
Left-Leaning
Red-Black Trees

Robert Sedgewick
Princeton University

Introduction
2-3-4 Trees

Red-Black Trees
Left-Leaning RB Trees

Deletion

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Red-black trees

are now found throughout our computational infrastructure

Textbooks on algorithms

Library search function in many programming environments

Popular culture (stay tuned)

Worth revisiting?

Introduction

. . .

. . .

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Red-black trees

are now found throughout our computational infrastructure

Typical:

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Digression:

Red-black trees are found in popular culture??

Mystery: black door?

Mystery: red door?

An explanation ?

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Primary goals

Red-black trees (Guibas-Sedgewick, 1978)

• reduce code complexity

• minimize or eliminate space overhead

• unify balanced tree algorithms

• single top-down pass (for concurrent algorithms)

• find version amenable to average-case analysis

Current implementations

• maintenance

• migration

• space not so important (??)

• guaranteed performance

• support full suite of operations

Worth revisiting ?

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Primary goals

Red-black trees (Guibas-Sedgewick, 1978)

• reduce code complexity

• minimize or eliminate space overhead

• unify balanced tree algorithms

• single top-down pass (for concurrent algorithms)

• find version amenable to average-case analysis

Current implementations

• maintenance

• migration

• space not so important (??)

• guaranteed performance

• support full suite of operations

Worth revisiting ? YES. Code complexity is out of hand.

Introduction
2-3-4 Trees

Red-Black Trees
Left-Leaning RB Trees

Deletion

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

2-3-4 Tree

Generalize BST node to allow multiple keys.
Keep tree in perfect balance.

Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

• 4-node: three keys, four children.

W

smaller than K larger than R

between
K and R

K R

C E M O

A D L N Q S V Y ZF G J

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Search in a 2-3-4 Tree

Compare node keys against search key to guide search.

Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

W
smaller than M

found L

between
K and R

C E M O

A D L N Q S V Y ZF G J

K REx: Search for L

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

W

smaller than K

C E M O

A D L N Q S V Y ZF G J

K REx: Insert B

smaller than C

B not found

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to a 3-node.

W

smaller than K

C E M O

D L N Q S V Y ZF G J

K REx: Insert B

smaller than C

B fits here

A B

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

W

larger than R

C E M O

A D L N Q S V Y ZF G J

K REx: Insert X

larger
than W

X not found

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

• 3-node at bottom: convert to a 4-node.

W

larger than R

C E M O

A D L N Q S VF G J

K REx: Insert X

larger
than W

X fits here

X Y Z

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

W

smaller than K

C E M O

A D L N Q S V Y ZF G J

K REx: Insert H

larger than E

H not found

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to a 3-node.

• 3-node at bottom: convert to a 4-node.

• 4-node at bottom: no room for new key.

W

smaller than K

C E M O

A D L N Q S V Y ZF G J

K REx: Insert H

larger than E

no room for H

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Splitting 4-nodes in a 2-3-4 tree

is an effective way to make room for insertions

C E

D F G JA B

H does not fit here

D

C E G

A B

H does fit here !

F J

move middle
key to parent

split remainder
into two 2-nodes

D

C E G

A B F H J

Problem: Doesn’t work if parent is a 4-node

Bottom-up solution (Bayer, 1972)

• Use same method to split parent

• Continue up the tree while necessary

Top-down solution (Guibas-Sedgewick, 1978)

• Split 4-nodes on the way down

• Insert at bottom

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Splitting 4-nodes on the way down

ensures that the “current” node is not a 4-node

Transformations to split 4-nodes:

local transformations
that work anywhere in the tree

Invariant: “Current” node is not a 4-node

Consequences:

• 4-node below a 4-node case never happens

• Bottom node reached is always a 2-node or a 3-node

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Splitting a 4-node below a 2-node

is a local transformation that works anywhere in the tree

could be huge unchanged

D Q

K Q W

D

K W
A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Splitting a 4-node below a 3-node

is a local transformation that works anywhere in the tree

could be huge unchanged

K Q W K W
A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

E-G

D H

A-C E-G

D H Q

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Growth of a 2-3-4 tree

happens upwards from the bottom

insert A

insert S

insert E

insert R
split 4-node to

and then insert

insert C

insert D

tree grows
up one level

insert I

A

A S

A E S

E

A R S

E

A S

E

R SA C

E

R SA C D

E

A C D I R S

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Growth of a 2-3-4 tree (continued)

happens upwards from the bottom

split 4-node to

and then insert

tree grows
up one level

split 4-node to

and then insert

split 4-node to

and then insert

E

C R

E R

I S

A D

C E R

E

A C D I R S

E R

A C D I N

insert N

insert B

insert X

C E R

S

SD I N

D I NA B S X

C R

E

A B

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Balance in 2-3-4 trees

Key property: All paths from root to leaf are the same length

Tree height.

• Worst case: lg N [all 2-nodes]

• Best case: log4 N = 1/2 lg N [all 4-nodes]

• Between 10 and 20 for 1 million nodes.

• Between 15 and 30 for 1 billion nodes.

Guaranteed logarithmic performance for both search and insert.

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Direct implementation of 2-3-4 trees

is complicated because of code complexity.

Maintaining multiple node types is cumbersome.

• Representation?

• Need multiple compares to move down in tree.

• Large number of cases for splitting.

• Need to convert 2-node to 3-node and 3-node to 4-node.

Bottom line: Could do it, but stay tuned for an easier way.

private void insert(Key key, Val val)
{
 Node x = root;
 while (x.getChild(key) != null)
 {
 x = x.getChild(key);
 if (x.is4Node()) x.split();
 }
 if (x.is2Node()) x.make3Node(key, val);
 else if (x.is3Node()) x.make4Node(key, val);
 return x;
}

fantasy
code

Introduction
2-3-4 Trees

Red-Black Trees
Left-Leaning RB Trees

Deletion

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Red-black trees (Guibas-Sedgewick, 1978)

1. Represent 2-3-4 tree as a BST.

2. Use "internal" edges for 3- and 4- nodes.

Key Properties

• elementary BST search works

• easy to maintain a correspondence with 2-3-4 trees
(and several other types of balanced trees)

C E

D F G JA B

3-node 4-node

or

B

C

D

E

FG

J

A

Note: correspondence is not 1-1.
(3-nodes can lean either way) A

C

D

E

FG

J

B

B

C

D

E

FG

JA

C

D

E

FG

J

A

B

Many variants studied (details omitted.)

NEW VARIANT (this talk): Left-leaning red-black trees

Introduction
2-3-4 Trees

Red-Black Trees
Left-Leaning RB Trees

Deletion

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Left-leaning red-black trees

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4- nodes.

Key Properties

• elementary BST search works

• easy-to-maintain 1-1 correspondence with 2-3-4 trees

3-node 4-node

C E

D F G JA B
B

C

D

E

F

G

J

A

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Left-leaning red-black trees

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4- nodes.

Disallowed

• right-leaning edges

• three reds in a row

3-node

standard red-black trees
allow these two

single-rotation trees
allow these two

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Java data structure for red-black trees

public class BST<Key extends Comparable<Key>, Value>
{
 private static final boolean RED = true;
 private static final boolean BLACK = false;
 private Node root;

 private class Node
 {
 Key key;
 Value val;
 Node left, right;
 boolean color;
 Node(Key key, Value val, boolean color)
 {
 this.key = key;
 this.val = val;
 this.color = color;
 }
 }

 public Value get(Key key)
 // Search method.

 public void put(Key key, Value val)
 // Insert method.
}

color of incoming link

private boolean isRed(Node x)
{
 if (x == null) return false;
 return (x.color == RED);
}

helper method to test node color

constants

adds one bit for color to elementary BST data structure

A

B

C

D

E

F

G

J

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Search implementation for red-black trees

is the same as for elementary BSTs

(but typically runs faster because of better balance in the tree).

Note: Other BST methods also work

• order statistics

• iteration

public Value get(Key key)
{
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp == 0) return x.val;
 else if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 }
 return null;
}

public Key min()
{
 Node x = root;
 while (x != null) x = x.left;
 if (x == null) return null;
 else return x.key;
}

BST (and LLRB tree) search implementation

A

B

C

D

E

F

G

J

Ex: Find the minimum key

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insert implementation for LLRB trees

is best expressed in a recursive implementation

Note: effectively travels down the tree and then up the tree.

• simplifies correctness proof

• simplifies code for balanced BST implementations

• could remove recursion to get single-pass algorithm

private Node insert(Node h, Key key, Value val)
{
 if (h == null)
 return new Node(key, val);

 int cmp = key.compareTo(h.key);
 if (cmp == 0) h.val = val;
 else if (cmp < 0)
 h.left = insert(h.left, key, val);
 else
 h.right = insert(h.right, key, val);

 return h;
}

associative model
(no duplicate keys)

Recursive insert() implementation for elementary BSTs

Nonrecursive

Recursive

. . .

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insert implementation for LLRB trees

follows directly from 1-1 correspondence with 2-3-4 trees

1. If key found on recursive search, reset value, as usual.

2. If key not found, insert at the bottom.

3. Split 4-nodes on the way down

stay tuned
for details

stay tuned
for details

stay tuned
for details

stay tuned
for details

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Balanced tree code

is based on local transformations known as rotations

private Node rotL(Node h)
{
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 return x;
}

h F

Q

x

F

Q

private Node rotR(Node h)
{
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 return x;
}A-E

G-P R-Z

R-Z

A-E G-P

x F

Q

h

F

Q

A-E

G-P R-Z

R-Z

A-E G-P

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insert a new node at the bottom in a LLRB tree

follows directly from 1-1 correspondence with 2-3-4 trees

1. Add new node as usual, with red link to glue it to node above

2. Rotate left if necessary to make link lean left

or

or or

rotate
left

rotate
left

rotate
left

OK

OK

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Splitting a 4-node in a LLRB tree

follows directly from 1-1 correspondence with 2-3-4 trees

1. Rotate right to balance the 4-node

2. Flip colors to pass red link up one level

3. Rotate left if necessary to make link lean left

Parent is a 2-node: two cases

rotate
left

rotate
right

flip to
black

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Splitting a 4-node in a LLRB tree

follows directly from 1-1 correspondence with 2-3-4 trees

1. Rotate right to balance the 4-node

2. Flip colors to pass red link up one level

3. Rotate left if necessary to make link lean left

Parent is a 3-node: three cases

rotate
left

rotate
left

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Splitting a 4-node in a LLRB tree

Key point: The transformations are all the same.

rotate
right

b
e

d

c

b

d

c e

if necessary,
rotate left d

b

c

e

flip to
black

red or
black

follows directly from 1-1 correspondence with 2-3-4 trees

1. Rotate right to balance the 4-node

2. Flip colors to pass red link up one level

3. Rotate left if necessary to make link lean left

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Inserting and splitting nodes in LLRB trees

are easier when left rotates are done on the way up the tree.

Search as usual

• if key found reset value, as usual

• if key not found insert a new red node at the bottom
[might be right-leaning red link]

Split 4-nodes on the way down the tree.

• right-rotate and flip color

• might leave right-leaning link higher up in the tree

NEW TRICK: enforce left-leaning condition on the way up the tree.

• left-rotate any right-leaning link on search path

• trivial with recursion (do it after recursive calls)

• no other right-leaning links elsewhere

or

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insert code for LLRB trees

is based on three simple operations.

or
if (h == null)
 return new Node(key, value, RED);

1. Insert a new node at the bottom.

private Node splitFourNode(Node h)
{
 x = rotR(h);
 x.left.color = BLACK;
 return x;
}

2. Split a 4-node.

private Node leanLeft(Node h)
{
 x = rotL(h);
 x.color = x.left.color;
 x.left.color = RED;
 return x;
}

3. Enforce left-leaning condition.

right
rotate

fix color of
left node

could be
red or black

could be
right or left

a

b

c
b

a c

left
rotate

flip
colors

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Insert implementation for LLRB trees

is a few lines of code added to elementary BST insert

 private Node insert(Node h, Key key, Value val)
 {
 if (h == null)
 return new Node(key, val, RED);

 if (isRed(h.left))
 if (isRed(h.left.left))
 h = splitFourNode(h);

 int cmp = key.compareTo(h.key);
 if (cmp == 0) h.val = val;
 else if (cmp < 0)
 h.left = insert(h.left, key, val);
 else
 h.right = insert(h.right, key, val);

 if (isRed(h.right))
 h = leanLeft(h);

 return h;
 }

split 4-nodes on the way down

insert at the bottom

standard BST insert code

fix right-leaning reds on the way up

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

LLRB insert movie

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Why revisit red-black trees?

Take your pick:

private Node insert(Node x, Key key, Value val, boolean sw)
{
 if (x == null)
 return new Node(key, value, RED);
 int cmp = key.compareTo(x.key);

 if (isRed(x.left) && isRed(x.right))
 {
 x.color = RED;
 x.left.color = BLACK;
 x.right.color = BLACK;
 }
 if (cmp == 0) x.val = val;
 else if (cmp < 0))
 {
 x.left = insert(x.left, key, val, false);
 if (isRed(x) && isRed(x.left) && sw)
 x = rotR(x);
 if (isRed(x.left) && isRed(x.left.left))
 {
 x = rotR(x);
 x.color = BLACK; x.right.color = RED;
 }
 }
 else // if (cmp > 0)
 {
 x.right = insert(x.right, key, val, true);
 if (isRed(h) && isRed(x.right) && !sw)
 x = rotL(x);
 if (isRed(h.right) && isRed(h.right.right))
 {
 x = rotL(x);
 x.color = BLACK; x.left.color = RED;
 }
 }
 return x;
}

private Node insert(Node h, Key key, Value val)
{
 int cmp = key.compareTo(h.key);
 if (h == null)
 return new Node(key, val, RED);
 if (isRed(h.left))
 if (isRed(h.left.left))
 {
 h = rotR(h);
 h.left.color = BLACK;
 }
 if (cmp == 0) x.val = val;
 else if (cmp < 0)
 h.left = insert(h.left, key, val);
 else
 h.right = insert(h.right, key, val);
 if (isRed(h.right))
 {
 h = rotL(h);
 h.color = h.left.color;
 h.left.color = RED;
 }
 return h;
}

very
tricky

straightforward

Left-Leaning
Red-Black Trees

Robert Sedgewick
Princeton University

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Why revisit red-black trees?

Take your pick:

40 30150 lines of code for insert
(lower is better!)

TreeMap.java

Adapted from
CLR by

experienced
professional

programmers
(2004)

wrong scale!

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

LLRB implementation is far simpler than previous attempts.

• left-leaning restriction reduces number of cases

• recursion gives two (easy) chances to fix each node

• short inner loop more than compensates for
slight increase in height

Improves widely used algorithms

• AVL, 2-3, and 2-3-4 trees

• red-black trees

Same ideas simplify implementation of other operations

• delete min, max

• arbitrary delete

Why revisit red-black trees?

1972

1978

2008

Introduction
2-3-4 Trees

Red-Black Trees
Left-Leaning RB Trees

Deletion

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Warmup 1: delete the minimum

1. Search down the left spine of the tree.

2. If search ends in a 3-node or 4-node: just remove it.

3. Removing a 2-node would destroy balance

• transform tree on the way down the search path

• Invariant: current node is not a 2-node

Note: LLRB representation reduces number of cases (as for insert)

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Warmup 1: delete the minimum

Carry a red link down the left spine of the tree.

Invariant: either h or h.left is RED

Implication: deletion easy at bottom

Need to adjust tree only when h.left and h.left.left are both BLACK

Two cases, depending on color of h.right.left

private Node moveRedLeft(Node h)
{
 h.color = BLACK;
 h.left.color = RED;
 if (isRed(h.right.left))
 {
 h.right = rotR(h.right);
 h = rotL(h);
 }
 else h.right.color = RED;

 return h;
}

color flip and
rotate right

h.left

h.left.left

h h h
rotate

left

Harder case: h.right.left is RED

h.left.left
turns RED

h.left
turns RED

h h

Easy case: h.right.left is BLACK

color
flip

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Leaving right red links on the search path

simplifies the code, complicates the proof.

1. Does each transformation preserve balance?

2. Does each transformation preserve correspondence with 2-3-4 trees?

h
h

could be
red or black

must
be black

may leave right-leaning
red link on search path

OK

h
h

2 3

2

1

2

2

2 3

2

1 2 2

black links to h
same sequence: balance preserved

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

deleteMin() implementation for LLRB trees

is otherwise a few lines of code

 public void deleteMin()
 {
 root = deleteMin(root);
 root.color = BLACK;
 }

 private Node deleteMin(Node h)
 {
 if (h.left == null)
 return null;

 if (!isRed(h.left) && !isRed(h.left.left))
 h = moveRedLeft(h);

 h.left = deleteMin(h.left);

 if (isRed(h.right))
 h = leanLeft(h);

 return h;
 }

remove node on bottom level
(h must be RED by invariant)

push red link down if necessary

move down one level

fix right-leaning red links
on the way up the tree

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

deleteMin() example

A

B

C E

F

G I

J

K M

N

O

D

H

L

A

B

C E

F

G I

J

K M

N

O

D

H

L

A

B

C E

F

G I

J

K M

N

O

D

H

L

A

B

C E

F

G I

J

K M

N

O

D

H

L

B

C E

F

G I

J

K M

N

O

D

H

L

B

C E

F

G I

J

K M

N

O

D

H

L

C

E

F

G I

J

K M

N

O

D

H

L

B

B

D

E

G

I

J

K M

N

O

F

H

L

C

B

D

E

G I

J

K

M

N

OF

H

L

C

1

2

3

4

5

5

6

7

8

push reds down fix right-leaning reds
on the way up

remove minimum

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

LLRB deleteMin() movie

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Warmup 2: delete the maximum

is similar, but slightly different (since trees lean left).

private Node deleteMax(Node h)
{
 if (h.right == null)
 {
 if (h.left != null)
 h.left.color = BLACK;
 return h.left;
 }

 if (isRed(h.left))
 h = leanRight(h);

 if (!isRed(h.right)
 && !isRed(h.right.left))
 h = moveRedRight(h);

 h.right = deleteMax(h.right);

 if (isRed(h.right))
 h = leanLeft(h);

 return h;
}

private Node moveRedRight(Node h)
{
 h.color = BLACK;
 h.right.color = RED;
 if (isRed(h.left.left))
 {
 h = rotR(h);
 h.color = RED;
 h.left.color = BLACK;
 }
 else h.left.color = RED;
 return h;
}

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

deleteMax() example

A

B

C E

F

G I

J

K M

N

O

D

H

L

A

B

C E

F

G I

J

K M

N

O

D

H

L

A

B

C E

F

G I

J

K M

N

O

D

H

L

A

B

C E

F

G I

J

K M

N

O

D

H

L

A

B

C E

F

G I

J

K M

N

D

H

L

1

2

3

4

5

5

6

7

push reds down fix right-leaning reds
on the way up

remove maximum

A

B

C E

F

G I

J

K M

N

D

H

L

A

B

C E

F

G I

J

K M

N

D

H

L

A

B

C E

F

G I

J

K M

N

D

H

L

(nothing to fix!)

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

LLRB deleteMax() movie

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Deleting an arbitrary node

involves the same general strategy.

1. Search down the left spine of the tree.

2. If search ends in a 3-node or 4-node: just remove it.

3. Removing a 2-node would destroy balance

• transform tree on the way down the search path

• Invariant: current node is not a 2-node

Difficulty:

• Far too many cases!

• LLRB representation dramatically reduces the number of cases.

Q: How many possible search paths in two levels ?

A: 9 * 6 + 27 * 9 + 81 * 12 = 1269 (! !)

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Deleting an arbitrary node

reduces to deleteMin()

A standard trick:

B

C E

F

G I

J

K M

N

O

E

H

L

B

C F

G

I

J

K M

N

O

D

H

L

B

C E

F

G I

J

K M

N

O

D

H

L

B

C E

F

G I

J

K M

N

O

D

H

L

to delete D

replace its key, value with those of its successor

then delete the successor
deleteMin(right child of D)

 flip colors, delete node

 fix right-leaning red link

h.key = min(h.right);
h.value = get(h.right, h.key);
h.right = deleteMin(h.right);

h

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Deleting an arbitrary node at the bottom

can be implemented with the same helper methods
used for deleteMin() and deleteMax().

Invariant: h or one of its children is RED

• search path goes left: use moveRedLeft().

• search path goes right: use moveRedRight().

• delete node at bottom

• fix right-leaning reds on the way up

A few loose ends remain . . . et voilà! (see next page)

B

D

E

G I

J

K

M

N

OF

I

L

C

B

D

E

G J

K M

N

OF

I

L

C

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

delete() implementation for LLRB trees

private Node delete(Node h, Key key)
{
 int cmp = key.compareTo(h.key);
 if (cmp < 0)
 {
 if (!isRed(h.left) && !isRed(h.left.left))
 h = moveRedLeft(h);
 h.left = delete(h.left, key);
 }
 else
 {
 if (isRed(h.left)) h = leanRight(h);

 if (cmp == 0 && (h.right == null))
 return null;

 if (!isRed(h.right) && !isRed(h.right.left))
 h = moveRedRight(h);

 if (cmp == 0)
 {
 h.key = min(h.right);
 h.value = get(h.right, h.key);
 h.right = deleteMin(h.right);
 }
 else h.right = delete(h.right, key);
 }
 if (isRed(h.right)) h = leanLeft(h);

 return h;
}

Fix right-leaning red links
on the way up the tree

push red right if necessary

LEFT

move down (left)

push red right if necessary

RIGHT or EQUAL

move down (right)

replace current node with
successor key, value

delete successor

EQUAL (at bottom)
 delete node

rotate to push red right

EQUAL (not at bottom)

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

LLRB delete() movie

Introduction
2-3-4 Trees
Red-Black Trees
Left-Leaning RB Trees
Deletion

Alternatives

Red-black-tree implementations in widespread use:

• are based on pseudocode with “case bloat”

• use parent pointers (!)

• 400+ lines of code for core algorithms

Left-leaning red-black trees

• you just saw all the code

• single pass (remove recursion if concurrency matters)

• <80 lines of code for core algorithms

• less code implies faster insert, delete

• less code implies easier maintenance and migration

insert delete helper

insert delete helper

accomplishes the same result with less than 1/4 the code

1972

1978

2008

