
xkcd -repeats:
a taxonomy of repeats defined by their context diversity

Matthias Galléa,∗, Mat́ıas Tealdib

aNaver Labs Europe, France
bAmazon

Abstract

The context in which a substring appears is an important notion to iden-
tify – for example – its semantic meaning. However, existing definitions from
stringology fail to model the context explicitly. We introduce here xkcd -repeats,
a new family of repeats characterized by the number of different symbols at the
left and right of their occurrences. These repeats include as special extreme
cases the well-known classes of maximal and super-maximal repeats.

We give sufficient and necessary condition to bound their number linearly
in the size of the original string, and show an optimal algorithm that computes
them in linear time – given a suffix array –, independent of the size of the
alphabet, as well as two other algorithms that are faster in practice.

We extend this in two ways: first we show how to generalize the notion
of context. Instead of reducing it to the single symbol before and after an
occurrence, we propose the notion of unbounded context, while keeping linear
representation and computing time. Secondly, we provide a general framework
which allows to compute these (and other) repeats incrementally; opening the
door to streaming application.

Keywords: repeats, stringology, text algorithms, suffix array

1. Introduction

Inferring constituents is a basic step for many applications involving textual
documents. Constituents are the semantic blocks that define the meaning of a
document, and can be single words, multi-words expressions or even partial (or
several) sentences. They can be used to represent the document, and an accurate
description is crucial to tasks such as classification, clustering, topic detection
or knowledge extraction. It has long been known that the importance of a
constituent does not rely only on its intrinsic properties (like frequency, lengths

∗Corresponding author
Email addresses: matthias.galle@naverlabs.com (Matthias Gallé),

matiastealdi@gmail.com (Mat́ıas Tealdi)

Preprint submitted to Elsevier October 3, 2017

or composition) but also on the context it appears in. J.R. Frith famously said
“You shall know a word by the company it keeps” and the “distributional”
approach has been successfully used in natural-language applications [25], with
a renewed interest in recent years thanks to the success of word embeddings [17,
21].

These constituents are also crucial in the more fundamental task of inferring
the structure of a document. In grammatical inference for instance – where it
is supposed that the document samples were generated by a formal grammar
– prior to detecting how different rules are related to each other, one has to
decide which of the substrings of the document may or may not correspond
to the same constituent. A crucial step for this is the notion of the context
in which a substring appears in. In the most basic setting this context is just
the character to the left and to the right of the occurrence of a given word.
ADIOS with its MEX procedure for instance [26] uses as fundamental signal
the fraction of different context a substring appears in to decide on the set of
constituents. Strongly related to the idea of context of a constituent is the
idea of Zellig Harris’ substitutability theory, which got implemented in diverse
ways: for example in ABL [28] or through the mutual information criterion of
Clark [8, 9]. Selecting which are the right substrings to consider, prior to decide
how they relate to each other hierarchically, is also important in the associated
Smallest Grammar Problem [6].

Unfortunately, existing notions from stringology offer very limited links to
these theories. Existing classes of words only tangentially take into account the
notion of context; and applied algorithms, like those cited above, rely on trivial
and brute-force algorithms to detect them.

We present here a new class of repeats, named xkcd -repeats, that is explicitly
defined by the number of different context a substring appears in (Sect. 3).
These repeats define a family of classes where maximal and super-maximal
repeats are extreme cases. We give bounds on their number with respect to the
size of the string and give three algorithms to compute them relying on different
ideas. These algorithms run in O(|Σ|n), O(n log n/ log log n) and O(n) time
respectively, and in Sect. 4 we compare empirically their efficiency on different
datasets.

In this vanilla definition of xkcd -repeats, the context is considered as the im-
mediate symbols to the left and right of the occurrences of a substring. While
aligned with the definitions of maximal and super-maximal repeats, this seems
an unnatural constraint in real applications. All repeats will have their con-
text size bounded by |Σ|, regardless of the number of occurrences, which seems
particularly ill-suited in domains where the alphabet size is small (like DNA
strings). In a first extension (Sect. 5) we expand the notion of context to in-
clude all substring to the left/right and show how to compute those unbounded
xkcd repeats (∞−xkcd) still in linear time with respect to the size of the original
string.

An independent second extension (Sect. 6) concerns a general framework
to compute xkcd and other repeats incrementally when documents arrive one

2

after the other. For this, we define the notion of cover of a document d with
respect to a collection S as a certain subset of nodes of the suffix tree of S ∪{d}
which contains all substrings whose condition may change due to the inclusion
of d. We propose algorithms that solve the incremental computation problem
by traversing this cover set, and we study theoretically and empirically the size
of this set with respect to the minimal (optimal) set of changes to be performed.

A preliminary version of this paper was presented as [13].

2. Definitions

A string s is a concatenation of symbols s[1] . . . s[n], with s[i] ∈ Σ, the
alphabet. The length of s, |s| is the numbers of symbols, which we will generally
denote by n. When necessary we will suppose that s starts and ends with
different unique symbols (s[0] = $1, s[n + 1] = $2, $1 6= $2 and $1, $2 6∈ Σ).
Another string ω ∈ Σ∗ is said to occur in s at position i if ω[j] = s[i + j − 1]
for j = 1 . . . |ω|. The set of occurrences of ω in s is denoted by occs(ω) (or just
occ(ω) if s is clear from the context), and is the set of all starting positions of ω
in s. If |occs(ω)| ≥ 2, ω is called a repeat of s and R(s) is the set of all repeats
of the string s.

The size of the left (right) context of a word ω in s is defined as the number
of different symbols appearing to the left (right) of all occurrences of ω: lcs(ω) =
|{s[i− 1] : i ∈ occ(ω)}| (rcs(ω) = |{s[i+ |ω|] : i ∈ occ(ω)}|).

Most of the algorithms presented here use the suffix array and other associ-
ated data structures:

2.1. Suffix Array

The suffix array is part of the suffix-tree data structure family. It consists of
a lexicographically ordered array of all suffixes of the input string. The suffixes
themselves are not stored but instead their starting positions.

Definition 1 (Suffix Array). Consider a string s of length n over an alphabet Σ
with an order ≺. The lexicographical extension to Σ∗ will also be denoted by ≺,
and n = |s|.

The suffix array, denoted by sa, is an integer array such that sa[i] = j iff
the suffix s[j..n] has rank i in the sorted array of all suffixes of s. To ease
computation, we normally assume that s ends with $ 6∈ Σ, which is smaller
than all values over Σ. The suffix $ is therefore the smallest of all suffixes, and
sa[1] = n+ 1.

Usually, the suffix array is used conjointly with an array called lcp, that
gives the length of the longest common prefix between two suffixes whose starting
positions are adjacent in sa. Formally,

3

lcp[1] = 0

∀ i ∈ [2, n+ 1] : lcp[i] = j iff j is the largest value such that

s[sa[i− 1]..sa[i− 1] + j] = s[sa[i]..sa[i] + j]

Suffix and lcp arrays can be constructed in linear time [22], and we will refer
to both arrays together as enhanced suffix arrays.

3. Context-diverse repeats

Indexing the set R(s) permits to analyze potential constituents of the string
or to perform other indexing or counting operations. However, the total set
of repeats is highly redundant and can grow quadratically with the size of the
string (|R(s)| ∈ O(|s|2)). These “maps bigger than the empire” (as Apostolico
referred to this [2], borrowing an expression from Borges), lead to the popular
use of family of equivalent classes of repeats. The representatives of these classes
should ideally correspond to the “interesting” repeats. We detail below three of
these families:

Maximal repeat: a repeat is said to be maximal, if it cannot be extended
without losing support. Formally: ω is a maximal repeat iff there is no other
repeat ω′ such that ω occurs in ω′ and |occ(ω)| = |occ(ω′)|. The number of
maximal repeats grows linearly with the size of the string, although their total
number of occurrences can still be quadratic [11].

Largest-maximal repeats (or near-supermaximal repeat [14, 19]): a re-
peat is said to be largest-maximal if it has at least one context that is unique.
Equivalently, this means that at least one occurrence is not covered by an-
other repeat. Formally, ω is largest-maximal iff there do not exist other repeats
ω1, . . . ωk such that ω occurs in all of them and pos(ω) ⊆

⋃k
i=1 pos(ωi), where

pos(ω) =
⋃
i∈occ(ω){i, . . . , i+ |ω|− 1}, the set of positions that ω covers over the

string. Largest-maximal repeats are a subset of maximal repeats and therefore
linear. The total number of occurrences grows in the worst case at least as
Ω(n

3
2), although a tight bound is unknown [11].

Super-maximal repeat: A repeat is said to be super-maximal if it does not
occur in any other repeat. The total number of occurrences of super-maximal
repeats is linear [14].

As an example, consider the string dabWabXacYacZdab. The only super-
maximal repeats here are ac and dab. In addition to these ab is also a largest-
maximal repeat because it appears once without any other repeat covering it
(its second occurrence). Finally, a is also a maximal repeat as there is no other
repeat that contains it and has the same number of occurrences.

The following two lemmas provide the fundamental motivation of this paper,
as they show how to characterize maximal and super-maximal repeats by the
number of their left and right context.

4

Lemma 1. A repeat ω is maximal in s iff lc(ω) ≥ 2 and rc(ω) ≥ 2.

Proof. In order for ω to be maximal, there can not be a single other repeat that
contains it with the same frequency. Assume lc(ω) = 1 and that unique context
is a. In that case aω would occur occ(ω) times, and ω would not be maximal.
The same of course applies for rc.

On the other side, suppose lc(ω) ≥ 2. This implies that there is no other
single repeat of the form aω that occurs the same number of times. ω is therefore
left-maximal, and the same argument can be used for right-maximality.

Lemma 2. A repeat ω is super-maximal in s iff lc(ω) = rc(ω) = |occ(ω)|.

Proof. Of course lc(ω) ≤ |occ(ω)|. Assume that it is not equal. In that case
there exists a left-context a such that aω occurs at least twice and is therefore
a repeat containing ω, contradicting the super-maximality of ω.

On the other side, if lc(ω) = |occ(ω)|, then all occurrences have a unique
(left) context. Any substring aω is therefore not a repeat, making ω super-
maximal.

Context-diverse (xkcd) repeats fill the whole range of these two extremes, by
permitting to vary the values of these contexts:

Definition 2. ω ∈ R(s) is said to be x–left-context-diverse (xlcd) in s if
lcs(ω) ≥ x. It is said to be k–right-context-diverse (krcd) in s if rcs(ω) ≥ k.

Finally, ω is a 〈x, k〉–context-diverse (xkcd) in s if it is xlcd and krcd.

The following proposition summarizes both Lemma 1 and 2:

Proposition 1.

1. ω is a maximal repeat in s iff it is 〈2, 2〉–context-diverse.
2. ω is a super-maximal repeat in s iff it is 〈|occ(ω)|, |occ(ω)|〉–context-diverse.

The following Corollary follows from here, and from the linearity of right-
and left-maximal repeats [14]:

Corollary 1. The number of xkcd-repeats is O(n) iff max(x, k) ≥ 2. It is Θ(n2)
otherwise.

If max(x, k) < 2 (this is, x = k = 1), then we are talking about all normal
repeats, and their number is bounded by Θ(n2). For the remainder of this
paper, we will always consider x, k ≥ 2. The case were one of the values is 1
would require special treatment, and – in many of the algorithms analyzed in
the following – would change the time complexity. The repeats that we miss by
this restrictions are not maximal, and therefore their interest is minor in most
of the applications.

A notable exception of a class of repeats that cannot be captured by this
notion of xkcd -repeats are largest-maximal repeats. For a repeat to be largest-
maximal, it has to have at least one occurrence with a right-(left-)context dif-
ferent from all right-(left-) contexts of remaining occurrences. Such context-
uniqueness cannot be captured with the rc and lc functions.

5

3.1. Motivation

We tested the capacity of these repeats to capture semantic blocks in real
texts. For this we use the Penntree-bank collection1, a collection of English
sentences annotated with parentheses, denoting the phrase-structure of the sen-
tence; that is, how the underlying constituent grammar generated it. In the fol-
lowing experiments, we used the Part-of-Speech (POS)–tagged sentence (there
were 36 different POS-tags), which reduce the vocabulary by clustering them
(nouns, verbs, etc). We filtered out parentheses spanning single words and whole
sentences. There remained 697 080 constituents, corresponding to 325 069 differ-
ent strings. Of these, only 17% are repeated substrings but they make up 61%
of the total constituents. This pre-processing is standard practice in the com-
munity, as it is to evaluate the algorithms with the unlabeled F1 measure [15].

Because we do not concentrate here on the task of deciding at which po-
sitions a substring becomes constituent, but only if a substring is used or not
as constituent in some moment, we use a modified version of the F1 measure
that takes into account the fact that some substrings appear very often as con-
stituents. For precision we use the standard notion: the percentage of retrieved
substrings that are used at least once as constituents. For recall however, we
use a weighted version: each constituent gets multiplied by the number of time
it appears as constituent. This therefore corresponds to an optimistic version,
supposing the best case that all constituent-occurrences of the given substring
will be correctly identified. By focusing on repeated substrings, this means that
the maximal recall that can be obtained on the Penntree bank is 61%. We then
define F1-measure in the usual way, as the harmonic mean between precision
and recall.

We plot this measure against different values of x and k in Fig. 1. Note
that the upper left corner corresponds to the case of maximal repeats. For
super-maximal repeats – not depicted as the value of x and k depends on the
particular word – the value is 0.047 and for largest-maximal repeats 0.25. Note
that part of the increase when the context increases could be explained simply
by the fact that more frequent substrings are more probable to be constituents
(see Fig. 2). However, this does not explain the dissymmetry between the left
and right context. Note that while a higher diversity in context increases the
score in general, there seems to be a higher dependency on the right context
than the left one. xkcd -repeats offer a direct way of capturing this dissymmetry.

Finally, due to the roof imposed by the maximal value of recall, the F1 value
is actually indicating a high precision score (0.84 at the best F1 value, and
increasing up to 0.97 at the right border).

4. Computation

We will present and compare three algorithms to compute xkcd-repeats, all
using the suffix array. We will analyze their running time and compare them

1http://www.cis.upenn.edu/~treebank/home.html

6

Figure 1: weighted F1 (see text for details) for different values of 〈x, k〉

Figure 2: weighted F1 (y-axis) by looking at maximal repeats that appear at least k times
(x-axis)

7

empirically.
First note that a straightforward way of computing all xkcd -repeats would

be the following two-stage approach: first, compute all repeats. Then, for each
repeat ω inspect all occurrences and store two sets of symbols: those occurring
to the left and to the right (this is, {s[i − 1]} and {s[i + |ω|},∀i ∈ occs(ω)).
xkcd -repeats are then those where the size of these sets are greater than x and
k, respectively. Unfortunately, such an approach is O(n2), as there may be this
number of simple repeats in s. Even if we are only interested in xkcd -repeats
such that max(x, k) ≥ 2 and we precompute only the linear number of left (or
right) maximal repeats, the total number of occurrences of such repeats is still
O(n2) in general.

4.1. Simple algorithm

Repeats can easily be computed through the enhanced suffix array because
all occurrences of a given repeat are adjacent in the suffix array. Moreover,
information about the right context can also be easily obtained through the
same way, by analyzing how the lcp values evolve.

We keep a stack of the current analyzed repeat and traverse the suffix array
in order. If the value of the lcp value remains equal it indicates just another
occurrence of the current repeat (which is at the top of the stack), but with
a different right context. An increase in the lcp value indicates not only the
presence of another repeat, but also that the current one is not adding an
additional right-context until the newly found repeat is popped out of the stack.
Finally, a decrease in the lcp value indicates the last occurrence of a repeat, and
triggers the eventual output of the current analysed repeat.

Unfortunately, information of the left-context is much harder to get, as it is
spread out over the suffix array. An easy way of collecting this (which we will
improve later on) is to store all the symbols appearing as left context. When
a repeat is popped out, these are then inherited by the topmost repeat in the
stack. Recording all the left-contexts adds an extra |Σ| factor to the space and
time complexity. In our implementation we actually used a set implementation
which adds an additional log(|Σ|), but which allows a better trade-off with the
memory requirements than using a bit array for example.

The exact algorithm is depicted in Alg. 1, which presupposes the existence
of the lcp array and sa array. Each repeat ω is represented by a tuple 〈p, `〉,
where p is the leftmost occurrence of repeat ω in s and ` = |ω|. While having
the leftmost occurrence is not necessary at this stage, we will use this later on.
In line 23 a new repeat is added to the stack. Keeping track of where this repeat
started (variable st) is an important detail [23], which we extend with tracking
also the set of left context seen so far (variable stlc). Note that, thanks to the
way the suffix array is built, the repeat added at this stage has exactly two
different right contexts.

4.2. Using Dynamic Range Computation

What we need in order to determine if a repeat has enough left contexts is
to compute the number of different elements in the virtual array [lc[i], . . . , lc[p]],

8

Algorithm 1 Computation of xkcd -repeats in O(|Σ|n) (with x, k ≥ 2)

xkcd (s,sa,lcp,x,k)

Input: string s, suffix array sa, lcp-array, minimal value of right and left context
diversity x, k ≥ 2

Output: xkcd -repeats in the form 〈p, `〉
1: T = empty stack // leftmost occurrence, length, size of right ctxt, left

ctxt
2: 〈p, `, r, lc〉 := 〈0, 0, 1, {$}〉
3: T.push(〈p, `, r, lc〉) // ensures that the stack never becomes empty
4: for all i ∈ [2..n+ 1] do
5: st := sa[i− 1]
6: stlc := {s[st− 1]}
7: while T.top().` > lcp[i] do // last occurrence of a repeat
8: 〈p, `, r, lc〉 := T.pop() // repeat of length ` with leftmost occurrence p

and r,|lc| different right/left context
9: st := p

10: T.top().p := min(T.top().p, p)
11: stlc := lc
12: if r ≥ k ∧ |lc| ≥ x then
13: output 〈p, `〉 // has i− p occurrences and exactly 2 right ctxt
14: end if
15: T.top().lc := T.top().lc ∪ lc
16: end while
17: if T.top().` = lcp[i] then // new occurrence of same repeat
18: T.top().r := T.top().r + 1
19: T.top().lc := T.top().lc ∪ {s[sa[i]− 1]}
20: T.top().p := min(T.top().p, sa[i])
21: else // new repeat, which already has i− st occurrences
22: stlc := stlc ∪ {s[sa[i]− 1}
23: T.push(〈min(sa[i− 1], sa[i], st), lcp[i], 2, stlc〉)
24: end if
25: end for

9

where lc = [s[sa[1]−1], . . . , s[sa[n]−1]] (the symbols occurring to the left of sa[i]).
The way Alg. 1 achieves this is by storing explicitly these different elements in
a set, but this problem (known as color counting, see [18, Problem 11]) has
already been studied in the literature. The best know solution [5] requires
O(log n/ log log n) time for each query. In our implementation we used a simpler
and very easy to implement solution based upon Fenwick trees (also called BIT
trees) [10]. Given an array x of integers, a Fenwick tree permits to compute

prefix sums psumx(k) =
∑k
i=1 x[i] in time log(|x|), and to modify x[i] also in

time log(|x|).
We traverse the suffix array as in Alg. 1, updating a Fenwick tree over a

binary array islast which contains an 1 at position i if the last occurrence of
lc[i] – so far – is i, and 0 otherwise. This update is done at the beginning of the
outermost loop in Alg. 1. Therefore, when a repeat is popped out the number of
its different left contexts is given by the value psumislast(i)− psumislast(p− 1)2.
To perform the update over islast we need an additional array last of size |Σ|
that keeps for each symbol σ its right-most position so far in lc. The update then
becomes simply to set islast[last[lc[i]] = 0 (except if this is the first occurrence of
lc[i]) and islast[i] = 1; and of course last[lc[i]] = i. Remember that all updates
of islast cost log (n) as its Fenwick tree has also to be updated.

4.3. A truly linear algorithm

Supposing a fixed alphabet is acceptable for many applications, including
genetic string analysis on the original alphabet (of size 4 or 20). However,
as soon as new symbols are added [7] or the symbols of the analyzed strings
correspond to word types in a natural language document, having the time
complexity depending on the size of Σ can become a problem. We present an
algorithm that computes all xkcd repeats in optimal linear time, even for an
integer alphabet.

Like in many algorithms based on suffix data structures, reasoning with the
right context in Alg. 1 is straightforward. It is the left context which adds
complexity. The algorithm traverses the lcp-interval tree [1] bottom-up. Any
information over the left context that can be computed in constant time, based
on the information of its children does therefore not present problems. This
is the case for maximal repeats (where we are interested in context diversity),
super-maximal repeats (context uniqueness of all occurrences) [23] and largest-
maximal repeats (context uniqueness of at least one occurrence). However, for
xkcd -repeats we are interested in the number of different contexts and there does
not seem to be an easy way of computing this based on the different contexts
of its children.

We therefore diverge from other algorithms that compute some classes of
repeats with the suffix array. Our algorithm is divided in three stages: compu-
tation of (i) krcd -repeats, (ii) xlcd -repeats and (iii) their merging. In order to

2psumislast(i) is the number of different symbols encountered so far as left context, and
can therefore be kept as global variable

10

keep linearity, we consider only the case of x, k ≥ 2. That is, it will not compute
xkcd -repeats that are not maximal. Besides the reasons stated before, this also
ensures that both step (i) and (ii) run in linear time.

4.3.1. Computation of krcd-repeats

In its most basic form, this is just a simplified version of Alg. 1, where we
ignore everything related to the left context. We are, however, interested in
having a fixed representation for each repeat that permits to compare it after-
wards (in step (iii)). Now, it becomes important to have a canonical definition
of a repeat, which we take here to be its leftmost occurrences, together with its
length. As shown in Alg. 1, the left-most position for a node in the lcp-interval
tree is one of those statistics that can easily be computed from the left-most
occurrences of its children (variable p).

The final output of this phase is an array of lists denoted by qkrcd. For each
position 1 ≤ p ≤ n, the list qkrcd[p] contains the length of all krcd -repeats whose
first occurrence in s is at position p. An important fact is that each list should
be sorted in strict decreasing order.

The following lemma shows that this order is obtained for free.

Lemma 3. If Alg. 1 outputs 〈p1, `1〉 before 〈p2, `2〉 and `1 < `2 then p1 6= p2

Proof. Two cases are possible:

1. 〈p2, `2〉 is already in the stack when 〈p1, `1〉 is popped out. This however is
absurd, because at any moment the elements in the stack are in ascending
` order (due to the condition to enter the branch of line 23).

2. 〈p2, `2〉 appears in the stack after popping 〈p1, `1〉.
In that case, s[p1 + `1] < s[p2 + `1] which implies s[p1 . . . p1 + `1] <
s[p2 . . . p2 + `1]. Therefore p1 6= p2, as they would be the same string
otherwise.

4.3.2. Computation of xlcd-repeats

Computing xlcd on a string s is equivalent to compute krcd repeats on the
reversed string (←−s). However, in order to compare these repeats to the krcd -
pairs, we need to compute the maximal (right-most) occurrence (replace min
by max in Alg. 1). An 〈p, `〉 krcd -repeat on ←−s corresponds therefore to the
xlcd -repeat 〈n − p + `, `〉 of s. We define inv(p, `) = n − p + `, which gives the
index over s corresponding to position p over←−s . Moreover, if p is the rightmost
occurrence of a repeat ω in ←−s , then inv(p, |ω|) is the left-most occurrence of ←−ω
in s.

Equivalently to step (i), the output here is an array of lists ←−q krcd, where
←−q krcd[p] contains the length of all krcd -repeats whose last occurrence in←−s is at
position p.

11

4.3.3. Merging

In order to do the merging in step (iii) in linear time we need to transform
←−q krcd to qxlcd in linear time, such that the lists at each position are sorted.
Lemma 3 ensures this for qkrcd already. The xlcd -repeats however are computed
as krcd -repeats on the reversed string, and it is not trivial which should be the
right order to traverse them to keep order. The following lemma resolves this:

Lemma 4. Let 〈p, `1〉 and 〈p, `2〉 be two xlcd-repeats (with p being the left-most
occurrence), such that `1 < `2, and let p′1, p

′
2 be such that p = inv(p′1, `1) =

inv(p′2, `2). Then, p′1 > p′2

Proof. It is direct from the definition of inv:
If n− p′1 + `1 = inv(p′1, `1) = p = inv(p′2, `2) = n− p′2 + `2, and `1 < `2, then

p′1 > p′2.

So, to keep the order in the lists of qxlcd of the original string, it is enough to
traverse the 〈p, `〉 krcd -repeats of ←−s in decreasing order of p and to add them
in this order to qxlcd[inv(p, `)].

Lemmas 3 and 4 ensures that the lists qxrcd[i] and qklcd[i] are sorted in de-
creasing and increasing order, respectively. Finding the intersection between
them can then be done in linear time

Theorem 1. The xkcd-repeats of string s can be computed in time O(|s|) (for
x, k 6= 1), independent of the size of the alphabet.

For completeness, we present in Alg. 2 the necessary steps to compute all
xkcd repeats, starting from the qkrcd and ←−q krcd arrays.

4.4. Comparison

We compared the execution time of all three algorithms for strings of differ-
ent alphabet size, over two kind of strings: randomly generated (uniform and
independent distribution of symbols) over different alphabet size, and an En-
glish wikipedia dump (of Sept 2012), where each tokenized word3 was assigned
an integer identifier. There were 9 million different symbols, distributed as ex-
pected by a power law. Herdan’s law says that the number of word type in a
string of size n is expected to be k ∗ nβ , with typical values of 30 ≤ k ≤ 100
and β ≈ 0.5 [16]. However, in our case we did not perform any cleaning and in-
cluded all the XML meta-data of the wikimedia dump. For the random strings,
we report the average over 5 runs for each point, and for the wikipedia string
we took increasing prefixes.

Because the linear algorithm requires to construct two suffix array, the choice
of which algorithm to use is crucial. We used Yuta Moris’ implementation4 of
the SAIS algorithm [29], the fastest of the variants we tried, and which also
runs in linear time. While we measured only user time, we did not have major

3we used the NLTK library of python for tokenization
4https://sites.google.com/site/yuta256/sais

12

Algorithm 2 Computation of xkcd -repeats in linear time

merge(qkrcd,
←−q krcd)

Input: qkrcd array of lists, of size n. Output of modified Alg. 1 (see Sect. 4.3.1).
qkrcd[p] contains the list of lengths of krcd repeats starting at position p of
s. It is sorted – by construction – in descending order.
←−q krcd array of lists, of size n. Output of modified Alg. 1 (see Sect. 4.3.1),
with max instead of min. qkrcd[p] contains the list of lengths of krcd repeats
starting at position p of ←−s . It is sorted – by construction – in descending
order

1: qxlcd := array of lists, of size n
2: // transform ←−q krcd into qxlcd

3: for all p from n to 1 do
4: for all j from 1 to |←−q krcd[p]| do
5: ` =←−q krcd[p][j]
6: qxlcd[n− p+ `].pushBack(`)
7: end for
8: end for
9: for all p from 1 to n do

10: // qxlcd[p] now contains the length of xlcd repeats at p
11: i := 1
12: j := |qxkrd[p]|
13: while i ≤ |qxlcd[p]| and j ≥ 1 do
14: if qxlcd[p][i] = qkrcd[p][j] then
15: output(p, qxlcd[p][i])
16: i := i+ 1
17: j := j − 1
18: else if qxlcd[p][i] > qkrcd[p][j] then
19: i := i+ 1
20: else
21: j := j − 1
22: end if
23: end while
24: end for

13

(a) Uniform IID tokens, with |Σ| = 24 (b) Uniform IID tokens, with |Σ| = 216

(c) Uniform IID tokens, with |Σ| = 221 (d) Samples over a dump from wikipedia

Figure 3: (User) Time usage of all three algorithms, over different document lengths. All
datapoints are the average over 5 runs.

problems with swapping in the size of strings considered here (the machine had
32GB of RAM).

As can been seen in Fig. 3, only with very large alphabets the linear al-
gorithm effectively outperforms the O(|Σ|n log |Σ|) one. In all cases, the BIT
implementation outperforms all other. However, it should be noted that most
of the time in the linear algorithm is used in the construction of the two suffix
arrays and lcp (85% of the total time, compared with 68% for the BIT version).
Any improvement in this, or creating both suffix arrays at the same time [20]
would directly impact these plots.

5. Unbounded context-diverse repeats

Fixing the context of an occurrence to be the single symbols before and
after an occurrence enables the design of efficient algorithms, but to the cost of
a constraint which has no direct semantic interpretation. Consider for instance
a travel corpus with several occurrences of Alice travels to [CITY]. If most

14

(a) Uniform IID generated string of length
104 over an alphabet of 26.

(b) King James Version of the Bible (using
characters as symbols).

Figure 4: A dot at (x, y) corresponds to a maximal repeat with x occurrences and y different
right and left contexts.

city-names in these documents start the same (with New for instance), then
travels to would have a very low right-context, ignoring that New itself is not a
constituent but only part of one. We argue that New should not be considered
as a context, but that the whole city-name should be. Constraining the context
to be of size 1 makes for an asymmetric treatment of constituents and context:
while the former is allowed to be of unbounded length, the latter is of fixed
size. It also contradicts our conclusion in [12] that using a bag-of-n-grams –
with fixed n — is less expressive than a bag-of-∞-grams, where all repeats are
considered. Having to fix n adds yet another parameter to models which in
general already have several parameters to optimize. Moreover, any fixed n will
not take into account different contexts that are longer than n and ignore the
common factor of contexts shorter than that.

Using a context of size 1 adds another limitation: the total size of the context
is bounded by the alphabet size. This becomes obvious in Fig. 4, where we plot
all maximal repeats, showing the number of occurrences versus the maximal
value m such that the repeat is 〈m,m〉–context-diverse. The size of the context
is upper bounded by the size of the alphabet (26 in the case of the synthetic
data in Fig. 4a and 63 for the natural language one in Fig. 4b). Two words of
completely different occurrence may have the same amount of different contexts,
without any possibility of discriminating them about their potential interest as
semantic units.

We propose therefore to apply a similar ideas as in [12] to the notion of
context: instead of only considering a single symbol, we propose to consider
all possible substrings that start immediately to the right (respectively, end
immediately to the left).

However, if we just use the counts of different substrings starting at the
right, this would clearly favor words occurring at the beginning of the string.

15

Coming back to the underlying assumption that repetition is a good indicator
of importance, a first filtering would be to count only repeated substrings. But
here again the notion of maximality is important: a straightforward approach
of just counting repeats starting to the right of the occurrences would results in
words that end at the start of a long, repeated block of text, without considering
the importance of this block of text.

Instead, we use the same notion of maximal repeat as defined before and
consider only those repeats that are right-maximal with respect to all its occur-
rences to the right of an occurrence of ω. Consider for instance, word ω with
exactly 5 occurrences in string s:

s = . . . ωab . . . ωac . . . ωde . . . ωdfg . . . ωdfh

If only a unit-length context is taken into account, ω would have a right
context of 2 ({a, d}). With our definition, its right context is 3, composed
of {a, d, df}, as these are the repeated substrings to the right of ω which are
maximal in that set of occurrences. Note how d and df are taken as different
contexts.

Formally, we will define that notion of right and left-maximality with respect
to a set of occurrences:

Definition 3. ν is right-maximal over I iff I ⊆ occs(ν) and |{s[i + |ν|] : i ∈
I}| ≥ 2.

and

Definition 4. ν is left-maximal over I iff I ⊆ occs(ν) and |{s[i−1] : i ∈ I}| ≥ 2.

Note that if a word ν is right-maximal over a subset I, then it is right-
maximal over any superset I ′ ⊇ I (including I ′ = occ(ν)).

We now define our notion of ∞–context-diversity:

Definition 5. The ∞–right-context of a maximal repeat ω is the set of right-
maximal substrings ν over I = {i+ |ω| : i ∈ occs(ω)}.

Equivalently, the ∞–left-context of a maximal repeat ω is the set of left-
maximal substrings ν over I = {i− |ν| : i ∈ occs(ω)}.

Note that contexts of length 1 that are unique are not counting towards the
total count. Therefore, ω can be a k–right-context repeat, but not a k–∞-right-
context one (and vice-versa: they are disjoint in general).

5.1. Algorithm

At a first glance, computing∞-cd seems not an easy task as one has to keep
track simultaneously of the word currently analyzed, as well as of all repeats
occurring as contexts. However, the following characterization simplifies this
task:

Proposition 2. Let S be the suffix tree of string s. The ∞–right-context of a
word ω corresponds to all internal nodes of the subtree of S rooted by ω.

16

Proof. We first note that there is a node ω in S: This comes from the fact
that ω is by definition a maximal repeat, and the internal nodes of S are all
right-maximal repeats of s [14]. That a right-context ν is right-maximal over
the occurrences starting after an occurrence of ω is equivalent to say that ων
is right-maximal. But there exists a 1-to-1 relationship between right-maximal
repeats of the form ων and the internal nodes under ω.

In Alg. 3 we show how to compute ∞–right-cd repeat using a suffix array,
a more memory-efficient data structure than suffix trees. We traverse this data
structure as before, which corresponds to a depth-first search on the the suffix
tree (the so-called lcp-interval tree [1]). The size of its∞–right-context can then
be easily obtained by keeping a global counter of repeats that passed over the
stack (variable counter in Alg. 3). As before, an increase of the values in the
lcp array denotes a new repeat, a decrease the end of a repeat and equality just
another occurrence of the current topmost repeat.

Of course, ∞–left-maximal repeat can be computed equivalently using the
suffix array of the reversed string. We use the same idea of Sect. 4.3 to merge a
linear list of substrings on s with another linear list of substrings on←−s in linear
time. Applying this technique here yields the following:

Theorem 2. Given a string s, all 〈x, k〉–∞–context-diverse repeats over s (with
x, k 6= 1) can be computed in O(|s|) time.

Because there might be a linear number of these repeats, this algorithm is
optimal.

5.2. Results

We implemented Alg. 3, and computed ∞–context-diverse repeats over the
same two strings as in Fig. 4. The corresponding plots can be appreciated in
Fig. 5. As it can be seen, the linearity with respect to the number of occurrences
(seen as a logarithmic curve in the figures due to the scale of the y-axis) is not
interrupted, making it easier to detect outliers on this curve which may be of
potential interest as constituents.

6. Incremental Computation

Existing algorithms to compute repeats, including those presented so far,
work in an off-line mode, where the whole string is supposed to be available.
This assumption may be true in some applications, but many use-cases around
natural language work in a streaming setting (ex: online news analysis, real-
time document classification, etc). An approach that models documents with
repeats (like the one we proposed in [12]) can not be adapted directly to such a
streaming setting without paying an extremely high efficiency toll. We present
here a general method to compute – iteratively – a set of characteristics on
context-diverse repeats. For this we will rely on the incremental suffix tree
creation algorithm of Ukkonen [27].

17

Algorithm 3 Computation of ∞–right-context-diverse repeats in O(|s|)
∞–rcd(lcp,k)

Input: lcp-array, minimal value of right context diversity x
Output: ∞–right-context-diverse repeats in the form 〈 position over suffix ar-

ray, length 〉
1: T = empty stack
2: 〈p, `, c〉 := 〈0, 0, 0〉
3: T.push(〈p, `, c〉) // ensures that the stack never becomes empty
4: counter = 0
5: for all i ∈ [2..n+ 1] do
6: st := i− 1
7: while T.top().` > lcp[i] do // last occurrence of a repeat
8: 〈p, `, c〉 := T.pop()
9: st := p

10: if counter− c ≥ k then
11: output 〈p, `〉 // has i− p occurrences
12: end if
13: end while
14: if T.top().` 6= lcp[i] then // new repeat, which already has i− st occur-

rences
15: T.push(〈st, lcp[i], counter〉)
16: counter := counter + 1
17: end if
18: end for

(a) Uniform IID generated string of length
104 over an alphabet of 26.

(b) King James Version of the Bible (using
characters as symbols).

Figure 5: A dot at (x, y) corresponds to a maximal repeat with x occurrences and y different
∞-right and ∞-left contexts.

18

We will analyze two variants of the problem, and consider various different
equivalence classes of repeats. In the first variant we are only interested in
updating the set of repeats of the particular class we are considering, while in
the second one we also want to update the occurrence number of these repeats.

All classes we will consider are super-sets of maximal repeats. In particular,
they are all a sub-set of the nodes of the suffix tree (which are all the right-
maximal repeats). The problems therefore becomes to update any marker (or
other additional information) over these nodes.

For this section, we will define the concatenation of s1 and s2 as s1.s2 =
s1$s2, with $ a fresh symbol.

Problem 1. For a class of repeats X (with X one of MR,LMR,SMR or
XKCD) and given documents D = {d1 . . . dk}, document dk+1 and a suffix tree
on S = d1.d2. . . . dk where all nodes corresponding to X(S) are marked, return a
suffix tree on S.dk+1 such that all nodes corresponding to X(S.dk+1) are marked.

In principle one would like an algorithm solving this problem to run in
time proportional to n = |dk+1|. This may be impossible however, in the
case that the number of nodes to be (un-)marked is larger than n. We there-
fore say that an algorithm resolving Problem 1 is optimal if it runs in time
O(max(n, |Xdiff(S, d)|)), where Xdiff(S, d) are the changes of marker that have
to be performed: Xdiff(S, d) = (X(S.d) \X(S)) ∪ (X(S) \X(S.d)).

We will present a general solution that works for four classes (xkcd, maxi-
mal, largest-maximal, super-maximal) in non-optimal time and give an optimal
solution for the case of maximal repeats.

Note that Problem 1 only marks the corresponding repeats, but does not
retrieve any additional information. To do this, potentially the whole suffix
tree has to be traversed, incurring in an additional penalty of |S| after each
increment. We therefore also consider a second problem, related to getting the
most basic information associated to each repeat: its number of occurrences.

Problem 2. For a class of repeats X, and given documents D = {d1 . . . dk},
document dk+1 and a suffix tree on S = d1.d2.dk where all nodes corre-
sponding to X(S) are marked and augmented with their number of occurrences;
return a suffix tree on S.dk+1 where all nodes corresponding to X(S.dk+1) are
marked and augmented with their number of occurrences.

An algorithm resolving Problem 2 is said to be optimal if it runs in time
O(max(n, |Xupdate(S, d)|), where Xupdate(S, d) are the updates that have to per-
formed, consisting of all repeats of the class X that occur in d, plus any repeat
that does not occur anymore in X due to the addition of d: Xupdate(S, d) =
{w ∈ d : w ∈ X(S.d)} ∪ (X(S) \X(S.d)). Note that the size of this set can be
much larger than the length of the newly added document:

Proposition 3. |MRupdate(S, d)| ∈ Θ(|d|2)

19

Proof. It is enough to give a document d such that any substring of d is different
and a maximal repeat over S.d. As we do not bound the number of documents
that appeared previously, this can always be achieved.

6.1. Cover of a new document

When a new document dk+1 is added to S, the new suffix tree will have
|dk+1|+1 new leaves corresponding to each of the suffixes of dk+1. Any ancestor
of these leaves can potentially change its maximal class, either because it is
repeated for the first time or because of a change in its context sets. It is
therefore this set of nodes we will be traversing after each update. Formally:

Definition 6. We define cover(S, dk+1) as the set of substrings of dk+1 which
are right-maximal repeats in S.dk+1.

This corresponds therefore to those internal nodes of the suffix tree which
are ancestor of leaves added for dk+1. However, the cover set should not be
traversed in any arbitrary order: each node should of course be visited only
once, and only after having visited all its children. Any information on the
occurrence of an internal node v can be obtained by aggregating correctly this
same information of the children of v. The way we achieve this is by ordering
the nodes with respect to the lengths of their represented substring. This defines
therefore a partial order on the nodes of the suffix tree, where v < w iff v is a
prefix of w and |v| < |w|. The nodes can then be correctly traversed by using
this order with a priority queue, which is initialized with all new leaves. The
order in which non-ordered pairs are selected is not important: the priority
property ensures that when a node v is visited, all his descendants in the cover
were visited before.

6.2. Problem 1: Updating a class

With the definition of cover given as before, any update algorithm runs
then in time O((|cover| + n) log(n)), assuming than that the aggregation of
information from the descendants can be done in constant time. The additional
n factor is due to the leaves of dk+1 and the logarithmic factor is due to the
complexity of insertion and deletion in the queue. The queue could be replaced
by an array p of lists of nodes of maximal size n, where p[i] is the list of nodes
whose depth is equal to i and an boolean array added, added[v] being True iff
if the node v was added to p. These two arrays can be updated in constant
time and the additional cost in memory trades off with speed, making the cover
traversal O(|cover|+ n).

Updating those nodes belonging to a given class is then straightforward,
assuming that each node is enriched with additional information: we keep for
each node v two sets of symbols: the first set lcunique will contain those symbols
c such that c is a left context of a leaf-child of v and there is not another leaf
of v with the same left-context. The second set, lc will be disjoint to lcunique

and contain all other characters which are left-contexts of a leaf of v but are

20

not in lcunique. With these definitions, each node can easily be updated with
the following rules:

• v is a maximal repeat iff |v.lc|+ |v.lcunique| > 1 ∧ |children(v)| > 1

• v is 〈x, k〉-cd iff |v.lc|+ |v.lcunique| ≥ x ∧ |children(v)| ≥ k

• v is a supermaximal repeat iff |v.lcunique| = |children(v)|

• v is a largest maximal repeat iff |v.lcunique| > 0

Of course, both sets have also to be updated. This can be done in a straight-
forward manner by updating both sets of the parent of each visited node, adding
a additional |Σ| factor to the final complexity.

6.2.1. A optimal algorithm for maximal repeats

The case of maximal repeats is special, because once a repeat becomes max-
imal, it can not become non-maximal in future iterations. Formally:

Definition 7. A class of substrings X is said to be invariant iff:
w ∈ X(s) =⇒ w ∈ X(ss′) ∀s, s′ ∈ Σ∗

Maximal repeats are invariant5 and therefore Xdiff(S, d) reduces to the set of
newly added maximal repeats through the addition of d. Furthermore, maximal
repeats have an additional property: if a node v is maximal, than all its ancestors
are too. That is because the context diversity property of maximal repeats is
inherited upwards. Therefore, when traversing the cover we can stop as soon
as we reach a node that is already maximal. By induction, any of its ancestors
will already be marked as such and none of them can cease to be maximal.

For this, it is not even necessary to keep the sets of left-context. A single
variable ` suffices: it holds a negative value if the current node is maximal. If
this is note the case then all its occurrences have a single left-context, and this
symbol can then be stored in `.

Using Ukkonen’s incremental algorithm to construct the suffix tree we can
therefore check any newly created internal node at creation time (Step 2 in the
explanation of Gusfield [14]), and check its ancestors until no change is made.
Because the only possible change is marking a non-maximal node as maximal,
and because the traversal stops as soon as a node is not changed, the algorithm
is optimal for fixed-size alphabets.

6.3. Problem 2: Counting repeats

Using the concept of cover, counting the number of occurrences of any inter-
nal node can be done similarly to the update of the membership to the classes
of repeats. The number of occurrences of a repeat is the number of leaves in

5As are xkcd repeats, if x and k are constants; but neither are largest, super-maximal or
xkcd if x or k are functions dependent on the number of occurrences of the repeat.

21

the subtree rooted at the node representing it, a value that can be kept in an
additional variable per node. In addition, each node should keep an auxiliary
variable with the number of new leaves it has due to the incorporation of dk+1 to
the suffix tree. In a first traversal of the cover each node updates this auxiliary
variable of his parent, and in a second traversal each node updates its count of
subtrees adding the number of new leaves.

6.4. Measuring the Gap

Using the concept of cover allows a general way of computing different infor-
mation of repeats in an incremental way. The framework is expressive enough
to compute a large range of information as exemplified by the incremental com-
putation of number of occurrences. For some of the cases however it is not
optimal, in the sense that the cover may be larger than the absolute minimum
number of nodes that could be inspected. We will not address here the issue if
such optimal algorithms may exist. Instead, we will analyze the gap between
the size of the cover and the minimal optimal set of nodes to inspect. We re-
strict this analysis to the case of maximal repeats only and consider its worst
case behavior, over two simulated scenarios (documents originated from an i.i.d
source and real-life natural language text). In all cases we are interested in how
|cover(S, d)| behaves with respect to the size of MRupdate(S, d) which reduces to
{w ∈ d : w ∈MR(S.d)} due to the invariant property of maximal repeats. Be-
cause the cover only contains nodes of the suffix tree, which are right-maximal,
this reduces to finding substrings of d that are right but not left-maximal in
S.d.

6.4.1. Asymptotic Analysis

Consider the document d(k) = a1a2 . . . ak of length k over an alphabet of size
k, with all ai different. The document set consisting of {d(k)} alone does not
contain any repeat, but we are interested in the update if an exact copy occurs:
D = {d(k), d(k)}. This document set has only one maximal repeat (d(k) itself),
but contains a linear number of left-maximal repeats (a1, a1a2, . . . , a1 . . . ak):

Proposition 4. The ratio
|cover(S, d)|

|MRupdate(S, d)|
∈ Ω(|d|)

We will now see if this scenario reflects what happens in real strings.

6.4.2. Simulations

We created documents generated from a source emitting symbols indepen-
dent and identical distributed (with uniform probability). To reduce variations
due to different parameters, we generated equally long documents, of one million
bytes each.

In Fig. 6 we plot the ratio |cover(S,d)|
|MRupdate(S,d)| for each document, using different

alphabet size. At each iteration, the new document d gets concatenated to S.
While there are great relative variations, note that in absolute values the changes
are in the order of 10−3. We believe that the behavior using an alphabet size of

22

(a) |Σ| = 4 (b) |Σ| = 100

(c) |Σ| = 1000 (d) Wikipedia

Figure 6: Evolution of ratio of cover / maximal-repeats, for random documents (generated
from an equiprobable i.i.d. source, varying alphabet size) and natural-language ones.

100 is the most typical, as it is reminescent of a periodic behavior which is known
in the expected number of nodes of a suffix tree and maximal repeats [4, 24].

We repeated the previous examples, but instead of generating the document
ourselves we used a dump of the complete English wikipedia, and split it into
documents of equal size (5MB here). The results can be seen in Fig. 6d: the
ratio now is higher than in the artificial strings but still below 2 in general.
We verified that varying the length of the documents did not impact this. The
sudden peaks seem to belong to cases where long stretches of documents are
repeated, coming closer to the worst-case scenario.

7. Conclusions

We investigated classes of repeats which are defined explicitly by the context
their occurrences appear. These definitions were motivated by linguistic clues
that show the importance of the context to determine which substrings in a
text are constituents (semantic units). Our definition encompasses well-known
classes (maximal and supermaximal) as special cases, while at the same time

23

allowing an algorithm to compute them in asymptotically optimal time. This
optimal algorithm however requires the construction of two suffix arrays, and in
our implementation another variant – though worse in its worst-case analysis –
behaves faster in practice.

We furthermore present a still more general family of these context-diverse
repeats, where the context now is not restricted to the immediate symbol pre-
ceding or following a substring, but to any maximal substring ending/starting
at the left/right of a potential constituent. Surprisingly, these repeats can be
computed in linear time too, re-using a trick to merge linearly repeats on the
strings and its reverse.

A third contribution of this paper is the presentation of a general framework
– relying on Ukkonen’s suffix tree creation algorithm – to compute repeats
incrementally, when documents arrive one after the other or in mini-batches.
For this we introduce the notion of cover, which is the set of nodes of the suffix
tree that contains all substrings whose condition may change due to the addition
of the new document to the collection. It is therefore sufficient to traverse
this cover, compared to the full suffix tree of the whole updated collection.
Finally, for the specific case of maximal repeats (which has some nice properties
regarding the invariability with respect to addition of new documents), we show
an optimal algorithm for this same task.

One data-structure we did not explore further here is the suffix automaton
(or the Directed Cyclic Word Graph) [3]. Some of the basic notions we rely on
are directly expressed in that data structure and although algorithms may not
run faster than using suffix arrays they may provide some elegant solution.

We hope that the contribution from this paper will increase the use of con-
cepts from stringology to model natural language documents, an approach which
has not sufficiently been studied in our opinion.

References

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Re-
placing suffix trees with enhanced suffix arrays. Journal of Discrete Algo-
rithms, 2:53 – 86, Feb 2004.

[2] Alberto Apostolico. Of maps bigger than the empire (invited paper). In
SPIRE, pages 2–9, 2001.

[3] Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, Mu-
Tian Chen, and Joel Seiferas. The smallest automation recognizing the
subwords of a text. Theoretical Computer Science, 40:31–55, 1985.

[4] Anselm Blumer, Andrzej Ehrenfeucht, and David Haussler. Average sizes
of suffix trees and DAWGs. Discrete Applied Mathematics, 24(13):37 – 45,
1989.

24

[5] Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. Succinct Or-
thogonal Range Search Structures on a Grid with Applications to Text
Indexing. In WADS, pages 98–109, 2009.

[6] Rafael Carrascosa, François Coste, Matthias Gallé, and Gabriel Infante-
Lopez. The smallest grammar problem as constituents choice and minimal
grammar parsing. MDPI Algorithms, 4(4):262–284, 2011.

[7] Rafael Carrascosa, François Coste, Matthias Gallé, and Gabriel Infante-
Lopez. Searching for smallest grammars on large sequences and application
to DNA. Journal of Discrete Algorithms, 11(0):62 – 72, 2012. Special issue
on Stringology, Bioinformatics and Algorithms.

[8] Alexander Clark. Learning deterministic context free grammars: The om-
phalos competition. Machine Learning, pages 93–110, Jan 2007.

[9] Alexander Clark, Rémi Eyraud, and Amaury Habrard. A polynomial al-
gorithm for the inference of context free languages. In ICGI, Jul 2008.

[10] Peter M Fenwick. A New Data Structure for Cumulative Frequency Tables.
Softw. Pract. Exper., 24(June 1993):327–336, 1994.

[11] Matthias Gallé. Searching for Compact Hierarchical Structures in DNA by
means of the Smallest Grammar Problem. Université de Rennes 1, February
2011.

[12] Matthias Gallé. The bag-of-repeats representation of documents. In SIGIR,
2013.

[13] Matthias Gallé and Mat́ıas Tealdi. On context-diverse repeats and their
incremental computation. In Language and Automata Theory and Appli-
cations, pages 384–395. Springer International Publishing, 2014.

[14] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, January
1997.

[15] Dan Klein. The Unsupervised Learning of Natural Language Structure. PhD
thesis, University of Stanford, 2005.

[16] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Inf Retrieval. Cambridge UP, 2009.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositional-
ity. In Advances in neural information processing systems, pages 3111–3119,
2013.

[18] Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape
of document retrieval on sequences. ACM Computing Surveys (CSUR),
46(4):52, 2014.

25

[19] Jacques Nicolas, Christine Rousseau, Anne Siegel, Pierre Siegel, François
Coste, Patrick Durand, Sébastien Tempel, Anne-Sophie Valin, and Frédéric
Mahé. Modeling local repeats on genomic sequences. Technical report,
INRIA, 2008.

[20] Enno Ohlebusch, Timo Beller, and Mohamed I. Abouelhoda. Comput-
ing the BurrowsWheeler transform of a string and its reverse in parallel.
Journal of Discrete Algorithms, 1:1–13, June 2013.

[21] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP), pages
1532–1543, 2014.

[22] Simon Puglisi, William F Smyth, and Andrew Turpin. A taxonomy of suffix
array construction algorithms. ACM Computing Surveys, 39(2), Jul 2007.

[23] Simon J Puglisi, William F Smyth, and Munina Yusufu. Fast optimal
algorithms for computing all the repeats in a string. In Prague Stringology
Conference, pages 161–169, 2008.

[24] Mathieu Raffinot. On maximal repeats in strings. Information Processing
Letters, 80(3):165 – 169, 2001.

[25] Heinrich Schütze. Automatic Word Sense Discrimination. Computational
Linguistics, 24(1), 1998.

[26] Zach Solan, David Horn, Eytan Ruppin, and Shimon Edelman. Unsuper-
vised learning of natural languages. Proceedings of the National Academy
of Sciences, Jan 2005.

[27] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–
260, 1995.

[28] Menno van Zaanen. ABL: Alignment-based learning. In International Con-
ference on Computational Linguistics, 2000.

[29] Sen Zhang, Ge Nong, and Wai Hong Chan. Fast and space efficient linear
suffix array construction. In Data Compression Conference, Washington,
DC, USA, 2008. IEEE Computer Society.

26

