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If the circumference of a circle with an arbitrarily fixed radiusis divided into
n equal parts, we find in this paper, a formula for tie number R(n, k) of
mutually incongruent convex k-gons that can be obtained by joining & of the
n points of division. The problem was first raised by Richard H. Reis. The
prologue gives an account of his contributions to the solution of the probiem.

1. PROLOGUE

1.1. Men of letters are known for their apathy towards Mathematics in
general and computational work in particular and they openly confess this with a
sense of pride. I was, therefore, not a little surprised when I received a letter, dated
April 13, 1978, from Richard H. Reis, Professor of English at the Southeastern
Massachusetts University, N. Dartmouth (U.S.A.), posing a problem in Partition
Theory. The problem was essentially this:

Given a regular k-gon with positive integers, summing to a given number »,
written at the vertices, Reis was interested in finding R(n, k)—the number of such
polygons when reflections and rotations were considered redundant.

Reis had been working on the problem for about one year and had already
obtained formulae for R(n, k) for values of k < 5, and the asymptotic result true for
any fixed £ and large n.

Remembering that Mr. Martin Gardner had discussed the necklace-stringing
problem in an article in Scientific American some years earlier, Reis wrote to
Gardner to find if he knew someone who could tell him if his problem was new. Mr.
Gardner identified his problem as one in Partition Theory (of which Reis had never
heard) and referred him to Professor George E. Andrews, who then referred
him to me,

In the middle 30°s (if I remember aright), I had come across a similar problem
wherein & coins of which k; were of one kind, k, of a second kind, k; of a third
kind and so on, were to be arranged round a circle at equal distances. Here it was
left vague if rotations alone or both rotations and reflections were to be considered
redundant.
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Finding the problem too difficult to solve in all its generality, I had put it
aside and forgotten all about it till I received this letter from Reis. The letter revived
my interest in the problem and I decided to attack it seriously. But at the time I was
busy giving finishing touches to my book “Selected Topics in Number Theory”
which had been accepted for publication by the Abacus Press. I was, therefore,
forced to postpone the study of the problem posed by Reis till I had submitted the
typescript of my book to the publishers. In the mean time Reis continued his work
and succeeded in obtaining some results with his crude empirical methods. I was
highly impressed by his zeal and insight. But all that I was doing during this period
was writing ecouraging letters to him without devoting any time to the problem
myself. My letters to Reis did at least one thing; that is they goaded him on and
more and more success came to him. It was sometime in August that he sent me a
table of values of R(n, k) for k < 12 and n going up to k& + 30 for k < 6 but
not beyond k + 17 in other cases. The most remarkable relation to which he was
led by a study of his table, was that

R(n k) = R(n,n — k), 1< k < n

Like the rest of the material, I put this aside also.

On October 20, 1978 1 was able to dispatch the final typescript of my book to
the publishers and started looking at the problem of Reis with all seriousness, I
requested Reis to send me all the results he had obtained. While I told him about
the method I was going to use, I thought it might be best for me to study the problem
independently, for then we could compare our results. Finding a few days later
that my results agreed with those in the table of Reis, I looked into his papers to see
what method bhe had used. I was surprised to find that we had both used the same

procedure.

It was for the first time in November 1978 that Reis was able to give some
really good general results. These gave R(n, k) for {n, k) = 1 or 2 and also when k&
was an odd prime and n a multiple of k. But his formulae were expressed in a very
complicated form. It did not take me long to give them an clegant shape. I decided
to let Reis continue in his own independent way, while I went ahead in mine.
Every letter from him from this time on brought some new results. By the middle
of January, 1979, I had found the exact formula for R(n, k) for all n and k and Reis

had covered the same ground almost if not exactly.

I am sure, if Reis had some knowledge of Partition Theory, his insight would
have enabled him to solve the problem without the least help from anyone. Simply
because Euler’s phi function had appeared in the formula for the number of
necklaces with a given number of beads chosen from beads of two different colours
without restriction, it was not enough reason to predict that it must appear in the
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solution of his problem. It could only be due to his insight that he could insist that
it will and it did.

More than half the credit for solving the problem must go to Reis. My own
contribution is the geometrical way of representing a decomposition of n into k parts
and providing the proofs of the results we obtained independently.

1.2. Reis used the method of finite differences. To show how it worked, I consider
the case k = 4.

For m > 1, the table computed by Reis gives

m=1 2 3 4 5 6
R@m, 4 =1 8 29 72 145 256

Taking the differences as usual, we get

1 8 29 72 145 256
7 21 43 73 111
14 22 30 38

Hence
R(d4m,4) =1 4+ Tm — 1; 1) + 14(m — 1;2) 4 8(m — 1; 3).
Here and in what follows, we write (j; r) for ( "]. )
Similarly, we have
R(dm + 1,4) =14 9(m — 1; 1) + 16(m — 1;2) + 8(m — 1; 3);
R@Am + 2,4) =3 4+ 13(m — 1; 1} 4 18(m — 1; 2) -+ 8(m — 1; 3);
R(dm + 3,4) =4 + 16(m — 1; 1) ++ 20(m — 1; 2) + 8(m — 1; 3).
It will be seen that in each of the above cases, R is a cubic in m and, therefore, in #

also. In general R(n, k) is a polynomial in n of degree (k — 1), not necessarily with
integral coefficients.

The only drawback in this method is that quite a large number of values of R(n, k)
are needed before the formulae can be obtained and then for each k as many as &
distinct formulae are necessary.

1.3. A few extracts from the letters I received from Reis, will be of interest to
the reader.

April 13, 1978 :

Prof. Andrews informs me that he has not encountered this problem before, but
he thinks that you may have studied it, if anyone has.
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June 19, 1978 :

I believe that the general problem can be entirely solved.

June 30, 1978 :

Besides, I am not a Mathematician and do not know how to program a
computer; such results as I have obtained have been produced with pencil, paper,
and a small pocket calculator,

If T tried to write an article about my results so far, without the help of a
skilled mathematician, I'd no doubt do it clumsily and it would not get printed.

Please let me know if you would be interested in helping me put my first draft
into publishable form ...

December 26, 1978 :

1 suspect that Euler’s phi function will be involved somewhere.

I have never been able to understand the difference between partitions and
distributions anyhow.

Yes, I suppose it is rather surprising for somebody trained in literary criticism
to have some degree of mathematical talent, or even to be interested in Mathematics
at all. My colleagues in our English department think I'm a Martian or something!
On the other hand, my own explanation of my unusual combination of interests is
that poetry, music, mathematics and chess (I am also interested in music and chess,
by the way) share two features : all have pattern, and all have beauty. So perhaps
I'm not so odd after all!

January 9, 1979 :
The conjecture (that my method of finding values of R(n, k) would somehow

or other turn out to involve Euler’s phi function) now seems a safe bet, don’t you
think?

January 15, 1979 :

I have at last completed the set of algorithms whereby R(n, k) can be found
for any combination of k and »n, including those with which I had been having
trouble. As I had conjectured, Euler’s phi function is involved, ...

February 3, 1979 :

For me, this (to exchange ideas in correspondence) has been a delightful and
rewarding experience, in which I have learned a good deal about combinatorial
mathematics that I didn’t know before. And of course I warmly appreciate the
kindness of your remarks about my mathematical talents, such as they are, I'm
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actually thinking of dreaming up a new problem, in order to have a reason for
corresponding with you further!”

Needless to say that if I have discovered Reis, I am proud of my discovery.

In the following pages is given an account of how the final answer to the
problem of Reis was obtained. Now that the expression for R(n, k) is known, shorter
proofs of the result should be possible.

2. INTRODUCTION
2.1. Notations

In what follows x denotes an arbitrary real number; other small letters denote
positive integers unless stated otherwise.

(g, ) denotes as usual the g.c.d. of g and 4.

As already stated, we write (g; &) for ( i )

¢(m) denotes Euler’s totient function and is the number of positive integers < m
which are prime to m.

[x] denotes the largest integer < x.

2.2, Partitions and Decompositions

When a natural number n is expressed as a sum of one or more natural numbers
and the order in which the summands are written is irrelevant, we get what we call
a partition of n. When the order in which the summands are written is relevant,
we have a decomposition of r. The total number of partitions of n is denoted
by p(n), while p(n, k) denotes the number of partitions of » into exactly k¥ summands.

In writing the parts in a partition, we write them in ascending order of
magnitude and, when there is no cause for confusion, we omit the plus signs also.
Thus the seven partitions of 5 are

11111, 1112, 122, 113, 23, 14, 5
and we have p(5) = 7.
On the other hand, the partitions of 10 into six parts are
111115, 111124, 111133, 111223, 112222
so that p(10, 6) = 5,

The decompositions of » into k parts are provided by the solutions of the
Diophantine equation
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Uy + Uy + oo -ty =n ..
in positive integers u.

It is well known that (1) has exactly (n — 1; k — 1) such solutions. Hence »
has exactly (n — 1; k — 1) decompositions into & parts. Thus the ten decompositions
of 6 into four parts are:

1113, 1131, 1311, 3111;

1122, 1212, 1221, 2112, 2121, 2211.
The frequency of a part in a partition is the number of times the part appears in the
partition.
A partition in which

a, occurs as a part h, times;

a, occurs as a part f, times;

.......................................

a; occurs as a part ks times;
a’s all distinct, is said to be of the type

(hy by ... Bi). ...(2)
Here, the order in which the I’s are written is immaterial. Thus

1113344666 is a partition of 35 and it is of the type (2 2 3 3). The number of
decompositions to which a partition of the type (4, h, ... ki) leads is given by

(hy + by 4 ... + )
AR A )

In this paper, we will usually need to write out decompositions arising from a
given partition and starting with a given element. Thus, the decompositions arising
from the partition 111223 and starting with 2 are twenty in number, while there are
thirty which start with 1 and only ten which start with 3. Since our interest will
be in having to record the minimum number of decompositions, it will be best if we
choose as our starting element one of those the frequency of which is the least.

It is noteworthy that the number of decompositions arising from a given
partition, depends only on the frequencies of the parts and not on the size of
those parts.

2.3 Graphical Representation of a Decomposition
Take a circle with an arbitrarily fixed radius. Divide the circumference into n
equal parts. Call each part a step. Then any decomposition
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€1 Cy ... Ck ...(4)
of n, can be represented graphically as follows:

Select one of the points of division as the starting point. From here move ¢, steps
in the counter-clockwise direction and there put a mark. Then move ahead ¢, steps
and again put a mark. Continue in this manner till you have finally moved ¢
steps and put a mark. This will bring you to the starting point. Join the £ marked
points in order by straight lines to get a convex cyclic k-gon. The sides of this
k-gon can be taken to represent the numbers c,, ¢,, ... ¢x; because they are propor-
tional to the angles subtended by the sides at the centre of the circle. The k-gon,
therefore, provides a graphical representation of the given decomposition of n. To
make the representation unique, it will be necessary to indicate the starting point by
an arrowhead or some such sign.

The following figure represents, for example, the decomposition
22143
of 12,

M

/

FiG. 1.
One may ask

What decompositions does the k-gon represent if the starting point is not
indicated? And what if one is permitted to move in the clockwise direction also?

These questions are easy to answer and are left to the reader,

2.4. Congruence of k-gons
Let us represent the decompositions
1223, 2213, 2312

of 8, by quadrilaterals using equal circles.
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s —

Fig, 2.1. FiG. 2.2,

FiG. 2.3.

It will be seen that the quadrilateral in (2.1) representing the decomposition 1223,
can be cut out of the paper and made to fit upon the quadrilateral in (2.3), repre-
senting the decomposition 2312, directly, that is by just rotating the paper; but it
can be made to fit upon the quadrilateral in (2.2), representing the decomposition
2213, only if we first turn it upside-down and then rotate.

We say that the quadrilaterals in (2.1) and (2.3) are directly congruent, while
those in (2.1) and (2.2) are invertedly so. But the three quadrilaterals are mutually

congruent anyway.

The definitions can be extended to A-gons immediately.

The k-gons represented by the decompositions

€1 g wve Ck3 Cg Cg ovn CE €15 oens Ck €y wue Chd -5
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of n, are all directly congruent among themselves. While any one of these is
invertedly congruent to each of the k-gons represented by the decompositions

Ck Ck-1 oo €13 Clcd Ck2 oo Cy Ck5 +uv €y Ck ... C3 Cy «.(6)

It is not implied here that the decompositions in (5) are all distinct. But if they are
distinct in the case of (5), they are so in the case of (6) too. If any decomposition in
(5) is identical with some decomposition in (6), then the decompositions in (6) are just
a permutation of those in (5). When this happens, every two k-gons are both directly
and invertedly congruent, In fact, each k-gon has now at least one axis of symmetry.
For k odd, any axis of symmetry runs through one vertex and the middle point of the
side opposite to it, When k is even, any axis of symmetry either runs through two
opposite vertices or through the middle points of two opposite sides.
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Definition — Two decompositions are said to be equivalent when the k-gons
representing them are congruent (whether directly or invertedly).

2.5. The Number of Symmetrical k-gons for a given n
(1) When £k is odd.

Starting from a vertex through which an axis of symmetry passes, we have in
this case

€3 = Ci; €3 == Cx-1} ...; Ch = Chig; Chyy independent,
where h = (k — 1)/2.
The related decomposition can be written in the form
€y Co «vu Ch Chiy Ch +.o Cy Cy. )]

The number of symmetric k-gons for the given n will, therefore, be the same as the
number of solutions in positive integers of the equation

2¢; + 2¢, + ... + 200 + vy = n. ...(8)
If n is odd, so also must c¢s,, be. The equation can, therefore; be written
€, -yt oo+ n A (enyy + 12 =(n 4 1)/2 (N

Hence the number of symmetric k-gons is

("_'2;_1; ’<_2‘:_1) .(10)

If n is even, so also is cayy, and (8) can be written as

¢, + ¢y oo+ (Eniaf2) = 02 ...(11)
In this case, therefore, the number of symmetric k-gons is
2 7 2

Results (10) and (12) can be combined into the single result

30D

(ii) When k is even.

(a) When nis even.

If the k-gon has an axis of symmetry passing through two opposite vertices,
then we have starting from one of these vertices

€, = Ckj €y = Cr1; +oo3 CF == Cipg} with j = k/2.
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The corresponding decomposition is
€ Cy ... Ci_y C§ C§ Ciy ... Cp. ...(14)

The number of such decompositions is the same as the number of solutions of the
Diophantine equation

€ F €+ oo +— i = nj2 ...(15)

which is given by
n k
(_2,, _1. Kk ) .(16)

Note that the decompositions

€1 Cauua €5 Cs .. €€y ADA €5 Ciy oo € €y ool €1y €5
are equivalent. Also they are distinct unless

[e1s €5y -ves Cingy €3] = [C4; Cigy oy €5, 4] ...(A)
Hence all the solutions do not give incongruent symmetric k-gons.

If the k-gon has an axis of symmetry passing through the middle points of two
opposite sides, then starting with one of these sides, we have (we use d’s to distinguish
them from the ¢’s used in the foregoing case)

dy = di; dy = dya; ...; dj = diyy; with j = k/2
and 4, and d;,, free.

The corresponding decomposition is
dld‘l ese d7 dj+1 di .. d

The number of such decompositions is given by the number of positive integral
solutions of the Diophantine equation

dy +2dy + ... +2d; 4 djy =1

which can be written as

d+1+d+ +d+d’+‘+1 LA (17
when d, and d;+1 are both odd; and as
LI AR A (18)

when d, and d;,, are both even.

Evidently (17) leads to (%, —I;—) and (18) to (‘;L - 1; —,;—) decompositions.
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Note that in this case the decompositions
dyd,..didiy,ds...d, and dj.,dy..dyd, d,..d
are equivalent and distinct also except when
[y dy, ..., diy] = diny, ds, .., d}). ..(B)

The total number of decompositions obtained from (15), (17) and (18) is readily

seen to be
n k
2(—2—; ~2—)- ...(19)

We assert that the number of symmetric k-gons obtained from these decompositions

is only
n_k
('2~, ~2—“) ...(20)

This will follow if we can show that the decompositions satisfying relations A and B
consist of pairs of equivalents.

The following examples cover all the four cases that can arise.
(1) n=2(mod 4), £k = 0 (mod 4);
(2) n=0(mod4), k =0 (mod 4);
(3) n=0(mod 4), k = 2 (mod 4);
(49) n=2(mod4), k=2 (mod 4).
Case 1 — Taken = 18, k = 8.
The set A is empty.

The set B consists of the following decompositions:

11611161 6 1 1 161 11
1 2 4212 42 4 212 4212
1 3231323 23132313
31413141 41 3141 31
32223222 22322232
51215121 21512151

We have written the pairs of equivalents in one line.

Case 2 — Take n = 20, k = 8.

Set A consists of the two pairs of equivalents
4 4 4
33

4 4 1 1
3 3 2 3 2

o
w
w
3]
w

1 11
2 2 2
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Set B consists of eight pairs of equivalenté :

11711171 71117111
1 2521252 52125212
1 3331333 33133313
1 414141 4 4 1 41 41 41
2161 2161 6 1 2161 21
22422 2 42 4 2 2 2 4 2 2 2
2 3232323 32323232
31513151 513151 31

Case 3 — Take n = 20, k = 10.

Each element of set A pairs with an element of set B :

A B

I 161 111611 6 111161111
1 242112421 4 211242112
1323113231 2311323113
2141221412 4 1 221412 21
2222222222 2222222222
3121331213 2133121331

Case 4 — Take n = 18, k = 10.

Again each element of A pairs with an element of B :
1151111511 s1 11151111
1 232112321 3211232112
13131131731 1 3113131173
2131221312 3122131221
2212222122 1222212222
3111331113 1133111331

The reader will find that the general case needs 10 new technique.

(b) When #n is odd.
The Diophantine equation we have now to consider is
d + 2d, + ... + 2d; + diyy, = n.

Since n is odd, we can avoid duplication by assuming d; to be odd and dj,, to
be even.

The number of symmetric k-gons is readily found to be

("_:2_-_!; _’}) .(21)
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Putting together (20) and (21), we can state that

For k even, the number of symmetric k-gons is given by

=1z D)

3. THE ProBLEM OF REIS
3.1. By far the best way of stating the problem of Reis will be to ask:

If a circle is drawn with an arbitrarily fixed radius and its circumference is
divided into n equal parts, find R(n, k)—the number of mutually incongruent convex
k-gons that can be obtained by joining k£ of the n points of division.

Alternatively, one can ask

What is the number R(n, k) of equivalence classes into which the (n — 1; k — 1)
decompositions of n into k parts can be decomposed.

We can easily prove two interesting theorems concerning R(n, k).
Theoreml — For n > k,

R, k) > (n — 1; k — 1)/(2k).

ProoF : Since no equivalence class into which the decompositions of # into k
parts can be decomposed can have more than 2k elements, the theorem follows
immediately.

Theorem 2 — For each k < n,
R(n, k) = R(n, n — k).
Proor : Every time we select k of the # points of division on our basic circle,
we are left with (n — k) points which when joined to form a convex (r — k)-gon

produce a unique figure corresponding to the given k-gon. Moreover, if the k-gons
are incongruent, so also are the corresponding (» — k)-gons. Hence the theorem

follows.
Evidently
R(n,m) =1 and R(n,n —1)=1.
We can, therefore, take
R(n,0) =1 and R(n,1)=1
32 Evaluation of R(n, k)

As one of our definitions of R(n, k) itself suggests, one way of evaluating
R(n, k) will be to write out all the decompositions of » into k parts and decompose
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them into equivalence classes.
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But the labour this will involve will be prohibitive
even for small values of n and k. A short-cut will be to consider only those
decompositions which start with a suitably chosen element and break these up into
equivalence classes. The number of classes so obtained will be R(n, k). We have
already stated how such an element can best be chosen.

The following example will show how one proceeds along these lines.

Take n = 11, k =5,

The partitions of 11 into 5 parts are:

1. 11117
2. 11126
3. 11135
4. 11144
5. 11225

10.

0 » 2o

11234
11333
12224
12233
22223

First note that the contribution which the decompositions arising from any of these
partitions, make to R(n, k) depends only on the type of the partition and not on the

size of the parts.

are of one type.

Type

(14)

(113)

23

(122

(1

112

Partitions
11117, 22223
11126, 11135;
11144, 11333
11225; 12233
11234

12224

We will, therefore, do well to put together those partitions which

We need consider only one member of each type, say the first from the left.
Moreover, we take only those decompositions which start with one of the most
suitable elements.

Partition
11117
11126

11144

Decompositions

71111

61112
61121
61211
62111

41114
41141
41411
44111

Classes
71111

611127
62111 f

611217
61211

411147
44111 §

41141
41411

Number of classes

1
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Partition Decompositions Classes Number of classes
11225 51122 511227
51212 52211 f
51221
52112 512127
52121 2121 f 4
52211
51221
52112
11234 41123 411237
41132 43211 f
41213
41231 411327
41312 42311 [
41321
42113 412137
42131 43121
42311 6
43112 412317
43121 41321
43211
413127
42131 {
42113\
43112
Hence

R(11,5 =21+32+4+22+ 244 1.6 = 26.

From the above, it will be clear, that to find R(n, k), we have to determine
two things:

One : What contribution does a given type of partition make to R(n, k)?
Two : How many partitions of n into k parts belong to that type?

For one, we need not consider the given nat all. It will be enough to consider the
least n for which a partition of that type exists. The importance of knowing such an
n will be realized a little later. We will denote such an n by n,.

Example — For the type (12 23), the ny is the least number which can be

written in the form

3u; + 2uy + 2uy + U,
with »’s all distinct positive integers. Evidently, for n, we must take u; =1, u, = 2,
uy = 3, u, = 4.

This gives ny = 17.
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3.3. It will not be out of place here to give a few easy-to-prove rules, for determin-
ing C(T)—the contribution which a partition of type T will make to R for any n.

(i) When T has at least three odd frequencies, no symmetric polygons can
arise. Each class will, therefore, contain the same number of decompositions, if the
g.c.d. of the frequencies is 1. To find this number, it will be enough to consider
only one of the classes.

Example — Take T = (53 32),
Consider the partition 1111122233344,
The number of decompositions starting with 4 is given by
C 1215 31311,
The class to whiéh the decomposition 4433322211111 belongs has the four members
4433322211111, 4333222111114, 4111112223334, 4411111222333,

Hence C(5332)=121/(5!31311!4).

(i) When the partition has just one unrepeated summand and the frequencies
of all other summands are even, we consider the decompositions which start with
the unrepeated element. Then each ordinary class has two decompositions belonging
to it, while each decomposition representable by a symmetric k-gon forms a class
by itself.

Let 7T = (1 2a, 2a, ... 2a;); where each ¢ > 0.
Then, we readily have
2C(T) = (2a; + 2a, + ... + 2a)1/(2a)! 2a,)! ... (2a5)!
+ (@, + ay + ... + apllay! a,! ... ail.
Example — Take T = (12 2 4), then
2C(1224) ==81/2121 41 4+ 4111 11 21,
(ii) When T = (1 2a, — 1 24, 245 ... 2a;); with each a > 0;
we have 2C(T) = 2a; — | 4 2a, + 2a, + ... + 2a)!/Qa, — 1)! 2a,)! ... 2a3)!
4@ —1+ay,+ ... +a)lf(a, — Dla! ... as!
Recall that O! is taken as 1.
This rule covers the case when the partition has two unrepeated summands.
Example — 2C(1 32 4) = 91/3121 41 + 4Y1t 11 2L,

(iv) When there are three or more unrepeated summands in the partition, C(T)
is half the number of decompositions which start with one of the unrepeated
summands, this one remaining fixed.
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Example — T = (11123), C(T) = (71! 112! 3)),
3.4. We give below, for reference, C(T) for each 7, when k = 5 or 6.

k=35 =6
T C(T) T ()

(5) 1 (6) 1
(14 1 (15) 1
23) 2 24 3
113 2 (3 3) 3
122 4 (114 3
(1112 6 (123) 6
airiri1m 12 222 11

(1113) 10
(1122 16
(11112 30
(111111) 60

Note that the total number of T’s for any & is p(k).

We leave it to the reader to compute C(T)’s for k = 7.

3.5, The Number of Partitions of n of a given Type T
Suppose, we wish to find the number of those partitions of # which are of the
type (2 3).

Let the summand which is repeated twice in the partition be denoted by u and that
which is repeated thrice by v. Then the required number of partitions is the same as

the number of solutions of the Diophantine equation
2u—+3v=n ...(22)
where u and v are distinct positive integers.
From the theory of partitions, it is well known that the number of solutions of (22)
including those with « = v, is the same as the coefficient of
x in the ascending power expansion of x5/(1 — x?) (1 — x3).
Since the number of solutions of (22) with u = v, is in the same manner the same as
the coeflicient of
x» in the ascending power expansion of x3/(1 ~ x%),
it follows that the required number is the coefficient of
xm in x5 {(1 —x2)1 (1 — x%)71 — (1 — x%)77L
Writing p(n, (2 3)) for the number of partitions of n which are of the type (2 3), we

thus have
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— x5 — (1 = x%) (1 — x?)
A=x)1—-x)A — x)

> s emx=x" (23)

n25
The expression on the right of (23) is called the generating function of p(n, (2 3)).
For any given k, the best denominator to use for all types of partitions is
Dy=((1—x)(—x2)...(1—2xk ...(24)

and this we shall use henceforth. We shall thus be left to record only the numerators
of generating functions. For this we shall adopt the notation:

(bg + by + by + ...+ bide = by + byx + byx® - ... L bsxs ...(25)
where the b’s are integers not necessarily positive,
Thus, (23) will take the form
n§7 pn, 23))xn=x(1+0—-1—-2+1+0+4+1+42—2)/D,
...(26)
This implies that (22) has no solution for n < 7. (So the least n has asserted itself).

We shall denote the numerator in the generator of p(n, T) for any type T of
partitions by P(7).

If T ={(a; a;a;...aj)
where LK GG ...<a; and a, +a, + a3+ . a5 = k;
then P(T) is of the form
xno(l + by + by + ... + br)s
where
ny = a; + 2a;_; + 3ai.s + ... + ja, .(27)
and
r=(k+1;2) — n, ...(28)
We might also state that the total number of solutions of the Diophantine equation
Uy + AUy + AUy -+~ ... + aillj = n

in positive integers u is the coefficient of xn in the expansion (in ascending powers
of x) of

x¥(1 — x%1) (1 — xa2) .. (1 — x%). ...(29)

Write (29) with Dy as the denominator and let O(T) denote the numerator. Then
Q(T) will be of the form
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ML+ F et o Fdn 5 = (K 2) ..(30)
where the c’s are integers but not necessarily positive.

To obtain P(T) from Q(T), we have to remove somehow from Q(T) all terms
of degree less than n, in x. We have also to bear in mind that the coefficient of x"e
in the final answer has to be 1. How this is done, we illustrate by an example in the
next sub-section.

3.6. The Generating Functions for R(n, 5) and R(n, 6)
Write OQ(T) = x*N(T), P(T) = x»o M(T).
(i) Case k = 3.
We take each type in turn.
Type (5), we have
ny(5) = 5.
N =(1—-1—-14+0+0+2+0+0—~1—1+4 1) =M(5).
Type (1 4), we have
ny(l 4) = 6.
Nl =11+0-1—-14+04+0+0+1+1+0~ 1.

To get rid of the 5th degree term from Q(1 4), we subtract M(5) from N(1 4). This
we do most conveniently as follows:

140—-1—-14+04+04+04-14+14+0-1 N 4)
—14+1+14+04+0—-2—-0-—-0+1+1-1 — M(5)
1 4+0—-1+0~2+04+14+2+1-—-2

This means that
Ml4)=0104+0—-1+0—-2+0+1+2+1-2),

Type (23): n(23)y =71,
N(23)=(1——1+0—¥—0—1+0+1+0+0+1—1).~,.

Processing:
1—140+0—-1+0+14+0+0+1~—1 N2 3)
1141 —=0—-0—-2—0—-0+4141—-1 —MO)
1+0—-1—24+140+1+2-—2
Hence

M) =(14+0—1—2+1+0+1+2—2s
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Type(113): ny(113)=38;
N113)=(14+14+04+0—-1—-2—-14+04+041+ 1)

Processing :
1+14+04+0—-1—-2—-14+04+0+1+1 N(113)
~14+14+1—-0—-0—-2—-0—-0+4+1+1—1 — M(5)
—2—-04+24+04+44+0—-2—-4—-24+4 —2M1 4)
B ~14+0+142—-14+0-—-1-2+42 — M2 3)
)24+40+4+2—-2—-2—4-—-24+6 Divide by 2
14+0+1—~1—1—2-—1-+3
Thus

MI13)=1+0+1—1—1-=2—1%3),
Type (122): n(122)=9.
N122)=(1+0+1—14+0-240—1=140=1),.

Processing :
14+0+1-14+0—-24+0—-14+14+0+1 N122)
- 1+14+14+04+0—-2+04+0-L1+1—1 — M(5)
—14+0+14+04+2+0—-1—~2—-1+42 — M1 4
—24+0+24+4-21+0-~-2—-444 —2M(23)
)24+2—-2—-2—-2-4-16 Divide by 2
I +1=-1—-1—1—2+3
ie. MA2=QA1+1—-1—1-—1-2+ 3),.

Type(1112): ny(1112) =11
N1112)=(14+24+3+34+24+0~2—-3—-3—-2— 1),

Processing :

1+24+34+34+24+0—-2—-3— 3— 21 N1112)

—14+14+14+04+0—-24+04+04+ 14+ 1 —- 1 —M(3O5
—34+0+3+4+0+64+0—-3~ 6— 34+ 6 —3M149H
~44+04+4+8—~44+0~— 4~ 84+ 8 —4M23)
—6+0—-64+6+6-+12+ 6—18 —6M(113)
—6—-6+6+6+ 6+12—18 —6M(122)
Y6 4+6-+4+ 64 6—24 Divideby6

1414+ 14+ 1-—- 4
so that MA112)=(14+14+14+1—4),.




ENUMERATION OF INCONGRUENT CYCLIC k-GONS 985
Type (1111 1): n(l1111)=15.
NI =(0+4+9+15+204+22+204+15+9--4 4 1),.
Processing :
144+ 94+ 154+204+224+204+15+ 94+ 44+ 1 N(I1111)
—14+1+ 14+ 04+ 0—- 24 04 0+ 14+ 1— 1 —MO5)
=54+ 0+ 54 0410+ 0— 5—-10— 5+ 10 —5M(14)
—10+ 04+104+20—-104 0—10—20-+- 20 —10M(23)
— 20+ 0—20+20+20440+20 — 60 —20M(113)
— 30 — 30 + 30 + 30 + 30+ 60 — 90 —30M(122)
— 60 — 60 — 60 — 60 + 240 —60M(1112)
) 120 Divide by 120

1

Thus MA1111)=(1)..
Using the table of C(7)’s in section 3.4, we have
1 M(5) =) -1 4+0+0+2+0+0—-1—1+ 1
1 M(14) 1+0—~1+0—-2+0+14+241-— 2
2 M(23) 24+0—-2—-4+2+04244— 4
2M(113) = 24+-04+2—-2—-2—-4-—-24 6
4 M(22) 4 +-4—-4—-4-4-8+12
6M(1112) 6+6-+6-6-—24

12M(11111) = 12
14+04+1 4142424241 +140+1

I

f

1

This shows that R(n, 5) is the coefficient of x in
(1 +04+1+1+2+2+2+1+1+0+ 1)/Ds

Letting
Q+0+14+1+24+2424+14+14+0+1)s
= D; T R(j, 3) x5 ..(31)
j»s

and comparing the coefficients of like powers of x on the two sides, the values of
R(n, 5) can be computed in succession. In fact for values of n > 15, one gets a
recurrepce relation from which the values of R(n, 5) can be readily computed. This
is about half as laborious as the method of Reis.

Proceeding on the same lines, one can show that
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(A0 £ 2424544494649 4647 +3+4+1+ 1),
=D, T R(j,6)x+o. ..(32)
j»6

3.7. Closed Formulae for R(n, k)

The break-through came unexpectedly, when I tried to express the generating
functions for R(n, 5) and R(n, 6) in terms of N’s in place of M’s,

From the processing in 3.6, it will be seen that

NG) = M)
N 4) = M(5) + M(1 %)
N@2 3) = M(5) 4+ M2 3)
N(113) = M(5) + 2M(1 4) + M(2 3) + 2M(1 1 3)
N(122) = M(5) + M(1 4) - 2M(2 3) + 2M(122)
N(1112) = M(5) + 3M(1 4) + 4M(2 3) ++ 6M(1 1 3) + 6M(1 2 2)

+ 6M(1112)
and finally
N(11111)=M(@S)+ SM(14)+ 10M(23) + 20M(113)
+ 30M(122) 4+ 60M(1112) - 120M(11111).

In the form of a matrix equation, these relations can be written as

-1 0 0 0 o0 © 077 (TM(5) =
1 1 0 0 o0 0 0 M(1 4
1 0 1 0 o0 0 0 M@ 3)
1 2 1 2 0 0 0 M(113)
1 1 2 o0 2 0 0 M(1 2 2)
1 3 4 6 6 6 0 MQA112)
1 5 10 20 30 60 120_] | mMai1111)_
—N(5) =
N( 4)
N2 3)
=| N113)
N(122)
N(1112)
 NQ1111)_

Hence, we get
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10 —M(5) -
M(1 4)
2M(2 3)
2M(1 1 3)
4M(122)
6M(1112)
L12Ma1111) ]
™ 10 0 0 0 0N 7]
— 10 10 0 0 0 N(1 4)
— 20 0 20 0 0 0 0 N2 3)
= 20 —20 —10 10 0 0 0 N(13)
40 —20 — 40 0 20 0 o0 N(122)
— 60 60 50 —30 —30 10 0 N(1112)
24 —30 —20 20 15 —10 1_J| Nat11D)_]

Whence, adding the entries in each column of the square matrix, it is readily seen
that 10 R(n, 5) is the coefficient of xn5 in

{4NG) +5N(122) + N(11111)/Ds

i.e. in 401 — 291  5(1 — x) 1 (1 — x2)°% 4 (1 — x)5. ...(33)
It simplifies matters, if we write (33) in the form

5+ x) (1 — x3)3 + (I — x)° + 4(1 — x5)yL -..(3%
Hence 10 R(m, 5) = 5([(n — D21;2) +(n—1;4) + 4 if (n,5) =5;

= 5([(n — 1)/2]; 2) + (n — 1; 4) otherwise.

For k = 6, we get the matrix equation:

1 0 0 0 0 0 0 0 0 0 0 M*=N*
L1 0 0 0 0 0 0 0 0 0
1 0 i 0 0 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0 0 0
I 2 1 0 2 0 0 0 0 0 0
11 1 2 0 1 0 0 0 0 0
1 0 3 0 0 0 6 0 0 0 0
I 3 3 2 6 3 0 6 0 0 0
12 3 4 2 4 6 0 4 0 0
1 4 7 8 12 16 18 24 24 24 0
1 6 15 20 30 60 90 120 180 360 720__
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where M* =7 M(6) ] N* = {TN(6) -
M(15) N(15)
M2 4) N2 b
M(33) N@33)
M(114) N(114)
M(123) N(123)
M222) N222)
M(l113) N1113)
M(1122) N(1122)
M(1A1112) Ni1112)

L MO11111)_ _Ng1111ny !

Proceeding as in the case of k = 5, we finally find that 12 R(n, 6) is the coefficient
of x»¢in

200 — x5 £ 21— %3 4 4(1 — xB)73 L 31— x)2 (1 — x4 (1 — x)-¢
i.e. in

6(1 + x) (1 — a8 + (1 — x)® + (I — x5 4 21 — x92 4 2(1 — x)1
...(35)

Results (34) and (35) are very suggestive and in view of the prediction made by Reis,
led me to the conjecture:

“2k R(n, k) is the coefficient of x"-¥ in

k(1 + x) (1 — x2)-ltye] 4 dlz #(d) (1 — xdynd ...(36)
g

where g=(nk).”

To prove the conjecture, all that is necessary is to show that the conjecture is not at
variance with the fundamental relation

R(n, k) = R(n, n — k). ...(37)

Let » — k = h, then we have to show that for each divisor d of g, relation (37)
holds good.

Now, we have

2kh R(n, k)=hk(l:k~i;——t];[—§—]) +h z 8(d) (% ke 1)
dle
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where t = 0 or 1 according as k is even or odd; and
2hk R(n, by = kh ([k 7*:2(’:3]; [;_:D
| n _h
kD s (-1 1)

where s = 0 or 1 according as 4 is even or odd.

It is easy to see that :

([li_ih_:__t] [’2;]) _ ([’%ﬁ] ['2" )for all  and .

(= b))
o520 0)
UER I CEDIED
o) ()
C R CRIE!

and we are through.

Of course, induction takes care of the rest.

4. Tue FuNcTION R'(n, k)

4.1, Our account will not be complete, if we do not consider, at least very briefly,
the function R'(n, k) which is closely related to R(n, k) which has been dealt with at
length in the foregoing pages.

Two decompositions of n into k parts are defined to be weakly equivalent if
the k-gons representing them are directly congruent.

R'(n, k) denotes the number of equivalence classes into which the decompositions
of n into k parts, can now be divided.

Besides replacing the table in section 3.4 by the following, no new technique
is required.
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T c'(T) T c(T)
&) 1 (6) 1
(1 4). 1 (15) 1
3 2 249 3
(113 4 3 3) 4
(122 6 (11 4) 5
(1112 12 (12 3) 10
Q1111 24 (222 16
1113 20
(1122 30
11112 60
111111 120
We give only the final matrix in the case of k¥ = 6:
T 6 0 0 0 0 0 0 0 0 0 07
—6 6 0 0 0 0 0 0 0 0 0O
—18 0 18 0 0 0 0 0 0 0 O
~12 0 0 12 0 0 0 0 0 0 0
30 —-30 —15 0 15 0 0 0 0 0 0
120 —60 —60 —60 0 60 0 0 0 0 0
32 0 —48 0 0 0 16 0 0 0 0
—120 120 60 40 -—-60 —60 0 20 0 0 0
—-270 180 225 90 —45 —180 —45 0 45 0 0
360 —360 —270 —-120 180 300 45 —60 —90 15 0
L —120 144 90 40 —9% —I120 —15 40 45 —15 1__
The column sums are
2 0 0 2 0 0 1 0 0 0 1
From this we conclude that 6R’'(n, 6) is the coefficient of xn~% in
2(1 — x5 4 2(1 — x3)™2 + (1 — x%)"3 4 (1 — x)-5.
As in the case of R(n, k), we finally get
, n k
k R(n, k) = #d) (7 —ne 1)- .(38)

di(nk)
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This is in conformity with the fundamental relation
R'(n, k) = R'(n,n — k).
We further have
2 R(n, k) = S(n, k) + R'(n, k) ...(39)
where S(n, k) denotes the number of symmetric k-gons for the given n. A combi-

natorial proof of (39) is easy to give.

We might here note that the fundamental relation can be used to find the expres-
sion for R'(n, k) for a given k after the values for R'(n, m) have been obtained for
each m < k, as the following example will illustrate.

Take k = 10.

10 R'(n, 10) = z ad(%———l;%- 1).

d|10

Let

To determine the a’s, take #n = 10, 11, 12, 15 in turn.

We thus get the relations:
a, + a, + a; + a;, = 10 R'(10, 0) = 10;

10 4 = 10 R'(11, 1) = 10;

55a, + 5a, = 10 R'(12, 2) = 60;

2002 @, + 2a; = 10 R'(15, 5) = 2010.
These give

a = 1=¢(1); gy =1 =¢2); a5 = 4= 4(5);
and ap = 4 = ¢(10).

4.2. There is an interesting formula for
n
B'(n) = X R'(n, k).
k=0

This we proceed to find.

We have

k R'(n, k) = z qs(d)(%—l;%—l)- ...(40)
d(n k)
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Therefore

(n— k)R, n— k) = z ¢(d)(%~—1;";—k—1)

d|(n,n-k)
or what is the same thing
v k
—BRE D= > (5 - 15 . (41)
d| (k)
Adding (40) and (41), we get
P
nReR) = > 95T ) (42
d}(nk)
Whence
n g R(n k) = T ¢d) {(n/d;0) + (n/d; 1) + ... 4 (n/d; n/d)}
k=0 din
nBn) = T ¢d)2n, ...(43)
din

We leave it to the reader to find a similar formula for
n
B(n) = X R(n, k).
k=0

It will thus be seen that the problem of Reis is directly related to the bead-stringing
problem* when the beads are available in two different colours,

5. TABLES
The tables that follow give for n < 100, 3 < & < 12, the values of S(n, k)—the
number of symmetric k-gons for any given n and k in the range and also the values
of R'(n, k) in the said range,
Note that
R'(n,0) =1 = R(n, 1)
and R'(n, 2) = [n/2].

In preparing these tables, the Royal Society “Tables of Binomial Coefficients”” [Univer-
sity Press, Cambridge (1954)] have been freely used.

*John Riordan (1958). An Introduction to Combinatorial Analysis. John Wiley & Sons,
New York, p. 162.
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Table for S(n, k)

TABLE [

993

(This table will enable the reader to find S(n, k)—the number of symmetric k-gons for n << 100,

AN
N
m\r 2 3 4 5 6
AN

1

2 1

3 3 1

4 6 4 1

5 10 10 5 1

6 15 20 15 6 1
7 21 35 35 21 7
8 28 56 70 56 28
9 36 84 126 126 84
10 45 120 210 252 210
11 55 165 330 462 462
12 66 220 495 792 924
13 78 286 715 1287 1716
14 91 364 1001 2002 3003
15 105 455 1365 3003 5005
16 120 560 1820 4368 3008
17 136 630 2380 6188 12376
18 153 316 3060 8568 18564
19 171 969 3876 11628 27132
20 190 1140 4845 15504 38760
21 210 1330 5985 20349 54264
2 231 1540 7315 26334 74613
23 253 1771 8855 33649 100947
24 276 2024 10626 42504 1 34596
25 300 2300 12650 53130 1 77100
26 325 2600 14950 65780 2 30230
27 351 2925 17550 80730 2 96010
28 378 3276 20475 98280 3 76740
29 406 3654 23751 1 18755 4 75020
30 435 4060 27405 1 42506 5 93775
31 465 4495 31465 1 69911 7 36281
32 496 4960 35960 2 01376 9 06192
33 528 5456 40920 2 37336 11 07568
34 561 5984 46376 2 78256 13 44904
35 595 6545 52360 3 24632 16 23160
36 630 7140 58905 376992 19 47792
37 666 7770 66045 4 35897 23 24784
38 703 8436 73815 5 01942 27 60681
39 741 9139 82251 5 75757 32 62623
40 780 9880 91390 6 58008 38 38380
41 820 10660 1 01270 7 49398 44 96388
42 861 11480 1 11930 8 50668 52 45786
43 903 12341 1 23410 9 62598 60 96454
44 946 13244 1 35751 10 86008 70 59052
45 990 14190 1 48995 12 21759 81 45060
46 1035 15180 1 63185 13 70754 93 66819
47 1081 16215 1 78365 15 33939 107 37573
48 1128 17296 1 94580 17 12304 122 71512
49 1176 18424 2 11876 19 06884 139 83816
50 1225 19600 2 30300 21 18760 158 90700
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TABLE
Table of values
N
N
n\ k 3 4 5 6 7 8
N

3 1

4 1 1

5 2 1 1

6 4 3 1 1

7 5 5 3 1 1

8 7 10 7 4 1 1

9 10 14 14 10 4 1
10 12 22 26 22 12
11 15 30 42 42 30 i5
12 19 43 66 80 66 43
13 22 55 99 132 132 99
14 26 73 143 217 246 217
15 31 91 201 335 429 429
16 35 116 273 504 715 810
17 40 140 364 728 1144 1430
18 46 172 476 1038 1768 2438
19 51 204 612 1428 2652 3978
20 57 245 776 1944 3876 6310
21 64 285 969 2586 5538 9690
22 70 335 1197 3399 7752 14550
23 77 385 1463 4389 10659 21318
24 85 446 1771 5620 14421 30667
25 92 506 2126 7084 19228 43263
26 100 578 2530 8866 25300 60115
27 109 650 2990 10966 32890 82225
28 117 735 3510 13468 42288 1 11041
29 R 126 819 4095 16380 53820 1 48005
30 136 917 4751 19811 67860 1 95143
31 145 1015 5481 23751 84825 2 54475
32 155 1128 6293 28336 1 05183 3 28756
33 166 1240 7192 33566 1 29456 4 20732
34 176 1368 8184 39576 1 58224 5 34076
35 187 1496 9276 46376 1 92130 6 72452
36 199 1641 10472 54132 2 31880 8 40652
37 210 1785 11781 62832 2 78256 10 43460
38 222 1947 13209 72675 3 32112 12 87036
39 235 2109 14763 83661 3 94383 15 77532
40 247 2290 16451 95988 4 66089 19 22741
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11

UfR'l("’k)
/
/
9 10 11 12 k/n
/
1 9
1 1 10
5 1 1 11
19 6 1 1 12
55 22 6 1 13
143 73 26 7 14
335 201 91 31 15
715 504 273 116 16
1430 1144 728 364 17
2704 2438 1768 1038 18
4862 4862 3978 2652 19
8398 9252 8398 6310 20
14000 16796 16796 14000 21
22610 29414 32066 29414 22
35530 49742 58786 58786 23
54484 81752 1 04006 1 12720 24
81719 1 30752 1 78296 2 08012 25
1 20175 2 04347 2 97160 3 71516 26
1 73593 3 12455 4 82885 6 43856 27
2 46675 4 68754 7 66935 10 86601 28
3 45345 6 90690 11 93010 17 89515 29
4 76913 10 01603 18 20910 28 83289 30
"

6 50325 14 30715 27 31365 45 52275 31
8 76525 20 16144 40 32015 70 56280 32
11 68710 28 04880 58 64750 107 52060 33
15 42684 38 56892 84 14640 161 28424 34
20 17356 52 45128 119 20740 238 41480 35
26 15104 70 60984 166 89036 347 69374 36
33 62260 94 14328 231 07896 500 67108 37
42 89780 124 40668 316 66376 712 50060 38
54 33736 163 01164 429 75796 1002 76894 39
68 35972 211 91904 577 95036 1396 72312 40

(continued)



996

HANSRAJ GUPTA

TasLE II
N
AN
r\ k 3 4 5 6 7 8
N

41 260 2470 18278 1 09668 5 48340 23 30445
42 274 2670 20254 1 24936 6 42342 28 10385
43 287 2870 22386 1 41778 7 49398 33 72291
44 301 3091 24682 1 60468 8 70922 40 28183
45 316 3311 27151 1 81006 10 08436 47 90071
46 330 3553 29799 2 03665 11 63580 56 72645
47 345 3795 32637 2 28459 13 38117 66 90585
48 361 3960 35673 2 55704 15 33939 78 61662
49 376 4324 38916 2 85384 17 53074 92 03634
50 392 4612 42376 3 17860 19 97688 107 37826
51 409 4900 46060 3 53132 22 70100 124 85550
52 425 5213 49980 3 91560 25 72780 144 72178
53 442 5525 54145 4 33160 29 08360 167 23070
54 460 5863 58565 4 78341 32 79640 192 68210
55 477 6201 63251 5 27085 36 89595 221 37570
56 495 6566 68211 5 79852 41 41383 253 66335
57 514 6930 73458 6 36642 46 38348 289 89675
58 532 7322 79002 6 97914 51 84036 330 48639
59 551 7714 84854 7 63686 57 82194 375 84261
60 571 8135 91026 8 34472 64 36782 426 44141
61 590 8555 97527 9 10252 71 51980 482 75865
62 610 9005 1 04371 9 91597 79 32196 545 34355
63 631 9455 1 11569 10 78507 87 82075 614 74519
64 651 9936 1 19133 11 71552 97 06503 691 59400
65 672 10416 1 27076 12 70752 107 10624 776 52024
66 694 10928 1 35408 13 76738 117 99840 870 24440
67 715 11440 1 44144 14 89488 129 79824 973 48680
68 737 11985 1 53296 16 09696 142 56528 1087 06712
69 760 12529 1 62877 17 37362 156 36192 1211 80488
70 782 13107 1 72901 18 73179 171 25354 1348 62904
71 805 13685 1 83379 20 17169 187 30855 1498 46840
72 829 14298 1 94327 21 70092 204 59857 1662 37161
73 852 14910 2 05758 23 31924 223 19844 1841 38713
74 876 15558 2 17686 25 03494 243 18636 2036 69469
75 901 16206 2 30126 26 84802 264 64398 2249 47383
76 925 16891 2 43090 28 76676 287 65650 2481 04707
77 950 17575 2 56595 30 79140 312 31278 2732 73675
78 976 18297 2 70655 32 93095 338 70540 3006 02097
79 1001 19019 2 85285 35 18515 366 93085 3302 37765
80 1027 19780 3 00501 37 56376 397 08955 3623 45362



ENUMERATION OF INCONGRUENT CYCLIC k-GONS 997
(continued)
/
/
10 1 12 k/n
/

85 44965 273 43888 770 60048 1926 50120 41
106 16489 350 34841 1019 18128 2632 89838 42
131 14465 445 89181 1337 67543 3567 13448 43
161 12057 563 92798 1743 03163 4793 35399 44
196 92535 708 93054 2255 68798 6391 11655 45
239 50355 886 17045 2900 17026 8458 85187 46
289 92535 1101 71633 3705 77311 11117 31933 47
349 39745 1362 65800 4707 33341 14514 30692 48
419 27666 1677 10664 5946 10536 18829 33364 49
501 08674 2054 46630 7470 74776 24279 96564 50
596 53210 2505 43370 9338 43470 31128 11660 51
707 51450 3042 32500 11616 10170 39688 39186 52
836 15350 3679 07540 14381 84020 50336 44070 53
984 80332 4431 62850 17726 45420 63519 85018 54
1156 07310 5317 93630 21755 19380 79769 04390 55
1352 85150 6358 41960 26589 68130 99711 37228 56
1578 32709 7575 96840 32370 04680 1 24085 18076 57
1836 01275 8996 48295 39257 29080 1 53757 80420 58
2129 77479 10648 87395 47435 89305 1 89743 57220 59
2463 85749 12565 69506 57116 68755 2 33226 57491 60
2842 91205 14783 14266 68540 02506 2 85583 43775 61
3272 03085 17341 79091 81979 24566 3 48411 91281 62
3756 77659 20286 59127 97744 48521 4 23559 43781 63
4303 21633 23667 72128 1 16186 84091 5 13158 68912 64
4917 96152 27540 58456 1 37702 92256 6 19663 15152 65
5608 20220 31966 78584 1 62739 81758 7 45891 00058 66
6381 74680 37014 13144 1 91800 49928 8 95068 99664 67
7247 06840 42757 74448 2 25449 70968 10 70886 31896 68
8213 34470 49280 06512 2 64320 34928 12 77548 35742 69
9290 50408 56672 12132 3 09120 40848 15 19842 24024 70
10489 27880 65033 52856 3 60640 47656 18 03202 38280 71
11821 25128 74473 93184 4 19761 86616 21 33789 76004 72
13298 90705 85113 00512 4 87465 39296 25 18571 19696 73
14935 69561 97082 08037 5 64840 85216 29 65414 78800 74
16746 08357 1 10524 14757 6 53097 23531 34 83185 25836 75
18745 61525 1 25595 68822 7 53573 73305 40 81858 08419 76
20950 98175 1 42466 67590 8 67751 57140 47 72633 64265 s
23380 08175 1 61322 63329 9 97266 73130 55 68073 00523 78
26052 09035 1 82364 63245 11 43923 60355 64 82233 75345 79
28987 53715 2 05811 59608 13 09709 63305 75 30830 87012 80

(continued)



998

HANSRAJ GUPTA

TagLE 11
AN
N
a\ k 3 4 5 6 7 8
N

81 1054 20540 3 16316 40 06678 429 28600 3970 89550
82 1080 21340 3 32748 42 70396 463 62888 4346 53310
83 1107 22140 3 49812 45 47556 500 23116 4752 19602
84 1135 22981 3 67524 48 39212 539 21022 5189 91166
85 1162 23821 3 85901 51 45336 580 68792 5661 70722
86 1190 24703 4 04957 54 67063 624 79080 6169 82359
87 1219 25585 4 24711 58 04393 671 65011 6716 50110
88 1247 26510 4 45179 61 58460 721 40197 7304 21043
89 1276 27434 4 66378 65 29292 774 18748 7935 42167
90 1306 28402 4 88326 69 18108 830 15284 8612 85227
91 1335 29370 5 11038 73 24878 889 44948 9339 21945
92 1365 30383 5 34534 77 50908 952 23414 10117 50553
93 1396 31395 5 58831 81 96198 1018 66908 10950 69261
94 1426 32453 5 83947 86 62053 1088 92212 11842 04703
95 1457 33511 6 09901 91 48503 1163 16681 12794 83491
96 1489 34616 6 36709 96 56944 1241 58255 13812 62620
97 1520 35720 6 64392 101 87344 1324 35472 14898 99060
98 1552 36872 6 92968 107 41192 1411 67482 16057 82260
99 1585 38024 7 22456 113 18488 1503 74056 17293 0le44
100 1617 39225 7 52876 119 20720 1600 75608 18608 81252




ENUMERATION OF INCONGRUENT CYCLIC k-GONS

999

(continued)
7/
9 10 11 12 k/ n
/
32208 37534 2 31900 29720 14 96811 00920 87 31397 55800 81
35738 05950 2 60887 92574 17 07629 46120 101 03474 86044 82
39601 63350 2 93052 08790 19 44800 21970 116 68801 31820 83
43825 80852 3 28693 65932 22 11211 20870 134 51535 48264 84
48439 05066 3 68136 78508 25 10023 53420 154 78478 46090 85
53471 €7930 4 11732 04254 28 44693 33876 177 79334 07614 86
58955 95494 4 59856 44198 32 18995 09386 203 86968 93324 87
64926 17730 S 12916 92408 36 37046 40476 233 37715 23300 88
71418 79503 5 71350 36024 41 03334 40536 266 71673 63484 89
78472 50409 6 35627 41159 46 22743 82376 304 33064 41754 90
86128 35715 7 06252 52863 52 00586 80173 346 70578 67820 91
94429 88555 7 83768 19906 58 42634 55503 394 37784 26497 92
1 03423 20895 8 68754 94706 65 55150 96418 447 93531 59533 93
1 13157 15697 9 61835 99743 73 44928 18878 508 02421 11469 94
1 23683 40413 10 63677 27559 82 19324 40173 575 35270 81211 95
1 35056 59175 11 74992 51760 91 86303 74311 650 69652 79992 96
1 47334 46260 12 96543 27088 102 54478 59696 734 90429 94488 97
1, 60578 00980 14 29144 48180 114 33154 29776 828 90370 08568 98
1 74851 61178 15 73664 49604 127 32376 37706 933 70760 10664 99
1 90223 17 31031 15760 141 62980 46436 1050 100

18084

42106

70020




