
HPG and Hot3D are normally about the latest and greatest hardware.

This isn’t that – this is about some hardware from before NVIDIA started calling their 

products GPUs.



Why is this being presented at HPG?

In many recent conferences, someone has presented a good rendering technique, 

and I’ve gone up and said it was interesting, but did they know we did it some years 

before?

An obviously they didn’t, because we didn’t publish it.

We can’t be alone in this (although others might not actually tell the presenters), so 

this is a call for people to describe old technology as the patents start expiring and 

people stop caring about protecting the IP.



ART was founded in Cambridge, England in 1995, based on Adrian Wrigley’s 1994 

PhD thesis in the Rainbow Graphics Group in the computer laboratory.

(See http://www.lib.cam.ac.uk/collections/departments/manuscripts-university-

archives/subject-guides/theses-dissertations-and-1 for information on ordering the 

thesis; it does not appear to be online. The corresponding patent is available at 

https://patents.google.com/patent/US5933146A/en.)

The idea was to make a rendering appliance that could be used like a render farm 

(and shared between artists).

Absent anything else resembling a standard for photorealistic ray tracing, it was 

based on the RenderMan specification.



Obviously not enough customers existed to make the company highly successful, but 

those who were interested included those who could use ray tracing on transparent 

surfaces or liked depth of field.

Jim Henson didn’t buy one, but caused us a lot of confusion as to how we could be 

used for Fraggles until Farscape came out.



Why was ART’s hardware relevant to HPG?

HPG and the RTRT conference have discussed fire-and-forget tracing, streaming 

geometry over rays stored locally, sorting rays for coherency, etc.

One oddity was the existence of a floating point frame buffer (on the market six 

months before a patent got filed for it, which caused some difficulties to the graphics 

industry).



The RenderDrive 2000 (first product) was launched in 1998 as a networked 

”rendering appliance”, as a 4U rackmount device.

In the style of a render farm, it was intended to be used by multiple artists, connected 

over an ethernet connection via RenderPipe software (typically from a Windows NT 

PC).

Launch price was roughly $20,000 – adjusting for inflation, roughly $30,000 by 

today’s talk.



Inside, there’s effectively an AlphaStation motherboard with a 500MHz DEC 21164 

CPU, and either 768MB or 1.5GB of RAM.

The reason for the Alpha was to allow enough room for multi-million polygon 

geometry sets with complex shaders – at the time a PC workstation might have had 

32MB of RAM.

The 4GB HDD was actually 4GB (not 4,000,000 bytes) since it predated the 

convention of making disks look larger by rounding.

There was a 40MB boot SSD – the system actually booted minimally and installed in 

RAM, then booted there, so it could be turned on more quickly.



The more interesting part of the contents is the custom hardware.

There’s a PCI-X daughterboard – PCI-X being a 66MHz, 64-bit version of PCI, not 

PCI-e.

Plugged into that via some repurposed SIMM sockets were 1-4 cards, each of which 

contain four custom AR250 chips.



Each board with four AR250s had 16MB of 32-bit SDRAM attached to each AR250 

(as 2x16 bit chips).

Importantly there were LEDs, which simplified debugging – when the flashing lights 

stopped, the chip had crashed.



Inside the AR250 was a custom Arnie CPU core.

This was originally to be an ARM7, then moved to an in-house design apparently 

because it simplified the coprocessor interface; the instruction set was still very 

similar to ARM, including conditional instructions.

There was a SIMD shading coprocessor (of which more later), and a custom ray 

intersection coprocessor.

The chip ran at 40MHz, and included 32 IEEE754 units, giving a peak of 1.2GFLOPS.

Originally the numerical representation was to be a log format, on the basis that 

multiplies and power operations were common – adds and subtracts would 

incorporate a log/exponentiation step. This was eventually seen as too costly, but is 

still mentioned in ART’s patents.



The rendering model was distributed fire and forget:

Rays were stored only in the SDRAM attached to the AR250s.

Rays have a weighting and calculated a value to be accumulated into pixels.

Geometry is streamed over the rays by the AR250s, and the BVH traversal is 

streamed out to the AR250s from the host processor – only the Alpha held the full 

scene.



The ray intersection unit could intersect rays with 6 primitives at a time, deeply 

pipelined – one result per cycle.

The hardware could treat the three vertices as a triangle (for final geometry), a 

parallelogram (used to define a bounding box for spatial subdivision), or an elliptical 

segment – which was unused.



AR250 rays held an ID, which connected the ray back to the originating pixel.

There was a colour (float 3-tuple) ray weight, and a vector origin and ray direction.

Lambda, U, V and the id of the surface hit were set during intersection.

There was a ”from surface” identifier to limit self-intersection.

Rays also had an arbitrary payload used during shading – the shading process didn’t 

have access to the geometry, so uniform and varying parameters attached to the 

surface needed to be stored in the ray at intersection time.



During processing, the rays stored on the AR250s were run against the top level of 

the BVH.

The top level was typically kept cached, since all new rays would have to intersect 

against it.

After intersection, the rays which hit are collected on a stack.

Each AR250 which had a hit would flag this, with the results being multiplexed for 

host access, and the host processor would broadcast geometry and the BVH only if 

any AR250s still had rays which hit it.



In more detail: All rays on the AR250s (orange) are intersected with top level of the 

BVH (orange).



The AR250s intersect the top level geometry with their local rays – some of which 

miss (blue).



Rays which hit are collated.

Unfortunately, I haven’t been able to confirm whether the ray structures themselves 

were copied (which would improve memory coherency) or whether there was 

indirection via a pointer (which would have made the copy mechanism faster).



Since the AR250s report hits, geometry for the next level of the BVH is broadcast 

from the host to the AR250s.



The live set of rays is intersected against the new geometry – on this occasion, only 

the first two AR250s contain rays which hit.



The live rays are again collated. On this occasion, two of the AR250s have nothing to 

do.



Two of the AR250s are still active, so the next level of the BVH is broadcast.

If none of the AR250s were active, BVH traversal would stop at this point, and we 

would move on to the next unvisited node.



For shading, the rays were sorted by shader – so the same shader could be run over 

a consecutive sequence of rays.

Shading progressed one ray at a time on each AR250.

The shader acceleration hardware consisted of 16 registers each of 32-bit float, 4x32-

bit vector and 3x32-bit colour.

Instruction set varied by register – you could “dot” a vector or colour but not a float, 

you could “cross” only a vector, etc.

Unusually, there was a helper opcode for evaluating Perlin noise in up to 4 

dimensions.



Here’s some example AR250 code.

Note that there are vector cross and scale instructions, and float abs and sign 

instructions.

Colour operations were similarly prefixed by ”c” (cadd, cmul, etc.).



What were these shaders evaluating?

A non-obvious thing is the opacity of the surface (which is an explicit output of a 

RenderMan shader).

This was used both for transparency (via a continuation ray – continuing in the same 

direction as the current incoming ray) and for shadows.

I don’t recall there being an “any hit” optimisation for shadows; I suspect shaders 

were the same for shadow and conventional rays, but secondary ray generation for 

shadow rays was suppressed.

Output also have to include an emission amount that contributes directly to the pixel 

value and a callback for illuminance (which generated shadow rays – more on this 

later).

Lights were handled explicitly by the framework, so individual shaders didn’t need 

hard-wired knowledge of lights.



I believe the shading order was that the surface shader would generate rays, 

including light rays.

Light rays would then get shaded by the light shader, which meant that they could be 

culled if outside a spotlight cone, if too dim due to distance, or blocked by a projector.

Light rays could be combined if there were many low-contribution lights in roughly the 

same direction.

Other shader types such as atmosphere and volume shaders were effectively run 

alongside surface shading.



The host processor was responsible for ray management.

Ray processing used adaptive sampling, throwing more rays if a discontinuity was 

detected.

Initial and final quality were configurable; at the lowest quality, one ray was emitted by 

default every four pixels, relying on the adaptive sampling to increase resolution.

The ray buffer was kept full – if an AR250 was running low on rays, more work could 

be dispatched.

Processing was one tile at a time, mostly to improve texturing performance during 

shading.

The Alpha was responsible for lens flare (using the floating point format) – there’s a 

patent on emulating the effect of lenses, including the human iris.

Compositing was supported with rays that missed geometry (including with partial 

transparency).



Geometry was submitted to the RenderDrive using a RIB file, which was compressed 

over the ethernet interface.

The RenderDrive supported displacement and transformation shaders. I have no 

recollection of this being done using the AR250s, and the transformed geometry data 

would have needed to be back on the Alpha in order to generate the BVH, so it’s 

currently a mystery how this was supported (but it was).

Plug-ins for 3DS Max and Maya sent triangles without further shading, post-

tessellation – this was more precise than trying to emulate higher-order surfaces.

The BVH was built on the Alpha (with no custom hardware), using viewpoint-aware 

tessellation.

Animation was supported in two ways: Rays had a time field, and these could be 

used to intersect instances of geometry which were moved in the style of an 

accumulation buffer.

A moving camera was supported directly, generating rays along the path of the 

camera.



Non-geometric shaders were run on the AR250s.

RenderMan’s nested surface model including atmosphere and volume shaders were 

supported.

RenderMan’s shading model looks like a recursive traversal, so transformations were 

needed to support the fire-and-forget shading model and to separate illuminance.



Starting with a simple constant shader:

In RSL, Ci is output surface colour, Cs is input (default) surface colour, Oi is output 

surface opacity (a colour version of alpha), and Os is input surface opacity.

The shader compiler produced a constant output value (to be accumulated back into 

the ray) scaled by the incoming ray weight.

For opacity, a further ray was cast continuing in the same direction as the original, 

with weighting scaled by 1-opacity.



New rays were generated with similar tracking of the weighting contribution to the 

final output.



RenderMan had an illuminance() construct which effectively defined a lambda 

function, with the code inside the illuminance() block executed for each light.

Cl was the lighting contribution from the light, and L was the light direction.



This was converted to a ”call-back” function which was evaluated on each light by the 

system.

With with other traced rays, a weight contribution was evaluated in the shader.



Unlike some ray traversal schemes, we supported arbitrary numbers of rays being 

generated in the shader, and these could proliferate (unlike some schemes that 

only generate shadow rays or one additional traced ray at each intersection).

A large number of rays could exist in the AR250 memory, but to avoid running out 

of space a “Russian roulette” scheme was used to kill rays with low weighting 

probabilistically, trading ray count for noise.

Primary eye rays could be killed at restarted in extremis.

New eye rays could be started alongside ongoing intersection of reflection rays.



I’m currently number 12 in the world at tiddlywinks, so the important thing for me 

was to be able to ray trace a logo for Cambridge University Tiddlywinks Club (the 

other images in this presentation are taken with permission from the archives of the 

ART web site).

This scene has indirect illumination on the mat, produced by a large number of 

”trace()” calls at the surface.

This render at one point caused a RenderDrive to die due to stress (it may have 

been a dodgy power supply); this is the most expensive thing I’ve blown up.



At one point, the front page of CUTwC looked like this, which was a very expensive 

way of producing a web site.

Today, the mat background effect on the web site is still one generated by tracing 

with 4D Perlin noise, with polar coordinates to get a repeating pattern.



Without ray bundles, derivatives weren’t handled automatically – we had to re-run 

sections of the shader as required with offsets in order to produce the appropriate 

values.

No ray length was preserved, and there was no pencil tracing – the ray footprint was 

evaluated by back-projecting to screen space, allowing texture filtering (including mip

maps) to work.

Obviously the scheme did not directly support non-physical shader effects, where 

lighting was not a weighted linear combination of values.

This was a problem when we tried to emulate 3D Studio Max’s built-in shaders for the 

plug-in: lacking HDR, 3D Studio used to modify the opacity of a surface when a light 

fell on it in order to preserve highlights on transparent surfaces.

ART was working on a “continuation shader” scheme (tagging rays for later 

processing) to support this kind of thing after I left.



Some oddities were RenderMan behaviour.

In PRMan, overlapping objects are blended – if you put two differently-coloured 

polygons in exactly the same place, you get the average of their colours.

We didn’t support that.

Another oddity was that some shading functions like noise() evaluated differently in 

different contexts (polymorphic by return value).

For example, noise() in a float context returned a single-channel float; in a colour 

context it returned a RGB noise value.

2.0 * noise() is a float context, so it generates a single channel value.

Floats could be implicitly cast to colours (replicating channels), so c1 contains 

monochrome noise.

However, constant folding was performed before determining the context – so the ”1.0 

* noise()” converted to plain “noise()”.

That meant that the noise() in c2 was evaluated in a colour context, and the result is 

colour noise.

Please hit the person responsible for this.

There were also some subtle differences between BMRT and PRMan.



How fast were we? The “Hebe mirror” scene was a statue of Hebe rendered with 

depth of field and a large area light, reflected in a mirror, with a large ray count.

A RenderDrive took 13 minutes – which seems slow by modern standards. But a 

Pentium II took 22 hours to do the same.



Why didn’t we all get rich?

There was an issue with the RAM – if its auto refresh clashed with shader writes, you 

could get random crashes.

This meant shaders had to stick to the small on-chip memory, limiting the use of look-

up tables – which made some shaders very slow.

Some scenes had a very small number of rays that happened to have a lot of 

bounces; this killed parallelism.

Competitively, the RD2000 launched to compete with Sun workstations and Pentium 

PCs, but the appearance of SSE in fast consumer CPUs made the low clock of the 

AR250s limiting. The ray tracing stayed competitive with a 300MHz Pentium II a lot 

longer than shading performance.

RenderMan, while continuing as a product, was never really widely adopted as a 

standard; MentalRay was more widely adopted by various modelling packages, and 

the appearance of fast software like Arnold made a dedicated hardware renderer less 

competitive.

At the time of launch, there was no widely-adopted solution for global illumination –

except possibly Radiance. Photon mapping appeared after the RenderDrive. But at 

least at the point I left, there was no global illumination solution integrated into the 

RenderDrive.



After the AR250, ART produced a successor AR350 chip with twice the clock and 

double the cores. This was produced on the process used for the UltraSPARC III.

Later the AR450 was being designed, but the project was cancelled before 

production.



As PCs got more powerful and machines capable of managing large amounts of 

geometry became more affordable, having a dedicated host computer seemed 

sometimes unnecessary.

As a result, ART produced a “budget” card which could be driven directly from the 

artist’s workstation.



Especially for networked uses, there were still reasons to have a dedicated host 

processor for rendering.

Later machines moved away from Alpha processors, since AMD64 systems 

became an affordable alternative.

The RD5000 was launched as a high-end successor to the RD2000, with 72 cores 

at twice the clock speed of the RD2000.

The RD3500 was launched later as a budget alternative.



Over time, ART evolved as it attempted to be more global.

The company had difficulties around the time of the dot com crash, and was bought 

out by ”ART VPS” (“virtual photography solutions”), co-founded by one of the 

founders of ART, Daniel Hall.

ART-VPS continues, now producing the Shaderlight software ray tracing plug-in; 

RenderDrives are no longer part of the line up.



I need to thank the management of Shaderlight/ART-VPS, the IP holders, who gave 

me permission to discuss the details in this talk.

My ex-colleagues Iakovos (one of the chip designers) and Andrew (a system 

engineer) helped resolve some details.

I need to thank Adrian, who unfortunately died a few years ago. He was a brilliant 

engineer, if a bit hard to work with – he would never explain why he wanted you to do 

something, but 90% of the time he was right.

Finally, thanks to the other engineers responsible for the ART hardware, of whom this 

is a subset. And of course, the audience.





There was no dedicated texturing hardware, but textures were supported, 

converted to a standard triple-float format.

Shader utilities provided filtering and mip-mapping.

Tiled components of textures were broadcast on demand during shading from the 

host CPU, similarly to the scheme for BVH traversal.



Fire-and-forget may need a little more explanation.

A weight is associated with each ray, the weight having a float value per channel.

Rays start out with a unit weight (although this could be handled differently for 

antialiasing).

During shading, the ray weights may be scaled by another value, typically between 

0 and 1.

For example, a surface may generate a reflection and refraction ray with 

weightings scaled by the Fresnel equation.

New rays are scaled by the weight of the parent ray.



The weight of each ray modulates the contribution of that ray to the final pixel.

Light values are scaled by the ray weight – so a ray heading to a light can be 

scaled according to the BRDF, and this can be used to modulate the lighting 

contribution.

This ray contributes to the pixel value when the ray reaches the light (if its 

weighting has not already reached 0).

A surface which emits light directly (such as via an ambient term) has that value 

written back to the pixel, again scaled by the ray weight.


