
1

CS 333
Introduction to Operating Systems 

Class 2 – OS-Related Hardware & Software
The Process Concept

Jonathan Walpole
Computer Science

Portland State University



2

Administrivia …

CS333 lecture videos are available from
www.media.pdx.edu
Click on the link for

• Walpole: CS333-2 - Introduction to Operating Systems
Submit password cs333s07wa
Click on the lecture date desired
Requires windows media player to be installed

http://www.media.pdx.edu/
http://www.media.pdx.edu/


3

Lecture 2 overview

OS-Related Hardware & Software
Complications in real systems
Brief introduction to

• memory protection and relocation
• virtual memory & MMUs
• I/O & Interrupts

The “process” abstraction
Process scheduling
Process states
Process hierarchies
Process system calls in Unix



4

Why its not quite that simple ...

The basic model introduced in lecture 1still 
applies, but the following issues tend to 
complicate implementation in real systems:

Pipelined CPUs
Superscalar CPUs
Multi-level memory hierarchies
Virtual memory
Complexity of devices and buses



5

Pipelined CPUs

Fetch
unit

Decode
unit

Execute
unit

Execution of current instruction performed in parallel
with decode of next instruction and fetch of the one
after that



6

Superscalar CPUs

Fetch
unit

Decode
unit

Execute
unit

Fetch
unit

Decode
unit

Execute
unit

Execute
unit

Holding
buffer



7

What does this mean for the OS?

Pipelined CPUs
more complexity in taking a snapshot of the state of a 
running application
more expensive to suspend and resume applications

Superscalar CPUs
even more complexity in capturing state of a running 
application
even more expensive to suspend and resume applications
support from hardware is useful ie. precise interrupts

More details, but fundamentally the same task
The BLITZ CPU is not pipelined or superscalar



8

The memory hierarchy

2GHz processor 0.5 ns clock cycle

Data/instruction cache access time 0.5ns – 10 ns
This is where the CPU looks first!
Memory this fast is very expensive ! 
Size ~64 kB- 1MB (too small for whole program)

Main memory access time 60 ns
Slow, but cheap
Size 512 MB – 1GB+

Magnetic disk 
10 ms, 160 Gbytes



9

Terminology review - metric units

The metric prefixes



10

Who manages the memory hierarchy?

Movement of data from main memory to cache is under 
hardware control

cache lines loaded on demand automatically
Placement and replacement policy fixed by hardware

Movement of data from cache to main memory can be 
affected by OS

instructions for “flushing” the cache
can be used to maintain consistency of main memory

Movement of data among lower levels of the memory 
hierarchy is under direct control of the OS

virtual memory page faults
file system calls



11

OS implications of a memory hierarchy?

How do you keep the contents of memory consistent 
across layers of the hierarchy?

How do you allocate space at layers of the memory 
hierarchy “fairly” across different applications?

How do you hide the latency of the slower subsystems?
• Main memory… yikes!
• Disk

How do you protect one application’s area of memory 
from other applications?

How do you relocate an application in memory?
How does the programmer know where the program will 
ultimately reside in memory?



12

Memory protection and relocation ...

Memory protection – the basic ideas
virtual vs physical addresses

• address range in each application starts at 0
“base register” used to convert each virtual address to a 
physical address before main memory is accessed
address is compared to a “limit register” to keep memory 
references within bounds

Relocation
by changing the base register value

Paged virtual memory
same basic concept, but more powerful (and complex)



13

Base & Limit Registers (single & multiple)



14

Virtual memory and MMUs

Memory management unit (MMU)
hardware provided equivalent of multiple base registers
at the granularity of “pages” of memory, say 2kB, i.e., 
lots of them!
supports relocation at page granularity by replacing high 
order address bits
applications need not occupy contiguous physical memory

Memory protection
limit registers don’t work in this context
per-page and per-application protection registers

Relocation and protection occur at CPU speeds!



15

What about I/O devices?

Monitor

Bus

A simplified view of a computer system



16

Structure of a large Pentium system



17

How do programs interact with devices?

Why protect access to devices by accessing them 
indirectly via the OS?

Devices vs device controllers vs device drivers
device drivers are part of the OS (ie. Software)
programs call the OS which calls the device driver

Device drivers interact with device controllers
either using special IO instructions
or by reading/writing controller registers that appear as 
memory locations
Device controllers are hardware
They communicate with device drivers via interrupts



18

How do devices interact with programs?

Interrupts



19

Different types of interrupts

Timer interrupts
Allows OS to keep control after calling app’ code
One way to keep track of time

I/O interrupts
Keyboard, mouse, disks, network, etc…

Hardware failures

Program generated (traps & faults)
Programming errors: seg. faults, divide by zero, etc.
System calls like read(), write(), gettimeofday()



20

System calls

System calls are the mechanism by which 
programs communicate with the O.S.

Implemented via a TRAP instruction

Example UNIX system calls:
open(), read(), write(), close()

kill(), signal()

fork(), wait(), exec(), getpid()

link(), unlink(), mount(), chdir()

setuid(), getuid(), chown()



21

The inner workings of a system call

Process usercode

{

...

read (file, buffer, n);

...

}

Procedure read(file, buff, n)

{

...

read(file, buff, n)

...

}

_read:

LOAD r1, @SP+2

LOAD r2, @SP+4

LOAD r3, @SP+6

TRAP Read_Call

User-level code

Library code



22

Steps in making a read() system call



23

What about disks and file storage?

Structure of a disk drive



24

Disks and file storage

Manipulating the disk device is complicated
hide some of the complexity behind disk controller, 
disk device driver

Disk blocks are not a very user-friendly 
abstraction for storage

contiguous allocation may be difficult for large data 
items
how do you manage administrative information?

One application should not (automatically) be 
able to access another application’s storage

OS needs to provide a “file system”



25

File systems

File system - an abstraction above disk blocks



26

What about networks?

Network interfaces are just another kind of 
shared device/resource

Need to hide complexity
send and receive primitives, packets, interrupts etc
protocol layers

Need to protect the device
access via the OS

Need to allocate resources fairly
packet scheduling



27

The Process Concept



28

The Process Concept

Process – a program in execution
Program

– description of how to perform an activity
– instructions and static data values

Process
– a snapshot of a program in execution
– memory (program instructions, static and 

dynamic data values)
– CPU state (registers, PC, SP, etc)
– operating system state (open files, accounting 

statistics etc)



29

Process address space

Each process runs in its own virtual memory address space that 
consists of:

Stack space – used for function and system calls
Data space – variables (both static and dynamic allocation)
Text – the program code (usually read only)

Invoking the same program multiple times results in the creation
of multiple distinct address spaces

stack

text

data
Address

space



30

Switching among multiple processes

Program instructions operate on operands in 
memory and (temporarily) in registers

Memory

Prog1
Code

Prog1
Data

CPU

ALU

SP PC

Prog2
State

Prog1 has CPU

Prog2 is suspended

Prog2
Code

Prog2
Data

Load A1, R1

Load A2, R2

Add R1, R2, R3

Store R3, A3

…



31

Switching among multiple processes

Saving all the information about a process allows a 
process to be temporarily suspended and later
resumed from the same point

Memory

Prog1
Code

Prog1
Data

CPU

ALU

SP PC

Prog1
State

OS suspends Prog1

Prog2
Code

Prog2
Data

Prog2
State



32

Switching among multiple processes

Saving all the information about a process allows a 
process to be temporarily suspended and later
resumed

Memory

Prog1
Code

Prog1
Data

CPU

ALU

SP PC

Prog1
State

OS resumes Prog2

Prog2
Code

Prog2
Data

Prog2
State



33

Switching among multiple processes

Program instructions operate on operands in 
memory and in registers

Memory

Prog1
Code

Prog1
Data

CPU

ALU

SP PC

Prog1
State

Prog2 has CPU

Prog1 is suspended

Prog2
Code

Prog2
Data

Load A1, R1

Load A2, R2

Sub R1, R2, R3

Store R3, A3

…



34

Why use the process abstraction?

Multiprogramming of four programs in the same address space
Conceptual model of 4 independent, sequential processes
Only one program active at any instant



35

The role of the scheduler

Lowest layer of process-structured OS
handles interrupts & scheduling of processes

Above that layer are sequential processes



36

Process states

Possible process states
running
blocked
ready



37

Implementation of process switching

Skeleton of what the lowest levels of the OS do when 
an interrupt occurs



38

How do processes get created?

Principal events that cause process creation
System initialization
Initiation of a batch job
User request to create a new process
Execution of a process creation system call 
from another process



39

Process hierarchies

Parent creates a child process, 
special system calls for communicating with and 
waiting for child processes
each process is assigned a unique identifying number 
or process ID (PID)

Child processes can create their own child 
processes 

Forms a hierarchy
UNIX calls this a "process group"
Windows has no concept of process hierarchy

• all processes are created equal



40

How do processes terminate?

Conditions which terminate processes
Normal exit (voluntary)
Error exit (voluntary)
Fatal error (involuntary)
Killed by another process (involuntary)



41

Process creation in UNIX

All processes have a unique process id
getpid(), getppid() system calls allow processes to get 
their information

Process creation
fork() system call creates a copy of a process and 
returns in both processes, but with a different return 
value
exec() replaces an address space with a new program

Process termination, signaling
signal(), kill() system calls allow a process to be 
terminated or have specific signals sent to it



42

Example: process creation in UNIX

…

pid = fork()
if (pid == 0) {

// child…
…
exec();
}

else {
// parent
wait();
}

…

csh (pid = 22)



43

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {

// child…
…
exec();
}

else {
// parent
wait();
}

…

csh (pid = 22)

…

pid = fork()
if (pid == 0) {

// child…
…
exec();
}

else {
// parent
wait();
}

…

csh (pid = 24)



44

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {

// child…
…
exec();
}

else {
// parent
wait();
}

…

csh (pid = 22)

…

pid = fork()
if (pid == 0) {

// child…
…
exec();
}

else {
// parent
wait();
}

…

csh (pid = 24) 



45

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {

// child…
…
exec();
}

else {
// parent
wait();
}

…

csh (pid = 22)

…

pid = fork()
if (pid == 0) {

// child…
…
exec();
}

else {
// parent
wait();
}

…

csh (pid = 24) 



46

Process creation in UNIX example

…

pid = fork()
if (pid == 0) {

// child…
…
exec();
}

else {
// parent
wait();
}

…

csh (pid = 22)

//ls program

main(){

//look up dir

…

}

ls (pid = 24) 



47

What other process state does the OS manage?

Example fields of a process table entry



48

What about the OS?

Is the OS a process?
It is a program in execution, after all …
Does it need a process control block?
Who manages its state when its not running?



49

What to do before next class

Reading for next week’s class - pages 100-110
Finish project 1 – Introduction to BLITZ


	CS 333�Introduction to Operating Systems ��Class 2 – OS-Related Hardware & Software�The Process Concept
	Administrivia …
	Lecture 2 overview
	Why its not quite that simple ...
	Pipelined CPUs
	Superscalar CPUs
	What does this mean for the OS?
	The memory hierarchy
	Terminology review - metric units
	Who manages the memory hierarchy?
	OS implications of a memory hierarchy?
	Memory protection and relocation ...
	Base & Limit Registers (single & multiple)
	Virtual memory and MMUs
	What about I/O devices?
	Structure of a large Pentium system
	How do programs interact with devices?
	How do devices interact with programs?
	Different types of interrupts
	System calls
	The inner workings of a system call
	Steps in making a read() system call
	What about disks and file storage?
	Disks and file storage
	File systems
	What about networks?
	The Process Concept
	The Process Concept
	Process address space
	Switching among multiple processes
	Switching among multiple processes
	Switching among multiple processes
	Switching among multiple processes
	Why use the process abstraction?
	The role of the scheduler
	Process states
	Implementation of process switching
	How do processes get created?
	Process hierarchies
	How do processes terminate?
	Process creation in UNIX
	Example: process creation in UNIX
	Process creation in UNIX example
	Process creation in UNIX example
	Process creation in UNIX example
	Process creation in UNIX example
	What other process state does the OS manage?
	What about the OS?
	What to do before next class

