CS 333
Introduction to Operating Systems

Class 2 - OS-Related Hardware & Software
The Process Concept

Jonathan Walpole
Computer Science
Portland State University

Administrivia ...

a2 CS333 lecture videos are available from
+ Click on the link for

+ Submit password cs333s07wa
+ Click on the lecture date desired
+ Requires windows media player to be installed

http://www.media.pdx.edu/
http://www.media.pdx.edu/

Lecture 2 overview

OS-Related Hardware & Software
Complications in real systems

Brief introduction to
* memory protection and relocation
* virtual memory & MMUs
+ I/O & Interrupts

The "process” abstraction
Process scheduling
Process states
Process hierarchies
Process system calls in Unix

Why its not quite that simple ...

a The basic model introduced in lecture 1still
applies, but the following issues tend to
complicate implementation in real systems:

« Pipelined CPUs

« Superscalar CPUs

» Multi-level memory hierarchies
« Virtual memory

« Complexity of devices and buses

Pipelined CPUs

Fetch Decode Execute
unit unit unit

Execution of current instruction performed in parallel
with decode of next instruction and fetch of the one
after that

Fetch
unit

Superscalar CPUs

Decode
unit

Fetch
unit

Holding
buffer

Decode
unit

EXxecute
unit

EXxecute
unit

EXxecute
unit

What does this mean for the OS?

o Pipelined CPUs

 more complexity in taking a snapshot of the state of a
running application

» more expensive to suspend and resume applications
a Superscalar CPUs

+ even more complexity in capturing state of a running
application

« eveh more expensive to suspend and resume applications
> support from hardware is useful ie. precise interrupts

a More details, but fundamentally the same task
a The BLITZ CPU is not pipelined or superscalar

The memory hierarchy

a 26Hz processor > 0.5 ns clock cycle

o Data/instruction cache access time > 0.5ns - 10 ns
. This is where the CPU looks first!
- Memory this fast is very expensive |
» Size ~64 kB- IMB (too small for whole program)

a Main memory access time > 60 ns
« Slow, but cheap
. Size b12 MB - 1G6B+

o Magnetic disk >
10 ms, 160 Gbytes

Figure 1.14 The Memory Hierarchy

Terminolo

gy review - metric units

Exp. Explicit Prefix | Exp. Explicit Prefix
1073 0.001 milli 10° 1,000 | Kilo
10°® 0.000001 micro | 10° 1,000,000 | Mega
g™ 0.000000001 nano el 1,000,000,000 | Giga
102 | 0.000000000001 pico 1012 1,000,000,000,000 | Tera
107" | 0.000000000000001 femto | 10" 1,000,000,000,000,000 | Peta
107" | 0.0000000000000000001 atto 0% 1,000,000,000,000,000,000 | Exa
102" | 0.0000000000000000000001 zepto | 107 1,000,000,000,000,000,000,000 | Zetta
1072* | 0.0000000000000000000000001 | yocto | 10** | 1,000,000,000,000,000,000,000,000 | Yotta

The metric prefixes

Who manages the memory hierarchy?

a Movement of data from main memory to cache is under
hardware control

« cache /ines loaded on demand automatically
+ Placement and replacement policy fixed by hardware

o Movement of data from cache to main memory can be
affected by OS

» instructions for “flushing” the cache
+ can be used to maintain consistency of main memory

o Movement of data among lower levels of the memory
hierarchy is under direct control of the OS

+ virtual memory page faults
+ file system calls

10

OS implications of a memory hierarchy?

a How do you keep the contents of memory consistent
across layers of the hierarchy?

a How do you allocate space at layers of the memory
hierarchy “fairly” across different applications?

a How do you hide the latency of the slower subsystems?

* Main memory... yikes!
- Disk

a How do you protect one application's area of memory
from other applications?

a How do you relocate an application in memory?

» How does the programmer know where the program wil/
ultimately reside in memory?

11

Memory protection and relocation ...

o Memory protection - the basic ideas
> virtual vs physical addresses
- address range in each application starts at O

« 'base register” used to convert each virtual address to a
physical address before main memory is accessed

. address is compared to a "limit register” to keep memory
references within bounds

a Relocation
« by changing the base register value

a Paged virtual memory
» same basic concept, but more powerful (and complex)

12

Base & Limit Registers (single & multiple)

Address

OxFFFFFFFF

Limit —

Base —»

User program
and data

User program
and data

Operating
System

(@)

Registers
when
program 2
is running
Registers «— Limit2
when
program 1 User-2 data
is running <— Base-2
Limit-2 —
Base-2 \ User-1 data
b <— Limit-1
Limit-1 User program
Base-1 —> <«— Base-1

Operating
System

(b)

13

Virtual memory and MMUs

a Memory management unit (MMU)
> hardware provided equivalent of multiple base registers

= at the granularity of "pages” of memory, say 2kB, i.e.,
lots of them!

« supports relocation at page granularity by replacing high
order address bits

» applications need not occupy contiguous physical memory

o Memory protection
+ limit registers don't work in this context
+ per-page and per-application protection registers

a Relocation and protection occur at CPU speeds!

14

What about I/0 devices?

Monitor
Hard
Keyboard dizll((jg%e disk drive
SN
5 m
o £ R R |:l‘::, noooo
d
CPU M Video Keyboard Flc?iglg y ljgk
emory controller controller el N——
Bus

A simplified view of a computer system

15

Structure of a large Pentium system

Cache bus Local bus Memory bus

Level 2 PCI l Main
cache <£> ERU (:J__'\‘/ bridge < >memory

TTr r I

Graphics
SCSI USB ISA <:> IDE adaptor Available
i bridge disk ¥ PCl slot
@ ~ Y g Mon-
” itor
Mouse ey-
board ISA bus
¢ rd 1111 N
I I |
Sound . ;
Modem Printer Available
card ISA slot

16

How do programs interact with devices?

o Why protect access to devices by accessing them
indirectly via the OS?

a Devices vs device controllers vs device drivers
» device drivers are part of the OS (ie. Software)
= programs call the OS which calls the device driver

o Device drivers interact with device controllers
« either using special IO instructions

= or by reading/writing controller registers that appear as
memory locations

+ Device controllers are hardware
» They communicate with device drivers via interrupts

17

How do devices interact with programs?

a Interrupts

Disk drive

$ ¢ Current instruction

Next instruction «

3 | Interrupt Disk
CPU < controller controller 3. Return
L l 4| t 2| Y 1. Interrupt
1

. \ /
2. Dispatch

1
to handler \T

Interrupt handler ~~

Different types of interrupts

a Timer interrupts
« Allows OS to keep control after calling app’ code
+ One way to keep track of time

a I/0 interrupts
+ Keyboard, mouse, disks, network, etc...

a2 Hardware failures

a Program generated (traps & faults)
» Programming errors: seg. faults, divide by zero, etfc.
« System calls like read(), write(), gettimeofday()

19

System calls

a System calls are the mechanism by which
programs communicate with the O.S.

o Implemented via a TRAP instruction

a Example UNIX system calls:

open(), read(), write(), close()
kill (), signal()

fork (), wait(), exec(), getpid()
link (), unlink(), mount (), chdir()

setuid (), getuid(), chown()

20

The inner workings of a system call

USer'-leve,l COde Process usercode

{
read (file, buffer, n);
}...
L|br'(1r'y COde Procedure read(file, buff, n)

{
;;;d(file, buff, n)
}...

read:

LOAD rl, @SP+2
LOAD r2, @SP+4
LOAD r3, @SP+6
TRAP Read Call

Steps in making a read() system call

Address
OxFFFFFFFF

—

Return to caller

Trap to the kernel

[4)]

Put code for read in register

10

User space
3 < Increment SP

11

~ Call read

Push fd

W

N

Push &buffer

—

Push nbytes

1 r

Y

Y

Kernel space _ 7
(Operating system) < Dispatch

Sys call
handler

ar

;

Library
procedure
read

User program
calling read

22

What about disks and file storage?

Surface 7

Surface 6
Surface 5

Surface 4
Surface 3

Surface 2
Surface 1

Surface 0

R,

Il

== Read/write head (1 per surface)

N

y

=

P..
——————

Direction of arm motion

Structure of a disk drive

23

Disks and file storage

a Manipulating the disk device is complicated

+ hide some of the complexity behind disk controller,
disk device driver

o Disk blocks are not a very user-friendly
abstraction for storage

= contiguous allocation may be difficult for large data
Items

» how do you manage administrative information?

o One application should not (automatically) be
able to access another application’s storage

+ OS needs to provide a "file system”

24

File systems

Root directory

L~

Studems/ \Faculty

-

/ ~
RobbertAﬂty { Leo Per.Broereen \rof.White
Y

; fl £ //
/ /

] 7Y, x ¥
Fy U !

Courses Papers Grants Committees

i 1 A
y [\
| A

/
\ ;1.
\ /

\ /
/
Y Y
\ °22°2°
CS101 CS105 . - g

SOSP COST-11

Files

File system - an abstraction above disk blocks

What about networks?

o Network interfaces are just another kind of
shared device/resource

o Need to hide complexity
« send and receive primitives, packets, interrupts etfc
» protocol layers

o Need to protect the device
+ access via the OS

o Need to allocate resources fairly
+ packet scheduling

26

The Process Concept

27

The Process Concept

a Process - a program in execution
« Program
- description of how to perform an activity
- instructions and static data values
« Process
- a snapshot of a program in execution

- memory (program instructions, static and
dynamic data values)

- CPU state (registers, PC, SP, etc)

- operating system state (open files, accounting
statistics etc)

28

Process address space

a Each process runs in its own virtual memory address space that
consists of:

Stack space - used for function and system calls
Data space - variables (both static and dynamic allocation)
Text - the program code (usually read only)

4 | stack
|
Address < i
Space data
text
o

a Invoking the same program multiple times results in the creation
of multiple distinct address spaces

29

Switching among multiple processes

a Program instructions operate on operands in
memory and (temporarily) in registers

Memory : Load AL, R1 CPU
D) Load A2, R2
Progl ':" Code | | AddRL R2, RS ALU
Code | Store R3, A3
Prog2 y
Progl K Data / f
Data I

Progl has CPU

State Prog2 is suspended

Switching among multiple processes

a Saving all the information about a process allows a
process to be temporarily suspended and later
resumed from the same point

Memory : CPU

j | Prog2
Progl : Code ALU
Code :
ProgL I Prog2

Data

Data : ﬁ ISPl PC

T OS suspends Progl
Progl Prog?2
State State

Switching among multiple processes

a Saving all the information about a process allows a
process to be temporarily suspended and later
resumed

Memory : CPU
Fgggel : Fc):rc?g: ALU
Progl : P[;Z?;
Data : = sBFC

OS resumes Prog?2

Switching among multiple processes

a Program instructions operate on operands in
memory and in registers

Memory I Load A1, R1 CPU

I Load A2, R2

j | Prog2 —
Progl 1| Code SubR1, R2, R3 ALU
Code : Store R3, A3

Prog?2 !

Progl || Data |4— /f,
Data |
ProgL Prog2 has CPU
State Progl is suspended

Why use the process abstraction?

One program counter

N Four program counters
A Prc?cess
E switch a D —_ —_
Y B 2
o C - -
o
C A * B Y C J DY B| = —
(= AL —
\Y D Time —
(a) (b) (c)

a Multiprogramming of four programs in the same address space
a Conceptual model of 4 independent, sequential processes
a Only one program active at any instant

34

The role of the scheduler

Processes

Scheduler

o Lowest layer of process-structured OS
+ handles interrupts & scheduling of processes

a Above that layer are sequential processes

35

Process states

1. Process blocks for input
2. Scheduler picks another process

3. Scheduler picks this process
4. Input becomes available

Blocked

o Possible process states

» running
+ blocked
« ready

36

Implementation of process switching

a

| 2. Hardware loads new program counter from interrupt vector. |

1. Hardware stacks program counter, etc.

3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. G procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Skeleton of what the lowest levels of the OS do when
an interrupt occurs

37

How do processes get created?

Principal events that cause process creation

Q

Q

Q

Q

System initialization
Initiation of a batch job
User request to create a new process

Execution of a process creation system call
from another process

38

Process hierarchies

a Parent creates a child process,

» special system calls for communicating with and
waiting for child processes

« each process is assigned a unique identifying number
or process ID (PID)

o Child processes can create their own child
processes
« Forms a hierarchy
+ UNIX calls this a "process group"

» Windows has no concept of process hierarchy
- all processes are created equal

39

How do processes terminate?

Conditions which terminate processes

a Normal exit (voluntary)

a Error exit (voluntary)

a Fatal error (involuntary)

o Killed by another process (involuntary)

40

Process creation in UNIX

a All processes have a unique process id
« getpid(), getppid() system calls allow processes to get
their information

o Process creation

= fork()system call creates a copy of a process and
returns in both processes, but with a different return

value
» exec()replaces an address space with a nhew program

a Process termination, signaling
« signal(), kill() system calls allow a process to be
terminated or have specific signals sent to it

41

Example: process creation in UNIX

csh (pid = 22)

pid = fork()

1T (pid == 0) {
// child..

éxec();
elge {

// parent

¥ait();

42

Process creation

csh (pid = 22)

pid = fork()

1T (pid == 0) {
// child..

éxec();
elge {

// parent

¥ait();

in UNIX example

csh (pid = 24)

pid = fork()

1T (pid == 0) {
// child..

éxec();
elge {

// parent

¥ait();

43

Process creation

csh (pid = 22)

pid = fork()

1T (pid == 0) {
// child..

éxec();
elge {

// parent

¥ait();

in UNIX example

csh (pid = 24)

pid = fork()

1T (pid == 0) {
// child..

éxec();
elge {

// parent

¥ait();

44

Process creation

csh (pid = 22)

pid = fork()

1T (pid == 0) {
// child..

éxec();
+
else {
// parent
¥ait();

in UNIX example

csh (pid = 24)

pid = fork()

1T (pid == 0) {
// child..

éxec();
+
else {
// parent
¥ait();

45

Process creation

csh (pid = 22)

pid = fork()

1T (pid == 0) {
// child..

éxec();
+
else {
// parent
¥ait();

in UNIX example

Is (pid = 24)

//1s program

main()4{
//100k up dir

46

What other process state does the OS manage?

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Example fields of a process table entry

47

What about the OS?

a Is the OS a process?

o It is a program in execution, after all ..

o Does it need a process control block?

o Who manages its state when its not running?

48

What to do before next class

o Reading for next week’s class - pages 100-110
a Finish project 1 - Introduction to BLITZ

49

	CS 333�Introduction to Operating Systems ��Class 2 – OS-Related Hardware & Software�The Process Concept
	Administrivia …
	Lecture 2 overview
	Why its not quite that simple ...
	Pipelined CPUs
	Superscalar CPUs
	What does this mean for the OS?
	The memory hierarchy
	Terminology review - metric units
	Who manages the memory hierarchy?
	OS implications of a memory hierarchy?
	Memory protection and relocation ...
	Base & Limit Registers (single & multiple)
	Virtual memory and MMUs
	What about I/O devices?
	Structure of a large Pentium system
	How do programs interact with devices?
	How do devices interact with programs?
	Different types of interrupts
	System calls
	The inner workings of a system call
	Steps in making a read() system call
	What about disks and file storage?
	Disks and file storage
	File systems
	What about networks?
	The Process Concept
	The Process Concept
	Process address space
	Switching among multiple processes
	Switching among multiple processes
	Switching among multiple processes
	Switching among multiple processes
	Why use the process abstraction?
	The role of the scheduler
	Process states
	Implementation of process switching
	How do processes get created?
	Process hierarchies
	How do processes terminate?
	Process creation in UNIX
	Example: process creation in UNIX
	Process creation in UNIX example
	Process creation in UNIX example
	Process creation in UNIX example
	Process creation in UNIX example
	What other process state does the OS manage?
	What about the OS?
	What to do before next class

