposed and are becoming increasingly popular. For
instance, BLAM! (http://www.pmbrowser.info/hublog/) allows creating book
ratings and helps embedding these into machine-readable weblogs.

e Classification taxonomies. Besides user-centric information, i.e., agent a;’s
trust relationships ¢; and product ratings R;, taxonomies for product classifi-
cation play an important role within our approach. Luckily, these taxonomies
exist for certain domains. Amazon.com defines an extensive, fine-grained and

6See http://www.ws.org/RDF/ for specifications of the RDF standard.

122



7.5 Conclusion and Outlook

deeply-nested taxonomy for books, containing thousands of topics. More im-
portant, Amazon.com provides books with subject descriptors referring to the
latter taxonomy. Similar taxonomies exist for DVDs, CDs, videos, and apparel,
to name some.

Standardization efforts for the classification of diverse kinds of consumer goods
are channelled through the United Nations Standard Products and Services
Code project (http://www.unspsc.org/). However, the UNSPSC’s taxonomy
provides much less information and nesting than, for instance, Amazon.com’s
taxonomy for books.

Eventually, we come to conclude that the information infrastructure required for
the decentralized recommender approach described in this chapter may soon turn
into reality, fostering future research on information filtering through social networks
and yielding valuable large-scale evidence.
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Chapter 8

Conclusion

“The end we aim at must be known, before the way can be made.”

— Jean Paul (1763-1825)
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8.1 Summary

Undoubtedly, recommender systems are becoming increasingly popular, owing to
their versatility and their ability to reduce complexity for the human user. Cur-
rent research greatly benefits from cross-fertilization, including results from other
disciplines like economics (see, e.g., Sénécal [2003]), and behavioral sciences on the
verge of HCI (see, e.g., [Swearingen and Sinha, 2001; Jensen et al., 2002]). The
integration of interdisciplinary evidence also represents an important ingredient of
this thesis, and our research on trust propagation in social networks expands the
current research focus into new directions, namely that of the emerging science of
social networks [Newman, 2003], and social psychology, investigating semantics of
interpersonal trust.

Our research and contributions made derive from issues that appear when trans-
planting centralized recommender systems, serving well-defined, closed communities,
into anarchical large-scale networks, e.g., the Semantic Web, the Grid, peer-to-peer
and ad-hoc networks. These issues were outlined in Chapter 1. We then devised ap-
proaches to tackle these single issues, e.g., neighborhood formation based on propa-
gation of trust in social networks in order to address the credibility and scalability
problem, etc., amalgamating them into one sample framework for decentralized rec-
ommendation making. These contributions fall into mainly two categories, both
being substantially different from each other:
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e Information Filtering. The procedure of taxonomy-driven profile creation,
presented in Chapter 3, lies at the heart of our advanced filtering approach
and has been designed with information sparseness in mind. We integrated
taxonomy-driven similarity metrics into a new framework for making product
recommendations and provided comparisons with benchmark approaches.
Moreover, we distilled the topic diversification technique, an integral part of
the afore-mentioned framework, and applied this particular procedure on top
of conventional collaborative filtering systems in order to make top-N rec-
ommendation lists more meaningful (see Chapter 4). An extensive large-scale
study involving more than 2, 100 human subjects and offline analyses were con-
ducted, investigating the effects of incrementally applying topic diversification
to lists generated by item-based CF and user-based CF'. In addition, the study
delivered a first, empirically backed argument supporting the hypothesis that
“accuracy does not tell the whole story” [Cosley et al., 2002] and that there
are more components to user satisfaction than pure accuracy. !

e Computational Trust. Our contributions in the field of trust and trust net-

works are twofold. First we introduced a new trust metric, Appleseed, which
is based on spreading activation models [Quillian, 1968] known from cognitive
psychology, and blends traits of PageRank [Page et al., 1998] and maximum
network flow [Ford and Fulkerson, 1962]. Appleseed makes inferences in an
intuitive fashion, respecting subtle semantic differences between trust and dis-
trust, and scales to any network size. We devised Appleseed with neighborhood
formation for CF in decentralized scenarios in mind.
To this end, so that trust-based neighborhoods are meaningful for CF ap-
plications, we conceived an evaluation framework to investigate whether in-
terpersonal trust and interest similarity correlate, i.e., if users trusting each
other were on average more similar than mere random would foretell. Again,
similarity was measured by applying our taxonomy-driven similarity metric
(see Chapter 3). Results obtained from an offline study on All Consuming
(http://www.allconsuming.net) indicated that positive interactions exist (see
Chapter 6), supporting the proverbial saying that “birds of a feather flock
together” and levelling the ground for the application of trust-based neighbor-
hood formation in CF systems.

Eventually, those single building bricks were put together to build a trust-based,
decentralized recommender system (see Chapter 7) able to address those issues out-
lined in Chapter 1. Note that the presented decentralized recommender’s design
constitutes one possible option among various others, giving opportunities for fu-
ture research.

1Some researchers, e.g., Herlocker et al. [2004] and Hayes et al. [2002], have raised this concern
before, but have not provided any evidence whatsoever to substantiate their assertion.
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8.2 Discussion and QOutlook

As a matter of fact, we see the underlying thesis’ foremost strength in its versatility
and variety, making contributions in diverse fields. These single contributions are
not necessarily confined to the recommender system universe, but also extend to
other research fields. For instance, Brosowski [2004] investigates the application of
Appleseed for trust-based spam filtering in electronic mails, Nejdl [2004] considers
our trust metric for distributed Web search infrastructures, and Chirita et al. [2004]
discuss the utility of Appleseed for personalized reputation management in peer-
to-peer networks. On the other hand, the integration of all these diverse mosaic
stones into a coherent framework for decentralized information filtering, exploiting
mutual synergies, gives the broader contert and provides the component glue of this
work’s various facets. The framework itself is by no means complete, though, which
is indicated by the adverb “towards” in the underlying thesis’ title.

In fact, research on trust network-based recommender systems has just begun,
and now starts to attract increased research interest [Massa and Avesani, 2004;
Bonhard, 2004, 2005; O’Donovan and Smyth, 2005; Papagelis et al., 2005]. Except
for [Massa and Avesani, 2004], all of these works are still in their infancies and still
have to prove their viability. An aggravating factor for decentralized, trust-based
recommender systems, at the time of this writing, is certainly the fact that little
data is currently available to base experiments upon. Most datasets either feature
product ratings or trust networks. We expect this situation to drastically change
in the near future, owing to the steadily increasing popularity of social networking
applications [Pescovitz, 2003; Fitzgerald, 2004].

Hence, the road ahead remains vague and the direction unclear. But the journey
will be an interesting and revealing one, full of marvels and curiosities our minds did
not anticipate. This thesis has already set some important landmarks and made bold
strides into the direction of more social and network-oriented recommender systems.
Numerous other landmarks will follow in the near future and shape an exciting new
landscape.
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