
i

Reference: CU/CFC/PROJECT/4 – NORRIS

CRANFIELD UNIVERSITY

DEFENCE COLLEGE OF MANAGEMENT AND TECHNOLOGY

DEPARTMENT OF INFORMATICS AND SENSORS

MSc THESIS

Academic Year 2008-2009

Peter Norris BSc (Hons), MBCS

THE INTERNAL STRUCTURE OF THE WINDOWS REGISTRY

Supervisor: Professor AJ Sammes

February 2009

This thesis is submitted in partial fulfilment of the requirements for the Degree of
Master of Science.

© Cranfield University 2009. All rights reserved. No part of this publication may

be reproduced without the written permission of the copyright owner.

ii

iii

DISTRIBUTION

EXTERNAL

Peter Norris (Student) 2 Hard

INTERNAL

Prof AJ Sammes (Supervisor) 1 Hard

DCMT Library 2 Hard, 1 Soft

iv

v

EXECUTIVE SUMMARY

THE INTERNAL STRUCTURE OF THE WINDOWS REGISTRY

The Windows Registry is a vital source of Forensic information about the

current state of a Windows computer and also about events which have

happened on the computer.

Fragments of the Registry can be found in other than the Registry such as in

the pagefile, unallocated or slack space in the file system or in memory. These

fragments can in theory be used to rebuild a damaged Registry file or to

reconstruct the previous state of a Registry file. They can also stand on their

own as items of evidence.

In more recent versions of the Windows Operating System the Registry Keys

contain a Last Written date and time. This is particularly evidentially valuable as

it can contribute to the development of a timeline of activity on the computer.

In order to find fragments of Registry Keys it is necessary to understand the

structure of the Registry and of the Keys that it consists of down to the level of

individual bits and bytes.

This project primarily aims to understand the structure of the Registry Files and

other parts of the Registry and to do so in ways that are academically sound

and which will hence provide a firm basis for any forensic examinations.

A secondary aim is to provide ways of analysing fragments of Registry which

might be found in other than the Registry files such as, for example, unallocated

space in the file system.

vi

vii

INFORMATIVE ABSTRACT

1. Originator’s Report number. CU/CFC/PROJECT/4 – NORRIS

2. Originator’s Name & Location. Peter Norris

Defence College of Management and Technology, SHRIVENHAM, Swindon,
Wiltshire, SN6 8LA.

3. MOD Contract Number & Period Covered. Not Applicable

4. Sponsor’s Name & Location. Not Applicable

5. Report Classification & Caveats
on use.

UNCLASSIFIED – None

6. Date Written. February 2009
 Pagination. N/A
 References. DCMT Library

7a. Report Title.

The internal structure of the Windows Registry

7b. Translation/Conference Details.

Prepared for number 4 Forensic Computing Course Project.

7c. Title Classification. UNCLASSIFIED

8. Author. Peter Norris BSc (Hons) MBCS

9. Descriptors/keywords. Forensic Computing, Windows Registry, Key,
Value, hbin, regf

10a. Abstract. Fragments of the Windows Registry can often be found in
pagefiles, unused space in the file system and in memory. This project aims first
of all to understand in detail the structure of the Registry Files and so of these
fragments. A secondary purpose is to attempt to find ways of identifying and
recovering Registry fragments in a forensically sound way.

10b. Abstract Classification. UNCLASSIFIED

viii

ix

ACKNOWLEDGEMENTS

I am grateful for and acknowledge the help and encouragement given to me by
the following and others.

Professor AJ Sammes

Marc Kirby

Lindsey Gilles

Lindy Sheppard

Professor Brian Jenkinson

Professor Rob Witty

Chris Hargreaves

Jim Gordon

Matt Lacey

Jolanta Thomassen

Adam Clark

Special thanks is due to Tony Sammes whose patient, relevant and well judged
support and guidance have made a mountain of difference. Without his help I
could not have achieved as much as I have.

Thanks also to Brian Jenkinson whose original idea for this project it was and to
Adam Clark for having the patience to be my proof-reader and for having made
so many suggestions for improving the writing.

x

xi

Contents

CHAPTER 1 – INTRODUCTION..1

1.1 PURPOSE OF PROJECT...1
1.2 OVERALL DIRECTION OF PROJECT ..2
1.3 MANAGEMENT OF THE PROJECT...2
1.4 AIM AND SCOPE ...3
1.5 REPORT STRUCTURE ..4

CHAPTER 2 – LITERATURE SEARCH..5

2.1 PURPOSE OF LITERATURE SEARCH...5
2.2 SOURCES ..5
2.3 ANONYMITY...5
2.4 ROOT SOURCES ..6
2.5 LEARNING PERL ...6
2.6 JOURNALS AND OTHER ACADEMIC SOURCES ...7
2.7 NON-ACADEMIC SOURCES ...7
2.7.1 BOOKS...8
2.7.2 INTERNET SOURCES OF INFORMATION ONLY ...8
2.7.2.1 WINREG.TXT ..8
2.7.2.2 BEGINNING TO SEE THE LIGHT ..8
2.7.2.3 PROBERT ..9
2.7.2.4 MICROSOFT ..9
2.7.2.5 WINDOWS IR ..9
2.7.2.6 PUSH THE RED BUTTON ..9
2.7.3 OPEN SOURCE OPERATING SYSTEM PROJECTS..10
2.7.3.1 WINE...11
2.7.3.2 SAMBA ...11
2.7.3.3 REACTOS ...11
2.7.4 OPEN SOURCE TOOLS ..12
2.7.4.1 CREDDUMP ..12
2.7.4.2 BKHIVE AND SAMDUMP2 PROGRAMS ...12
2.7.4.3 REGLOOKUP PROGRAM ..13
2.7.4.4 OFFLINE NT PASSWORD & REGISTRY EDITOR PROGRAM ..13
2.7.4.5 PERL PARSE:WIN32REGISTRY MODULE...13
2.7.4.6 DOSREG ..15
2.7.4.7 REGVIEW.C (DOLAN-GAVITT) ..15
2.7.4.8 REGVIEW.C (WINDOWS CE) ...15
2.7.4.9 REGUTILS...16
2.7.5 OTHER SOURCES ...16
2.7.5.1 ADVANCED FORENSICS COURSE...16
2.7.5.2 OTHER RESEARCHERS ..16
2.8 REGISTRY STRUCTURE QUICK VIEW ..16
2.9 SUMMARY ..18

CHAPTER 3 - METHODS..19

3.1 DATA COLLECTION ..19
3.1.1 REGISTRY FILES ..19
3.1.2 REGISTRY FILE COLLECTION METHOD ...22
3.1.3 DISK IMAGES...23
3.2 STANDARD TOOLS ...23
3.2.1 WINHEX..24
3.2.2 REGEDIT ...24
3.2.3 WINDBG..24

xii

3.3 SPECIAL TOOLS ..25
3.3.1 FILTER SYMBOLS VBSCRIPT ...25
3.3.2 HEX2BINARY PROGRAM ...25
3.3.3 HEX2SID VBSCRIPT ...26
3.3.4 REGHOOVER AND HOOVERLOAD PROGRAMS ...26
3.3.5 REGHOOVER DATABASE ...27
3.3.6 BULKHOOVER AND BULKHOOVER2 SCRIPTS ..27
3.3.7 DAILY ANALYSIS CYCLE...28
3.3.8 PRINTSCHEMA SCRIPT...28
3.3.9 OTHER SCRIPTS AND PROGRAMS...29
3.3.10 DOCUMENTING SOURCE CODE AND SCRIPTS...29
3.4 IN MEMORY EXAMINATIONS..29
3.4.1 DISPLAYING KERNEL STRUCTURES IN MEMORY ...30
3.4.2 DISCOVERING KERNEL STRUCTURES ..30
3.4.3 THE !REG EXTENSION..30
3.4.4 OTHER DEBUGGING COMMANDS...30
3.5 CODE EXAMINATION..31
3.6 RECORD TEMPLATES..32
3.7 VISIO DIAGRAMS ...32
3.8 ANOMALY RESOLUTION...32
3.9 SUMMARY ..33

CHAPTER 4 – EXPERIMENTS ..35

4.1 EXAMINING PARSE-WIN32REGISTRY ..35
4.2 TEMPLATE SHEETS...36
4.3 RECORD STRUCTURES..38
4.4 HBIN STRUCTURE ...42
4.5 MAKING TEST REGISTRY FILES..43
4.6 THE REGISTRY IN MEMORY ...44
4.7 THE STRUCTURE OF THE BASE BLOCK ...44
4.8 BASE BLOCK VALUES...45
4.8.1 VERSION NUMBER...45
4.8.2 TYPE AND FORMAT ...46
4.8.3 SEQUENCE NUMBERS ..46
4.8.4 ROOTCELL ..47
4.8.5 LENGTH...47
4.8.6 OTHER BASEBLOCK VALUES ..47
4.9 REGISTRY FILE SIZES ...47
4.10 THE HIVE LINKED LIST ..48
4.11 THE _CM_KEY_NODE STRUCTURE...49
4.12 THE _CM_KEY_VALUE STRUCTURE ..51
4.13 THE _CM_KEY_INDEX STRUCTURE ...51
4.14 THE _CM_BIG_DATA STRUCTURE ..52
4.15 THE _CM_KEY_SECURITY STRUCTURE ..52
4.16 REGISTRY VALUES TYPES..53
4.17 NAVIGATING REGISTRY STRUCTURES IN MEMORY..55
4.17.1 FINDING HBINS – SMALL HIVE ..58
4.17.2 FINDING HBINS – LARGE HIVE ..58
4.17.3 FINDING HBINS – LARGE HBINS ..58
4.17.4 FINDING HBINS – ANOTHER WAY ...58
4.17.5 BIN ADDRESS FLAG VALUES...59
4.18 VERIFYING ACL AND ACE VALUES...60
4.18.1 PREPARATION..60
4.18.2 PERMISSIONS SETTINGS...60
4.18.3 ACE INHERITANCE SETTINGS ...61
4.18.4 SECURITY DESCRIPTOR INHERITANCE SETTINGS...62
4.19 THE REGISTRY NAMESPACE...62

xiii

4.20 KEY NODE FLAG VALUES ...63
4.21 EXTRACTING THE REGISTRY HIVE FROM MEMORY..65
4.22 SYMBOLIC LINKS ...67
4.23 KEY NODE PARENT VALUES ..68
4.24 EXTRACTING NTOSKRNL SYMBOLS ..69
4.25 HOW DIRTY PAGES ARE FLUSHED OUT ...70
4.26 LOG FILES ...72
4.27 THE “REGF” CHECKSUM...74
4.28 LARGE HBIN SIZES ..75
4.29 HASH VALUES IN LH SUBKEY LISTS ..75
4.30 ABOUT RI AND LI SUBKEY LISTS..76
4.31 SUBKEY LISTS AND REGISTRY FILE VERSIONS ..77
4.32 FLAG VALUES IN VK RECORDS...77
4.33 DATA TYPE AS DATA ...78
4.34 MAX LENGTHS IN NK RECORDS ...79
4.35 BIG SIDS..80
4.36 TOO SMALL DATA NODES..80
4.37 TIMESTAMPS..81
4.38 CLASSNAMES...82
4.39 RECORD SIGNATURES AND NAMES ..83
4.40 PATTERN MATCHING ...84
4.40.1 “NK” RECORDS ..84
4.40.2 “VK” RECORDS ..85
4.40.3 VALUELIST RECORDS ...85
4.40.4 SUBKEY LISTS ..85
4.40.5 DATA NODES AND CLASS NAMES ...86
4.40.6 DETERMINING CELL INDICES ..86
4.40.7 CONCLUSION ...86
4.41 HOW FREE CELLS ARE MANAGED..86
4.42 JOLANTA THOMASSEN MSC DISSERTATION...87
4.43 SUMMARY ..87

CHAPTER 5 – RESULTS ...89

5.1 INTRODUCTION ..89
5.2 ACHIEVEMENTS ...89
5.2.1 FACTS AND INFORMATION...89
5.2.2 METHODS ..91
5.2.3 PROGRAMS ..91
5.2.4 ERRORS ...92
5.2.5 EXCEPTIONS ..93
5.3 RELIABILITY ..93
5.4 SUMMARY ..94

CHAPTER 6 – CRITICAL ANALYSIS...95

6.1 METHODOLOGY OVERVIEW ...95
6.2 USE OF LITERATURE SURVEY DATA ...96
6.3 OTHER RESEARCHERS..96
6.4 SOFTWARE DEVELOPMENT METHODOLOGY ..96
6.5 STUDY METHODS ...97
6.6 SAMPLE REGISTRY FILES ...99
6.7 PROJECT TIMING ..99
6.8 PROJECT MANAGEMENT ..99
6.9 PROJECT PLANNING ...100
6.9.1 HOURS PLANS ...100
6.9.2 QUALITY TIME ..101

xiv

6.9.3 GANTT CHARTS...102
6.9.4 TO DO LISTS..102
6.9.5 ACTION LISTS..102
6.10 DIFFICULTY, ENJOYMENT AND VALUE ..102
6.11 DOING TOO MUCH ..103
6.12 SUMMARY ..103

CHAPTER 7 – CONCLUSION...105

7.1 CONCLUSIONS ..105
7.2 FURTHER WORK...105
7.3 SUMMARY ..107

REFERENCES ...109

BIBLIOGRAPHY ..119

xv

Appendices – Contents

APPENDIX 1 – PROJECT PLAN (INITIAL) ...127

APPENDIX 2 – PROJECT PLAN (INTERMEDIATE)..129

APPENDIX 3 – EXTRACTING REGISTRY FILES..131

APPENDIX 4 – INSTALLING WINDOWS DEBUGGING TOOLS...133

APPENDIX 5 – RECORD TEMPLATES ...134

APPENDIX 6 – STRUCTURE OF PARSE::WIN32REGISTRY ...150

APPENDIX 7 – ANALYSIS OF PARSE::WIN32REGISTRY...151

7.1 INTRODUCTION ..151
7.2 CODE STRUCTURE OVERVIEW ...151
7.3 CODE EXECUTION OVERVIEW..151
7.4 UNDERSTANDING REGDUMP.PL ..154
7.5 CODE TRACES ..158
7.6 RECORD TYPES ..161
7.7 RESOLVING THE EXTRA USE OF UNPACK()..162
7.8 UNDERSTANDING REGSCAN.PL...164
7.9 MODULES, FUNCTIONS AND RECORD TYPES SUMMARY ..167

APPENDIX 8 – MAKING TEST REGISTRY FILES ..169

8.1 TEST REGISTRY FILE 1 ...169
8.2 TEST REGISTRY FILE 2 ...171
8.3 TEST REGISTRY FILE 3 ...172
8.4 TEST REGISTRY FILE 4 ...172

APPENDIX 9 – THE _CMHIVE STRUCTURE...173

APPENDIX 10 – THE _HHIVE STRUCTURE ..174

APPENDIX 11 – TRAVERSING THE HIVELIST...175

APPENDIX 12 – THE REGISTRY NT SECURITY DESCRIPTOR ...177

12.1 SECURITY DESCRIPTOR ..177
12.2 SECURITY DESCRIPTOR CONTROL..178
12.3 A REAL EXAMPLE ...179
12.4 SACLS AND DACLS..182
12.5 ACES ...183
12.6 OWNER AND GROUP SIDS ...189
12.7 SIDS...190
12.8 SUMMARY RECORD STRUCTURES ..194

APPENDIX 13 – FINDING HBINS – SMALL HIVE ..196

APPENDIX 14 – FINDING HBINS – LARGE HIVE ..201

14.1 STABLE MAP ..202
14.2 STABLE MAP ODDITY ..204
14.3 VOLATILE MAP ..205

APPENDIX 15 – FINDING HBINS – LARGE HBINS..208

APPENDIX 16 – PREPARING TO CHECK SECURITY DESCRIPTOR SETTINGS.........................210

APPENDIX 17 – SECURITY DESCRIPTOR PERMISSIONS SETTINGS ..213

APPENDIX 18 – SECURITY DESCRIPTOR ACE INHERITANCE SETTINGS215

APPENDIX 19 – SECURITY DESCRIPTOR CONTROL INHERITANCE SETTINGS218

xvi

APPENDIX 20 – KEY NODE FLAG VALUES ...221

APPENDIX 21 – EXTRACTING THE REGISTRY HIVE FROM MEMORY224

APPENDIX 22 – REGISTRY HIVE STRUCTURE DIAGRAMS ...230

APPENDIX 23 – EASILY EXTRACTING HIVES FROM MEMORY...234

APPENDIX 24 – EXTRACTING SYMBOLS ..238

APPENDIX 25 – PDB EXPLODER..240

APPENDIX 26 – BASEBLOCK VALUES ...242

APPENDIX 27 – CHECKING FLUSH SIZES..244

APPENDIX 28 – DIRTY BITMAP SIZES..246

APPENDIX 29 – DIRTY BITMAP DISPLAY ...247

APPENDIX 30 – REGISTRY FILE UPDATES..248

APPENDIX 31 – BASEBLOCK CHECKSUM...249

31.1 THE XORCHECK.EXE UTILITY ...249
31.2 THE REGFXOR.EXE UTILITY ..250
31.3 CHECKSUM SCOPE ...250

APPENDIX 32 – DISCOVERING LH HASH ALGORITHM ...252

APPENDIX 33 – VK FLAGS VALUES ...254

APPENDIX 34 – TIMESTAMPS AND DAYLIGHT SAVING TIME ..258

APPENDIX 35 – HBIN LENGTH VALUE ..260

APPENDIX 36 – PREDEFINEDHANDLE...262

APPENDIX 37 – “RI” AND “LI” SUBKEY LISTS ...264

APPENDIX 38 – HOW FREE CELLS ARE MANAGED..268

APPENDIX 39 – JOLANTA THOMASSEN MSC DISSERTATION ...272

xvii

Supplements – Contents

SUPPLEMENT 1 – SYMBOL FILTER SCRIPT..277

SUPPLEMENT 2 – HEX2BINARY PROGRAM ...280

SUPPLEMENT 3 – HEX2SID VBSCRIPT...284

SUPPLEMENT 4 – REGISTRY EXPLODER PROGRAM SPECIFICATION288

SUPPLEMENT 5 – RUNNING REGHOOVER.EXE...293

SUPPLEMENT 6 – RUNNING HOOVERLOAD.VBS..295

SUPPLEMENT 7 – REGHOOVER SOURCE ..296

SUPPLEMENT 8 – HOOVERLOAD SCRIPT ...337

SUPPLEMENT 9 – REGHOOVER DATABASE SCHEMA ...378

SUPPLEMENT 10 – BULKHOOVER SCRIPT ...385

SUPPLEMENT 11 – BULKHOOVER2 SCRIPT ...389

SUPPLEMENT 12 – PRINTSCHEMA SCRIPT...393

SUPPLEMENT 13 – CHECKMAXLENGTHS SCRIPT ..400

SUPPLEMENT 14 – HASHCHECK.EXE SOURCE..414

SUPPLEMENT 15 – TRAVERSEDATA SCRIPT ...419

SUPPLEMENT 16 – NUMBER SCRIPT..439

SUPPLEMENT 17 – REGISTRY HIVE RECORD TEMPLATES ..441

SUPPLEMENT 18 – REGISTRY EXTRACTOR PROGRAM SPECIFICATION465

SUPPLEMENT 19 – REGFXOR PROGRAM ..467

SUPPLEMENT 20 – DOCUMENTING SOURCE CODE ...471

SUPPLEMENT 21 – DATABASE QUERIES ..472

SUPPLEMENT 22 – FREE CELLS QUERIES...477

xviii

xix

Glossary

Term Explanation

ACE Access Control Entry, defines what control is applied and which
user or group it refers to. Part of a Security Descriptor

ACL Access Control List, list of ACEs. Part of a Security Descriptor.

ADSIEdit Active Directory System Information Editor. The Active
Directory equivalent of regedit for the Registry

ANSI-C C Programming Language, distinct from C++

Bit A single binary digit. Can have a value of either 0 or 1.

Byte A unit of storage, either in memory or on disc. Consists of 8 bits
and can therefore hold up to 28 or 25610 values.

C++ Object Orientated Programming Language

CPAN Comprehensive Perl Archive Network. A web site which holds a
repository of Perl code and modules

DACL Discretionary ACL. Used to Control Access.

Distro A Linux Distribution or Build. Eg Ubuntu or RedHat

DWORD Four Bytes

FILETIME Windows 64 bit time format

Group Policy A policy which may be applied centrally in a business to many
computers.

Group Policy
Editor

A Windows program for editing Group Policies

Hash A reduction of a block of data in some way to some fixed length
number. Sometimes intended to be unique.

Helix Bootable CD with Linux and tools made for forensic use

Hive A part of the Registry, the Registry is made of Hives

Linux An Operating System based on Unix

MD5 A hash function that is designed to provide a unique signature
for a block of data.

MD5
Password
Hash

A number that represents the password. As this process is
irreversible it uniquely identifies the password without revealing
it.

Microsoft
Access

A Database Program from Microsoft

MSDN Microsoft Developer Network

xx

Term Explanation

NT New Technology. Family of Windows Operating Systems,
distinct from Windows 9.x such as Windows 95.

NTFS NT File System

Pagefile A system or special file in the computers file system that is
used as a temporary store for pages of memory for which there
is not enough real or physical memory.

Perl A Programming Language

Python A Programming Language

regedit A Windows program for editing Registry data

Registry File A file that stores part of the Registry.

SACL Security ACL. Used for Auditing Access

Salt An extra element of data added to an item to be encrypted to
reduce vulnerability to dictionary attack.

SAM Security Accounts Manager. Name of a Registry file and hive

Security
Descriptor

A data structure that defines the Security on a Windows object,
which can be a Registry Key

SID Security ID. Identifies a Security Trustee such as a User or a
Group. Some are common and well-known such as S-1-5-18

Slack Space Space in a computers file system is allocated in blocks. It is
quite normal for a file to not completely fill the last block
allocated to it. The space between the end of the file and the
end of the last block is called Slack. This will often contain parts
of the file that was previously stored at that location in the file
system.

SP2 Service Pack 2

ULONG Unsigned Long. Four Bytes

Unallocated
Space

Space in a computers file system is allocated in blocks. Any
blocks that are not currently allocated to a file are known as
Unallocated. They may contain parts or all of files that were
previously stored there.

Unix An Operating System

VBScript Windows Scripting Language based on Visual Basic

Visual Basic Microsoft version of BASIC. A Programming Language.

Windows A widely used Operating System produced by Microsoft.

Windows CE A Windows 9.x operating system

xxi

Term Explanation

Windows
Registry

“A central hierarchical database used in Microsoft Windows …
to store information that is necessary to configure the system
for one or more users, applications and hardware devices.”
(Microsoft, 2008j)

WORD Two Bytes

xxii

1

Chapter 1 – Introduction

This dissertation has been produced as part of the MSc in Forensic Computing.

1.1 Purpose of Project

The Windows Registry is a central repository of configuration and other
information about the Operating System and the programs that run on it.

It is a vital source of Forensic information about the current state of a Windows
computer and events which have happened on the computer. This is often
crucial in solving criminal cases.

Fragments of the Registry data can be found in other than the Registry such as
in the pagefile, unallocated or slack space in the file system or in memory.
These fragments can be used to rebuild a damaged Registry file or to
reconstruct the previous state of a Registry file. They can also stand on their
own as items of evidence.

In more recent versions of the Windows Operating System the Registry Keys
contain a Last Written date and time. This is particularly evidentially valuable as
it can contribute to the development of a timeline of activity on the computer.

Conceptually the Registry is presented as a series of Hives each of which
consists of a number of Keys. Each Key consists of either further Keys or
Values or both. Values can each be one of a number of pre-defined types such
as a number or a string of characters.

Physically the Registry can be found in a number of files. These files are mainly
stored in the Windows System folder in a folder called Config with the notable
exception of the Registry Files that hold the user specific information. These are
held in each Users profile and will normally only be loaded if the User is logged
on.

In order to find fragments of Registry Keys it is necessary to understand the
structure of the Registry Files, and of the Keys and Values that they consist of,
down to the level of individual bits and bytes.

The value of this work is that it can allow fragments of the registry to be
captured as evidence. This can show a previous state of at least parts of the
Registry or can provide the only evidence of the contents of the registry in
cases where the hard disk has been partially erased such as to delete some or
all of the current Registry Files.

2

1.2 Overall direction of Project

The intention was for the project to run through a number of stages.

1. Discovery of the structure of the Registry through both Literature and
other searches and by experimentation.

2. Determination of a pattern matching algorithm to determine the
likelihood that an arbitrary byte string contains one or more Registry
keys.

3. The production of a computer program to automatically search an
arbitrary byte string for possible Registry keys.

It was predicted that as the project unfolded its direction may change and in
particular that the production of programs might not be achievable.

In practice unravelling the structure was found to be both rewarding and
valuable and the project tended towards providing a detailed breakdown of the
Registry structures.

This was successful to the point where nearly all the bytes of Registry Files
have been ascribed their correct Microsoft names and the full purpose of all but
a small number of not very significant bytes have been understood.

Some programming was done in the course of the investigation and ideas for a
number of future programs have been developed.

It has been possible to determine a simple and effective pattern which it is
expected will reliably find Registry Keys in an arbitrary block of data with a very
low level of false positives.

1.3 Management of the Project

The project was conducted under the Supervision of Professor AJ Sammes.

Project meetings were held, initially monthly, at which the following Model
Agenda was used unless circumstances indicated otherwise.

• Review of Notes of previous Meeting

• Review Progress against Plan

• Specific Issues – PN

• Specific Issues – AJS

• Date, Time and Place of next meeting

It was possible to increase the pace of work in the later months and during this
time meetings were held every two to three weeks to reflect this.

A project plan was produced and maintained in the form of a Gantt chart.

3

The Initial Gantt chart is shown in Appendix 1.

In initial planning activities were listed in their anticipated order and a time for
each was estimated. These were then aggregated into sensible phases and
entered onto a Gantt Chart.

A time management plan for the Project has been produced. This is in two
parts. The first part is a narrative explanation of how the needed amount of time
can be found in the course of a normal week, undisturbed by non-regular events
such as holidays and Bank Holidays. This document also explains where
contingency can be found. Some 430 hours of contingency were initially
identified.

The second part is an Excel spreadsheet which shows, week by week, how
many hours can be delivered allowing for all anticipated activities, such as
holidays.

The Excel spreadsheet and the ‘hours per task’ figures from the Gantt Chart
were used to add start times to the tasks. These were rigorously matched so
that they both showed each phase, and each task within each phase, to start
and finish at the same dates and times.

The planned completion date for the project was initially set at Wednesday 10th
December 2007 at 19:00. This allowed 2 months of leeway before the hand-in
date. The project was re-planned in mid-September and a new plan was
produced showing a completion date of Friday 19th December and this was
approximately achieved. This plan is shown in Appendix 2.

1.4 Aim and Scope

The aim was to develop and test a verifiable definition of the structure of the
Windows Registry, concentrating on Windows XP. Some attention was paid to
Vista and other Windows NT versions. Windows 9.x versions were excluded.

The intention was to use this knowledge to attempt to design a method and
create a tool to find Windows Registry keys and values in other than the
Registry.

4

1.5 Report Structure

The remainder of this report contains the following chapters:

Chapter 2, Literature Survey, covers the currently available sources of
information that have been found and used as input to this project. Derive an
understanding of the current state of knowledge of the structure of the Registry
Files. Determine a list of items to verify and areas that need further research.

Chapter 3, Methodology, explains the chosen methods used for examining this
area of work and explains the reasons for these choices and why other methods
were not used.

Chapter 4, Experimental Work, what experiments were done using the
Methodology outlined in Chapter 3. What results were obtained. How this
affected the understanding as derived from Chapter 2.

 Chapter 5, Results, explains and discusses the results that were found.

Chapter 6, Critical Analysis, appraises and reviews the project to show
understanding of it’s weaknesses and possible area for improvement.

Chapter 7, Conclusion, presents a summary of the main conclusions from the
project and indicates areas of further work.

Due to the volume of information produced by this project the material has,
were possible, been split off into a number of Appendices and Supplements.

The distinction made between an Appendix and a Supplement is that the
Appendices are for the more important and smaller pieces of information and
the Supplements are for the less important and larger pieces of information.

The Appendices are printed and bound with the main body of the report; the
Supplements are not.

The main body of the report, with the Appendices, the Supplements, the
Programs and Source Code have all been provided on a companion CD which
should be available at the back of the printed version of the report.

5

Chapter 2 – Literature Search

In this chapter the purposes of the Literature source are briefly reviewed.

The various sources discovered during the Literature Search will be reviewed.

It will be shown that there are very few academic resources currently available
but there are a large number of informal sources some of which are very
valuable.

A simple outline of the basic structure of the Registry will be presented before
we move on to more detailed analysis.

2.1 Purpose of Literature Search

The purpose of the Literature Search is to determine the current state of
knowledge about the subject area and so avoid on the one hand repeating work
that has already been done and on the other hand discover material which can
be used to support the project. To find shoulders to stand on.

It is important to find information in peer-reviewed academic articles as they
provide a solid base on which to build. In addition is information in other sources
which includes books and internet material. Although not peer-reviewed these
sources do provide a body of information which can provide understanding and
insights.

2.2 Sources

Only a small number of books and academic sources were found.

Most of the sources of information are either from the source code of utilities or
projects or else are from researchers, forensic and otherwise, who have an
interest in unravelling the structure of the Registry. In some cases sources fit
into both categories.

This is a fast moving and emerging field and the preponderance of more
informal sources is perhaps to be expected.

2.3 Anonymity

Much of the material available on the internet is anonymous or the authors are
no longer contactable.

The desire of some of these authors to remain anonymous could be because of
real or imagined concerns about the legality of their work. This may be concern
over copyright issues or perhaps because much of the work is focussed on
cracking the structure of the SAM Registry File in order to extract or reset User
Account Passwords.

6

2.4 Root Sources

Two outstanding references emerged from the Literature Search as both
essential for anyone who wants to learn about the internals of the Registry and
as the sources or starting points for most if not all the work that has been done
in this area.

The first of these is the section entitled “Registry Internals” in the book
“Microsoft Windows Internals” (Russinovich et al., 2005a). This is, in itself a
version of the article that first appeared in the “Windows NT Journal” c. 1999
and is also available online (Russinovich, undated).

This article is well-written and contains a most lucid and accurate description of
the internals of the Registry. It rewards careful and repeated reading.

The other resource is effectively anonymous being signed only with the initials
“B.D.”. It can be found on the internet where it is referenced and used by a
number of other authors and researchers. It will be referred to here as
WinReg.txt and is available on this web site and others (B.D., undated).

This document covers both Windows 9.x versions and Windows NT versions of
the registry. For both of these it provides some moderately detailed byte level
analysis of the structures and shows quite clearly how the basic structures of an
NT registry fit together.

WinReg.txt has been improved on and modified by a number of researchers.
Notable by Petter Nordahl-Hagen in his work to produce the “Offline NT
Password & Registry Editor” tool (Nordahl-Hagen, undated) and by Nigel
Williams in his simple Registry Editor program dosreg,c (Williams, 2000).

2.5 Learning Perl

Early research showed that many utilities that parsed Registry Files cold or
offline are written in either C or Perl. The author was already competent at C
and to open up these Perl utilities to examination it was decided as part of the
Project brief to learn Perl as well.

The initial attempt was to do this using the book “Programming Perl” (Wall et al.,
2000a) which was written by the author and originator of Perl. This was found to
be very much an enthusiasts book and was not a suitable book for learning Perl
from scratch. An example of this is where a feature is introduced followed by the
comment that this feature is of no use unless you want to re-write the Perl
Debugger.

A second attempt was made using the book “Learning Perl” (Schwartz et al.,
2005). This was written by someone who has specialised in teaching Perl and
was a much better book to learn from. This might have been easier to digest as
the main radical differences between Perl and other languages had already
been introduced by the first book.

7

2.6 Journals and other Academic Sources

The following journals were searched for any articles relevant to the internal
structure of the Registry Files. Search words used were “Windows Registry”
and “HBIN”. (“hbin” is the signature found at the front of an hbin record and is so
fundamental to the internal structure of the Registry and so well known that the
term will almost certainly be found in any article that refers to the internal
structure of Registry Files).

All issues of the following Journals (which were all the relevant titles that could
be found) were searched and initially no relevant results were found.

Digital Forensic Research Workshop
Digital Investigation
International Journal of Digital Evidence
Journal of Digital Forensic Practice
Journal of Digital Forensics, Security and Law
Small Scale Digital Device Forensics Journal
International Journal of Electronic Security and Digital Forensics

The online libraries of the Institution of Engineering and Technology (IET), the
Association for Computing Machinery (ACM) and the Institute of Electrical and
Electronics Engineers IEEE were searched.

A number of articles dealing with the Registry were found but these were all to
do with the external structure of the Registry as visible by a tool such a
regedit.exe. Initially no articles were found that dealt with the internal structure
of the Registry.

The MSc dissertation of David Titheridge (Titheridge, 2008) contains a
discussion about the internal structure of the Registry Files. Initially this was the
only academic reference that was found.

Following the 2008 Digital Forensic Research Workshop held in Baltimore, MD
two useful and relevant articles which had been presented there were published
in “Digital Investigation”. These were “Recovering deleted data from the
Windows registry” (Morgan, 2008a) and “Forensic Analysis of the Windows
registry in memory” (Dolan-Gavitt, 2008).

The author of the latter article, Brendan Dolan-Gavitt, is also the author of the
“Push The Red Button” blog which he writes under the pseudonym “moyix”.

On the 11th December 2008 Jolanta Thomassen was kind enough to supply a
copy of her MSc dissertation “Forensic Analysis of Unallocated Space in
Windows Registry Hive Files” (Thomassen, 2008) barely a month after
submission. It was useful and interesting.

2.7 Non-Academic Sources

Non-Academic sources can be split into books, which are arguably semi-
academic in that they have permanence and attributable authorship, and

8

internet resources which may be quite ephemeral, of widely varying credibility
and at times hard to determine authorship.

In a fast moving research area such as this, internet based information can
provide valuable insights and information and cannot be ignored. The internet
information found can be split into two areas, pure information and software
tools designed to look into the Registry, particularly the source code thereof.

2.7.1 Books

Just two books were found with information about the structure of the Windows
Registry Files.

The first and most authoritative is the previously mentioned “Microsoft Windows
Internals” by Mark Russinovich and David Solomon (Russinovich, 2005a).

The other book is Carvey (2007a) which has an entire chapter (chapter 4)
devoted to the registry. Within this chapter is a Section called “Registry
Structure within a Hive File” which has an excellent description of the structure
of Registry Files. This also contains some code fragments for decoding parts of
the Registry using Perl.

Contained on the companion DVD for this book is a Perl script called regp.pl
which parses and decodes a Registry File and outputs its contents in plain text.

This script has a number of noteworthy features, shared with other tools in this
area of work.

• It is offline and so ideal for Forensic work as it is strictly read-only and
does not rely on any Win32 API calls which may have hidden side-
effects.

• In itself it documents the structure of Registry Files and demonstrates the
completeness of that knowledge.

2.7.2 Internet Sources of Information only

2.7.2.1 WinReg.txt

One of the most influential documents, which has already been mentioned, is
the text file WinReg.txt by the otherwise anonymous B.D. (B.D. undated).

2.7.2.2 Beginning to see the light

Another, purely informational source, is the single web page “security accounts
manager” on the web site “Beginning to See the Light” (Clark, undated). This
large page has four sections, one of which is titled “Registry Structure”. This
section has a very detailed description of the internal structure of the Registry
and contains some information not found elsewhere. Of particular note is the

9

description of the “sk” record and the internal structure of the NT Security
Descriptor that it contains which appears to be quite unique and is applicable in
other areas where the NT Security Descriptor is used, for example in the NTFS.

A change log on the site indicates that this was first written in January 2001 and
last updated in April 2005.

This web site also has two utilities for download, one of which is to decode 64
and 32 bit dates, the other calculates the checksum for the Registry File header.
The date utility is notable in that it converts 64 bit times, arithmetically, to 100
Nano-Second intervals.

2.7.2.3 Probert

One of the most valuable discoveries was a PDF on the Tokyo University web
site of a presentation on the internal structure of the registry given by David
Probert of the Microsoft Windows Kernel Development Team (Probert,
undated). This is valuable not only for its apparent authenticity and authority but
also as it covers areas not mentioned anywhere else.

2.7.2.4 Microsoft

The only source on the Microsoft web site which was specifically to do with the
structure of the Registry was the previously mentioned article by Mark
Russinovich (Russinovich, undated).

A large number of articles were of use, more than twenty. Most of these are to
do with the structure of the NT Security Descriptor – more on this later. These
articles are too numerous to detail here, they are referenced where used.

2.7.2.5 Windows IR

Harlan Carvey has some interesting things to say in his blog “Windows Incident
Response” about the registry, mainly in terms of looking at it externally (Carvey,
2008a).

He has produced a tool called RegRipper whose purpose is to extract a timeline
of events by ordering keys according to their last written Date/Time. It has a
command line version called rip.exe. Both of these are written in Perl (Carvey,
2008b).

2.7.2.6 Push the Red Button

Harlan Carveys blog has references to another blog of interest called “Push The
Red Button” (believed to be a reference to the First Responder nature of the
work).

10

In this blog the author (tag moyix but known to be Brendan Dolan-Gavitt)
explores the reconstruction of Registry Hives from data held in memory. There
are five articles of interest.

“Challenges in Carving Registry Hives from Memory” about carving
Registry data out of memory (moyix, 2007).

“Enumerating Registry Hives” about the data structures used to
represent hives in memory (moyix, 2008a)

“Reading OpenKeys” shows how to determine which keys are open.
This is mainly of value in an Incident Response situation (moyix,
2008b).

“CredDump: Extract Credentials from Windows Registry Hives” is a tool
for extracting MD5 hashes from SAM in an offline way. This does not
need any Windows support (obviously does not work by DLL injection)
(moyix, 2008c).

“Cell Index Translation” is all about translating in-memory Cell Index to
actual address in memory (moyix, 2008d).

The source code for CredDump was found on Google (moyix, 2008e) and was
saved for analysis.

The main thrust of these articles is towards the analysis of memory dumps such
as might be taken as a “live forensics” response to an incident or as part of a
seizure before the target computer is turned off.

2.7.3 Open Source Operating System Projects

There are three open source projects which have reverse engineered the
Windows Registry.

One is the WINE project which seeks to provide a Windows environment on
other than Windows. Another is the SAMBA project which provides Windows file
sharing on other than Windows. The ReactOS project aims to provide a
complete Windows clone and does not rely on any other underlying operating
system.

 There is a risk in studying these open-source registry emulations which is that
although they will need to provide a very good, if not perfect, emulation of the
native windows API and other calls, that does not mean that the underlying raw
Registry File format needs to be the same.

11

2.7.3.1 WINE

The WINE project which is intended to provide a Windows compatible
environment but based on the Linux kernel. This is an ambitious project which
has recently (June 2008) reached its first release.

From “World Wine News” of 18th June 2008 (WINE, 2008a)

“The Wine team is proud to announce that Wine 1.0 is now available.
This is the first stable release of Wine after 15 years of development
and beta testing.”

From the WINE web site (WINE, 2008b)

“Wine is an Open Source implementation of the Windows API on top of
X, OpenGL, and Unix.”.

The WINE source code was downloaded for later examination, a 14MByte bzip
(Sourceforge, 2008a).

2.7.3.2 SAMBA

The venerable SAMBA project aims to provide Windows compatible network file
sharing compatibility from Unix/Linux platforms.

From the SAMBA web site (SAMBA, 2008a).

“Samba is an Open Source/Free Software suite that has, since 1992,
provided file and print services to all manner of SMB/CIFS clients,
including the numerous versions of Microsoft Windows operating
systems.”

The SAMBA Source code was downloaded for later examination, a 24MByte tar
(Sourceforge, 2008b).

A cursory study of the SAMBA Registry file structures seems to indicate that
they are broadly compatible with the Windows registry file structures. However
at least one comment has been found which indicates an incompatibility.

2.7.3.3 ReactOS

This is another Windows clone, like WINE, but this is designed to run on bare
hardware rather than on top of Linux. From their web site (ReactOS 2008a).

“ReactOS® is a free, modern operating system based on the design of
Windows® XP/2003. Written completely from scratch, it aims to follow
the Windows® architecture designed by Microsoft from the hardware
level right through to the application level. This is not a Linux based
system, and shares none of the unix architecture.”

12

Currently it is in alpha testing only.

Due to it’s different approach it is possibly more of a clone, and hence more
useful to this project, than WINE.

The source code was downloaded, a 62MByte zip (Sourceforge, 2008b).

2.7.4 Open Source Tools

2.7.4.1 CredDump

This tool came from the “Push The Red Button” blog (moyix, 2008c) and is
designed to extract MD5 password hashes from the SAM offline without any
help from Windows. At the time of writing no other open source tool is known to
do this offline. It needs the SYSTEM registry file as well to get the Syskey salt.

Its value to this project is the insight the code gives to the structure of these
Registry Files. It is written in Python (Martelli, 2006).

Source has been saved from the Google repository for examination (moyix,
2008e).

The main code walking algorithm is rawreg.py.

2.7.4.2 BKHIVE and SAMDUMP2 Programs

These programs are written in C and make use of the information from
WinReg.txt (B.D., undated).

BKHIVE is designed to extract the Syskey from the System hive which is
needed to decode (or de-obfuscate) the MD5 password hashes from the SAM
hive. To do this it traverses the key structure of the System hive.

SAMDUMP is designed to actually do the extraction and de-obfuscation of the
MD5 hashes.

From the “bkhive.h” file and the “hive.h” file used by SAMDUMP2.

“Hive file access, pretty lame and bugged but do the work O_o
Thanks to B.D. for file structure info”

The use of these to this project is as simple pieces of code to show an
understanding of the registry structure. The source code files for both files are
dated 13th October 2006 or earlier.

13

2.7.4.3 REGLOOKUP Program

This is a small program written by Timothy D. Morgan.

From the web site (Morgan, 2008b)

“RegLookup is a small command line utility for reading and querying
Windows NT-based registries. … Original source was borrowed from
the program editreg, written by Richard Sharpe. It has since been
rewritten to use the regfio library, written by Gerald Carter.”

and

 “I have branched it from editreg.c because I wanted something that
was 100% read-only, and would be easy to use in scripts for forensic
investigations.”

This is another piece of work that relies on WinReg.txt from B.D. (B.D.,
undated).

Regfio is part of the SAMBA project (SAMBA, 2008a).

Editreg was an NT Registry viewer/editor that was part of the SAMBA project
but was discontinued in May 2005 (Samba, 2005).

2.7.4.4 Offline NT Password & Registry Editor Program

This was written by Petter Nordahl-Hagen (Nordahl-Hagen, undated) and is
based on WinReg.txt (B.D., undated).

The program is principally designed to allow the local account passwords to be
reset or set to a fixed value of blank by directly modifying the SAM Registry File
and to do this offline (that is, not from Windows).

The functionality of this tool has been extended to allow registry files to be
edited.

The tool runs from a Linux platform which may be on a bootable CD.

A lot of this program will be concerned with the details of how user account
passwords are obfuscated and stored in the SAM. The main interest for this
project is what the program reveals about how the registry is structured.

2.7.4.5 Perl Parse:Win32Registry Module

Much of the current work being done by Dolan-Gavitt, Carvey and others is
based on Perl.

One of the apparent reasons for this is the availability of the
Parse:Win32Registry module (McFarland, 2008) which neatly encapsulates the
basic routines needed to access the registry offline. As this tool is in current use
by multiple users it carries a significant amount of contemporary authority.

14

The module is available on CPAN (CPAN, 2008) which is the well-respected
and widely used web based repository for all manner of Perl modules and
programs. CPAN stands for Comprehensive Perl Archive Network (Wall,
2000b).

Version 0.30 of this module came with three utility scripts or tools

regdiff.pl compare two registry files and outputs differences

regdump.pl displays the keys and values of a registry file

regfind.pl search the keys, values, data, or types of a registry file
for a matching string.

This module was updated on 28th September 2008 to version 0.40 and a
number of new utility scripts added which are listed below.

regexport.pl outputs registry keys in the same format as a Windows
.reg file

regscan.pl dumps all the entries in a registry file. This will include
defunct keys and values that are no longer part of the
current active registry.

regstats.pl counts the number of keys and values in a registry file.
It will also provide a count of each value type if
requested.

regtimeline.pl displays keys and values in date order.

regtree.pl simply displays the registry as an indented tree,
optionally displaying the values of each key.

regview.pl is a GTK+ Registry Viewer. It offers the traditional tree
of registry keys on the left hand side, a list of values on
the right, and a hex dump of the value data at the
bottom.

The last of these, regview.pl, needs Gtk2-Perl to be installed (GTK+, 2008).

From the GTK web site.

“GTK+ is a highly usable, feature rich toolkit for creating graphical user
interfaces which boasts cross platform compatibility and an easy to use API”

Source code for this module was obtained with a view to analysing it to
understand the view of the registry Files that it supports.

15

2.7.4.6 dosreg

This is a small registry walking utility, written in C by Nigel Williams (Williams,
2002).

From his web site

“A DOS/Linux based NT4.0 Registry editor. This is basic code that
illustrates the structure of NT4.0 Registry files. The initial structure was
published on the net some time ago and is included at the top of the
code. Portions were left out and some parts were incorrect. The gaps
were filled in using NTICE. The whole program was completed in
approximately three days.”

This program is based on WinReg.txt (B.D., undated) and is notable for
containing some useful annotations and corrections to that work.

The source code file regfio.c from the SAMBA project contains an
acknowledgement that most of the information was obtained from dosreg and of
the contribution made by Nigel Williams with the comment “Thanks Nigel!”.

2.7.4.7 Regview.c (Dolan-Gavitt)

There is a regview.c program referred to by Dolan-Gavitt in his blog (moyix,
2007) which has been downloaded.

The source of this is obscure. It is designed to walk a registry structure and
should not be confused with the other regview.c source which was written for a
book on Windows CE Device drivers.

Neither of these should be confused with the regview.exe program distributed
with the Windows 2003 Resource Kit Tools (Microsoft, 2003). This is a tool to
view the Registry.pol files which in later versions of Windows Server (2003
onwards) are text files produced by the Group Policy Editor.

2.7.4.8 Regview.c (Windows CE)

There is a regview.c program which was written for the book on Programming
for Windows CE (Boling, 2001). The code is reproduced by Hague (Hague, et
al, undated).

This is a professionally written program. However since Windows CE is not a
Windows NT Operating System it is not of relevance to this project (Microsoft,
2008f).

 This regview program should not be confused with the one referred to by
Dolan-Gavitt (moyix, 2007).

Neither of these should be confused with the regview.exe program distributed
with the Windows 2003 Resource Kit Tools (Microsoft, 2003a). This is a tool to

16

view the Registry.pol files which in later versions of Windows Server (2003
onwards) are text files produced by the Group Policy Editor.

2.7.4.9 RegUtils

These are a set of Registry Utilities produced by Michael Rendell of Memorial
University, Canada (Rendell, undated).

These are all Windows 9.x utilities and so of no use to this project.

2.7.5 Other Sources

2.7.5.1 Advanced Forensics Course

During a Short Course at Cranfield University called “Advanced Forensics” the
structure of the Registry was explained by Prof. Brian Jenkinson (Jenkinson,
2008). The material he presented was derived from his research and provides
an excellent and detailed view of the Registry File structure. This material has
been incorporated into this project

2.7.5.2 Other Researchers

Attempts have been made to engage with other researchers in this field. This
proved to be of limited value and may represent an opportunity missed.

2.8 Registry Structure Quick View

From the above work a simple overall view of a registry file can easily be
obtained.

A Windows NT Registry File consists of a 4K header block which starts
with the signature “regf” and which contains other information. Following
that are a number of hbins, normally 4K in size but always a multiple of
4K in size, which have a signature of “hbin”. In each hbin, after the
header, is a block of data which is made up of cells which represent the
Keys and Values of the Registry. “Windows Internals” p 200-201
(Russinovich, 2005a).

A block is by definition 4K in size “Windows Internals” p 200
(Russinovich, 2005a).

“…a bin can contain one or more blocks…”, “Windows Internals” p 206
(Russinovich, 2005a).

17

Probert describes an attribute of a “Bin” as being “Size is increment of 4K” (he
must have meant “multiple of”). “Windows Kernel Internals” p10 (Probert,
undated).

So a bin or hbin is one or more 4K blocks.

“Windows organizes the registry data that a hive stores in containers
called cells. A cell can hold a key, a value, a security descriptor, a list of
subkeys, or a list of key values”. “Windows Internals” p 200 (Russinovich,
2005a).

The hbins are a container for the cells, cells do not cross hbin boundaries.

“When a cell joins a hive and the hive must expand to contain the cell,
the system creates an allocation unit called a bin.”, “…Bins also have
headers that contain a signature, hbin, …” “Windows Internals” p 201
(Russinovich, 2005a). Probert describes a “Bin” as being a “Collection of
cells”. “Windows Kernel Internals” p10 (Probert, undated).

“In file, on disk, each Registry Hive consists of two files. The PRIMARY
and the .LOG file. The PRIMARY file holds the data, the .LOG file is used
as a simple transaction log to ensure that updates that are interrupted
can be completed on next start-up”. “Windows Kernel Internals” p8
(Probert, undated).

“PRIMARY grows in 256K increments – to avoid fragmentation”.
“Windows Kernel Internals” p8 (Probert, undated).

Other useful pieces of basic information that can be gleaned from “Windows
Internals” (Russinovich, 2005a). and “Windows Kernel Internals” (Probert,
undated) include the following

• Cell sizes are a multiple of 8 bytes, including size element.

• A negative cell size means that the cell is in use, a positive cell size
means that it is free.

• Cells are referenced by a Cell Index which is the offset from the first hbin
when in the Registry File

• Volatile cells (in memory only) have a Cell Index with the MSB (Most
Significant Bit) set.

• Hbins have a header of size 0x20 bytes

• First 4K block has a signature of “regf” as part of a header which is of
size 0x200 bytes.

Below is a simple diagram of a typical Registry File which is presented here so
as to provide a basis and a stepping stone for more detailed analysis.

18

Cells

Cells

regf

hbin

hbin

4K

4K

4K

0x200 bytes

0x20 bytes

0x20 bytes

2.9 Summary

In this chapter the purposes of the Literature Search were briefly reviewed.

The various sources discovered during the Literature Search were reviewed.

It was shown that there are few academic resources currently available but
there are a large number of informal sources some of which are very valuable.

A simple early description of the Registry was outlined with justifications.

19

Chapter 3 - Methods

The two main aims of the project are

1. Gain a good understanding of the structure of the registry. Understand
existing sources of information, correlate and aggregate what is known.
Identify and resolve conflicts and anomalies. Discover new information.

2. Do something useful, in a forensic sense, with that information. The

initial project brief was to discover Registry data in other than the
Registry but the direction of the Project was open to review.

In this Chapter the methods that were used will be explored.

These can be classified as follows.

 Data Collection – examples are needed for examination
 Standard Tools
 Special Tools
 In Memory explorations

3.1 Data Collection

Examples of Registry data are needed to analyse. The project needs to be fixed
in reality.

The main considerations in accessing sources of data to analyse were.

• Availability

• Completeness

• Ease of use

• Relevance

• Validity

The obvious source is to collect Registry files from various systems. A method
is needed for this and that aspect is explored later.

Once sufficient understanding of the Registry structure has been gained then
examination of places where parts of the Registry might be found will be
needed. For that pagefiles, disk images and possibly other sources of data will
be needed.

3.1.1 Registry Files

Registry files are the obvious source of Registry data and so examples will be
needed. If Registry data is found elsewhere than in Registry files, in the pagefile

20

or in unallocated space in the file system for example, then it will be as
fragments of a Registry file or as fragments of the registry as held in memory.

Consideration was given to the Registry files and other files that should be
collected and the following was decided as the set that was needed. It was not
always possible to get every one of each of these files from every donor
computer.

 From “%SystemRoot%\system32\config”

COMPONENTS (Vista Only)
BCD-Template (Vista Only)
DEFAULT
default.LOG
SAM
SAM.LOG
SECURITY
SECURITY.LOG
SOFTWARE
software.LOG
SYSTEM
system.LOG
userdiff
userdiff.LOG

From C:\Boot (Vista Only)

BCD

From “C:\”

pagefile.sys
hiberfil.sys

From “C:\Documents and Settings”, for each User

NTUSER.DAT
ntuser.dat.LOG

From “C:\Documents and Settings\%User%\Local Settings\Application
Data\Microsoft\Windows”, for each User

 UsrClass.dat
 UsrClass.dat.LOG

A clean set of fresh Registry files was collected from a new build of Windows
XP SP2. The system was built and then, having done the minimum to get the
system built, the Registry files were extracted.

This produced a complete set of very clean, fresh Registry files which have not
been coloured by any significant interaction with users or application programs.

21

This makes analysis of these example files as simple and straightforward as
can be achieved. It also makes the files smaller which is an advantage.

The disadvantages of this approach is that Registry files which are relatively
juvenile will not have the depth of change, churn and quantity of keys and data
to be expected in a normal Registry file. This makes them untypical and lacking
in depth.

To combat the disadvantages an effort was made to collect Registry files from a
number of sources. The intention was to try to make sure that Registry files
from a wider ‘gene pool’ were studied. No attempt was made to make sure that
this sample was statistically valid either in terms of it being a representative
sample or in terms of complete coverage of likely sources. Efforts were made to
get files from a diverse set of computers.

The main focus of the project is on Windows XP on the basis that this Operating
System is still the most commonly encountered during Forensic examinations.
To be exact Windows XP SP2.

Care was taken to get at least one set of Registry files from each of NT4,
Windows 2000, Windows 2003 Server and Windows Vista.

All these files were collected onto a CD-ROM with a folder for each Computer
named Computer01, Computer02 etc. The User files were placed in a separate
series of folders named User01, User02 etc regardless of which computer they
came from. The mapping of the original sources and these folders was kept in
case it should be needed.

Later in the Project, when a method had been developed, volatile hives and the
volatile parts of hives were extracted from memory from one computer and
saved as files. The two volatile hives were named “Registry” and “Machine”, the
volatile parts of hives were named as the file name for the stable part with the
extension “.vol”. These were added to the collection of files. Not all hives were
found to have a volatile part.

Registry files from the companion DVD to the book Windows Forensic Analysis
(Carvey, 2007c) were added at a later date.

Programs and scripts were developed to allow these hives to be pulled apart
record by record, and loaded into an Access databases for further analysis by
queries or by further scripts. This proved immensely valuable in providing a
mechanism for checking across large quantities of data. These scripts produced
one database file for each Registry File processed as well as one overall
database of all the information. More on these scripts and programs later in this
chapter.

In all 174 registry files were analysed from 18 computers and 40 users. Most of
the files were from Windows XP SP2.

22

Care has been taken not to allow any of the information from these files to be
leaked by this project, perhaps in examples or other ways. All the extracts
shown that contain real data have come from the bare install, otherwise known
as clean Registry files.

3.1.2 Registry File collection method

The Registry files of loaded hives are held open and locked. The hives of users
that are not loaded can be accessed if the logged on user has sufficient access
rights, normally by being a local administrator. However this is of little help as
most of the files still cannot be accessed.

There are methods available for collecting these files by using the snapshot file
capability provided in the Volume Shadow Service. This would not help with
NT4 Registry files as this feature does not exist on that Operating System and it
needs specially installing for Windows 2000 and XP pre-SP2. There is also a
question mark over using this method as it is slightly obscure which might result
in damaged file capture and/or a reduction in confidence.

Another potential method is to do a System State backup using NTBackup and
then restore that to another location, perhaps on the same machine. The
System State backup backs up the Registry, the COM database and those files
needed to boot the system. It is not possible to do a partial restore of the
System State data, it is all or nothing. This took about 3 minutes each to backup
and to restore for about 6 minutes in total.

Disadvantages of this approach are that it does not restore all the desired files,
the pagefile.sys, hiberfil.sys and the .LOG files are not made available. The
System State backup/restore feature was introduced in Windows 2000 and it is
not available for NT4. It was informative to see from the System State restore
how many and what files are needed to ensure that the system could boot up.

If live acquisition is ruled out then that leaves a number of cold or offline access
methods, where the computer is not booted to its native Operating System.

The Hard Disk could be imaged and then the files extracted using a tool such as
EnCase from Guidance Software (Guidance, 2008). While this was feasible it
was thought to be too unwieldy a method and too intrusive when co-operation
from 3rd parties was being sought.

Another approach is to boot the machine to a floppy disk or a CD and then gain
direct access to the computer hard disk in that way. There are a number of such
bootable options available, some of them targeted at forensic use.

23

NTFS4DOS was looked at (NTFS4DOS, undated). This is available and free. It
is a copy of DOS with NTFS drivers which enable read/write access to NTFS
volumes. Using this would allow the machine to be booted to DOS and the files
could then be copied to an alternative location on the machine in question. This
was ruled out as the command line interface is rather fiddly and hence error
prone and also because of a lack of confidence in software that writes to, rather
than reads from, NTFS .

Helix 1.9 (Helix, 2008) was chosen as it is known to be have the needed
capabilities and is familiar to the author. By default it mounts volumes as Read
Only (which is safe) and it is known to be capable of writing to USB devices
formatted to FAT32.

To receive the files an 80GByte USB drive was reformatted with 32GByte
FAT32 volumes (32GByte FAT32 is a known limitation of Windows XP which
was the Operating System on the machine that was used for formatting). This
size limitation was not a restriction as none of the files being captured would be
anywhere near that size.

A detailed protocol for capturing these files was developed and is described in
Appendix 3.

3.1.3 Disk Images

One aim of the project is to see what can be recovered from an arbitrary block
of data such as a Disk Image. This might allow for otherwise inaccessible
evidence to be collected and bought to bear on a case.

To test possible methods some disk images were needed. A small number of
these were collected for use in the project. Size was a factor, smaller the better,
as was the age of the image; older images will have more to look for.

Two images were collected. One was from a Windows XP computer, the other
was from a Windows 2003 Server. This is not a large sample size but was felt to
be sufficient and manageable. Time did not allow either of them to be used.

3.2 Standard Tools

Whenever doing any research work the researcher (or investigator) will always
need basic tools which can be relied upon, tools which people have confidence
in. This is both to provide a solid basis for the work and to help convince others
of the validity of the work. It is also needed to ensure reproducibility.

What follows is a discussion of the Standard Tools which were used on this
project.

24

3.2.1 WinHex

WinHex (X-Ways, 2008) is a well known and respected tool for examining files
or images in terms of their binary data which is shown in hexadecimal format.
The program runs on Windows and these two facts plainly are the derivation of
its name.

3.2.2 RegEdit

The Windows XP version of regedit.exe was used extensively to cross check
what was being seen with WinHex and other ways of looking at the Registry
and correlating those views with what was happening with the data.

In Windows XP, effectively, the programs regedit.exe and regedt32.exe are the
same, regedt32.exe being merely a stub program that calls regedit.exe.

Careful experiments with regedit to make changes and WinDbg to see what
changes this caused in the data held in memory, and vice-versa, were used to
derive understanding about what parts of the Registry data structures were
used for what purposes. Care was needed to only make changes that would not
crash the machine being worked on and to guard against buffering and masking
by the interposing layers.

Details of these experiments can be found in Chapter 4.

3.2.3 WinDbg

From the blog article “Enumerating Registry Hives” (moyix, 2008a) the idea of
examining Windows memory on a live machine using the WinDbg tool was
discovered.

WinDbg (and its command line companion kd.exe) can be used to examine and
debug items of the Windows Kernel while a computer is running.

Providing that the right Symbol files are made available the proper Microsoft
definition of internal data structures can be shown.

These two facts make this a very powerful tool for understanding exactly how
Registry hives are stored in memory and how they are accessed and used. It
gives us a great way of getting ‘hands-on’ with the problem.

These debugging tools are free and available for download from Microsoft. They
need installing and the symbol files access needs setting up properly to get best
use of this technique. A small amount of knowledge is needed to actually gain
access to the Kernel of the current machine.

How to install the debugging tools is explained in Appendix 4.

25

3.3 Special Tools

During the course of the Project some special tools were used or developed.
Some of these, it is hoped, will be of use to others in their research or
investigations.

Part of the aim of this project was initially to provide such a special tool. It is
perhaps to be expected that as the problem space is explored that solution
space ideas will emerge.

WARNING: The programs are presented in all good faith and are believed to be
correct and fault-free. However a sensible degree of caution should be taken in
their use and results verified.

3.3.1 Filter Symbols VBScript

A VBScript program called “Filter Symbols.vbs” was written to filter the list of
possible symbols obtained from the ntoskrnl.pdb files. This method is explained
later but suffice to say it produced a large list of potential names for internal
structures.

A characteristic of these symbol names is that they all consist of just the
characters A-Z (upper case) the digits 0-9 and the underscore character. The
“Filter Symbols” script was written to filter the list of possible structure names
into a list which met the above criteria. The script is quite simple, it always takes
its input from a file called “a.txt” and always puts its output in a file called “b.txt”.

The script is shown as Supplement 1.

3.3.2 Hex2Binary Program

This program, written in Visual Basic 6, takes a text hex output, such as shown
by WinHex, and converts it back to a binary file.

The motive for doing this is that it allows WinDbg to be used to show sections of
computer memory in a hex list, like WinHex. This can then be cut and pasted
into a text file and then, from that a binary file can be created.

In this way a registry hive can be exported directly from memory and turned into
a file. Practically this can only be done manually for fairly small hives but the
process could be automated for larger hives.

Once a hive has been reconstructed like this it is then amenable to analysis by
any tools designed to look at registry files.

The source code for this utility is shown in Supplement 2.

Use of this script to extract Hives from memory is discussed in the next chapter.

26

3.3.3 Hex2SID VBScript

Use was made of a VBScript program that the author wrote some years ago.

This takes a SID expressed as a text hex string and converts it to a SID in the
familiar format that starts, normally, “S-1-5-“. The method for doing this is
explained in the MSDN blog “The Old New Thing” (Chen, 2004).

This was originally written to take SIDs as shown by the Active Directory
ADSIEdit utility. ADSIEdit allows Active Directory to be examined in close detail.
It is perhaps the regedit of the Active Directory world (Microsoft, 2003b).

User Account objects have a number of attributes as do all Active Directory
objects. One of these is the objectSID which is the SID of that user. In ADSIEdit
this is shown as in this picture.

The hex bytes shown in text can be cut and pasted into Hex2SID which then
converts it into the familiar SID format. In this case “S-1-5-21-4200165691-
2687452118-2273033371-1108”

This script was of great help in unravelling the structure of the “sk” cell type and
the NT Security Descriptor it holds, as described later.

The script is shown in Supplement 3.

3.3.4 RegHoover and HooverLoad Programs

It was determined that a tool was needed to examine the large amount of data
that was available in the sum of all the collected Registry Files. Although there
is a place for detailed examination of small quantities of data it is also
necessary to be able to examine large quantities of data in order to see
patterns, anomalies and differences as well as to validate what understanding
has been gained.

27

To this end it was proposed to create a program called RegExploder that would
process a Registry File and turn each cell or record into an HTML page. A
specification was drawn up and is shown as Supplement 4.

This was considered too complex and time consuming and so a simpler
program was written to process a Registry File as records and to load the data
into a database for further use. The program was named RegHoover.

RegHoover is a “Ripper” type program as opposed to a “Traverser” type
program in that it simply processes a file as a concatenation of cells or records.
It makes no attempt to link the records together or to follow the interlinked
structure of the records.

The Language that was chosen for this was plain ANSI-C using Microsoft Visual
Studio 6. The reasons for this choice were the authors skill level, the ability of C
to deal easily with binary data and the availability and capability of the
development tools.

Microsoft Access was chosen as the database as it is sufficiently powerful,
widely used and understood and (run-time at least) built into modern versions of
Windows.

It is not possible (at least easily) to interface to Microsoft Access from ANSI-C
and so a two stage process was adopted. The C program RegHoover.exe
analyses the Registry File or files and produces an intermediate text file (called
RegHoover.txt). The VBScript HooverLoad.vbs then takes this file and loads it
into an Access Database.

RegHoover was able to process all of the Registry files collected including those
from Windows NT4, 2000, Server 2003 and Vista.

Descriptions of how to run these program can be found in Supplements 5 and 6.
The source code can be found in Supplements 7 and 8.

3.3.5 RegHoover Database

A database was developed to hold the information produced by the RegHoover
program.

The ‘clean’ empty version of this database is held in a file called “Clean
RegHoover.mdb” which is copied to a filename of RegHoover.mdb when a new
database is being made.

The schema for this database can be found in Supplement 9.

Some twenty-five queries were developed to aid navigating the Registry data in
the database. These are documented in Supplement 21.

3.3.6 BulkHoover and BulkHoover2 Scripts

It was necessary to find a way of analysing large numbers of files automatically.

28

The BulkHoover.vbs script was developed to do this. It takes as its starting point
the drive X: and then processes all the folders under that drive, going down one
level only.

For each folder it looks for a fixed set of Registry file names and for each one it
finds it runs RegHoover and HooverLoad to produce a RegHoover.mdb file.
This file is then copied back into the source folder with the name of the Registry
File prepended.

The use of the X: drive is to ease configuration. The intention is that the
Windows command line utility subst be used to substitute X: for the path where
the Registry File folders are located.

A variation of this script was written called BulkHoover2.vbs. This does not
produce a database file for each Registry File but instead loads all the data into
one single database.

Both of these scripts can be run at the same time but from different folders.

These scripts can be found in Supplements 10 and 11.

3.3.7 Daily Analysis Cycle

The programs to analyse Registry Files, BulkHoover, BulkHoover2, RegHoover
and HooverLoad, were run, repeatedly, overnight on a large set of Registry
Files. The set eventually consisted of some 174 files obtained from 18
Computers and 40 users. The process hence yielded 174 database files for
individual Registry files and one other for all the files.

Each morning the results and the source files were copied onto DVD to fix the
data and free the computer and disk space. Eventually this was enough to fill a
DVD, that is about 4.5GB of data. During the day the data was analysed,
discoveries made and errors and avenues of investigation or improvement
identified. The programs used were then improved or Registry files added in
time for the following nights run.

Each run took over 12 hours and 16 cycles were run so amounting to perhaps
200 hours of processing. To allow more precision in discussing experiments
and their results each overnight run was given a consecutive run number as in
“Run 1”, “Run 2” and so on.

It is hoped that this approach will be of use to other researchers who can use
these tools to build their own databases of Registry data.

3.3.8 PrintSchema Script

To help document the RegHoover database in a way that fitted with the needs
of this project, a script was developed to extract the Schema information and
print it in a simple and easy to understand way.

29

This was of great help in making sure that all tables had appropriate Primary
Keys and Indices.

This script is shown in Supplement 12.

3.3.9 Other Scripts and Programs

A number of other scripts and programs were written to examine various
aspects and theories about the data. They proved to be useful experimental
tools as the scripts were modified and refined in the light of increased
understanding and knowledge.

They are listed in this table; the source code is in the Supplement shown.

Script Name Purpose Supplement

CheckMaxLengths.vbs
Check theory about the ‘Max’ values
in nk records

13

HashCheck.exe
Check Hash function used in lh
records

14

TraverseData.vbs
Check that all parts of the analysed
Hive in the database are reachable

15

Number.vbs
Used to Number Source Code files
as a step in documenting them.

16

3.3.10 Documenting Source Code and Scripts

A method was needed to document Source Code and Scripts for this report.
The method used is explained in Supplement 20.

3.4 In Memory Examinations

The blog “Push the Red Button” article “Enumerating Registry Hives” (moyix,
2008a) introduces the idea of using the Windows Debugger WinDbg with the
Debugging Symbols for ntoskrl.exe to explore internal memory structures used
by windows.

The blog focuses on understanding live memory structures in order to find them
more easily in memory dumps collected from a Live Forensics intervention. The
focus of this project is with traditional offline forensic examinations but the same
rationales hold. It is also true that the pagefile will contain data that used to be
in memory.

The next few sections described the methods that were used.

30

3.4.1 Displaying Kernel Structures in Memory

The blog (moyix, 2008a) describes how the dt command can be used to show
the Microsoft definition of internal data structures using information from the
appropriate symbols file.

An example command to do this is “dt nt!_CM_HIVE”. This will display the

structure of the _CM_HIVE object using information from the symbols file.

An obvious restriction of this approach is that you need to know the name of the
objects before you can display them. Some names are given in the blog article
and from displaying those structures the names of other structures can be seen
and so displayed.

3.4.2 Discovering Kernel Structures

The Registry is organised by the Configuration Manager “The Windows kernel-
mode configuration manager manages the registry” (Microsoft, 2008h).

The Kernel is implemented in ntoskrnl.exe, this means that the symbol file for
the Kernel, and hence for the Configuration Manager is called ntoskrnl.pdb.

Attempts were made to extract these symbols from the PDB file to see if they
would reveal more about the Registry structures. Full details of these attempts
are provided later in Chapter 4.

3.4.3 The !reg Extension

The debugger (WinDbg and kd.exe) allow debugger extensions. These all start
with an exclamation mark (!) and then the name of the extension.

There is an extension specifically for the Registry and it is called “!reg”.

Issuing the command !reg to the debugger will list all of the commands
available. These allow a list of all the Registry hives currently loaded in memory
to be displayed and for a number of other useful commands.

This feature was first learnt about in the article “Challenges in Carving Registry
Hives from Memory” (moyix, 2007).

3.4.4 Other Debugging Commands

Some common debugging commands (Microsoft, 2008i) have been found to be
useful.

dd <address> Display in Hex as Dwords (32 bits)
dw <address> Display in Hex as Words (16 bits)
db <address> Display in Hex as Bytes (8 bits)

31

db <address> L<n> Display n elements eg db e1234567 L100 to display
256 (decimal) byes

eb <address> <value> Edit Byte. Set byte at <address> to <value>

dt nt!<structname> Display structure information

dt nt!<structname> <address> Display structure information with data from
<address>

lml Lists which Symbols are loaded , gives location of each

Symbol file

3.5 Code Examination

An obvious and valuable way of understanding the structure of the Registry is to
understand those programs and utilities that directly access Registry files.

All the utilities that were found are written in either C, Perl or Python. Both Perl
and Python are somewhat C like in their syntax although both are at a much
higher level of abstraction.

These were unravelled by straightforward code examination. Paying attention to
the comments was useful as was paying attention to discrepancies between the
comments and the code.

To make sure that the code was understood the utilities were run and the code
was examined to see how the output was produced. In this way the code
examination was confirmed.

To aid this process Windows Visual Studio (Microsoft, 2008g) was used to trace
through the execution of some parts of C code.

ActivePerl from ActiveState was used as the Perl interepter/compiler
(ActiveState, 2008a).

A free Perl IDE (Integrated Development Environment) called Perl Express (Perl
Express Group, 2007) was used for some Perl code examination.

Better results were obtained with the Komodo IDE (ActiveState, 2008b) perhaps
as it comes from the same stable as ActivePerl.

The Python utilities were not looked at closely as they were small in number
and were assessed as being either peripheral to the main interest or re-writes of
other utilities.

The starting point for this work was to run the regdump.pl script from Parse-
Win32Registry (Macfarlane, 2008) against a copy of a SAM Registry file. The
code was then traced while looking at the registry file with WinHex to see how
the program produced its output.

32

3.6 Record Templates

Simple record templates were produced using Word. These were each laid out
as a table with columns for element sizes, offsets, hex bytes and a final column
for the interpretation of the data. The final versions of these are shown in
Appendix 5.

These template sheets were completed manually while working through a SAM
Registry file using WinHex.

Once a few of these had been produced they were physically laid out on the
floor to visually show how the Registry records fit together.

During the initial stages of understanding the Registry structure these templates
were found to be very useful as a method for building knowledge and allowing
visualisation. They provided statements of knowledge that could be improved
and refined and they were a useful way of exploring new parts of the Registry
structure.

Later in the project they were valuable as a reference source and as a manual
method of decomposing an area of data.

3.7 Visio Diagrams

Microsoft Visio was used to produce diagrams of how data structures fit
together and for other explanations.

Producing relevant diagrams was found to be great help towards understanding
and a good way of cementing knowledge.

3.8 Anomaly Resolution

A specific effort was made during the project to identify any discrepancies
anomalies or missing pieces of understanding which emerged from the
Literature Search or any of the examination methods used.

The first priority was to identify such items of interest. A list of these was
maintained during the project. The second priority was to attempt to resolve
these items.

In this way a reliable and refined definition of the Registry structure, and how it
is managed, was obtained.

Not all items could be resolved. Those that were not are left as items for further
work and described later in the Conclusions.

33

3.9 Summary

In this chapter the methods used to exploit the information discovered during
the Literature Search phase were examined as were other methods of gaining
knowledge. These methods included collecting and examining Registry files and
using the Windows Debugging Tools. Various custom programs written for the
project were explained.

It was shown that these methods could be classified as follows.

 Data Collection
 Standard Tools
 Special Tools
 In Memory explorations

34

35

Chapter 4 – Experiments

In this chapter various experiments are described.

These use the methods described in “Chapter 3 – Methods” and are all
designed to in some way improve either knowledge, facts, or understanding.

Some of the experiments are specifically targeted at resolving anomalies,
discrepancies and gaps in knowledge.

The aims of the experiments are twofold

1. Improve understanding

2. Look for opportunities for producing programs that will be of forensic
benefit.

This Chapter provides enough detail to allow these experiments to be repeated
and/or verified. It is not sufficient merely to assert that something is true, it must
be shown to be so.

As far as is possible much of the detail of these experiments has been put into
Appendices (for smaller and more valuable information) or into Supplements
(for larger amounts of information of less value). The Appendices form part of
the printed report, the Supplements are only available on the companion CD.

4.1 Examining Parse-Win32Registry

The Parse-Win32Registry module is a library module created by James
Macfarlane (Macfarlane, 2008). It is mentioned by Carvey in many of his blog
postings (Carvey, 2008a) and used in some of his contributions such as the
RegRipper utility (Carvey, 2008b) and the SAMParse utility (Carvey, 2007a). It
is referenced by Dolan-Gavitt (Dolan-Gavitt, 2008).

The benefit of understanding how this code analyses the Registry is that it is a
mature and well used piece of software which is in contemporary use. This
gives it authority and authenticity. If it was getting it wrong then it would not be
so widely used and its deficiencies would be commented on. The tools that
have been developed using this module as a basis would not be viable. This is
not to say that this module must therefore be perfect, merely that it must make a
reasonable job of understanding the structure of the Registry files.

It comes with some utility scripts which make use of the module and these can
be run against Registry files. We can see for ourselves whether or not the
output is plausible and verify portions of it. Complete, 100% verification is not
easy due to the sheer volume of data. Comparison with the output from other
tools is possible although this does raise the problem of reconciling different
output formats.

Code Examination of this module was done by a multi way approach.

36

1. Manually tracing a hardcopy print out of the code
2. Examining the output of a run of the regdump.pl Perl script against a

SAM Registry file
3. Using WinHex to examine the hex of the SAM Registry file
4. Using RegEdit to examine the SAM Registry file
5. Completing Registry Record template sheets

All these sources of data were used concurrently in order to build a picture of
how the records sit together. The template sheets were both an output and an
input as they were used to build understanding.

The intent was to cross-check understanding and gain a consistent view and
hence gain confidence that the view was valid.

The regdump.pl source code and the library modules that it used were traced to
understand the path and method of execution and to pick up any relevant
comments. This code uses the Perl unpack() function to extract values from
blocks of data (Allen, 2008).

Initial work was done on version 0.30 of this module. Version 0.40 was released
in September 2008. Version 0.40 was examined and nothing was found which
would add to or change the understanding of the Registry structure found from
version 0.30.

The structure of the modules is shown in Appendix 6 for version 0.30 and 0.40.

A detailed analysis of this module, how it works and the information that can be
extracted is shown in Appendix 7.

4.2 Template Sheets

The information gained from the above studies was used to create a set of
Template Sheets for the known record types.

As the execution of regdump.pl was traced a Template Sheet was completed
for each record. This enabled a pattern to emerge.

Once about thirty of these had been completed they were laid out on a large
enough piece of floor and from this the structure of the Registry became easily
understood.

This was found to be as shown here.

37

Basic Diagram of the Registry

Value List
Values

(vk)
Data Node
(optional)

Key
(nk)

SubKey List

(lf, lh, li)

Keys
(nk)

The above shows that each registry key record (“nk”) has the following.

• If it has any values, a pointer to a Value List. The Value List in turn points
to a number of Value records (“vk”). If the Value is more than 4 bytes in
length then a Data Node is used merely to hold the data.

• If it has any Sub Keys, a pointer to a SubKey List. The SubKey List in
turn points to a number of SubKey records which are of course key
records (“nk”).

• Each subkey record has a pointer that points back to its Parent key
record.

Notes

1. Class and “sk” links not shown

2. The count of the number of Subkeys in the Subkey List is held in both the
“nk” record and the Subkey List. The count of the number of Values is
only held in the “nk” record.

3. “ri” Subkey List not shown. These are lists of Subkey Lists.

From analysis of the Parse-Win32Registry module it would seem that the “ri”
SubKey List is in fact a list of SubKey Lists. It may be that these are recursive in
that an “ri” cell may point to another “ri” cell but this has not been verified.

With the “ri” records, the structure looks like this.

38

Basic Diagram of the Registry (with “ri” SubKey List)

Keys

(nk)

Key

(nk)

SubKey List

(lh, li)

Value List
Values

(vk)

Data Node

(optional)

SubKey List List

(ri)

It is shown later that “ri” lists only point to “li” or “lh” lists.

4.3 Record Structures

From the above analysis the following definitions of the various records can be
deduced. We can expect these to be initially incomplete both in terms of the
fields in the records and the number of record types. It is however a firm starting
point.

In these tables the Name is normally the variable name used in the
Parse::Win32Registry code and the Notes is usually the relevant comment in
the code.

There are 10 record types, all but two have a signature, the two that do not
have been named as “Value List” and “Data Node”.

Three record types are not seen here. These are the “sk” record type for holding
security information, whatever data structure holds the Class Name information
and the “lk” records which are rarely reported on. More on these later.

39

“regf”

Size Offset Name Notes

4 0x00 regf_sig “regf”

8 0x0C timestamp Windows FILETIME

4 0x24 offset_to_first_key aka the Root Cell

64 0x30 embedded_filename Zero Terminated Unicode

“hbin”

Size Offset Name Notes

4 0x00 sig “hbin”

4 0x04 offset_from_first_hbin

4 0x08 size_of_hbin

“nk”

Size Offset Name Notes

4 0x00 size size (as negative number)

2 0x04 sig Always “nk”

2 0x06 node_type

8 0x08 timestamp Windows FILETIME

4 0x14 offset_to_parent

4 0x18 num_subkeys

4 0x20 offset_to_subkey_list lf, lh, ri, li

4 0x28 num_values

4 0x2C offset_to_value_list

2 0x4C name_length key name length

var 0x50 name

40

 “lf”

Size Offset Name Notes

4 0x00 size size (as negative number)

2 0x04 sig “lf”

2 0x06 num_entries number of entries

4 0x08 offset offset to 1st subkey

4 0x0c str first four characters of the key name

 “offset” and “str” are repeated to make up num_entries sets of entries

“lh”

Size Offset Name Notes

4 0x00 size size (as negative number)

2 0x04 sig “lh”

2 0x06 num_entries number of entries

4 0x08 offset offset to 1st subkey

4 0x0c hash hash of the key name

 “offset” and “hash” are repeated to make up num_entries sets of
entries

“ri”

Size Offset Name Notes

4 0x00 size size (as negative number)

2 0x04 sig “ri”

2 0x06 num_entries number of entries

4 0x08 offset offset to lf/lh/li record

 “offset” is repeated to make up num_entries entries

41

“li”

Size Offset Name Notes

4 0x00 size size (as negative number)

2 0x04 sig “li”

2 0x06 num_entries number of entries

4 0x08 offset offset to 1st subkey

 “offset” is repeated to make up num_entries entries

Value List

Size Offset Name Notes

4 0x00 size size (as negative number)

4 0x08 offset offset to 1st value

 “offset” is repeated to make up the number of entries shown in the
“nk” record.

“vk”

Size Offset Name Notes

4 0x00 size size (as negative number)

2 0x04 sig “vk”

2 0x06 name_length value name length

2 0x08 data_length length of data

4 0x0c offset_to_data offset of data

4 0x10 type type of data

2 0x14 name_present_flag flag

2 0x16 ?

var 0x18 name value name

 Note 1 If LSB of name_present_flag is set to 1 then the Value has
a Name.

 Note 2 If the MSB of data_length is set to 1 then the offset_to_data
is the data. This is used to store values of up to 4 bytes in
length inline instead of using a Data Node.

42

Data Node

Size Offset Name Notes

4 0x00 size size (as negative number)

2 0x04 data may not run to end of cell

4.4 HBIN Structure

The term hbin is surely an abbreviation of “Hive Bin”. An hbin is merely a
container, like a bucket, for the cells within it.

The structure of HBIN records is given in “Windows Kernel Internals” p10
(Probert, undated).

It is shown here as a table with comments.

Size Offset Name Comment

4 0x00 Signature “hbin”

4 0x04 FileOffset Offset from start of hbins to this hbin

4 0x08 Size Size of this hbin (not offset to next)

8 0x0C Reserved

8 0x14 Timestamp Windows FILETIME

4 0x1C Spare

Probert also describes a Bin as being a “Collection of cells”. This implies that
cells do not cross hbin boundaries and from observation that appears to be the
case.

It is a very common misconception that the hbins are chained or linked and that
the size field is the offset to the next hbin. Probably from this error comes the
incorrect statement that the last ‘offset’ is set to zero.

Titheridge (Titheridge, 2008) correctly states that the last hbin also has a value
in the size field which is correct as it is a size not an offset.

Of course this is, at one level, a minor semantic difference as an offset would be
the same value as the size except for the last one.

Probert adds to this confusion when he states (p8) that the Registry File header
is “Followed by chained Bins” although he might have meant that they were
contiguous. Winreg.txt (B.D., undated) states at line 429 that this field (the size

43

field) is “Offset to the next hbin-Block” and this may be the source of all the
subsequent confusion.

If these are not chained then how do we know when we have reached the end
of the hbins? The way to tell is by using the Length field contained in the
Registry File header (“regf” block) which is also known as the BaseBlock.

The other common misconception about hbins is that they are all 4K in size.
They are in fact a multiple of 4K in size. “Windows Kernel Internals” p10
(Probert, undated) states “Size is increment of 4K” (he must mean multiple
when he says increment). It is true that the vast majority of hbins are 4K but if
that was a limit then that would limit the size of Key names, the size of Value
names, the size of Values and the number of Subkeys and Values that a Key
could have. (Key names are limited to 255 characters so that would not be an
issue. (Microsoft, 2008a)).

By observation, only the first hbin has the Timestamp set.

This is a partial description of this structure, a complete analysis is given later.

4.5 Making Test Registry Files

To enable the working of the Registry to be investigated it was thought useful to
have some very simple test Registry files. In particular a file with an hbin of
more than one 4K block was sought in order to be able to investigate the
internal workings of the registry when in memory.

Four test files were created

TEST A basic Registry File with one Key Node (“nk”) record, one
Key Security (“sk”) record and one free cell.

TEST2 A simple Registry file that has an hbin bigger than 4K

TEST3 Same as above but a cleaner version.

TEST4 A Registry File with a Key Security (“sk”) record that has some
Auditing set.

Appendix 8 explains in detail how each of these test Registry files was
constructed.

44

4.6 The Registry in Memory

It will be recalled from Chapter 2 that methods were discovered from the blog
article “Enumerating Registry Hives” (moyix, 2008a) of using the Windows
Debugger WinDbg (Microsoft, 2008k) to examine the Registry in memory.

Various experiments were tried to get information about the Registry, some
were repeats or extensions of experiments in the blog “Push The Red Button”
(moyix, 2008f) and some were new and of the authors contrivance.

To carry out this work the Windows Debugger tools were downloaded and
installed. Full details are given in Appendix 4.

The Registry holds configuration information and so it is completely natural that
the part of Windows that has responsibility for the Registry is called the
“Configuration Manager”, Windows Internals p197 (Russinovich, 2005a).

A number of in-memory experiments were carried out on a standard Windows
XP SP2 desktop.

Information discovered about structures was verified by comparing it with other
sources. In particular this information was compared with

• what was learnt from the analysis of the Parse-Win32Registry module

• “Windows Internals” (Russinovich, 2005a)

• WinReg.txt (B.D., undated)

• dosreg.c (Williams, 2000)

• the web page “Beginning to See the Light” (Clark, 2005)

• “Windows Kernel Internals” (Probert, undated).

4.7 The structure of the Base Block

The following command, from the article “Enumerating Registry Hives” (moyix,
2008a) , was run.

dt nt!_CMHIVE

The output of this can be seen in Appendix 9.

Some of this is quite obscure but it can be seen that the first 0x210 bytes of the
_CM_HHIVE structure is made up of the _HHIVE structure. This was similarly
displayed with the command

dt nt!_HHIVE

The output of this can be seen in Appendix 10.

Again some of this is quite obscure but it can be seen that at offset 0x24 is a
pointer to a structure of type _HBASE_BLOCK. This can be similarly displayed
with the command

dt nt!_HBASE_BLOCK

45

Which produces this output

 +0x000 Signature : Uint4B

 +0x004 Sequence1 : Uint4B

 +0x008 Sequence2 : Uint4B

 +0x00c TimeStamp : _LARGE_INTEGER

 +0x014 Major : Uint4B

 +0x018 Minor : Uint4B

 +0x01c Type : Uint4B

 +0x020 Format : Uint4B

 +0x024 RootCell : Uint4B

 +0x028 Length : Uint4B

 +0x02c Cluster : Uint4B

 +0x030 FileName : [64] UChar

 +0x070 Reserved1 : [99] Uint4B

 +0x1fc CheckSum : Uint4B

 +0x200 Reserved2 : [894] Uint4B

 +0xff8 BootType : Uint4B

 +0xffc BootRecover : Uint4B

“Windows Internals” p200 (Russinovich, 2005a) states

“The first block of a hive is the base block. The base block includes global
information about the hive, including a signature – regf – that identifies the
file as a hive, updated sequence numbers, a time stamp that shows the
last time a write operation was initiated on the hives, the hive format
version number, a checksum and the hive file’s internal file name…”

All of these elements can be seen in the above data structure.

Probert p9 (Probert, undated) has a diagram of a Registry File which calls the
first 4K block of the file the “HIVE HEADER (HBASE_BLOCK)”. This page also
gives an abbreviated structure for the header which matches, as far as it goes,
what we have above.

The “regf” definition extracted from the Parse-Win32Registry matches the
above structure as far as those items that are present. There are no conflicts.

 So it seems we have the definitive structure of the Registry File header.

4.8 Base Block values

4.8.1 Version Number

The BaseBlock has a Major and a Minor data element which is surely the
Version Number. The only values seen in these items were “1.3” and “1.5”.
This was exhaustively checked with the following query against the RegHoover
database of all files.

SELECT DISTINCT Major, Minor FROM BaseBlock

46

Only the following four file names were V1.5 and then only in Windows XP and
above. In Windows NT4 and 2000 these files are version 1.3.

default

software

system

userdiff

The new Registry files introduced with Vista are all V1.3.

4.8.2 Type and Format

The values of Type and Format were similarly investigated and the only values
found in the database were 0 and 1 respectively.

An experiment was carried out to determine the possible values and names for
those values, details of this experiment can be found in Appendix 26.

The following were found to be valid names and values.

Type

Name Value

HFILE_TYPE_PRIMARY 0

HFILE_TYPE_LOG 1

HFILE_TYPE_EXTERNAL 2

Format

Name Value

HBASE_FORMAT_MEMORY 1

4.8.3 Sequence Numbers

The BaseBlock sequence numbers are used to make updates to the Registry
file into transactions which can be reapplied in the event of failure as explained
in Section 4.31 and Appendix 30.

A side-effect of this is that they show how many updates have been applied to
the Registry file.

Of the 165 files in the test set that have BaseBlocks (some files were volatile
parts of hives) there were 149 which had a sequence number of less than
10,000 and 106 which had a sequence number of less than 1,000. Only 2
BaseBlocks had a sequence number of more than 1,000,000.

This demonstrates the relatively juvenile nature of these files which is a
weakness in this project.

47

4.8.4 RootCell

This gives the Cell Index of the first or Root Cell of the Hive. That is the Key cell
or Node (“nk”) that is at the top of the tree structure.

In the data examined this was invariably set to 0x20.

4.8.5 Length

From work which is detailed in Appendix 35 it is plain that it is the sum of the
sizes of all the currently used hbins. In other words the length of the hbin part of
the file when the hive is in a Registry hive.

Some files were found with valid hbins in the file beyond this Length value. This
is both an opportunity and a risk. If you are looking for deleted data then you will
want to search these, even the cells that are not apparently free. On the other
hand if you want to restrict the bounds of your search to the currently valid data
then the Length value must be used.

4.8.6 Other BaseBlock Values

The Cluster value was always set to 1. It is not known what this is used for.

The BootType and BootRecover values were always zero. These may only ever
exist in memory as they are not in the first 0x200 bytes of the BaseBlock.
BootType may be to do with abnormal startup such as booting into Windows
Recovery Mode. BootRecover may show when a registry LOG file has been
replayed or some other recovery action taken on Hive load.

4.9 Registry File Sizes

In “Windows Kernel Internals” p8 (Probert, undated) it states that file sizes grow
in 256K increments to avoid fragmentation of the file.

Therefore you would expect that the minimum size of a Registry file would be
256K. This is not the case with NT4 and Windows 2000 which suggests this
change was introduced in XP. It is not true of “ntuser.dat” Registry Files.

In one, possibly anomalous, case an XP SP2 “default” Registry file was

found to be less than 256K in size.

Oddly, the new BCD Registry file in Vista does not comply being 24K in size
although the BCD-Template Registry file which presumably is used to build it
does comply.

It was found that all Registry files, including from NT4 and Windows 2000,
which were more than 256K in size had a size that was a multiple of 256K so in
that sense it is true.

48

4.10 The Hive Linked List

The in memory linked list of Hives was explored. From “Enumerating Registry
Hives” (moyix, 2008a) this starts with a variable called “CmpHiveListHead”
which can be interrogated in WinDbg by giving the command

? CmpHiveListHead

The value given here can then be dumped from memory using a command
such as

dt nt!_LIST_ENTRY <addr>

This will show the _LIST_ENTRY structure and the values it contains. It can be
seen that we have two elements called FLink and Blink. It seems plain that
these are “Forward Link” and “Back Link”.

The forward links were followed until it repeated itself showing that all elements
of the list had been visited. The details of this experiment are given in Appendix
11.

The structure discovered can be seen in this simplified diagram which only
shows two Hives.

Registry Hives in Memory

CmpHiveListHead

Ptr to Head

_CMHIVE Struct _CMHIVE Struct

FLINK

BLINK

HiveList

_LIST_ENTRY Struct

FLINK

BLINK

HiveList

_LIST_ENTRY Struct

FLINK

BLINK

HiveList

_LIST_ENTRY Struct

The CmpHiveListHead variable is simply a pointer to the List Head
_LIST_ENTRY structure. In a sense the job of the List Head is to point to itself
when the list is empty.

49

From the List Head all the other nodes are linked both forward and back.

Each _LIST_ENTRY structure that is embedded in a _CMHIVE structure will be
at offset 0x224 from the beginning of the _CMHIVE structure. Therefore the
address of the _CMHIVE structure can be obtained by subtracting 0x224 from
the address of the _LIST_ENTRY structure.

4.11 The _CM_KEY_NODE structure

From “Cell Index Translation” (moyix, 2008d) comes this extract.

“…large amount of information on internal registry structures already exists
in the public symbols distributed by Microsoft. Here are the types I know of
that correspond to hive data structures:

• _CM_KEY_NODE

• _CM_KEY_VALUE

• _CHILD_LIST

• _CM_KEY_INDEX

• _CM_KEY_SECURITY

• _CM_BIG_DATA”

It should be noted that these mainly start _CM which surely stands for
Configuration Manager.

The first item looked at was the _CM_KEY_NODE. The structure of this was
extracted by issuing the WinDbg command

dt nt!_CM_KEY_NODE

This is the resultant output

 +0x000 Signature : Uint2B

 +0x002 Flags : Uint2B

 +0x004 LastWriteTime : _LARGE_INTEGER

 +0x00c Spare : Uint4B

 +0x010 Parent : Uint4B

 +0x014 SubKeyCounts : [2] Uint4B

 +0x01c SubKeyLists : [2] Uint4B

 +0x024 ValueList : _CHILD_LIST

 +0x01c ChildHiveReference : _CM_KEY_REFERENCE

 +0x02c Security : Uint4B

 +0x030 Class : Uint4B

 +0x034 MaxNameLen : Pos 0, 16 Bits

 +0x034 UserFlags : Pos 16, 4 Bits

 +0x034 VirtControlFlags : Pos 20, 4 Bits

 +0x034 Debug : Pos 24, 8 Bits

 +0x038 MaxClassLen : Uint4B

 +0x03c MaxValueNameLen : Uint4B

50

 +0x040 MaxValueDataLen : Uint4B

 +0x044 WorkVar : Uint4B

 +0x048 NameLength : Uint2B

 +0x04a ClassLength : Uint2B

 +0x04c Name : [1] Uint2B

If this is compared with our current knowledge of the “nk” record structure we
can see, with the exception of the cell size element, that this is a good fit in that
nothing shown here conflicts. There are some extra puzzles as there is more to
work out.

One answer is given by Dolan-Gavitt (aka moyix) in the paper “Forensic
Analysis of the Windows registry in memory” (Dolan-Gavitt, 2008) where he
says.

“One crucial difference, however, is the existence of volatile keys and
values in in-memory hives. The _CM_KEY_NODE structure has two

members, SubKeyCounts and SubKeyLists, that give the number of

subkeys and a pointer to the subkey list, respectively. Each member,
however, is actually an array of length two: the first entry in the array
refers to the stable keys, while the second refers to the volatile keys.”

This provides two insights. The first rather obviously fills in some otherwise
unknown values in the “nk” record. The second more importantly shows us that
there are volatile parts to Registry Hives that have an external, in file, existence.
In other words non-volatile hives can have volatile Keys.

There are two peculiarities about this structure definition. The first is the use of
the _CHILD_LIST structure. The structure of this can be seen by the usual
method by using a command as follows.

dt nt!_CHILD_LIST

This produces this output

 +0x000 Count : Uint4B

 +0x004 List : Uint4B

Why this should be done, rather than have scalar values, is not immediately
obvious.

The other oddity is that there are two alternative definitions for part of the
structure from offset 0x1c. The second alternative is that it is for a
_CM_KEY_REFERENCE object. The structure of this was extracted

dt nt!_CM_KEY_REFERENCE

51

This produces this output

 +0x000 KeyCell : Uint4B

 +0x004 KeyHive : Ptr32 _HHIVE

The use of this was not immediately apparent but was discovered by further
work which is explained below.

We have the definitive structure of a record, in this case the “nk” record.

4.12 The _CM_KEY_VALUE structure

In a similar way to the exploration of the _CM_KEY_NODE structure the
_CM_KEY_VALUE structure was examined. The structure of this was extracted
by issuing the WinDbg command

dt nt!_CM_KEY_VALUE

This is the resultant output

 +0x000 Signature : Uint2B

 +0x002 NameLength : Uint2B

 +0x004 DataLength : Uint4B

 +0x008 Data : Uint4B

 +0x00c Type : Uint4B

 +0x010 Flags : Uint2B

 +0x012 Spare : Uint2B

 +0x014 Name : [1] Uint2B

Once again, allowing for the omission of the initial size element, we can
compare this with our current knowledge of the “vk” record structure and we can
see very good agreement, there are no conflicts or unexplained parts.

 We now have the definitive structure of a “vk” record.

4.13 The _CM_KEY_INDEX structure

Issuing the Windbg command.

dt nt!_CM_KEY_INDEX

Produces this output.

 +0x000 Signature : Uint2B

 +0x002 Count : Uint2B

 +0x004 List : [1] Uint4B

52

This seems to be only a generic header for all the subkey list types, that is “lf”,
“lh”, “li” and “ri” and so does not add much to our knowledge. It does give us the
proper, Microsoft, names for these elements.

4.14 The _CM_BIG_DATA structure

The structure of this is exactly the same as for _CM_KEY_INDEX which makes
it something of a mystery. It is not known what this might be used for.

4.15 The _CM_KEY_SECURITY structure

Work on this produced some very valuable results. It is the most complicated
record structure held in a Registry File.

This can be approached in the normal way by displaying the structure of the
data type using this command.

 dt nt!_CM_KEY_SECURITY

This gives us

 +0x000 Signature : Uint2B

 +0x002 Reserved : Uint2B

 +0x004 Flink : Uint4B

 +0x008 Blink : Uint4B

 +0x00c ReferenceCount : Uint4B

 +0x010 DescriptorLength : Uint4B

 +0x014 Descriptor : _SECURITY_DESCRIPTOR_RELATIVE

WinReg.txt (B.D., undated) has a neat, text, diagram which shows the “sk”
records being chained together. This matches with the Flink and Blink items
above.

On line 581 it states that “The usage counter counts the number of references
to this “sk”-record.”. On line 575, part of a definition of the “sk” structure, defines
the D-Word at 0x000C as being the usage-counter. This matches the
ReferenceCount above.

This source states, line 468, that the sk record “is the ACL of the registry”.

“Windows Internals” p203, Table 4-6 states “Security-descriptor cells include …
a reference count that records the number of key nodes that share the security
descriptor”. (Russinovich, 2005a).

“Beginning to see the Light” (Clark, 2005) was instrumental in unravelling this
structure. In the section headed “Audit and permissions:” are a number of useful
snippets and some detailed work matching security settings on keys (set via

53

regedit) with hex values seen in this record. This source states, of the value at
offset 0x14 in the cell (including the cell size).

“Length of entry (not surplus) from offset 18 (which is right after this
dword) All offset here after are with respect to offset 18”

Allowing for the initial four byte cell size this places this value at 0x10 which is
named above as DescriptorLength. The data starting immediately after is
named as Descriptor and has a type of _SECURITY_DESCRIPTOR_RELATIVE.

What we have here is an NT Security Descriptor of the type used for files, file
shares, in Active Directory and other places. The term Security Descriptor is
often abbreviated to SD.

Decoding this is of significant forensic interest as it is has applications outside
just the Registry.

The _CM_KEY_SECURITY structure is acting merely as a container for this
Security Descriptor which can be described as its payload.

The Security Descriptor was decoded in its entirety. Initially this was done using
barely more than the description from “Beginning to See the Light” and a hex
dump of the data. Subsequently a very useful description of these structures
was found in the C header file winnt.h.

This work is too lengthy to describe here and is explained in detail in Appendix
12.

The result is a complete description of all the bytes that make up a Windows NT
Registry Security Descriptor.

4.16 Registry Values Types

The “vk” record contains a Data Type field which defines the type of data.

The following Value Types and their code values were taken from winnt.h. The
definitions of these values in the Visual Studio .NET 2003 winnt.h file was the
most up to date found in that it includes the value types REG_QWORD and
REG_QWORD_LITTLE_ENDIAN.

REG_NONE 0 No value type

REG_SZ 1 Unicode nul

terminated string

REG_EXPAND_SZ 2 Unicode nul

terminated string

(with environment

variable references)

REG_BINARY 3 Free form binary

54

REG_DWORD 4 32-bit number

REG_DWORD_LITTLE_ENDIAN 4 32-bit number

(same as REG_DWORD)

REG_DWORD_BIG_ENDIAN 5 32-bit number

REG_LINK 6 Symbolic Link

(unicode)

REG_MULTI_SZ 7 Multiple Unicode

strings

REG_RESOURCE_LIST 8 Resource list in the

resource map

REG_FULL_RESOURCE_DESCRIPTOR 9 Resource list in the

hardware description

REG_RESOURCE_REQUIREMENTS_LIST 10

REG_QWORD 11 64-bit number

REG_QWORD_LITTLE_ENDIAN 11 64-bit number

(same as REG_QWORD)

These values fit well with the Parse-Win32Registry values which can be found
in Win32Registry.pm at lines 38-53 and are as follows.

REG_NONE 0

REG_SZ 1

REG_EXPAND_SZ 2

REG_BINARY 3

REG_DWORD 4

REG_DWORD_BIG_ENDIAN 5

REG_LINK 6

REG_MULTI_SZ 7

REG_RESOURCE_LIST 8

REG_FULL_RESOURCE_DESCRIPTOR 9

REG_RESOURCE_REQUIREMENTS_LIST 10

REG_QWORD 11

Definitions from Microsoft can be found in “Registry Value Types” (Microsoft,
2008ac).

55

4.17 Navigating Registry Structures in Memory

At this point we have reached a stage were it would be very helpful to be able to
navigate the Registry structures in memory in much the same way as we can
when they are in Registry Files.

To do this we have to know where to find the hbins that make up the Registry
whether it is in File or in Memory.

When in a file it is easy, they are simply contiguously laid out in the file. This is
not necessarily true in memory. Although Windows can (and does) make an
initial contiguous allocation it is not possible to make sure that any extra hbins
that might be needed will have contiguous memory allocated.

Another complication is that we also have volatile keys attached to otherwise
stable Registry Hives. The stable parts of these Hives are kept safe in Registry
files so they can be reloaded, the volatile parts are not and are kept in a parallel
set of volatile hives. Somehow they must be able to be found by some sensible
mechanism.

The way this is done is explained in “Windows Internals” p 203-207
(Russinovich, 2005a) and in “Cell Index Translation” (moyix, 2008d). Much of
this section is taken from these references. Russinovich makes no mention of
volatile cells, only of volatile hives which have stable (and volatile) cells but no
associated file.

This mechanism may seem over complex but does have some reason to it.

It all centres on the Cell Index (or CellIndex). We know that when the Hive is in
a file the Cell Index is the offset from the beginning of the first hbin. Since this is
always at offset 0x1000 in the file we know that to get the File Offset from the
Cell Index we add 0x1000.

In memory we have to make more sophisticated use of the Cell Index. It does
still have the same conceptual meaning in that it an offset from the first hbin and
if they were in contiguous memory that would be enough.

We know, as a Block is 4K in size, that the last 12 bits, or last three
Hexadecimal digits, will determine the offset in the relevant 4K block of the cell
we are trying to find.

The other 20 bits of the Cell index are split into fields which allow us to find both
the address of the Block and the address of the hbin which might not be the
same.

The reason why the block address and the hbin address might be different is
because of hbins that are more than 4K in size. If an hbin consists of one 4K
block then the address of that block will be the same as the address of the hbin.
If the hbin consists of multiple 4K blocks then only the first block will have the
same address as the hbin. The other blocks must have addresses in increments
of 4K. That is hbins must be in contiguous memory as otherwise cells that
crossed a 4K boundary would become split in memory.

56

So we need a data structure that will allow us to lookup the address of the hbin
and the address of the block given the Cell Index. The structure that allows this
is the “Cell Map Table”. The internal structure name for this is the
_HMAP_TABLE. We can see the structure in the normal way using WinDbg.

 dt nt! _HMAP_TABLE

what we get is this

 +0x000 Table : [512] _HMAP_ENTRY

If we pursue this, we can find out what an _HMAP_ENTRY looks like with this
command.

 dt nt!_HMAP_ENTRY

We get this

 +0x000 BlockAddress : Uint4B

 +0x004 BinAddress : Uint4B

 +0x008 CmView : Ptr32 _CM_VIEW_OF_FILE

 +0x00c MemAlloc : Uint4B

Clearly we have our BlockAddress and BinAddress. The other two entries are
the Configuration Manager View of File and the size of memory allocated to this
object.

We can see that each _HMAP_ENTRY object is 16 bytes long and that there
are 512 of them in a Table which neatly comes to 8K or 2 x 4K of memory.

This is all very well but what happens if you have more than 512 blocks of
Registry which is not unusual? We only need 9 bits to reference the 512 entries
in this table. Using the higher order bits we can select which table by looking it
up in a Cell Map Directory. This is of type _HMAP_DIRECTORY and so the
structure can be seen with the following command.

 dt nt!_HMAP_DIRECTORY

Which gives us this

 +0x000 Directory : [1024] Ptr32 _HMAP_TABLE

This data structure is 4K in size (1024 x 4 byte entries). It is referenced by the
next higher 10 bits from the Cell Index.

The advantage of this two stage data structure is that the detailed parts of the
table only need be in memory when wanted and, as long as the Registry is not
too fragmented, should reduce memory usage and page thrashing.

57

This is significantly more flexible than having one table of 219 _HMAP_ENTRY
elements. It would not be feasible to have a full size table in memory and if you
have part-sized table then how would you shrink or expand it?

There is one final piece of the puzzle left. We have only accounted for 31 of the
32 bits of the Cell Index (12 + 9 + 10). The highest order bit is used to select
between the Stable and the Volatile sets of hbins. If it is set to zero then we are
looking for a stable cell in a Stable hbin, if it is set to 1 we are looking for a
volatile cell in a Volatile hbin.

The selection here is from the two element Storage item which is a part of the
_HHIVE structure. These are of type _DUAL and their structure can be found
with this command.

dt nt!_DUAL

This gives the following.

 +0x000 Length : Uint4B

 +0x004 Map : Ptr32 _HMAP_DIRECTORY

 +0x008 SmallDir : Ptr32 _HMAP_TABLE

 +0x00c Guard : Uint4B

 +0x010 FreeDisplay : [24] _RTL_BITMAP

 +0x0d0 FreeSummary : Uint4B

 +0x0d4 FreeBins : _LIST_ENTRY

We can see in this structure an _HMAP_DIRECTORY element and an
_HMAP_TABLE element.

This latter element is of some surprise as we would have expected to find that
this was an array of 1024 such items but what we have is only one entry (which
will have 512 entries in it). The reason for this is apparently an optimisation for
small hives which have no more than 512 blocks. This will be explained further
later on.

We could reasonably expect that the Length element would be the mirror of the
length element in the BaseBlock (“regf” header). Without this entry here there
would not be one for the volatile part of a hive.

The FreeDisplay element is used for managing the free cells in memory
“Windows Kernel Internals” p10 (Probert, undated).

It is not known what the Guard, FreeSummary or FreeBins elements are used
for.

58

4.17.1 Finding HBINS – Small Hive

Appendix 13 shows a worked example of finding an hbin in memory for the case
where the total size of the hbins is no more than 512 blocks.

This is quite an easy process. Understanding it is fundamental to understanding
how this mechanism works.

4.17.2 Finding HBINS – Large Hive

Now that we have established a method we can apply it to another Hive which
is larger, and which has a volatile part.

In this case the Stable part is more than 512 blocks in size.

This was done and is explained in some detail in Appendix 14.

4.17.3 Finding HBINS – Large HBINS

The work in this section was completed before the worked example using the
SYSTEM Hive shown in Appendix 14 was completed in detail.

The purpose of this work was to show the impact on the internal structures of
having an hbin of more than one 4K block. This is something which the above
example fortuitously came across.

This experiment is reproduced anyway as it neatly illustrates some points.

Full details can be found in Appendix 15.

4.17.4 Finding HBINS – Another Way

In his web article “Internal structures of the Windows Registry” (Anand, 2008)
explains the following process which is equivalent to what we have been doing.

If we start from “!reg hivelist” command as before we can get the following
data for the SYSTEM Hive.

Data Item Value

HiveAddr e1036008

Stable Length 5d8000

Stable Map e1038000

Volatile Length 24000

Volatile Map e1036144

BaseBlock e1037000

Filename SYSTEM

59

The “cellindex” command of the reg extension will allow us to find the block
location in memory from the address of the Hive and the Cell index. For
example, if we want to find where a cell index of 0x20 is in the SYSTEM hive
above we can do so with this command.

!reg cellindex e1036008 20

Which produces this output.

Map = e1038000 Type = 0 Table = 0 Block = 0 Offset = 20

MapTable = e1039000

BlockAddress = c7901000

pcell: c7901024

As can be seen this has picked out the Cell Map Directory (0xe1038000) and
the Cell Map Table (0xe1039000) and used that to look up the Block Address
(0xc7901000). The Cell index has then been added and as a final touch another
4 has been added to step over the initial size element of the cell.

This method works (unsurprisingly) and is quite easy. However it is obscure and
lacks the transparency needed for forensic analysis. It also obviously will only
work on a live system that has the debugging tools installed.

It does provide a valuable means of verifying our manual method.

4.17.5 Bin Address Flag Values

As has been commented on earlier in the Appendices, the BinAddress values in
the Cell Map Table entries have some of the low order bits set. A small number
of values have been seen and it is now possible to speculate what they might
be.

This analysis is purely observational and coincidental, and may be completely
wrong. It is however plausible.

Value Analysis

0x01 This entry is for an hbin

0x02 not seen

0x04 seen but no explanation

0x08 This entry is for a Volatile block

60

4.18 Verifying ACL and ACE values

Earlier we were able to derive the structure of the Security Key (“sk”) record and
show the components down to ACL and ACE level.

We ought to be able to verify that certain bit values have certain meanings with
respect to the settings in the regedit program Permissions GUI.

This can be done by manipulating the Permissions using the regedit GUI and
then seeing what values appear in the data, the actual registry bytes.

One technique would be to start regedit, load a hive, make a change, unload
the hive (so that file is not locked) and look at the data in WinHex. This would
be quite laborious. With the knowledge gained so far about finding the Registry
objects in memory a better alternative is to find the object in memory and then
observe these values before and after changes..

A risk is that if the modified Security Key (“sk” record) becomes larger then it will
be moved to a new location. We could find ourselves looking at now unused
bytes.

4.18.1 Preparation

A copy of the test Registry File TEST4 was prepared by adding a new trustee.
This was needed as all the standard ACEs are inherited and so cannot be
manipulated.

Full details of the procedure is given in Appendix 16.

4.18.2 Permissions Settings

It was now possible to step through all the possible values of the Permissions,
as set using the regedit GUI, and to see what values this produced in the
relevant bytes of the ACE.

This work is explained in detail in Appendix 17.

This confirmed the following table.

Permission Setting
Value of

Permissions DWORD

Query Value 0x00000001

Set Value 0x00000002

Create Subkey 0x00000004

Enumerate Subkeys 0x00000008

Notify 0x00000010

61

Create Link 0x00000020

Delete 0x00010000

Write DAC 0x00040000

Write Owner 0x00080000

Read Control 0x00020000

Full Control 0x000F003F

4.18.3 ACE Inheritance Settings

We can apply the same method to unravelling what Inheritance permissions set
on a Trustee in the GUI cause what data changes.

The GUI settings fall into two categories.

1. A drop down list called “Apply onto:” which has the following three
options

• This key and subkeys

• This key only

• Subkeys only

2. A tick box labelled “Apply these permissions to objects and/or containers
within this container only”

The details of how this was done can be found in Appendix 18.

From this work the following table was derived.

“Apply onto:”
“Apply

these…”
AceFlags

Value
AceFlag Names

This key and
subkeys

Not Set 0x02 CONTAINER_INHERIT_ACE

This key only Not Set 0x00

Subkeys only Not Set 0x0A CONTAINER_INHERIT_ACE

INHERIT_ONLY_ACE

This key and
subkeys

Set 0x06 CONTAINER_INHERIT_ACE

NO_PROPAGATE_INHERIT_ACE

This key only <cannot set> No Result No Result

Subkeys only Set 0x0E CONTAINER_INHERIT_ACE

NO_PROPAGATE_INHERIT_ACE

INHERIT_ONLY_ACE

62

4.18.4 Security Descriptor Inheritance Settings

The “Advanced Security Settings..” dialogue box has two tick boxes on the
Permissions tab and the Auditing tab. These read.

“Inherit from parent the permission entries that apply to child objects.
Include these with entries explicitly defined here.”

“Replace permission entries on all child objects with entries shown here
that apply to child objects”

The first of these controls whether or not parent properties are allowed to
propagate into this object. By default this is selected.

The second of these is merely a request to re-apply settings to child objects in
case they have not propagated properly. It is a setting that calls for an action
rather than a setting that changes the configuration.

The possible values were examined as described in detail in Appendix 19.

The conclusion reached is that setting “Inherit from parent…” in either the
Permissions or the Auditing tab clears a bit in the Control variable of the
Security Descriptor that inhibits inheritance.

The bit values are as follows, from winnt.h.

Permissions SE_DACL_PROTECTED 0x1000

Auditing SE_SACL_PROTECTED 0x2000

Each of these bits, when set, prevents otherwise inheritable ACEs from being
inherited.

More information about the Control item can be found in this Microsoft web
page “SECURITY_DESCRIPTOR_CONTROL Data Type”, (Microsoft, 2008n).

4.19 The Registry Namespace

It is familiar to refer to keys by their pathname as shown in the regedit program.
For example

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet.

This is not how Windows refers to these keys internally. Windows converts all
such key references to names that start with the term “REGISTRY” and so the
above key would be known as follows

 \Registry\Machine\System\CurrentControlSet

(Upper or lower case is not relevant).

63

When Windows is asked to open an object with a name that starts “\Registry\” it
knows to delegate this task to the Configuration Manager.

This is explained in “Windows Internals” p 207 (Russinovich, 2005a). which
states.

“Regedit shows key names in the form
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet but the Windows
subsystem translates such names into their object namespace form (for
example, \Registry\Machine\System\CurrentControlSet)”.

4.20 Key Node flag values

The Key Node record (“nk”) contains an element calls Flags.

An experiment was conducted to determine the proper internal name for each of
the bits in this value.

Details of this experiment are described in Appendix 20. The results of this were
as follows.

Bit Hex Decode

1 0x0001 Unused

2 0x0002 HiveExit

3 0x0004 HiveEntry Root Key

4 0x0008 NoDelete Deletion not allowed

5 0x0010 SymbolicLink

6 0x0020 CompressedName Name in ASCII not Unicode

7 0x0040 PredefinedHandle

8 0x0080 VirtMirrored

9 0x0100 VirtTarget

10 0x0200 VirtualStore

11 0x0400 Unused

12 0x0800 Unused

13 0x1000 Unused

14 0x2000 Unused

15 0x4000 Unused

16 0x8000 Unused

64

With this information we can decode the two most commonly seen Flag values
in nk records. These are

0x2C CompressedName, NoDelete, HiveEntry
0x20 CompressedName

This explains why the Root Key normally has the flags value set to 0x2C and
most other keys have 0x20.

It is apparent that “CompressedName” means that the key name is in ASCII
rather than in Unicode.

The NoDelete bit prevents regedit from deleting the key as a simple experiment
shows (set this bit on a key in memory and then try to delete it via regedit).

HiveEntry appears to be set on the Root Key of each Hive, including that of the
Registry or Root Hive. This may be to show code that is navigating up the chain
of Keys from Child to Parent that it has reached the top of the tree. Note that
this is not shown by having any ‘end of chain’ marker in the Parent field of a
Hives Root Key. More on the Parent field of Root Keys later.

The “All Files” database (run 15) was checked to see what values of this Flags
field could be found using this query.

SELECT DISTINCT Flags, Count(*) AS [Count]

FROM nk GROUP BY Flags

UNION

SELECT DISTINCT Flags, Count(*) AS [Count]

FROM lk GROUP BY Flags

The results, with bit names, were as follows.

Flags Count Bits Bit Names

0x00 6

0x20 1,130,093 0x20 CompressedName

0x2A 12 0x20, 0x08, 0x02 CompressedName, NoDelete, HiveExit

0x2C 165 0x20, 0x08, 0x04 CompressedName, NoDelete, HiveEntry

0x30 8 0x20, 0x10 CompressedName, SymbolicLink

0x60 1 0x40, 0x20 PredefinedHandle, CompressedName

0x1020 53,709 0x1000, 0x20 <Unused>, CompressedName

This was from a total of 1,183,994 “nk” and “lk” records.

65

The following conclusions were drawn.

• Values of 0x20 and 0x00 are for ordinary keys the difference between
them being that 0x20 indicates that the Key Name is held in Compressed
form, that is in ASCII. Another way of looking at this is that we have just 6
Key names in this set of data that are in UniCode.

• The 165 x 0x2C values are the Root Cells of the 165 full Registry files in
the data set.

• The 8 x 0x30 values are all in the Volatile parts of Hives (one of which is
Volatile itself). These are explained below in the section on Symbolic
Links.

• The 12 x 0x2A values are the 12 “lk” or Key Link cells that link from the
Registry hive to the other Hives.

HiveExit and HiveEntry can be seen here as the two ends of the link
relationship. The “lk node having the HiveExit bit set and which points to
the Root Cell of the Hive which has its HiveEntry bit set.

• The one “nk” record that has the PredefinedHandle bit set is quite
unusual. It is to do with holding Performance Data and it refers to data
held externally in some files.

Please see Appendix 36 for more information about this key type.

• The bit value 0x1000 which is set in 53,709 nk records are all from Vista
files so it seems that this is a new value introduced with Vista. Further
work needed.

4.21 Extracting the Registry Hive from Memory

If we know where to find the hbins in memory we should be able to extract them
and make a Registry File.

There is not a lot of value in doing this for the Hives that have a Registry file as
they are flushed out to disk regularly (or at least the Stable parts of them are).

This is of more interest for the Volatile Hives that do not normally exist outside
memory or for the Volatile hbins of Hives that do have a Stable part.

The sizes of all the hives can be seen with the “!reg hivelist” command. It

has already been shown that this list is in reverse order of loading, that is the
most recently loaded is at the top and the hive that was loaded first is at the
bottom.

66

That bottom hive typically has these values, taken from a run of “!reg

hivelist”.

Name Value

HiveAddr 0xe102d008

StableLength 0x1000

StableMap 0xe102d068

VolatileLength 0x 1000

VolatileMap 0xe102d144

BaseBlock 0xe102e000

It can be seen that this hive only has 2 hbins, one stable and one volatile. (It is a
puzzle as to why a volatile hive has a volatile hbin since by definition it is all
volatile anyway).

The BaseBlock and the Stable hbin were extracted and converted to a binary
file. The Volatile hbin was also extracted.

The details of how this was done and an analysis of the results can be seen in
Appendix 21.

It is plain from this analysis that the purpose of this Registry hive which we have
unravelled is to act as the entry point for all the Registry Namespace. That is to
allow namespace names like “\Registry\Machine\SAM” to be mapped to the
SAM Hive.

A vital part of this mechanism is the discovery of a new record type called “lk”
which perhaps stands for “Key Link”. It is this node that links from this root
Registry hive to all the other hives in the Registry.

The structure of the Registry Hive is diagrammed in Appendix 22. The original
template sheets used are shown in Supplement 17 as a worked example of how
a manual dissection can be done.

As explained in Appendix 21 we can now map everything that is seen in regedit
to real actual data.

As a further refinement a method was developed that allows all the hbins of a
registry hive to be easily extracted from memory. This more advanced method
is explained in detail in Appendix 23.

Using this advanced method both the Volatile Hives (Registry and Machine) and
all the Volatile hbins of all hives that have Volatile hbins were extracted and
added to the pool of Registry files that were routinely analysed overnight.

67

4.22 Symbolic Links

Eight “nk” records were found which had the SymbolicLink bit set in their Flags
value.

All of these were in the Volatile parts of Hives, in one case (Registry) it was in
the Volatile part of a Volatile Hive which seems a little unnecessary.

In all cases the “nk” record had no SubKeys and just one Value.

In all cases the Value had a name of “SymbolicLinkValue”. The value of the
Value was the full Registry namespace path of the Key that the Link pointed to.

The eight Symbolic Links were found in the following Hives.

Name Count

Registry 1

Security 1

System 3

ntuser.dat (Current User) 1

ntuser.dat (Local Service User) 1

ntuser.dat (Network Service User) 1

The links were as follows (expressed in Registry namespace).

Registry:

Link Name: \Registry\User\S-1-5-18

Links To: \Registry\User\.DEFAULT

Security

Link: \Registry\Machine\Security\SAM

Link To: \Registry\Machine\SAM\SAM

System:

Link: \Registry\Machine\System\

ControlSet001\Control\Print\Printers

Link To: \Registry\Machine\Software\Microsoft\

Windows NT\CurrentVersion\Print\Printers

Link: \Registry\Machine\System\

ControlSet001\Hardware Profiles\Current

Link To: \Registry\Machine\System\CurrentControlSet\

68

Hardware Profiles\0001

Link: \Registry\Machine\System\CurrentControlSet

Link To: \Registry\Machine\System\ControlSet001

ntuser.dat (Network Service)

Link: \Registry\User\S-1-5-20\Software\Classes

Link To: \Registry\User\S-1-5-20_Classes

ntuser.dat (Local Service)

Link: \Registry\User\S-1-5-19\Software\Classes

Link To: \Registry\User\S-1-5-19_Classes

ntuser.dat (Current User)

Link: \Registry\User\S-1-5-21-4200165691-2687452118-

2273033371-1108\Software\Classes

Link To: \Registry\User\S-1-5-21-4200165691-2687452118-

2273033371-1108_Classes

4.23 Key Node Parent Values

If a Key does not have any SubKeys then the data item in the “nk” record that
would normally point to the SubKey List will be set to -1 (0xFFFFFFFF).

As has been previously shown, each Key Node has a value called Parent which
contains the Cell Index of the Key Node that is the Parent to that Key.

By traversing the Parent links the full path name of a Key can be determined.

However there are two puzzles. First of all this mechanism surely limits the
reverse path to the particular hive, how do we know the name of the hive?

The second is that even the Root Key of a Hive has a sensible value in the
Parent field when surely this should be some sort of terminating value such as 0
or -1. The values found make no sense within that hive.

It was speculated that the Parent value in the Root Cell of each hive might in
fact be the Cell Index of the “lk” record in the Registry or Root Hive.

This theory was checked by examining all the hives and checking the Parent
value in each of their Root Cells against the Cell Indices of the relevant “lk”
records in the Registry hive. There was a complete 100% match.

69

On checking the Root Hive the Parent Value of its Root Key was found to be set
to -1 (0xFFFFFFFF) which plainly marks the termination of the Parent paths for
all Keys in the entire Registry.

All hive Root Cells have in their Flags value the HiveEntry bit set. When
navigating up through the Keys it seems that this may be used to indicate that
the path now passes to the Registry hive.

4.24 Extracting ntoskrnl Symbols

The use of internal symbols from the ntoskrnl module (the NT Kernel) proved to
be a very good way of understanding the Registry structures.

It was thought a useful approach to attempt to get a comprehensive list of all
these to see what else might be of interest.

The Microsoft debugger, WinDbg used to allow a wildcard syntax for symbols
which was as follows

dt nt!*

The above command would list all symbols. This form has been discontinued
and no longer works on the current version of the debugger.

The symbols for the Kernel are contained in a file called ntoskrnl.pdb which can
by found in the Symbols folder after the symbols have been downloaded from
Microsoft or in the cache if the Symbols server has been used as
recommended. See Appendix 4 for details of how to install the Windows
Debugger.

The debugger command “lml” will show which symbols have been loaded and

gives the path to where the PDB file can be found.

PDB stands for Program DataBase (Microsoft, 2008ad).

An attempt was made to extract the synbols from the Symbol file by using an
example program supplied by Microsoft with Visual Studio, which is Microsoft’s
development environment (Microsoft, 2008g). This program is called “diadump”.
It uses the Microsoft “Debug Interface Access SDK” (Microsoft, 2008h) to dump
the contents of a .pdb file.

This proved to be fruitless, the program ran for a very long time and produced
an obviously erroneously large output.

The second attempt took a more empirical approach and simply used a
Windows version of the well known “strings” program to extract plausible strings
from the ntoskrnl.pdb file. These were then filtered with the “Filter Symbols”
script. The list produced from that was then used to create a script file for
kd.exe which is the command line version of the Kernel Debugger. This script

70

file used the Kernel Debugger command “dt” which displays the layout of a
structure. In this way a complete list of all Kernel structures with a name of three
or more characters was found.

Appendix 24 explains the process in detail.

This was successful in producing a plausible list of symbols and these were of
some use. Notably the _ACL and _SECURITY_DESCRIPTOR_RELATIVE.

A third method was tried. Paul Schreider (Schrieder, 2008) has produced a PDB
Parser program called Windows PDB Exploder, the executable of which is
called win_pdbx.exe.

This was run against the ntoskrnl.pdb file. The output is somewhat crude which
is in keeping with the kind of tool that it is. The output was filtered to produce an
alternative list of Kernel structures.

Full details of this attempt is given in Appendix 25.

The result had 413 entries, a lot less than had been obtained using the Strings
approach. It did not reveal any new structures that had not been seen before.

4.25 How Dirty pages are flushed out

According to “Windows Kernel Internals” p12 (Probert, undated)…

“Every time a cell is dirtied the whole page is marked dirty (in the Dirty
Vector)”

“Windows Internals” p 209 (Russinovich, 2005a) suggests that this is not done
by 4K block as stated above but by 512 byte sector.

“…a bit array in which each bit represents a 512-byte portion, or sector, of
the hive. …an on bit in the array means the system has modified the
corresponding sector in the hive in memory and must write the sector back
to the hive file.”

Probert states at p14 that the Kernel has a bitmap of type RTL_BITMAP which
has a bit set for each 4K block that has been altered (“one bit per page”) and so
needs to be flushed out to disk. It would appear that this is the DirtyVector
element of the _HHIVE data structure.

An experiment was conducted to see if the data would be written out in 512 byte
sectors or in 4K blocks. The details of this experiment are given in Appendix 27.

It was clearly shown that that the whole 4K block is written out.

A possible explanation for the above apparent discrepancy between these two
authoritative authors is that it used to be done in 512 byte sectors but is now

71

done in 4K blocks. Possible reasons are that the recovery process using .LOG
files works better with 4K blocks or it may be that it was realised that as the disk
system has to write a minimum of 4K anyway then it could be less efficient to
write amounts smaller than that as the disk system will need to read 4K in,
patch in the changed 512 byte sector and then write it out again. In other words
it may be that what Russinovich wrote was correct at the time it was written.

However there is another mystery.

As the experiment in Appendix 28 shows, the bitmap which shows which part of
the Hive is dirty and needs to be flushed is sized at eight times what would be
needed for 4K blocks. That is it is sized as would be needed for 512 byte
sectors.

As described by Probert p16 (Probert, undated) there is a normally 5 second
delay before the “Lazy Flush” is initiated which then checks all the hives and
flushes out any dirty pages.

As a result these bitmaps will nearly always be all zeroes. The only time that
any part of any of them will be non-zero is during the short period between a
change having been made and the data being written out.

Using this information all the bitmaps were examined for all non-volatile hives
and this clearly showed that the bitmap size was the number of bits and not the
number of bytes.

Details of the method used are in Appendix 29.

The last question to answer is whether the bitmaps are marked up on a bitwise
basis. It is obviously quite hard to spot a change that might only exist for no
more than 5 seconds.

Windows 2003 Server does have a registry value which can be changed to alter
this period. This value is

HKLM\System\CurrentControlSet\Control\

Session Manager\Configuration Manager\

RegistryLazyFlushInterval

”Windows Internals” p209 (Russinovich, 2005a). (In the book the element
“Control” is missing from the path).

A Microsoft article hints that this may also work on XP SP2 (Microsoft, 2006a).

This was attempted on an XP SP2 computer, setting the lazy flush interval to 60
seconds. A small hive was loaded (the one used in the earlier experiment
detailed in Appendix 27). The location of this hives dirty bitmap was determined
in the debugger. The only value in this hive was then altered using regedit and
the dirty bitmap examined.

72

It was found that the relevant byte in the dirty bitmap was set to 0xFF, a setting
which lasted about 5 seconds showing that the registry change did not have any
impact.

The computer was rebooted, the experiment repeated and it was found that the
lazy flush interval had been changed to about 90 seconds. This time is probably
a reflection of the approximate nature of the setting. So the Registry key change
does work but unsurprisingly needed a reboot.

The fact that all 8 bits of the bitmap for that block were set explains why all eight
512 byte sectors were written out. It is possible that the ability to only flush out
specific 512 byte sectors exists in the kernel code but that that capability is
masked by all eight bits being set. This capability may be used for some hives
or in some circumstances.

4.26 LOG files

Every Registry File has a .LOG file associated with it named as the Registry file
name with “.LOG” appended. For example, the Registry file “SAM” has an
associated log file called “SAM.LOG”. If a Registry file is loaded, perhaps by
regedit, and it does not have a .LOG file then one will be created.

The purpose of these .LOG files is to provide a safe and recoverable
mechanism for updating the Registry file.

Any updates are first written to the .LOG file and only when safely flushed to
that file are the changes made to the main file. In this context the main file is
called the “PRIMARY” file and the .LOG file is called the “LOG”.

How this works is explained in more detail in Appendix 30.

The structure of the .LOG files is explained in “Windows Kernel Internals” p15
(Probert, undated). The following diagram is taken from there.

73

.LOG File

 Log header

 dirty page

 padding to sector alignment

 Dirty Vector (variable size)

 dirty page

 dirty page

The Log Header is the same basic format as the “regf” header and has the
same signature.

The Dirty Vector is a copy of the internal data structure and shows where the
following blocks come from.

The dirty pages are 4K Blocks, that is only those parts of the hbins that need
flushing out.

A simple experiment was carried out on .LOG files as follows. The experiment
was carried out on a Windows XP SP2 computer with a large number of
windows open.

1. The registry key to lengthen the LAZY_FLUSH time had previously
been set so that flushes happened 60-90 seconds after the first change.
This allows changes to happen slowly enough to be easily seen.

2. Windows Explorer was opened to the %windir%\system32\config folder.

3. The system was left for a couple of minutes to make sure that any
outstanding Registry flushes were carried out.

4. The size of the .LOG files was noted. They were all 1K.

5. All but the Windows Explorer window was closed.

6. It was observed that the sizes of some of the .LOG file swelled by a
large amount at the expected interval after the changes started.

7. It was observed that at the next ‘tick’ the .LOG files went back to their
default or quiescent size of 1K.

74

It was deduced from this that .LOG files only contain update data for the
LAZY_FLUSH interval which is five seconds by default.

However such information will have a high probability of showing in unallocated
space and would seem to be one of the mechanisms by which Registry data
can appear in unallocated space. It is to be expected that such data would show
in layers with older, bigger, sets of update data showing but masked by more
recent updates, something like this diagram.

 Smallest & Most Recent

 Less Recent and Larger Update

 Oldest and Largest Update

The structure of the first few bytes of a .LOG file (a SAM.LOG file) was
decomposed using the BaseBlock Record template (Appendix 5) and compared
with the data in the corresponding SAM Registry file.

The data was found to be very similar between the two files. The following were
noted.

• The Sequence numbers in the PRIMARY file were one more than in the
LOG file.

• The Type data item was set to 0x01 (HFILE_TYPE_LOG) in the LOG file
and 0x00 (HFILE_TYPE_PRIMARY) in the PRIMARY file.

• The Timestamps were identical down to the fraction of a second.

4.27 The “regf” Checksum

The regf header contains a field called “Checksum”.

Work was done to investigate this value and the following was discovered.

The Checksum is a DWORD by DWORD XOR of all the dwords in the first
0x200 bytes except the last dword, which contains the Checksum. No other
bytes affect it

The utility xorcheck (Clark, 2005) does not appear to work.

A program, regfXOR.exe, was written to investigate how the Checksum was
calculated. This can be used to calculate the Checksum for manually adding to
a Registry file.

Full details of this work can be found in Appendix 31. The source code for the
regfXOR.exe program can be found in Supplement 19.

75

4.28 Large hbin sizes

It used to be thought that hbins were all 4K in size. It soon became plain that
this is not so and a query was run to see what hbin sizes might be found.

The following query was run against the “All Files” database (run 15).

SELECT Size, Count(*) AS [Count]

FROM hbin

GROUP BY Size

ORDER BY SIZE;

The following table was constructed from the output.

Size
Num 4K

Blocks
Count

4,096 1 81,196

8,192 2 1,602

12,288 3 558

16,384 4 531

36,864 9 55

69,632 17 24

135,168 33 25

266,240 65 6

528,384 129 6

1,052,672 257 3

This is a total of 84,006 hbins of which 2,810 are more than 4K in size.

The three largest (257 x 4K each) are all in ntuser.dat files. No further
investigation was done of what cells these large hbins contain.

4.29 Hash Values in lh SubKey Lists

An “lh” SubKey list differs from an “lf” SubKey list in the form of the Hash. In an
“lf” list this is the first four characters of the SubKey name (right padded with
nulls). In an “lh” list the hash is a numeric value. It is plausible that in each case
the hash value is used as a consistency check.

Values of the hash and the SubKey name it refers to were extracted from a
RegHoover database that was known to contain “lh” records. From that data the
algorithm was deduced.

76

A program was written, HashCalc.exe which when given a file of SubKey
Names and Hash values will report on any that do not fit the algorithm found.
This was used to test the theory against practice.

The algorithm is:

1. First set hash value to zero

2. Then, working from left to right through the letters of the SubKey name,
for each one, multiply Hash by 37 and then add the ASCII value of that
letter

There is one complication

Any lower case letters will be changed to upper case. This also happens with
characters whose ASCII code is above 127 but which would be a lower case
letter if their most significant bit is ignored.

It is not clear how Unicode SubKey names are treated. This was not
investigated.

Full details of how this work was done can be found in Appendix 31.

The source code for the HashCheck program can be found in Supplement 14.

4.30 About ri and li SubKey Lists

The “ri” and “li” SubKey Lists are two of the four kinds of SubKey lists.

Much work was done on the data in the “All Files” database to characterise the
use of these cells. This work is detailed in Appendix 37.

From this work the following conclusions were drawn about V1.3 Registry files.

• “li” records are only used in V1.3 Registry Files

• “ri” records always point to “li” records.

• “li” records can be pointed to directly by an “nk” record (one in the data
examined).

• “li” records are used in preference to “lh” records above a certain number
of subkeys which is between 420 and 904.

• “ri” records are used to further sub-divide “li” records above a certain
number of subkeys which is between 905 and 1,027.

From this work the following conclusions were drawn about V1.5 Registry files.

• “ri” records always point to “lh” records.

• “ri” records are used to sub-divide “lh” records above a certain number
of subkeys which is between 1,010 and 1,256.

77

• About 98% of “lh” records that are pointed to by “ri” records have a
number of entries in the range 506-1,010, the rest are less than 506.

• Only about 0.13% of “lh” records had a number of entries greater than or
equal to 506.

• Only about 2% of the “lh” records with 506 or more entries were pointed
to directly by “nk” records.

It seems plain from this work that in version 1.3 Registry files, first “li” and then a
combination of “ri” and “li” records are used to control the size of SubKey lists in
place of the normal “lf” records.

In version 1.5 files “ri” records are used to split up overly large “lh” records.

No instances were found of an “ri” record pointing to another “ri” record and it is
hard to see why this would be useful.

It was also discovered that for large SubKey lists a small number of cell sizes
seem to be used with large amounts of free space in them. This may be to
prevent fragmentation.

4.31 SubKey Lists and Registry File Versions

In version 1.3 Registry files SubKey lists are “lf”, “li” and “ri”.

In version 1.5 Registry files SubKey lists are “lh” and “ri”.

The only Registry file types that are version 1.5 are “default”, “software”,

“system” and “userdiff” from Windows XP onwards (that is also Windows
Server 2003 and Vista).

The above was determined by examination of the “All Files” database (Run 16).

4.32 Flag Values in vk Records

Values that do not have a Name are the Default value for that Key and are
shown as such in regedit.

All the information that has been researched states that the “vk” record has a
“Name Present” flag (bit zero of the Word at offset 0x14). That is, when the
Value has a Name this flag is set, when it does not have a Name then this flag
is not set.

This can be observed by looking at the “vk” records. The default value does not
have a Name and the Name Present flag is clear, other Values that have a
Name also have the Name Present flag set so it must be the case that this bit is
the Name Present flag.

78

It is known that the CompressedName flag in the “nk” record shows, when set,
that the Key Name is in ASCII rather than Unicode. No value that could control
this behaviour in a “vk” record was known about.

A theory was developed that this flag in the “nk” record might also control Value
Names, that is when a Key Name is in Unicode then so must be all the Value
Names or conversely if the Key Name is in ASCII then so to must be the Value
Names.

A Key, which had some values, had its’ Name changed to contain a Unicode
character and the Value Names were examined. They were still in ASCII. This
raised the possibility that Value Names could not be in Unicode.

A direct attempt was then made to rename a key by adding a Unicode character
and it succeeded. On examination it was found that we had a Value with a
name but with the Name Present flag cleared.

Finally it was realised that the Name Present flag is no such thing. It is the
CompressedName flag. The reason why it appears when a name is present is
because the name is in ASCII which will nearly always be the case if using an
English version of Windows where ASCII is quite good enough.

This was tested by looking at a “vk” record in WinDbg where, when the name
was ASCII, it was followed by the word “compressed” in brackets.

All the bits of the Flags value were checked and only “compressed” could be
detected as being a valid bit setting.

Details of this work can be found in Appendix 32.

4.33 Data Type as Data

Occasionally data is held in a “vk” record as the Data Type. That is the data is
blank but the value held in the Data Type field is out of range and is in fact the
data.

An example of this can be found at

\Registry\Machine\SAM\SAM\

Domains\Builtin\Aliases\Names\Administrators

This has a Default Value with no data but a data type of 0x220 (544) which is
the RID of the Administrators Group.

This shows in regedit as follows.

79

Thomassen (Thomassen, 2008) states that this feature is common in Values
that are under \Registry\Machine\SAM\SAM\Domains\.

4.34 Max Lengths in nk Records

The “nk” records contain the following four variables which all have names
starting “Max”.

MaxNameLen
MaxClassLen
MaxValueNameLen
MaxValueDataLen

The “lk” records contain the same elements but these do not appear to be used
and were all set to zero in the twelve “lk” records that were extracted into the
database (run 16).

From the source code for the reglookup utility (Morgan, 2008b), in particular the
header file regfi.h, comes the following fragment. This is part of the definition of
a struct called “REGF_NK_REC” which must be for the “nk” record.

209 /* max lengths */

210 uint32 max_bytes_subkeyname; /* max subkey name * 2 */

211 uint32 max_bytes_subkeyclassname; /* max subkey classname length (as if) */

212 uint32 max_bytes_valuename; /* max valuename * 2 */

213 uint32 max_bytes_value; /* max value data size */

This suggests that these values are to hold the maximums found in either
SubKeys (for MaxNameLen and MaxClassName) or Values (for

MaxValueNameLen and MaxValueDataNameLen).

80

It is possible that this is an optimisation so that when processing a Key the code
knows what size of buffers to allocate for the data it will encounter when
processing the SubKeys or Values that belong to that key.

Of note is that the name elements (MaxNameLen and MaxValueNameLen) are
apparently at twice the actual name lengths. This may be to allow for the
Names to be expanded to Unicode if they are in ASCII.

To test the theory as outlined above a script was written to traverse all the keys
in a hive in the database and for each one check the max values by scanning all
the Values and the SubKeys of each key. The script called CheckMaxLengths
was written to do this and, due to the volume of data to process, to report
exceptions only.

This listing for this script is shown in Supplement 13.

It was found that the theory was broadly correct with the detail that the Max
Name lengths were twice the largest ASCII (Compressed) Name or one times
the largest UniCode (Uncompressed) Name whichever was the largest.

It was found that in a small number of cases the Max values were bigger than
the underlying data would suggest but in no cases smaller. It was speculated
that this was a benign side effect of the internal code used to calculate these
values in that perhaps these values ratchet up more easily than they contract.
The most important issue is that they are big enough.

4.35 Big SIDs

A small curiosity has emerged from the “All Files” database.

In 311 cases a SID was found that was smaller by four bytes than the space
allocated to it in the Security Descriptor (that was contained in an “sk” record).
In all cases the SID was either 12 or 16 bytes and has either 16 or 20 bytes
allocated to it.

This was found in two files, both of them a “system” Registry file, one each from
NT4 and Windows 2000 (W2K). The collection of files only had one set each
from NT4 and W2K.

There were 7 occurrences out of 608 ACE records in the NT4 system file and
304 out of 1,145 ACE records in the W2K system file.

Speculation is that it is a fault that was corrected in Windows versions after
2000. This is a benign fault in that all it does is to waste a little space.

4.36 Too Small Data Nodes

The “All Files” database (run 16) showed that in 25 cases the Data Node was
too small to hold the mount of data that the “vk” node specified was present.

This happened in 13 files, all but one of which was a software Registry file, the
other was a system Registry file (from Vista). In all cases the files were from XP
or Vista, that is none were from NT4, Windows 2000 or Windows Server 2003.

81

It is not certain if this is a fault, an error or weakness in RegHoover or a lack of
understanding. More work is needed.

4.37 TimeStamps

There are four Registry records that contain TimeStamps, “regf” or BaseBlock,
hbin, “nk” and “lk”.

Only the first hbin in a Registry file contains a TimeStamp.

Of the 174 files in the “All Files” database (run 16) some 15 did not have an
hbin with a Timestamp. Ten of these were volatile hives that had been extracted
from memory. Oddly 5 were ordinary Registry Files and this was confirmed by
examining the original files using WinHex. For the record the files were as
follows (the three ntuser.dat files were all for the “Default User”).

Source File Operating System

Computer 13 userdiff NT4

Computer 14 system Windows 2000

User 1 ntuser.dat XP SP2

User 28 ntuser.dat NT4

User 38 ntuser.dat Windows 2000

The LastWriteTime from the “nk” records for each of the 159 files was extracted
and compared to the TimeStamps extracted. In every case it was found that
these did not match. In all but five case the “nk” LastWriteTime was before the
TimeStamp date/times, in some cases by over 12 years (NT4).

In the five files that had the more recent “nk” records (that were more recent
than the hbin TimeStamps) the discrepancy was between 17 and 56 minutes.
This raised the possibility that this was a Daylight Saving Time (DST) issue
which was plausible as 3 of the dates were in August and one in September.
However one date was in November which is outside the DST period (National
Maritime Museum, 2008).

An experiment was devised and conducted to determine if DST would affect the
TimeStamps in this way. Details are in Appendix 34.

A summary of the result of this experiment is that the nk LastWriteTime was in
all cases 5 seconds or slightly more before the TimeStamp that was present in
the hbin and the BaseBlock. This is exactly as expected with a 5 second Lazy
Flush interval.

82

In the absence of any DST issue can only assume that these cases where the
“nk” time was prior to the BaseBlock/hbin time were caused by altering the
date/time on the machines.

The fact the the hbin TimeStamps had been updated, hence showing that the
files had been altered, without updating the “nk” time suggests that changes
that do not directly affect the “nk” record do not affect the “nk” LastWriteTime.
This might include changes to the data held in values or changes to a keys
Security settings.

This could be of forensic significance.

This needs more work.

4.38 ClassNames

Until the database solution could be used no ClassNames where found
(although no great effort was made to find them).

Once found their structure was the same very simple structure as used by Data
Nodes. That is a cell which consists only of a Cell Size and then the Data. The
Cell being padded out to an 8 byte boundary if needed.

A ClassName cannot be seen or edited using regedit.

It is known that Microsoft puts some security information into ClassNames
possibly because they are hard to access. This includes the SysKey salt used
to obscure password hashes in the SAM.

It was thought possible that a ClassName could be seen by exporting it as a
text (.txt) file from Regedit. However when this was tried with a key that was
known to have a ClassName (Computer 13, .Default file \Software \Microsoft
\Windows NT\CurrentVersion\Program Manager\Common Groups) the text
export still showed as “<NO CLASS>”.

On speculation that this might be a change in regedit or in the Windows
operating system the same file was loaded into regedt32 running under NT4.
The key was navigated to and saved using the menu option Registry->Save
Subtree As… option and saved as a text file. The ClassName was correctly
shown as “progman”.

This shows that the handling of ClassNames by the regedit (regedt32)
programs has altered.

The values held in the ClassName records were briefly looked at. In all cases it
was text as Unicode. There were 62,741 ClassName values which consisted of
only 97 unique values. Of these 40 were text, 56 were 8 digit hex (lower case
letters) and one was a simple zero (“0”).

No further analysis of the data held in ClassNames was attempted.

83

4.39 Record Signatures and Names

It is possible to try to assign names to records based on their Signatures.

This is not without its problems as it may lead to misleading names being given
which will only serve to perpetuate misunderstandings. Some records can be
given appropriate names with more confidence than others. Some records do
not have signatures and so can be given any suitable name.

In the table below an attempt has been made to assign record names to the
thirteen known record types. The names assigned to the SubKey lists (“lf”, “lh”,
“li” and “ri”) are quite speculative.

Signature Name

regf Registry File

hbin Hive Bin

nk Key Node

lk Key Link

vk Key Value

sk Key Security

lf Folder List

lh Hash List

li Index List

ri Index Recursive

<no signature> Value List

<no signature> Data Node

<no signature> Class Name

84

4.40 Pattern Matching

The original purpose of this Project was to see if it was possible to find Registry
records in an arbitrary block of data such as might be recovered from
unallocated space in the file system or from a pagefile.

This section discusses these possibilities now that a good understanding of the
structure of Registry data has been gained.

4.40.1 “nk” Records

If we are looking for “nk” records we can bring to bear the following that we
know about Registry records (or cells) and about the “nk” records in particular.

• All Registry cells start on an 8 byte boundary.

• All Registry cell sizes are a multiple of 8 bytes.

• The minimum size of an “nk” record is 0x50 plus the name (all keys have
a name). That is 0x58 or 88 bytes minimum. We know that the maximum
size of a Key Name is 255 characters (Microsoft, 2008a), if this is
Unicode then that is 510 bytes. Therefore the maximum size of an “nk”
record is 510 + 88 which is 600 bytes when rounded to next 8 byte
boundary. From this we know that the first four bytes of an “nk” cell must
be between “A8 FF FF FF” and “A8 FD FF FF”.

• The next two bytes must be “6E 6B” (“nk” in ASCII).

• The next two bytes are the Flags value in which only certain bits can be
set. On up to Windows Server 2003 these are the bits set in the number
0x037E or 0x137E for Vista.

The above facts will find every “nk” record and it is plausible that there will be a
low rate of false positives.

The above test can be extended by looking for plausible values in the known
fields of the “nk” record. For example, the NameLength value should give, when
added to 0x50 and rounded to the next 8 byte boundary, the Cell size (be aware
of the risk that “nk” records that have been shrunk by having their name
reduced may not be allocated a new cell). There are other tests that could be
devised.

Of note is that the first test assumes that the sample data you are testing is still
aligned on the same byte boundaries as was originally the case. It is expected
that this will be so in most cases.

85

4.40.2 “vk” Records

Much the same as applies to “nk” records also applies to “vk” records.

A major difference is that “vk” records can be much bigger than “nk” records as
the maximum allowed size of a Value name is nearly 16K (Microsoft, 2008a).
This also increases the risk that a “vk” record will span more than one 4K block
and so might not all be available.

This risk is mitigated by the fact that most Value names are of a more
reasonable size. Looking at the “All Files” database (run 16) the largest Value
name in that set of data was 276 bytes long. This is out of 2,241,475 Values.
From this it would seem reasonable to set a limit of, say, 500 or 600 bytes
which would then only exclude any “vk” records with the more outrageous
Name lengths.

The “vk” record will normally hold the data if it is no more then four bytes long
as is the case with DWORDS. This is likely to be useful as otherwise the Data
Node has to be found to get the value held by the Value record.

4.40.3 ValueList Records

These records are going to be hard to find. They do not have a signature and
can be any length (although the cell must be a multiple of 8 bytes in length). It
has been observed that these records often have abandoned entries at the end
of the cell.

The best way of finding these is probably going to be matching their Cell Index
with an “nk” record and Value count and matching its entries with “vk” records.
A tricky and error prone method when working with partial data.

Value Lists are particularly important as they link Keys and Values. They are
needed to start to put a Key name to a Value and to find the Values belonging
to a Key.

4.40.4 SubKey Lists

These do all have the same format of header which includes a signature and a
count of the number of entries.

We do also know that the sizes of SubKey lists are limited by splitting them up
using “ri” records and that “lf” records are changed to “li” records above a
certain size.

“lf” records can probably be further identified by their bodies consisting of a
pattern of pairs of Cell Index and up to four ASCII chars.

Larger SubKey lists do have a lot of empty space at the end of the cells, that is
the cells are commonly much bigger than is needed to hold that number of
entries.

86

Finally we know that large SubKey lists seem to come in a small number of
standard sizes.

4.40.5 Data Nodes and Class Names

Both of these record types have the same simple format which is of the cell size
followed by data. Class names are always Unicode as are text Data Nodes.
This may assist their identification.

4.40.6 Determining Cell Indices

If a fragment of data is found with Registry cells in it then a basic problem is
how to determine the Cell Index of each of these records.

If the associated hbin header can be found then it is easy as the “FileOffset”
value in the header gives the base Cell Index. The Cell Index of an individual
cell is then that FileOffset value plus the offset from the hbin header.

If we do not have the hbin header then we need to fall back on two other
possible strategies. First of all that of locality, many cells refer to other nearby
cells. The second possibility is that we can match this section of data with other
section of data by processing the offset of each cell from the 4K block it is in
(which might not be the first in the hbin) and the values of the Cell Indices that
point to other cells. In other words Import and Export Cell Index values. This
would be akin to piecing together a Ming vase that had been shattered and
might be both time consuming and unreliable.

4.40.7 Conclusion

For all of these options more work is needed. What would also be needed is for
any investigator tackling problems in these ways to judge carefully whether or
not the amount of effort would be proportionate to the value of the evidence
produced.

4.41 How Free Cells are Managed

It is to be expected that Registry cells will fall into disuse and so become free or
deleted. This will happen sometimes when a Key or Value is modified.

 A detailed discussion of how this area was investigated is contained in
Appendix 38. The main conclusions are given here.

• There is a bit map for each of a range of cell sizes. Exact sizes (multiples
of 8) up to 128 and then powers of 2 up to 2048 and then 2048 and
above in one map.

87

• Free Cells are tracked by using the FreeDisplay element of the Storage
element of the _HHIVE structure.

• This item is 24 elements long but calculations show only 20 elements are
needed.

• Probert (Probert, 2005) states that free cells are chained together but
evidence was found that this is not the case.

It is apparent that the management of free cells happens ‘in memory’ and not ‘in
file’. This is the clearest possible evidence that the Registry files are not the
Registry but are merely a persistent backing store for the Registry which only
really exists, in a live working state, in memory.

More work is needed in this area.

4.42 Jolanta Thomassen MSc Dissertation

In December 2008 the authorI was lucky enough to get a copy of the MSc
Dissertation of Jolanta Thomassen (Thomassen, 2008) thanks to the authors’
generosity. The subject of this is “Forensic Analysis of Unallocated Space in
Windows Registry Hive Files”.

A summary of this is shown in Appendix 39. Main points were.

• The focus was on finding deleted data

• She was hampered by not knowing about free cells having a positive cell
size and by not knowing about the Length field in the BaseBlock.

• She has done some good work on what constitutes a valid Key Node
record (“nk”) or Key Value record (“vk”).

An enjoyable read and recommended.

4.43 Summary

In this chapter the Experiments that were done have been explained and the
results interpreted.

It has been shown how the level of knowledge and understanding of the
Registry has been steadily improved through a logical exploitation of the
information both available and discovered as the project progressed.

Enough detail has been provided to allow these experiments to be repeated and
so allow for independent verification or challenge.

88

89

Chapter 5 – Results

In this Chapter a summary of the Results will be presented and it will be claimed
that the results of this project can be considered to be reliable.

5.1 Introduction

The results can be split into two main types – facts or information and methods.

Facts or information can be further sub-divided into known facts that have been
confirmed, disputed or contradictory explanations that have been resolved,
errors or misunderstandings that have been corrected and new information that
was not known before.

It is as well at this stage to say that even the newest information that has been
discovered is not new at all. At the very least someone, somewhere within
Microsoft must know all that is said in this entire thesis and more besides. This
is in the nature of a reverse-engineering project such as this is. Much of this
information must also be understood by the developers who have worked on
the WINE, SAMBA and ReactOS projects (WINE, 2008b), (SAMBA, 2008a) and
(ReactOS, 2008). I hope I have been able to make a contribution.

This is a good time to repeat that as this is a reverse-engineering process it is
reliant on drawing assumptions from the observed data and its use. It is entirely
possible that ranges of values and uses that have not been encountered are
within the design of the Registry but as they have not been encountered it is not
possible to consider them.

Finally, it is completely possible, and has been done with respect to the Registry
in the past, to produce completely plausible and reasonable explanations that
are quite simply wrong. The “Name Present” flag in the Key Value record (“vk”)
being a perfect example of such a plausible but wrong explanation.

5.2 Achievements

This project has succeeded in the following ways.

5.2.1 Facts and Information

• Mapping every single used byte in Windows Registry files (Record
Templates, Appendix 5).

• Putting a proper Microsoft name to nearly every field in Registry files
(sections 4.4, 4.7, 4.11 to 4.15 and Appendix 12).

• Giving a good explanation of the purpose of nearly every field in Registry
files (multiple places, mainly in chapter 4 and the Appendices).

90

• Understanding many of the more important internal memory Registry
structures (sections 4.7, 4.10-4.15, 4.17, 4.21, 4.24, 4.25, 4.41).

• Showing how the Registry can be navigated in memory (section 4.17 and
others).

• Showing how the “Registry” hive is used to map the windows Registry
namespace to Hives (section 4.19, 4.21).

• Discovery of the “lk” record and its structure (section 4.21).

• Complete decomposition of the “sk” record and the Security Descriptor it
contains (section 4.15).

• Understanding the Parent value in Root Cells (section 4.23).

• The proper meaning of the Flags field in “nk” (and “lk”) records and the
derivation of the proper names for the bits used (section 4.20).

• Showing what the four “max” values in”nk” records are for (section 4.34).

• Deriving the hash used in “lh” records (section 4.29).

• Showing what “ri” and “li” records are used for (section 4.30).

• Showing how Unicode Value Names are stored (section 4.32).

• Showing the structure of Class Names (section 4.38).

• Explaining how dirty pages are flushed out and the use of the .LOG files
section 4.26).

• Showing that very large hbins do occur (section 4.28)..

• Showing that “regf” and first “hbin” timestamps are the same (section
4.37).

• Pattern matching possibilities for finding cells in an arbitrary block of data
(section 4.40).

• Showing how free cells are managed (section 4.41).

• Discovery and attempted partial decode of ‘little bits’ in Cell Map Table
entries in memory (section 4.17.5 and Appendix 14).

• Working out how the “regf” checksum is calculated and what it covers
(section 4.27).

• That Registry files have Major and Minor version numbers (sections 4.7
and 4.8.1).

• Which cell types can be found in which file versions (section 4.31).

• The Length field in Registry file headers that allows the ‘in use’ part of
the Registry file to be determined (section 4.4).

• Confirmation that Registry Timestamps and LastWriteTimes are in UTC
(Appendix 34).

91

• Discovery that the new Vista Registry files are version 1.3 and so fully
compatible (in structure) with previously used Registry files (section
4.8.1).

• Discovery of Type 17 ACEs in Vista Registry Files. These are part of the
new Microsoft “Mandatory Integrity Control” feature (Appendix 12 section
5).

• Discovery that Vista file “nk” records have a new flag bit value of 0x1000
(section 4.20).

5.2.2 Methods

• Production of examples and step-by-step guides to using the Windows
Debugging Tools to examine and navigate Registry structures in
memory.

• Development of paper Templates to assist manual decomposition.

• Development of the RegHoover program and Database and its
associated scripts HooverLoad, BulkHoover and BulkHoover2. These
allowed bulk collection and analysis of large quantities of data.

• Producing methods to extract Volatile hives and parts of hives from
memory and into files.

• Providing the ability, through the RegHoover program, to analyse
fragments of the Registry providing they start with a valid hbin header.
This includes truncated hbins.

• The theoretical ability to analyse fragments of Registry data isolated from
their hbin header is discussed but not implemented.

5.2.3 Programs

Some 13 programs and scripts were written in ANSI-C, VBScript and Visual
Basic. These amounted, in volume, to over 8,000 lines including comments and
blank lines.

92

5.2.4 Errors

The following errors, some common, were found in the work of others.

Error Researcher (not exhaustive)

That the Size field in an hbin header is
an offset with a zero in the last hbin.
That hbins are so chained together,

This very common misconception
seems to have originated with B.D. but
has been widely promulgated by many
including Williams, Probert, Jenkinson,
Morgan and others.

That cell sizes are a multiple of 4
bytes. They are multiples of 8 bytes.

B.D and Williams.

That the “vk” record has a “Name
Present” bit when the Value has a
Name. It is in fact a “Compressed” bit
meaning that the Name is ASCII and
only occurs when there is a Name and
it is ASCII

B.D., Williams, Macfarlane, Jenkinson
and others

That dirty 512 byte sectors are flushed
out to Registry Files. In fact it is 4K
blocks that are flushed.

Russinovich

That the “regf” or BaseBlock
Checksum is a Sum. It is an XOR.

B.D.

That the Flags value in “nk” records is
a ‘Type’ value set to 0x2C for Root
Cells and mainly 0x20 for others. It is
in fact a bit-field with bit meanings as
shown by this paper.

B.D, Williams, Macfarlane

That all cells start (after the size) with
a signature. This is true of 8 cell types
but not of three (ValueList, DataNode
and ClassName)

Russinovich

93

5.2.5 Exceptions

The following fields in Registry files have not had their ‘proper’ Microsoft names
assigned.

Record Type Field

“lf”, “lh” Hash

“lf”, “lh”, “ri”, “li”, ValueList Offset

Data Node, Class Name Data

It has not been possible to understand the purpose of the following Registry file
fields.

Record Type Field Size

UserFlags 4 bits

VirtControlFlags 4 bits

Debug 1 byte

“nk”, “vk”

WorkVar 4 bytes

Cluster 4 bytes

BootType 4 bytes

“regf” or BaseBlock

BootRecover 4 bytes

NB: BootType and BootRecover possibly never appear in a Registry file.

5.3 Reliability

The work produced here is designed to be completely reproducible.

The methods are accessible to anyone who wants to repeat or extend these
experiments. Sufficient detail, including step-by-step guides and source code
has been provided. The work is solidly based on previous, referenced, work by
others and detailed experiments. As such is transparent, open to challenge and
hence reliable.

The intention was to produce knowledge and understanding that forensic
analysts could rely on due to being traceable back to original sources and
reproducible when the result of experimentation. It is believed that this aim has
been met.

94

5.4 Summary

In this chapter we set out to give an overview of what has been achieved.

A summary list was shown of the major advances in terms of facts and
information. Another list showed the major methodological advances made.

Finally the reasons why the data produced by this project should be considered
reliable were discussed.

95

Chapter 6 – Critical Analysis

In this Chapter the project will be reviewed in terms of what went right and what
did not. What lessons could be learnt? How might it be done differently? How
was the project managed? How useful that was?

6.1 Methodology Overview

The overall method was to proceed in the following steps

1. Carry out a comprehensive literature survey to capture and identify
sources of information about the structure of the Registry. No attempt at
this stage to review and understand the information except to assess for
relevance.

2. Review the captured material in order to build an initial understanding
and to find a route into the subject area.

3. The initial route chosen was to deeply analyse the
Parse::Win32Registry module and how it parsed a SAM Registry file.
This module was chosen as it was in contemporary use by other
researchers and hence could be considered at least partly reliable – if it
was getting things horribly wrong then this would be known about. The
SAM Registry file was chosen as it was small enough to avoid the risk
of becoming flooded with too much data and was sufficient for the
purpose.

4. The paper Templates for each record type were developed. These
allowed the current understanding to be captured and used and so form
part of a learning circle of define, test, refine.

5. The excellent work by moyix on using the Windows Kernel Debugging
tools to discover internal structures used for the Registry and to
navigate them was exploited and refined. This produced most of the
specific definitions of the Registry structures which was helped by
already having a partial understanding of them.

6. A period then followed of understanding as much as possible by the
detailed examination of relatively small amounts of data. A low volume
high intensity detailed approach. This was fruitful but did eventually start
to run dry. For example no Class Names had been encountered.

7. The development of RegHoover and its’ associated programs. This was
a deliberate attempt to move away from detailed examination of small
quantities of data to spreading a wide net, collect together as much data
as possible and then analyse it in order to see patterns and to detect
previously rare data. This was very successful and led directly to many
valuable discoveries.

96

On reflection the above direction seemed to work very well for this project.

6.2 Use of Literature Survey data

It is possible that more benefit could have been gained by studying more closely
the information collected during the Literature Review.

This is true of the information collected from the large collaborative
development projects such as SAMBA, WINE and ReactOS (SAMBA, 2008a),
(WINE, 2008b), (ReactOS, 2008). This information would need to be treated
with caution as they are all aiming, to a greater or lesser extent, for an
emulation of Windows at the API level rather than at the file or internal structure
level which is what would be useful for this project.

The analysis of the various public domain utilities collected was sparse and this
again may have missed opportunities.

It is known that the Volatility project (Volatility Systems, 2008), which is devoted
to analysing memory dumps, has a thread to do with finding Registry data and it
is very likely that this contains valuable information. None of this material was
collected or reviewed.

The reasons for the lack of exploitation were twofold. On the one hand the
approach used rapidly produced good and authentic results. Further analysis of
the existing work may well have not been of great benefit to the main thrust of
the project although it might have revealed further misunderstanding to correct
or puzzles to attempt to solve. The other reason was simply lack of time or the
need to spend the available time wisely.

6.3 Other Researchers

Attempts were made to engage with other researchers but with little success.
Early on there was little to share or ask about and later in the project the pace
was too hectic. This may represent a missed opportunity.

6.4 Software Development Methodology

The software development methodology was an ad-hoc approach. At the level
of complexity of these programs this is towards the limit of what should be
attempted with this approach.

Program Specifications were produced for two programs that were not then
written. No specifications or design documents or test plans were produced for
any of the programs that have been written.

97

In part this can be explained on the basis that some of these were simple
programs and others were experimental in nature and hence were moving
targets in the sense that the specification was changing to match current
understanding which was in turn driven by the output from the programs.

Guides to using RegHoover and HooverLoad have been produced and can be
found at Supplements 5 and 6.

6.5 Study Methods

A review of the methods used for studying is given here.

1. A project folder was established on the authors desktop computers both
at home and at work. Sub folders within this folder were established for
important categories such as WebPages, Meetings, Write-Up, Source
Code, Programs and so on.

A USB stick was used for communication between these two project
work locations. Synchronisation scripts were written that would
synchronise the contents of the work folder on the USB stick with the
desktop computers work folder in both directions. In this way work was
able to progress at two locations and there were always three copies of
the work available.

Additionally a proper incremental (rather than merely snapshot) backup
was made available at work (by dint of the normal enterprise backup
system) and also at home due to use of a File Server and backup
mechanism there. This meant that in the event of files being overwritten
it was possible to step back to previous versions.

By the end of the project the folder was over 12GB in size.

2. A document organiser program called Maple (Crystal Office, 2009) was
used to organise contemporaneous notes. This provides hierarchical
folders and a search mechanism. Most notes where held in a reverse
date format with a brief name of date and subject as in “2008-11-01 sk
cells”. These were collected into major folders named with just the
month and year as in “2008-11”. Folders were also created in Maple to
facilitate the management of the project such as follows.

• Possible Experiments (for puzzles and items that need resolving)

• Questions for project supervisor (Prep for next project meeting)

• Don’t Forget (short reminders)

• Apparent Errors (in others work)

• Results (items for Results chapter)

• Critical Review (items for Critical Review chapter)

• Further Work (items for Further Work chapter)

98

3. Wherever possible notes were entered into Maple as it was done so as
to avoid loss. Attempts were made to collect references as they were
discovered, in case they might prove useful. Failing to always make
such immediate notes was a weakness and time was wasted either
repeating work or searching for elusive references. This is probably not
a unique experience.

4. When doing research on the internet, useful pages were saved in a
folder reserved for that purpose, in both HTML and MHT format if
possible. A shortcut to the web page was also created and saved in that
folder. This proved a very useful way of quickly finding and using
relevant material as well as a way of capturing it. Material on the
internet can disappear or change. This method was found to be very
beneficial, particularly for the few resources that were heavily used.

5. A program called WebSite Extractor (InternetSoft Corporation, 2008)
was used to extract the contents of web sites where there were a
number of pages or where it proved difficult to save them from the
browser. This worked well.

6. References were collected using a Web based service called RefWorks
(RefWorks, 2008). This allows a common format to be enforced and for
references to be sorted into user specified folders. This was not a very
easy product to use. One criticism is that the entry forms had too many
fields catering to too many options.

7. To aid concentration playing music, often loudly, was found to help in
two ways. One was that it could provide stimulation and energy at
lacklustre times. The other was that at times of higher than usual
distractibility it seemed to aid concentration by filling in a void that might
otherwise be filled with something (anything) interesting. Alternatively it
helps by making increased effort on focusing on the intended subject
essential.

8. At times of high attempted effort struggling against high distractibility a
kitchen timer was found useful. A “Count Down / Up Timer”, product
code RJ82D from Maplin (Maplin, 2008) was just right for the task. It
was used to time sessions of work with the aim of making them at least
40 minutes long. It was sometimes found easy to think it was time for a
break and to see from the timer that nowhere near enough time had
passed to make this appropriate. This was a way of keeping the authors
nose to the grindstone as well as making sure that breaks were taken at
good intervals which aided concentration and learning.

9. The concept of Quality Time or uninterrupted hours was found
important. When doing work that requires high amounts of intellectual
effort it will take some time to ‘get into’ the subject and to build
concentration to the level needed to produce good quality work. Even a
small interruption can break concentration and put the researcher ‘back
to square one’. The following is from the book “Controlling Software
Projects” (DeMarco, 1982) in a section on how to count costs.

99

“The basic unit of cost measurement is the uninterrupted hour.
(This idea has a sobering implication for work environments in
which there is no such thing as an uninterrupted hour – so be it.)
The nature of systems development work is such that restart
time is long, about twenty-five minutes after each interruption.”

To mitigate this risk the authors email client was normally not run
during work periods (and is always run without an audible
announcement of new emails) and the phone was often unplugged.

6.6 Sample Registry Files

It was a clear weakness of the project that most of the example Registry files
were relatively juvenile and so did not have the range of values and depth of
data that might be expected. They did not have a representative amount of
‘wear and tear’ and usage that might be expected in real world data. This
problem, of collecting Registry files, was also encountered by at least one other
researcher (Thomassen, 2008).

6.7 Project Timing

The timing of this project was good. A year earlier and there would have been
much less material to work on and it is doubtful that as much could have been
achieved. In another year perhaps much of this material will have been
discovered by others.

6.8 Project Management

The project was managed by a series of meetings between the Student and the
Supervisor.

These were initially monthly which meant after about every 90-100 hours of
work. When the project went ‘full-time’ these meetings were held more often,
about every two weeks, so that the amount of work hours between meetings
was still the same. Towards the end of the project it was sufficient to relax to
about every three weeks.

The student always travelled to the Supervisor which was seen by the Student
as making best use of the time of the Supervisor. It was felt best that the
Supervisors effort be focussed on delivering valuable feedback and advice.

Notes were produced for each meeting and agreed at the next, such agreement
being nearly always a formality. After a few meetings it was agreed to also carry
a list of outstanding agreed Actions with the Notes.

As the project progressed and written work started to be produced review of this
became an essential and valuable part of the meetings. There was some slight
difficulty here as often material took a while to reach the Supervisor which

100

meant on some occasions work submitted for one meeting being properly
discussed at the one after. A sort of overlap of submission and review. This was
not a major problem.

It is the authors view that such project meetings are an essential aid to the
student providing as they do an interested but detached sounding board and
guidance as to what aspects need attention at various stages of the project. It is
thought to be important that such meetings are held every 80-100 hours through
the project.

Managing and getting the most benefit out of such meetings is seen as a major
factor that would determine the outcome of a project such as this.

6.9 Project Planning

Project planning was done by producing Hours Plans, Gantt Charts, To Do lists
and keeping lists of Actions from the meetings.

6.9.1 Hours Plans

The Hours Plans were a narrative description and a spreadsheet with week-by-
week hours totals on showing how the number of raw hours that the project
needed was going to be made available and delivered.

Of course the project is about what is delivered and mere hours consumed do
not of itself constitute a deliverable. However trying to do too much in not
enough time is surely a plan for difficulty if not failure.

The number of Credits needed for the project is set by the University (Cranfield,
2008) at 80 (Cranfield, 2005) and the notional number of hours per Credit is
stated as ten per credit by the Quality Assurance Agency for Higher Education
(QAA, undated).

From the document “Academic credit in Higher Education in England” (QAA,
2006).

“UK HEIs that use credit have agreed that one credit represents 10
notional hours of learning.”

So the project part of this MSc therefore has a notional duration of 800 hours of
learning.

Hours plans were developed which showed how, allowing for holidays and other
interruptions, this amount of time could be delivered. This showed that at the
work rate chosen the hours target could be met by Wednesday 10th December
2008 and had within it some 420 hours of slack before the project deadline. This
hours plan also showed how, in a normal week, these hours would be delivered
while still leaving one whole day a week free.

101

The Hours Plan was revised in mid-September, at which point only 200 hours of
effort had been delivered. The end date was moved back to 19th December with
351 hours of slack available to the hand-in date.

The author considers this hours-delivered based approach to have been a vital
factor contributing to the successful management of the project.

The project is believed to have had no more than the notional 800 hours of
effort applied to it. A rough break-down is as follows.

Component
Approx
Hours

Literature Search 200

Experiments 250

Write-Up 300

Meetings 50

TOTAL 800

The biggest variance was on the writing up which was budgeted at 20 hours per
chapter for a total of 140 hours. Some chapters probably did take no more than
20 hours but some were very much more.

If this project was run again the author would reduce the number of days
worked on the project and increase the size of the work blocks. That is instead
of, say, 4 nights a week at 2 hours a night reduce that to three nights a week at
2½ hours a night or even two nights at 4 hours a night. This is to have a smaller
number of occasions to focus effort and to provide more uninterrupted hours.

6.9.2 Quality Time

This project did suffer from difficulties ‘getting started’ to the extent that by
August the project was in some trouble.

It was eventually accepted that the major cause of this was starting the project
at the same time as starting a new job which led to too many demands on the
author. Fortunately it was possible to work full time on the project from mid-
September onwards and this proved very beneficial in three ways.

• It proved possible to devote time in large blocks, in other words to have a
lot of uninterrupted hours.

• The time that was spent was good quality time in that it was the prime
time of the working week. It was not 20 hours on top of 40 hours already
spent. Working long hours leads to fatigue and loss of productivity and
concentration – work that makes intellectual demands is the first to
suffer.

102

• The simpler lifestyle meant that there were less distractions and other
calls on time and effort.

6.9.3 Gantt Charts

A list of tasks was developed and a rough time in hours assigned to each. They
were grouped into phases and converted into a Gantt Chart using Microsoft
Project.

These Gantt Charts were produced initially and at the stage when the project
went full-time.

They were of most use at the beginning of the project when the ‘finish line’ was
over the horizon and so a good road map was needed to plan how to get
started.

Initially, with few tasks running, it was easy to track progress against the plan.
As the project progressed and multiple parallel tasks came on stream the
amount of effort needed, and the accuracy of any possible results, made this
technique harder to use and less effective.

6.9.4 To Do Lists

These were simple lists of short term tasks. As the complexity of the project
increased it was increasingly used to manage the day-to-day complexity of the
project and to try to prevent items of work from being missed.

They became more useful as the project progressed.

6.9.5 Action Lists

The meetings naturally started to produce Actions and these were not always
done by the next meeting.

To manage this Action lists were maintained with the Notes of each meeting.
Actions were numbered and a the date of the meeting they were raised at
recorded along with the date of the meeting at which it was resolved. Also
recorded was the person whose action it was although this was of course rather
one-sided.

Towards the end of the project it became a task to clear the actions and this
was achieved by either completing the action, deciding it was no longer relevant
or by simply abandoning it.

This was an inevitable and useful adjunct to having project meetings.

103

6.10 Difficulty, Enjoyment and Value

Just a quick section on approximate relative amounts of difficulty, enjoyment
and value.

Component Difficulty Enjoyment Value

Literature Search Medium Medium High

Experiments High High High

Write-up High Low while doing it High

Project Planning Medium Low High

Project Meeting Admin Low Low Medium

Project Meetings Low High High

6.11 Doing too much

This project has suffered from tackling too much. This has resulted in a heavy
burden of writing up and reduced the time and space available to more
thoroughly discuss the results and the project.

The only realistic option for curtailing the scope would have been to have not
developed the RegHoover set of programs or else not to have followed up so
many of the leads and opportunities that was so produced. This would have
been a large missed opportunity and in the view of the author regrettable.

The project has been delivered with an acceptable quality of presentation and
write-up and within the time budget but significantly larger than was expected.

6.12 Summary

In this chapter we have examined the factors which helped and those which
have hindered this project.

We saw the importance of good Methodology, Project Planning and Project
Management as well as a range of other challenges and solutions.

104

105

Chapter 7 – Conclusion

In this chapter a brief summary of the conclusions is given and opportunities for
further work will be outlined.

7.1 Conclusions

• The main conclusion that can be drawn from this work is that the
Registry does not exist in the Registry files but only really exists in
memory. This is evidenced by the management of free cells being
entirely in memory and also by the fact that crucial data structures such
as the Registry hive only exist in memory. The conclusion is that the
Registry files are merely backing store to provide the Registry with
persistence. This is not to say that they are not valid sources of data as
they are normally flushed out every five seconds.

• The method of taking a contemporary and trusted analysis tool and
deconstructing it to provide a launch platform for further research has
shown itself to have been valid.

• The method of using the Windows Debugging Tools to unravel Windows
Data structures has been successfully exploited to provide a complete
mapping of Registry file data structures.

• The use of a custom program to dissect Registry files and store the data
in a database coupled with custom programs and queries to analyse that
data has proven a valid and powerful method of generalising a basic
knowledge and allowing a new perspective.

• It has been plausibly postulated that Registry Keys and Key Values and
possibly other records can be found in any arbitrary block of data.

• Significant lessons have been learnt about the organisation and
management of such a relatively large project.

7.2 Further Work

This has been a productive project and many aspects of the subject area have
been laid bare. There is always more that can be done and some suggestions
for further work follows.

1. The RegHoover program can analyse whole Registry files or whole
hbins. It can also analyse hbins which have been truncated at the end,
that is which still have their header intact. It may be feasible to extend
RegHoover to analyse hbins fragments that do not have a header. This
might happen where the header has become overwritten by a file (data

106

recovered from file slack) or if the 4K block is other than the first one of
the hbin.

2. Patterns were defined for searching for Key Node and Key Value cells
in an arbitrary block of data. This work needs to be practically tested
and other strategies tried to identify Registry data wherever it might be
found.

3. The programs could be improved. The HooverLoad script (which has
quite a long run time) could be converted to a .exe file, perhaps as
Visual Basic. This should yield a performance improvement. Other
scripts that are long running such as TraverseData could also be
converted to .exe.

4. The database could be converted to SQL Server or some other ‘large’
database application. This might allow load time speed improvements
and would allow more data to be held.

5. The RegHoover/HooverLoad process can process volatile hives that
have been extracted from memory. This process could be improved to
hold Volatile Cell Indices as positive values by having for each Cell
Index a flag that states that it was originally Volatile. Could also have a
single row table to give the creation date of the database.

6. During this work a new “nk” record Flags bit of 0x1000 was found. What
is this for? Its name could probably be determined by running the
Kernel Debugger on a Vista machine and repeating the experiment to
determine flag values.

7. It was discovered that sometimes hbins can be very large. Why is this?
What do they contain? How do they come about? Is it a side-effect of
merely concatenating adjacent free hbins and so a result of churn?

8. It was determined how the “lh” hash value is calculated for ASCII Key
names. How is the Hash value calculated in “lh” records when the
SubKey Name is in Unicode?

9. It was found that in version 1.3 registry files that "li" and "ri" records start
to be used when the number of subkeys becomes large. At what values
do these records start to be used?

10. It was found that in version 1.5 registry files that "ri" records start to be
used when the number of subkeys becomes large. At what value does
this record start to be used?

11. It was discovered that "li" and large "lh" cells have a small number of
sizes. Do cells get allocated in fixed step sizes above a certain size?

12. RegHoover reports that some Data Nodes are apparently too small?
Why is this? Is it a fault in RegHoover or an unexplained feature or
anomaly.

13. The 010 Template Editor is designed to allow Hex records to be parsed
and displayed. A useful task would be to develop templates for use with
this tool.

107

14. It was found that normally Key Node time stamps (Last Write Time) are
before the times in the BaseBlock/first hbin. However some are not.
Why is this?

15. Pattern definitions were defined. More work could be done on these to
see what patterns can be found in SubKey lists to allow them to be
searched for. More work in general on successful pattern matching.

16. How can we determine the Cell Index of cells found in blocks of data
with no hbin header? Normally we can use the Offset field in the hbin
header to act as a base Cell Index for that hbin.

17. Much work was done on how Free Cells are managed in memory. It
remains a puzzle as to whether there should be 20 or 24 elements in a
FreeDisplay bitmap? How are free cells managed?

18. Many of the important ‘in memory’ data structures were unravelled and
explained. What are the others for?

19. The proper Microsoft names were found for nearly all the fields of
Registry files. What are the ‘proper’ Microsoft names for the Hash and
Offset values found in SubKey Lists and the Value List?

20. The field names for all the fields in “nk”, “lk” and the BaseBlock records
were found. The use of nearly all of these was also deduced. What are
the few unknown fields found in “nk”/”lk” records and the Cluster value
in the BaseBlock used for?

21. A fairly large set of Registry files were used in this project but they were
not intended to be a statistically valid sample. It was also not easy to
get well-used Registry files. It would be of interest to find a better, more
typical, set of Registry files to examine. (Units and Organisations with
significant caseload may be able to use Registry files from previous
cases with an obvious confidentiality restriction).

22. Probert refers to a No Lazy Flush setting for a hive. Where is this?

23. BaseBlock Type settings were identified and found to be attributable to
the PRIMARY file or the LOG file. What file or structure uses the
BaseBlock type HFILE_TYPE_EXTERNAL?

7.3 Summary

In this chapter the main conclusions were presented and a list of possible areas
of further work have been outlined.

108

109

References

ActiveState (2008a), ActivePerl - The complete and ready-to-install Perl
distribution., available at:
http://www.activestate.com/Products/activeperl/index.mhtml (accessed
2008/11/20).

ActiveState (2008b), Komodo IDE 5.0 Overview, available at:
http://www.activestate.com/Products/komodo_ide/index.mhtml (accessed
2008/11/20).

Allen, J. (2008a), Perl 5.10.0 documentation, unpack(), available at:
http://perldoc.perl.org/functions/unpack.html (accessed 2008/10/14).

Allen, J. (2008b), Perl 5.10.0 documentation, encode(), available at:
http://perldoc.perl.org/Encode.html (accessed 2008/10/25).

Anand, G. (2008), Internal structures of the Windows Registry, available at:
http://blogs.technet.com/ganand/archive/2008/01/05/internal-structures-of-the-
windows-registry.aspx (accessed 2008/10/31).

B.D. , WinReg.txt, available at:
http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt (accessed 2008/7/10).

Boling, D. (2001), Programming Windows CE, 2nd ed, Pages 998, Microsoft
Press , ISBN:0735614431.

Carvey, H. (2005), "The Windows Registry as a forensic resource", Digital
Investigation, vol. 2, no. 3, pp. 201-205.

Carvey, H. (2006a), New Today, available at:
http://windowsir.blogspot.com/2006/10/new-today.html (accessed 2008/10/13).

Carvey, H. (2006b), Parsing Raw Registry Files, available at:
http://windowsir.blogspot.com/2006/11/parsing-raw-registry-files.html (accessed
2008/10/13).

Carvey, H. (2007a), SAM Parse, available at:
http://windowsir.blogspot.com/2007/01/samparse.html (accessed 2008/10/13).

Carvey, H. (2007b), Scripts for parsing the Registry, available at:
http://windowsir.blogspot.com/2007/01/scripts-for-parsing-registry.html
(accessed 2008/10/13).

Carvey, H. (2007c), "Registry Analysis", in Windows Forensic Analysis,
Syngress, Rockland, pp. 125-189.

110

Carvey, H. (2008a), Windows Incident Response Blog, available at:
http://windowsir.blogspot.com/ (accessed 2008/10/9).

Carvey, H. (2008b), RegRipper Update, available at:
http://windowsir.blogspot.com/2008_05_01_archive.html (accessed 2008/10/9).

Chen, R. (2004), The Old New Thing, available at:
http://blogs.msdn.com/oldnewthing/archive/2004/03/15/89753.aspx (accessed
2008/10/11).

Clark (2005), Security Accounts Manager - Registry Structure, available at:
http://www.beginningtoseethelight.org/ntsecurity/ (accessed 2008/10/9).

CPAN , Comprehensive Perl Archive Network, available at:
http://search.cpan.org/.

Cranfield. (2005), Msc, PGDip & PGCert in Forensic Computing, Student
Handbook, Section Three .

Cranfield (2007), Cranfield University, available at: http://www.cranfield.ac.uk/
(accessed 2009/1/3).

Crystal Office (2009), Maple, available at: http://www.crystaloffice.com/maple/
(accessed 2009/1/3).

Cuomo, N. , Personal web page, available at:
http://www.studenti.unina.it/~ncuomo/syskey/ (accessed 2008/10/8).

DeMarco, T. (1982), Controlling Software Projects, Pages 284, Englewood
Cliffs , New Jersey, ISBN:0-13-171711-1.

DFRW "Digital Forensic Research Workshop 2008", August 2008, Baltimore,
MD, .

Dolan-Gavitt, B. (2008), "Forensic analysis of the Windows registry in memory",
Digital Investigation, vol. 5, no. Supplement 1, pp. S26-S32.

GTK+ , The GTK+ Project, available at: http://www.gtk.org/ (accessed
2008/10/9).

Guidance (2008), Guidance Software Inc., available at:
http://www.guidancesoftware.com (accessed 2088/10/9).

Hague, S. and Wood, C. , Designing a Hard Disk Driver for Windows CE 2.12,
available at:
http://users.ece.gatech.edu/~hamblen/489X/projects/disk/index.html (accessed
2008/10/9).

111

Helix (2008), e-fence Inc., available at: http://helix.e-fense.com/ (accessed
2008/10/9).

InternetSoft Corporation (2008), Website Extractor, available at:
http://www.internet-soft.com/extractor.htm (accessed 2009/1/3).

ISO (2004), International Organization for Standardization 8601:2004, available
at: http://www.iso.org/iso/catalogue_detail?csnumber=40874 (accessed
2008/10/24).

Jenkinson. (2008), Advanced Forensics (unpublished Short Course), Cranfield
University, Shrivenham.

Macfarlane, J. (2008), Parse-Win32Registry-0.40, available at:
http://search.cpan.org/~jmacfarla/Parse-Win32Registry-0.40/ (accessed
2008/10/9).

Maplin (2008), Maplin Electronics Ltd, available at: http://www.maplin.co.uk
(accessed 2009/1/3).

Martelli, A. (2006), Python in a nutshell, 2nd ed, O'Reilly , Sebastopol CA,
ISBN:0-596-10046-9.

Microsoft (2003a), Windows Server 2003 Resource Kit Tools, available at:
http://www.microsoft.com/downloads/details.aspx?familyid=9d467a69-57ff-
4ae7-96ee-b18c4790cffd&displaylang=en (accessed 2008/10/9).

Microsoft (2003b), Adsiedit Overview, available at:
http://technet.microsoft.com/en-us/library/cc773354.aspx (accessed
2008/10/11).

Microsoft (2003c), How Security Descriptors and Access Control Lists Work,
available at: http://technet.microsoft.com/en-us/library/cc781716.aspx
(accessed 2008/10/31).

Microsoft (2003d), Unicode and Keyboards on Windows, 23rd
Internationalization and Unicode Conference, Prague, Czech Republic, March
2003, available at: http://www.microsoft.com/globaldev/handson/dev/Unicode-
KbdsonWindows.pdf (accessed 2008/12/04).

Microsoft (2006a), FIX: Audio playback includes unwanted noises for a
multimedia application, available at: http://support.microsoft.com/kb/839562
(accessed 2008/11/18).

Microsoft (2006b), Missing Objects and Counters in Performance Monitor,
available at: http://support.microsoft.com/kb/127207.

112

Microsoft (2007a), Understanding Container Access Inheritance Flags in
Windows 2000, available at: http://support.microsoft.com/kb/220167 (accessed
2008/10/8).

Microsoft (2007b), Debug Interface Access SDK, available at:
http://msdn.microsoft.com/en-us/library/x93ctkx8.aspx (accessed 2008/10/11).

Microsoft (2007c), Strings v2.40, available at: http://technet.microsoft.com/en-
us/sysinternals/bb897439.aspx (accessed 2008/11/20).

Microsoft (2008a), Registry Element Size Limits, available at:
http://msdn.microsoft.com/en-us/library/ms724872.aspx (accessed 2008/10/8).

Microsoft (2008aa), HKEY_CURRENT_CONFIG, available at:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/regentry/
69675.mspx (accessed 11/3/.

Microsoft (2008ab), HKEY_CLASSES_ROOT, available at:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/regentry/
69675.mspx (accessed 11/3/.

Microsoft (2008ac), Registry Value Types, available at:
http://msdn.microsoft.com/en-us/library/ms724884(VS.85).aspx (accessed
2008/11/4).

Microsoft (2008ad), PDB Files, available at: http://msdn.microsoft.com/en-
us/library/yd4f8bd1(VS.71).aspx (accessed 2008/11/18).

Microsoft (2008ae), SYSTEM_MANDATORY_LABEL_ACE, available at:
http://msdn.microsoft.com/en-us/library/cc230379(PROT.10).aspx (accessed
2009/5/1).

Microsoft (2008af), Mandatory Integrity Control, available at:
http://msdn.microsoft.com/en-us/library/bb648648(VS.85).aspx (accessed
2009/1/5).

Microsoft (2008b), ACCESS_MASK Data Type, available at:
http://msdn.microsoft.com/en-gb/library/aa374892.aspx (accessed 2008/10/8).

Microsoft (2008c), ADS_ACEFLAG_ENUM Enumeration, available at:
http://msdn.microsoft.com/en-us/library/aa772242.aspx (accessed 2008/10/8).

Microsoft (2008d), Registry Key Security and Access Rights, available at:
http://msdn.microsoft.com/en-gb/library/ms724878.aspx (accessed 2008/10/8).

Microsoft (2008e), Security identifiers, available at:
http://technet.microsoft.com/en-us/library/cc780850.aspx (accessed 2008/10/8).

113

Microsoft (2008f), Windows Embedded CE, available at:
http://msdn.microsoft.com/en-us/library/bb847932.aspx (accessed 2008/10/9).

Microsoft (2008g), About Visual Studio, available at:
http://msdn.microsoft.com/en-us/vstudio/products/bb931214.aspx (accessed
2008/10/11).

Microsoft (2008h), Windows Kernel-Mode Configuration Manager, available at:
http://msdn.microsoft.com/en-us/library/cc264540.aspx (accessed 2008/10/11).

Microsoft (2008i), Debugger Commands, available at:
http://msdn.microsoft.com/en-us/library/cc266538.aspx (accessed 2008/10/11).

Microsoft (2008j), Windows registry information for advanced users, available
at: http://support.microsoft.com/kb/256986 (accessed 2008/10/13).

Microsoft (2008k), Debugging Tools for Windows - Overview, available at:
http://www.microsoft.com/whdc/devtools/debugging (accessed 2008/10/27).

Microsoft (2008l), Absolute and Self-Relative Security Descriptors, available at:
http://msdn.microsoft.com/en-us/library/aa374807.aspx (accessed 2008/10/31).

Microsoft (2008m), SECURITY_DESCRIPTOR Structure, available at:
http://msdn.microsoft.com/en-us/library/aa379561(VS.85).aspx (accessed
2008/10/31).

Microsoft (2008n), SECURITY_DESCRIPTOR_CONTROL Data Type, available
at: http://msdn.microsoft.com/en-us/library/aa379566(VS.85).aspx (accessed
2008/10/31).

Microsoft (2008o), ACL Structure, available at: http://msdn.microsoft.com/en-
us/library/aa374931(VS.85).aspx (accessed 2008/10/31).

Microsoft (2008p), ACE Data Type, available at: http://msdn.microsoft.com/en-
us/library/aa374912(VS.85).aspx (accessed 2008/10/31).

Microsoft (2008q), ACE_HEADER Structure, available at:
http://msdn.microsoft.com/en-us/library/aa374919(VS.85).aspx (accessed
2008/11/31).

Microsoft (2008r), ACCESS_ALLOWED_ACE Structure, available at:
http://msdn.microsoft.com/en-us/library/aa374847(VS.85).aspx (accessed
2008/11/1).

Microsoft (2008s), ACCESS_DENIED_ACE Structure, available at:
http://msdn.microsoft.com/en-us/library/aa374879(VS.85).aspx (accessed
2008/11/1).

114

Microsoft (2008t), SYSTEM_AUDIT_ACE Structure, available at:
http://msdn.microsoft.com/en-us/library/aa379616(VS.85).aspx (accessed
2008/11/1).

Microsoft (2008u), ACCESS_MASK Data Type, available at:
http://msdn.microsoft.com/en-us/library/aa374892(VS.85).aspx (accessed
2008/11/1).

Microsoft (2008v), Security Identifiers, available at:
http://msdn.microsoft.com/en-us/library/aa379571(VS.85).aspx (accessed
2008/11/1).

Microsoft (2008w), Well-known SIDs, available at:
http://msdn.microsoft.com/en-us/library/aa379649(VS.85).aspx (accessed
2008/11/1).

Microsoft (2008x), Parts of a Security Descriptor, available at:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/distrib/ds
ce_ctl_dbvr.mspx (accessed 2008/11/1).

Microsoft (2008y), Microsoft Most Valuable Professional, available at:
http://mvp.support.microsoft.com/ (accessed 200811/2/.

Microsoft (2008z), HKEY_CURRENT_USER, available at:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/regentry/
51211.mspx?mfr=true (accessed 2009/5/1).

Morgan, T. D. (2008a), "Recovering deleted data from the Windows registry",
Digital Investigation, vol. 5, no. Supplement 1, pp. S33-S41.

Morgan, T. D. (2008b), Reglookup, available at:
http://projects.sentinelchicken.org/reglookup/ (accessed 2008/6/18).

moyix (2007), Challenges in Carving Registry Hives from Memory, available at:
http://moyix.blogspot.com/2007/09/challenges-in-carving-registry-hives.html
(accessed 2008/8/10).

moyix (2008a), Enumerating Registry Hives, available at:
http://moyix.blogspot.com/2008/02/enumerating-registry-hives.html (accessed
2008/10/8).

moyix (2008b), Reading OpenKeys, available at:
http://moyix.blogspot.com/2008/02/reading-open-keys.html (accessed
2008/10/8).

moyix (2008c), CredDump: Extract Credentials from Windows Registry Hives,
available at: http://moyix.blogspot.com/2008/02/creddump-extract-credentials-
from.html (accessed 2008/10/8).

115

moyix (2008d), Cell Index Translation, available at:
http://moyix.blogspot.com/2008/02/cell-index-translation.html (accessed
2008/10/8).

moyix (2008e), CredDump project, available at:
http://code.google.com/p/creddump (accessed 2008/10/8).

moyix (2008f), Push The Red Button, available at: http://moyix.blogspot.com
(accessed 2008/10/27).

National Maritime Museum (2008), British Summer Time (BST), available at:
http://www.nmm.ac.uk/explore/astronomy-and-time/time-facts/british-summer-
time-(bst) (accessed 2008/12/27).

Nordahl-Hagen, P. , Offline NT Password & Registry Editor, available at:
http://home.eunet.no/~pnordahl/ntpasswd/ (accessed 2008/7/10).

NTFS4DOS , NTFS4DOS Boot Disk, available at:
http://www.bootdisk.com/ntfs.htm (accessed 2008/11/20).

Perl Express Group (2007), Perl Express: A Free Perl IDE/Editor for Windows,
available at: http://www.perl-express.com/ (accessed 2008/10/13).

Probert, D. B. , Windows Kernel Internals, available at: http://www.i.u-
tokyo.ac.jp/edu/training/ss/lecture/new-documents/Lectures/09-
Registry/Registry.pdf (accessed 2008/10/9).

QAA , The Quality Assurance Agency for Higher Education, available at:
http://www.qaa.ac.uk (accessed 2009/1/3).

QAA (2006), Academic credit in Higher Education in England, available at:
http://www.qaa.ac.uk/academicinfrastructure/FHEQ/academicCredit/AcademicC
redit.pdf (accessed 2009/1/3).

ReactOS (2008), ReactOS Project, available at: http://www.reactos.org
(accessed 2008/10/8).

RefWorks (2008), RefWorks -- an online research management, writing and
collaboration tool, available at: http://www.refworks.com/ (accessed 2009/1/3).

Rendell, M. , regutils - win9x registry & ini file manipulation tools for unix,
available at: http://www.cs.mun.ca/~michael/regutils/ (accessed 2008/10/9).

Richards, J. (2007), joeware.net, available at: http://www.joeware.net (accessed
2008/11/2).

116

Riley, S. (2006), Mandatory integrity control in Windows Vista, available at:
http://blogs.technet.com/steriley/archive/2006/07/21/442870.aspx (accessed
2009/1/5).

Russinovich, M. E. , Inside the Registry, available at:
http://www.microsoft.com/technet/archive/winntas/tips/winntmag/inreg.mspx.

Russinovich, M. E. and Solomon, D. (2005a), "Registry Internals", in Microsoft
Windows Internals, 4th ed, pp. 197-211.

SAMBA (2005), Status of editreg, available at:
http://lists.samba.org/archive/samba-technical/2005-May/040851.html
(accessed 2008/11/20).

SAMBA (2008a), Samba Home Page, available at: http://us1.samba.org/samba/
(accessed 2008/10/8).

SAMBA (2008b), SAMBA download, available at:
http://us1.samba.org/samba/ftp/samba-latest.tar.gz (accessed 2008/10/8).

Schwartz, R. L., Phoenix, T. and foy, b. d. (2005), Learning Perl, 4th ed, O'Reilly
, Sebastopol, CA, ISBN:0-596-10105-8.

Screiber, S. B. (2001), Undocumented Windows 2000 Secrets, Pages 563,
Addison-Wesley , ISBN:0-201-72187-2.

Screiber, S. B. (2008), Updated PDB Exploder, available at:
http://undocumented.rawol.com/win_pdbx.zip (accessed 2008/10/13).

Sourceforge (2008a), Sourceforge WINE project, available at:
http://sourceforge.net/projects/wine (accessed 2008/10/8).

Sourceforge (2008b), Sourceforge ReactOS project, available at:
http://sourceforge.net/projects/reactos (accessed 2008/10/8).

Thomassen, J. (2008), Forensic Analysis of Unallocated Space in Windows
Registry Hive Files, The University of Liverpool.

Titheridge, D. A. (2008), Microsoft Windows Vista (unpublished MSc thesis),
Cranfield University.

Tittel, E., Stewart, J. M. and Chapple, M. (2004), "Access Control Techniques",
in CISSP Study Guide, , pp. 16.

Volatile Systems (2008), The Volatility Framework: Volatile memory artifact
extraction utility framework, available at:
https://www.volatilesystems.com/default/volatility (accessed 2009/1/3).

117

Wall, L., Christianson, T. and Orwant, J. (2000a), Programming Perl, 3rd ed,
O'Reilly , Sebastopol, CA, ISBN:0-596-00027-8.

Wall, L., Christianson, T. and Orwant, J. (2000b), "CPAN", in Programming Perl,
3rd ed, O'Reilly, Sebastopol, CA, pp. 547-556.

Williams, N. (2000), dosreg.c, available at:
http://www.wednesday.demon.co.uk/dosreg.html (accessed 2008/17/10).

WINE (2008a), World Wine News Issue #348, available at:
http://www.winehq.org/site?issue=348#News:%20Wine%201.0! (accessed
2008/10/8).

WINE (2008b), Wine HQ, available at: http://www.winehq.org/ (accessed
2008/10/8).

X-Ways (2008), Winhex: Hex Editor and Disk Editor, available at: http://www.x-
ways.net/winhex/ (accessed 2008/10/9).

118

119

Bibliography

Adelstein, F. and Joyce, R. A. (2007), "File Marshal: Automatic extraction of
peer-to-peer data", Digital Investigation, vol. 4, no. Supplement 1, pp. 43-48.

Ahmed, M., Garrett, C., Faircloth, J., Payne, C., Lee, W. M. and Ortiz, J. (2002),
"Configuring ASP.NET", in ASP .NET Web Developer's Guide, Syngress,
Rockland, pp. 173-225.

Anderson, H. and Tooley, M. (1999), "Troubleshooting windows registry", in
Newnes PC Troubleshooting Pocket Book (Third edition), Newnes, Oxford, pp.
155-158.

Bhardwaj, P. K. (2006), "Monitoring System Events, Processes, and
Performance", in How to Cheat at Windows System Administration Using
Command Line Scripts, Syngress, Burlington, pp. 241-272.

Bhardwaj, P. K. (2006), "System Services, Drivers, and the Registry", in How to
Cheat at Windows System Administration Using Command Line Scripts,
Syngress, Burlington, pp. 205-240.

Born, G. (1998), Inside the Microsoft Windows 98 Registry, Microsoft Press ,
Redmond, ISBN:1-57231-824-4.

Brown, A. (2000), The How to Study Book, Barricade Books , New York.

Carrier, B. (2005), File System Forensic Analysis, Pages 569, Pearson
Education , Upper Saddle River NJ, ISBN:0-32-126817-2.

Carvey, H. (2005), Windows Forensics and Incident Response, Addison-
Wesley, Boston, ISBN:0-321-20098-5.

Craft, M. and Llewellyn, J.,Thomas D. (2001), "Using active directory: A case
study", in Melissa Craft, Thomas D. Llewellyn and Jr. (eds.) Windows 2000
Active Directory (Second Edition), Syngress, Rockland, pp. 501-519.

Dodge, R. C. "Skype Fingerprint", Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, 7-10 Jan. 2008, pp. 484.

Drew, S. and Bingham, R. (1997), The Student Skills Guide, Gower , Aldershot,
ISBN:0-566-07857-3.

Ganapathi, A., Yi-Min, W., Ni, L. and Ji-Rong, W. (2004), "Why PCs are fragile
and what we can do about it: a study of Windows registry problems", 2004
International Conference on Dependable Systems and Networks, 28 June-1
July 2004, California Univ., Berkeley, CA, USA, pp. 561.

120

Hanner, K. and Hörmanseder, R. (1999), "Managing Windows NT®file system
permissions— A security tool to master the complexity of Microsoft Windows
NT®file system permissions", Journal of Network and Computer Applications,
vol. 22, no. 2, pp. 119-131.

Hartman, T. (1997), Attention Deficit Disorder - A Different Perception, Second
ed, Underwood Books , Grass Valley, California, ISBN:1-887424-14-8.

Highland, H. J. (1997), "Windows NT registry", Computers & Security, vol. 16,
no. 2, pp. 88-90.

Hoffman, P. (2003), Perl for Dummies, 4th ed, Pages 381, Wiley , New York,
ISBN:0-7645-3750-4.

Kelly, K. and Ramundo, P. (2006), You Mean I'm Not Lazy, Stupid or Crazy?!
Pages 460, Scribner , New York, ISBN:0-7432-6448-7.

Kernigham, B. W. and Plauger, P. J. (1981), Software Tools in Pascal, Pages
366, Addison-Wesley , Reading MA, ISBN:0-201-10342-7.

Kernigham, B. W. and Ritchie, D. M. (1988), The C Programming Language,
Second ed, Pages 272, Prentice Hall , Englewood Cliffs NJ, ISBN:0-13-110362-
8.

Kisik, C., Gibum, K., Kwonyoup, K. and Woosuk, K. "Initial Case Analysis Using
Windows Registry in Computer Forensics", Future generation communication
and networking, vol. 1, no. 6-8, pp. 564-564 - 569.

Kokoreva, O. (2002), Windows XP Registry, Pages 530, A-List , Wayne PA,
ISBN:1-931769-01-X.

Mee, V., Tryfonas, T. and Sutherland, I. (2006), "The Windows Registry as a
forensic artefact: Illustrating evidence collection for Internet usage", Digital
Investigation, vol. 3, no. 3, pp. 166-173.

Murray, R. (2003), How to Survive your Viva, Open University Press ,
Maidenhead, ISBN:0-335-21284-0.

Nikkel, B. J. (2007), "An introduction to investigating IPv6 networks", Digital
Investigation, vol. 4, no. 2, pp. 59-67.

Robichaux, P. (1998), "Managing the windows NT registry", Computers &
Mathematics with Applications, vol. 36, no. 3, pp. 125-125.

Robichaux, P. (2000), Managing the Windows 2000 Registry, O'Reilly &
Associates , Sebastopol, CA, ISBN:1-56592-943-8.

121

Saito, Y., Bershad, B. N. and Levy, H. M. (2000), "Manageability, availability,
and performance in porcupine: a highly scalable, cluster-based mail service",
ACM Trans.Comput.Syst., vol. 18, no. 3, pp. 298.

Sammes, T. and Jenkinson, B. (2007), Forensic Computing - A Practitioners
Guide, Second ed, Pages 465, Springer , London, ISBN:1-84628-397-3.

Schultz, E. (2003), "Security Views", Computers & Security, vol. 22, no. 5, pp.
368-377.

Shinder, M. D. T. W., Shinder, D. L. and Grasdal, M. (2002), "Using the Security
Configuration Tool Set", in Dr. Tom Shinder's ISA Server and Beyond,
Syngress, Burlington, pp. 487-531.

Todd, C. and Johnson, J.,Norris L. (2001), "Default Access Control Settings", in
Chad Todd, Norris L. Johnson and Jr. (eds.) Hack Proofing Windows 2000
Server, Syngress, Rockland, pp. 21-61.

Todd, C. and Johnson, J.,Norris L. (2001), "Security Configuration Tool Set", in
Chad Todd, Norris L. Johnson and Jr. (eds.) Hack Proofing Windows 2000
Server, Syngress, Rockland, pp. 149-198.

Todd, C. and Johnson, J.,Norris L. (2001), "Using Security-Related Tools", in
Chad Todd, Norris L. Johnson and Jr. (eds.) Hack Proofing Windows 2000
Server, Syngress, Rockland, pp. 535-616.

Topallar, M., Depren, M. O., Anarim, E. and Ciliz, K. "Host-based intrusion
detection by monitoring Windows registry accesses", 2004. Proceedings of the
IEEE 12th Signal Processing and Communications Applications Conference,
28-30 April 2004, pp. 728.

Xueqin, Z., Chunhua, G. and Jiajun, L. (2006), "Support Vector Machines for
Anomaly Detection", The Sixth World Congress on Intelligent Control and
Automation, 2006. WCICA 2006. Vol. 1, pp. 2594.

Youngsoo, K. and Dowon, H. "Windows Registry and Hiding Suspects' Secret in
Registry", ISA 2008. International Conference on Information Security and
Assurance, 24-26 April 2008, pp. 393.

Zenkin, D. (2000), "Anti-virus software reports on Windows registry changes",
Computer Fraud & Security, vol. 2000, no. 6, pp. 6-6.

122

