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COMPUTER: I am a bomb, you have just armed me.
SIMON GRUBER (over a cellular phone): I got you see the message. It
has a proximity circuit, so please don’t try to run.
JOHN MCCLANE: Yeah I got it. We’re not gonna run. How do we turn
this thing off?
SIMON: On the fountain, there should be two jugs. You see them, a five
gallon jug and a three gallon jug? Fill one of the jugs with exactly four
gallons of water and place it on the scale and the timer will stop. You
must be precise. One ounce more or less will result in detonation. If
you are still alive in five mins �����
JOHN: Wait ����� wait a second. I don’t get it, you get it?
ZEUS CARVER: No.
JOHN: Get the jugs. Obviously we can’t fill the three gallon jug with
four gallons of water, right?
ZEUS: Right.
JOHN: All right. I know ����� Here we go. We fill the three gallon jug
exactly to the top. Right?
ZEUS: Uh huh.
JOHN: Okay. Now. We pour that three gallons in the five gallon jug,
giving us exactly three gallons in the five gallon jug, right?
ZEUS: Right.
JOHN: Now, take the three gallon jug, fill that a third of the way up �����
ZEUS: NO! He said precise. Exactly four gallons.

(Excerpt from Die Hard 3, a.k.a. Die Hard: With a Vengeance)
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2 Fun with Algorithms

As in any typical Hollywood action movie, John and Zeus (smart guys, indeed)
have been eventually able to defuse Simon’s bomb. But next time, it could be (die)
harder! So it is high time for three wanna-be mathematicians to help our heroes
to save their skin, and solve their problem in a far more general setting.

Suppose we are given � initially empty jugs, each with a specified positive in-
teger capacity ��� ; we can assume without loss of generality that 	�
 � ��
����������������������
is an ordered vector (i.e., ��
�������������������� ), fixed from now onwards. We can
perform three elementary operations (or steps) on the jugs, viz.:

1. �! : fill the  -th jug (up to its capacity);

2.  #" : empty the  -th jug;

3.  %$'& : completely pour the content of the  -th jug into the & -th jug (  )(
*& );
at the end of this operation the  -th jug is empty or the & -th jug is full.

These operations can be formally described as follows. Let + denote the set of
elementary operations; a state is a vector ,.-0/ � , where 1�� denotes the amount
contained in jug  . The next-state function 243�/ �65 +7$8/ � is defined as
follows:

1. 2 � ,9�:�! ;�<
 � 1=
�����������1��?>@
������:��1��BAC
�����������1��D� ;
2. 2 � ,9�E ?"9�F
 � 1=
�����������1��?>@
���GH��1��BAC
�����������1��D� ;
3. 2 � ,9�E I$J&K�6
 �ML 
���������� L �D� , where

LEN 
O1 N for all PQ(-SRT E�U&9V , L �W
XZY�[ � GK��1��]\ � �E^_\41�^T�E� and
L ^`
 XZacb � ��^=��1��ed�1�^f� . For sake of simplic-

ity, we define  �$' as an operation with no effect.

An algorithm is a finite sequence of elementary operations; the function 2 is ex-
tended to algorithms gh-i+kj in the usual way, i.e., 2 � ,9�El=��
m, and 2 � ,9��g�n=�o
2 � 2 � ,K��gp����n=� . A quantity q.-r/ is measurable (via the algorithm g ) iff one of the
components of 2 �#s ��gp� is equal to q . The set of quantities which are measurable
using the capacities in 	 is denoted by t � 	%� .
1 Fair challenges: What is measurable?

We are blessed with a sort of twisted fairness—we would never let Simon chal-
lenge John and Zeus to defuse an indefusable bomb. But to do this, we need to
know what is measurable and what is not. On the other hand, we would like to
help John and Zeus by giving them a universal bomb-defusing algorithm (even if
they are not likely to know what the last word means).

For each uwv7x , let yMu{z denote the subgroup of
� x|��d{� generated by u

(which is just the cyclic subgroup generated by }�~���u ). Given qi-*y?�=
��������������Dz ,
there exists (possibly more than) one vector ��
 � qC
����������EqD�D��-�x � such that
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4����	�
�� � qD����� ; any such vector � will be called a representation of q (with
respect to 	 ). We shall denote by �����#� the ��
 -norm of � , i.e., �����#��
�� ��� qD� � .

We shall now give an algorithm � for measuring a quantity q.-0y?�=
��������������Dz��� GK�����H� ; the algorithm depends on a representation �i
 � qC
����������EqD�D� for q , and it
can be recursively defined as follows:

1. if q�
�G then � � �e� is the empty algorithm l ;
2. if there exists an index  such that q��F��G and q�\����F��G , then� � �F�<
*� � q@
�����������qD��\��=����������qD�D�w�� � �$ �e�
3. if there exists an index  such that q��F��G and qIdi���F�h��� , then� � �F�<
*� � q@
�����������qD�Dd��=����������qD�D� � $� w ?" �
4. otherwise, let  and & be any indices such that q��<��G and q9^���G ; then� � �F�F
*� � q@
����������EqD��\��=���������Eq9^�d��=���������EqD�D�� $�& �� w �$4&¡&="  �$ � �

Note that � is defined nonderministically, but it is trivial to obtain a deterministic
version of it. We now show that � is indeed correct.

Lemma 1 Let �¢
 � q@
����������EqD�D� be a representation (w.r.t. 	 ) of q£-0y?��
��������������DzE�� GK�����H� .
1. � � �F� is well-defined;

2. the algorithm � � �F� performs at most ¤� �����?� elementary operations;

3. q is measurable via � � �F� ; more precisely, 2 �#s �E� � �F�E�F
 � GK��GK����������GH��q�� .
Proof. 1. Firstly, notice that every recursive call to � reduces ����� � by one in
cases (2) and (3), or by two in case (4), so recursion is well founded. Moreover, if
cases (1)–(3) fail, then at least one index  satisfies q����4G (for otherwise q¢��G )
and one index & satisfies q¥^I�4G (for otherwise condition (2) would hold), so we
end up in case (4), and the algorithm is defined for every � .

We have to show that the condition GI�h����	Z�*��� is satisfied in the recursive
calls to � : this is certainly true for cases (2) and (3). As for case (4), we must
show that q�dh�E^o\i����- � GK�����H� : if q�dh�E^�\i���|��G then q�dh��^Z�'���|�'��� , and
this is impossible—since q¥^��¦G , we would be in case (3); if q�d*��^�\6�����§���
then qZ\¨���<�h����\¨�E^��hG , and this is impossible—since q��<��G , we would be in
case (2).
2. Straightforward: in cases (2) and (3), ����� � is reduced by one, and two opera-
tions are added; in case (4), �����#� is reduced by two, and five operations are added.
3. By induction on ���|� � . If ����� � 
'G , the result is trivial. For the inductive step,
we distinguish three cases:



4 Fun with Algorithms© in case (2), we have 2 �#s �E� � �F�E��
�2 �E� GK����������GK�Eq�\W�������E�� w !$ � � , which
is in turn equal to 2 �E� GH�������������:��GK���������Eq�\0�������� �$ � �F
 � GK����������GK�Eq�� ;© in case (3), we have 2 �#s �E� � �F�E��
�2 �E� GK����������GK�EqZd�������� � $ª « #"K� , which
is equal to 2 �E� GH�������������:��GK���������Eq����� ?"H�<
 � GK����������GK�Eq�� ;© in case (4), we have 2 �#s �E� � �F�E�F
�2 �E� GK����������GK�EqC\����;d��E^f��� � $4&8�! w �$&¬&�"  =$ � � . Note that q�\0����d6�E^��*�E^ (for otherwise q�\0���<�hG ) and�E^{\ � q.\*���Cd��E^T���­��� (for otherwise ��^�\ � q£\*���Cd��E^f���­��� , which
implies q.��G ). This yields the following sequence of states:

� GK����������GK�Eq�\����dh�E^f�¯® � GK����������GK���������Eq�\W����dh�E^�����������G%��® � GK�������������:����������q�\0����d�E^�����������G%��® � GK��������������\ � �E^�\ � q¨\����Fd'��^f�E��
Qq@�����������E^=����������G%��®� GH���������Eq@����������GH����������G%�F® � GK����������GH��q�� . °
Since it is trivial to observe that t � 	%��vªy?��
��������������Dz@� � GK�����K� , we can state our
first result as follows:

Theorem 1 t � 	%�F
§y?�f
��������������Dz�� � GK�����H� .
This theorem can be used in very different ways: Simon can nastily choose a non-
measurable quantity to let his enemies blow up; on the other hand, John and Zeus
can decide without fail if it is time to say their last prayers or readily start the
sequence of steps which will defuse the bomb.

2 It’s a matter of time: The complexity of measure-
ment

Heroes and foes are naturally interested in time. Mathematically speaking, they
want to obtain upper and lower bounds for the complexity of measurement. For
instance, Lemma 1 contains more information than Theorem 1—it also states that
John and Zeus can possibly save their skin performing at most ¤� ����� � steps. Can
wanna-be mathematicians say anything more precise?
Denote with ± � q�� the least �=
 -norm of a representation of q (w.r.t. 	 ); in other
words, define ± � q��F
 XZa²b³¥´ µ�¶�· ���|� � �
The map ± enjoys a number of properties (in fact, it is almost1 a norm):

Lemma 2 Let q@��¸�-Wy?�T
��������������Dz and ¹�-`x . Then:

1We remark that in general equality does not hold in the second claim of Lemma 2: indeed, forº]»¨¼B½�¾#¿�À we have ¿f¼?ÁFÂ�¾;Â�ÀHÃ:º�»`¼²Äf¾:ÂEÀKÃEº , so Âp»�Å¥¼Æ¿�À�Ç�¿�Å¥¼?Â�À .
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1. ± � q�����G , and ± � q��F
�G iff q�
�G ;
2. ± � ¹9q���� � ¹ � ± � q�� ;
3. ± � qIdW¸9���6± � q���dW± � ¸9� ;
4. ± � ���U�<
�� , for all �{�6 ]� � .

Proof. We prove just the third claim (the other ones being straightforward). If �
and È are representations of q and ¸ , respectively, we have

� �{d�ÈF�%�#	k
4�_�U	@d�È_�	_
*q�d�¸ ; so �)d�È is a representation of q�d�¸ . Thus ± � q�d�¸9��� XZacb R¯���)dZÈ|�#� ��£�f	�
*q and È£�f	�
*¸¥V_� XZacb ³9´ µ�¶�· ���|� � d XIa²b¥É ´ µ�¶�Ê ��È|� � 
*± � q���d0± � ¸¥� . °
Armed with this new definition, we are now able to suggest to John and Zeus our
first upper bound, which immediately follows from Lemma 1:

Theorem 2 Every q£-£t � 	%� can be measured in at most ¤� ± � q�� steps.

Life would be too easy, and Simon would be really unhappy, if by ingenuity John
and Zeus could measure every quantity in t � 	%� using a very small number of
steps. But this is not true: we are going to show that at least 
� ± � q�� steps are
needed for measuring q (so the bound of the previous theorem is optimal up to a
small multiplicative constant).

Lemma 3 Let n be an elementary operation, and ,K��,%Ë be two states such that2 � ,K��n=�<
�, Ë . Then Ì
� ± � 1������

Ì
� ± � 1 Ë� ��d6ÍH�

Proof. If n`
Î ?" or n`
Ï�! the result is immediate (we obtain ± � 1TË� �k
ÐG and± � 1�Ë� �I
Ñ� , respectively). Suppose n`
Ð p$Ò& , and consider two cases: if 1T�Z��E^{\41�^ then 1�Ë� 
ÓG and 1�Ë^ 
Ò1�^�d�1�� , hence ± � 1�Ë� �]d*± � 1�Ë^ �I
Î± � 1�^)d�1������± � 1����¯d'± � 1�^f� . If 1��`�Ô�E^I\'1�^ then 1�Ë^ 
Õ�E^ and 1�Ë� 
«1��]d§1�^Z\���^ ; thus,± � 1�Ë� ��dW± � 1�Ë^ �F
*± � 1���d�1�^|\0�E^T��dW± � �E^f���6± � 1�����dW± � 1�^T��diÍ . °
Theorem 3 No algorithm can measure q.-£t � 	%� in less than 
� ± � q�� steps.

Proof. Let g be an algorithm which measures q , i.e., 2 �#s ��gp�F
�, , and 1f�p
�q for
some  . The claim is proved observing that ± � q��|
�± � 1T�����'� ^ ± � 1�^T� , which is
at most twice the number of steps of g .

°
If mathematicians had some time for experimental analysis, they could obtain for

the diagram of Figure 1, which shows the upper and lower bounds (dotted
lines) of Theorem 2 and Theorem 3 in the case 	�
 � �TÖ%��ÍK����×�Ö�� , together with the
number of steps of the optimal algorithm (solid line): the latter has been computed
by exhaustive search.
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Figure 1: The case 	�
 � �TÖH��ÍK�=��×�Ö!� .
2.1 Hinting at John and Zeus: An upper bound for Ø
The bound of Theorem 2 is not particularly meaningful to John and Zeus, so we
would like to give them an explicit upper bound for ± . Let Ùª-�/ � ��Ú�-�/�Û
be the coefficients of the linear homogeneous Diophantine equation � �!Ü �?¸��]\� ^@Ý ^fÞ�^�
ªG in the indeterminates È4-i/ � ��ß�-i/ Û and call à � Ùe��Ú%� the sub-
monoid of / �!A Û of all its solutions, i.e.,à � ÙF��ÚH�F
ªá � È<��ß@��-r/ �!A ÛÏââ � ��Ü �?¸=�@\0� ^ Ý ^TÞ�^o
�GDã �
the Hilbert basis à min

� ÙF��Ú%�kämà � ÙF��ÚH� is the set of all minimal nontrivial solu-
tions of the equation, with respect to the componentwise ordering (see [1]).

Lemma 4 ([4]) The monoid à � Ùe��Ú%� is generated by à min
� ÙF��Ú%� , which is of finite

cardinality; for any solution
� È<��ß��I-*à min

� ÙF��ÚH� , ��È¯�?��� X�Y�[ ^ Ý ^ and ��ß<�?���XZY�[ � Ü � .
As a consequence, it is possible to prove the following

Theorem 4 Let q£-Wy?�T
��������������Dz ; then ± � q���� X�Y�[ � Í=���������Dd � q � �EåC}=~�� � �f
��������������D� .
Proof. Assume without loss of generality that q��æG and consider an arbitrary
representation � of q . Define çh
ÑR� � q����ÐGHV , è§
ÑR�& � q9^��ÐGHV , and leté 
*}�~�� � �T
��������������D� . Then the Diophantine equationÌ

�?ê!ë ¸=� ���é4\
Ì
^�ê!ì Þ�^ �E^é�\¢í q é0
�G
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(in the indeterminates ¸�� , Þ�^ , í ) has a solution with ím
­� (just set ¸=�|
ªqD� for �-�ç , Þ�^I
Ï\|q9^ for &`-6è ). In force of the previous lemma, there is a minimal
solution

��îÈ]� îßp�T�f� satisfyingÌ
�?ê!ë î¸=�<� X�Y�[�ï¥XZY�[^�ê!ì �E^é � q é<ð and ��d Ì^�ê%ì îÞ�^{� X�Y�[�?ê!ë ���é �

By memberwise adding these inequalities we obtain the result.
°

Forgetting our heroes for a moment, it is interesting to remark that ± induces a
distance between natural numbers, by the standard definition

é � q@�E¸¥�Z
Ó± � q`\¸9� (when q is not in y?�f
��������������Dz , ± � q�� is infinite). This distance has a graph-
theoretical interpretation—it is the distance between q and ¸ in the undirected
Cayley graph ñ of x with respect to �f
�������������� ; thus, the upper bound of the
previous theorem provides upper bounds for the distances of ñ as well. Moreover,
getting back to our story, it allows us to give an upper bound for measurement
which does not involve ± :

Corollary 1 Every q�-0t � 	%� can be measured in at most Ö����DåC}�~�� � �f
��������������D�
steps.

3 Dying harder and harder: Real capacities and den-
sity

It may not be so self-evident, but Simon could be extremely nastier than he is—
he could use jugs with arbitrary capacities! Yet, it is not difficult to check that
Theorem 1 holds also when the capacities ��� are positive real numbers2, andy?�T
��������������Dz denotes the subgroup of

�?ò ��d{� generated by ��
�������������� . Moreover,
a simple scale-changing argument proves the following

Theorem 5 For all GI�hó0- ò and 	Z- ò � , t � óe	%�F
4óCt � 	%� .
If all ratios ����å���^ are rational, each capacity is just an integer multiple of a certainóô�õG (in particular, this happens if 	 is rational). The situation in this case
is completely characterized: since the previous theorem gives t � 	%� in terms oft � 	%å=óe� , and 	Hå=ó�-r/ � , we can use the results of the previous sections.

However, if at least one ratio ��^få����]
�ö is not rational, it is a straightforward
consequence of Kronecker’s Theorem [2, Theorem 440] that t � 	%� is dense in� GK�����H� . In particular, it is possible to measure an arbitrary capacity in

� GK�����H� with
arbitrary precision. So we now leave our heroes and foes to their destiny, and

2As a matter of fact, the algorithm ÷ can even be used when the capacities are taken from an
arbitrary ordered group. Moreover, the characterization is true (with obvious modifications) even when
the set of jugs is infinite. But this is material for Die Hard ø , ø�ù�ú�û:û:û
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play a little bit with jugs and formulae (John and Zeus could never measure a
quantity as suggested below—the mistakenly spilled water would largely exceed
the measurement error!). In analogy with the discrete case, we can define±�ü � q��F
 XZa²bý ³9´ µ > · ý þ ü �����?���
for qÏ- � GK�����H� and l4�ÑG ; unfortunately ±@ü does not enjoy the properties of
Lemma 2, unless l£
ÏG . However, the lower and upper bounds given by Theo-
rems 2 and 3 immediately generalize:

Theorem 6 For every lI�hG , every q`- � GK�����H� can be measured with precision l
in no less than 
� ±�ü � q�� and no more than ¤� ±�ü � q�� steps.

Proof. Only the lower bound needs a proof. Note that if � q0\ Ü�� �ÿl , withÜ -�t � 	%� , then ±@ü � q��o�4±�� � Ü � and Lemma 3 remains true if ± is replaced with±�� . Hence, using the same notation as in the proof of Theorem 3, ±eü � q����6±�� � 1��U� ,
which is less than twice the number of steps of the algorithm measuring Ü 
ª1f� .°
Bounding ±�ü is of course much more difficult than bounding ± . We shall limit
ourselves to the case in which ö belongs to a very particular set: in order to do
this, we need introduce some notations, definitions and lemmata from number
theory. Let Ü �=� Ü 
�� Ü �f��������� Ü�� be integers such that Ü �)�¦G for all  {�¦G . Define
the simple (finite) continued fraction of partial quotients Ü �=��������� Ü�� as follows� Ü �=��������� Ü�� ��
 Ü ��d �Ü 
ed �Ü �]d �������d �Ü��

�

Let now ��>p
�
m� , ��>@
�
¦G , ���_
 Ü � , ���_
m� and define, for � 
�GK���������
	 \*� ,
the convergents

�D�!AC
�
 Ü �!AC
��D�_d��¥�K>p
 and ���!Ae
�
 Ü �!AC

���_d����K>p
��
It can be easily shown [2, Theorems 149 and 157] that }�~�� � �����������F
�� and� Ü �=��������� Ü�� ��
 � �� � �
The notion of continued fraction can be generalized to the infinite case: if Ü �=� Ü 
��������
are integers (with Ü �<��G for  ]��G ), define the simple continued fraction of partial
quotients Ü �=� Ü 
�������� as � Ü ��� Ü 
��������:��
�� acX����� � Ü ����������� Ü�� �#�
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It turns out [2, Theorem 170] that every irrational number ö can be expressed in
just one way as an infinite simple continued fraction

� Ü �=� Ü 
��������:� (which will be
called the continued fraction expansion of ö ); moreover, if ö��æG then Ü �£�mG .
Following common usage, we define����� � ö%�e
��
������p
 Ü ���
and say that an irrational ö has bounded partial quotients if � � ö%����� ; moreover,
we let  �
 RTö£- ò � � � ö!���!�hV . It can be shown that while  has Lebesgue
measure zero, and so it is totally disconnected, it has Hausdorff–Besicovitch di-
mension � , so it is a “most fractal” set (for a thorough discussion of these and
other related issues, see [5]).

We start with our first lemma concerning continued fraction expansion:

Lemma 5 Let ö¢
 � Ü �=� Ü 
��������:��-" �#�$ be a positive irrational number with
bounded partial quotients, with convergents ��� , ��� . Then, for all � -¢/ it holds
that % ���&����� ��' � � ö!�E� � and �¥���)(Bö+* ��' � � ö!�E� � �
where

' 
 
;A-, ¤� is the golden ratio, and
% � is the � -th Fibonacci number.

Proof. We first prove the upper bound for ��� by induction on � (the proof for ���
is analogous). Note that �.�o
 Ü �{�)( ö/* , ��
�
 Ü � Ü 
�d0���)0Bö+1 ' � � ö%�9d ' � � ö!�e
(Bö+* ' � � ö%� and that

�¥�!Ae
�
 Ü �!AC
��¥�_d��¥�9>@
���� � ö!�2( ö/* ��' � � ö%�E� � d!( ö/* ��' � � ö%�E� �K>@

3(Bö+* ��' � � ö!�E� �K>p
 ��' � � ö!� � d*�f���
If it was

' � � ö%� � d��k� ' � � � ö%� � we would have
��' � \ ' �4� � ö%� � ��� , so (since' � \ ' 
¦� ), � � ö!����� , which is impossible. Thus,
' � � ö%� � d���� ' � � � ö%� � , and

we obtain the required result. For the lower bound, we have �5��
Ï�k
 % � , ��
{
Ü 
��'�)
 % 
 and ���!Ae
¯
 Ü �!AC

����d����K>p
������kd����9>@
�� % ��d % �K>@
|
 % �!AC
 .°
Using this lemma, we can obtain a special version (providing also an upper bound
for the value of convergents) of Theorem 171 of [2]. Note that, since

% � is the
integer closest to

' � å76 Ö , we have
%98;: <
=?>+@ , ¤ �7ACB � � .

Lemma 6 Let öI-D E#F$ . For each t ��G there exist two coprime Gf���k-`x such
that �k�ht , ââââ G � \¨ö ââââ � �� �
and � G � d � � � �H(Bö�d��?* ' � � ö%� � 6 Ö�t�� 
;A : <�= >JI @LK A .
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Proof. Let � 
M(N�PO�}�Q � 6 Ö=t¦�R* . The inequality above holds by Theorem 171
of [2], taking G�
��D� and ��
!��� ; note that ����� % ���'t as required. Finally,
by Lemma 5, � G � d � � � 
 � �D� � d � ��� � � ��' � � ö!�E� � dS(Bö+* ��' � � ö%�E� � �T(BöZd�U* ��' � � ö%�E� : <
=V>2@ , ¤�W AMAC
 
3( öpd¨�?* ' 6 Ö�tX� � ö%� : <�=U>+@ , ¤�W A AC
 . An easy calculation
leads to the stated result.

°
We then obtain the following special version of Kronecker’s Theorem:

Theorem 7 Let ö£-Y Z#[$ , ó4- ò and 	 ��G . There exist � ���i-�x such that� �\	 , � � ö)\D��\0ó � � ×�
and � � � d � � � �^] � ( ö�d��U* ' � � ö%� � Í 6 Ö/	¨� 
;A : <�=?> I @LK A d � ó � d�� .
Proof. By Lemma 6, there exist Gf���k-`x coprime, with �I�hÍ5	 , such thatââââ G � \¨ö ââââ � �� �
and � G � d � � � �)(Bö�d��?* ' � � ö%� � Í 6 Ö5	¢� 
;A : <�= >JI @LK A .

Let now _ be (one of the two) integers which are closer to �=ó ; then � �=ó|\`_ � ��Tå=Í . Since G and � are coprime, _ may be expressed as _Ï
bacG_\Zde� for somea¥��d£-`x , and we may assume that � a � ����å�Í . Note that de�_
�a7G)\Y_ and thus

� d � � � a �c� G � d � _ �� � 
� � � G � d�� � ó � d��� � � G �Í d � ó � d����
Now a � �fö)\fG!�p\ � �=ó£\g_��<
�� � a%ö)\0ó£\fd�� , hence� � � a!ö{\�ó.\hd�� � 
 � a � �fö)\hG!�C\ � �=ó£\Y__� �� � a �c� �fö{\hG � d � �=ó£\Y_ � � �Í � �� d �Í 
��=�
Letting � 
��|dYa and ��
�G�dZd , we obtain

� � ö)\D��\0ó � 
 � �fö�dZa%ö)\hG{\hd�\0ó � � � a%ö)\fd�\0ó � d � �fö)\fG � � �� d �� 
 Í� �
Since � a � �i��å=Í , we have ��å=Íi�i��d�a*� � ×!å=Í!�4� . Moreover �W�ÎÍ/	 , which
implies 	 �j��å�Í , and so 	 �H��å=Í0� � �­×+��å�Í . Hence Í!å5��� � å=× , and we
obtain the required bound. Finally,

� � � d � � � � � � � d � a � d � G � d � d � ����d �Í �|d � G � d �Í � G � d � ó � d*�
 ×Í � � � � d � G � ��d � ó � d��
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which is at most ] � ( ö�d*�?* ' � � ö!� � Íc6 Ö/	¨� 
;A : <�= >JI @LK A d � ó � d*� . °
We now turn the previous theorem into an upper bound for ±Cü :
Theorem 8 Let 	¨- ò � and assume �E^få=����
mö for some irrational ö`-\ �#`$
with bounded partial quotients. Then, for each q£- ò and each l_��G

±�ü � q���� ×Í (Böod*�?* ' � � ö!� ïlk 6 Ö����l ð 
�A : <
=�> I @LK A d q��� d����
Proof. Let 	Q
�×=����åfl and ó¢
4q�å���� . By Theorem 7, we find � ���£-¢x such that� �\	 ,

� � ö)\m��\0ó � � ×� � ×	 
 l���
and � � � d � � � �^] � (BöKdZ�?* ' � � ö!�/n�o , ¤
pRqüTr 
;A : <�=?> I @LK A d ·p q dZ� . But � � �E^%\l������\)óC��� � 
� � ö!����\m������\0óC��� � 
4��� � � ö)\D��\�ó � �6l%� °
This obviously can be combined with Theorem 6 in order to obtain an upper
bound for the number of steps required to measure q.- � GK�����H� with precision l .
3.1 The special case sYtvu?w.xzy�{
When ö is the golden ratio (whose expansion is easily shown to be

� �=���=���=�������:� ),
we have � ��' �_
 � and thus the upper bound of Theorem 6, using Theorem 8,
has the form

| 
 �l d | ��qId��
for appropriate constants | 
 and | � . The fact that

'
is so well suited to mea-

surement can be immediately related to its usefulness in multiplicative hash-
ing [3]. Every point of the sequence R L}' V)
 L}' \�0 L}' 1 on the unit interval bisects
(following the golden ratio) one of the longest intervals not containing previous
points [6], i.e., the sequence is “most uniformly distributed” (more precisely, this
is true of

' >@
 , but R L}' >@
 V�
­R L}' V ). This fact can be used in order to provide a
lower bound for the case 	�
 � �=� ' � .
Lemma 7 At least one of the intervals determined on the unit interval by the set
of points RFR L}' V � GI� L � % �!Ae
�V�~�R<R!\ L}' V � GZ� L � % �!AC
�V has length greater
than 
� ' >��;� .

Proof. We use the fact that the point R=P ' V bisects following the golden ratio one
of the longest intervals determined by RFR L}' V � G.� L �§P¥V on the unit interval,
and that new lengths appear only when P is a Fibonacci number (see [3] for a
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full discussion). Since each bisection possibly reduces an interval by a factor of�F\ ' >@
 
 ' >�� , all intervals determined by R<R L}' V � GZ� L � % �!AC
�V have at least
length

' >��;� (the same holds for the other set of points). Hence, the statement
can be easily obtained observing that the union of the two sets must leave at least
one segment of length greater than 
� ' >��;� (no point of a set can exactly bisect an
interval determined by the other set).

°
Lemma 8 For all � �æG there exists q*- � GK�T�T� such that for all �@� L -4x with� L � � � , it holds

� L}' dE��\¢q � � ï 'Í 6 Ö � ð � �
Proof. Since � L � � � � %98;: <�= > @ , ¤ �cACB , by the previous lemma the set of pointsR L}' df� �e� L � � � ����-hx¯V�
­R<R L}' V�dg� �F� L � � � ����-*x�V determines at least
one interval of length greater than 
� ' >�� 8L: <�=U>2@ , ¤ �7ACBEA�� � 
� ��' å26 Ö � � � in

� GK����� .
Choosing q as its middle point, we obtain the thesis.

°
Now we can state a lower bound for ±pü :
Theorem 9 For every lk- � GK���f� there exists an q£- � GH�T�f� such that

±�ü � q���� Í ' d��Í76 Ö�l \ ' \0×H�
Proof. Let � 
i0 ' å � Íc6 Ö�l��R1 ; then, by the previous lemma, a simple substitution
shows that there exists qW- � GK���f� such that for all �@� L -ix with � L � � � it holds� L}' dZ�£\6q � �ml . Thus, for every �ª-'x � such that � 	I�H�W\�q � � l we have� q�� � � � . Moreover, � qp
¯d�q�� ' � � l�d�q��ÎÍ and thus � q@
 � � � q�� � ' \*Í , so����� � � � q�� � � ��d ' �C\�ÍI� � � d��f� � �]d ' �C\ ' \�× . °
In other words, for some qW- � GK�T�T� (in fact, on some positive measure subset of� GK����� ) ±�ü has a lower bound of the form

| �6 l \ ' \�×H�
with constant |&� � , a fact that we could use in order to design bombs with a
guaranteed minimum defusing time (in fact, the right subtitle of this paper should
be What If Mathematicians Were Asked To Design Bombs ����� ).
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