
THE CLASSIFICATION OF FOOTBALL PATTERNS

V. BRAUNGARDT AND D. KOTSCHICK

ABSTRACT. We prove that every spherical football is a branched cover, branched only in the ver-
tices, of the standard football made up of12 pentagons and20 hexagons. We also give examples
showing that the corresponding result is not true for footballs of higher genera. Moreover, we
classify the possible pairs(k, l) for which football patterns on the sphere exist satisfying a natural
generalisation of the usual incidence relation between pentagons and hexagons tok-gons andl-gons.
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INTRODUCTION

A football pattern1 is a graph embedded in the two-sphere in such a way that all faces are pen-
tagons and hexagons, satisfying the conditions that the edges of each pentagon meet only edges of
hexagons, and that the edges of each hexagon alternately meet edges of pentagons and of hexagons.
If one requires that there are exactly three faces meeting at each vertex, then Euler’s formula im-
plies that the pattern consists of12 pentagons and20 hexagons. Moreover, in this case the combi-
natorics of the pattern is uniquely determined. This pattern, which we shall refer to as the standard
football, has a particularly symmetric realisation with all polygons regular, which can be thought
of as a truncated icosahedron.

If one drops the requirement that there are exactly three polygons meeting at each vertex, then
one can exhibit infinitely many distinct football patterns by lifting to branched covers of the stan-
dard football branched only in vertices of the pattern. In the first part of this paper we shall prove
that these are the only football patterns on the two-sphere. For the proof we consider the dual
graph of a football pattern as a coloured ribbon graph. The dual of the standard football with12
pentagons and20 hexagons is shown in the picture on the first page of this paper. To make the
picture symmetric, a black vertex is spread out at infinity and is depicted by the shaded ring around
the rest of the graph.

Of course we could consider the dual graph as a map, but in order to make clear the distinction
between football patterns and their duals, we will always use the language of maps, cf. [2], for the
football patterns themselves, and the language of ribbon graphs, cf. [3], for their duals.

All the football graphs, that is ribbon graphs dual to football patterns, have the same universal
covering, which is a certain treeT . We shall determine the automorphism group ofT and prove
that every cofinite subgroup of the automorphism group whose quotient gives rise to the dual of a
spherical pattern is a subgroup of the group giving rise to the standard football. We also consider
football patterns on surfaces of higher genera and show that the classification theorem does not hold
for them; in other words, not all of them can be obtained by taking branched covers of the standard
football. However, football patterns on surfaces of higher genera always admit branched covers of
degree at most60 which in turn are also branched covers of the standard spherical football.

One may wonder what special rôle pentagons and hexagons play in this discussion. We shall
address this question in the second part of this paper, where we determine all the possibilities for
triples(k, l, n) that can be realised by maps on the two-sphere whose faces arek-gons andl-gons
satisfying the conditions that the edges of eachk-gon meet only edges ofl-gons, and that everynth

edge of eachl-gon meets an edge of ak-gon, and its other edges meetl-gons. Not surprisingly,
the determination of these triples is a generalisation of the topological argument determining the
Platonic solids. In most cases the generalised football patterns have realisations dual to very sym-
metric triangulations of the sphere that have been known and studied since the19th century. That
purely topological or combinatorial considerations lead to a list that contains almost only the usual
symmetric patterns and their degenerations is a kind of rigidity phenomenon associated with these
spherical triangulations.

We shall see that the classification theorem for spherical football patterns proved in the first part
of this paper for the triple(5, 6, 2) actually holds for all generalised football patterns withn = 2:
each generalized football with a pattern of type(k, l, 2) is a branched cover of the corresponding
minimal pattern. We shall also see that this result does not extend ton > 2.

1We use English terminology. American readers might want to call our football patterns “soccer ball patterns”.



THE CLASSIFICATION OF FOOTBALL PATTERNS 3

Acknowledgement.We are grateful to B. Hanke and B. Leeb for helpful comments, and to the
Deutsche Forschungsgemeinschaftfor support.

1. RIBBON GRAPHS AND BRANCHED COVERS

1.1. Football graphs. A football pattern is a map in the sense of [2] on the two-sphere satisfying
the usual conditions that at least three edges meet at every vertex, that all faces are pentagons and
hexagons, that the edges of each pentagon meet only edges of hexagons, and that the edges of each
hexagon alternately meet edges of pentagons and of hexagons. We make no regularity assumption,
so that a football pattern is not a geometric, but a combinatorial-topological object.

A football pattern determines, and is determined by, its dual graph. This graph has a vertex for
every polygon in the pattern, and the vertices are coloured, say black for the vertices corresponding
to pentagons and white for the vertices corresponding to hexagons. Two vertices are connected by
an edge if the corresponding polygons share an edge. The edges meeting at a vertex are cyclically
ordered (with respect to this endpoint) by remembering that the sides of a polygon are cyclically
ordered. Therefore the dual graph is a fatgraph or ribbon graph in the sense of [3], leading to the
following definition:

Definition 1. A football graph is a ribbon graph with black and white vertices satisfying the fol-
lowing conditions:

(1) each black vertex has valence five, and all five edges connect the given vertex to white
vertices, and

(2) each white vertex has valence six, and the six edges alternately2 connect the given vertex
to black and white vertices.

The picture at the beginning of this paper shows the dual ribbon graph of the standard football
pattern onS2 consisting of12 pentagons and20 hexagons. To make the picture symmetric, a black
vertex is spread out at infinity and is depicted by the shaded ring around the rest of the graph.

As every finite ribbon graph corresponds to a unique closed oriented surface, we have a natural
bijection between football graphs and football patterns on arbitrary closed oriented surfaces. A
covering map between football graphs corresponds to a possibly branched covering map between
surfaces, with any branching restricted to the centers of the faces of the decompositions given by
the football graphs. As the football graphs are dual to actual football patterns, branching can only
occur at the vertices of patterns.

Let b andw be the numbers of black and white vertices in a football graphΓ. Then the total
number of vertices isv = b + w, and the number of edges ise = 1

2
(5b + 6w). Of these edges,

e1 = 3
2
w have white endpoints, ande2 = 5b = 3w have a black and a white endpoint. It follows

that there is a natural numberd such thatb = 6d andw = 10d.

Lemma 1. The only football graph giving a triangulation of a closed surface is the dual graphΓ0

of the standard spherical football withd = 2.

Proof. Let Σ be the closed oriented surface defined by a football graphΓ. By Euler’s formula, the
number of faces in the cell decomposition ofΣ determined byΓ is

f = χ(Σ) + e− v = χ(Σ) + 45d− 16d = χ(Σ) + 29d .

If Γ defines a triangulation ofΣ, then we must have2e = 3f , which, rewritten in terms ofd,
means90d = 3χ(Σ) + 87d, or d = χ(Σ). Thusd = 2, andΣ is S2. The combinatorics of the

2The alternating condition is with respect to the cyclic order of the edges.
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corresponding football pattern is uniquely determined in this case, as can be seen from the proof
of Theorem 2 below. �

1.2. The football tree. There is precisely one connected and simply connected football graph,
which we shall call the football treeT . It is the universal cover of any football graph. AsT thought
of as a ribbon graph is an orientable surface, it makes sense to speak of orientation-preserving
automorphisms, and we shall denote the group of all such automorphisms byAut(T ). This can be
determined explicitly:
Theorem 1. The automorphism groupAut(T ) of the football tree is isomorphic to the free product
Z2 ? Z3 ? Z5.

Proof. This is a straightforward application of the Bass–Serre theory of groups acting on trees,
cf. [4]. This theory is usually formulated for groups acting on trees without inverting edges. In our
situation, there are automorphisms inverting edges that connect a pair of white vertices. Therefore,
we subdivide each of these edges by introducing red vertices in the middle of each edge connecting
two white edges ofT . We obtain a new treeT ′, which has three kinds of edges: the white and black
ones of valence6 and5 respectively, and red ones of valence2. The red and black vertices are only
connected to white ones, and the edges meeting at a white vertex lead alternately to red and black
vertices. NowAut(T ) acts onT ′ without inverting any edges. The action is simply transitive on
the two kinds of edges, black-white and red-white. The action is also transitive on the vertices of
a given colour, with isotropy groups of orders2, 3 and5 for the red, white and black vertices. The
quotient graphT ′/Aut(T ) is a tree with three vertices, one for each colour, and with one edge
connecting the white vertex to each of the other vertices. We think of this as a graph of groups by
labeling the vertices with the isotropy groups. As the edges have trivial isotropy, the fundamental
group of this graph of groups is the free product of the labels of the vertices. By the structure
theorem of Section I.5.4 in [4], this fundamental group is isomorphic toAut(T ). �

1.3. The classification of spherical footballs.We now want to prove that every football pattern
on the sphere is obtained as a branched cover of the standard football branched only in the vertices.
Equivalently, we prove that the spherical dual ribbon graphs are all obtained as covering spaces of
the dual graph of the standard football. The first step is the following:
Lemma 2. Let Γ be a football graph with universal coveringπ : T −→ Γ. Suppose thatγ is an
oriented path inT consisting of a sequence of edges without backtracking. Ifπ mapsγ to a closed
path that corresponds to a boundary component ofΓ thought of as a surface with boundary, thenγ
consists of3n edges for some natural numbern, and the image ofγ in the standard football graph
Γ0 is a loop that is thenth power of the loop formed by a triangle in the triangulation defined by
Γ0, cf. Lemma 1.

Proof. We think ofT as a surface with boundary. Choose a boundary componentC covering the
boundary componentπ(C) of Γ to whichγ is mapped. As a boundary component ofT , C runs
right along a sequence{ei}i∈Z of oriented edges inT such that, of course, the origino(ei) of each
edge coincides with the endpoint of the previous edge, and, in addition, with respect to the cyclic
order of edges emanating fromo(ei) = o(ēi−1), ei is the successor of̄ei−1. (The bar denotes edge
inversion.) It follows from Definition 1 that the sequence of verticeso(ei) is of the formblack,
white, white, black, white, white, etc.

The setwise stabilizer ofC in Aut(T ) is the infinite cyclic group generated by the translationτ ,
which mapsei to ei+3. Now π(C) = C/G, for some subgroupG 6 Stab(C), i. e.G = 〈τn〉 for
somen ∈ N. Thusπ(C) runs along a3n-gon, which must beπ(γ).
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By assumption, the pathγ is a pieceej+1, . . . , ej+k of the sequence{ei} and projects toπ(γ).
Thereforek = 3n. The images ofei in the standard football still satisfy the condition that consec-
utive edges be related by the cyclic ordering defining the ribbon graph structure. But this means
that the image ofej+1ej+2ej+3 is a triangle. �

Here is the classification theorem for spherical football patterns:

Theorem 2. Every football graph dual to a football pattern onS2 is a finite covering space of
the standard football graphΓ0. Equivalently every football pattern onS2 is obtained from the
standard one by passing to a branched cover branched only in vertices of the pattern.

Proof. Given a spherical football graphΓ, fix a universal coveringπ : T → Γ of Γ and a universal
coveringπ0 : T → Γ0 of the standard football graphΓ0. We are going to show that the group of
deck transformationsAutΓ T is a subgroup ofAutΓ0 T . This implies thatπ0 factors throughπ.

Choose a pointp on an edge ofT that is not an endpoint or a midpoint, so that it has trivial
stabilizer inAut(T ). Covering space theory identifies the group of deck transformationsAutΓ T
with the fundamental groupπ1(Γ;π(p)). SinceΓ is spherical, this fundamental group is generated
by paths of the formβγβ−1, whereγ is a loop along a boundary component,β runs from the base
point π(p) to the origin ofγ andβ−1 is the way back. Liftingβ andγ to T we obtain a path
β̃γ̃τn(β̃−1) leading fromp to τn(p), with τ from the proof of the previous lemma. Henceτn is the
deck transformation corresponding to the given generator ofπ1(Γ;π(p)). This proves the result,
becauseτ is a deck transformation overΓ0. �

This proof also shows:

Corollary 1. The subgroupπ1(Γ0) ⊂ Aut(T ) is normal. The quotientAut(T )/π1(Γ0) is the
icosahedral group of order60.

1.4. Footballs of positive genera.Every ribbon graph corresponds to a unique closed oriented
surface, and of course every such surface does indeed arise from a football graph, for example
because it is a branched covering of the two-sphere, which we can arrange to be branched only in
the vertices of a suitable football pattern. We now want to show that there are other football patterns
on surfaces of positive genera, that are not lifted from the two-sphere. The proof of Theorem 2
does not extend, because for a ribbon graph corresponding to a surface of positive genus there are
generators in the fundamental group that arise from handles, rather than from the punctures.

Recall that the parameterd for a finite football graph specifies the number of black and white
vertices by the formulaeb = 6d andw = 10d. Passing to aD-fold covering multipliesd byD. As
the standard football graphΓ0 hasd = 2, all its non-trivial coverings haved > 4. Therefore, to
exhibit football graphs that are not coverings ofΓ0, it suffices to find examples of positive genus
with d < 4. Performing certain cut-and-paste operations onΓ0, we can actually produce examples
with d = 2 and rather large genera.

The simplest example is the following.
Example1. Pick two disjoint edges in the standard football pattern, that are of the same type, so
that they both separate hexagons from each other, or they both separate a pentagon from a hexagon.
Open up the two-sphere along these edges to obtain a cylinder whose two boundary circles each
have two vertices and two edges. As the two edges along which we opened the sphere were of
the same type, the two boundary circles of the cylinder can be identified in such a way that the
resulting torus carries an induced football pattern withd = 2.
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In this example there are58 vertices instead of the60 in the standard spherical football. All but
two of them are3-valent, and the exceptional two are6-valent.

In the language of ribbon graphs, the surgery performed in the above example amounts to cutting
two ribbons and regluing the resulting ends in a different pairing. This can also be done with
ribbons corresponding to edges that share a vertex, in which case instead of cutting and pasting,
the surgery can be described through the reordering of edges:
Example2. Let e1, . . . , e5 be the edges emanating from a black vertex in the standard football graph
Γ0. Define a new football graphΓ by reordering the edges ase1, e3, e2, e4, e5. This procedure glues
the three triangles whose edges includee2 or e3 into a single9-gon boundary component ofΓ. This
new graph still hasd = 2, but the underlying surface is a torus. In the dual football pattern there
are58 vertices, of which57 are3-valent and one is9-valent.
Example3. Let e1, . . . , e6 be the edges emanating from a white vertex in the standard football
graphΓ0, enumerated in their cyclic order and labelled such thate1, e3 ande5 have black ends.
Define a new ribbon graph by reordering the edges cyclically ase1, e4, e3, e6, e5, e2. This means
that the edges leading to white vertices are cut and reattached after a cyclic permutation given
geometrically by a rotation by angle2π

3
around the vertex in the realisation ofΓ0 with icosahedral

symmetry.
We apply this procedure to every white vertex ofΓ0. The resulting football graphΓ is symmetric

in the sense that it admits rotations of order2, 3 and5 around an edge, a white vertex and a black
vertex, respectively. Hence the full football groupAut(T ) acts onΓ. In particular all faces are
conjugate. One can verify by inspection that the faces are15-gons. Hence the Euler characteristic
of the underlying surface is−46, and its genus is24. This is a football graph withd = 2 and is
therefore not a covering ofΓ0.

Although football graphs of positive genera are not in general coverings ofΓ0, we have the
following:

Theorem 3. Every football pattern on a closed oriented surface admits a branched cover of degree
D 6 60 that is also a branched cover of the standard minimal pattern onS2. The bound forD is
sharp.

Proof. Let Γ be a finite football graph. Asπ1(Γ0) ⊂ Aut(T ) is a subgroup of index60, the
intersectionπ1(Γ0) ∩ π1(Γ) has index at most60 in π1(Γ). The intersection corresponds to a
covering ofΓ of degreeD 6 60 that is also a covering ofΓ0.

To prove that coverings of degree strictly less than60 do not always suffice, recall thatAut(T )
acts on the genus24 football graphΓ from Example 3. This is equivalent to the fundamental group
π1(Γ) being a normal subgroup ofAut(T ). The covering ofΓ corresponding to the subgroup
N = π1(Γ0)∩π1(Γ) of Aut(T ) is a Galois covering with Galois groupπ1(Γ)/N . Now the injection
π1(Γ) → Aut(T ) induces an embedding ofπ1(Γ)/N as a normal subgroup of the orientation-
preserving icosahedral groupAut(T )/π1(Γ0), isomorphic to the alternating groupA5. Since this
is a simple group we must haveπ1(Γ)/N ∼= A5 or {1}. The second case is excluded becauseΓ is
not a covering ofΓ0. �

1.5. Non-orientable footballs. Although we have modelled football patterns as ribbon graphs,
we can also consider them on non-orientable surfaces, because the condition that every other edge
emanating from a white vertex should connect to a black vertex is preserved by inversion of the
cyclic order.

Here are the simplest examples for the projective plane.
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Example4. A football pattern on the real projective plane is readily constructed from the standard
football. In the dual ribbon graphΓ0 cut a single ribbon and reglue it with a half-twist so that the
surface becomes non-orientable. This gives a football pattern withd = 2 that, instead of the60
vertices of valence3 in the standard football, has58 vertices of valence3 and a unique vertex of
valence6. Therefore the Euler number of the surface is1.

If we lift the pattern in this example to the universal covering of the projective plane, we obtain
a football pattern withd = 4 on the two-sphere, which, by Theorem 2, is a2-fold branched cover
of the standard pattern. Of course in this case the branched covering structure can be seen directly,
by focussing on the two vertices of valence6.
Example5. The usual symmetric realisation of the standard football pattern on the sphere as a
truncated icosahedron is symmetric under the antipodal involution. Thus it descends to a pattern
onRP 2 with d = 1.

2. GENERALISED FOOTBALL PATTERNS

In this section we consider generalisations of the traditional football patterns.

Definition 2. A generalised football pattern is a map on the two-sphere whose faces arek-gons
andl-gons satisfying the conditions that the edges of eachk-gon meet only edges ofl-gons, and
that everynth edge of eachl-gon meets an edge of ak-gon, and its other edges meetl-gons.

To avoid degenerate cases we always assumek > 3, l > 3 andl = n ·m with positive integers
m andn. As usual, at least three edges meet at every vertex.

If a given triple(k, l, n) can be realised by a generalised football pattern, then it can be realised
in infinitely many ways, for example by taking branched covers branched only in the vertices of
a given pattern. We will determine all possible triples, and we will find a minimal realisation for
each of them. We will also see that in some cases there are realisations that are not branched covers
of the minimal one.

Before proceeding to the classification, we list some examples for future reference.

2.1. Some examples.The standard football realising the triple(5, 6, 2) can be thought of as a
truncated icosahedron. More generally, we have:
Example6. The truncated Platonic solids realise the triples(3, 6, 2), (3, 8, 2), (3, 10, 2), (4, 6, 2)
and(5, 6, 2) as generalised football patterns.

There are also infinite series of examples obtained by truncating the degenerate Platonic solids:
Example7. Start with a subdivision of the sphere alongk > 3 halves of great circles running from
the north to the south poles. We shall call this an American football. If we now truncate at one
of the poles, we obtain a realisation of the triple(k, 3, 3). (Fork = 3 this is a tetrahedron.) If we
truncate at both poles, we obtain a tin can pattern realising(k, 4, 2). (Fork = 4 it is a cube.) This
is also known as ak-prism. If we addk edges along the equator to this last example, we obtain a
double tin can realising(k, 4, 4), for anyk > 3.

Here is a variation on the above tin can pattern:
Example8. Take ak-gon, withk > 3 arbitrary, and surround it by pentagons in such a way that the
two pentagons meeting a pair of adjacent sides of thek-gon share a side. We can fit together two
such rings made up of ak-gon andk pentagons each along a zigzag curve to obtain a realisation of
the triple(k, 5, 5) by a generalised football pattern. (Fork = 5 we obtain a dodecahedron.)

The next two examples need to be visualised using the accompanying figures.
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FIGURE 1. Variation on Platonic solids

FIGURE 2. Subdivision of Platonic solids

Example9. Take a Platonic solid, and subdivide each face as follows. If the face is ak-gon,
put a smallerk-gon in its interior, and radially connect each corner of this smallerk-gon to the
corresponding corner of the original face. In this way each face of the original polyhedron is
divided into ak-gon andk quadrilaterals. The casesk = 3 and4 are shown in Figure 1. Next
we erase the edges of the original polyhedron, so that the two quadrilaterals of the subdivison
meeting along an edge are joined to form a hexagon. In this way we obtain a realisation of the
triple (k, 6, 3). We shall refer to this construction as a variation on the original Platonic solid.
Example10. Again we start with a Platonic solid whose faces arek-gons. We subdivide each face
into a smallerk-gon andk hexagons as shown in Figure 2. This gives a realisation of the triple
(k, 6, 6).

2.2. The classification of generalised football patterns.Now we want to prove that the previous
examples exhaust all possible generalised football patterns withn > 2. We shall also treat the case
n = 1. The results of this classification are summarised in the table in Figure 3.
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If S2 is endowed with a generalised football pattern of type(k, l, n), we shall think of thek-gons
as being black and thel-gons as being white. Their numbers are denoted byb andw respectively.
The pattern then hasf = b + w many faces, it hase = 1

2
(bk + wl) many edges, and the number

v of vertices is bounded byv 6 1
3
(bk + wl) as there have to be at least3 faces meeting at every

vertex.
Counting the number of edges at which ak-gon meets anl-gon in two different ways, we find

(1) k · b =
1

n
· l · w = m · w .

Computing the Euler characteristic and using (1) leads to:

2 = f − e+ v 6 b+ w − 1

6
(k · b+ l · w) = b+ w − 1

6
k · b · (n+ 1) .

Dividing by 2k · b we obtain the key inequality

(2)
1

k · b
+
n+ 1

12
6

1

2k
+

1

2m
.

2.2.1. The casen > 2. If n > 2, then the left hand side of (2) is strictly larger than1
4
. If bothk and

m are at least4, then the right hand side is at most1
4
. Thusn > 2 impliesk = 3 orm ∈ {1, 2, 3}.

We now discuss these cases separately.
For every possible triple(k, l, n) the inequality (2) gives a lower bound forb. With (1) we then

have a lower bound forw. Checking these values against the examples of the previous section, one
sees for most of the examples that they actually give minimal realisations. There are only a few
cases when this simple check does not suffice, because the minimal realisations have vertices of
valence strictly larger than3.

Lemma 3. Suppose the triple(k, l, n) with k = 3 andn > 2 is realised by a generalised football
pattern. Then(k, l, n) is one of the triples(3, 4, 2), (3, 6, 2), (3, 8, 2), (3, 10, 2), (3, 3, 3), (3, 6, 3),
(3, 4, 4), (3, 5, 5), (3, 6, 6). Minimal realisations are given by the Examples 6, 7, 8, 9 and 10.

Proof. Puttingk = 3 in (2) we obtain

(3)
1

3b
+

n

12
6

1

12
+

1

2m
.

Together withn > 2, this impliesm 6 5.
If m = 5, then we obtainn = 2 from (3). Thusl = 10. The truncated dodecahedron from

Example 6 is a minimal realisation.
If m = 4, then againn = 2 from (3). Thusl = 8. The truncated cube from Example 6 is a

minimal realisation.
If m = 3, then againn = 2 from (3). Thusl = 6. The truncated tetrahedron from Example 6 is

a minimal realisation.
If m = 2, then (3) givesn 6 3. For n = 3, equivalentlyl = 6, a minimal realisation is the

variation on the tetrahedron from Example 9. Forn = 2, equivalentlyl = 4, we get the casek = 3
of the truncated American football in Example 7.

If m = 1, then (3) only givesn 6 6. For n = 6, thereforel = 6, the subdivision of the
tetrahedron from Example 10 gives a minimal realisation. Forn = l = 5, the casek = 3 in
Example 8 is a minimal realisation. Forn = l = 4, the casek = 3 of the double tin can in
Example 7 is a realisation. As it has vertices of valence4, it is not immediately obvious that it is a
minimal realisation. In this case (3) givesb > 1, but one can easily check thatb = 1 is not possible.
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Thusb is at least2, and the double tin can is indeed a minimal realisation. Forn = l = 3, the case
k = 3 of the partially truncated American football in Example 7 is a minimal realisation. Note that
m = 1 impliesn > 3, so that we have now exhausted all cases withk = 3 andn > 2. �

Lemma 4. Suppose the triple(k, l, n) with l/n = m = 3 andn > 2 is realised by a generalised
football pattern. Then(k, l, n) is one of the triples(3, 6, 2), (4, 6, 2), (5, 6, 2). Minimal realisations
are given by the truncated Platonic solids in Example 6.

Lemma 5. Suppose the triple(k, l, n) with l/n = m = 2 andn > 2 is realised by a generalised
football pattern. Then(k, l, n) is one of the triples(3, 6, 3), (4, 6, 3), (5, 6, 3), or (k, 4, 2) with
k > 3. Minimal realisations are given by the variations on the Platonic solids in Example 9,
respectively by the truncated American football in Example 7.

We omit the proofs of Lemmas 4 and 5, because they are completely analogous to, and even
simpler than, the proof of Lemma 3.

Lemma 6. Suppose the triple(k, l, n) with l/n = m = 1 andn > 2 is realised by a generalised
football pattern. Then(k, l, n) is one of the triples(3, 6, 6), (4, 6, 6), (5, 6, 6), or (k, 3, 3), (k, 4, 4),
(k, 5, 5) with k > 3. Minimal realisations are given by the subdivisions on the Platonic solids in
Example 10, respectively by the infinite sequences in Examples 7 and 8.

Proof. Form = 1, equivalentlyl = n, we obtainn 6 6 for all k > 3 from (2).
If l = n = 6, then we also havek 6 5 from (2). Thusk is 3, 4 or 5, and minimal realisations are

given in Example 10.
If l = n = 5, then allk > 3 are possible, and minimal realisations are given in Example 8.
If l = n = 4, then allk > 3 are possible, and realisations are given by the double tin cans in

Example 7. To see that these realisations are minimal, it suffices to exclude the caseb = 1, which
is easily done by contradiction.

If l = n = 3, then again allk > 3 are possible, and minimal realisations are given by the
partially truncated American football in Example 7. �

This completes the classification of generalised football patters withn > 2 on the two-sphere.

2.2.2. The casen = 1. A generalised football pattern withn = 1 consists ofb blackk-gons andw
white l-gons so that the two polygons meeting along an edge always have different colours. Note
that here the situation is completely symmetric ink andl.

Lemma 7. Suppose the triple(k, l, 1) is realised by a generalised football pattern onS2. Then,
up to changing the r̂oles ofk and l, (k, l) is one of the pairs(3, 3), (3, 4) or (3, 5). Minimal
realisations are obtained by painting the faces of an octahedron, a cuboctahedron, respectively an
icosidodecahedron, in a suitable manner.

Proof. Counting the edges in two different ways leads tob · k = w · l. As every edge separates
a black from a white polygon, there must be an even number of faces meeting at every vertex.
Therefore the valence of every vertex is> 4, giving rise to

v 6
1

4
(b · k + w · l) ,

which is of course stronger than what we had before, when the valence of a vertex was only> 3.
Computing the Euler characteristic as before, we obtain instead of (2) the stronger

(4)
1

k · b
+

1

4
6

1

2k
+

1

2l
.
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k m n minimal realisation b w
1. 3 3 1 octahedron 4 4
2. 3 4 1 cuboctahedron 8 6
3. 4 3 1 cuboctahedron 6 8
4. 3 5 1 icosidodecahedron 20 12
5. 5 3 1 icosidodecahedron 12 20
6. 3 3 2 truncated tetrahedron 4 4
7. 3 4 2 truncated cube 8 6
8. 4 3 2 truncated octahedron 6 8
9. 3 5 2 truncated dodecahedron 20 12
10. 5 3 2 truncated icosahedron =football 12 20
11. > 3 2 2 truncated American football 2 k
12. 3 2 3 variation on the tetrahedron 4 6
13. 4 2 3 variation on the cube 6 12
14. 5 2 3 variation on the dodecahedron 12 30
15. > 3 1 3 partially truncated American football 1 k
16. > 3 1 4 double tin can 2 2k
17. > 3 1 5 zigzag tin can 2 2k
18. 3 1 6 subdivision of the tetrahedron 4 12
19. 4 1 6 subdivision of the cube 6 24
20. 5 1 6 subdivision of the dodecahedron 12 60

FIGURE 3. The classification of generalised football patterns onS2

If both k andl are> 4, then the right hand side is6 1
4
, which is impossible. Thusk or l is = 3.

By the symmetry betweenk andl we may assume thatk = 3. Substituting this into (4), we find

(5)
1

3b
+

1

12
6

1

2l
,

which impliesl 6 5.
If l = 3, thenb = w > 4. A realisation is obtained by painting the faces of an octahedron in

black and white, so that each edge separates a black face from a white one.
If l = 4, then (5) impliesb > 8, so thatw > 6. The cuboctahedron, cf. [1], is a realisation.
If l = 5, then (5) impliesb > 20, so thatw > 12. The icosidodecahedron, cf. [1], is a realisation.
All these realisations are minimal, because they have precisely four faces meeting at every ver-

tex, so that (5) becomes an equality. �

We summarise the above classification of the generalised football patterns as follows:

Theorem 4. Suppose thatS2 admits a map whose faces arek-gons andl-gons withk, l > 3, such
that the edges of eachk-gon meet only edges ofl-gons, and so that everynth edge of eachl-gon
meets an edge of ak-gon, and its other edges meetl-gons. Thenl 6 10 andn 6 6. There are
16 different sporadic triples(k, l, n) with k 6 5 that occur, together with4 infinite sequences with
variable k and fixedl andn. All the possibilities are listed in the table in Figure 3, which also
gives minimal realisations for all cases.
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The different minimal realisations were described in our earlier examples, and in the course of
the proof. There are several alternative descriptions of items 12.–14. The variation on the tetrahe-
dron is nothing but a partially truncated cube, truncated at4 of its 8 vertices, chosen so that each
face is truncated at two diagonally opposite corners. Similarly, the variations on the cube and the
dodecahedron are partial truncations of the rhombic dodecahedron and of the rhombic triacontrahe-
dron respectively. The subdivisions in items 18.–20. can also be thought of as partial truncations of
the dodecahedron, the pentagonal icositetrahedron, respectively the pentagonal hexecontrahedron.

In order to make the symmetries more obvious, the table does not list triples(k, l, n), but rather
(k,m, n) with m = l/n. Note that this makes no difference whenn = 1, in which case there is a
complete symmetry betweenk andl = m. Therefore, the cases 2. and 3., respectively 4. and 5., are
dual to each other, obtained by switching the roles ofk andl. Case 1. is self-dual. Similarly, cases
7. and 8., respectively 9. and 10., are dual to each other with the duality induced by the duality of
Platonic solids, and case 6. is self-dual.

2.3. Branched covers for generalised football patterns.Now that we have an overview of all
the generalised football patterns, one may ask whether Theorem 2 can be extended, to prove that
every generalised spherical football is a branched cover of the corresponding minimal example,
branched only in the vertices. It is not hard to see that forn = 2 this is indeed the case:
Theorem 5. If (k, l, 2) is realised by a generalised football pattern onS2, then every spherical
realisation is a branched cover, branched only in the vertices, of the minimal realisation. In par-
ticular the minimal realisation is unique.

Proof. The minimal realisations forn = 2 have all vertices of valence3. Equivalently, the dual
graph triangulates the sphere. Moreover, every realisation has the property that the valence of every
vertex is a multiple of3, with every third face a blackk-gon. Therefore the proofs of Lemma 2 and
of Theorem 2 go through. �

For larger values ofn one loses control of the structure of the vertices, and the proof breaks
down.
Example11. Consider the casek = l = n = 3. The minimal realisation is a partially truncated
American football withk = 3, which we can also think of as a painted tetrahedron, in which one
face is black and the others are white. Another, non-minimal, realisation is obtained by painting
the faces of an octahedron so that two opposite faces are black, and the remaining six faces are
white. This is not a branched cover of the painted tetrahedron.

Note that in this example the minimal realisation has two kinds of vertices: one at which all
faces meeting there are white, and three at which one black and two white faces meet. For the
non-minimal realisation described above one has one black and three white faces meeting at every
vertex. It is a general feature of the generalised football patterns withn > 3 that the combinatorial
definition of the pattern does not imply any control over the local structure at a vertex. Forn = 2
we do have such control, leading to Theorem 5.
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