THE CLASSIFICATION OF FOOTBALL PATTERNS

V. BRAUNGARDT AND D. KOTSCHICK

ABSTRACT. We prove that every spherical football is a branched cover, branched only in the ver-
tices, of the standard football made uplaf pentagons and0 hexagons. We also give examples
showing that the corresponding result is not true for footballs of higher genera. Moreover, we
classify the possible pairg:, [) for which football patterns on the sphere exist satisfying a natural
generalisation of the usual incidence relation between pentagons and hexagqgontand-gons.
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INTRODUCTION

A football patterd is a graph embedded in the two-sphere in such a way that all faces are pen-
tagons and hexagons, satisfying the conditions that the edges of each pentagon meet only edges of
hexagons, and that the edges of each hexagon alternately meet edges of pentagons and of hexagons.
If one requires that there are exactly three faces meeting at each vertex, then Euler’s formula im-
plies that the pattern consists bf pentagons angl) hexagons. Moreover, in this case the combi-
natorics of the pattern is uniquely determined. This pattern, which we shall refer to as the standard
football, has a particularly symmetric realisation with all polygons regular, which can be thought
of as a truncated icosahedron.

If one drops the requirement that there are exactly three polygons meeting at each vertex, then
one can exhibit infinitely many distinct football patterns by lifting to branched covers of the stan-
dard football branched only in vertices of the pattern. In the first part of this paper we shall prove
that these are the only football patterns on the two-sphere. For the proof we consider the dual
graph of a football pattern as a coloured ribbon graph. The dual of the standard footbalPwith
pentagons and0 hexagons is shown in the picture on the first page of this paper. To make the
picture symmetric, a black vertex is spread out at infinity and is depicted by the shaded ring around
the rest of the graph.

Of course we could consider the dual graph as a map, but in order to make clear the distinction
between football patterns and their duals, we will always use the language of maps, cf. [2], for the
football patterns themselves, and the language of ribbon graphs, cf. [3], for their duals.

All the football graphs, that is ribbon graphs dual to football patterns, have the same universal
covering, which is a certain tréE. We shall determine the automorphism grougoand prove
that every cofinite subgroup of the automorphism group whose quotient gives rise to the dual of a
spherical pattern is a subgroup of the group giving rise to the standard football. We also consider
football patterns on surfaces of higher genera and show that the classification theorem does not hold
for them; in other words, not all of them can be obtained by taking branched covers of the standard
football. However, football patterns on surfaces of higher genera always admit branched covers of
degree at most0 which in turn are also branched covers of the standard spherical football.

One may wonder what specidle pentagons and hexagons play in this discussion. We shall
address this question in the second part of this paper, where we determine all the possibilities for
triples (k, [, n) that can be realised by maps on the two-sphere whose facésgares and-gons
satisfying the conditions that the edges of eaajon meet only edges dfgons, and that eveny"
edge of eacli-gon meets an edge ofiagon, and its other edges mdeagons. Not surprisingly,
the determination of these triples is a generalisation of the topological argument determining the
Platonic solids. In most cases the generalised football patterns have realisations dual to very sym-
metric triangulations of the sphere that have been known and studied sint®"thentury. That
purely topological or combinatorial considerations lead to a list that contains almost only the usual
symmetric patterns and their degenerations is a kind of rigidity phenomenon associated with these
spherical triangulations.

We shall see that the classification theorem for spherical football patterns proved in the first part
of this paper for the tripl¢5, 6, 2) actually holds for all generalised football patterns with- 2:
each generalized football with a pattern of tyje!/, 2) is a branched cover of the corresponding
minimal pattern. We shall also see that this result does not extend-ta.

We use English terminology. American readers might want to call our football patterns “soccer ball patterns”.
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1. RIBBON GRAPHS AND BRANCHED COVERS

1.1. Football graphs. A football pattern is a map in the sense of [2] on the two-sphere satisfying

the usual conditions that at least three edges meet at every vertex, that all faces are pentagons and
hexagons, that the edges of each pentagon meet only edges of hexagons, and that the edges of each
hexagon alternately meet edges of pentagons and of hexagons. We make no regularity assumption,
so that a football pattern is not a geometric, but a combinatorial-topological object.

A football pattern determines, and is determined by, its dual graph. This graph has a vertex for
every polygon in the pattern, and the vertices are coloured, say black for the vertices corresponding
to pentagons and white for the vertices corresponding to hexagons. Two vertices are connected by
an edge if the corresponding polygons share an edge. The edges meeting at a vertex are cyclically
ordered (with respect to this endpoint) by remembering that the sides of a polygon are cyclically
ordered. Therefore the dual graph is a fatgraph or ribbon graph in the sense of [3], leading to the
following definition:

Definition 1. A football graph is a ribbon graph with black and white vertices satisfying the fol-
lowing conditions:

(1) each black vertex has valence five, and all five edges connect the given vertex to white
vertices, and

(2) each white vertex has valence six, and the six edges alterhateipect the given vertex
to black and white vertices.

The picture at the beginning of this paper shows the dual ribbon graph of the standard football
pattern onS? consisting ofl2 pentagons an2l) hexagons. To make the picture symmetric, a black
vertex is spread out at infinity and is depicted by the shaded ring around the rest of the graph.

As every finite ribbon graph corresponds to a unique closed oriented surface, we have a natural
bijection between football graphs and football patterns on arbitrary closed oriented surfaces. A
covering map between football graphs corresponds to a possibly branched covering map between
surfaces, with any branching restricted to the centers of the faces of the decompositions given by
the football graphs. As the football graphs are dual to actual football patterns, branching can only
occur at the vertices of patterns.

Let b andw be the numbers of black and white vertices in a football giapfA hen the total
number of vertices is = b + w, and the number of edgesds= 1(5b + 6w). Of these edges,

e = gw have white endpoints, and = 50 = 3w have a black and a white endpoint. It follows
that there is a natural numbeésuch that = 64 andw = 10d.

Lemma 1. The only football graph giving a triangulation of a closed surface is the dual gigph
of the standard spherical football with= 2.

Proof. Let X be the closed oriented surface defined by a football gfagby Euler’'s formula, the
number of faces in the cell decomposition’otletermined by is

f=x(E)+e—v=x(X)+45d — 16d = x(X) +29d .

If I defines a triangulation of, then we must havee = 3f, which, rewritten in terms of/,
meansd0d = 3x(X) + 87d, ord = x(X). Thusd = 2, andY. is S?. The combinatorics of the

The alternating condition is with respect to the cyclic order of the edges.
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corresponding football pattern is uniquely determined in this case, as can be seen from the proof
of Theorem 2 below. O

1.2. The football tree. There is precisely one connected and simply connected football graph,
which we shall call the football treE. It is the universal cover of any football graph. Aghought

of as a ribbon graph is an orientable surface, it makes sense to speak of orientation-preserving
automorphisms, and we shall denote the group of all such automorphisms3§). This can be
determined explicitly:

Theorem 1. The automorphism groufut(7") of the football tree is isomorphic to the free product
ZQ * Z3 * Z5.

Proof. This is a straightforward application of the Bass—Serre theory of groups acting on trees,
cf. [4]. This theory is usually formulated for groups acting on trees without inverting edges. In our
situation, there are automorphisms inverting edges that connect a pair of white vertices. Therefore,
we subdivide each of these edges by introducing red vertices in the middle of each edge connecting
two white edges of . We obtain a new tre€’, which has three kinds of edges: the white and black
ones of valencé and5 respectively, and red ones of valericél'he red and black vertices are only
connected to white ones, and the edges meeting at a white vertex lead alternately to red and black
vertices. NowAut(7") acts on7” without inverting any edges. The action is simply transitive on

the two kinds of edges, black-white and red-white. The action is also transitive on the vertices of
a given colour, with isotropy groups of ordexs3 and5 for the red, white and black vertices. The
quotient graphl”/ Aut(T)) is a tree with three vertices, one for each colour, and with one edge
connecting the white vertex to each of the other vertices. We think of this as a graph of groups by
labeling the vertices with the isotropy groups. As the edges have trivial isotropy, the fundamental
group of this graph of groups is the free product of the labels of the vertices. By the structure
theorem of Section 1.5.4 in [4], this fundamental group is isomorphiguo(7"). O

1.3. The classification of spherical footballs.WWe now want to prove that every football pattern

on the sphere is obtained as a branched cover of the standard football branched only in the vertices.
Equivalently, we prove that the spherical dual ribbon graphs are all obtained as covering spaces of
the dual graph of the standard football. The first step is the following:

Lemma 2. LetI" be a football graph with universal covering: T — I'. Suppose that is an
oriented path irl” consisting of a sequence of edges without backtrackingmépsy to a closed
path that corresponds to a boundary componerit tfought of as a surface with boundary, then
consists oBn edges for some natural numberand the image of in the standard football graph
Iy is a loop that is thex"" power of the loop formed by a triangle in the triangulation defined by
Iy, cf. Lemma 1.

Proof. We think of 7" as a surface with boundary. Choose a boundary compd@neovering the
boundary component(C') of I" to which~ is mapped. As a boundary componentlofC' runs
right along a sequendg; };cz of oriented edges ifi" such that, of course, the origirie;) of each
edge coincides with the endpoint of the previous edge, and, in addition, with respect to the cyclic
order of edges emanating frome;) = o(é;_1), e; is the successor @_;. (The bar denotes edge
inversion.) It follows from Definition 1 that the sequence of vertieés) is of the formblack,
white, white, black, white, whitetc.

The setwise stabilizer @' in Aut(7) is the infinite cyclic group generated by the translation
which mapse; to e; 3. Now 7(C') = C'/G, for some subgroup’ < StalC), i.e.G = () for
somen € N. Thusz(C') runs along &n-gon, which must ber ().
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By assumption, the pathis a piecee;1,. .., e;+; Of the sequencée; } and projects tor (7).
Thereforek = 3n. The images oé; in the standard football still satisfy the condition that consec-
utive edges be related by the cyclic ordering defining the ribbon graph structure. But this means
that the image o, e, 9¢;43 is a triangle. O

Here is the classification theorem for spherical football patterns:

Theorem 2. Every football graph dual to a football pattern os? is a finite covering space of
the standard football grapir,. Equivalently every football pattern os? is obtained from the
standard one by passing to a branched cover branched only in vertices of the pattern.

Proof. Given a spherical football gragh fix a universal covering: T — I' of I and a universal
coveringmy: T — T’y of the standard football gragh,. We are going to show that the group of
deck transformationdutr 7" is a subgroup oA utr, 7". This implies thatr, factors throughr.
Choose a poinp on an edge of" that is not an endpoint or a midpoint, so that it has trivial
stabilizer inAut(7"). Covering space theory identifies the group of deck transformations 7’
with the fundamental group, (I'; 7(p)). Sincel is spherical, this fundamental group is generated
by paths of the fornBy3~!, wherey is a loop along a boundary componeftuns from the base
point r(p) to the origin ofy and 3! is the way back. Liftings and~ to T" we obtain a path
BA7T™(61) leading fromp to 7" (p), with ~ from the proof of the previous lemma. Henceis the
deck transformation corresponding to the given generatar, @f; 7(p)). This proves the result,
because is a deck transformation ovél,. O

This proof also shows:

Corollary 1. The subgroupr;(I'y) C Aut(T") is normal. The quotienfut(7") /7 (I'y) is the
icosahedral group of ordes0.

1.4. Footballs of positive genera.Every ribbon graph corresponds to a unique closed oriented
surface, and of course every such surface does indeed arise from a football graph, for example
because it is a branched covering of the two-sphere, which we can arrange to be branched only in
the vertices of a suitable football pattern. We now want to show that there are other football patterns
on surfaces of positive genera, that are not lifted from the two-sphere. The proof of Theorem 2
does not extend, because for a ribbon graph corresponding to a surface of positive genus there are
generators in the fundamental group that arise from handles, rather than from the punctures.
Recall that the parametérfor a finite football graph specifies the number of black and white
vertices by the formulag = 64 andw = 10d. Passing to @&-fold covering multipliesi by D. As
the standard football graphy, hasd = 2, all its non-trivial coverings have > 4. Therefore, to
exhibit football graphs that are not coveringsl@f it suffices to find examples of positive genus
with d < 4. Performing certain cut-and-paste operation$'grnwe can actually produce examples
with d = 2 and rather large genera.
The simplest example is the following.

Examplel. Pick two disjoint edges in the standard football pattern, that are of the same type, so
that they both separate hexagons from each other, or they both separate a pentagon from a hexagon.
Open up the two-sphere along these edges to obtain a cylinder whose two boundary circles each
have two vertices and two edges. As the two edges along which we opened the sphere were of
the same type, the two boundary circles of the cylinder can be identified in such a way that the
resulting torus carries an induced football pattern with 2.
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In this example there arfg vertices instead of th€0 in the standard spherical football. All but
two of them are3-valent, and the exceptional two arevalent.

In the language of ribbon graphs, the surgery performed in the above example amounts to cutting
two ribbons and regluing the resulting ends in a different pairing. This can also be done with
ribbons corresponding to edges that share a vertex, in which case instead of cutting and pasting,
the surgery can be described through the reordering of edges:

Example2. Leteq, ..., e5 be the edges emanating from a black vertex in the standard football graph
I'y. Define a new football graph by reordering the edges as es, €3, e4, €5. This procedure glues

the three triangles whose edges inclager e; into a single9-gon boundary component bf This

new graph still hag = 2, but the underlying surface is a torus. In the dual football pattern there
areb8 vertices, of whichb7 are3-valent and one i8-valent.

Example3. Let e, ..., eq be the edges emanating from a white vertex in the standard football
graphT'y, enumerated in their cyclic order and labelled such that; ande; have black ends.
Define a new ribbon graph by reordering the edges cyclically, as,, es, g, €5, ¢3. This means
that the edges leading to white vertices are cut and reattached after a cyclic permutation given
geometrically by a rotation by ang?? around the vertex in the realisationIof with icosahedral
symmetry.

We apply this procedure to every white verteXgf The resulting football graph is symmetric
in the sense that it admits rotations of ordeB and5 around an edge, a white vertex and a black
vertex, respectively. Hence the full football grodmt(7") acts onI'. In particular all faces are
conjugate. One can verify by inspection that the faced &1gons. Hence the Euler characteristic
of the underlying surface is-46, and its genus i84. This is a football graph witld = 2 and is
therefore not a covering adf;.

Although football graphs of positive genera are not in general covering$,ofve have the
following:

Theorem 3. Every football pattern on a closed oriented surface admits a branched cover of degree
D < 60 that is also a branched cover of the standard minimal patterisénThe bound forD is
sharp.

Proof. Let I' be a finite football graph. As,(I';) C Aut(7") is a subgroup of index0, the
intersectionm; (I'y) N 71 (") has index at mos#0 in 7 (I'). The intersection corresponds to a
covering ofl" of degreeD < 60 that is also a covering df,.

To prove that coverings of degree strictly less thiaro not always suffice, recall thatut(7")
acts on the genust football graphl” from Example 3. This is equivalent to the fundamental group
m1(I") being a normal subgroup dfut(7"). The covering ofl’ corresponding to the subgroup
N = m(T'y)Nm(T) of Aut(T) is a Galois covering with Galois group(I") /N. Now the injection
m(I') — Aut(T) induces an embedding af (I')/N as a normal subgroup of the orientation-
preserving icosahedral grouput(7) /71 (I'y), isomorphic to the alternating grougs. Since this
is a simple group we must hawe(I')/N = A5 or {1}. The second case is excluded becduse
not a covering of’. O

1.5. Non-orientable footballs. Although we have modelled football patterns as ribbon graphs,
we can also consider them on non-orientable surfaces, because the condition that every other edge
emanating from a white vertex should connect to a black vertex is preserved by inversion of the
cyclic order.

Here are the simplest examples for the projective plane.
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Exampled. A football pattern on the real projective plane is readily constructed from the standard
football. In the dual ribbon graph, cut a single ribbon and reglue it with a half-twist so that the
surface becomes non-orientable. This gives a football patterndwvith2 that, instead of thé0
vertices of valencé in the standard football, hds vertices of valencé& and a unique vertex of
valence6. Therefore the Euler number of the surfacé.is

If we lift the pattern in this example to the universal covering of the projective plane, we obtain
a football pattern withi = 4 on the two-sphere, which, by Theorem 2, i8-fold branched cover
of the standard pattern. Of course in this case the branched covering structure can be seen directly,
by focussing on the two vertices of valente

Example5. The usual symmetric realisation of the standard football pattern on the sphere as a
truncated icosahedron is symmetric under the antipodal involution. Thus it descends to a pattern
onRP? with d = 1.

2. GENERALISED FOOTBALL PATTERNS

In this section we consider generalisations of the traditional football patterns.

Definition 2. A generalised football pattern is a map on the two-sphere whose facésgares
and/-gons satisfying the conditions that the edges of dagon meet only edges é¢fgons, and
that everyn™ edge of eaclt-gon meets an edge oftagon, and its other edges meegons.

To avoid degenerate cases we always assume3, [ > 3 andl = n - m with positive integers
m andn. As usual, at least three edges meet at every vertex.

If a given triple(k, [, n) can be realised by a generalised football pattern, then it can be realised
in infinitely many ways, for example by taking branched covers branched only in the vertices of
a given pattern. We will determine all possible triples, and we will find a minimal realisation for
each of them. We will also see that in some cases there are realisations that are not branched covers
of the minimal one.

Before proceeding to the classification, we list some examples for future reference.

2.1. Some examples.The standard football realising the trip(&, 6,2) can be thought of as a
truncated icosahedron. More generally, we have:

Example6. The truncated Platonic solids realise the tripladss, 2), (3, 8,2), (3,10,2), (4,6,2)
and(5, 6, 2) as generalised football patterns.

There are also infinite series of examples obtained by truncating the degenerate Platonic solids:

Example7. Start with a subdivision of the sphere alohg: 3 halves of great circles running from
the north to the south poles. We shall call this an American football. If we now truncate at one
of the poles, we obtain a realisation of the tripke 3, 3). (Fork = 3 this is a tetrahedron.) If we
truncate at both poles, we obtain a tin can pattern realiging 2). (Fork = 4 itis a cube.) This
is also known as &-prism. If we addk edges along the equator to this last example, we obtain a
double tin can realisingk, 4, 4), for anyk > 3.

Here is a variation on the above tin can pattern:

ExampleB. Take ak-gon, withk > 3 arbitrary, and surround it by pentagons in such a way that the
two pentagons meeting a pair of adjacent sides oftgen share a side. We can fit together two
such rings made up of/fagon andk pentagons each along a zigzag curve to obtain a realisation of
the triple(k, 5,5) by a generalised football pattern. (Hor= 5 we obtain a dodecahedron.)

The next two examples need to be visualised using the accompanying figures.
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FIGURE 1. Variation on Platonic solids

® ‘ L J

’ [ ? o
FIGURE 2. Subdivision of Platonic solids

Example9. Take a Platonic solid, and subdivide each face as follows. If the facekigan,

put a smallerk-gon in its interior, and radially connect each corner of this smallgon to the
corresponding corner of the original face. In this way each face of the original polyhedron is
divided into ak-gon andk quadrilaterals. The casés= 3 and4 are shown in Figure 1. Next

we erase the edges of the original polyhedron, so that the two quadrilaterals of the subdivison
meeting along an edge are joined to form a hexagon. In this way we obtain a realisation of the
triple (k, 6, 3). We shall refer to this construction as a variation on the original Platonic solid.
Examplel0. Again we start with a Platonic solid whose faces faigons. We subdivide each face

into a smallerk-gon andk hexagons as shown in Figure 2. This gives a realisation of the triple
(k,6,6).

2.2. The classification of generalised football patterns Now we want to prove that the previous
examples exhaust all possible generalised football patterns:witl2. We shall also treat the case
n = 1. The results of this classification are summarised in the table in Figure 3.
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If S is endowed with a generalised football pattern of tyjd, n), we shall think of theé:-gons
as being black and thlegons as being white. Their numbers are denotedl dnydw respectively.
The pattern then hag = b + w many faces, it has = %(bkz + wl) many edges, and the number
v of vertices is bounded by < 3(bk + wl) as there have to be at leasfaces meeting at every
vertex.

Counting the number of edges at whick-gon meets ai-gon in two different ways, we find

1
(1) k-b=—-l-w=m-w.

n
Computing the Euler characteristic and using (1) leads to:

1 1
2:f—e+v<b+w—6(k;.b+l-w):b+w—6k-b'(n+1).

Dividing by 2% - b we obtain the key inequality
@) 1 n+1 < 1 1

Ko 12 S2k am

2.2.1. The caser > 2. If n > 2, then the left hand side of (2) is strictly larger th?rif both £ and
m are at least, then the right hand side is at mgstThusn > 2 impliesk = 3 orm € {1,2,3}.
We now discuss these cases separately.

For every possible triplék, [, n) the inequality (2) gives a lower bound far With (1) we then
have a lower bound fap. Checking these values against the examples of the previous section, one
sees for most of the examples that they actually give minimal realisations. There are only a few
cases when this simple check does not suffice, because the minimal realisations have vertices of
valence strictly larger thah

Lemma 3. Suppose the triplék, [, n) with £ = 3 andn > 2 is realised by a generalised football
pattern. Thern(k,,n) is one of the tripleg3, 4,2), (3,6, 2), (3,8,2), (3,10,2), (3,3,3), (3,6, 3),
(3,4,4), (3,5,5), (3,6, 6). Minimal realisations are given by the Examples 6, 7, 8, 9 and 10.

Proof. Puttingk = 3 in (2) we obtain
1 1 1
(3) =<

% 12512 am
Together withn, > 2, this impliesm < 5.

If m = 5, then we obtaim = 2 from (3). Thus/ = 10. The truncated dodecahedron from
Example 6 is a minimal realisation.

If m = 4, then agaim = 2 from (3). Thus/ = 8. The truncated cube from Example 6 is a
minimal realisation.

If m = 3, then agaim = 2 from (3). Thusl = 6. The truncated tetrahedron from Example 6 is
a minimal realisation.

If m = 2, then (3) gives» < 3. Forn = 3, equivalentlyl = 6, a minimal realisation is the
variation on the tetrahedron from Example 9. kot 2, equivalentlyl = 4, we get the caske = 3
of the truncated American football in Example 7.

If m = 1, then (3) only gives» < 6. Forn = 6, thereforel = 6, the subdivision of the
tetrahedron from Example 10 gives a minimal realisation. ot | = 5, the caseék = 3 in
Example 8 is a minimal realisation. Far= [ = 4, the case: = 3 of the double tin can in
Example 7 is a realisation. As it has vertices of valefdeis not immediately obvious that it is a
minimal realisation. In this case (3) gives: 1, but one can easily check thtat= 1 is not possible.
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Thusb is at leas®, and the double tin can is indeed a minimal realisation.rFsri = 3, the case
k = 3 of the partially truncated American football in Example 7 is a minimal realisation. Note that
m = 1 impliesn > 3, so that we have now exhausted all cases with 3 andn > 2. O

Lemma 4. Suppose the triplék, [, n) with[/n = m = 3 andn > 2 is realised by a generalised
football pattern. Thertk, [, n) is one of the triple$3, 6, 2), (4, 6,2), (5,6, 2). Minimal realisations

are given by the truncated Platonic solids in Example 6.

Lemma 5. Suppose the triplék, [, n) with [/n = m = 2 andn > 2 is realised by a generalised
football pattern. Ther(k,[,n) is one of the tripleg3,6,3), (4,6,3), (5,6,3), or (k,4,2) with

k > 3. Minimal realisations are given by the variations on the Platonic solids in Example 9,
respectively by the truncated American football in Example 7.

We omit the proofs of Lemmas 4 and 5, because they are completely analogous to, and even
simpler than, the proof of Lemma 3.

Lemma 6. Suppose the triplék, [, n) withi/n = m = 1 andn > 2 is realised by a generalised
football pattern. Therik, [, n) is one of the triple$3, 6, 6), (4,6, 6), (5,6,6), or (k, 3,3), (k,4,4),
(k,5,5) with £ > 3. Minimal realisations are given by the subdivisions on the Platonic solids in
Example 10, respectively by the infinite sequences in Examples 7 and 8.

Proof. Form = 1, equivalentlyl = n, we obtainn < 6 for all £ > 3 from (2).

If I = n =6, then we also have < 5 from (2). Thusk is 3, 4 or 5, and minimal realisations are
given in Example 10.

If | =n =5, thenallk > 3 are possible, and minimal realisations are given in Example 8.

If I = n = 4, then allk > 3 are possible, and realisations are given by the double tin cans in
Example 7. To see that these realisations are minimal, it suffices to exclude the-edsevhich
is easily done by contradiction.

If [ = n = 3, then again alk > 3 are possible, and minimal realisations are given by the
partially truncated American football in Example 7. O

This completes the classification of generalised football pattersmiti2 on the two-sphere.

2.2.2. The caser = 1. A generalised football pattern with= 1 consists ob blackk-gons andv
white [-gons so that the two polygons meeting along an edge always have different colours. Note
that here the situation is completely symmetriciand!.

Lemma 7. Suppose the triplék, [, 1) is realised by a generalised football pattern §A. Then,

up to changing theales ofk and(, (k,!) is one of the pairg3,3), (3,4) or (3,5). Minimal
realisations are obtained by painting the faces of an octahedron, a cuboctahedron, respectively an
icosidodecahedron, in a suitable manner.

Proof. Counting the edges in two different ways lead$tdk = w - [. As every edge separates
a black from a white polygon, there must be an even number of faces meeting at every vertex.
Therefore the valence of every vertexiss, giving rise to

1

which is of course stronger than what we had before, when the valence of a vertex was finly
Computing the Euler characteristic as before, we obtain instead of (2) the stronger

1111
< '
(4) PRI
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k m | n minimal realisation b | w
1. 3 3|1 octahedron 4 4
2. 3 4 |1 cuboctahedron 8 6
3. 4 3|1 cuboctahedron 6 8
4, 3 5|1 icosidodecahedron 20 | 12
5. 5 3|1 icosidodecahedron 12 | 20
6. 3 3 |2 truncated tetrahedron 4 | 4
7. 3 4 |2 truncated cube 8 6
8. 4 3|2 truncated octahedron 6 8
9. 3 512 truncated dodecahedron 20 | 12
10. 5 3|2 truncated icosahedronfeotball 12 | 20
11. | >3 | 2 | 2 truncated American football 2 k
12. 3 2 |3 variation on the tetrahedron 4 6
13. 4 2 |3 variation on the cube 6 |12
14. 5 2 |3 variation on the dodecahedron | 12 | 30
15. | >3 | 1 | 3 | partially truncated American football 1 | k
16. | >3 |1 |4 double tin can 2 | 2k
17. | >3 |1 |5 zigzag tin can 2 | 2k
18. 3 1|6 subdivision of the tetrahedron 4 |12
19. 4 116 subdivision of the cube 6 |24
20. 5 116 subdivision of the dodecahedron | 12 | 60

FIGURE 3. The classification of generalised football patternssén

If both & and/ are> 4, then the right hand side is i which is impossible. Thug or [ is = 3.
By the symmetry betweehand/ we may assume that= 3. Substituting this into (4), we find

1 1 1

®) 3b * 12 S 20’
which implies/ < 5.

If I = 3,thenb = w > 4. A realisation is obtained by painting the faces of an octahedron in
black and white, so that each edge separates a black face from a white one.

If [ =4, then (5) implied > §, so thatw > 6. The cuboctahedron, cf. [1], is a realisation.

If I =5, then (5) implied > 20, so thatv > 12. The icosidodecahedron, cf. [1], is a realisation.

All these realisations are minimal, because they have precisely four faces meeting at every ver-
tex, so that (5) becomes an equality. O

We summarise the above classification of the generalised football patterns as follows:

Theorem 4. Suppose tha$? admits a map whose faces dreggons and-gons withk, [ > 3, such
that the edges of eadirgon meet only edges bgons, and so that every" edge of eacli-gon
meets an edge of &gon, and its other edges mdegons. Thern < 10 andn < 6. There are
16 different sporadic triplesk, [, n) with £ < 5 that occur, together with infinite sequences with
variable & and fixedl andn. All the possibilities are listed in the table in Figure 3, which also
gives minimal realisations for all cases.
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The different minimal realisations were described in our earlier examples, and in the course of
the proof. There are several alternative descriptions of items 12.—14. The variation on the tetrahe-
dron is nothing but a partially truncated cube, truncatetl @ftits 8 vertices, chosen so that each
face is truncated at two diagonally opposite corners. Similarly, the variations on the cube and the
dodecahedron are partial truncations of the rhombic dodecahedron and of the rhombic triacontrahe-
dron respectively. The subdivisions in items 18.—20. can also be thought of as partial truncations of
the dodecahedron, the pentagonal icositetrahedron, respectively the pentagonal hexecontrahedron.

In order to make the symmetries more obvious, the table does not list tfiples), but rather
(k,m,n) with m = [/n. Note that this makes no difference whenr= 1, in which case there is a
complete symmetry betweérand! = m. Therefore, the cases 2. and 3., respectively 4. and 5., are
dual to each other, obtained by switching the roles ahd/. Case 1. is self-dual. Similarly, cases
7. and 8., respectively 9. and 10., are dual to each other with the duality induced by the duality of
Platonic solids, and case 6. is self-dual.

2.3. Branched covers for generalised football patterns.Now that we have an overview of all

the generalised football patterns, one may ask whether Theorem 2 can be extended, to prove that
every generalised spherical football is a branched cover of the corresponding minimal example,
branched only in the vertices. It is not hard to see thahfer 2 this is indeed the case:

Theorem 5. If (k,1,2) is realised by a generalised football pattern 6A, then every spherical
realisation is a branched cover, branched only in the vertices, of the minimal realisation. In par-
ticular the minimal realisation is unique.

Proof. The minimal realisations for. = 2 have all vertices of valenceé Equivalently, the dual

graph triangulates the sphere. Moreover, every realisation has the property that the valence of every
vertex is a multiple o8, with every third face a black-gon. Therefore the proofs of Lemma 2 and

of Theorem 2 go through. O

For larger values of. one loses control of the structure of the vertices, and the proof breaks
down.

Examplell Consider the cask = | = n = 3. The minimal realisation is a partially truncated
American football witht = 3, which we can also think of as a painted tetrahedron, in which one
face is black and the others are white. Another, non-minimal, realisation is obtained by painting
the faces of an octahedron so that two opposite faces are black, and the remaining six faces are
white. This is not a branched cover of the painted tetrahedron.

Note that in this example the minimal realisation has two kinds of vertices: one at which all
faces meeting there are white, and three at which one black and two white faces meet. For the
non-minimal realisation described above one has one black and three white faces meeting at every
vertex. Itis a general feature of the generalised football patterngmitls that the combinatorial
definition of the pattern does not imply any control over the local structure at a vertex. F@
we do have such control, leading to Theorem 5.
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