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INTRODUCTION

In [Fr97] we presented the first examples of statements in
discrete and finite mathematics with a clear combinatorial
meaning, which are proved using large cardinals, and shown to
require them. The large cardinals in question are the subtle
cardinals of finite order.

Since then we have been engaged in the development of such
results of greater relevance to mathematical practice. In
January, 1997 we presented some new results of this kind
involving what we call “jump free” classes of finite

functions. This Jump Free Theorem is treated in section 2.

Gill Williamson had the remarkable insight that the Jump Free
Theorem could be applied to give information concerning
various natural distance functions in subgraphs of a given
graph. Williamson proposed several kinds of assertions in
this vein, and proved that some of them do indeed follow from
the Jump Free Theorem. We showed that some others also follow
from the Jump Free Theorem, and also simplified and
streamlined the applications. Williamson has informed us that
these applications belong to a general class of problems of
interest to a wide community of graph theorists,
combinatorialists, and computer scientists.
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We also were able to prove that the more elementary of these
applications of the Jump Free Theorem could be directly
proved without the Jump Free Theorem using classical Ramsey
theory. This established that these particular applications

can be proved well within the usual axioms for mathematics.

Next, Sam Buss and Williamson collaborated to extend our
results to obtain more of the applications of the Jump Free
Theorem just using classical Ramsey theory. Then we proved a
general theorem on decreasing classes of functions, just

using classical Ramsey theory, that covers this
Buss/Williamson collaboration as special cases.

It is still not yet clear whether the remaining, more
sophisticated applications of the Jump Free Theorem can be
proved within the usual axioms for mathematics. These more
sophisticated applications can be stated with more and more
structure of the kind considered standard in graph theory and
computer science, and form a virtually open ended series of
applications. They bear a clear technical resemblance to the
Jump Free Theorem, and we consider a proof of the
independence of at least some natural version of these
applications to be within reach of our technology.

More recently, Williamson has proposed an inductive model
which leads to more general applications of the Jump Free
Theorem. We have sharpened his original application along
these lines, and also extended it in a multivariate way. We
have succeeded in showing that one of the multivariate forms
is indeed independent of the usual axiom for mathematics, as
formalized by ZFC. In fact, it requires use of the same large
cardinals that the Jump Free Theorem requires. This
development is discussed in section 4.

1. DECREASING CLASSES OF FUNCTIONS

We use N for the set of all nonnegative integers. For x € Nk
let min(x) be the minimum coordinate of x, and let max(x) be

the maximum coordinate of x. For A C Nk, let fld(A) be the

set of all coordinates of elements of A.

A function f is said to be reflexive in Nk if and only if

i) dom(f) C NK;
i) rng(f) C fld(A).

Let T(K) be the set of all reflexive functions in Nk with
finite domain.
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Let f,g be any functions that are into N. We write f > g if
and only if for all x € dom(f), f(x) > g(x). Thus in

particular, this implies that dom(f) C dom(Q).

Let X be a set. A regressive value of fon Xisann >0 such
that there exists x € X with f(x) = n < min(x).

LetS C T(k). We say that S is full if and only if for all
finite A C Nk, some element of S has domain A.

We say that S is decreasing if and only if for all f,g €S,

if dom(f) C dom(qg) then f >Q.

Letf,g € T(k). We say that h is an order isomorphism from f
onto g if and only if

) h is the order preserving bijection from
fld(dom(f)) onto fld(dom(g));

ii) if f(x1,...,xk) =y then g(h(x1),...,h(xKk)) =
h(y).

For AB C Nk we say that h is an order isomorphism from A
onto B if and only if

I) h is the order preserving bijection from fld(A)
onto fld(B);

i) (x1,...,xk) € A if and only if (h(x1),...,h(xk))
€ B.

We say that f,g are order isomorphic if and only if there is

an order isomorphism from f onto g. We say that A,B are order
isomorphic if and only if there is an order isomorphism from

A onto B.

We say that S C T(K) is order invariant if and only if every
element of T(k) that is order isomorphic to an element of S
is an element of S.

LEMMA 1.1. Letk,p =1landS CT(k) be full, decreasing, and

order invariant. Then some f € T(k) has at most kk regressive
values on some Ek C S, |E| = p. In fact, there exists an
infinite E C N such that the following holds. Let n €E,f

S have domain {0,1,...,n-1}*k, and ot be an order type of k-
tuples. Then either

€
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i) for all x € Ek of order type ot with max(x) < n,
f(x) = min(x); or
i) for all x,y € Ek of order type ot with max(x) <

n, f(x) = f(y) < min(E).

Proof: Firstly observe that for every finite A C Nk there is
a unique element V[A] of S with domain A. Secondly observe

that if A,B are two finite order isomorphic subsets of Nk

then the functions V[A] and V[B] are order isomorphic via the

same unigque isomorphism.

Letx,y & Nk. We define x <*y if and only if

1) X,y have the same order type;
i) max(x) < min(y);
iif) for all 1 < <k, |xi-xj| < |yi - yjl.

[It turns out that we can weaken ii) to say that min(x) <
min(y) without affecting the argument; the choice is a matter
of style.]

CLAIM 1. Letx <*y, X € Ak, and V[AK](X) < min(x). Then

there exists B C N, |A| =|Bj|, such that the unique order
isomorphism from Ak onto Bk sends x to y, and fixes V[AK](x).

Proof: The spreading out condition, X <* y, assures that the
elements of A can be appropriately moved to the elements of B
in such a way that the position of x in Ak is the same as the
position of y in BK. The elements of A that are < min(x) can

be left untouched. This completes the proof of the claim.

Let k,S be as given. Define F:Nk — N as follows. Let x in Nk.
Set F(x) to be the least possible V[BK](x) for B CN.
CLAIM 2. If x <*y and f(x) < min(x) then F(x) = F(y).

Proof: Let A be such that V[AK](X) = F(x) < min(x). Choose B
according to claim 1. Then F(x) = V[AK](X) = V[BK](y) >= F(y)
by the order invariance of V and the definition of F.

We are now ready to complete the proof of Lemma 1.1. By
Ramsey's theorem applied to 2k-tuples, fix D be an infinite
subset of N such that for each order type ot of k-tuples,
either

i) forall x <*y € Dk of order type ot, F(x) <
min(x) implies F(x) = F(y); or
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i) for all x <*y € Dk of order type ot, not(F(x) <
min(x) implies F(x) = F(y)).

Let ot be given. We claim that ii) cannot hold. Suppose ii)
holds. Let x1 <* x2 <* ... be from Dk and have order type ot.
Then the values of F at these x's are distinct and < min(x1).
According to claim 2, the values of F at these x's must be
decreasing. This is the required contradiction.

Hence clause i) holds. By applying Ramsey's theorem again
within D, we obtain an infinite D' C D such that for each
order type ot, either

iii) for all x in D'k of order type ot, F(x) <
min(x); or
iv) for all x in D'k of order type ot, F(x) = min(x).

If clause iii) holds for D' then clause i) holds for D and so
for D'. Hence for each order type ot, either

v) for all x,y in D'k of order type ot, F(x) = F(y) <
min(x); or
vi) for all x in D'k of order type ot, F(X) = min(x).

Since in v), we can take x so that min(x) = min(D’), we can
replace min(x) by min(D’).

Let x in D'k. By the definition of F, there is a sufficiently
large m > max(x) such that V[A](x) = F(x) as long as A
includes {0,...,m}*k. Hence we can further prune D' to obtain

an infinite E C D' which satisfies the properties demanded of
the Lemma. 0

LEMMA 2. Let k =landS C T(K) be full and decreasing. Then

there exists a full decreasing and order invariant S* C T(k)

such that every element of S* is order isomorphic to an
element of S.

Proof: We first construct an infinite sequence Al 2A2 2OAS
... of subsets of N, each including the next, using Ramsey's

theorem, such that the following holds. Let i =1landf,g €
V, where dom(f),dom(g) are order isomorphic subsets of Ai

whose fields have cardinality <i. Then f,g are order

isomorphic. This is accomplished by coloring the unordered i-
tuples u from Ai-1 according to a complete description of the
order types of all functions in S whose domain is included in
u® in terms of the exact ensemble of positions in u occupied
by the elements of their domain. There are only finitely many
colors.
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We now take S* to be the set of all elements f of T(k) such
that there exists i =landg € S where f,g are order

isomorphic and fld(dom(g)) C Al Itis clear that S* is order

invariant, and that every element of S* is order isomorphic
to an element of S. It is also clear that S* is full.

It remains to show that S* is decreasing. Let A CB CN*be
finite sets. Let dom(f) = A, dom(g) = B, f,g € S*, |B| =.

Let B' be order isomorphic to B, fld(B) C Ai. Let h be the

order isomorphism from B onto B'. Let A' C B' be the image of

h on A. Let f',g' be the unique elements of S with domains
A',B'. Then g is order isomorphic to g'. Now since f is order
isomorphic to some f' € S with fld(dom(f")) C Ai, we see that

f is order isomorphic to f'. The order isormorphism in both
cases must be h (or its restriction to A). Now since V is

decreasing, f'(h(x)) = g'(h(x)). Now f'(h(x)) = h(f(x)) and
g'(h(x)) = h(g(x)). Hence h(f(x)) = h(g(x)). So f(x) = g(x)
as required. i

DECREASING CLASS THEOREM. Letkp =21andS  C T(k) be full
and decreasing. Then some f € T(k) has at most kk regressive
values on some Ek C dom(f), |E| = p. In fact, there exists E

CA CN,|E[=p,andf € S, dom(f) = Ak, such that the

following holds. Let ot be an order type of k-tuples. Then
either

i) for all x € Ek of order type ot, f(x) = min(x); or

ii) for all x,y € Ek of order type ot, f(x) = f(y) <
min(E).

Proof: By Lemma 2, let S* be a full, decreasing, and order
invariant subset of T(k) such that every element of S* is

order isomorphic to an element of V. Now apply Lemma 1 to S*.
We obtain an infinite E C N. Cut E down to the first p
elements. Choose A to be the initial segment up to but not
including the next element of E. Now take an order isomorphic

copy of V*[AK] in S. 0

The conclusion of the Decreasing Class Theorem involving
order types is a recurring theme throughout the paper. We
make the following important definition.

Letk =2landf € T(K). We say that f is regressively regular

over E if and only if the following holds. Let ot be an order
type of k-tuples. Then either
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i) for all x € Ek of order type ot, f(x) = min(x); or
i) for all x,y € Ek of order type ot, f(x) = f(y) <

min(E).

Implicit in this definition is the condition Ek C dom(f).

2. JUMP FREE CLASSES OF FUNCTIONS

LetS C T(k). We say that S is jump free if and only if the
following holds: Let f,g € T(k) and x edom(f) N dom(g).
Suppose that for all y € dom(f), if max(y) < max(x) then f(y)

=g(y). Then f(x) = g(X). [This says that there is no jump

from f to g at x. There would be a jump from f to g at x if
f(x) < 9(x).]

Here is the Jump Free Theorem:
JUMP FREE THEOREM. Letk =1andS C T(k) be full and jump

free. Then some f € T(k) has at most kk regressive values on

some Ek C dom(f), |E| = p. In fact, some f €Sis
regressively regular over some E of cardinality p.

The jump free theorem is closely related to the following
Proposition A from [Fr97].

Forx €& Nk, let |x] = max(x).

A function assignment for Nk is a mapping U which assigns to
each finite subset A of Nk, a unique function

UA)XA —A.
Let U be a function assignment for N K. We say that U is #-
decreasing if and only if for all finite A CNkandx €NKk,

either U(A) C U(A U {x}), or there exists y such that
lyl > [x| such that [U(A)(y)| > [U(A U iXxhy)l-

PROPOSITION A [Fr97]. Let k,p > 0 and U be a #-decreasing
function assignment for N K. Then some U(A) has <k K regressive

valuesonsome E k CA |E|=p.
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In [Fr97] it is shown that it is necessary and sufficient to
use subtle cardinals of every finite order in order to prove
Proposition A.

There seem to be difficulties in deriving the Jump Free
Theorem from Proposition A. However, there is a closely
related stronger version of Proposition A which does
immediately imply the Jump Free Theorem, and it has virtually
the same proof as Proposition A. Thus the same large
cardinals are used.

To formulate Proposition A’, we say that U is a function
assignment’ for Nk if and only if for all finite A C Nk,

UAXA — fld(A)k. Obviously fld(A)k includes A but may

include more than A. So every function assignment for Nk is a
function assignment’ for NK.

PROPOSITION A'. Let k,p > 0 and U be a #-decreasing function
assignment’ for N K. Then some U(A) has < k K regressive values

onsome E kK CA |E|=p.

Proof: Same as for Proposition A as given in [Fr97]. The
proof is conducted in ZFC + ( Vn)(there exists an n-subtle

cardinal). 0

We now prove the Jump Free Theorem using A'.

LEMMA 2.1. Let U be a function assignment’ for Nk. The
following is a necessary and sufficient condition for U to be

#-decreasing. Suppose that A,B C Nk are finite, x €A NB,
and for all y € A with |y| < |x], we have U(A)(y) = U(B)(Y).
Then U(A)(x) = U(B)(x) or [U(A)(X)| > [U(B)(X)I-

Proof: The condition on U is called <1,<2-*-decreasing in
section 3 of [Fr97], where <1 = <2 is the ordering on Nk

given by x <1y <> |X| < |y]. The result is from Theorem 3.10
in [Fr97]. The proof works for function assignment. 0

LEMMA 2.2. Let S C T(k) be full and jump free. Then for all
finite A C Nk there is a unique f € S with domain A.

Proof: Suppose f,g € S with domain A. We prove by induction
on max(x) that for all x € A, f(x) = g(x). Suppose x € A and

for ally e A, if ly| <|x| then f(y) = g(y). We now use jump
free. Since there is no jump from f to g at x, we see that
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f(x) = g(x). On the other hand, since there is no jump from g

to f at x, we see that g(x) = f(x). So f(x) = g(x). 0
LetS C T(k) be full and jump free, and A C Nk be finite. In
light of Lemma 2.1, we define S*(A) to be the unique f €S

with domain A.
LEMMA 2.3. Proposition A’ implies the Jump Free Theorem.

Proof: Assume Proposition A. Let S be a full and jump free
subset of T(k). We now define a function assignment’ U for Nk

associated with S. Let A C Nk be finite and x € Nk. We define
U(A)(X) = (S*(A)(X),...,S*(A)(X)). By Proposition A, let EkK Cc
A C Nk, Afinite, |[E| = p, where U(A) has at most kk

regressive values on Ek. Then obviously S*(A) also has at
most kk regressive values on Ek.

For the remainder of the Jump Free Theorem, we choose p’ >> p
and assume |E| = p’. We then apply the classical Ramsey

theorem to E obtain the appropriate E’ C E, |E| = p with the
required properties. The coloring of an unordered k-tuple X
from E is by the table of regressive values of S*(A) on XK.

We would like to derive Proposition A from the Jump Free
Theorem. There seem to be some difficulties in doing this.
However, we can derive Lemma 5.2 of [Fr97]. In [Fr97], Lemma
5.2 was shown to be independent of ZFC, and in fact require
subtle cardinals of finite order to prove. We now present
Lemma 5.2 [Fro97].

A function system U for N K is a mapping U from finite A CNk
into functions U(A):A — fld(A).

Let FPF(N K) be the set of all finite partial functions from N

into N. For f € FPF(N K) we let fld(f) = fld(graph(f)).

Let DFNL(N k) be the set of all H:FPF(N K)xN Kk — N such that for

alf CgfromFPF(N K)andx €&NK,

i) H(f,x) = H(g,X);
ii) H(f,X) efldf)  UX 1,..x Kk

Here DFNL stands for "decreasing functional.”

EachH & DFNL(N k) generates a function system U for N K by the
following inductive process.
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Let A C NK be finite. We define RCN(A,H) as the unique F:A —
fld(A) such that for all x € A, F(x) = H(F|{y eEA |yl <

[x[},x). Note that for each fixed H € DFNL(N X), RCN(A,H)

defines a function system. We call such a function system an

inductive function system for N k. Here RCN stands for

“recursion."

Forxy € NK, we write x C y if and only if every coordinate

of X is a coordinate of y.

We say that A C Nkis closed if and only if for all x Cy
withy €A, we have x e A.

In [Fr97] we used the following definition of regressively
regular: Let f be a nonempty partial function from N k —NT

and E C N. We say that f is regressively regular over E if
and only if the following holds.

i) E k Cdom(f);
i) Let x,y € E K be of the same order type. If |f(x)| <
min(x) then |f(y)| < min(y) and f(x) = f(y).

Note that this agrees with the definition given at the end of
the previous section for r = 1. To see this, suppose fis

regressively regular over E in the sense here. Suppose X,y €

Ek are of the same order type and f(x) < min(x). Then only
case ii) at the end of the previous section can hold, in

which case f(x) = f(y) < min(E) < min(y). On the other hand

suppose f is regressively regular over E in the sense of
[Fr97] just above. Let ot be an order type. Suppose there

exists x € Ek of order type ot with f(x) < min(x). Lety € Ek

be of order type ot with min(y) = min(E). Then f(x) = f(y) <
min(y) = min(E).

PROPOSITION B (Lemma 5.2 [Fr97]). Let k,p > 0 and U be an

inductive function system for N K. Then there exists closed A
such that U(A) is regressively regular over some E of
cardinality p.

Proof of B from Jump Free Theorem: Let U be an inductive
function system for Nk. Let H € DFNL(NK), where for all

finite A C Nk, U(A) = RCN(A,H), where H € DFNL(NK).

First of all, we observe that the set of all U(A) forms a
full and jump free subset of T(k). To see this, let A,B C Nk
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be finite, x €A N B, and assume that for all y EA,Ify|

< |x] then U(A)(y) = U(B)(y). Then U(A)(x) = HU(A)y EA:
lyl < [x[},x), and U(B)(x) = H(U(B){y € A: lyl < X[}x).

Now by hypothesis, U(A)|{y eA:ly| <|x|} C UB)H{y EA:
ly| < X[}, and so U(A)(x) = U(B)(X).

Having seen that the set of all U(A) forms a full and jump

free subset of T(k), we can then apply the Jump Free Theorem
to obtain everything that is required except the closedness

of A. So we have to be more sophisticated about this, as in

the proof of Lemma 5.2 [Fr97].

For finite A C Nk, write A" = {x eA: forally Cx,y €EAL
We modify the RCN construction as follows.

LetH & DFNL(N k). Define MRCN(A,H) as the unique F:A —

fld(A) such that for all x € A, F(x) = H(F[{y EAy| <

[X[},x). Clearly MRCN(A,H) defines a function system for N k.

Note that every value of MRCN(A,H) is a coordinate of an
element of A' or a coordinate of x. We let V(A) = MFCN(A,H).

We again observe that the set of all V(A) forms a full and

jump free subset of T(k). To see this, let A,B C Nk be

finite, x €A N B, and assume that for all y EA, ifly| <

[X] then V(A)(y) = V(B)(y). Then V(A)(X) = H(V(A){y EA"
lyl < [x[},x), and V(B)(x) = H(V(B){y € B ly| < [x[}x).

Now by hypothesis, V(A)|{y EA Y| < x|} C V(B){y e
lyl <[]}, and so V(A)(x) = V(B)(X).

Hence the set S of all V(A) is a full and jump free subset of
T(K). In fact, we have S*(A) = V(A).

Let A C Nk be finite. Note that V(A) is the unique F:A —
fld(A) such that for all x € A, F(xX) = H(F|{y EAy|<
[X]},x). And U(A") is the unique G:A’ — fld(A’) such that for
alx €A, G(xX)=H(G|{y €A’ |y| < |x[},x). Hence U(A")

V(A).

Now by the Jump Free Theorem applied to S, fix E,A such that
Ek €A CNK, |E| = p, A finite, such that the following
holds. Let ot be an order type of k-tuples. Then either

i) for all x € Ek of order type ot, V(A)(X) > min(x); or

IN



{PAGE }

i) for all x,y € Ek of order type ot, V(A)(X) = V(A)(Y)
< min(x).

Now obviously Ek C A’. Also clearly V(A) is regressively
regular over E. Hence U(A) C V(A) is also regressively
regular over E. 0

We summarize the results of this section.

THEOREM 2.4. The Jump Free Theorem can be proved using subtle
cardinals of every finite order, but not with subtle
cardinals of any fixed finite order. l.e., it can be proved

in ZFC + ( Vn)(there exists an n-subtle cardinal), but not in
ZFC + {there exists an an n-subtle cardinal}n.

3. DISTANCE FUNCTIONS IN GRAPHS

It is natural for our purposes to consider both undirected
graphs and directed graphs.

Letk =1.Here adigraph Gin Nk is a pair (V,E), where V =
V(G) is a subset of Nk and E = E(G) is a set of ordered pairs
of distinct elements from V. V = V(G) is the set of all

vertices, and E = E(G) is the set of all edges. Thus we are
considering directed graphs with no multiple edges, and no
loops.

We let DGI(Nk) be the set of all directed graphs in Nk. We
let DGO(NK) be the set of all directed graphs on Nk; i.e.,
where the vertex set is all of Nk. A directed graph is said
to be finite if it has at most finitely many vertices.

The elements of DGO(NKk) have a clear geometric meaning. The
elements of DGO(NK) can be viewed as a set of directed line
segments connecting various pairs of distinct elements of NKk.

Let G be in DGI(NK). A path in G is a sequence x1,...,xn from
V(G), n >=1, such that for all 1 <=i < n, (xi,xi+1) is an

edge joining xi to xi+1. The length of this path is n-1,

which is the number of edges (with repetition).

LetA C V(G). We write G|A for the subgraph of G induced by
A. Thusif G € DGI(NK) then G|A = (A,E’) where {x,y}

and only if (x,y) € E(G) and x,y € A. The digraphs of the

form G|A are called the vertex induced subgraphs of G. G|A is
the subgraph induced by A.

eEFE'if
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Forl =i =Kk, thei-th coordinate plane in [O, o)k is the set
of all elements of [0, o)k consisting of all vectors whose i-

th coordinate is 0. The distance of x & Nk to the i-th

coordinate plane is just the i-th coordinate of x, written
Xi.

We can view any graph in DGI(NK) as a geometric object which
is enclosed in the k coordinate planes in [0, o)k,

Let G be in DGI(NK) or UGI(NK). We will be defining several
distance functions d[G]:V(G) — N. The simplest such distance

functions are the coordinate functions di[G](x) = xi. Also
dmin[G](x) = min(x) = min(x1,...,Xk) plays a significant role.
These have obvious geometric interpretations in terms of
distances to specific coordinate planes, and the shortest
distance to some coordinate plane. Also note that the values
of these distance functions depend only on the vertex x and
do not depend on the graph G.

We will, however, be considering more sophisticated distance
functions d[G] which give more subtle ways of measuring a
"distance" from a vertex x in G to a (or some) coordinate
plane. For these more sophisticated distance functions,

d[G](x) depends on G and not only on x; i.e., for x e V(G)
V(G’), we in general do not have d[G](x) = d[G"](X).

The first of these more sophisticated distance functions is
given by d*min[G](x) = min{min(y): there is a path in G from

x to y}. This is well defined since there is always a path

from x to x of length 0. This distance function can be

defined as the minimum distance to some coordinate plane of
any vertex that can be accessed from x by a path in G.

We can view d*min[G](x) as the length of the shortest way of
getting to a coordinate plane from x, where traveling within
G is not counted.

A cube in Nk is a k fold Cartesian product Al x ... x Ak, where
Al,...,Ak are nonempty subsets of N of the same cardinality.
The length of a cube is the cardinality of its factors. A

cube may be finite or infinite.

We will often use "min" to indicate the usual min function,

min:Nk  — N.

THEOREM 3.1. Letk,p>=1and G € DGO(NK). There exists

finite A C Nk such that d*min[G|A] = min on some cube CAof
length p, or is constant on some cube C A of length p. In

fact, there exists finite A C Nk such that d*min[G|A] is
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regressively regular over some E of cardinality p; and A can
be taken to be a Cartesian power.

We can interpret Theorem 3.1 as saying that either there is a
cube of length p where the shortest distance to a coordinate
plan from its elements involves no traveling within G, or
there is a cube of length p where the shortest distance to a
coordinate plane is the same from all of its elements.

Proof of Theorem 3.1: Let k,p =landG & DGO(NK). Let S -
T(k) be the set of all functions d*min[G|A] such that A C Nk
is finite. Then obviously S is full and decreasing. Now apply

the Decreasing Class Theorem to obtain Ek CA CNK |E|=kp,

such that the following holds. Let ot be an order type of k-
tuples. Then either

i) for all x € Ek of order type ot, d*min[G|A](X) =
min(x); or
i) for all x,y € Ek of order type ot, d*min[G|A](x)

= d*min[GJ|A](y) < min(E).

This establishes the second claim. For the first claim,
consider the cube C = E1 x ... X Ek, where E1,... Ek is the
partition of E into k consecutive sets of cardinality p. Then

C C Ais acube of length p all of whose elements are of the
same order type. Then C is as required. 0

We now add some additional structure to Theorem 3.1. Let
(NK)* be the set of all finite sequences from Nk (including
the empty sequence). Nk is naturally embedded in (NK)* as
(NK)1.

LetG & DGI(NK) and Nk C X C (Nk)*. We now define the

distance function d*min[G;X] as follows. Let x € V(G). Then
d*min[G;S](x) = min{min(y): there is a path P from x to y in

G,whereP X}

Note that even if, say, X,y,z is a path in G that lies in X,
we don't know that x,y is a path in G that lies in X.
Obviously x,y is a path in G, but it may not lie in X.

THEOREM 3.2. Letkp  =1,G €DGO(NK),and Nk  CX C (NK)*.

There exists finite A C Nk such that d*min[G|A;X] = min on
some cube C A of length p, or is constant on some cube C Aof
length p. In fact, there exists finite A C Nk such that

d*min[G|A;X] is regressively regular over some E of
cardinality p; in fact, A can be taken to be a Cartesian
power.
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Proof: Same as for Theorem 3.1. 0

Actually, under the presence of such additional structure,
there is no need to consider the graph. Thus we give a
streamlined version of Theorem 3.2 that is easily seen to be

equivalent. For any A C Nk, we let A* be the set of all
nonempty finite sequences from A.

LetNk C X C (Nk)*and x € Nk. We define d*min[X]:Nk — N by
d*min[X](x) = min{min(y): some element of X starts with x and
ends with y}.

THEOREM 3.3. Letk,p =land Nk C X C(Nk)*. There exists

finite A C Nk such that d*min[X M A*] = min on some cube CA
of length p, or is constant on some cube C A of length p. In
fact, there exists finite A C Nk such that d*min[X N A*is

regressively regular over some E of cardinality p; in fact, A
can be taken to be a Cartesian power.

Proof: Same as for Theorem 3.1. It also follows from Theorem
3.2 by setting G to be the complete graph on Nk. We can
derive Theorems 3.1 and 3.2 from Theorem 3.3 by using X’ =

the set of all elements of X which are paths in G. 0

Further applications of the Decreasing Class Theorem can be
given with additional structure involved. Williamson has many
suggestions along these lines.

We now introduce a more delicate kind of distance function
d#min[G], G € DGI[NK], due to Williamson. A terminal vertex
in G is a vertex out of which there are no edges.

A terminal path in G € DGI(NK) is a path x1,...,xn such that xn
is a terminal vertex.

Let x be a vertex in G. We define d#min[G](x) = min{min(y):
there is a terminal path in G from x to y}.

THEOREM? Letk,p>=1and G € DGO(NK). There exists finite A
C Nk such that d#min[G|A] > min on some cube C A of length p,
or constant on some cube C A of length p.

Refutation: To be filled in later.

In order to turn this Proposition into a Theorem, we say that
G in DGO(NK) is downward if and only if for all edges (x,y),
[X| > |y]. (Recall that |x| = max(x)).
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The following Theorem was originally a conjecture of
Williamson. We prove it using the Jump Free Theorem, and
hence using large cardinals. We do not know if it can be
proved in ZFC.

THEOREM 3.4. Letk,p > 1 and G in DGO(NK) be downward. There
exists finite A C Nk such that d#min[G|A] = min on some cube
C A of length p, or constant on some C Aof length p. In

fact, there exists finite A C Nk such that d#min[G|A] is
regressively regular over some E of cardinality p.

Proof: We use the Jump Free Theorem. Fix a downward G in
DGO(NK). For each A C Nk we can consider the function

min#G|A:A  — fld(A). Unfortunately, the set of all these
functions is not necessarily jump free.

However, we instead consider the function d#min[G|A]:A —
fld(A) defined as follows: d#min[G|A]'(X) = d#min[G|A](X) if

X is not a terminal vertex; max(x) otherwise. Now let S be

the set of all functions d#min[G|A]'. We now prove that S

T(k) is full and jump free. We have only to verify jump free.

CLAIM 1. Let G € DGI(Nk) and x € V(G). Then d#min[G](x) =

min({d#min[G](y): (X,y) € E(G)} if x is not terminal in G;
min(x) otherwise.

Proof: Let G,x be as given, and assume x is not terminal in

G. If (x,y) is an edge in G then d#min[G](y) = d#min[G](x).
Now let x = x1,...,xk be a terminal path in G, where
d#min[G](x) = min(xk), and k >= 2. Then d#min[G](x2) <

min(xk) = d#min[G](x).
CLAIM 2. S'is jump free.

Proof: Fix finite A,B CNkandx €A N B.Assume that for
ally €A, if max(y) < max(x) then d#min[G|A]'(y) =

d#min[G|B]'(y). We wish to prove that d#min[G|A]'(x)

d#min[G|B]'(x).

v

case 1. x is a terminal vertex in G|A. Then d#min[G|A]' =
max(x). Since G is downward, clearly d#min[G|B]' <= max(x) =
d#min[G|A]'(x) as required.

case 2. x is not a terminal vertex in G|A. Then x is not a
terminal vertex in G|B. Hence d#min[G|A]'(X) = d#min[G|A](X)

IN
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and d#min[G|B]'(x) = d#min[G|B]'(x). By Claim 1 it suffices
to prove that

min{d#min[G|AI(y): (x.y) in E(G|A)} = min{d#min[G|B](y):
(xy) €E(G[B)}.

Now let (x,y) be an edge in G|A. Since G is downward, [x| >
ly|, and so d#min[G|A]'(y) = d#min[G|B]'(y). We claim that
d#min[G|A](y) = d#min[G|B](y). This clearly suffices to
establish the desired inequality.

Suppose y is not terminal in G|A. Then d#min[G|A]'(y) =
d#min[G|B]'(y) = d#min[G|A](y) = d#min[G|B](y).

Suppose y is terminal in G|A. Then d#min[G|A]'(y) = ly| =
d#min[G|B]'(y). Then y must be terminal in G|B since
otherwise, d#min[G|B]'(y) < |y| by the downwardness of G.
Hence d#min[G|A](y) = d#min[G|B](y) = min(y).

We are now prepared to complete the proof of Theorem 3.4.
Since S is jump free, we can use the Jump Free Theorem to

obtain an f eSand Ek C dom(f), |E| = p, such that on each
order type in EK, f is either = min or constant and < min(E)

on Ek. l.e., d#min[G|A] is either = min or constant and <
min(E) on any given order type in Ek.

Now let x € A and suppose d#min[G|A]'(x) = min(x). If x is

terminal in G|A then d#min[G|A](x) = min(X). If x is not

terminal in G|A then d#min[G|A](x) = d#min[G|A]'(X) = min(x).
Hence in any case d#min[G|A](x) = min(x).

On the other hand, suppose d#min[G|A]'(X) < min(x). Then X is
not terminal in GJA. Hence d#min[G|A]'(X) = d#min[G|A](X).

We can generalization Theorem 3.4 in the spirit of Theorem
3.3. We say that X C (Nk)* is admissible if and only if

i) Nk CX C(Nk)*without the empty sequence;

i) if (x1,...,xk) € Xthen |x1] > ... > |xK|;

iii) for all (x1,...,xn),(y1,...,ym) € X, if xn =yl then
(x1,...,xny2,...,ym) e X;

iv) for all (x1,...,xn),(x1,...,xn,y1,...,ym) € X, we have

(xn,y1,...,ym) e X.

Note that the set of all paths in any G € DGO(NK) is
admissible.
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We say that x € Xis terminal in X if and only if x has no
proper extension in X.

We say that a sequence is from x to y if and only if it
begins with x and ends with y.

Define d#[X](x) = min{min(y): there exists a sequence from x
to y which is a maximal element of X}. More generally, let A

C Nk. We define d#[X|A]:A — fld(A) by d#[X|A] = min{min(y):
there exists a sequence from x to y which is a maximal
element of X N A*}.

THEOREM 3.5. Let k,p =1and X  C (NKk)* be admissible. There

exists finite A C Nk such that d#min[X]|A] > min(x) on a cube
C A of length p, or is constant on a cube C A of length p. In
fact, there exists finite A C Nk such that d#min[X|A] is

regressively regular over some E of cardinality p.

Proof: Let X C (NKk)* be admissible.

CLAIM 1. Let x eV(G)and A C Nk be finite. Then
d#min[X]A](x) = min{d#min[X|A](y): ly| < |x| and there is an
element of X N A* from x to y} if X is not terminal in X
A*; min(x) otherwise.

Proof: Suppose that x is terminal in X N A*. Then
d#min[X|A](x) = min(x), and the rhs is also min(x). Now
suppose that x is not terminal in X N A*.

Let P be an element of X of length > 2. Extend P to a maximal
element of X, and let y be the last term in P. Then |y| < |X|
and d#min[X|A](y) < min(y). This establishes that every term

in the min that defines the lhs bounds a term that appears in
the min that defines the rhs.

On the other hand, let P eX,Pfromxtoy, |y| <|x|. Let

P’ be a maximal element of X N A* which starts with y and

ends in some z. Then min(z) = d#min[X|A](y). By

admissibility, PP’ is a maximal element of X N A*. Hence

every term in the min that defines the rhs is a term in the
min that defines the lhs. This establishes claim 1.

In order to get a useful jump free set, we define
d#min[X|A]:A — fld(A) by d#min[X|A]'(x) = min{min(y): there
exists a sequence from x to y which is a maximal element of X
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N A*} if x is not terminal in X N A*; |x| otherwise. Let S =
{d#min[X]A]: A C Nk is finite}.

CLAIM 2. Sis a full jump free subset of T(k).

Proof: We have only to verify jump free. Let A,B C Nk be

finite and x € A N B. Suppose that for all y EA, ifly| <
[X] then d#min[X|A]'(y) = d#min[X|B]'(y). We must verify that
d#min[X]A]'(x) = d#min[X|B]'(x).

case 1. x is terminal in X N A*. Then d#min[X|A]'(xX) = ||
d#min[G|B,X]'(X).

case 2. x is not X-terminal in X N A*. Then x is not terminal
in X N B* Now d#min[X]A]'(x) = d#min[X|A](X) =

min{d#min[X|A](y): ly| < |X| and there is an element of X

A* from x to y} = min{d#min[X|B](y): |y| < |X| and there is

an element of X N B* from x to y} = d#min[X|B](X).

We now complete the proof of Theorem 3.5. Since S is jump
free, we can use the Jump Free Theorem to obtain an f

[\

€ S and

Ek C dom(f), |E| = p, which is either = min or constant and <

min(E) on any given order type in EKk.

Now let x € A and suppose min#[X|A]'(X) = min(x). If x is
terminal in X N A* then min#[X]A](X) = min(x). If X is not
terminal in X N A* then min#[X]A](X) = min#[X|A]'(xX)

min(x). Hence in any case min#[X|A](X) = min(x).

On the other hand, suppose min#[X|A]'(x) < min(x). Then x is
not terminal in X N A*. Hence min#[X|A]'(X) = min#[X|A](x).

Williamson has also defined the following variants of d#min.

LetG & DGI(NK), x eV(G),A CNk andX C (NK)* be
admissible. Define d#min*[G](x) = min{min(y): there is a

terminal path in G from x to y} if this min is < min(x);

min(x) otherwise. More generally, define d#min*[X](x) =
min{min(y): there exists a sequence from x to y that is a

maximal element of X} if this min is < min(x); min(x)

otherwise. Also define d#min*[X|A](x) = min{min(y): there
exists a sequence from x to y that is a maximal element of X

N A*} if this min is < min(x); min(x) otherwise.

v



{PAGE }

Note that if d#min[G|A](x) < min(x) then d#min[G|A](x) =
d#*min[G|A](x). And more generally, if d#min[X|A](x) < min(X)

then d#min[X|A](x) = d#*min[X]A](x). So we have the following
immediate Corollary of Theorem 3.5:

THEOREM 3.6. Letk,p>=1and G € DGO(Nk) be downward. There
exists finite A C Nk such that d#*min[G]A] = min(x) on a cube
C A of length p, or is constant on a cube C A of length p. In

fact, there exists finite A C Nk such that d#*min[G|A] is
regressively regular over some E of cardinality p.

And the following additional Corollary:

IN

THEOREM 3.7. Letk,p>=1,G € DGO(NK) be downward, and X
(NK)* be admissible. There exists finite A C Nk such that
d#*min[X]A] = min(x) on a cube C A of length p, oris

constant on a cube C A of length p. In fact, there exists

finite A C Nk such that d#*min[X]|A] is regressively regular
over some E of cardinality p.

4. WILLIAMSON'S INDUCTIVE MODEL

LetG & DGI(Nk) be downward. Williamson builds on the direct

inductive definition of d#min[G]. For all x € V(G), define
d#min[G](x) = min{d#min[G](y): (X,y) € E(G)} if y is not
terminal in G; min(x) otherwise.

In other words, every x € V(G) determines its “distance” out
of the graph to a coordinate plane by surveying such

“distances” from each of the vertices x points to, and taking

the minimum value.

More generally, maybe x does not survey these “distances”
from all of the vertices x points to; rather just from some

of the vertices x points to. Williamson thinks of the

vertices of G as civil servants who determine their
“distances” by surveying information from their immediate
subordinates (i.e., vertices they point to in the graph) as

to their distances. But the civil servants are skeptical and
do not rely on all such information from their immediate
subordinates.

Williamson implements this idea that only some of the
“distances” from immediate subordinates are considered by
starting with a binary relation R between edges in G (or even
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just pairs from Nk) and elements of N. Thus R C (Nk *NK) *N.

Civil servant x considers the “distance” n of an immediate
subordinate y if and only if R((x,y),n). Civil servant x then
takes the min only over these “distances” when determining
x’s “distance.” If there are no such “distances” to consider,
then x’s “distance” is considered to be min(x) by default.

Williamson then makes the following formal definition.

LetG & DGI(Nk) be downward and let R C (Nk *Nk) *N.Forx €&
V(G) define d#min[G,R](x) = min{d#min[G,R](y):

R((x,y),d#min[G,R](y))} if this min is nonempty; min(x)

otherwise.

This leads naturally to the following possible application of
the Jump Free Theorem:

THEOREM 4.1. Letk,p > 1, G in DGO(NK) be downward, and R
(Nk *NK) *N. There exists finite A C Nk such that d#min[G|A,R]
= min on some cube C A of length p, or constant on some CA

of length p. In fact, there exists finite A C Nk such that

d#min[G|A,R] is regressively regular over some E of
cardinality p.

IN

Williamson noticed a difficulty in verifying that the

appropriate set of functions is jump free. So he adds the
following very natural hypothesis which makes everything work
straightforwardly:

THEOREM 4.2. Let k,p > 1, G in DGO(NK) be downward, R c
(Nk *Nk) *N, and assume that R((x,y),n) implies n < min(x).
There exists finite A C Nk such that d#min[G|A,R] = min on

some cube C A of length p, or constant on some C A of length

p. In fact, there exists finite A C Nk such that d#min[G|A,R]
is regressively regular over some E of cardinality p.

Proof: Let S be the set of all functions d#min[G|A,R], where

A C Nkiis finite. It is easy to verify that each d#min[G|A,R]

is reflexive by induction on max(x), x € A. To verify jump
free, let A,.B C Nk be finite, x €A N B, and assume that for
aly €A, if max(y) < max(x) then d#min[G|A,R](y) =

d#min[G|B,R](y). Now by the hypothesis on R, we see that

d#min[G|B,R](x) < min(xX). So we can assume that

d#min[G|A,R](x) < min(x). Hence the min that defines
d#min[G|A](x) is a nonempty min and is clearly over a subset
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of the min that defines d#min[G|B](x). Hence d#min[G|A,R](x)
> d#min[G|B,R](X).

Now that we have proved that S is a jump free subset of T(K),
we obtain the conclusion of the lemma by applying the Jump

Free Theorem. []

We have been able to prove Theorem 4.1 even though the
associated set of functions is not necessarily jump free.
This is analogous to the situation with regard to Theorem
3.3.

Proof of Theorem 4.1: The proof is analogous to the proof of
Theorem 3.3. We use the Jump Free Theorem. Fix a downward G

in DGO(NK), and R C (Nk *NKk) *N. For each finite A C Nk we

consider the function d#min[G|A,R]":A — fld(A) defined as
follows: d#min[G|A,R] (x) = d#min[G|A,R](x) if the min

defining d#min[G|A,R](x) is nonempty; max(x) otherwise. Note

that we have defined d#min[G|A,R] in a noninductive manner

from d#min[G|A,R], where the latter has been defined

inductively.

Now let S be the set of all functions d#min[G|A,R]. We now
prove that S C T(k) is full and jump free. We have only to
verify jump free. Note that since G is downward, an easy

argument by induction on max(x) shows that for all x EA,
d#min[G|A,R] (X) < max(x).
Fix finite A,B CNkandx €A N B.Assume that for all'y

A, if max(y) < max(x) then d#min[G|A,R]'(y) =
d#min[G|B,R] (y). We wish to prove that d#min[G|A,R]'(X)
d#min[G|B,R]'(x).

case 1. The min defining d#min[G|A,R](x) is empty. Then
d#min[GJ|A,R](X) = max(x). And so we have d#min[G|B,R]'(x)
max(x) = d#min[G|A,R]'(x) as required.

case 2. The min defining d#min[G|A,R](x) is nonempty. Then
d#min[G|A]'(x) = d#min[G|A,R](X) = d#min[G|B,R](x) =
d#min[G|B,R](x). This is because the min defining
d#min[G|B,R](x) must be nonempty and moreover contain the min
defining d#min[G|A,R](x) as a subset.

Since S is jump free, we can use the Jump Free Theorem to
obtain an f e€SandEk Cdom(f), |E| = p, such that on each

order type in Ek, f is either = min or constant and < min(E)

on Ek. l.e., d#min[G|A,R] is either = min or constant and <
min(x) on any given order type in EK.

v
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Now let x € A and suppose d#min[G|A,R]' (x) = min(x). If the
min defining d#min[G|A,R](X) is empty then d#min[G|A,R](X) =

min(x). If this min is nonempty then d#min[G|A,R](X) =

d#min[G|A,R]'(X). So in any case d#min[G|A,R](X) = min(x).

On the other hand, suppose d#min[G|A,R]'(X) < min(x). Then
the min defining d#min[G|A,R](X) is nonempty, in which case

d#min[G|A,R](x) = d#min[G|A,R](X). i

We are now going to give a multivariate form of Williamson’s
model, in which each civil servant x takes into account the
“distances” of one or more subordinates when determining X’s
“distance.” We are particularly interested in giving a
streamlined version of this multivariate model, rather than

the most general form, since we are going to show that it is
independent of the usual axioms for mathematics (ZFC).
Accordingly, we first revisit Williamson'’s original model and
give a streamlined version of it.

In particular, we remove any mention of the graph in
Williamson'’s original model, show that this stremlined form
is outright equivalent to Williamson’s formulation.

LetR C Nk eNkeNand A C Nk. We define d#min(A,R):A — N by
induction as follows. For x € A, d#min(A,R)(X) =
min{d#min(A,R)(y): y € A & max(y) < max(x) & R(x,y,n)} if

this min is nonempty; min(x) otherwise.

THEOREM 4.3. Let k,p =land R  C Nk *NkeN. There exists finite
A C Nk such that d#min[A,R] = min on some cube C A of length
p, or constant on some C A of length p. In fact, there exists

finite A C Nk such that d#min[A,R](X) is regressively regular
over some E of cardinality p.

Proof: We actually show that this is equivalent to Theorem
4.1. First assume Theorem 4.1. Let k,p,R be as given. Let G

be the complete graph on Nk. Let R’ C (Nk *NKk) *Nk be given by
R'((x,y),n) — R(x,y,n). Then 4.3 for k,p,R follows from 4.1

for k,p,R’,G.

Now assume Theorem 4.3. Let k,p,R,G be given for 4.1. Let R’

NkeNkeN be given by R’(x,y,n) — ((x,y) € E(G) & R((x,y),n)).
Then 4.1 for k,p,R,G follows from 4.3 for k,p,R’. []

We now present the multivariate form of Williamson’s model.
We say that F:B — C is a partial function if and only if F is

N
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a function whose domain is included in B and range is
included in C.

We say that F:Nk *(Nk *N)r — N is a partial selection function
if and only if for all defined F(x,y1,nl,y2,n2,...,yr,nr),

there exists 1 <i =rsuchthat F(x,yl,nl,y2,n2,...,yr,nr) =
ni.

For A C Nk, define d#min[A,F] by induction as follows. For x

€ A, d#min[A,F] = min{F(x,yl,n1,y2,n2,...,yr,nr): y1,...,yr
max(yl),...,max(yr) < max(x) & d#min[A,F](yl) =nl & ... &
d#min[A,F](yr) = nr} if this min is nonempty; min(x)
otherwise. Obviously the min is taken only over defined
F(x,yl,n1,y2,n2,...,yr,nr).

The significance of F(x,y1,n1,y2,n2,...,yr,nr) = niis that the
committee consisting of x (ex officio) and his subordinates
yl,...,yr, after considering the respective “distances”
nl,...,nr, of y1,...,yr, have come to the collective opinion of
the “distance” ni.

EA&

THEOREM 4.4. Letk,p,r =land F:Nk ¢(Nke*N)r — N be a partial

selection function. There exists finite A C Nk such that
d#min[A,F] = min on some cube C A of length p, or constant on

some C A of length p. In fact, there exists finite A

such that d#min[A,R] is regressively regular over some E of
cardinality p.

Proof: The proof is completely analogous to the proof of
Theorem 4.1. We use the Jump Free Theorem. Fix k,p,r,F as

given. For each finite A C Nk we consider the function
d#min[A,F]":A — fld(A) defined as follows: d#min[A,F]'(X) =
d#min[A,F](x) if the min defining d#min[A,F](x) is nonempty;
max(x) otherwise.

Now let S be the set of all functions d#min[A,R]. We now
prove that S C T(k) is full and jump free. We have only to
verify jump free.

Fix finite A,B CNkandx €&A N B.Assume that for all'y
A, if max(y) < max(x) then d#min[A,F]'(y) = d#min[B,F]'(y).
We wish to prove that d#min[A,F]'(x) = d#min[G,F]'(x).

Note that by an easy induction on max(x), we see that
d#min[A,F]'(x) < max(x).

C Nk
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case 1. The min defining d#min[A,F](X) is empty. Then
d#min[A,F](x) = max(x). And so we have d#min[G,F](x)
max(x) = d#min[A,F)(x) as required.

IA

case 2. The min defining d#min[A,F](X) is nonempty. Then
d#min[A,F]'(xX) = d#min[A,F](X) = d#min[G,F](x) =
d#min[B,R](x). This is because the min defining

d#min[B,F](x) must be nonempty and moreover contain the min
defining d#min[A,R](x) as a subset.

We can now use the Jump Free Theorem to obtain an f e Sand
Ek C dom(f), |E| = p, such that on each order type in EKk, f
is either = min or constant and < min(E) on Ek. l.e.,

d#min[A,F] is either = min or constant and < min(x) on any
given order type in EKk.

Now letx € A and suppose d#min[A,F]'(x) = min(x). If the min
defining d#min[A,F](x) is empty then d#min[A,F](x) = min(x).

If this min is nonempty then d#min[A,F](x) = d#min[A,F]'(x).

So in any case d#min[A,F](x) = min(x).

On the other hand, suppose d#min[A,F]'(X) < min(x). Then the
min defining d#min[G|A,F](X) is nonempty, in which case

d#min[G|A,F](x) = d#min[G|A,F](X). 0

We are now going to show that Theorem 4.4 requires large
cardinals to prove. In fact, the same large cardinals are
required to prove Theorem 4.4 that are required to prove the
Jump Free Theorem.

We assume Theorem 4.4, and derive Lemma 5.3 of [Fr97], which
was shown to have the required metamathematical properties.
We now present a self contained statement of Lemma 5.3.

For tuples x of natural numbers, we use |x| for max(x).

We write FPF(NK) for the set of all finite partial functions
from Nk into N; i.e., the domain is a finite subset of Nk and

the range is a subset of N. For A C Nk we write fld(A) for
the set of all elements of N that are a coordinate of some
element of A.

Let QF be the set of all propositional combinations of atomic
formulas of the form x <y, where x and y are variables
representing elements of N. We assume that elements of QF are
in disjunctive normal form.

Letf EFPF(N K). Ify € Nk then we write f(y) for
(f(y LieeY k),;f(y kr-k+1 -0y kr ))
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It is important to adhere to the convention that f(y) is
defined if and only if each of the t components are defined.

l.e., f(y) is defined if and only if y edom(f) r.

Let BEF(q,r,k) be the set of all bounded existential formulas
of the following form:

BX)=( 3Jy €dom(F) ")(Iyl < [x| & D(xy,F(y))),

where x abbreviates the list of variables x LTrX @Y
abbreviates the list of variables x q+l,-oX  g+kr,@nd Disin
QF. Here F is viewed as a function symbol representing a

finite partial function from N k —N.

If we specify an actual f EFPF(N K)andx &NA4,thenitis
clear what we mean by asserting that B(x) is true in f.

LetB € BEF(k+1,r,k) and A be a finite subset of N K. We
define Df(B;A) as the unique f:A — fld(A) such that for all x

€ A, f(X) = min{j e fld(A): j = [x| or B(x,)) is true in f}.

Finally, here is the Lemma from [Fr97] that we are going to
derive from Theorem 4.4:

LEMMA 5.3 [Fr97]. Letk,p >0 and B € BEF(k+1,r,k). Then

there exists finite closed A C Nk such that Df(B;A) is
regressively regular over some E of cardinality p.

The closedness of A C Nk was defined in section 2.

We first get into the trenches and expand the definition of

Df(B;A) in more primitive notation. Let A C Nk be finite. We
consider the unique f.A — fld(A) such that for all x EA,
1) f(x) = min{] e fld(A): j = |x| or ( dyl,...yr €A

(Iyal,....lyrl < x| & D(x,y1,...,yr,f(y1),....{yn).))
where D is quantifier free. We write this f as I(D,A).
This definition is obviously a correct definition of Df{B;A).

In this terminology, the recursion involved in Theorem 4.4 is
of the following form. Let A C Nk be finite. We consider the

unique f:A — fld(A) such that for all x EA,
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) f(x) = min{j: ( dyl,...,yr € A)(y1],....|lyr] < |X] &
R(x,y1,...,yr,f(yl),...,f(yr),j)) & j = some f(yi))} if this min
is nonempty; min(x) otherwise,

where R C (NK)r+1 Nr+1 is fixed in advance of any choice of
finite A C Nk. We write this f as lI(R,A).

We spell out the relevant Propositions based on I) and II).

PROPOSITION A. Letk,p,r =1landD C(NKr+1 <Nr+1 be given by
a quantifier free formula in (k+1)(r+1) variables (see the
definition of QF above). There exists finite closed A C Nk

such that I(D,A) is regressively regular over some E of
cardinality p.

PROPOSITION B. Let k,p,r =landD C(NK)r+1 <Nr+1 be given by
a quantifier free formula in (k+1)(r+1) variables. There

exists finite A C Nk such that II(D,A) is regressively

regular over some E of cardinality p.

LEMMA 4.5. Proposition A implies Lemma 5.3 [Fr97]. Theorem
4.4 implies Proposition B.

Proof: Obvious. []

The remainder of this section is devoted to the derivation of

Proposition A from Proposition B. By Lemma 4.5., this means
that Theorem 4.4 implies Lemma 5.3 [Fr97]. Hence by [Fr97],
Theorem 4.4 implies the consistency of certain large cardinal
axioms, and therefore is independent of the usual axioms for

mathematics.

PROPOSITION C. Let k,p,r =landD C(NK)r+1 <Nr+1 be given by
a quantifier free formula in (k+1)(r+1) variables. There

exists finite closed A C Nk such that 11I(D,A) is regressively

regular over some E of cardinality p.

We aim to derive Proposition C from Proposition B. Let k =1
and A C Nk. We define A’ = {x EA( Vy Cx)(y €A}

LetD C (NK)r+1 eNr+1. We inductively define f:A — fld(A)

with the intention that f|A’ = 1I(D,A").

Forx € A setf(x) = min{: ( dyl,....yr € A)(y1|,....|yr| <|X|
& D(x,y1,...,yr,f(yl),...,f(yr),})) & ] = some f(yi))} if this min
is nonempty; min(x) otherwise.

We write this f as f*.
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LEMMA 4.6. Let k =1,D C(NKr+1 <Nr+1 be given by a

guantifier free formula in (k+1)(r+1) variables, and A C Nk.

Then f*|A’ = 1I(D,A). Also there exists t =land D’ -

(NK)t <Nt given by a quantifier free formula in (k+1)(t)
variables such that f* = [I(D’,A).

Proof: The first claim is by straightforward induction. The
second claim is seen by replacing each existential
quantification over A’ with a multiple existential

guantification over A. 0

LEMMA 4.7. Proposition B implies Proposition C.

Proof: Let k,p,r,D be for Proposition C. We apply Proposition
B for k,p,t,D’, where t,D’ are given by Lemma 4.6. We obtain
f* = 11(D’,A) which is regressively regular over E, |E| = p.

Note that Ek C A’. And obviously *|A’ = 1I(D,A’) is
regressively regular over EK. 0

If X is a tuple from N then we write card(x) for the number
of distinct terms in x.

Let A C Nk be finite. We consider the unique f:A — fld(A)
such that for all x EA,
) f(x) = min{j e fld(A): j< x| &( dyl,...yr €A)
(IyLl,....lyrl < [x] & D(x,y1,...,yr,f(y1),...,f(yr).))} if this
min is nonempty and card(x) = 2; min(x) otherwise,

where D is quantifier free. We write this f as 1lI(D,A).

PROPOSITION D. Let k,p,r =1landD C(NK)r+1 eNr+1 be given by
a quantifier free formula in (k+1)(r+1) variables. There
exists finite closed A C Nk such that IlI(D,A) is

regressively regular over some E of cardinality p.
LEMMA 4.8. Proposition C implies Proposition D.

Proof: Let k,p,r,D be as given by Proposition D. We apply
Proposition C to k,p,r+1,D’, where D’ is given by D’'(x,y1,...

yr+l,nl,....nr+l,) <> (card(x) =2 & D(x,y1,
~oLynnl,..nr))).
From Proposition C, we obtain finite closed A C Nk and fA

fld(A) such that for all x EA,

—
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f(x) = min{j: ( dyl,...yr+1l € A)(lyl],....|yr+1| < |x| &
D'(x,y1,....yr+1,f(y1),....f(yr+1),j) & j = some f(yi))} if this
min is nonempty; min(x) otherwise.

l.e., for all x e A,

f(x) = min{j: ( Ayl,....yr+1 € A)(yl],....|yr+1| < |x| & (card(x)
=2 & D(x,y1,...,yr,f(yd),....f(yr),)) & j = some f(yi))} if
this min is nonempty; min(x) otherwise.

Hence for all x EA,

f(xX) = min{j: ( Ayl,...yr+l € A)(lyl],....|yr+1]| < |x| &
D(x,y1,...,yr,f(yl),....f(yr),j)) &j = some f(yi))} if this min

is nonempty and card(x) > 2; min(x) otherwise.

In particular, if x € A and card(x) = 1, then f(x) = min(x).

Note that in the above min, since A is closed, yr+1 can be
set to be any (m,...,m) where m < |x|, in which case the

f(yr+1) is m. And note that by induction on |x|, X EA we
see that f obeys the inequality f(x) =< |X|. Thus the possible
f(yr+1) in the above min are all elements of fld(A) that are

< |X|. Thus for all x EA,

f(X) = min{j efld(A): j < x| & ( Ayl,...yr+l €

A)(ly1],...,lyrl < |X|] & D(x,y1,...,yr,f(y1),...,f(yr),)))} if this

min is nonempty and card(x) = 2; min(x) otherwise.

Note that this is exactly 11I(D,A), and so f is as desired

for Proposition D. i
Let A C Nk. We now consider the unique f:A — fld(A) such
that for all x EA,
IV) f(x) = min{] efld(A): j< x| & ( dyl,...yr €A)
(IyLl,....lyrl < [x] & D(x,y1,...,yr,f(y1),...,f(yr).))} if this
min is nonempty and card(x) > 3; |X| otherwise,

where D is quantifier free. We write this f as IV(D,A).

PROPOSITION E. Let k,p,r =1landD C(NKr+1 eNr+1 be given by
a quantifier free formula in (k+1)(r+1) variables. There
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exists finite closed A C Nk such that IV(D,A) is regressively
regular over some E of cardinality p.

We now aim to show that Proposition D implies Proposition E.

Letk =1.Forallx € Nk+1, let x- be the result of chopping
off the first term.

Let A C Nk+1 be finite. We define A# to be the set of all x e
Nk such that (min(x),x) € A and (|x|,x) e A.

Letf.A — fld(A). We define f#:A# — fld(A) as follows. Let x

€ A#. If card(x) < 2 or f(|x|,x)) = min(x), then set f#(x) =
[X|. Otherwise set f#(x) = f(min(x),x).

Forany B C Ntand x € Nt, let B<x = {y eB: |ly| <|x|}. If
f:.B — fld(B), let f<x = f|B<x. Let B <x=B<x U{x}andf =X =
fIB <x.

NowletD  C (NK)r+1 eNr+1. For finite A C Nk+1, we inductively
define an f.A — fld(A) with the intention that f# = IV(D,A#).

Letx €A, and suppose f<x has been defined.

case 1. x = (min(x-),x-) and card(x-) = 3. Define f(x) =
min{j € fld(A#): < |x| & ( Ayl,....yr € AH)(yL,....|yrl < |X]|

& D(x-,y1,...,yr,(f<X)#(y1),...,(f<x)#(yr),))} if this min is
nonempty; min(x) otherwise.

case 2. X = (|x-],x-) and card(x-) > 3. Define f(x) = the
least term of x above min(x) if the min in case 1 is
nonempty; min(x) otherwise.

case 3. otherwise. Define f(x) = min(x).

We write this f as ~(D,A).

LEMMA 4.9. Let k >1,D C(NKr+l1 eNr+1be givenhya

guantifier free formula in (k+1)(r+1) variables, and A C Nk+1
be finite and closed. Then ~(D,A)# = IV(D,A#).

Proof: We prove by induction on x € A that 7(D,A =X C
IV(D,A#). Assume that this is true for all y € Awith Jy| <
[X]. Then ~(D,A<x)# C IV(D,A#).
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First suppose that x- & A#. Then (A <x)# = (A<x)#, and so
ND,A =x)# = ND,A<xX)# C IV(D,A#).

Next suppose that card(x-) <=2, X €A# Then™D,A =X)#(X) =
[X| = IV(D,A#), and so ~(D,A <x) CIV(D,A#).

For the remainder of the proof, assume that x- € A# and
card(x-) = 3.

If x = (Min(x-),x-) then

ND,A =x)(x) =

min{j € fld(A#): j<|x| & ( dyl,...,yr € AH(yl,....|yr| < X
& D(x-y1,....yr,(F<x)#(y1),...,(fF<x)#(yr),j))} if this min is

nonempty; min(x) otherwise.

And if x = (max(x-),x-) then

ND,A =x)(x) = the least term of x above min(x) if the min
above is nonempty; min(x) otherwise.

Now by the definition of #, if the min above is nonempty then
ND,A =x)#(x-) is the min above. And by case 2, if the min

above is empty then ~(D,A <X)#(x-) = |x-|. This is in exact
accordance with the definition of IV(D,A#). Hence ~(D,A =xX}# C
IV(D,A%). [0

LEMMA 4.10. Let k =landD C(NK)r+1 <Nr+l be given by a
quantifier free formula in (k+1)(r+1) variables. Then there

exists D’ C (Nk+1)r+1  *(Nk+1)r+1 given by a quantifier free
formula in (k+1)(r+1) variables such that the following

holds. For finite A C Nk+1, /(D,A) = 1IlI(D’,A).

Proof: By inspection of the definition of ~(D,A). This
definition is of the right form. 0

LEMMA 4.11. Proposition D implies Proposition E.

Proof: Let k,r,p,D be as given for Proposition V. We apply
Proposition 1V for k+1,r,p,D’, where D’ is given by Lemma
4.9.

Thus we obtain finite closed A CNk+land Ek+1  CA |E|=p),
such that IlI(D’,A) is regressively regular over E. Then

obviously Ek C A#and A# C Nkis closed. We have to verify

that N(D,A)# = IV(D,A#) is regressively regular over E.
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We have that for all order types ot of k+1-tuples, either

i) for all x € Ek+1 of order type ot, ~(D,A)(X)
min(x); or
ii) for all x,y € Ek of order type ot, (D,A)(X) =

ND,A)(y) < min(E).

Now let ot’ be an order type of k-tuples. Suppose that for
somey € Ek of order type ot’, N(D,A)#(y) < min(y). By the

definition of A(D,A)#, we see that card(y) = 3 and the min
defining (D,A)((min(y),y)) is nonempty. Hence N(D,A)#(y) =
AD,A)((min(y),y)) < min(y). Therefore for all z € Ek of

order type ot’, (D,A)((min(z),z)) = ~(D,A)((min(y),y)) <
min(E), and hence ND,A)#(z) = N(D,A)((min(z),z)) =
ND,A)#(y). This verifies that (D,A)# = IV(D,A#) is
regressively regular over E. 0

Note that we can put IV) in a somewhat more convenient form
that more closely resembles our target |):

For A C Nk, consider the unique f:A — fld(A) such that for
all x EA,
V) f(X) = min{] e fld(A): j = |x] or ( dyl,...yr €A)

(Iy1l,....lyr| < IX| & D(x,y1,...,yr,f(y1),...,f(yr).)} if
card(x) = 3; |x| otherwise,

where D is quantifier free.

We now want to prove Proposition A from Proposition E. Let k
=1land A CNk+2. Forx € Nk+2, let x-- be the result of

chopping off the first two terms from x. Define Sk+2 = {x
Nk+2: X1 < x2 < |x--|}. Define A’ = {x--: x €A N Sk+2}.

Let f:A — fld(A). We say that f is good if and only if for
all x,y €A N Sk+2, if x-- = y-- then f(x) = f(y). If fis

good then we define f:A’ — fld(A) by f'(x--) = f(x), where x

€A N Sk+2.

NowletD  C (NK)r+1 Nr+1. For finite A C Nk+1, we inductively
define an f.A — fld(A) with the intention that f' = I(D,A’).

Letx €EA.

v
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case 1. X € Sk+2. Set f(x) = min{j e fld(A): j = |x| or
(3Ay,....yr €A N Sk+2)(lyl|,...,|lyr] < [X| & D(x--,y1--,...,yr--
fy1),....fyn.))-

case 2. x1 > x2 > |x--|. Set f(x) = min{j e fld(A): j =X
or( Iy €A N Sk+2)(x-- =y-- & =1(y))}.

case 3. otherwise. Set f(x) = [x|.

We write this f as a(D,A).

LEMMA 4.12. Let k =1,D C(NK)r+1 <Nr+1 be given by a

quantifier free formula in (k+1)(r+1) variables, and A C Nk+1
be finite and closed. Then ao(D,A) is good and o(D,A) =
I(D,A).

Proof: Straightforward induction, which is left to the
reader. [

LEMMA 4.13. Let k =landD C (NK)r+1 <Nr+1 be given by a
quantifier free formula in (k+1)(r+1) variables. Then there

exists D’ C (Nk+2)r+1  *(Nk+2)r+1 given by a quantifier free
formula in (k+3)(r+1) variables such that the following

holds. For finite A C Nk+2, «(D,A)=1V(D,A).

Proof: By inspection of the definition of ao(D,A). This
definition is of the appropriate form. 0

LEMMA 4.14. Proposition E implies Proposition A.

Proof: Let k,r,p,D be for Proposition A. We apply Proposition
E for k+2,r,p+4,D’, where D’ is as given by Lemma 4.13. By

Proposition E we obtain finite A CNk+2andE  C Nof
cardinality p such that a(D,A) is regressively regular over

E. LetE' ={ES,...,.Ep+2}. Let X,y € E’k be of the same order

type, where I(D,A’)(X) < min(x). Recall from Lemma 4.12 that

o(D,A) = I(D,A).

We have x,y € A’and (E1,E2,X),(E1,E2,y) €A N Sk+2. Hence
ao(D,A)(x) = a(D,A)((E1,E2,x)) and a(D,A)(y) =
a(D,A)((E1,E2)y)). Also o(D,A)((Ep+4,Ep+3,x)) = a(D,A)' (X)
and o(D,A)((Ep+4,Ep+3y)) = a(D,A)'(y). Hence by the

regressive regularity of a(D,A) over E, we have a(D,A)(X) =
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a(D,A)'(y) < min(E). Hence a(D,A) = I(D,A’) is regressively
regular over E’. i

We have now proved the following.

THEOREM 4.15. Proposition B implies Proposition A. Theorem
4.4 implies Lemma 5.3 [Fr97]. Theorem 4.4 can be proved using
subtle cardinals of every finite order, but not with subtle
cardinals of any fixed finite order. l.e., it can be proved

inZFC + ( Vn)(there exists an n-subtle cardinal), but not in
ZFC + {there exists an an n-subtle cardinal}n.

Proof: The first two claims are from the preceding. Theorem

4.4 can be proved using subtle cardinals of every finite

order since it was proved here from the Jump Free Theorem;
and see Theorem 2.4. The metamathematical claims concerning

Lemma 5.3 [Fr97] are from [Fr97]. 0



