..|...|.. cisco

Your Time Is Now

How to write an IPv6 Addressing Plan

Wim Verrydt – Solutions Architect BRKRST-2667

The presenters

Veronika McKillop Consulting Systems Engineer CCIE #23705

Wim Verrydt Solutions Architect CCIE #8118

Abstract reminder

An **IPv6 addressing plan** is the **cornerstone of a successful IPv6 deployment**. The huge addressing space available provides flexibility that we have never experienced with IPv4. At the same time this may become a source of frustration how should I deal with this? **How** should I **carve up the IPv6 prefix** in such a way as to meet **today's needs** while catering **for future requirements**?

This session will help the attendees to **learn about** the **best practices for** writing an **IPv6 addressing plan**. We will focus on Enterprise, SP and, newly in 2016, on DC/Cloud IPv6 addressing practices.

Also, part of the session will be dedicated to showing you 2 **step-by-step practical examples** of developing an IPv6 addressing plan. We will discuss both an Enterprise and SP example.

If you fail to PLAN (an address plan), you plan to FAIL."

Core Message of this Session

Key Takeaways

1. IPv6 addressing is easy and highly flexible.

2. IPv6 addressing strategy is the key to successful deployment.

3. A good addressing plan simplifies IPv6 network operation and troubleshooting.

Disclaimer

- This session is focused on Unicast IPv6 Addressing only
- We expect you to have:
 - A basic knowledge of IPv6 address types
 - A strong familiarity with IPv4 ☺
 - A good understanding of IP design in routed networks
 - An understanding how IP addresses are allocated and assigned on the Internet today

Agenda

- IPv6 Address Types Refresher
- Typical Requirements
 - Enterprise
 - Service Provider
 - (Virtualized) DC / Cloud
- Methodology for Writing an IPv6 Addressing Plan
- Practical Examples
- Final Thoughts & Conclusion

IPv6 Address Types – Refresher

Types of Unicast Addresses - RFC 4291

- (Node) Loopback Address
- Link-Local Address (LLA) fe80::/10
- Unique Local Address (ULA) fc00::/7
 - Site-Local Address has been deprecated by IETF (<u>RFC 3879</u>, September 2004)
- Global Unicast Address (GUA) 2000::/3
- Anycast it is the same as GUA
- NOTE: An interface will have multiple IPv6 addresses

Link-Local Address - RFC 4291

For Your Reference

- Range: fe80::/10
 - No prefix length just a unique number on the link (= L2 medium)
- Used for communication with hosts on the same link
 - Examples: Stateless Address Autoconfiguration (SLAAC), Neighbor Discovery, Duplicate Address Detection
- For link operation purposes
 - Leveraged by routing protocols and gateways
- Never routed to other links
 - No meaning outside the link
- Typically, first 64 bits are fixed, only Interface Identifier (last 64 bits) is modified
- Example: fe80::0224:d7ff:fe2c:7831

Unique Local Address - RFC 4193

- Range: fc00::/7
 - Currently used fd00::/8
- Globally unique address for local communications

fdgg:gggg:gggg:

- **40-bit global ID** generated using a pseudo-random number generation algorithm
- Not designed to be aggregated
- Not expected to be routed on the Internet but routable within an administrative domain
- Scope needs to be managed
 - ACLs and prefix lists
 - Your upstream ISP will filter it anyway
- Example: fd68:df3d:80ee::/48

Unique-Local (ULA) – fd00::/7

XXXX:XXXX:XXXX:XXX

SSSS:

Global Unicast Address - RFC 3587

- Globally unique and routable
 - Defined for use across the IPv6 Internet
- Primary goal is to provide plenty of globally accessible addresses
- Reserved and identified by high-level 3 bits set to "001"
 Range: 2000::/3
- Global IPv6 Prefix received from an LIR or RIR
- Presence in Global Routing Table
 - Aggregation is critical
 - Hierarchical assignment enforced through IANA allocation policy
- Example: 2001:420:0:1::1

Have NO Fear! ©

Source: <u>http://www.sensiblehealth.com/Blog/wp-content/uploads/2014/08/rollercoasters-in-cities-venice-frozen-over-nois7-surreal-photos-images-manipulations-R.jpg</u>

Ciscolive,

Agenda

- IPv6 Address Types Refresher
- Typical Requirements
 - Enterprise
 - Service Provider
 - (Virtualized) DC / Cloud
- Methodology for Writing an IPv6 Addressing Plan
- Practical Examples
- Final Thoughts & Conclusion

Where To Get an IPv6 Prefix?

- IPv6 Prefix assigned from:
 - an Local Internet Registry (LIR) typical enterprise scenario or
 - directly from an Regional Internet Registry (RIR) RIPE in Europe, ARIN in North America
 - typical for ISPs and large enterprises which span multiple countries, have dual-homing requirements (have AS number)
- Assigned prefix has fixed length, work is done with the bits between the assigned prefix and the /64

Get cozy! The IPv6 addressing space is HUGE....

© K. Bednarova, 2015

Enterprise

Enterprise Requirements

- Different locations
- Different places in the network (PINs)
 - Campus vs. Branch vs. Internet Edge vs. DC
- Services centralized (one DC) or distributed (in branches/multiple DCs)
- Encoding of information within the IPv6 address (e.g. locations, PINs, services)
 - Use for accounting, administrative reasons, troubleshooting etc.
- Transition mechanisms deployed:
 - ISATAP to bypass legacy equipment
 - NAT64 / SLB64 / NPTv6 for the Internet Edge
- Who are the "consumers" of IPv6?
 - Internal users and their access to internal systems and IPv6 Internet
 - External customers and IT systems that enable interaction
 - Partners and suppliers (extranet or more often public Internet)
- Security
 - Easily manageable ACL
 - · Exposing information about the network (e.g. VLAN number)
- Rate of change and growth mergers & acquisitions

Considerations

- Usually splitting up /48 per location
 - Definition of a location?
 - · E.g. single building vs. campus
 - Narrower than a city
- Multiple /48 prefixes are more likely
- 16 bits for the per-location addressing plan
 - Important because it can help with identifying buildings within a location/subnets etc.
- Aggregation is very important
 - # of required prefixes at each level, # of levels required
 - NOT important: # hosts within subnet (/64 = 2⁶⁴)
- Simplicity
- Larger IPv6 prefix if the enterprise is big (possibly it is an PA directly form the RIR)
- Have a well defined process and guidelines for IPv6 address allocations

Ciscolive,

Service Provider

(Internet) Service Provider Requirements

- Clear addressing for different parts of network
 - Core business vs. internal enterprise vs. infrastructure
 - Example: **PIES** private, internal, external, subscribers
- Customers broadband subscribers / business customers
 - Reserved vs. assigned IPv6 prefixes (e.g. broadband: /56 allocated, /60 assigned)
 - Identification of services within the IPv6 address (aka Prefix Coloring)

Customer facing systems / services

- CDN
- Cloud
- Hosting offerings
- Subscriber Access Types
- Aggregation
 - At least /32 to work with, typically much more (the ISPs can get /29 and they should obtain it!)
- Scalability
- Stability

Source: http://tinyurl.com/telco-map

Considerations

- Aggregation of prefixes assigned to the customers
 - Per region, per PoP level, per BNG, etc.
 - Multihoming of business customers
- Capabilities of network devices
 - How many IPv6 prefixes (IPv6 customers) can your BNG/PE handle?
 - Leave room for growth
- Don't hand out IPv6 prefixes on a wrong bit boundary
 - Multiples of 4 bits (nibble) to align on hexadecimal boundary
 - Check the "readability" of the prefix = supportability!
- Ease of operation and troubleshooting is absolutely necessary
- Aggregation to the upstream SPs
- Have a well defined process and guidelines for IPv6 address allocations
- All the rules can be "bent" if required. You must know what you are doing!

Source: http://www.bt.net/info/

© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Public 22

Other Influences in the Industry

- IETF Homenet & IPSs' IPv6 Addressing
 - This WG focuses on supporting next-generation services on unmanaged home networks
 - In the center of their work is IPv6
 - Multiple ISP connections to the home
 - Example: broadband, VPN router, smart meters, home security etc.
 - Terminated at a CPE (6rd, DHCPv6-PD, MAP, static IPv6 etc.)
 - Not really impacting the ISP IPv6 addressing as it's behind the CPE
 - Rather realize the potential of prefix coloring & IPv6 DA + SA routing
 - Homenet presentation by Mark Townsley @ UKNOF 27 (January 2014)
- IETF v6 Ops & <u>Unique IPv6 Prefix Per Host</u>
 - · Large scale environments with the need to assign IPv6-prefix per host (E.g. SP Wi-Fi)
 - Advantages:
 - Monitoring the prefix instead of IPv6 address
 - · Host isolation (prefix has an Off-link flag set), limitation in ND communication
 - · Think about it from the perspective of the IPv6 prefix allocation from your RIR/LIR

How many /64 are you going to need?

- This will impact the required allocation size
- Presentation at <u>UKNOF 33</u> (January 2016)

(Virtualized) DC / Cloud

The biggest concern in the DC / Cloud?

Multiple layers of NAT44 in the Cloud ... More stuff that the automation system has to deal with

What needs IP in the (v)DC / Cloud?

- Many components that require IP:
 - Physical servers, Virtual Machines, Containers, API Endpoints
 - Provisioning, Orchestration, Management services
 - · Virtual networking services and physical networking
 - Highly-Available services, Anycast etc.
- Example 1 a virtual machine has:

- There can be numerous IPv6 prefixes required to support the application use case
- Use /64 prefix per network/VLAN
- Example 2 the subnet for Docker containers should at least have a size of /80
 - Container can leverage its MAC address
 - Use standard /64

red ha

Windows Server

Hyper-V

(Virtualised) DC / Cloud Considerations

- /48 per DC / Cloud deployment is typical
- In a traditional DC (legacy mainframe, bare metal servers) things don't differ from IPv4
- · Cloud services add a layer of hierarchy into the DC architecture
 - Moving deeper, Top of Rack (ToR) switch becomes the L3 boundary
 - As can a virtual router on a physical host
- Tenant addressing "BYO Prefix" or do you allocate?
 - If a tenant requires a **virtual router** within the tenant domain:
 - Use a /64 or /127 on ToR-facing link run IGP or static route towards ToR
 - The vRouter delegates /64 BYO prefixes to the VMs
 - If a tenant uses "provider networks":
 - where the upstream switches/routers (i.e. DC Aggregation or ToR layers) provide the L3 services then use /64 per network/VLAN for tenant-facing networks
- /64 is the most common denominator
 - For L2 south of ToR, use /64 per VLAN
 - Avoid large L2 domains chatty IPv6 NDP!

Agenda

- IPv6 Address Types Refresher
- Typical Requirements
 - Enterprise
 - Service Provider
 - (Virtualized) DC / Cloud
- Methodology for Writing an IPv6 Addressing Plan
- Practical Examples
- Final Thoughts & Conclusion

Methodology for IPv6 Address Planning

Think globally, act locally! ©

Core message of the Methodology section

Ciscolive

BRKRST-2667 © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Public 30

4 Rules

1. Keep it SIMPLE

· You don't want to spend weeks explaining it!

2. Embed information to help operations

- To help troubleshooting and operation of the network
- Examples: location, country, PIN, VLAN, IPv4 addresses in Link Local and/or Global Addresses (consider this carefully!)
 - (not over the top though remember Rule #1)

3. Plan for expansion (build in reserve)

- Cater for future growth, mergers & acquisitions, new locations
- · Reserved vs. assigned

4. Take advantage of hierarchy / aggregation

- Good aggregation is essential, just one address block (per location), we can take advantage of this (unlike in IPv4!)
- Ensures scalability and stability

2001:420:1234:0100:/56 2001:420:1234:0200:/56 2001:420:1234:0300:/56 2001:420:1234:0400:/56 2001:420:1234:0500:/56 ...

Methodology

- Structure
- Prefix sizing
- Information encoding
- Infrastructure addressing

Methodology (1) – Structure Analyze, where will IPv6 be? EVERYWHERE

- - Addressing plan needs to be **designed globally**
- Identify the structure of the addressing plan
 - Based on requirements and considerations discussed earlier •
 - Top-down approach (different from the IPv4 days when #hosts/subnet was important) or middle-up
- Where and how many locations
 - Countries, regions, locations, buildings, etc... •
 - Needs to map onto the physical / logical network topology
- Which services, applications and systems connected in each location
 - E.g. Fixed networks, mobile networks, end-users, ERP, CRM, R&D, etc...
- ULA recommendations
 - Don't deploy for end-point addressing •
 - Unless in completely closed system example: CPEs management address •
 - Could be considered for infrastructure addressing (e.g. loopbacks, links)

Methodology (2) – Number of Prefixes per Level

- How many prefixes will you need at each level of the addressing plan
 - Example: a BNG can handle 64000 subscribers = 64000 IPv6 prefixes
 - Example: the number of interconnects (P2P) in your network
 - As always, put aside a reserve!
- How many /64 prefixes (subnets) you need to deploy at a location
 - Example: desktops, WIFI, guestnet, sensors, CCTV, network infrastructure, etc...
 - As always, put aside a reserve!

- Don't worry about the number of hosts
 - We have 2⁶⁴ of IPv6 addresses for hosts!

© K. Bednarova, 2015

Example - How Many Subnets in a Location?

Methodology (3) – Information Encoding

- Remember transition mechanisms these will have specific address format requirements
 - ISATAP
 - NAT64 (/96)
 - 6rd, MAP
- Possible encoding of information in particular portions of the IPv6 prefix – examples:
 - Places In the Network (PINs)
 - VLANs in the prefix (or as part of the LLA)
 - VLAN 3096 → 2001:db8:1234:3096::/64 (alternatively in hex ☺)
 - The whole IPv4 address or just a portion
 - · consider this carefully trade-off between linkage vs. independence
 - IPv4 address 10.0.13.1 → 2001:db8:1234:100::10:0:13:1
 - Router IDs or IPv4 address in Link-Local
 - Router ID 1.1.1.1 → LLA: FE80::1.1.1.1
 - All interfaces on specific router can have identical LLAs
 - Consider security implications!

R1#show ipv6 route

```
IPv6 Routing Table - default - 6 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user
Static route
       [...output omitted...]
O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1, OE2 -
OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2, 1s
- LISP site, ld - LISP dyn-EID, a - Application
LC 2001:DB8::1/128 [0/0]
    via Loopback0, receive
    2001:DB8::2/128 [110/1]
     via FE80::10:0:12:1, GigabitEthernet0/1
    2001:DB8::3/128 [110/1]
    via FE80::10:0:13:1, GigabitEthernet0/2
    2001:DB8::4/128 [110/1]
     via FE80::10:0:14:1, GigabitEthernet0/3
   2001:DB8::5/128 [110/2]
OI
     via FE80::10:0:12:1, GigabitEthernet0/1
    FF00::/8 [0/0]
     via NullO, receive
R1#
```


Methodology (4) – Infrastructure Addressing

Point-to-Point Links

- First recommendations: configure /64, /112 or /126
 - <u>RFC 3627</u>, September 2003 /127 considered harmful
 - moved to historic by <u>RFC 6547</u> (Feb. 2012)
- Since April 2011, <u>RFC 6164</u> recommends /127 on inter-router (P2P) links
- Current recommendation /64, /126 or /127
 - /127 mitigates ND exhaustion attacks
- Allocate /64 from a block (e.g. /56) for infrastructure links but configure /127
 - Example: 2001:db8:1234:1::0/127 and 2001:db8:1234:1::1/127
 - Could be confusing because of all 0s interface ID
 - What about offsetting the suffix?
 - 2001:db8:1234:1::A/127
 - 2001:db8:1234:1::B/127
- You must follow the /127 subnet rule!!!

Methodology (4) – Infrastructure Addressing

- E.g. Dedicate /56 for Loopback addresses per location
- Allocate /64 per Loopback but configure /128
 - Example: 2001:420:1234:100:1::1/128 and 2001:420:1234:101:1::1/128
 - Avoid a potential overlap with Embedded RP addresses
- Remember to check how many Longest Prefix Matches (LPM) [/128] your network devices can carry
 - Does not always equal the total number of supported IPv6 prefixes

Example of an IPv6 Prefix Allocation (Cisco)

Example of an IPv6 Prefix Allocation (ISP)

Cisco live,

Agenda

- IPv6 Address Types Refresher
- Typical Requirements
 - Enterprise
 - Service Provider
 - (Virtualized) DC / Cloud
- Methodology for Writing an IPv6 Addressing Plan
- Practical Examples
- Final Thoughts & Conclusion

Practical Examples – Introduction

- I'll present 2 practical examples
 - Multinational Enterprise
 - National ISP
- Walking through the examples at a medium pace
- · Let's make it interactive!
- Please ask questions!

ACME Enterprise – State of the Network

- European-wide conglomerate in food and consumables
 - Currently present in 19 countries
 - Expected to grow to about 37 countries in the next few years
 - Uses sister company ACME ISP for European-wide telecom
- State of the network
 - Organic growth → overlapping/illegal IPv4 address space → multiple NAT layers → impacts end-to-end enterprise applications
 - Decided to strategically deploy IPv6 to start moving some applications and services towards IPv6 → no "big-bang" approach!
 - Uses MPLS VPN from ACME ISP → built in a hierarchical way: i.e. national backbones and then a European-wide backbone which connects all countries

ACME Enterprise – IPv6 Status and Requirements

- ACME ISP is RIPE member and has /19 IPv6 block
 - ACME enterprise has been provided the following IPv6 address block: 2014:1b2::/32
 - ACME ISP will interconnect all IPv6 locations through 6VPE
- IPv6 addressing scheme needs to be:
 - Highly hierarchical
 - Uniform
 - Scalable
- IPv6 addressing scheme needs to simplify the design, operation and troubleshooting of the network
- As a general rule, ACME would like to use byte (8-bit)-boundaries between the different IPv6 addressing hierarchies
 - However, if there is a good reason for it, this rule can be broken

IPv6 Addressing Plan – Global Level

- At least **37 countries** need to be supported
- Some address blocks must be reserved for future growth in larger countries
- Solution: 8 bits for per-country blocks (256) → /40 per country (or multiple /40s for larger countries)

Global prefix: 2014	:1b2::/32			
Address scope	Prefix length	# Address block allocations	First address block allocations	Last address block allocations
Country	/40	256	2014:1b2: 00 00::/40	2014:1b2: ff 00::/40

IPv6 Addressing Plan - Country Level *#* campus locations per country → largest country has about 40 campus locations

- Firewalls will be deployed at campus level between ACME and ACME ISP
 - Requires network infrastructure addresses filtering \rightarrow loopbacks, links, network services •
- Per campus \rightarrow number of buildings (4-5 maximum)
- Solution:
 - 8 bits for per-campus blocks (256) \rightarrow /48 per campus •
 - 4 bits (nibble boundary) for per-building blocks (16) \rightarrow /52 per building + 1 /52 for network infrastructure •
 - 12 bits for L3 IPv6 subnets (4096) \rightarrow /64 per subnet •

Global prefix: 2014:11	o2::/32			
Address scope	Prefix	# Address block allocations	First address block allocation	Last address block allocation
	length			
Country	/40	256	2014:1b2: 00 00::/40	2014:1b2: ff 00::/40
Campus Location	/48	256	2014:1b2:ff 00 ::/48	2014:1b2:ff ff ::/48
Building	/52	15 (+1 set aside for network infrastructure)	2014:1b2:ffff: 0 000:/52	2014:1b2:ffff: e 000::/52
End-system Subnet	/64	4096	2014:1b2:ffff:e 000 ::/64	2014:1b2:ffff:efff::/64
Ciscolive			BRKRST-2667 © 2016 Cisco and/or	rits affiliates. All rights reserved. Cisco Public. 47

IPv6 Addressing Plan - Infrastructure

- At campus level: 1 /52 for network infrastructure addressing
 - /56 for loopbacks → allocate /64 but configure /128 per loopback
 - /56 for inter-router links → allocate /64 but configure /127 per link
 - /56 for network services (DNS, DHCP, etc...) → configure /64 subnets

Global prefix: 2014:1b2::/3	2			
Address scope	Prefix	# Address block allocations	First address block	Last address block allocation
	length		allocation	
Country	/40	256	2014:1b2: 00 00::/40	2014:1b2: ff 00::/40
Campus Location	/48	256	2014:1b2:ff 00 ::/48	2014:1b2:ff ff ::/48
Building	/52	15 (+1 for network	2014:1b2:ffff: 0 000:/52	2014:1b2:ffff: e 000::/52
		infrastructure)		
End-system Subnet	/64	4096	2014:1b2:ffff:e 000 ::/64	2014:1b2:ffff:efff::/64
Network Infrastructure	/52	1	2014:1b2:ffff: f 000::/52	
Network Infrastructure –	/56	1	2014:1b2:ffff: f0 00::/56	
Router Loopbacks				
Network Infrastructure –	/56	1	2014:1b2:ffff: f1 00::/56	
Link Addresses				
Network Infrastructure –	/56	1	2014:1b2:ffff: f2 00::/56	
Network Services				

ISP SpeedOnline -1

- East Coast based broadband ISP
 - Presence in New York, Pennsylvania and Michigan
- · Plans to grow in the East as well as in the Central and West
- IPv6 Addressing plan must reflect future growth plans
 - New states and larger subscriber base
- Received from ARIN: 2001:1db0::/28
 - Would like to aggregate at /32 per state

The rule: Keep the nibble boundary

49

ISP SpeedOnline - 2

- Numbers of PoPs, exchanges and subscribers per state
 - Distributed BNG platform, residing in exchanges

State	No. of Subscribers	No. of Exchanges	No. of PoPs
		Plans to grow	
New York	1 million	1000	20
		2000	
Pennsylvania	0.5 million	500	10
		1000	
Michigan	0.5 million	500	10
		1000	

- Plans for a massive marketing campaign to grow
 - Current and new states (reaching 15 states within next 5 years)

ISP SpeedOnline – 4.

That's 1,048,576 subscribers per

State	Prefix length per state	Prefix itself	Per PoP/region	Per BNG	Per subscriber PoF
NY	/32	2001:1db0::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes
Michigan	/32	2001:1db1::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes
Pennsylvania	/32	2001:1db2::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes
Florida	/32	2001:1db3::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes
North Carolina	/32	2001:1db4::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes
South Carolina	/32	2001:1db5::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes
Georgia	/32	2001:1db6::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes
California	/32	2001:1db7::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes
	/32	2001:1db8::	/40 => 2 ⁸ = 256x /40	/48 => 2 ⁸ = 256x /48 per BNG	/60 => 2 ¹² = 4096x /60 Prefixes

Cisco((VC)

BRKRST-2667 © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Public 53

Agenda

- IPv6 Address Types Refresher
- Typical Requirements
 - Enterprise
 - Service Provider
 - (Virtualized) DC / Cloud
- Methodology for Writing an IPv6 Addressing Plan
- Exercise
- Final Thoughts & Conclusion

Tools for Managing IPv6 Addressing Plan

- Not just a spreadsheet, please!
- Very prone to error $\ensuremath{\textcircled{\sc o}}$
- There are many IP Address Management tools on the market
 - See our exhibitors in the World of Solutions
- Cisco Prime Network Registrar
 - http://www.cisco.com/en/US/products/ps11808/index.html
 - Visit CiscoLive! NOC
- Work with an IPv6 prefix calculator
 - Example: <u>http://www.gestioip.net/cgi-bin/subnet_calculator.cgi</u>

											Take (Merci	ρ.
EISER Autored Registers (1983		2 Heapment -	Reports - Too								6	Cappelling Academ 1910
((10	Contai	ner: InControl .III (Mark)										
Ashed.	44000	Ned Datals										
Marris .	Informal											
Glesse	100											
+ ECentra	100	INOLINA								= 1	itary Otart	Biol (7virt) 🗮 Utlamar Diality
* OCathon	¥ 114	a Orio Stalic Ampact to \$10 Cor	terer .									
andre .	-	Birth Ro. Tores	(24)	22	. Area	then .			(Alar			They Parked them.
Caymon Islands		and the time	(Bird)	-				Boll.	Oyle		FARIT.	Con Derregrane
EDesercan Hepublic	424											
P Elamos		172 16 4 4	1									
 Enurto-Roo 												
• 🔐 2.38m	100											
BCC Tronat	- 43	10.0.01	1		244	10010000				readings		
* Ett. Lata												
P	SPACE AND											
* BL/1.	0	2000x80.56a1	1	.145	110	Appropria	DESCRIPTION		103211			
E Ass		whether .	1									
BALTER .	- 60											
1 Direct		N00::	1	144	144	Approprie	DGross		4/0/33			
Phone I		LAURAL DISTORT	1	144	100	1 Barrison			223.013			
1 Bitmen	- 64											
+ Bleney		Character (1964										
* Elisted												
+ Bha												

1	IPv4 O IPv6 O								
IP address	001:db88::								
Prefix length	29 (34,359,738,368 network: 2 calculate								
IP address	2001:db88::/29								
type	GLOBAL-UNICAST								
network	2001:db88::								
Prefix length	29								
network range	2001:db88:0000:000:000:000:0000:0000- 2001:db8::fff:fff:fff:fff:fff:fff:ffff:								
total IP addre	ses 633825300114114700748351602688								
IP address (fu	11) 2001:db88:0000:0000:0000:0000:0000								
integer ID	42544940784709144416323113595309129728								
hexadecimal ID	0x2001db88000000000000000000000000000000000								
base 85 ID	9s5oJ46TCqnlFwr!;KMM								
binary ID	00100000000001110110110001000								
ip6.arpa Forma	t 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.								
show previous netw	works								
show next network	15								
subnet-level I	2 networks /30								
	4 networks /31								

Recommended Reading

- Create an IPv6 Addressing Plan
 - RIPE NCC: https://www.ripe.net/publications/ipv6-info-centre/deployment-planning/create-anaddressing-plan
 - ARIN IPv6 Wiki: https://getipv6.info/display/IPv6/IPv6+Addressing+Plans
 - RFC 6177 IPv6 Address Assignment to End Sites
 - Infoblox 6Map tool: https://www.infoblox.com/6map
- IPv6 Address Planning (Tom Coffeen, O'Reilly, 2015)
 - http://shop.oreilly.com/product/0636920033622.do
- **RIPE NCC IPv6 Addressing Plan webinar** •
 - https://www.ripe.net/support/training/learn-online/webinars/webinar-recordings/webinar-ipv6addressing-plan
- ULA voluntary registry
 - https://www.sixxs.net/tools/grh/ula/list/

Conclusion

BRKRST-2667 © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Public 5

Key Takeaways

1. IPv6 addressing is easy and highly flexible.

2. IPv6 addressing strategy is the key to successful deployment.

3. A good addressing plan simplifies IPv6 network operation and troubleshooting.

"If you fail to PLAN (an address plan), you plan to FAIL"

Core message of this session

Ciscolive

Writing your IPv6 Addressing Plan is like training for a Marathon...

Source: http://www.portlandfit.com/wp-content/uploads/2012/07/tired.jpg

You must train hard...

Source: <u>http://cdn2-</u> b.examiner.com/sites/default/files/styles/image_content_width/hash/00/39/collapse.jpg?itok=GlyDa2Y <u>m</u>

...otherwise, you will not make it...

You must take baby steps forward...

Source:

http://static6.businessinsider.com/image/51f9494e6bb3f7bf1000 0025/after-losing-66-pounds-runner-wins-a-135-mileultramarathon-through-the-hottest-place-on-earth.jpg Source: <u>http://runnersconnect.net/wp-</u> content/uploads/2015/08/Sick-Tired-of-Struggling-Through-Your-Runs-This-May-Be-Why-pin.jpg

Source: https://thebestbostonexperience.files.wordpress.com/2 015/05/runner.jpg

Ciscolive!

... however, in the end, you will be victorious!

Ciscolive!

Source: http://static.independent.co.uk/s3fspublic/styles/story_large/public/thumbnails/image/2015/04/26/13/ Eliud%20Kipchoge.jpg

Complete Your Online Session Evaluation

- Give us your feedback to be entered into a Daily Survey Drawing. A daily winner will receive a \$750 Amazon gift card.
- Complete your session surveys through the Cisco Live mobile app or from the Session Catalog on <u>CiscoLive.com/us</u>.

Don't forget: Cisco Live sessions will be available for viewing on-demand after the event at CiscoLive.com/Online

Continue Your Education

- Demos in the Cisco campus
- Walk-in Self-Paced Labs
- Lunch & Learn
- Meet the Engineer 1:1 meetings

Thank you

ıılıılıı cısco

