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Summary 

The most important finding of this study is that COVID-19 strains form two well-supported 

clades (genotype I, or Type I, and Type II). Type II strains were likely evolved from Type I 

and are more prevalent than Type I among infected patients (68 Type II strains vs 29 Type I 

strains in total). Our results suggest the outbreak of type II COVID-19 likely occurred in the 

Huanan market, while the initial transmission of the type I virus to humans probably occurred 

at a different location in Wuhan. Second, by analyzing the three genomic sites distinguishing 

Type I and Type II strains, we found that the synonymous changes at two of the three sites 

confer higher protein translational efficiencies in Type II strains than in Type I strains, which 

might explain why Type II straints are more prevalent, implying that Type II is more 

contagious (transmissible) than Type I. These findings could be valuable for the current 

epidemic prevention and control. The timely sharing of our findings would benefit the public 

health officials in making policies, diagnosis and treatments. 

 

Introduction 

The 2019 novel coronavirus disease (COVID-19, previously known as 

2019-nCoV) has been diagnosed in more than 70,000 deaths, more than 2,000 deaths, 
and more than 10,000 severe cases (http://2019ncov.chinacdc.cn/2019-nCoV/global.html). The 

current spread trend in China is declining, but it is increasing in other countries. 

Therefore, it is still challenging to effectively control this ourbreak worldwide. The 

recent COVID-19 virus was named as SARS-CoV-2, mainly based on its closest 
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relationship with the SARS-CoV virus. Our recent study showed that SARS-CoV-2 

and SARS-CoV have common ancestors, as they form sister groups, and 

SARS-CoV-2 aggregates with two SARS-like bat viruses [1]. The branch length of 

the phylogenetic tree of the common ancestor of SARS virus and its recent bat virus 
(0.03) is short, and the branch length of SARS-CoV-2 and two SARS-like bat viruses 

is longer (0.09), indicating that there are many viruses in the middle not found. The 
Yunnan bat coronavirus (BatCoV RaTG13) isolated in 2013 was found to be most 

closely related to SARS-CoV-2 [2]. The phylogenetic tree of SARS-CoV-2 and their 
common ancestors of BatCoV RaTG13 has a branch length of only 0.02 (Figure S1). 

Therefore, we used BatCoV RaTG13 as an outgroup to study the origin and 

transmission history of SARS-CoV-2. As fears of global pandemic continue to rise, it 

is necessary to better understand the sources and transmission history of this outbreak 

and to monitor the changes of genomes for dominant viral strains. These studies are 

important for public-health officials to prepare better strategies for constraining the 
outbreak and prevention of further spread.  

 

Data and Methods 

We obtained 97 complete genomes of COVID-19 samples from GISAID 

(www.gisaid.org), NCBI and NMDC (http://nmdc.cn/#/nCov/). Sequence alignment 
of 97 COVID-19 genomes plus the strain BatCoV RaTG13 used by MAFFT 

(https://mafft.cbrc.jp/alignment/software/). Genome variable sites of Sequence 
alignment used the noisy (http://www.bioinf.uni-leipzig.de/Software/noisy/). The 

three type-specific variants correspond to the genomic positions 8750, 28112, and 

29063, respectively; the coordinates are referred to as the sequence MN938384.1. The 

maximum likelihood (ML) phylogenetic tree used by FastTree 

(http://meta.microbesonline.org/fasttree/). The tRNA Adaptation Index (tAI) values 

were computed using Bio::CUA (https://metacpan.org/release/Bio-CUA), and the 

numbers of human tRNA genes were downloaded from http://gtrnadb.ucsc.edu. 

 

Results and discussions  

We obtained 97 complete genomes of COVID-19 samples and inferred their 

evolutionary relationships based on their genomic variants (Figure 1). Overall, we 

found only 0 to 3 mutations among the majority of COVID-19 genomes, and there are 

only 95 variable sites (Figure 1B). Their phylogenetic relationships suggest the 

presence of two major types of COVID-19, namely Type I and II (Figure 1A). The 
genomes of the two types mainly differ at three sites (Figure 1B), which are 8750, 

28112, and 29063, based on MN938384.1’s genome coordinates. Specifically, the 
nucleotides at the three sites are T, C, and T/C in Type I , and C, T, and C in Type II, 
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respectively. Based on the nucleotide at the site 29063, the Type I strains can be 

further divided into Type IA and IB. The number of genomes belonging to Type IA, 

IB and II are 10, 18, and 69, respectively. This finding suggests that the Type II strains 

are dominant in the infected populations. 

 

We found that the three sites in Type IA and two in Type IB are identical to those in 

the BatCoV RaTG13 [2] (Fig. 1B), suggesting that the Type I may be more closely 

related to the ancestral human-infecting strain than Type II, consistent with a previous 

report [1]. Therefore, Type II was likely originated from a Type IB strain by 

accumulating muttaions at 8750 and 28112. Given that the Type I isolates (such as 
Wuhan/WH04/2020 [3]) have no direct link to Huanan market and that two Type II 

samples were isolated from the Huanan market (Wuhan/IVDC-HB-envF13-20 and 
21), we speculated that the initial transmission of Type I virus to humans might have 

occurred at another location. Our analysis reinforces earlier reports that some cases 
had no link to the Huanan market [3-5] and suggests that different transmission 

sources are associated with different virus strains.  

 

To further understand the functional effects of the three variants, we examined how 
these genmic variants might affect the translation of virus mRNAs in human cells. 

The mutations at 8750 and 29063 are synonymous (in gene orf1ab and N, repectively) 
and the one at 28112 is nonsynonymous, leading to a change from Leucine to Serine 

in the gene ORF8. Interestingly, we found that the two synonymous changes both 

confer higher translational efficiencies for the Type II strains than for the Type I ones 

(Figure 1C), based on the number of tRNA genes matching each codon and tRNA 

Adaptation Index (tAI) [6]. We speculate that the higher translational efficiencies 

might have enabled faster production of Type II virus particles, facilitated its spread, 
and led to its becoming dominant strains, implying that Type II is more contagious 

(transmissible) than Type I. 

 

Our results above divided the current SARS-CoV-2 into two main types, with three 

sources of transmission, namely Type IA, Type IB, and Type II (Figure 2). Among 

them, Type IA is the earliest transmission source, and it did not occur in the Huanan 

Market, indicating that the original transmission source was not from the Huanan 

Market. Type II comes from the Huanan Market. As most samples detected belong to 

Type II, we speculated that type II is the major outbreak source. It is possible that 
Type IA, Type IB, and Type II may lead to different patient symptoms. It would be 

valuable to compare the symptoms of patients infected by different types of viruses. 
Recently, some asymptomatic carriers have been found [7], and it is worth to examine 
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the specific type of virus they infected and to determine whether the pathogenicity is 

different among different types of SARS-CoV-2 viruses.  

In summary, our analyses show that there are two groups of COVID-19 viruses. 

Our results suggest the Huanan market is the third transmission source of the outbreak, 

while initial transmission of the virus to humans likely occurred at a different 
location. With more sequencing data of 2019-nCoV, we expect a more complete of 

transmission history to emerge. Our discovery suggests that patients infected with the 

different groups of viruses may need different treatments, because the Type II of 

translation is more efficient and may lead to faster onset of illness in infected patients. 

Comparative studies of the symptoms of patients infected by the two types of 

2019-nCoVs will improve our understanding of virulent effects of the three variants. 
Because virus genomes are vulable for identifying their transmission sources and for 

monitoring the accumulation of new mutaions, we urge a more rapid sequencing and 
release of SARS-CoV-2 genomes.   
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Figure 1. A phylogenetic tree of the 97 COVID-19 strains and their genomic variants. 

A, A maximum likelihood (ML) phylogenetic tree of the human COVID-19 with 
approximately ML method by FastTree (http://meta.microbesonline.org/fasttree/). The 

phylogenetic tree was constructed using the sequence alignment shown in B. The two 
groups, Type I and Type II, are colored in blue and red, respectively.  

B, Sequence alignment of 97 COVID-19 genomes where only variable sites are 
shown. Each line corresponds to one branch in the phylogenetic tree to the left. The 

corresponding sites from the strain BatCoV RaTG13 are shown on the top separated 

by a red line. Three type-specific variants are marked in red arrows, corresponding to 

the genomic positions 8750, 28112, and 29063, respectively; the coordinates are 

referred to the sequence MN938384.1.   

C, the codon changes caused by the differences in the three sites. The tAI values were 
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computed using Bio::CUA (https://metacpan.org/release/Bio-CUA), and the numbers 

of human tRNA genes were downloaded from http://gtrnadb.ucsc.edu. 

 

 

Figure 2. A simple COVID-19 virus transmission model.  

The COVID-19 has at least three sources of transmission, namely Type IA, Type IB 

and Type II. 

 

Supplementary Figure 1. The SARS-cov phylogenetic tree uses MERS-CoV as an 
outgroup. 

 

 

1. Zhang L., et al., Origin and evolution of the 2019 novel coronavirus. Clin 

Infect Dis, 2020. 

2. Zhou, P., et al., A pneumonia outbreak associated with a new coronavirus of 

probable bat origin. Nature, 2020. 

3. Lu, R., et al., Genomic characterisation and epidemiology of 2019 novel 

coronavirus: implications for virus origins and receptor binding. The Lancet. 

4. Huang, C., et al., Clinical features of patients infected with 2019 novel 

coronavirus in Wuhan, China. Lancet, 2020. 

5. Li, Q., et al., Early Transmission Dynamics in Wuhan, China, of Novel 

Coronavirus–Infected Pneumonia. New England Journal of Medicine, 2020. 

6. dos Reis, M., R. Savva, and L. Wernisch, Solving the riddle of codon usage 

preferences: a test for translational selection. Nucleic Acids Res, 2004. 32(17): 

p. 5036-44. 

7. Bai, Y., et al., Presumed Asymptomatic Carrier Transmission of COVID-19. 
JAMA, 2020. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is the(which was not peer-reviewed) The copyright holder for this preprint .https://doi.org/10.1101/2020.02.25.20027953doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.25.20027953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Guangdong/20SF012/2020/403932
 Guangdong/20SF013/2020/403933
 Guangdong/20SF025/2020/403935
 Shenzhen/SZTH-002/2020|406593
 Shenzhen/HKU-SZ-002a/2020/MN938384

 Japan/TY-WK-521/2020/408667
 Japan/TY-WK-012/2020/408665

 Japan/TY-WK-501/2020/408666
 ShenZhen/HKU-SZ-005b/2020/MN975262

 USA/AZ1/2020|406223
 Yunnan/IVDC-YN-003/2020/408480

 USA/WA1/2020/404895
 USA/WA1-A12/2020|407214
 USA/WA1-F6/2020|407215

 Chongqing/YC01/2020/408478
 Korea/KCDC03/2020|407193

 Sichuan/IVDC-SC-001/2020/408484
 Vietnam/VR03-38142/2020/408668

 USA/CA1/2020|406034
 USA/IL2/2020/410045

 Sydney/1/2020|407893
 England/01/2020|407071

 England/02/2020|407073
 Belgium/GHB-03021/2020/407976
 Wuhan/WH04/2020|406801
 Taiwan/NTU01/2020/408489

 Australia/QLD01/2020|407894
 Australia/QLD02/2020|407896

 Chongqing/IVDC-CQ-001/2020/408481
 Singapore/3/2020/407988

 Shandong/IVDC-SD-001/2020/408482
 France/IDF0515/2020/408430

 Wuhan/WH01/2019|406798
 Wuhan/WIV07/2019/402130

 Australia/VIC01/2020|406844
 Taiwan/2/2020|406031

 Sydney/3/2020/408977
 Wuhan/WH05/2020/408978

 France/IDF0372/2020|406596
 France/IDF0373/2020|406597
 USA/CA2/2020|406036

 Finland/1/2020|407079
 Wuhan/HBCDC-HB-01/2019/402132
 Guangdong/20SF014/2020/403934
 Wuhan/WH19008/2019

 Wuhan/WIV02/2019/402127
 Japan/AI/I-004/2020|407084

 Jiangxi/IVDC-JX-002/2020/408486
 Singapore/2/2020/407987

 Wuhan/WH19004/2020
 Wuhan/IVDC-HB-05/2019/402121
 Wuhan/WH19005/2019
 Wuhan/WIV05/2019/402128

 Wuhan/IPBCAMS-WH-01/2019/402123
 BetaCov/France/IDF0626/2020/408431
 Wuhan/IPBCAMS-WH-03/2019/403930
 Singapore/1/2020|406973

 Shenzhen/SZTH-003/2020|406594
 Foshan/20SF207/2020|406534

 USA/CA3/2020/408008
 USA/CA4/2020/408009

 USA-MA1/2020/409067
 Foshan/20SF210/2020|406535
 Foshan/20SF211/2020|406536
 USA/WI1/2020/408670
 Guangdong/20SF028/2020/403936
 Guangdong/20SF040/2020/403937
 Guangdong/20SF174/2020|406531

 USA/CA5/2020/408010
 Guangzhou/20SF206/2020|406533

 Japan/KY-V-029/2020/408669
 Jiangsu/IVDC-JS-001/2020/408488

 Zhejiang/WZ-01/2020/404227
 Sydney/2/2020/408976

 Germany/BavPat1/2020|406862
 Wuhan/IVDC-HB-envF13-20/2020/408514

 Wuhan/IVDC-HB-envF13-21/2020/408515
 USA/CA6/2020/410044
 China/WHU01/2020|406716
 China/WHU02/2020|406717
 Chongqing/ZX01/2020/408479
 Guangdong/20SF201/2020|406538
 Hangzhou/HZCDC0001/2020|407313
 Nonthaburi/61/2020/403962
 Nonthaburi/74/2020/403963
 Wuhan/IPBCAMS-WH-02/2019/403931
 Wuhan/IPBCAMS-WH-04/2019/403929
 Wuhan/IVDC-HB-01/2019/402119
 Wuhan/WH03/2020|406800
 Wuhan/WH19001/2019
 Wuhan/WIV04/2019/402124/119
 Wuhan/WIV06/2019/402129
 Wuhan/YS8011/2020
 Wuhan-Hu-1/2019/402125
 Wuhan-Hu-1/MN908947.3
 Zhejiang/Hangzhou-1/2020|406970
 Zhejiang/WZ-02/2020/404228

91

96

83
94

94

100

93

93

99

100

95

100

80

85
83

90
90

85

95
90

96

93

91
86

83

82
85

84

84

90

89

100

83
86

92

88

90

97

0.005

Bat

Type IA
Type II

Type I

Type II

A B
8750

C

Codon # Anticodon 
tRNA genes; tAIa

Codon # Anticodon 
tRNA genes; tAI

Codon # Anticodon 
tRNA genes; tAI

SNP position 8750 28112 29063
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Type II AGC (Ser) 8; 0.28 TTA (Ser) 4; 0.14 TTC (Phe) 10; 0.34
a: this column shows the number of tRNA genes in human genome with anticodons matching the considered codons. 
tAI is a measure of codon’s translational efficiency5, the higher the more efficient. 
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 KF600652.1 Middle East respiratory syndrome coronavirus isolate Riyadh 2 2012 complete genome
 KJ614529.1 Human betacoronavirus 2c Jordan-N3/2012 isolate MG167 complete genome
 JX869059.2 Human betacoronavirus 2c EMC/2012 complete genome
 MH734115.1 Middle East respiratory syndrome-related coronavirus isolate MERS-CoV camel/Kenya/C1272/2018 complete genome
 MH734114.1 Middle East respiratory syndrome-related coronavirus isolate MERS-CoV camel/Kenya/C1215/2018 complete genome
 KU740200.1 Middle East respiratory syndrome coronavirus isolate MERS CoV/camel/Egypt/NRCE-NC163/2014 partial genome
 MG923466.1 Middle East respiratory syndrome-related coronavirus isolate MERS-CoV camel/Ethiopia/AAU-EPHI-HKU4412/2017 complete genome
 MG923468.1 Middle East respiratory syndrome-related coronavirus isolate MERS-CoV camel/Ethiopia/AAU-EPHI-HKU4458/2017 complete genome
 MG923467.1 Middle East respiratory syndrome-related coronavirus isolate MERS-CoV camel/Ethiopia/AAU-EPHI-HKU4448/2017 complete genome
 MK564474.1 Middle East respiratory syndrome-related coronavirus isolate camel/MERS/Amibara/118/2017 complete genome
 MK564475.1 Middle East respiratory syndrome-related coronavirus isolate camel/MERS/Amibara/126/2017 complete genome
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