FNnantom Ray-Ralr Intersectorg @ Alex Reshetov

S . David Luebke
. NVIDIA

=y

/

Mailboxing. When using spatial splits, the resulting repli-
cation of reterences can lead to the same primitive being en-
countered multiple times during traversal. For highly opti-
mized triangle tests this 1s often ok, and the cost and com-
plexity of potentially adding mailboxing often outweighs its
savings. However, even with our vectorized intersection test
from Section 2, a hair segment intersection 1s significantly
more expensive than a ray-triangle test.

Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur
Sven Woop, Carsten Benthin, Ingo Wald, Gregory S. Johnson, and Eric Tabellion
High Performance Graphics 2014

Mailboxing. When using spatial splits, the resulting repli-
cation of reterences can lead to the same primitive being en-
countered multiple times during traversal. For highly opti-
mized triangle tests this 1s often ok, and the cost and com-
plexity of potentially adding mailboxing often outweighs its
savings. However, even with our vectorized intersection test
from Section 2, a hair segment intersection 1s significantly
more expensive than a ray-triangle test.

Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur
Sven Woop, Carsten Benthin, Ingo Wald, Gregory S. Johnson, and Eric Tabellion
High Performance Graphics 2014

CHaltOn Rdy-rmdir 1HLteiscL Lol \lex Resheto
David Luebke

NVIDIA

Exploiting
Budan-Fourier and
Vincent’s Theorems
for Ray Tracing

3D Bezier Curves

Alex Reshetov
NVIDIA

(: Toshiya Hachisuka x

< C 0 O www.ciiu-tokyo.acjp/~hachisuka/

» My awesome coolest totally-wicked strategy for producing many papers on the same topic
(modification of an anonymous post - note: this 1s *supposed to be* a joke):

» Preparation - Discover some new application domain.

» Paper #1 - Introduce the problem. Model it as a ray tracing problem and render 1images using pbrt.
Minimal implementation effort 1s needed.

» Paper #2 - Solve the problem with importance sampling. Because you know something about
your application domain, you can find a good PDF to reduce variance a bit compared to #1.

» Paper #3 - Importance sampling 1s not working well in difficult cases. Now let's solve 1t with a
Markov Chain Monte Carlo method such as the Metropolis-Hastings algorithm.

» Paper #4 - Speed 1s important. Implement the algorithm on a GPU.

» Paper #5 - #4 1s still too slow. You've found an interactive application of the problem, so now you
need to focus on speed rather than image quality. Rasterization.

» Paper #6 - You've analyzed your application domain, and found that 50-70% of all problem
instances belong to a special class that can be rendered more efficiently. New paper.

» Paper #7 - It's time for an approximation algorithm. Another new paper.

» Now, repeat the process from the step 2 by slightly changing the topic.

(: Toshiya Hachisuka x

< C 0 O www.ciiu-tokyo.acjp/~hachisuka/

» My awesome coolest totally-wicked strategy for producing many papers on the same topic
(modification of an anonymous post - note: this 1s *supposed to be* a joke):

» Preparation - Discover some new application domain.

» Paper #1 - Introduce the problem. Model it as a ray tracing problem and render 1images using pbrt.
Minimal implementation effort 1s needed. - T

» Paper #2 - Solve the problem with importance sampling. Because you know something about
your application domain, you can find a good PDF to reduce variance a bit compared to #1.

» Paper #3 - Importance sampling 1s not working well in difficult cases. Now let's solve 1t with a
Markov Chain Monte Carlo method such as the Metropolis-Hastings algorithm.

» Paper #4 - Speed 1s important. Implement the algorithm on a GPU.

» Paper #5 - #4 1s still too slow. You've found an interactive application of the problem, so now you
need to focus on speed rather than image quality. Rasterization.

» Paper #6 - You've analyzed your application domain, and found that 50-70% of all problem
instances belong to a special class that can be rendered more efficiently. New paper.

» Paper #7 - It's time for an approximation algorithm. Another new paper.

» Now, repeat the process from the step 2 by slightly changing the topic.

Phantom # Budan 2.0

[f you can't convince
| them, confuse them.

Harry S. Truman

ssssssssssss

(at least) two approaches

sagitta!

* Ray ” thick curve Minimum distance
more thrilling more universal (and easier)

Sausage Factory

(FIVOLLLLLL LI

/7

LYSectoy

r Int

Phantom R

Yrtal

The 'phantom’ name according to the reviewers

*the title is a bit strange and confusing
*hard to follow the real "story”

*a bit confusing

*'phathom intersector’ is kind of confusing

*totally disgusting brain f.rt

The 'phantom’ name according to the reviewers

*the title is a bit strange and confusing
*hard to follow the real "story”

*a bit confusing

*'phathom intersector’ is kind of confusing

*totally disgusting brain f.rt

Artists Releases Videas Contact Store ~

Members

Matthew Sikora - V
Yannick d' Assgnies
Anton Tilgren - C
Jason Zielonka -

Phathom Links

Phathom News

Twitter

Rich history of a ‘Phantom’ name

o

-3

WIKIPEDIA
The Free Encycopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page

Print/export

Create a book
Download as PDF
Printable version

Languages e
Catala
Deutsch
Espafiol
et
Francais
#=0
o=t
ltaliano
Ny
Magyar

Mederlands
B3
Polski
Portugués
Pyccrmit
Suomi

& Not logged in Talk Contributions Create account Log in

Article Talk Read Edit View history |Search Wikipedia Q
Phantom
From Wikipedia, the free encyclopedia
Phantom may refer to: 2 8 & Look up phantomin
« An apparition, more specifically a ;‘;‘; ‘é’f’élglé?‘g?;y the free
* Spirit
» Ghost
« An illusion, a distortion of the senses
Film [edit] Contents [hide]
1 Film
¢ Phantom, a 1922 silent film directed by F. W. Murnau 2 Music
o The Phantom (1931), an American film directed by Alan James 21 Albums
e The Phantom, a 1943 film serial based on the comic strip 2.2 Songs
o The Phantom (19898), a film directed by Simon Wincer starring Billy Zane 3 Literature
* Phantoms, a 1998 film adaptation of the Dean Koontz novel 4 Gaming
o O Fantasma (The Phantom), a 2000 Portuguese film 5 Medical
* Phantom, a 2002 Malayalam film 6 Military
+ The Belgrade Phantom, a 2009 Serbian film 7 Sports
* The Phantom, a 2010 science-fiction television miniseries inspired by the comic strip The Phantom 7.1 Teams
« Phantom, a 2013 film about a submarine captain trying to prevent a war 7.2 Individuals
« Phantom, a 2015 Indian political thriller film directed by Kabir Khan 8 Television
» The Phantom, a Pink Panther character 9 Other uses
« The Phantom, main antagonist in the animated television series Flying Rhino Junior High I eEpeie

Film productions in 1825, 1943, 1962, 1983, 1987, 1989, 1998, 2004, and 2011 of The Phantom of the Opera,
see The Phantom of the Opera (disambiguation)

Music [edit)

+ Phantom (band), a South Korea-based hip hop project trio

+ Phantoms (band), a Los-Angeles based EDM duo

* Phantom (musical), a 1991 musical

¢ The Phantom of the Opera (1986 musical), by Andrew Lloyd Webber
« TXFM, a radio station formerly known as Phantom 105.2

« Phantom Records, a record label

+ Phantom Regiment Drum and Bugle Corps

» Yox Phantom, a guitar

* Phantoms (Toch), a choral work by Ernst Toch

» "The Phantom", a pseudonym used by Jerry Lott for the primal rockabilly song "Love Me

Albums |[edit]
o Phantom (Khold album), a 2002 album by Khold
+ Phantom (Betraying the Martyrs album), 2014

Jacco Bikker aka 'Phantom’

/G phantom ray tacer - Go X

< C O | @ Secure | https://www.google.com/search?q=phantom+ray+tacer&og=phantom+ray+tacer&aqgs=chrome..69i57.5839j0j9&sourceid=chrome&ie=UTF-8
b
600 G\S phantom ray tracer § Q
All Shopping Images Videos News More Settings Tools

About 1,880,000 results (0.38 seconds)

Boeing Phantom Ray - Wikipedia

https://en.wikipedia.org/wiki/Boeing_Phantom_Ray ¥

The Boeing Phantom Ray is an American demonstration stealth unmanned combat air vehicle (UCAV)
being developed by Boeing using company funds.

First flight: April 27, 2011 Number built: 1
Developed from: Boeing X-45C

& & %
\S\ —T-T"RW

%ﬂh'u\'o\ o e
A

8§

—— -__—

Let's do an experiment...

Now we have a dilemma...

I really wanna play ball with you...
but I don’t want to give you the hall.

Now we have a dilemma...

* Any method works at intermediate distances

* Accuracy matters at closeups

*|f an ‘accurate’ intersector were significantly slower,
we would have to resort to some complicated LOD
scheme...

Taxonomy of ray-hair intersection methods

T 1. Texture approximations (2D and 3D) V|

[Andersen et al. 2016; Hadap et al. 2007; Kajiya and Kay 1989; Lengyel et al.
2001; Petrovic et al. 2005; Ren et al. 2010; Sintorn and Assarsson 2009]

2. Fixed 3D cylinders
[Sedaghat 2010; Martins 2016]

3. CPA (the closest point of approach) methods
[Barringer et al. 2012; Chiang et al. 2015; Nakamaru and Ohno 2002;
Qin et al. 2014; Reshetov 2017; Woop et al. 2014]

4. Accurate geometric methods
[Wijk 1985; Bronsvoort and Klok 1985]

Fortunately...

e Phantom intersector is 25% faster than the Budan one on CPU
* and it is well suited for GPU implementation

* fixed cylinders still about 5% faster though by itself,
but it is not worth any LOD complications...

Yay for CPA

* We're talking only about CPA => bona fide ray/swept volume intersection

* CPA finds a minimum distance between a ray and a curve that might be
useful in other applications (collisions)

* |n fact, CPA was first proposed by Morell to reduce ship collisions

J. 5. Morrel. 1961. The Physics of Collision at Sea. Journal of
Navigation 14, 2 (1961), 163-184.

.25 s ;_'. e

2. HarrisonChah

Casualty with a ship

2000

1500

1000 o

INCIDENTS 2017

500

RAACA
== Tﬁﬁ'm 1 Do, | /,‘37_.‘»:“
[=) Y £ J mm

2011 2012 2013 2014 2015 2016

Phantom xsector: the main 1dea

* Instead of approximating geometry with cylinders
(or cones),

* we'll use ray-cone intersection
inside an iterative scheme.

Phantom xsector: the main 1dea

* Instead of approximating geometry with cylinders
(or cones),

* we'll use ray-cone intersection
inside an iterative scheme.

e |f the hair strand is a cone, we solve
a quadratic equation to find s in rayorg + s * raydir

Phantom xsector: the main 1dea

* Instead of approximating geometry with cylinders
(or cones),

* we'll use ray-cone intersection
inside an iterative scheme.

e |f the hair strand is a cone, we solve
a quadratic equation to find s in rayorg + s * raydir

e To find the surface normal,
we will need a distance to the cone’s base

General case

* Instead of approximating geometry,

* we'll use ray-cone intersection
‘nside an iterative scheme starting att, = 0.

e |f the hair strand is a cone, we solve
a quadratic equation to find s in rayorg + s * raydi

e To find the surface normal,
we will need a distance to the cone’s base

General case

* Instead of approximating geometry,

* we'll use ray-cone intersection
‘nside an iterative scheme starting att, = 0.

e |f the hair strand is a cone, we solve
a quadratic equation to find s in rayorg + s * raydir

e To find the surface normal,
we will need a distance to the cone’s base

1. find cone(t,) = s(t,) = At(t,) &7/ At(ty)
2. then set t,=t, + At(t,)

It works (mostly) OK

There are two (minor) complications

1. There could be no ray/cone(t) intersections
(especially for thin hair)

2. At(t) function could have oo values (ray | | cone)

There are two (minor) complications

1. There could be no ray/cone(t) intersections
(especially for thin hair)
l.e. determinant of a quadratic equation <0

2. At(t) function could have oo values (ray | | cone)

There are two (minor) complications

1. There could be no ray/cone(t) intersections
(especially for thin hair)
l.e. determinant of a quadratic equation <0
iIn such a case we just setitto O

2. At(t) function could have oo values (ray | | cone)

There are two (minor) complications

1. There could be no ray/cone(t) intersections
(especially for thin hair)
l.e. determinant of a quadratic equation <0
in such a case we just setitto O

= the intersection with the padded cone

2. At(t) function could have oo values (ray | | cone)

There are two (minor) complications

1. There could be no ray/cone(t) intersections
(especially for thin hair)
l.e. determinant of a quadratic equation <0
in such a case we just setitto O

= the intersection with the padded cone
= ‘ohantom’ name

2. At(t) function could have oo values (ray | | cone)

) complie 9ans

There are two (=

There are two (minor) complications

1. There could be no ray/cone(t) intersections
(especially for thin hair)
l.e. determinant of a quadratic equation <0
in such a case we just setitto O
= the intersection with the padded cone

= ‘ohantom’ name

2. At(t) function could have oo values (ray | | cone)
we need some kind of procedure to address this issue

At(0.5) = oo

single root
two roots

I I I
w N — o = N w

0.2

0.4

0.6

0.8

Proceedings of the 1988 Linear Accelerator Conference, Williamsburg, Virginia, USA

NEW FEATURES OF THE AT-PROCEDURE FOR
AN INTENSIVE ION LINAC

G.A. Dubinsky, A.V. Reshetov, Yu.V. Senichev, E.N. Shaposhnikova

Institute of Nuclear Research of the
Academy of Science of the USSR

Abstract

We investigate at-procedure features
connected with using the longitudinal
bunches instead of the single particle for
the tuning of the ion linac. The
At-procedure for longitudinal bunches is
found to be correct from viewpoint of the
minimal oscillationof the bunch center of
gravity excluding the setting of the RF
field amplitude too high. The error of the

Moscow, USSR

AT-procedure

At-procedure is a method based on the
time~of-flight measurements. It allows to
set the design field amplitude (i.e. to
form the capture region of the given
gizes) and to put the particle into th.
determined phase with respect to the RF
field. Let us briefly consider the sche.e
of aAt-procedure carried out with a sin-le
particle for Nth cavity of the "ideal™

o == 7N . e rnr,/
\ 2 \\.\ - \1 ‘ . { i/ « /,\» // .

Raphson

Newton -

* Most commonly,

\;/ /f//,. KN

yv\} |\ Sl
o MEN

(D

\\mmww»sw

ik

method is used for root

finding...

* He also invented cat doors

Newton's experiments were
Interrupted constantly by his cats
scratching at his office door, so he
summoned the Cambridge carpenter
and had him saw two holes in his
door: a large hole for the mother cat
and a small one for her kittens.

https://science.howstuffworks.com/innovation/famous-inventors/5-isaac-newton-inventions2.htm

https://science.howstuffworks.com/innovation/famous-inventors/5-isaac-newton-inventions2.htm

Why we will not use Newton's method:
DLdtt, {{Cox.C1x.Cox.Cox} . {Coy.Cay.Coy.Cay b {Coz Cr2CosCa b}, rLEL P[E]],]

[e e e e T,
, float dr) {
// cone i S d e fi ne d })}' b ase ce Ilt er © O . ra d i us r . “‘~‘w:..-rr,.-(=<,.-t’c,. Gy =2ty =386y - (Crm 28 en =380 o) [Coy =ty = then =t ey o [[Cornten =t en -t ey) o (cy oty -ty -ty)t
// axis ed, and slant dr

inline bool intersect(float r

e 2tene3tion)io

F041% ((em 2t cn 360 o oy s 2t ey + 3t ey) s (e s 2t cn = 3t cx)) 2 20 8] ({en - 2t cm e It cn) (cam o te P en s on) + (e v 2ten =3t o) (e tey -ty - ticy

o Ll 2t e =3 €] (can tem = Hca - Ccn] - [y - 2ty =30 6) [cap= by = ey - Py P rits?)

(em=2ten+ 3 el T e (Cay e 2teg « 38 €y o (crze 2tz a3t ep)?

float r2 = r = r; // dr could be either positive

float drr = r = dr; // or negative (0 for cylinder) » i
a2t s34] ({2 € 38 en) e w i o 80 6m) + e+ 263 3 €] (e by« @y« Py =rier i) ||| o 2 S6en (e 2bene 3t -

i r 2t ca s 387 p) (2 2em Bty [arv 2t I8 C) #2 (2 v 6tcy) (cy s 2tey » Iticy) 2 (Qem=btey) (o= 2ten 3t ey)) P47

212cy - 6ten) (ay-2tey -3ty - 7
T T Y P L P Y P T L PR T TN TP L

cd.yxcd.y; // all possible encston s 2t

€ -2 Emx =31 Cu) P = (Cay =

float ddd = cd.x=*xcd.
dp
float cdd cO.xxcd.
float cxd = c0.x=*xcd.

c0.y*c0.y; // combinations e L e
e e d ey ottt : ;q;<2(<,=»1!‘<,_; *»;::‘ — !
c0 . y*Cd LV // of X*y terms [(ew-2een 4 T Y70 T 3% Py Yo Ty L P T YT

[((femn2t e 380e) feontemme themethex) + {eg =2t ey 3tien) fcon ey =ty Pep)] [euv2temation

— ¢cO0.y*cd.x; // (cOxcd)z T

2 fefen-2ten-3ta))?-

cO.xxcO.

I
++ +

Rl

- 2ten -3t s (G- 2tey -3t
(€ax = 2% o= 3 Caa) (ot Caa =t € = O] = (€ay = 28 Cay = I €3y [Coy =t Cay =t iy = P63y | (Zax =6t) it]?

o s 2tep e 38 g7 (Cy e 28 ey 3ECy) e (e 2t a3t Cy

({Cm 28 €= 3 5} = (2ene 6t Cau) {cau =t Cay ot Enp et C) = (€3 = 2t ez =30 c5) e (2gy + Bt ey) (oo by - ey o tPey)) (ere2tey« 386, wit]?
float ¢ = ddd; // compute a,b,c in _ e e S e e e e
! 2esm -6t en) | (Ce2 a3 o) (Chumteur ia) = {Cay =2t e+ 3t cn) oy =ty » By =¥ cay) - PRI F 1]

float b = cd.z * (drr — edd); // a— 2 b s 4+ ¢ s2

(eis= 2t e =3t o] ([enn 2t =3t en) s (2em-6ten) (Catawsta-t!

float cdz2 = cd.zx*xcd.z; // (s for ray M cone) [F[tcn-2temeatten® -2t matten

3 Con 2ty =38) T v Gy v 286y < 38 2tep3Eet

At[t]= ddd 4+= cdz2; // mow it is cd-cd At [t] = O e s
float a = 2xdrrxcdd + cxd#*cxd — ddd*r2 4 dpxcdz2; ,

K . 2 . e e R A e MR AT KRS
#if defined (KEEP_DR2) // dr® adjustments B G e

float gs = (drxdr)/ddd; // (it does not help

(e -2tey -3t7cy) (co-tey-tiey =
T [cy - 2tcy <38 Gyl e (e

Sr el) -

n)) (G- 2ten -3t a) - rp

12 2en-6ten) [eu-2ten -3t 6] =2 (26 -6t 6y) (Gy=28ey =30y} +2 2ex-6ten) [Cu-2ten-3ten)| -
2ten -3t 6) - (2en -6ty (cy-tey oy -tie,)) it -2rt)

Can)¥ e (2Bt Ca) (ot

L e 2tey 38 e) (- tey - ey e) ritl e
3t cn) 22y btay

- 2teu -3t n] (Cme b= Pen- Pl - tey -3t [y -tey -ty -tho,

2 ([ep2t =3t cy) (Contenoticnot?es) » (G 2tcy 386y [cyotey - tiay-tieg))irit ¥
a ——= qs #* cdd=*cdd; // much with neither T it TEar ity a0 e (a3 E o

Cors tops ton - o) (ay-2tey 3806, - (e 2ten -3t (cy-toy-tiay-ta
b —= gs * cd.zxcdd; // performance nor et e
c —= qgs * cdz2; // accuracy) o2t onm3 v

. v 2t -3t)t (2 2en-6tew) (cu-2ten-Iticn) 2126y - 6tey) (cy-2tey -3t06,) -2 2 -6tan) (cur2ta-3tio) | Mt}
2026y -6tey) (o -2tey -3 e) -

w2t e -3 Cp) + (G- 28y =30 Cy) 2 < (Cz- 2z =30 1))7
.
#endif 228t (o 2ten 30 e e

(eme2teu3tcn) e (cy-2tcy <3 ey P (Crro2tezs 38 cz)’ (cme 2tz o3 cn) = (e 2teg3ticy)ts (Guedtemoatam)?)

// We will add c0.z to s and sp latter if needed e

oo 2tCau 3Byl te (G 2ECy 38 ey) e (e 2t ez I cy) 0

- {fem = temten) = (e tey - oy = toy)?) (e 2ten =38 et~

3t ey}t e (care2ten - 3]t < 20t) ([ene 2t em -3 cn) (coxe teuothea= B en) - (cy o2t ey ~3they) (co-tey-tiey-tiey)

s Bon] v oy s 2tey3tcy) (cy e oy s tioy)) e e
20y Z 2 (s 6t el o2t 3t cu) -

ey 2tey 3Gy - (u-2ten-3t ey

163 et

float det = bxb — axc; // for a — 2 b s + c s? lammeonid o BeinbasmpiinfigompalabaiarmmoBi o e
s = (b — (det > 07?7 sqrt(det) : 0))/c; // ¢ > 0 el e el Dl ol S sttty sl Sl T

[fenes 2t o= 34 cu) [Cpeteaen ti e s €y = (Ciy s 28 ey = 380y) oy = by = tien =+ 826y) (2= bteg) (4]0

dt = (sxcd.z — edd)/ddd; // wrt
de = s*xs 4+ dp; // |(ray N cone) — cO] 2 N o e A I o T

R T T L S (O LS S T T LN

sp cdd/cd . z; // will add c¢0.z latter e R R
dp 4= sp*sp; // |(ray N plane) — c0|? PR [bl Bl i el B e i B e

P16 (i 2t e 38 en) P ey = 2t ey =38 6 + [cac 2ben = 3 cse)?) <2008 ((em =2t en =38 o) (cmmtemtemren) - ey 2t ey =38y [cn=tey - oy - o)
({6328 €ax= 36 o) (Con=tene=t e e €) = (Cry = 2t ery = It

St -

[eme2tea 3 eyt e [y = 2teg « 3E cy) 7« (€

return det > 0 // true (real) or false (phantom) s e 3 (s i g o) [e et o]} (metmae e} 8
can = 28y < 3t)T+ (G v 2t €y - 38 Cy) T+ (€33 + 2t gy » 3 B)T
} Cur 2ty 3t ey (e 2t s 38 Ca) [Cor e tepe e tan) + oy s 2t ey < 36) (cap vty -t ay - ey - (8] FTE] m

- - e 2t e 38 ey P iEF
- 2ten-3a) s (o -2ty -3 G,) -

[Ci=2b<n =30 G P = [y =2t €3, =30 Gy) = [Casm 2z =3t i) |

Why we will not use Newton's method:
DLatt, {{Cox.C14.Cox.Coxt . {Coy.Cay. Coy Cay b CpsCas.Cos Co b}, rLEL I E]],]

inline bool intersect(float r, float dr) { — I

// cone is defined by base center c0O, radius r, O e L L
rit]? ((emr2ten -3t
// axis ed, and slant dr ‘

p o L(€00e 28 n = 30 o) (e Rm = W car = P = ey = 2ty = 30) (o= iy = e - ey) it

Cx - 2t €n =300 6] (Cm = ten = emx = P ca) = {1y = 2t ey =300 6yy) [y = temy =ty = eny)) [Cur=2tea =380 cp) mity?
Core 2t o e 380Gy T e (G e 2ty + 380Gy e [Crne 2t e It Cyr) P
a2ty v 380 c) ([enr2tcu 3t cn) (cmrton st ems on) « (o v 2tey v 38 6y) cy vty s Py - tloy) -rlt] Pt -

- (cop=tey - they - they)?) (s 2tem-3ticn)i-

lew2tey v 3t ey) e o s 2ten =38)] < 208] ({ew 2t e It cu) (cu tew s B enr Een oy s 2tey 3 ey) (o rtey oy tio

(em=2ten+ 3 el T e (Cay e 2teg « 38 €y o (crze 2tz a3t ep)?

float r2 = r = r; // dr could be either positive

float drr = r = dr; // or negative (0 for cylinder) ’ e e L

i e 2ten 3t) ((eme2ten 3t en) (e Eonsthen) + (o s 2tey 3 ey (coprtey s Py - tey) -rit

1) || [2 2en- s tem (e 2ben3€)+

v 2t s 3806t (2 2en 6t en) (e 2ten s 3 en) <2 26y - btey) (cy s 2ten s 3t06y) 2 Ren = bten) (o= 2ten s 3t ey)] rie)?
212y -6ty (e 2tey =38 gy) - R = iz 6t ch & s 2 i , x 2

cd.yxcd.y; // all possible encston s 2t

€ -2 Emx =31 Cu) P = (Cay =

T T Y P L P Y P T L PR T TN TP L

float ddd = cd.x*xcd.

++ +

dp = c0.x%c0. c0.yxcO.y; // combinations T e e e S e |
) : ;q;<2l(,=»i"(,_;’r;(j‘ g x*
float cdd = c0.x=xcd. cO.y*xcd.y: // of x*y terms [(n-26e ’ E T T Ly P P T Loy TR T

Rl

([2 e =387] (emm e e V) o e 28 =383 (= ety e =)] (e v 28380 es
float cxd = cO.x*xcd.y — cO0.y*cd.x; // (cOxcd)z

2(2€n -6t ca) (Cur2tem=3t n) -2 (2ey-6tey) (Cy-2tay =300) <2 (26068 Ca) (Cu-2tau-3t) FtD}

cu-2ten -3t s Gy - 2tey -3 ey) - (e 2t e - 38 @))0 -

(€ax = 2% o= 3 Caa) (ot Caa =t € = O] = (€ay = 28 Cay = I €3y [Coy =t Cay =t iy = P63y | (Zax =6t) it]?
D TR o L P T TP R PR TP TP B

T ey 2tey s T (e 2ten e 3tieg)?

({28 €o= 347 cal? = (26m = 6t €n) [=t €xy =t pem £ o) = €= 2t eg =380 6y) o (Bay o Btcy) (cape b ey =P ey)) [ear2tem = 3tcy) w1812
float ¢ = ddd; // compute a.,b,c in : it e = e
! 2esm -6t en) | (€= 2 a3 o) (Chustau s P n= o) » {ay =2t cay 2 3t) {cay = tCay = Pty = € cay) = PRI]

float b = cd.z * (drr — edd); // a— 2 b s 4+ ¢ s2

(eis= 2t e =3t o] ([enn 2t =3t en) s (2em-6ten) (Catawsta-t!

float cdz2 = cd.zx*xcd.z; // (s for ray M cone) [F[tcn-2temeatten® -2t matten

Con 2ty =38) T v Gy v 286y < 38 2tep3Eet

At[t] — ddd += cdz?2 : // e is cd-cd Atl [t] — 2 {6t euem s = £ cu] (2 =6t ey - 2eneBtew) (e ey ey -2 en]) [[care tese e o cu] (= 2ty + 38 ey - (cper 2 s =38 c) (e -ty = ey -)] +

2 ([cunten-tion

(e -2tey -3t7cy) (co-tey-tiey =
T [cy - 2tcy <38 Gyl e (e

Sr el) -

o) (Cop oty + ey~ they)?) (RemoBten) {eu-2teas

< {2 (e 2tea-3tCu) [Cm-ten=temetieu) <2 ey -2t ey~ 3thcy)

)] (€2 =2t €2 =3t 60) - P10 (2 (26t ea) (=2t en =30 C) =2 (265 =68 6y) (Cy =28 Cy =3t €y 2 (Rex =6t (a2t eI cn)) =

2ten -3t 6) - (2en -6ty (cy-tey oy -tie,)) it -2rt)

Can)¥ e (2Bt Ca) (ot

float a = 2xdrr+*cdd + cxd*cxd — ddd#*r2 4+ dpxcdz2; “‘:,,(f:t:‘ffsz;,.

#if defined (KEEP_ DR2 dr? adjustments ey 3¥cp) - ten st 28 a AT o he M o 30 gh o 2t A
J

e 2tey +380cy) +2 2ep bty (ene2temad3tien)) Fit]?]/ (leme 2tene 3t cn)?e (e s 2tey o 3t eyt e (erre 2ben + 380))}

2 ({ere2temo3t et e (2en-6teu) (Carstemestenethen) o (cye2tey-3ticy)le (Qey-btey) (cy-tey-tieysthey)

float gs = (drxdr)/ddd; // (it does not help

2r0t] (e 2ten -3) [co ten e e tey -3t [y -tey -ty -tho,

2 ([ep2t =3t cy) (Contenoticnot?es) » (G 2tcy 386y [cyotey - tiay-tieg))irit ¥
a —= qs * cddx*xcdd; // much with neither ittt O e it

Con s € cpe € G = o) (Cap = 2t e+ 38 €)= fCure 2t can = 3t o) (cop o tay = tieay = € c3y) P = ((Cme Eepes e 3] = oy = teny = B cy = 2 cy)?) (Crre 2t s =3t cy) -
b ——= qs % cd.z=*xcdd; // performance nor

2t em It o) (Cunrtop ot

c —= qgs * cdz2; // accuracy) Teu - 2tenm3 e

i v 2 ea w38 ar)? (2 (2chm -6t ca) Enn -2t =3t cn) +2 12y 6ty (Cy-2tcy -3806) <2 2 -6ta) (e r2tan-3tic)) Fit)?

2(2ey-6tey,) [Gy-2tey -3t,) - A PR T L Ty
#endif

2 (2= Bten) [Go-2ten -3t a) rit? 2(e-2ten-3tan

3thcy) e (Cure2ten-3ticn)?) < 200t] ((cue 2t cn- 3t cn) (Cox-temtcaethen

“ (e 2tey -3t ey) (cyoteyoticyotiey)

s Bon] v oy s 2tey3tcy) (cy e oy s tioy)) e e
20y Z 2 (s 6t el o2t 3t cu) -

ey 2tey 3Gy - (u-2ten-3t ey

G -3¢y) < [z 2tz -3))

e
(eme2teu3tcn) e (cy-2tcy <3 ey P (Crro2tezs 38 cz)’ (cme 2tz o3 cn) = (e 2teg3ticy)ts (Guedtemoatam)?)

// We will add c0.z to s and sp latter if needed e

oo 2tCau 3Byl te (G 2ECy 38 ey) e (e 2t ez I cy) 0

float det = bxb — axc; // for a — 2 b s + c s? i e byl iosms il

s = (b — (det > 0?7 sqrt(det) : 0))/c; // ¢ > 0 e e e e T e Ul et e iR,
€1a+ 2t e =3t cn)t+ (€yy+ 28 €ay =30 €3y} P [rr v 2t oz = 3)0

d t — (S * Cd .z — Cdd) / ddd H / / wrt t ek 2t s 38 cp)? + Ry = 6t cw) Q’"t,‘,“.v;':::.'::l::,.;,‘1,‘,{‘;?’,;’.:::";‘,‘1'5,2((115;:(:;,;::‘:3"h“‘0(7') (e e 2ten s 38 ey) FI0T

de =

s*ks + dp; // | (ray [l cone) — c0 | 2 :i:.,nnﬂ.,:’.ﬂ:‘lt;:,n,“.,!:.::‘,"n;:‘ G

et Ca -3 G e [y = 2ty =3 Gy o (G 28 = I
sp cdd/cd.z; // will add c¢0.z latter e e 30 e) ({620 3 B S (e] =+ 28y 3] (=88 et - Py) -0 16110

dp += sp*sp; // | (ray M plane) — c0 | 2 B b e

FIETE ((ep 2t en e 3t en) - (e = 2t ey =386 o (cre 2t e+ 3805 ?) <204 ([epem 2t en = 3

o) (Cmmteuetienrtion) » oy 2tey =386, [y tey - toy-they)
B

o Lo 2t e3P o) [core b= Pt V] = ey 2 20y = It

[eme2tea 3 eyt e [y = 2teg « 3E cy) 7« (€

Cp2ten a3t)t (o e 2t ey 30 cy)!

return det > 0; // true (real) or false (phantom)

ene2ten -3t en) (cuetenetiontien) - ey o2ty -3ty (cyetey-tley s Poy)| (me2ten o3t cn] rit)?
Lo T T T L P S TS Ly P T P TP

T (e 2teg <3t

:
e 2ten e 3t an) ({eme2tca s3I cn) (cnrtoms Pametcnl v (cy v 2t ey « I ey [cap vty + B ay = ey) - r[E] FIE] H

e 2t e 38 ey P iEF

en-2ten-3Ca) - (a2t -3, - |
¥ “ley-2tey -3ty - [Gi-2tem -3t)

lem=2ten-30 el

Instead, we use the reqgula falsi method

* credited to Babylonian Mathematics

* aka false position method

1. Using 2 function values, find the abscissa crossing
(as in the secant method)

2. Adjust bounds to keep the root inside

* What we do: after first iteration t, = t, + At(t,)
1. use regula falsi if At(t;) * At(t,) <O
2. otherwise use t, + At(t,)

3. clamp At values to [-0.5, 0.5] interval
(it helps in ray | | cone situations)

4. switchto (t.+1t. ,)/2 every 41" iteration

OptiX trix

From: Detlef Roettger

Sent: Friday, October 27, 2017 2:12 AM

To: Alexander Reshetov <areshetov@nvidia.com>
Subject: RE: NVIDIA-OptiX-SDK-5.0.0-DEV-win64.exe

Your RSVI curve primitives look better than anything I've seen in papers so far. Very nice!
Are the different colors indicating separate AABBs or just visualizing the proper t interpolant along the curve?

For additional performance analysis with OptiX you can make use of an OptiX developer build and look
at which device programs used how many clocks.

Normally intersection programs are inlined and the clocks of that appear inside the traversal as well,
but you can switch off inlining for that with another OptiX knob.

The procedure is simple:

- Create an empty file named optix.props next to your OptiX DLL.

- Run your application, end it.

- Now the OptiX developer build should have written all available knobs into that optix.props file as comments (~43 kB)

- Open it in an editor and search for the knob stats.timeVpcs uncomment and set it to 1.

- If you start your OptiX program now from a command line, OptiX will print out a table per launch (to stderr by default) with
information about how many rays you shot, how many clocks were used and which program spent how many of them

in absolute values and percentages.

The last column in that table shows the occupancy where 32 is perfect.

My non-default optix.props settings

acceleration.bvh.traversal cost 0.4
deviceManager.forceSmVersion 50
log.colored 0
megakernel.loadBalancer.memoryWeight 0.8
megakernel.loadBalancer.smWeight 0.2
megakernel.register.attributeSwitch 1
megakernel.register.currentTmax 1

also using context->createAcceleration("Bvhg")

aNAKEB

PRIV

a. b&8537 curves b. 139506 curves c. 729628 curves d. 271902 curves e. 756453 curves

412M rays/s 400M rays/s 322M rays/s 515M rays/s 531M rays/s

A Titan Xp performance for the different yarn models [Wu and Yuksel 2017; Yuksel et al. 2012]
for one primary and four ambient occlusion rays at 1000x1000 screen resolution

a. b&8537 curves rves e. 756453 curves

s/s 531M rays/s

uksel et al. 2012]
tion

412M rays/s

A Titan Xp perfor
for one primary an

Limitations

* |t is all applicable only for ray-tracing
oroblems (“reverse rasterization”)

* By itself, “finding roots of At(t)” is

| will always choose,

just an algebra-speak for ::jaifzgﬁz';%fl‘)to do¥e, 3 \
“finding ray — surface intersections” Basaie, fe “'“.“ o

* But we want to do it lazily... an easy way to do it.

e ... and it might cause problems

https://www.goodreads.com/author/quotes/23470.Bill_Gates

Another experiment...

e At(t) is almost linear;
root t = 0.5 can be found starting at either
t=0ort=1

 Phantom values near
t=0ort=1; At(t) is still =linear

e root t = 0.5 got hidden by the phantom
valuesneart=0ort=1

0.2

0.4

08

Problems with zigzag curves

Solution: split herey (@ MIN curvature)

(S

no spl

e

Step 1/3: find ray N cone

inline bool intersectCone(const optix::Ray& ray, float r, float dr) {
// d = g0 + ql*s = (c@+cd*t) - ray-plane-intersection
float3 cr = €O - ray.origin;
float cdcd = dot(cd, cd);
float crcd = dot(cr, cd);
float crcr = dot(cr, cr);
float crrd = dot(cr, ray.direction);
/* */ cdrd = dot(cd, ray.direction);
float cdrdn = cdrd/cdcd;
float crcdn = crcd/cdcd;
r =r - dr * crcdn;
dr = dr * cdrdn;
//float3 g0 = cr - cd * crcdn;
//float3 q1 = c¢d * cdrdn - ray.direction;
float @@ = crcr - crcd*crcdn; // dot(go, go);
float g@1 = cdrd*crcdn - crrd; // dot(q@, ql);
float q11 = 1 - cdrd*cdrdn; // dot(ql, ql);

float
float

= Q00 - r*r;

= 01 - r*dr;

float ¢ = dr*dr - ql1;

float det = b*b + a*c;

s = (b + (det < ©? @ : sqrt(det)))/c;
dt = cdrdn * s - crcdn;

Q N T o

// Compute |cr - s rd|, i.e. length of c@ - ray(sa

dc = crcr - 2*crrd*s + s*s; p
_ 7
sp = crcd/cdrd; Cd - C (t1),’
dp = crcr - 2*crrd*sp + sp*sp; P
7
) /’
return det > 0; >

Step 2/3: find At(t,)

4 /,
c'(ty) -°

Step 3/3: Iterate

The topics covered In this presentation

* Killer drones

 Newton’s pets

* Bill Gate’s pet peeves

* Daniel Day-Lewis’ last movie

* Bender Bending Rodriguez’ vocation

* Control systems for particle accelerators
e Star constellations

* Maritime science

* Rendering of flying saucers; sausage;
snakes; hair/fur; yarn

e World Cup 2018

* Germany’s population growth
e Hardline rock-n-roll

e ZOombies invasion

pensive things

We saw this whole zombie thing
coming from a mile away...

we already have safe houses
and are stocked up...

Hzombielove

http://www.purevolume.com/new/phathom

http://www.purevolume.com/new/phathom

Sagitta’

inline bool intersectCylindricalEnclosure(const optix::Ray& ray, float2& limits) const {
// cylinder is defined by axis acyl, radius”2 = rcyl and point on the axis pcyl
float3 nn = cross(ray.direction, acyl); // orthogonal to both
float3 r2c = ray.origin - pcyl;
float distance from ray to cylinder_axis = dot(r2c, nn);
float innlen2 = 1.0f/dot(nn, nn);

float d2 = distance_from _ray to cylinder axis * distance_from_ray to cylinder_axis;
float sagitta = rcyl - d2 * innlen2;

// compute distance from ray.origin to the closest point between the ray and acyl
float3 02c = cross(r2c, acyl);

float po2c = dot(o2c, nn);

limits.x = limits.y = -po2c * innlen2;

// now reproject 2D sagitta (in the plane orthogonal to the tangent) back into 3D
sagitta = sagitta > 0? sqrt(sagitta * innlen2) : 0;

limits.x = optix::fmaxf(limits.x - sagitta, ray.tmin);

limits.y = optix::fminf(limits.y + sagitta, ray.tmax);

return limits.y > @ && limits.x < limits.y;

state-of-the-art = closest-point-of-approach

t i, = min distance(ray, curve(t))

t € [0,1]

m

Aye and nay for CPA

* Pros
* Simple; in practice: adaptive linearization
* Might be useful for the collision detection and repulsion

* Cons
* Non-physically based
 What is the surface normal?
* View-dependent results
e Artificial high-order frequencies

When CPA falls

SR 111

* CPArootatt=0.2
 Distance[curve[0.2], ray] / radius[t] = 1.4
e Ray-swept volume intersection att = 0.92

Instead, we search for ray N swept volume

We want @ and »

(defined by ray.t and curve.s
for ray N swept volume)

Note: the swept volume is constructed
by extruding a circle with the radius r(t)

centered at c(t)
In the plane orthogonal to ¢'(t)
along the curve

» and o properties
|9 - o == r(t,)
(0 - 9)-cty) ==

Once we found It,
2 IS the hit point

(o - 2)/1o- 0ol glves
the surface normal
(for cylinder; more

complex expression
for other profiles)

Phantom xsector Is an
iterative algorithm:
for any initial e

Phantom xsector is an
iterative algorithm:
for any initial e
we will find

(the approximate)
dt=»92-e

Phantom xsector is an
iterative algorithm:
for any initial e
we will fing

(the approximate)
dt = e - @

and also find e

as a slde effect

Because

(9 - 9)-c(t,) ==0and
|9 - o] == r(t,

@ ray N volume,

finding ® and then searching

for root(s) of |®@ - ®| == r(t)
might seem like a way to go...

.yetitis a terrible idea

£ EEES

Instead, we will look for
» (ray N cone) <= quadratic equati

If det < 0, we'll setdet =0
(ray N the padded cone)

We need only the smallest root

dt(e)

Example of
dt function:

att =0, the ray does
not intersect cone(t).

Example of
dt function:

att = 0, the ray does
not intersect cone(t).
Yet, It touches

the padded cone,
allowing to find dt(0)

y
Y
g
-‘-’
: /

s the provenance of the “phantom” name)

when dt(t) ==
ray intersects

the cone and

the swept volume

@ the same point @

1.5}

this 1s dt(t) function

only the padded cone
‘ is intersected

,,,

1.5}

1.0t

0.5;

0.0

we need this root

this 1s dt(t) function

1.5}

1.0t

0.5;

0.0

0.2

we need this root

CPA usesv;(t)= [=t
the distance between
c(t) and the ray

this is dt(t) function |

T

1.5}

| CPA uses v;(t) =
\0&\ the distance between
c(t) and the ray

-0.5} \

this is dt(t) function |

1.5}

1.0t

0.0

V¢ (1) 1s difficult to handle

1

0.4

. —
\0&\ v: (t) 1s not applicable

v good choice |

p(t) = o+sp(t) d Py =0+ S,d

ray | | curve
(more or less)

= V()] — [ve()] — dt(t)

1.00f W

0.50f

ray L curve

r(t)

Typical situation: 3 iterations with regula falsi

Ieduced interval (CPUI

Ldt(t)

DIfficult case for finding dt roots

dt(t)
have to do
Isections

Detalls

Steps of the Phantom Intersector

1. Find (the exact) bounding box for the Bézier curve + padding
during BVH building.

2. Check the ray against the curve’s enclosing cylinder.
Exit if no such intersection exists.

3. Transform the curve into the ray-centric coordinate system.

Split big intervals.

5. For each subinterval [t,, t,]
1. Ifdt(t;) <0 and dt(t,) > 0, ignore the interval
2. Start iterations at the endpoint that is closer to the ray origin

3. Test for convergence. If the intersection is found, report it,
otherwise start at the other endpoint.

Steps of the Phantom Intersector

1. Find (the exact) bounding box for the Bézier curve + padding
during BVH building.

2. Check the ray against the curve’s enclosing cylinder.
Exit if no such intersection exists.

3. Transform the curve into the ray-centric coordinate system.

Split big intervals.

5. For each subinterval [t;, t,]
1. Ifdt(t,) <0and dt(t,) > 0, ignore the interval
2. Start iterations at the endpoint that is closer to the ray origin

3. Test for convergence. If the intersection is found, report it,
otherwise start at the other endpoint.

-nclosures (usable In any intersector)

* While building the acceleration structure
axis acyl = w, - W, (curve’s endpoints)
* point on the axis pcyl = ((w; + w,)/2 + ¢(0.5))/2
* find a conservative maximum

distance rcyl from the points on the

curve to this axis; add r.,, toitand square " =

* Intersection is ruled out if the ray
and the padded cylinder do not
intersect (considered as infinite lines)

float3 dxc = cross(ray.direction, acyl);
float3 r2c = ray.origin - pcyl;

float dl = dOt(r‘ZC, dXC); ‘\

return dl * dl1 > rcyl * dot(dxc, dxc); R
h

[r—

* While building the acceleration structure
* (normalized) axis acyl = w, - w,, (curve’s endpoints)
» point on the axis peyl = ((w; + Wy)/2 + ¢(0.5))/2="

e find a conservative maximum ~
distance rcyl from the points on the

curve to this axis; add r._, to it and square

* Intersection is ruled out if the ray
and the padded cylinder do not
ntersect (considered as infinite lines)

float3 dxc = cross(ray.direction, acyl);
float3 r2c = ray.origin - pcyl;

float dl = dot(r2c, dxc);

return dl * dl > rcyl * dot(dxc, dxc);

e excluded

* not excluded ¢

slabs sl

bool intersectEnclosure(const opti

float do = dot(ray.direction, pjfio);
float dl1 = dot(ray.direction, 1);
float3 pr = pcyl - ray.origin;

float p@ = dot(pr, pno);

float pl = dot(pr, pnl);

float pdo, edd, min@, maxe;

pde = po / do;

edd = ext@ / abs(de);

min® = pdo - edo;

float pdl, edl, minl, ma

pdl = pl / di;

edl = extl / abs(dl);

minl = pdl - edl;

max® = pdo + edo;

maxl = pdl + edl;

float tmin = fmaxf(mihod, minl); tmin
float tmax = fminf(m@x@, maxl); tmax
limits.x = tmin;

limits.y = tmax;

return tmax > 0 && thin < tmax;

:Ray&

//
//
!/
//
//

ray, float2& limits) const {
pn@ = plane@.normal

pnl = planel.normal

pcyl is a point on slab's axis
pcyl.pn@ could be precomputed
pcyl.pnl could be precomputed

fmaxf(ray.tmin, tmin);
fminf(ray.tmax, tmax);

tly slower than

float3 dxc
float3 r2c
float dl =

= cross(ray.direction, acyl);
= ray.origin - pcyl;
dot(r2c, dxc);

float innlen2 = 1.0f/dot(dxc, dxc);

float d2 =

float sagitta

float3 o2c
float po2c
limits.x =
sagitta =
limits.x
limits.y

return limits.y > @ & limits.x < limits.y

dl * dl;
rcyl - d2 * innlen2;

= cross(r2c, acyl);

= dot(o2c, dxc);

limits.y = -po2c * innlen2;
sagitta > 0? sgrt(sagitta * innle
optix::fmaxf(limits.x - sagitta,
optix::fminf(limits.y + sagitta

cylinders

bool intersectEnclosure(const optix::Ray& ray, float2&

imits) const {

