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6.   Statistical Inference and Hypothesis Testing 
 

6.1 One Sample 
 

§ 6.1.1 Mean 
 

STUDY POPULATION  =  Cancer patients on new drug treatment 

 
 

Random Variable:   X = “Survival time” (months) 

Assume X ≈ N(µ, σ), with unknown mean µ, but known (?) σ = 6 months. 
 

Population Distribution of X    

  
   σ  =  6   

       

   
µ   

 
What can be said about the  mean µ  of this study population? 

 

X 

RANDOM SAMPLE,  n = 64 
 

{x1, x2, x3, x4, x5, …, x64} 
 

Sampling Distribution of X  
 

 
 

6

64
0.75

n

σ
= =  

 
 
 
 
 
 
 
 

µ x  

x  is called a 
“point estimate” 

of µ  

X
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0.95 
0.025 0.025 

Z 
0 −z.025 = −1.960 1.960 = z.025 

 

Objective 1
x

:  Parameter Estimation ~  Calculate an interval estimate of µ, 
centered at the point estimate , that contains µ with a high probability, say 95%.  
(Hence, 1 − α = 0.95, so that α = 0.05.) 
 

That is, for any random sample, solve for d: 
 

P( X  − d  ≤  µ  ≤  X  + d)  =  0.95 
i.e., via some algebra, 

   P(µ − d  ≤  X  ≤  µ + d)  =  0.95 . 
 

But recall that  Z  =  
/

X
n
µ

σ
−   ~  N(0, 1).  Therefore, 

P
/ /
d d

n n
Z

σ σ
 
 
 

− +≤ ≤   =  0.95 
 

Hence,  
/
d

nσ
+   =  z.025   ⇒  d  =  z.025 × 

n
σ   =  (1.96)(0.75 months)  =  1.47 months. 

             95% margin of error 

For future 
reference, call this 

equation . 

x + d x − d 

µ 
X 

x 

0.75 mos
n
σ

=
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µ 
X 

x 

x − 1.47 x + 1.47 

X ~ N(µ, 0.75) 

X 

=     24.53    26   27.47 
X 

=   25.53   27   28.47 

X 

X 

X 

X 

 

95% Confidence Interval for µ 
 

  .025 .025,z z
n n

x xσ σ 
 
 

− +  

  
      95% Confidence Limits 
 

where the critical value z.025 = 1.96 . 
 
Therefore, the margin of error (and thus, the size of 
the confidence interval) remains the same, from 
sample to sample. 
 
 
Example: 
 

Sample Mean x   95% CI 
 
1 

 
26.0 mos 

 
(26 − 1.47, 26 + 1.47) 

 
2 

 
27.0 mos 

 
(27 − 1.47, 27 + 1.47) 

. 

. 

. 

. 

. 
 

. 

. 

. 

. 

. 
 

. 

. 

. 

. 

. 
 

 
 
                    etc. 
 
Interpretation:  Based on Sample 1, the true mean µ of the “new treatment” population is 
between 24.53 and 27.47 months, with 95% “confidence.”  Based on Sample 2, the true 
mean µ is between 25.53 and 28.47 months, with 95% “confidence,” etc.  The ratio of 
# CI’s that contain µ

Total # CI’s

 

 → 0.95, as more and more samples are chosen, i.e., “The probability 

that a random CI contains the population mean µ is equal to 0.95.”  In practice however, the 
common (but technically incorrect) interpretation is that “the probability that a fixed CI 
(such as the ones found above) contains µ is 95%.”  In reality, the parameter µ is 
constant; once calculated, a single fixed confidence interval either contains it or not. 
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Z 
0 

1 − α α/2 α/2 

zα/2 −zα/2 

 

For any significance level α (and hence confidence level 1 − α), we similarly define the… 
 

 
where zα/2 is the critical value that divides the area under the standard normal 
distribution N(0, 1) as shown.  Recall that for α = 0.10, 0.05, 0.01 (i.e., 1 − α = 0.90, 0.95, 
0.99), the corresponding critical values are  z.05 = 1.645,  z.025 = 1.960, and  z.005 = 2.576, 
respectively.  The quantity  zα/2 n

σ   is the two-sided margin of error. 

 
Therefore, as the significance level α decreases (i.e., as the confidence level 1 − α 
increases), it follows that the margin of error increases, and thus the corresponding 
confidence interval widens.  Likewise, as the significance level α increases (i.e., as the 
confidence level 1 − α decreases), it follows that the margin of error decreases, and thus the 
corresponding confidence interval narrows. 
 

 
Exercise: Why is it not realistic to ask for a 100% confidence interval (i.e., “certainty”)? 
 

Exercise: Calculate the 90% and 99% confidence intervals for Samples 1 and 2 in the 
preceding example, and compare with the 95% confidence intervals. 
 

N(0, 1) 

X 

x 

95% CI 
99% CI 

90% CI 

(1 − α) × 100% Confidence Interval for µ 
 

/2 /2,z zn nα α
σ σ 

  
 

− +x x  
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We are now in a position to be able to conduct Statistical Inference

 

 on the population, 
via a formal process known as 

Objective 2a

 

:  Hypothesis Testing ~ “How does this new treatment compare with a 
‘control’ treatment?”  In particular, how can we use a confidence interval to decide this? 

STANDARD POPULATION  =  Cancer patients on standard drug treatment 

 
 
Technical Notes:  Although this is drawn as a bell curve, we don’t really care how the 
variable X is distributed in this population, as long as it is normally distributed in the study 
population of interest, an assumption we will learn how to check later, from the data.  
Likewise, we don’t really care about the value of the standard deviation σ of this 
population, only of the study population.  However, in the absence of other information, it is 
sometimes assumed (not altogether unreasonably) that the two are at least comparable in 
value.  And if this is indeed a standard treatment, it has presumably been around for a while 
and given to many patients, during which time much data has been collected, and thus very 
accurate parameter estimates have been calculated.  Nevertheless, for the vast majority of 
studies, it is still relatively uncommon that this is the case; in practice, very little if any 
information is known about any population standard deviation σ .  In lieu of this value 
then, σ  is usually well-estimated by the sample standard deviation s with little change,      
if the sample is sufficiently “large,” but small samples present special problems.   These 
issues will be dealt with later; for now, we will simply assume that the value of σ is known
 

. 

 
 
 
 
 

Random Variable:   X = “Survival time” (months) 

Suppose X is known to have mean = 25  months. 
 

Population Distribution of X    

  
   σ  =  6   

       

   25   
 

How does this compare with the  mean µ  of the study population? 
 

X 
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Hence, let us consider the situation where, before any sampling is done, it is actually the 
experimenter’s intention to see if there is a statistically significant difference between the 
unknown mean survival time µ of the “new treatment” population, and the known mean 
survival time of 25 months of the “standard treatment” population

 

.  (See page 1-1!)  That is, 
the sample data will be used to determine whether or not to reject the formal… 

Null Hypothesis H0:  µ = 25 
versus the 
          Alternative Hypothesis   HA:  µ ≠ 25 
 

at the α = 0.05 significance level (i.e., the 95% confidence level). 

 

Sample 1:  95% CI does contain µ = 25. Sample 2:  95% CI does not
Therefore, the data support H0, and we  Therefore, the data do not support H0, and we 

 contain µ = 25. 

cannot reject it at the α = .05 level.  Based  can reject
on this sample, the new drug 

 it at the α = .05 level.  Based on this 
does not result  sample, the new drug does

in a mean survival time that is significantly survival time that is significantly different 
 result in a mean 

different from 25 months.  Further study? from 25 months.  A genuine treatment effect.  
 

In general… 
Null Hypothesis H0:  µ = µ0 

versus the 
          Alternative Hypothesis   HA:  µ ≠ µ0 

 
Decision Rule:  If the (1 − α) × 100% confidence interval contains the value µ0, then the 
difference is not statistically significant; “accept” the null hypothesis at the α level of 
significance.  If it does not contain the value µ0, then the difference is statistically 
significant; reject the null hypothesis in favor of the alternative at the α significance level. 

Two-sided Alternative 
 

Either µ < 25 or µ > 25 

X 
  24.53  25   26    27.47 

X 
          25 25.53 27     28.47 

Null Distribution 
 

X  ~ N(25, 0.75) 

Two-sided Alternative 
 

Either µ < µ0 or µ > µ0 

“No significant difference exists.” 
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0.95 

X 

0.025 

µ = 25 

Acceptance 
Region for H0 
(Sample 1) 

Rejection 
Region 

 

Rejection 
Region 

0.025 

(Sample 2) 
 

23.53 26.47 27 26 

Null Distribution 
 

X  ~ N(25, 0.75) 

 

Objective 2b x:  Calculate which sample mean values  will lead to rejecting or not 
rejecting (i.e., “accepting” or “retaining”) the null hypothesis. 
 

From equation  above, and the calculated margin of error = 1.47, we have… 
 

P(µ − 1.47  ≤  X   ≤  µ + 1.47)  =  0.95 . 
 

Now, IF the null hypothesis  : µ = 25  is indeed true
 

, then substituting this value gives… 

P(23.53  ≤  X   ≤  26.47)  =  0.95 . 
 
Interpretation:  If the mean survival time x  
of a random sample of n = 64 patients is 
between 23.53 and 26.47, then the difference 
from 25 is “not statistically significant” (at 
the α = .05 significance level), and we retain 
the null hypothesis.  However, if x  is either 
less than 23.53, or greater than 26.47, then 
the difference from 25 will be “statistically 
significant” (at α = .05), and we reject the 
null hypothesis in favor of the alternative.  
More specifically, if the former, then the 
result is significantly lower than the standard 
treatment average (i.e., new treatment is 
detrimental!); if the latter, then the result is 
significantly higher than the standard 
treatment average (i.e., new treatment is 
beneficial). 

 
 

 
 
 
 

 
 

In general… 
 
 
 
 
 
 
 
 
Decision Rule:  If the (1 − α) × 100% acceptance region contains the value x , then the 
difference is not statistically significant; “accept” the null hypothesis at the α significance 
level.  If it does not contain the value x , then the difference is statistically significant; reject 
the null hypothesis in favor of the alternative at the α significance level. 

(1 − α) × 100% Acceptance Region for H0: µ = µ0 
 

/2 /2,z zn nα α
σ σ 

  
 

− +μ μ0 0  
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1 − α 

α/2 

H0:  µ = µ0 

Acceptance 
Region for H0 

Rejection 
Region 

 

Rejection 
Region 

α/2 
 

Null Distribution 
X  ~ N(µ0, σ / n ) 

 

Error Rates Associated with Accepting / Rejecting a Null Hypothesis 
 

(vis-à-vis Neyman-Pearson) 
 
 
 
- Confidence Level - 
 

      µ = µ0 
 
P(Accept H0 | H0 true)  =  1 − α  
 
 
- Significance Level - 
 

P(Reject H0 | H0 true)  =  α  
 
       Type I Error 

 
 
 
 
 
 
 
 

 
 
 
 
 
Likewise, 
      µ = µ1 
 
P(Accept H0 | H0 false)  =        β 
 
        Type II Error 
 
 

- Power - 
 

 P(Reject H0 | HA: µ = µ1)  =   1 − β
  
 

X  

Null Distribution 
X  ~ N(µ0, σ / n ) 

Alternative Distribution 
X  ~ N(µ1, σ / n ) 

H0:  µ = µ0 HA:  µ = µ1 

X  

X  

β 

1 – β 
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Objective 2c
x

:  “How probable is my experimental result, if the null hypothesis is true?”  
Consider a sample mean value .  Again assuming that the null hypothesis : µ = µ0 is 
indeed true, calculate the p-value of the sample = the probability that any random sample 
mean is this far away or farther, in the direction of the alternative hypothesis

 

.  That is, how 
significant is the decision about H0, at level α ? 

Sample 1:   p-value  =  P( X  ≤ 24  or  X  ≥ 26)     Sample 2:   p-value  =  P( X  ≤ 23  or  X  ≥ 27) 
 

 =  P( X  ≤ 24) + P( X  ≥ 26) =  P( X  ≤ 23) + P( X  ≥ 27)   

 =  2 × P( X  ≥ 26) =  2 × P( X  ≥ 27) 
 

 =  2 × P
0.75

26 25Z 
 
 

−≥  =  2 × P
0.75

27 25Z 
 
 

−≥  
 

 =  2 × P(Z ≥ 1.333) =  2 × P(Z ≥ 2.667) 
 

 =  2 × 0.0912 =  2 × 0.0038 
 

 =  0.1824  >  0.05  =  α =  0.0076  <  0.05  =  α 
 

Decision Rule:  If the p-value of the sample is greater than the significance level α, then the 
difference is not statistically significant; “accept” the null hypothesis at this level.  If the    
p-value is less than α, then the difference is statistically significant

 

; reject the null 
hypothesis in favor of the alternative at this level. 

Guide to statistical significance of p-values for α = .05: 
          ↓ 
 
 
 

Accept 
H0 

Reject 
H0 0 ≤ p ≤ .001 

extremely strong 
 

p ≈ .05 
borderline 
 

p ≈ .005 
strong 

 

p ≈ .01 
moderate 

 

.10 ≤ p ≤ 1 
not significant 

Recall that Z = 1.96 is the 
α = .05 cutoff z-score! 

0.95  

X 
  23.53  µ = 25        26 26.47 

0.0912
 

0.0912 
0.025 0.025 

0.95 

X 

0.025 

  23.53   µ = 25        26.47  27 

0.025 

0.0038 0.0038 

Test Statistic 
 

Z  =  
/

X
nσ

− μ0  ~ N(0, 1) 
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Summary of findings

x

:  Even though the data from both samples suggest a generally 
longer “mean survival time” among the “new treatment” population over the “standard 
treatment” population, the formal conclusions and interpretations are different.  Based on 
Sample 1 patients (  = 26), the difference between the mean survival time µ of the study 
population, and the mean survival time of 25 months of the standard population, is not 
statistically significant, and may in fact simply be due to random chance.  Based on 
Sample 2 patients ( x  = 27) however, the difference between the mean age µ of the study 
population, and the mean age of 25 months of the standard population, is indeed 
statistically significant, on the longer side.  Here, the increased survival times serve as 
empirical evidence of a genuine, beneficial “treatment effect” of the new drug. 
 

Comment:  For the sake of argument, suppose that a third sample of patients is selected, 
and to the experimenter’s surprise, the sample mean survival time is calculated to be only 
x  = 23 months.  Note that the p-value of this sample is the same as Sample 2, with x  = 27 
months, namely, 0.0076 < 0.05 = α.  Therefore, as far as inference is concerned, the 
formal conclusion is the same, namely, reject H0: µ = 25 months.  However, the practical 
interpretation is very different!  While we do have statistical significance as before, these 
patients survived considerably shorter than the standard average, i.e., the treatment had an 
unexpected effect of decreasing survival times, rather than increasing them.  (This kind of 
unanticipated result is more common than you might think, especially with investigational 
drugs, which is one reason for formal hypothesis testing, before drawing a conclusion.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

://www.african-caribbean-ents.com 
 

α = .05 

If p-value < α, 
then reject H0; 
significance! 

... But interpret it 
correctly! 

higher α  ⇒ 
easier to reject, 
less conservative  

lower α  ⇒   
harder to reject, 
more conservative  

http://www.african-caribbean-ents.com/�
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Modification

 

:  Consider now the (unlikely?) situation where the experimenter knows that 
the new drug will not result in a “mean survival time” µ that is significantly less than 25 
months, and would specifically like to determine if there is a statistically significant 
increase.  That is, he/she formulates the following one-sided null hypothesis to be rejected, 
and complementary alternative:   

Null Hypothesis H0:  µ ≤ 25 
versus the 
          Alternative Hypothesis   HA:  µ > 25 
 

at the α = 0.05 significance level (i.e., the 95% confidence level). 
 

In this case, the acceptance region for H0 consists of sample mean values x  that are less 

than the null-value of µ0 = 25, plus the one-sided margin of error  =  zα n
σ   =  z.05 

6
64

  =  

(1.645)(0.75) = 1.234, hence 26.234 .  Note that α replaces α/2 here

 

! 

 Sample 1:   p-value  =  P( X  ≥ 26)   Sample 2:   p-value  =  P( X  ≥ 27) 
 

 =  P(Z ≥ 1.333) =  P(Z ≥ 2.667) 
 

 =  0.0912 > 0.05 = α =  0.0038 < 0.05 = α 
 

     (accept) (fairly strong rejection) 
 
Note that these one-sided p-values are exactly half of their corresponding two-sided       
p-values found above, potentially making the null hypothesis easier to reject.  However, 
there are subtleties that arise in one-sided tests that do not arise in two-sided tests… 

Right-tailed Alternative 

0.95 

X 
µ = 25    26 26.234    
  

0.0912 

0.05 

0.95 

X 
µ = 25    26.234 27  
  

0.05 

0.0038 

Here, Z = 1.645 is the α = .05 
cutoff z-score!  Why? 
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Consider again the third sample of patients, whose sample mean is unexpectedly calculated 
to be only x  = 23 months.  Unlike the previous two samples, this evidence is in strong 
agreement with the null hypothesis H0: µ ≤ 25 that the “mean survival time” is 25 months 
or less.  This is confirmed by the p-value of the sample, whose definition (recall above) is 
“the probability that any random sample mean is this far away or farther, in the direction 
of the alternative hypothesis” which, in this case, is the right-sided HA: µ > 25.  Hence, 
 

 p-value  =  P( X  ≥ 23)  =  P(Z ≥ –2.667)  =  1 – 0.0038  =  0.9962  >> 0.05 = α 
 

which, as just observed informally, indicates a strong “acceptance” of the null hypothesis. 
 

Exercise: What is the one-sided p-value if the sample mean x  = 24 mos?  Conclusions? 
 

A word of caution:  One-sided tests are less conservative than two-sided tests, and should be 
used sparingly, especially when it is a priori unknown if the mean response µ is likely to be 
significantly larger or smaller than the null-value µ0, e.g., testing the effect of a new drug.  More 
appropriate to use when it can be clearly assumed from the circumstances that the conclusion 
would only be of practical significance if µ is either higher or lower (but not both) than some 
tolerance or threshold level µ0, e.g., toxicity testing, where only higher levels are of concern. 

 

X  
            | 

 

   µ = 25   26.234 

0.9962 

0.05 

0.95 

23 

SUMMARY:  To test any null hypothesis for one mean µ, via the p-value of a sample... 

• Step I:  Draw a picture of a bell curve, centered at the “null value” µ0.  

• Step II:  Calculate your sample mean x , and plot it on the horizontal X  axis. 

• Step III: From x , find the area(s) Ain the direction(s) of  H  (<, >, or both tails) , by first 
transforming x  to a z-score, and using the z-table.  This is your p-value.  SEE NEXT PAGE! 

• Step IV:  Compare p with the significance level α.  If <, reject H0.  If >, retain H0. 

• Step V:  Interpret your conclusion in the context of the given situation! 
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N(0, 1) 

z 

p/2 p/2 

N(0, 1) 

z 

p/2 p/2 

N(0, 1) 

z 

p 

N(0, 1) 

z 

p 

 

P-VALUES MADE EASY 
 

Def 0H:  Suppose a null hypothesis  about a population mean µ is to be tested, at a significance level α       
(= .05, usually), using a known sample mean x  from an experiment.  The p-value of the sample is the 
probability that a general random sample yields a mean X  that differs from the hypothesized “null value” 

0µ , by an amount which is as large as – or larger than – the difference between our known x  value and 0µ .  
Thus, a small p-value (i.e., < α) indicates that our sample provides evidence against the null hypothesis, and we may reject it; the 
smaller the p-value, the stronger the rejection, and the more “statistically significant” the finding.  A p-value > α indicates that our 
sample does not provide evidence against the null hypothesis, and so we may not reject it.  Moreover, a large p-value (i.e., ≈  1) 
indicates empirical evidence in support of the null hypothesis, and we may retain, or even “accept” it.  Follow these simple steps: 
 

STEP 1.  From your sample mean x , calculate the standardized z-score = 0

/
x

n
µ

σ
− . 

 
STEP 2.  What form is your alternative hypothesis? 
 
  0:AH µ µ<   (1-sided, left)......... p-value = tabulated entry corresponding to z-score 
 = left shaded area, whether 0z <  or 0z >  
   (illustrated) 
 
  0:AH µ µ>   (1-sided, right)...... p-value = 1 – tabulated entry corresponding to z-score 
 = right shaded area, whether 0z <  or 0z >  
   (illustrated) 

 
  0:AH µ µ≠   (2-sided) 
 

 If z-score is negative....... p-value = 2 × tabulated entry corresponding to z-score 
 = 2 × left-tailed shaded area  
 
 

 If z-score is positive........ p-value = 2 × (1 – tabulated entry corresponding to z-score) 
 = 2 × right-tailed shaded area 

 
 
STEP 3.   

 If the p-value is less than α (= .05, usually), then REJECT NULL HYPOTHESIS – 
EXPERIMENTAL RESULT IS STATISTICALLY SIGNIFICANT AT THIS LEVEL! 

 

 If the p-value is greater than α (= .05, usually), then RETAIN NULL HYPOTHESIS – 
EXPERIMENTAL RESULT IS NOT

 
 STATISTICALLY SIGNIFICANT AT THIS LEVEL! 

STEP 4.  IMPORTANT - Interpret results in context.  (Note
 

:  For many, this is the hardest step of all!) 

“standard error” 

Example 0: 10 ppbH µ <:  Toxic levels of arsenic in drinking water?  Test  (safe) vs. : 10 ppbAH µ ≥  

(unsafe), at .05α = .  Assume ( , )N µ σ , with 1.6 ppb.σ =   A sample of 64n =  readings that average to 
10.1 ppbx =  would have a z-score = 0.1/ 0.2 0.5,=  which corresponds to a p-value = 1 – 0.69146 = 0.30854 

> .05, hence not significant; toxicity has not been formally shown.  (Unsafe levels are 10.33 ppb.x ≥   Why?) 
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P-VALUES MADE SUPER EASY 
 
 
 
 
 
 

STATBOT 301, MODEL Z
Subject:  basic calculation of p-values for Z-TEST

sign of 
z-score?

1 – table entrytable entry

HA:  μ ≠ μ0?

HA:  μ < μ0 HA:  μ > μ0

2 × (table entry) 2 × (1 – table entry)

– +

CALCULATE… from H0

Test Statistic
“z-score” = 0x

n
µ

σ
−

 
 
 

Check the direction 
of the alternative 

hypothesis! 
 
 

Remember that the     
Z-table corresponds to 
the “cumulative” area to 
the left of any z-score. 
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    –4.9   +4.9 X 
≈ 0 

β 

≈ 1 − β 

28 28 − 0.75 zβ 25 

| 
 

28 + 0.75 zβ 

.95 

.025 .025 
 

X 
Rejection Region Rejection Region 

23.53 25 26.47 

Null 
Distribution 

Alternative 
Distribution 

Acceptance Region 
for H0: μ = 25 

 
     –1.47   +1.47 

These diagrams compare the null distribution for μ = 25, 
with the alternative distribution corresponding to μ = 28 in 
the rejection region of the null hypothesis.  By definition, 
β = P(Accept H0 | HA: μ = 28), and its complement – the 
power to distinguish these two distributions from one 
another – is 1 – β = P(Reject H0 | HA: μ = 28), as shown 
by the gold-shaded areas below.  However, the “left-tail” 
component of this area is negligible, leaving the remaining 
“right-tail” area equal to 1 – β by itself, approximately.  
Hence, this corresponds to the critical value −zβ in the 
standard normal Z-distribution (see inset), which 
transforms back to 28 − 0.75 zβ in the X -distribution.  
Comparing this boundary value in both diagrams, we see 
that  

() 28 − 0.75 zβ  =  26.47         
 
 and solving yields –zβ = –2.04.   Thus, β = 0.0207, 

and the associated power = 1 – β = 0.9793, or 
98%.  Hence, we would expect to be able to detect  
      significance 98% of the time, using 64 patients. 

X  ~ N(28, 0.75) 

 

Power and Sample Size Calculations 
 

Recall: X = survival time (mos) ~ N(μ, σ), with σ = 6 (given).  Testing null hypothesis H0: μ = 25 (versus 
the 2-sided alternative HA: μ ≠ 25), at the α = .05 significance level.  Also recall that, by definition, power 
= 1 – β = P(Reject H0 | H0 is false, i.e., μ ≠ 25).  Indeed, suppose that the mean survival time of “new 
treatment” patients is actually suspected to be HA: μ = 28 mos.  In this case, what is the resulting power to 
distinguish the difference and reject H0, using a sample of n = 64 patients (as in the previous examples)? 

 
 
 

 
 
 

 
 
 
 
       Z 
         −zβ    0 
 

β 
1 − β 

X  ~ N(25, 0.75) 
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General Formulation: 
 

Procurement of drug samples for testing purposes, or patient recruitment for clinical trials, 
can be extremely time-consuming and expensive.  How to determine the minimum sample 
size n required to reject the null hypothesis H0: µ = µ0, in favor of an alternative value    
HA: µ = µ1, with a desired power 1 − β , at a specified significance level α ?  (And 
conversely, how to determine the power 1 − β  for a given sample size n, as above?) 
 

 H0 true H0 false 

Reject H0 
 Type I error, 
probability = α 

(significance level) 

 
probability = 1 − β 

(power) 

Accept H0 
 

probability = 1 − α 
(confidence level) 

 Type II error, 
probability = β  

(1 − power) 
 
That is, confidence level  =  1 − α  =  P(Accept H0: µ = µ0 | H0 is true), 
 

and         power  =  1 − β  =  P(Reject H0: µ = µ0 | HA: µ = µ1). 

β 

1 − β 1 − α 

α/2 α/2 

µ1 µ1  −  zβ  
n
σ  

µ0  −  zα/2
n
σ  µ0 µ0  +  zα/2

n
σ  

Null Distribution 
 

X  ~ ,
n

N σ 
 
 
μ0  

Alternative Distribution 
 

X  ~ ,
n

N σ 
 
 
μ1  

X  
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µ0 µ1 

 
µ0 µ1 

than these 
two, based 
solely on 
sample 
data. 

 

It is easier to 
distinguish 
these two 

distributions 
from each 

other... 
 

 

Hence (compare with () above),  
µ1  −  zβ 

n
σ    =   µ0  +  zα/2 

n
σ  . 

Solving for n yields the following. 

 
Comments:  
 This formula corresponds to a two-sided hypothesis test.  For a one-sided test, simply 

replace α/2 by α.  Recall that if α = .05, then z.025 = 1.960 and z.05 = 1.645. 
 If σ is not known, then it can be replaced above by s, the sample standard deviation, 

provided the resulting sample size turns out to be n ≥ 30, to be consistent with CLT. 
However, if the result is n < 30, then add 2 to compensate.  [Modified from:  Lachin, 
J. M. (1981), Introduction to sample size determination and power analysis for 
clinical trials. Controlled Clinical Trials, 2(2), 93-113.] 

 

What affects sample size, and how?  With all other values being equal… 
 

 As power 1 − β increases, n increases; as 1 − β decreases, n decreases. 
 

 As the difference ∆ decreases, n increases; as ∆ increases, n decreases. 
 
 
 
 
 
 
 
 
 

Exercise:  Also show that n increases... 
 as σ increases,  [Hint:  It may be useful to draw a picture, similar to above.] 
 as α decreases.  [Hint:  It may be useful to recall that α is the Type I Error rate, 

or equivalently, that 1 – α is the confidence level.] 

In order to be able to detect a statistically significant difference 
(at level α) between the null population distribution having mean 
µ0, and an alternative population distribution having mean µ1, 
with a power of 1 − β, we require a minimum sample size of  
 

n  =  






zα/2  +  zβ

∆  
2
 
 
, 

 

where  ∆ = 
|µ1 − µ0|

σ   is the “scaled difference” between µ0 and µ1. 

Note:       Remember 
that, as we defined it, 
zβ is always ≥ 0, and 
has β area to its right. 

 
 
 
 
       Z 
                  0     zβ 
 

 β 
1 − β 
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Examples:  Recall that in our study,  µ0= 25 months,  σ = 6 months. 
 

Suppose we wish to detect a statistically significant difference (at level α = .05  ⇒  
z.025 = 1.960) between this null distribution, and an alternative distribution having… 
 

 µ1 = 28 months, with 90% power (1 − β = .90  ⇒  β = .10  ⇒ z.10 = 1.282).  Then the 

scaled difference ∆ = 
|28 − 25|

6  = 0.5, and  
 

n  =  






1.960 +  1.282

0.5  
2
 
 
   =  42.04, so n ≥ 43 patients. 

 

 µ1 = 28 months, with 95% power (1 − β = .95  ⇒  β = .05  ⇒ z.05 = 1.645).  Then, 
 

n  =  






1.960 +  1.645

0.5  
2
 
 
   =  51.98, so n ≥ 52 patients. 

 

 µ1 = 27 months, with 95% power (so again, z.05 = 1.645).  Then  ∆ = 
|27 − 25|

6  = 0.333,  
 

n  =  






1.960 +  1.645

0.333  
2
 
 
   =  116.96, so n ≥ 117 patients. 

 
 

Table of Sample Sizes* for Two-Sided Tests (α = .05) 
 Power 
∆ 80% 85% 90% 95% 99% 
0.1 785 898 1051 1300 1838 
0.125 503 575 673 832 1176 
0.15 349 400 467 578 817 
0.175 257 294 344 425 600 
0.2 197 225 263 325 460 
0.25 126 144 169 208 294 
0.3 88 100 117 145 205 
0.35 65 74 86 107 150 
0.4 50 57 66 82 115 
0.45 39 45 52 65 91 
0.5 32 36 43 52 74 
0.6 24 27 30 37 52 
0.7 19 21 24 29 38 
0.8 15 17 19 23 31 
0.9 12 14 15 19 25 
1.0 10 11 13 15 21 
 * Shaded cells indicate that 2 was added to compensate for small n. 
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∆ = 0.0 

∆ = 0.1 

∆ = 0.2 

∆ = 0.3 

∆ = 0.4 
∆ = 1.0 

 

 

n = 10 

n = 20 

n = 30 

n = 100 

∆ = |µ1 −µ0| / σ 

.025
2
α
=   − 

 

Power Curves – A visual way to relate power and sample size.  

1 
– 
β 

 

1 
– 
β 

 

1 

Question:  
Why is power 
not equal to 0 
if Δ = 0? 
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Comments: 
 

 Due to time and/or budget constraints for example, a study may end before optimal 
sample size is reached.  Given the current value of n, the corresponding power can then 
be determined by the graph above, or computed exactly via the following formula. 

 

 

Example:  As in the original study, let α = .05, | |
6
−∆ = 8 252  = 0.5, and n = 64.  Then the 

z-score = –1.96 + 0.5 64  = 2.04, so power = 1 − β  =  P(Z ≤ 2.04) = 0.9793, or 98% . 
The probability of committing a Type 2 error = β  =  0.0207, or 2%.  See page 6.1-15. 

 
Exercise:  How much power exists if the sample size is n = 25?  16?  9?  4?  1? 

 

 Generally, a minimum of 80% power is acceptable for reporting purposes. 
 

 Note: Larger sample size ⇒ longer study time ⇒ longer wait for results.  In clinical 
trials and other medical studies, formal protocols exist for early study termination. 

 

 Also, to achieve a target sample size, practical issues must be considered (e.g., parking, 
meals, bed space,…).  Moreover, may have to recruit many more individuals due to 
eventual censoring (e.g., move-aways, noncompliance,…) or death.  $$$$$$$ issues… 

 

 Research proposals must have power and sample size calculations in their “methods” 
section, in order to receive institutional approval, support, and eventual journal 
publication. 

0.0207 

0.9793 

Z 
2.04 

N(0, 1) 

Power  =  1 − β  =  P(Z ≤ −zα/2 + ∆ n) 
 
           z-score 

The z-score can 
be +, –, or 0. 



Ismor Fischer, 1/8/2014 6.1-21 

N(0, 1):  ϕ(z) = 
 1
2π

 e 

 
 

−z²/2 

tn−1:  fn(t) = 
1

(n − 1)π
  

Γ


n

2

Γ



n − 1

2

 



1 + 

t 2

n − 1  
−n/2 

     −tn−1, α/2   −zα/2          zα/2   tn−1, α/2 

 

Small Samples:  Student’s t-distribution  
 

Recall that, vis-à-vis the Central Limit Theorem:  X ~ N(µ, σ)  ⇒  X  ~ N








µ, 
σ
n ,  for any n. 

Test statistic… 

• σ known:  Z  =  
X  − µ
σ / n   ~  N(0, 1). 

 

• σ unknown,  n ≥ 30: Z  =  
X  − µ
s / n   ~  N(0, 1)  approximately   

 

• σ unknown,  n < 30: T  =  
X  − µ
s / n   ~  tn−1  ← Note: Can use for n ≥ 30 as well. 

 

Student’s t-distribution, with ν = n − 1 degrees of freedom df = 1, 2, 3,… 
 

(Due to William S. Gossett (1876 - 1937), Guinness Brewery, Ireland, 
anonymously publishing under the pseudonym “Student” in 1908.)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 df = 1 is also known as the Cauchy distribution. 
 

 As df → ∞, it follows that  T ~ tdf  →  Z ~ N(0, 1). 
 

Recall: 
 

s.e. = σ / n 
 

s.e.  = s / n 
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.025 

22.42 

.025 
 

µ = 25  27.58 

X 
27.4 

0.0334 0.0334 

 

Example:  Again recall that in our study, the variable X = “survival time” was assumed to 
be normally distributed among cancer patients, with σ = 6 months.  The null hypothesis      
H0: µ = 25 months was tested with a random sample of n = 64 patients; a sample mean of  
x  = 27.0 months was shown to be statistically significant (p = .0076), i.e., sufficient 
evidence to reject the null hypothesis, suggesting a genuine difference, at the α = .05 level. 
 

Now suppose that σ is unknown and, like µ, must also be estimated from sample data.  
Further suppose that the sample size is small, say n = 25 patients, with which to test the 
same null hypothesis H0: µ = 25, versus the two-sided alternative HA: µ ≠ 25, at the α = .05 
significance level.  Imagine that a sample mean x  = 27.4 months, and a sample standard 
deviation s = 6.25 months, are obtained.  The greater mean survival time appears promising.  
However… 
 

 s.e.   =  
 s
n  =  

6.25 mos
25   =  1.25 months 

 

  (> s.e. = 0.75 months) 
        Therefore, 
 critical value  =  t24, .025  =  2.064     
        Margin of Error   =  (2.064)(1.25 mos) 
 

           =  2.58 months 
 

         (> 1.47 months, previously) 
 
        So… 
 
 

 95% Confidence Interval for µ  =  (27.4 − 2.58,  27.4 + 2.58)  =  (24.82,  29.98) months, 
which does contain the null value µ = 25  ⇒  Accept H0…  No significance shown! 
 

 95% Acceptance Region for H0  =  (25 − 2.58,  25 + 2.58)  =  (22.42,  27.58) months, 
which does contain the sample mean x  = 27.4  ⇒  Accept H0…  No significance shown! 

 

 p-value  =  2 P( X  ≥ 27.4)  =  2 P



T24 ≥ 

27.4 − 25
1.25   

=   2 P(T24 ≥ 1.92)  =  2(0.0334)  =  0.0668,, which 
is greater than α = .05 ⇒ Accept H0... No 
significance shown! 

 
Why?  The inability to reject is a typical consequence 
of small sample size, thus low power! 
 
Also see Appendix > Statistical Inference > Mean, 
One Sample for more info and many more examples 
on this material. 

0.95 

.025 

−2.064      0  2.064 

.025 
 

t24 

http://www.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/APPENDIX/A3._Statistical_Inference/A3.1_-_Mean,_One_Sample.pdf�
http://www.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/APPENDIX/A3._Statistical_Inference/A3.1_-_Mean,_One_Sample.pdf�
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Example:  A very simplified explanation of how fMRI works 
 

Functional Magnetic Resonance Imaging (fMRI) is one technique of visually mapping areas 
of the human cerebral cortex in real time.  First, a three-dimensional computer-generated 
image of the brain is divided into cube-shaped voxels (i.e., “volume elements” – analogous 
to square “picture elements,” or pixels, in a two-dimensional image), about 2-4 mm on a 
side, each voxel containing thousands of neurons.  While the patient is asked to concentrate 
on a specific mental task, increased cerebral blood flow releases oxygen to activated 
neurons at a greater rate than to inactive ones (the so-called “hemodynamic response”), and 
the resulting magnetic resonance signal can be detected.  In one version, each voxel signal 
is compared with the mean of its neighboring voxels; if there is a statistically significant 
difference in the measurements, then the original voxel is assigned one of several colors, 
depending on the intensity of the signal (e.g., as determined by the p-value); see figures.   
 

Suppose the variable X = “Cerebral Blood Flow (CBF)” typically follows a normal 
distribution with mean µ = 0.5 ml/g/min at baseline.  Further, suppose that the n = 6 
neighbors surrounding a particular voxel (i.e., front and back, left and right, top and bottom) 
yields a sample mean of x  = 0.767 ml/g/min, and sample standard deviation of s = 0.082 
ml/g/min.  Calculate the two-sided p-value of this sample (using baseline as the null 
hypothesis for simplicity), and determine what color should be assigned to the central voxel, 
using the scale shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution:  X = “Cerebral Blood Flow (CBF)” is normally distributed, H0: µ = 0.5 ml/g/min 
 n = 6     x  = 0.767 ml/g/min     s = 0.082 ml/g/min 

As the population standard deviation σ is unknown, and the sample size n is small, the t-test 
on df = 6 – 1 = 5  degrees of freedom is appropriate. 

Using standard error estimate s.e.  = s
n

 = 0.082 ml/g/min
6

 = 0.03348 ml/g/min   yields  

p-value  =  2 P( X  ≥ 0.767) = 2 5
0.767 0.5

0.03348
P T
 −

≥ 
 

 = 2 P(T5 ≥ 7.976) = 2 (.00025) = .0005 

This is strongly significant at any reasonable level α.  According to the scale, the voxel 
should be assigned the color RED. 

p ≥ .05  gray 

.01 ≤ p < .05  green 

.005 ≤ p < .01  yellow 

.001 ≤ p < .005  orange 

p < .001  red 
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ALTERNATIVE  HYPOTHESIS

HA:  μ < μ0 HA:  μ ≠ μ0 HA:  μ > μ0

t-
sc

or
e + 1 – table entry 2 × table entry table entry

– table entry
for |t-score|

2 × table entry
for |t-score|

1 – table entry
for |t-score|

STATBOT 301, MODEL T
Subject:  basic calculation of p-values for T-TEST

CALCULATE… from H0

Test Statistic
“t-score” = 0x

s n
µ−

Remember that the   
T-table corresponds to 
the area to the right of 
a positive t-score. 



Ismor Fischer, 1/8/2014 6.1-25 

Each of these 25 
areas represents 
.04 of the total. 

 

 
Checks for normality  ~  Is the ongoing assumption that the sample data come 
from a normally-distributed population reasonable? 
 
 Quantiles:  As we have already seen, ≈ 68% within ±1 s.d. of mean, ≈ 95% within ±2 

s.d. of mean, ≈ 99.7% within ±3 s.d. of mean, etc.  Other percentiles can also be 
checked informally, or more formally via... 

 
 Normal Scores Plot: The graph of the quantiles of the n ordered (low-to-high) 

observations, versus the n known z-scores that divide the total area under N(0, 1) 
equally (representing an ideal sample from the standard normal distribution), should 
resemble a straight line.  Highly skewed data would generate a curved plot.  Also 
known as a probability plot or Q-Q plot (for “Quantile-Quantile”), this is a popular 
method. 
 
Example:  Suppose n = 24 ages (years).  Calculate the .04 quantiles of the sample, and 
plot them against the 24 known (i.e., “theoretical”) .04 quantiles of the standard 
normal distribution (below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{–1.750, –1.405, –1.175, –0.994, –0.842, –0.706, –0.583, –0.468, –0.358, –0.253, –0.151, –0.050, 
+0.050, +0.151, +0.253, +0.358, +0.468, +0.583, +0.706, +0.842, +0.994, +1.175, +1.405, +1.750}
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  Sample 1:   
 

{6, 8, 11, 12, 15, 17, 20, 20, 21, 23, 24, 24, 26, 28, 29, 30, 31, 32, 34, 37, 40, 41, 42, 45} 
 
The Q-Q plot of this sample (see first graph, below) reveals a more or less linear trend 
between the quantiles, which indicates that it is not unreasonable to assume that these 
data are derived from a population whose ages are indeed normally distributed. 
 
 
  Sample 2: 
 

{6, 6, 8, 8, 9, 10, 10, 10, 11, 11, 13, 16, 20, 21, 23, 28, 31, 32, 36, 38, 40, 44, 47, 50} 
 
The Q-Q plot of this sample (see second graph, below) reveals an obvious deviation 
from normality.  Moreover, the general “concave up” nonlinearity seems to suggest that 
the data are positively skewed (i.e., skewed to the right), and in fact, this is the case.  
Applying statistical tests that rely on the normality assumption to data sets that are not 
so distributed could very well yield erroneous results! 

 
Formal tests for normality include: 
 

 Anderson-Darling 
  

 Shapiro-Wilk 
 

 Lilliefors (a special case of Kolmogorov-Smirnov) 
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Remedies for non-normality  ~  What can be done if the normality 
assumption is violated, or difficult to verify (as in a very small sample)? 
 

 Transformations:  Functions such as Y = X or Y = ln(X), can transform a positively-
skewed variable X into a normally distributed variable Y.  (These functions “spread 
out” small values, and “squeeze together” large values.  In the latter case, the original 
variable X is said to be log-normal.) 

 
Exercise:  Sketch separately the dotplot of X, and the dotplot of Y = ln(X) (to two 
decimal places), and compare. 
 

X Y = ln(X) Frequency 
1  1 
2  2 
3  3 
4  4 
5  5 
6  5 
7  4 
8  4 
9  3 
10  3 
11  3 
12  2 
13  2 
14  2 
15  2 
16  1 
17  1 
18  1 
19  1 
20  1 

 
 
 
 
 Nonparametric Tests:  Statistical tests (on the median, rather than the mean) that are 

free of any assumptions on the underlying distribution of the population random 
variable.  Slightly less powerful than the corresponding parametric tests, tedious to 
carry out by hand, but their generality makes them very useful, especially for small 
samples where normality can be difficult to verify. 

 
 Sign Test (crude),  Wilcoxon Signed Rank Test (preferred) 
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GENERAL SUMMARY… 

 
Step-by-Step Hypothesis Testing 

One Sample Mean   H0: µ vs. µ0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

CONTINUE… 

Is σ known? 

Is n ≥ 30? 

Use Z-test 
(with σ) 

Use t-test 
(with σ̂  = s) 

Use Z-test or t-test 
(with σ̂  = s) 

Use a transformation,  
or a nonparametric test,  
e.g., Wilcoxon Signed 

Rank Test 

Is random variable 
approximately 

normally distributed 
(or mildly skewed)? 

Yes No 

Yes 
No, or  

don’t know 

Yes No 

0 ~ (0,1)XZ N
n
µ

σ
−

=  0 ~ (0,1)XZ N
s n

µ−
=  0

1~ n
XT t
s n

µ
−

−
=  

(used most often 
in practice) 
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p-value:  “How do I know in which direction to move, to find the p-value?” 
  See STATBOT, page 6.1-14 (Z) and page 6.1-24 (T), or… 

  Alternative Hypothesis 

  1-sided, left 
HA:  < 

2-sided 
HA:  ≠ 

1-sided, right 
HA:  > 

Z-
 o

r T
df

 - 
sc

or
e 

+ 

   

– 

   

 
 The p-value of an experiment is the probability (hence always between 0 and 1) of 

obtaining a random sample with an outcome that is as, or more, extreme than the 
one actually obtained, if the null hypothesis is true. 

 Starting from the value of the test statistic (i.e., z-score or t-score), the p-value is 
computed in the direction of the alternative hypothesis (either <, >, or both), which 
usually reflects the investigator’s belief or suspicion, if any. 

 If the p-value is “small,” then the sample data provides evidence that tends to refute 
the null hypothesis; in particular, if the p-value is less than the significance level α, 
then the null hypothesis can be rejected, and the result is statistically significant at 
that level.  However, if the p-value is greater than α, then the null hypothesis is 
retained; the result is not statistically significant at that level.  Furthermore, if the   
p-value is “large” (i.e., close to 1), then the sample data actually provides evidence 
that tends to support the null hypothesis.   

0 

0 

0 

0 

0 

0 
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§ 6.1.2 Variance 
 
Given
 

: Null Hypothesis   H0:  σ 2 = σ0
 2 (constant value) 

versus  Alternative Hypothesis   HA:  σ 2 ≠ σ0
 2 

 
 

 

Test statistic:   Χ  2  =  
(n − 1) s2

 σ0
 2   ~  χ 2

n−1   
 

Sampling Distribution of Χ 2: 
 

Chi-Squared Distribution, with ν = n − 1 degrees of freedom df = 1, 2, 3,… 

Note that the chi-squared distribution is not symmetric, but skewed to the right.  We will not 
pursue the details for finding an acceptance region and confidence intervals for σ 2 here.  But 
this distribution will appear again, in the context of hypothesis testing for equal proportions. 
 

Two-sided Alternative 
 

Either σ 2 < σ0
 2 or σ 2 > σ0

 2 

ν = 1 

ν = 2 

ν = 3 

ν = 4 
ν = 5 

ν = 6 
ν = 7 

fν(x)  =    
1

2 ν/2 Γ(ν/2)  x
 ν/2 − 1 e−x/2 

Sample, size n 
 

Calculate s 2  

Population Distribution ~ N(µ, σ) 

σ 
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← Illustration of the bell curves 
(1 )

,  N
n

π π
π
 −
  
 

 

for n = 100, as proportion π ranges from 0 to 1.     
Note how, rather than being fixed at a constant value, 
the “spread” s.e. is smallest when π is close to 0 or 1   
(i.e., when success in the population is either very rare 
or very common), and is maximum when π = 0.5   
(i.e., when both success and failure are equally likely).  
Also see Problem 4.4/10.  This property of 
nonconstant variance has further implications; see 
“Logistic Regression” in section 7.3. 

.03 

.04 

.046 .049 .05 .049 .046 

.04 

.03 

| 
 

0.1 
| 
 

0.3 
| 
 

0.5 
| 
 

0.7 
| 
 

0.9 

π = 0 π = 1 

π = 0.5 

 

§ 6.1.3 Proportion 

 
Problem!  The expression for the standard error involves the very parameter π upon which 
we are performing statistical inference.  (This did not happen with inference on the mean µ, 
where the standard error is s.e. = σ / n, which does not depend on µ.) 
 

Binary random variable 
 

 1,  Success  with probability π 
Y  = 
 0,  Failure   with probability 1 − π 
 

POPULATION 

Experiment:   n independent trials 
 

SAMPLE 
 Random Variable:  X  =  # Successes  ~  Bin(n, π) 

 

Recall:  Assuming  n ≥ 30,  nπ ≥ 15,  and  n (1 − π) ≥ 15, 
 

X  ~  N ( nπ, nπ (1 − π) ),  approximately.   (see §4.2) 
 

Therefore, dividing by n… 
 

π̂   =  
X
n  ~  N 









π ,  (1 )
n
−π π ,  approximately. 

 

 
 standard error s.e. 
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Example: Refer back to the coin toss example of section 1.1, where a random sample of 
n = 100 independent trials is performed in order to acquire information about the 
probability P(Heads) = π.  Suppose that X = 64 Heads are obtained.  Then the sample-
based point estimate of π is calculated as  π̂  = X / n = 64/100 = 0.64 .  To improve this to 
an interval estimate, we can compute the… 
 
 
 
 
 
 
 
 95% Confidence Interval for π 
 

95% limits  =  0.64  ±  z.025 
(0.64)(0.36)

100   =  0.64  ±  1.96 (.048) 

∴ 95% CI  =  (0.546, 0.734)  contains the true value of π, with 95% confidence. 
  
 
 
 
 
 
 
 
 
As the 95% CI does not contain the null-value π = 0.5, H0 can be rejected at the 
α = .05 level, i.e., the coin is not fair. 
 
 
 
 
 
 

 
 
 95% Acceptance Region for H0:  π = 0.50 
 

95% limits  =  0.50  ±  z.025 
(0.50)(0.50)

100   =  0.50  ±  1.96 (.050) 

∴ 95% AR  =  (0.402, 0.598) 
 

As the 95% AR does not contain the sample proportion π̂  = 0.64, H0 can be 
rejected at the α = .05 level, i.e., the coin is not fair. 

Is the coin fair at the α = .05 level? 
 

Null Hypothesis      H0:  π = 0.5 
 

vs.  Alternative Hypothesis HA:  π ≠ 0.5 

(1 − α) × 100% Acceptance Region for H0:  π = π0 
 









π0  −  zα/2 
π0 (1 − π0)

n  ,   π0  +  zα/2 
π0 (1 − π0)

n   

(1 − α) × 100% Confidence Interval for π 
 









π̂   −  zα/2 
π̂  (1 − π̂ )

n  ,   π̂   +  zα/2 
π̂  (1 − π̂ )

n   

s.e.0 = .050 

s.e.  = .048 

≠ 
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π = 0.5 0.402 0.598 0.64 0.546 0.734 

0.95 

0.025 0.025 

0.0026 0.0026 
π ̂ 

 

0.5 is not in the 95% 
Confidence Interval 

= (0.546, 0.734) 

 

0.64 is not in the 95% 
Acceptance Region     

= (0.402, 0.598) 

 
 

 p-value  =  2 P(π̂  ≥ 0.64)  =  2 P



Z ≥ 0.64 − 0.50

.050   =  2 P(Z ≥ 2.8)  =  2(.0026)  =  .0052 
 

 As p << α = .05, H0 can be strongly rejected at this level, i.e., the coin is not fair. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test Statistic 
 

Z  =  
π̂  − π0

 
π0 (1 − π0)

n

  ~  N(0, 1) 

Null Distribution 
 

π̂  ~ N(0.5, .05) 
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Comments: 
 

 A continuity correction factor of ± 
0.5
n  may be added to the numerator of the Z test 

statistic above, in accordance with the “normal approximation to the binomial 
distribution” – see 4.2 of these Lecture Notes.  (The “n” in the denominator is there 
because we are here dealing with proportion of success π̂  = X / n, rather than just 
number of successes X.) 

 
 Power and sample size calculations are similar to those of inference for the mean, and 

will not be pursued here. 
 
 
               IMPORTANT 
See  Appendix > Statistical Inference > General Parameters and FORMULA TABLES. 
 

and Appendix > Statistical Inference > Means and Proportions, One and Two Samples. 
 
 

http://www.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/APPENDIX/A3._Statistical_Inference/A3.3_-_General_Parameters_and_FORMULA_TABLES.pdf�
http://www.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/APPENDIX/A3._Statistical_Inference/A3.2_-_Means_and_Proportions,_One_and_Two_Samples.pdf�
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