

Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur

Sven Woop, Carsten Benthin, Ingo Wald, Gregory S. Johnson, and Eric Tabellion

High Performance Graphics 2014

Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur

Sven Woop, Carsten Benthin, Ingo Wald, Gregory S. Johnson, and Eric Tabellion

High Performance Graphics 2014

significantly

• Ray ^ thick curve
more thrilling

• Minimum distance
more universal (and easier)√

•the title is a bit strange and confusing

•hard to follow the real "story“

•a bit confusing

•'phathom intersector' is kind of confusing

•totally disgusting brain f.rt

•the title is a bit strange and confusing

•hard to follow the real "story“

•a bit confusing

•'phathom intersector' is kind of confusing

•totally disgusting brain f.rt

Rich history of a ‘Phantom’ name

•Any method works at intermediate distances

• (and something else has to be done @ far away)

•Accuracy matters at closeups

• If an ‘accurate’ intersector were significantly slower,
we would have to resort to some complicated LOD
scheme…

1. Texture approximations (2D and 3D)
[Andersen et al. 2016; Hadap et al. 2007; Kajiya and Kay 1989; Lengyel et al.
2001; Petrovic et al. 2005; Ren et al. 2010; Sintorn and Assarsson 2009]

2. Fixed 3D cylinders
[Sedaghat 2010; Martins 2016]

3. CPA (the closest point of approach) methods
[Barringer et al. 2012; Chiang et al. 2015; Nakamaru and Ohno 2002;
Qin et al. 2014; Reshetov 2017; Woop et al. 2014]

4. Accurate geometric methods
[Wijk 1985; Bronsvoort and Klok 1985]

speedac
cu
ra
cy

• Phantom intersector is 25% faster than the Budan one on CPU

•while Budan is 5X faster than the adaptive linearization methods

• and it is well suited for GPU implementation

• (I didn’t try implementing Budan on GPU)

• fixed cylinders still about 5% faster though by itself,
but it is not worth any LOD complications…

• We’re talking only about CPA => bona fide ray/swept volume intersection

• CPA finds a minimum distance between a ray and a curve that might be
useful in other applications (collisions)

• In fact, CPA was first proposed by Morell to reduce ship collisions

HarrisonChan

• Instead of approximating geometry with cylinders
(or cones),

• we’ll use ray-cone intersection
inside an iterative scheme.

• Instead of approximating geometry with cylinders
(or cones),

• we’ll use ray-cone intersection
inside an iterative scheme.

• If the hair strand is a cone, we solve
a quadratic equation to find s in rayorg + s * raydir

• Instead of approximating geometry with cylinders
(or cones),

• we’ll use ray-cone intersection
inside an iterative scheme.

• If the hair strand is a cone, we solve
a quadratic equation to find s in rayorg + s * raydir

• To find the surface normal,
we will need a distance to the cone’s base

• Instead of approximating geometry,

• we’ll use ray-cone intersection
inside an iterative scheme starting at t1 = 0.

• If the hair strand is a cone, we solve
a quadratic equation to find s in rayorg + s * raydir

• To find the surface normal,
we will need a distance to the cone’s base

• Instead of approximating geometry,

• we’ll use ray-cone intersection
inside an iterative scheme starting at t1 = 0.

• If the hair strand is a cone, we solve
a quadratic equation to find s in rayorg + s * raydir

• To find the surface normal,
we will need a distance to the cone’s base

1. find cone(t1) ➞ s(t1) ➞ ∆t(t1)

2. then set t2 = t1 + ∆t(t1)

∆t(t1)

∆t(t)

∆t(t)

1. There could be no ray/cone(t) intersections
(especially for thin hair)
i.e. determinant of a quadratic equation < 0
in such a case we just set it to 0
≡ the intersection with a padded cone
⊨ ‘phantom’ name

2. ∆t(t) function could have ∞ values (ray || cone)
we need some kind of procedure to address this issue

1. There could be no ray/cone(t) intersections
(especially for thin hair)
i.e. determinant of a quadratic equation < 0
in such a case we just set it to 0
≡ the intersection with a padded cone
⊨ ‘phantom’ name

2. ∆t(t) function could have ∞ values (ray || cone)
we need some kind of procedure to address this issue

1. There could be no ray/cone(t) intersections
(especially for thin hair)
i.e. determinant of a quadratic equation < 0
in such a case we just set it to 0
≡ the intersection with a padded cone
⊨ ‘phantom’ name

2. ∆t(t) function could have ∞ values (ray || cone)
we need some kind of procedure to address this issue

1. There could be no ray/cone(t) intersections
(especially for thin hair)
i.e. determinant of a quadratic equation < 0
in such a case we just set it to 0
≡ the intersection with the padded cone
⊨ ‘phantom’ name

2. ∆t(t) function could have ∞ values (ray || cone)
we need some kind of procedure to address this issue

1. There could be no ray/cone(t) intersections
(especially for thin hair)
i.e. determinant of a quadratic equation < 0
in such a case we just set it to 0
≡ the intersection with the padded cone
⊨ ‘phantom’ name

2. ∆t(t) function could have ∞ values (ray || cone)
we need some kind of procedure to address this issue

1. There could be no ray/cone(t) intersections
(especially for thin hair)
i.e. determinant of a quadratic equation < 0
in such a case we just set it to 0
≡ the intersection with the padded cone
⊨ ‘phantom’ name

2. ∆t(t) function could have ∞ values (ray || cone)
we need some kind of procedure to address this issue

1. There could be no ray/cone(t) intersections
(especially for thin hair)
i.e. determinant of a quadratic equation < 0
in such a case we just set it to 0
≡ the intersection with the padded cone
⊨ ‘phantom’ name

2. ∆t(t) function could have ∞ values (ray || cone)
we need some kind of procedure to address this issue

• Most commonly, Newton’s
method is used for root
finding…

- Raphson

• Most commonly, Newton’s
method is used for root
finding…

• He also invented cat doors

Newton's experiments were

interrupted constantly by his cats

scratching at his office door, so he

summoned the Cambridge carpenter

and had him saw two holes in his

door: a large hole for the mother cat
and a small one for her kittens.
https://science.howstuffworks.com/innovation/famous-inventors/5-isaac-newton-inventions2.htm

https://science.howstuffworks.com/innovation/famous-inventors/5-isaac-newton-inventions2.htm

∆t[t] = ∆t’[t] =

∆t[t] = ∆t’[t] =

-

• credited to Babylonian Mathematics

• they had also invented sexagesimal (base 60) numeral system

• aka false position method
1. Using 2 function values, find the abscissa crossing

(as in the secant method)

2. Adjust bounds to keep the root inside

• What we do: after first iteration t2 = t1 + ∆t(t1)
1. use regula falsi if ∆t(t1) * ∆t(t2) < 0

2. otherwise use t2 + ∆t(t2)

3. clamp ∆t values to [-0.5, 0.5] interval
(it helps in ray || cone situations)

4. switch to (t i + t i - 1)/2 every 4th iteration

From: Detlef Roettger
Sent: Friday, October 27, 2017 2:12 AM
To: Alexander Reshetov <areshetov@nvidia.com>
Subject: RE: NVIDIA-OptiX-SDK-5.0.0-DEV-win64.exe

Your RSVI curve primitives look better than anything I've seen in papers so far. Very nice!
Are the different colors indicating separate AABBs or just visualizing the proper t interpolant along the curve?

For additional performance analysis with OptiX you can make use of an OptiX developer build and look
at which device programs used how many clocks.
Normally intersection programs are inlined and the clocks of that appear inside the traversal as well,
but you can switch off inlining for that with another OptiX knob.

The procedure is simple:
- Create an empty file named optix.props next to your OptiX DLL.
- Run your application, end it.
- Now the OptiX developer build should have written all available knobs into that optix.props file as comments (~43 kB)
- Open it in an editor and search for the knob stats.timeVpcs uncomment and set it to 1.
- If you start your OptiX program now from a command line, OptiX will print out a table per launch (to stderr by default) with
information about how many rays you shot, how many clocks were used and which program spent how many of them
in absolute values and percentages.
The last column in that table shows the occupancy where 32 is perfect.

also using context->createAcceleration("Bvh8")

acceleration.bvh.traversal_cost 0.4

deviceManager.forceSmVersion 50

log.colored 0

megakernel.loadBalancer.memoryWeight 0.8

megakernel.loadBalancer.smWeight 0.2

megakernel.register.attributeSwitch 1

megakernel.register.currentTmax 1

A Titan Xp performance for the different yarn models [Wu and Yuksel 2017; Yuksel et al. 2012]
for one primary and four ambient occlusion rays at 1000×1000 screen resolution

A Titan Xp performance for the different yarn models [Wu and Yuksel 2017; Yuksel et al. 2012]
for one primary and four ambient occlusion rays at 1000×1000 screen resolution

• It is all applicable only for ray-tracing
problems (“reverse rasterization”)

• By itself, “finding roots of ∆t(t)” is
just an algebra-speak for
“finding ray – surface intersections”

• But we want to do it lazily…

• … and it might cause problems
https://www.goodreads.com/author/quotes/23470.Bill_Gates

• ∆t(t) is almost linear;
root t = 0.5 can be found starting at either
t = 0 or t = 1

• Phantom values near
t = 0 or t = 1; ∆t(t) is still ≈ linear

• root t = 0.5 got hidden by the phantom
values near t = 0 or t = 1

NO

inline bool intersectCone(const optix::Ray& ray, float r, float dr) {
// d = q0 + q1*s = (c0+cd*t) - ray-plane-intersection
float3 cr = c0 - ray.origin;
float cdcd = dot(cd, cd);
float crcd = dot(cr, cd);
float crcr = dot(cr, cr);
float crrd = dot(cr, ray.direction);
/* */ cdrd = dot(cd, ray.direction);
float cdrdn = cdrd/cdcd;
float crcdn = crcd/cdcd;
r = r - dr * crcdn;
dr = dr * cdrdn;
//float3 q0 = cr - cd * crcdn;
//float3 q1 = cd * cdrdn - ray.direction;
float q00 = crcr - crcd*crcdn; // dot(q0, q0);
float q01 = cdrd*crcdn - crrd; // dot(q0, q1);
float q11 = 1 - cdrd*cdrdn; // dot(q1, q1);

float a = q00 - r*r;
float b = q01 - r*dr;
float c = dr*dr - q11;
float det = b*b + a*c;
s = (b + (det < 0? 0 : sqrt(det)))/c;
dt = cdrdn * s - crcdn;

// Compute |cr - s rd|, i.e. length of c0 - ray(s)
dc = crcr - 2*crrd*s + s*s;

sp = crcd/cdrd;
dp = crcr - 2*crrd*sp + sp*sp;

return det > 0;
}

c0 =

cd =

inline bool intersectCone(const optix::Ray& ray, float r, float dr) {
// d = q0 + q1*s = (c0+cd*t) - ray-plane-intersection
float3 cr = c0 - ray.origin;
float cdcd = dot(cd, cd);
float crcd = dot(cr, cd);
float crcr = dot(cr, cr);
float crrd = dot(cr, ray.direction);
/* */ cdrd = dot(cd, ray.direction);
float cdrdn = cdrd/cdcd;
float crcdn = crcd/cdcd;
r = r - dr * crcdn;
dr = dr * cdrdn;
//float3 q0 = cr - cd * crcdn;
//float3 q1 = cd * cdrdn - ray.direction;
float q00 = crcr - crcd*crcdn; // dot(q0, q0);
float q01 = cdrd*crcdn - crrd; // dot(q0, q1);
float q11 = 1 - cdrd*cdrdn; // dot(q1, q1);

float a = q00 - r*r;
float b = q01 - r*dr;
float c = dr*dr - q11;
float det = b*b + a*c;
s = (b + (det < 0? 0 : sqrt(det)))/c;
dt = cdrdn * s - crcdn;

// Compute |cr - s rd|, i.e. length of c0 - ray(s)
dc = crcr - 2*crrd*s + s*s;

sp = crcd/cdrd;
dp = crcr - 2*crrd*sp + sp*sp;

return det > 0;
}

∆t(t) = 0

Thank you
• Killer drones
• Newton’s pets
• Bill Gate’s pet peeves
• Daniel Day-Lewis’ last movie
• Bender Bending Rodríguez’ vocation
• Control systems for particle accelerators
• Star constellations
• Maritime science
• Rendering of flying saucers; sausage;

snakes; hair/fur; yarn
• World Cup 2018
• Germany’s population growth
• Hardline rock-n-roll
• Zombies invasion Dawid Planeta

We saw this whole zombie thing

coming from a mile away...

we already have safe houses

and are stocked up...

#zombielove

http://www.purevolume.com/new/phathom

http://www.purevolume.com/new/phathom

inline bool intersectCylindricalEnclosure(const optix::Ray& ray, float2& limits) const {
// cylinder is defined by axis acyl, radius^2 = rcyl and point on the axis pcyl
float3 nn = cross(ray.direction, acyl); // orthogonal to both
float3 r2c = ray.origin - pcyl;
float distance_from_ray_to_cylinder_axis = dot(r2c, nn);
float innlen2 = 1.0f/dot(nn, nn);

float d2 = distance_from_ray_to_cylinder_axis * distance_from_ray_to_cylinder_axis;
float sagitta = rcyl - d2 * innlen2;

// compute distance from ray.origin to the closest point between the ray and acyl
float3 o2c = cross(r2c, acyl);
float po2c = dot(o2c, nn);
limits.x = limits.y = -po2c * innlen2;
// now reproject 2D sagitta (in the plane orthogonal to the tangent) back into 3D
sagitta = sagitta > 0? sqrt(sagitta * innlen2) : 0;
limits.x = optix::fmaxf(limits.x - sagitta, ray.tmin);
limits.y = optix::fminf(limits.y + sagitta, ray.tmax);

return limits.y > 0 && limits.x < limits.y;
}

tmin = min distance(ray, curve(t))
t ∈ [0,1]

• Pros
• Simple; in practice: adaptive linearization

• Might be useful for the collision detection and repulsion

• Cons
• Non-physically based

• What is the surface normal?

• View-dependent results

• Artificial high-order frequencies

• CPA root at t = 0.2

• Distance[curve[0.2], ray] / radius[t] = 1.4

• Ray-swept volume intersection at t = 0.92

c(t)
c’(t)

r(t)

dt

1

2

t = 0

t = 0

(and this is the provenance of the “phantom” name)

tx

this is dt(t) function
only the padded cone

is intersected

this is dt(t) function

we need this root

this is dt(t) function

we need this root CPA uses vr (t) =
the distance between

c(t) and the ray

this is dt(t) function

CPA uses vr (t) =
the distance between

c(t) and the ray

vc (t) = |● - ●|

✓ good choice

vr (t) is not applicable

vc (t) is difficult to handle

ray || curve

(more or less)

ray ⟂ curve

dt(t)

reduced interval (CPU)

dt(t)
have to do
bisections

1. Find (the exact) bounding box for the Bézier curve + padding
during BVH building.

2. Check the ray against the curve’s enclosing cylinder.
Exit if no such intersection exists.

3. Transform the curve into the ray-centric coordinate system.

4. Split big intervals.

5. For each subinterval [t1, t2]
1. If dt(t1) < 0 and dt(t2) > 0, ignore the interval

2. Start iterations at the endpoint that is closer to the ray origin

3. Test for convergence. If the intersection is found, report it,
otherwise start at the other endpoint.

1. Find (the exact) bounding box for the Bézier curve + padding
during BVH building.

2. Check the ray against the curve’s enclosing cylinder.
Exit if no such intersection exists.

3. Transform the curve into the ray-centric coordinate system.

4. Split big intervals.

5. For each subinterval [t1, t2]
1. If dt(t1) < 0 and dt(t2) > 0, ignore the interval

2. Start iterations at the endpoint that is closer to the ray origin

3. Test for convergence. If the intersection is found, report it,
otherwise start at the other endpoint.

• While building the acceleration structure
• (normalized) axis acyl = w3 - w0 (curve’s endpoints)

• point on the axis pcyl = ((w3 + w0)/2 + c(0.5))/2

• find a conservative maximum
distance rcyl from the points on the
curve to this axis; add rmax to it and square

• Intersection is ruled out if the ray
and the padded cylinder do not
intersect (considered as infinite lines)
float3 dxc = cross(ray.direction, acyl);

float3 r2c = ray.origin - pcyl;

float dl = dot(r2c, dxc);

return dl * dl > rcyl * dot(dxc, dxc);

• While building the acceleration structure
• (normalized) axis acyl = w3 - w0 (curve’s endpoints)

• point on the axis pcyl = ((w3 + w0)/2 + c(0.5))/2

• find a conservative maximum
distance rcyl from the points on the
curve to this axis; add rmax to it and square

• Intersection is ruled out if the ray
and the padded cylinder do not
intersect (considered as infinite lines)
float3 dxc = cross(ray.direction, acyl);

float3 r2c = ray.origin - pcyl;

float dl = dot(r2c, dxc);

return dl * dl > rcyl * dot(dxc, dxc);

bool intersectEnclosure(const optix::Ray& ray, float2& limits) const {
float d0 = dot(ray.direction, pn0); // pn0 = plane0.normal
float d1 = dot(ray.direction, pn1); // pn1 = plane1.normal
float3 pr = pcyl - ray.origin; // pcyl is a point on slab's axis
float p0 = dot(pr, pn0); // pcyl.pn0 could be precomputed
float p1 = dot(pr, pn1); // pcyl.pn1 could be precomputed
float pd0, ed0, min0, max0;
pd0 = p0 / d0;
ed0 = ext0 / abs(d0);
min0 = pd0 - ed0;
float pd1, ed1, min1, max1;
pd1 = p1 / d1;
ed1 = ext1 / abs(d1);
min1 = pd1 - ed1;
max0 = pd0 + ed0;
max1 = pd1 + ed1;

float tmin = fmaxf(min0, min1); tmin = fmaxf(ray.tmin, tmin);
float tmax = fminf(max0, max1); tmax = fminf(ray.tmax, tmax);
limits.x = tmin;
limits.y = tmax;
return tmax > 0 && tmin < tmax;

}

bool intersectEnclosure(const optix::Ray& ray, float2& limits) const {
float3 dxc = cross(ray.direction, acyl);
float3 r2c = ray.origin - pcyl;
float dl = dot(r2c, dxc);
float innlen2 = 1.0f/dot(dxc, dxc);

float d2 = dl * dl;
float sagitta = rcyl - d2 * innlen2;

float3 o2c = cross(r2c, acyl);
float po2c = dot(o2c, dxc);
limits.x = limits.y = -po2c * innlen2;
sagitta = sagitta > 0? sqrt(sagitta * innlen2) : 0;
limits.x = optix::fmaxf(limits.x - sagitta, ray.tmin);
limits.y = optix::fminf(limits.y + sagitta, ray.tmax);

return limits.y > 0 && limits.x < limits.y;
}

