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Lab 2 - Adiabatic Processes

Theory

This laboratory is a study of the adiabatic expansion of three gases:  helium, air, and carbon

dioxide.  The experiments are carried out at a pressure of approximately one atmosphere and at

room temperature (~ 295˚ K).  Under these conditions the gases are close to ideal in behavior, and

so the theoretical values of the various quantities to be measured will be those of an ideal gas.

An adiabatic process is one that takes place so rapidly that no heat transfer takes place between

the surroundings and the system, or within the system.  Two types of adiabatic processes are ex-

amined.  In one, a container is filled to a slight overpressure with a gas, and then a stopper is

popped so as to make the gas decompress quickly.  In the other, a ball is bounced on a cushion of

gas, alternately compressing and expanding it without allowing heat transfer to take place.

An ideal gas is a collection of point particles that are non-interacting (except for momentary

collisions).  The translation kinetic energy of the particles is related to the temperature by the equa-

tion
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where  k  is Boltzmann's constant, 1.38 x 10-16 erg/deg .  If the gas is made up of diatomic or tri-

atomic molecules, there will also be a rotational part to the kinetic energy.  The amount of any gas

is given by the number of moles  n , one mole being 6.023 x 1023 particles. The pressure inside a

container of gas is determined by the number of moles, the temperature, and the volume of the

container.  They are related by the equation of state of an ideal gas

pV   =   nRT .        

The specific heat of a gas is the heat energy added to the gas per degree of temperature rise.

The value of the specific heat depends on the condition under which the heat is added.  If the heat

is added at constant volume the heat energy goes entirely into increasing the internal kinetic energy

of the particles.  If the heat is added at constant pressure, the gas can expand while the heat is

added and the gas does work on the expanding walls of the container.  Consequently, the specific
heat at constant pressure (Cp) is greater than the specific heat at constant volume (Cv).  As derived

in section 20.5 of Ohanian, the two are related by

Cp   =   Cv  +  R .        

By applying the first law of thermodynamics and using the adiabatic condition of zero heat

transfer, it can be shown (see the appendix at the end of this writeup or section 20.6 of Ohanian)



that the pressure and volume of an ideal gas obey the equation (called the adiabatic law)

pVγ   =   constant

during an adiabatic process.  The exponent  γ  is the ration of the specific heats,  Cp / Cv .

The experimentally measured values of the two specific heats and the ratio  γ , can be explained

from a simple theoretical model and calculation.  The principle of equipartition of energy is invoked

to assign  (1/2)RT  per mole per degree of freedom to the internal energy.  Since

Cv   =   
dQ
dT constant volume

   =   dU
dT

(because no work is done at constant volume), we would expect to have  Cv = (1/2)R  per mol per

degree of freedom.

The number of degrees of freedom and the value of  Cv  depend on the complexity of the inter-

nal energy of the gas.  A monatomic gas can only move with three translational degrees of free-
dom, so  Cv = (3/2)R .  A diatomic gas (dumbbells) can move with the same three translational

modes and can rotate in two dimensions as well; therefore, in this case  Cv = (5/2)R .  A triatomic

gas can rotate in three dimensions, so  Cv = 3R .  Therefore, the values of  Cp  for the three cases

are  (5/2)R , (7/2)R , and 4R ; and the values of  γ  from this simple theory are 1.67 , 1.4 , and

1.33  respectively.  Actual experimental values of  γ  for helium, air, and carbon dioxide are:

  He 1.67

Air 1.40
CO2 1.30

The Method of Clement and Desormes

A simple and straightforward method of measuring  was developed in the 19th century by

Clement and Desormes.  A container of gas is pressurized slightly above atmospheric pressure and

allowed to come to equilibrium temperature with the surroundings.  Then a stopper is popped mo-

mentarily to decompress the gas to one atmosphere.  The gas cools during this expansion. The

temperature immediately after decompression can be calculated by combining the ideal gas law with
the adiabatic law.  Let  p1  be the pressure before decompression,  po  the atmospheric pressure,

Vc  the volume of the container,  V  the volume of the expanded gas,  To  the room temperature,

and  T  the temperature after decompression.  We have

p1Vc
γ   =   poV

γ  ,     p1Vc   =   nRTo  ,     poV   =   nRT   

which can be combined to give
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After decompression, the gas warms up until the final temperature is again  To  and the pressure is

p2 , with  p2  >  po  but  p2  <  p1 .  From the ideal gas equation (n  and V are constant), we have

poTo  =  p2T  ,  so that

T
To
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p
po

and therefore

p2
po
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p1
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In the experiment the pressures  p1  and  p2  are only slightly greater than  po:  p1  =  po +  ∆p1,

p2  =  po +  ∆p2 ,  so the above equation can be written

1  +  
∆p2
po

γ
   =   1  +  

∆p1
po

γ-1
.        

Since the term on the right in the bracket on each side is much less than 1, we can apply the bino-

mial expansion to get

1  +  γ  
∆p2
po

   =   1  +  γ   -  1  
∆p1
po

with the final result

γ    =   
∆p1

∆p1  -  ∆p2
.     (1)

 Despite the algebraic gymnastics needed to arrive at this equation, the expression is simple and
it can be applied easily in the experiment.  An oil manometer is used to read  ∆p1  (the pressure be-

fore the cork is popped) and  ∆p2  (the pressure the gas comes to when back at room temperature)

directly.

Ruchardt's Method



Another more sophisticated method of measuring  γ  was developed by Ruchardt.  A container

of gas has a long glass tube emerging from the top.  A ball bearing, exactly fitting the precision

glass tube, is dropped into it.  The ball bounces on the gas below, compressing it adiabatically on

the downswing and letting it expand adiabatically on the upswing.  The period of the oscillations of

the bouncing ball is directly related to the  γ  of the gas and the geometry of the system.

Let  V  be the enclosed volume,  po  the atmospheric pressure,  m  the mass of the ball, and  A

the cross-sectional area of the tube.  The pressure in the container will be  p  =  po +  mg/A .  If the

ball is stationary,  mg  =  A(p - po) .  If the ball is pressed down a distance  dx , compressing the

gas adiabatically, the volume change of the gas will be  dV = Adx .  The pressure rise will be

dp   =   
dp
dV

 dV .        

Since pVγ = C (a constant) for an adiabatic process,

dp
dV

   =   d
dV

C
Vγ    =   

- γ
Vγ + 1

pVγ ;        

therefore,  dp = -γ (p/V)Adx  , and the force on the ball will be

dF   =   A dp   =   -γ  p
V

 A2 dx .        

This is the equation obeyed by a mass on a spring with a force constant

k   = 
γ pA2

V
.        

The period of oscillation is given by  T = 2π(m/k)1/2  so that

k   =  4π2 m
T2

   =   
γ pA2

V
.        

Thus, we can calculate the  γ  of the gas from the period of oscillation of the ball

γ    =  4π2 mV
pA2T2

.     (2)

The derivation of this equation makes use of one of the most universal principles in mechanics:

when an object experiences a restoring force proportional to the displacement, the resulting motion



is simple harmonic.  This point is explained in more detail in Chapter 14 of the Ohanian.

References

The following are the sections in the texts which are pertinent to this lab.  They should be read

before coming to lab.

 1. Ohanian's     Physics     Chapter 19

 2. Ohanian's     Physics     Chapter 20  sections  20.1 - 20.3, 20.5 - 20.6

 3. Ohanian's     Physics     Chapter 21  section 21.1

 4. Tipler's      Modern Physics     Chapter 2

Experimental Purpose

The purpose of this lab is to experimentally measure the ratio of specific heats for helium, air

and carbon dioxide using two methods:  (1) the method of Clement and Desormes and (2) the

method of Ruchardt.  In the first method, the ratio of specific heats will be computed from the ex-

pression

γ    =   
∆p1

∆p1  -  ∆p2
.        

In the second method the ratio of specific heats will be computed from the expression

γ    =  4π2 mV
pA2T2

.        

In both cases,  the experimentally measured values will be compared to the theoretically predicted

values.

Procedure

The main piece of apparatus is an 8 liter stainless steel can with a brass lid with a hole in it sol-

dered on.  The can has two ports with valves for evacuating it or filling it with gas, a dial pressure

gauge, and a rubber stopper.  There is also an oil manometer for measuring pressures, a vacuum

pump, gas cylinders, balloons, and an attachment for measuring  γ  by Ruchardt's method.  A

schematic diagram of the apparatus is shown on the next page.  Before beginning a few comments

on the use of the equipment is necessary.

a. The values on the can ports are     open     when the black valve stem is pointing straight out



from the valve.  They are    closed     when they are at right angles to the straight out position.

b. When evacuating the cans, the cans often make banging noises as the sides of the cans ad-

just to the pressure differences.  This is normal, but may be alarming if you are not expect-

ing it.

c. The volume of the cans are nominally 8 liters.  The actual volume of the can is stamped

somewhere on the top of the brass lid.

d. Only use the oil manometers for can pressures near one atmosphere.  Failure to do so

may cause the oil to either be sucked into the can or be blown out the other end of the

manometer.

 e. Please use extreme care when handling the precision glass tubing used with Ruchardt's

method.  Each of the tubes cost $125.00 and must be imported from Germany.  Also,

please take special care of the magnet used to hold the ball at the top of the tube.  It is easily

misplaced and it also is difficult to replace.  Except when releasing the ball, please keep it in





the top of the glass tube.

f. Any dust entering the precision glass tubing will cause deterioration of the performance of

the apparatus.    Should the ball begin to stick in the tube rather than oscillating, cleaning it

with ethyl alcohol will help the situation.   If your tube needs to be cleaned, see your TA.

Part I - The Method of Clement and Desormes

1. Attach a balloon to one of the ports and a vacuum pump to the other.  Make sure there is a rub-

ber stopper in the hole in the top of the can.  Open both valves on the can, turn on the vacuum

pump and evacuate the can.  When the can is completely evacuated, close the valve attached to

the vacuum pump and then shut off and detach the vacuum pump from the can.  Attach the

compressed air line to the port to which the vacuum pump was connected.  Open the valve on

the can connected to the air line and then    slowly      turn on the compressed air and admit enough

air to the can to expand the balloon to approximately one foot in diameter.  Shut off the com-

pressed air, close the balloon valve and disconnect the air line.  At this point, the balloon valve

should be closed and the other valve should be open allowing the pressure in the can to be one

atmosphere.  Take the can your lab station and wait approximately five to ten minutes for the

air in the can to come into thermal equilibrium with its surroundings.

Connect the manometer to the free port, keeping the balloon valve closed.  Gently open the

manometer port and check to see if the oil levels in the arms of the manometer change.  If the

levels do change, then the air inside the can has not had enough time to come into thermal

equilibrium with its surroundings.  (Why do the levels change if the gas in the can is not at

thermal equilibrium?)  In that case, remove the stopper and allow more time for thermal equilib-

rium to occur.  Replace the stopper and repeat this process until the levels do not change.

Open the balloon valve gently until the difference in the oil levels in the arms of the manometer

is approximately 400 mm.  Close the balloon valve.  You are now ready to take a

measurement, but wait five minutes for the can to come into thermal equilibrium.

To make a measurement, loosen the stopper without letting out the gas.  When it is ready to
pop, read the manometer pressure (∆p1).  Since pressures are relative, you only need to record

the difference in the two arms in millimeters.  Now pop the cork and replace it as quickly as

possible.  The pressure will drop and start to climb back.  The manometer cannot respond fast

enough to go to zero. After five or ten minutes the pressure will have come back to the final
value  ∆p2 .  Substitute ∆p1 and ∆p2 into equation (1) and compute a value for  γ .  Repeat the

measurement with air two more times, using the balloon to pressurize the can.  Compute an av-

erage value for  γ  for air.

2. Repeat step 1 using either helium or carbon dioxide instead of air.  The only differences in the

procedures are as follows.



a. When admitting the gas to the evacuated can, you must use a specific port, the choice of

which depends on the gas that you are using.  One of the ports is marked BOTTOM and the
tube goes all the way to the bottom of the can.  Use this port to admit CO2; use the other,

which just goes in the top, to admit helium (why?).   In either case, the balloon will need to

be shifted to the other port before evacuating the can.

b. To admit the gas to the can after it has been evacuated, use the following procedure.  Attach

the supply tube from the gas tank to the appropriate port of the can.  Make sure that the

main valve on the top of the gas tank is full open (full counterclockwise).  Slowly screw in

the flow screw on the regulator until the proper rate of flow is established.  When the

balloon has been inflated to approximately one foot in diameter, close the balloon valve and

unscrew the flow screw until it is loose and gas is no longer coming out the supply tube.

The pressure on the flow pressure gauge should read zero.  Disconnect the supply tube

from the can.

c. When connecting the manometer to the can and checking to see if the gas is in thermal equi-

librium with the surroundings, do not remove the stopper if the gas is not in thermal equi-

librium.  Instead, disconnect the manometer from the port, wait until you think equilibrium

has been achieved, and then momentarily open the valve on the manometer port to bring the

pressure to one atmosphere.  Reconnect the manometer, open the manometer valve and

recheck the pressure in the can.  Repeat this process until the oil levels in the two arms of

the manometer do not change.  This method will limit the introduction of air into the can.

3.  Repeat step 2 for the remaining gas.

Part II - Ruchardt's Method

4. Before beginning the measurement procedures, a few comments on the system parameters are

needed:

a. The mass of the ball is 16.6 grams.

b. The volume  V  in equation (2) is the combined volume of the can and the glass tube.  The

glass tube has a cross sectional area of  2.01 cm2 .   A meterstick is provided to measure the

length of the glass tube.  When measuring its length, be sure to include the part inside the

rubber stopper at the bottom of the tube and the part in the teflon sleeve at the top of the

tube.  The volume of the tube can be computed from these two pieces of information.

c. The pressure  p  in equation (2) is not atmospheric pressure, although you need the atmo-

spheric pressure to compute  p .  p is computed using the expression



p   =  po  +  
mg
A

where  po  is the atmospheric pressure,  m  is the mass of the ball,  g  is the acceleration of

gravity and  A  is the cross sectional area of the glass tube.  The atmospheric pressure can

be measured using the barometer mounted on the side of one of the chalkboards.  Your TA

will show you how to use it.  Note that the units of the atmospheric pressure measured in

this way will be mm of Hg.  The atmospheric pressure will need to be converted to units of

dynes/cm2 before it can be used in the above equation for  p  .

Make the necessary measurements and compute  V  and  p  .

5. Evacuate the can and fill it with air in the same way that you did in the first paragraph of step 1.

Take the can your lab station and wait approximately five to ten minutes for the air in the can to

come into thermal equilibrium with its surroundings.

The precision glass tube used for this part is mounted in a ring stand assembly.  Do     not    remove

the tube from this assembly.  Before moving it,  make sure that all of the clamps holding the

tube are tight.  Carefully place the precision glass tube assembly in the stopper hole in the top

of the can.  Make whatever adjustments are necessary to make the tube fit firmly in the hole and

to make the tube vertical.  When done making the adjustments, check to see that all of the

clamps holding the tube are still tight, that the magnet is in the top of the tube and that the ball is

resting at the bottom of the tube.  If the ball is stuck somewhere in the middle of the tube, ask

your TA to clean the tube.

 At this point the balloon valve should be closed and the other valve should be open.   Close the

open valve.  Open the balloon valve.  The overpressure in the balloon will force the ball up to

the top of the tube where the magnet will hold it.  When the ball is at the top of the tube, close

the balloon valve and then open the other valve momentarily to drop the can pressure to one at-

mosphere.  You are now ready to make a measurement.

     Lift the magnet off the top of the tube and the ball will drop.  Time the bounces for about five

periods.  Compute the period of oscillation.   Substitute the measured period and the other

needed parameters into equation (2) and compute a value of   γ   for air.  Repeat two or three

times, first opening the balloon valve to drive the ball to the top, placing the magnet back,

relieving the pressure, and then dropping the ball.  Compute an average value for  γ  for air.

Remove the precision glass tube assembly from the can.

6. Evacuate the can and fill it with with CO2 (or He) using the same method as you used in step 2.

Be sure to use the proper port (BOTTOM for CO2;  the other for He) when filling the can.

Flush out the precision glass tube with the gas to be used by running the gas through it for ap-
proximately thirty seconds.  Flush from the bottom if you are using CO2 and flush from the top



if you are using He.  Place the glass tubing back into the stopper hole and repeat the measure-

ments made in step 5 using this new gas.

7. Repeat step 6 for the remaining gas.
Lab Report

You should use the lab notebook format described by your TA in his/her comments at the be-

ginning of the lab session.  Your lab report should include the answers to all of the questions asked

in the introduction or procedure, all raw and derived data, and an estimate of the magnitude and

sources of error in any data recorded. When answering any question or when giving any compari-

son or explanation, always refer to specific data to support your statements.  For this lab, also in-

clude the following:

1. computations of  γ  for each of the gases for each of the two methods; and

2. a comparison of the experimentally measured values of  γ  with the theoretically predicted val-

ues given in the theory section of this writeup.



Appendix

By using the first law of thermodynamics, the ideal gas law, and some definitions of specific

heats, it can be shown that, in an adiabatic process, an ideal gas obeys the relation

pVγ   =   constant

An adiabatic process is one in which no heat is transferred to or from the system  -  the system in

this case being one mole of an ideal gas.  The constant  γ  will be defined.

 The first law states that  dU = Q - W .  The specific heat at constant volume,  Cv = (dQ/dT)v  ,

is the heat added divided by the temperature change.  At constant volume,  dV = 0  and therefore

W   =  0  ,  dU   =   dQ

and

Cv   =  dU
dT v

.        

Since, for an ideal gas, U = (1/2)fRT , where f is the number of degrees of freedom per molcule,

Cv   =  1
2

 f R

and
dU   =  Cv dT

This last equation, although it was derived by considering a constant-volume process, is valid for

any process involving an ideal gas.  This is so because  U  depends on temperature only, and  dU

is the same for any  dT , regardless of what caused the change.

For an adiabatic process, Q = 0 , so

dU   =  -W   =   -p dV   =   Cv dT .        

 From the ideal gas law,

pV   =   RT   (n= 1),     p dV  +  V dp   =   R dT

and we have that

R   =   Cp  -  Cp .        

 Combining the above equations yields

p dV   =   V dp   =   
-p dv Cp  -  Cv

Cv
.        



Defining the ratio  γ = Cp/Cv , and collecting terms, we have

γ  p dV  +  V dp   =   0 .        

Dividing this equation by  pV  gives

γ dV
V

  +  
dp
p    =   0 .        

This can be integrated, with the result

ln Vγ   =   -ln p  +  C .        

And finally, if  ln pVγ   =  C , then

pVγ   =   constant

as advertised.


