
Google Security Chip H1
A member of the Titan family

Chrome OS Use Case

vbendeb@google.com

Block diagram

● ARM SC300 core
● 8kB boot ROM, 64kB SRAM, 512kB Flash
● USB 1.1 slave controller (USB2.0 FS)
● I2C master and slave controllers
● SPI master and slave controllers
● 3 UART channels
● 32 GPIO ports, 28 muxed pins
● 2 Timers
● Reset and power control (RBOX)
● Crypto Engine
● HW Random Number Generator
● RD Detection

Flash Memory Layout

● Bootrom not shown

● Flash space split in two halves for redundancy

● Restricted access INFO space

● Header fields control boot flow

● Code is in Chrome OS EC repo*,
○ board files in board/cr50
○ chip files in chip/g

*https://chromium.googlesource.com/chromiumos/platform/ec

https://chromium-review.googlesource.com/admin/repos/chromiumos/platform/ec

FW Updates

● Updates over USB or TPM

● Rollback protections
○ Header versioning scheme
○ Flash map bitmap

● Board ID and flags

● RO public key in ROM

● RW public key in RO

● Both ROM and RO allow for

node locked signatures

512 byte space
Used as 128

Bits INFO Space

Bitmap

Board ID
32 Bit words

Board Flags

Board ID

~ Board ID

Chip Properties

Bitmap

Board ID
Version

128 Bits

Board ID

32 Bit words

Board ID mask

Board Flags

Epoch

Major

Minor

Timestamp

Image Properties

Major Functions

● Guaranteed Reset

● Battery cutoff

● Closed Case Debugging *

● Verified Boot (TPM Services)

● Support of various security features

* https://www.chromium.org/chromium-os/ccd

https://www.chromium.org/chromium-os/ccd

Reset and power

● Guaranteed EC reset and battery cutoff

● EC in RW latch (guaranteed recovery)

● SPI Flash write protection

TPM Interface to AP

● I2C or SPI

● Bootstrap options

● TPM Reset is not H1 reset

TPM Support Of Verified Boot

● Rollback counters for RW Firmware and Kernel

● MRC (Memory Reference Code) cache SHA

● FWMP (Firmware Management Parameters)

● Dev mode state

Closed Case Debugging
(Must be securely enabled with verified user physical presence)

● USB-C interface

● Triggered by SuzyQable*

● USB endpoints UART consoles

● CCD Capabilities

● Flash programming

● I2C debug and measurements

● Power button used for PP

*https://www.sparkfun.com/products/14746

https://www.sparkfun.com/products/14746

Security Features

● RMA Verification

● RMA Unlock

● Pin Weaver

● U2F Security Key

RMA Verification

● A Chrome OS device used as a master

● SuzyQuable connection to slave

● Update slave if necessary

● Verification of AP and EC firmware

● Hashes keyed by Board ID

Master DUT

bid0: hash23423..
bid1: hash43563..
.
.

List of hashes

AP Flash

SuzyQ

H1

RMA Unlock

● Uses ECC Diffie-Hellman

● Server account requires U2F

● Facilitates device servicing by

disabling WP

2. Calculate public ECC key dPub

Chrome OS Device RMA Server

1. Get a random number, use it
as a private ECC key dPriv

3. Secret = dPriv * sPub * G

4.Calculate Auth code =
HMAC (Secret | Board ID | Dev ID)

5. Challenge =
 dPub | Board ID | Dev Id

7. Authenticate and authorize
the user (matching Board ID)

8. Secret = sPriv * dPub * G
9. Calculate Auth code =
HMAC (Secret | Board ID | Dev ID)

11.If entered code matches
calculated code:

● wipe out TPM
● disable Write Protect
● reboot the device

6. Encode challenge into an
RMA server URL

10. Display Auth code on the page

Operator

Pin Login

● Low entropy password

● Multiple user accounts

● Both retry and rate limiting

● Merkle tree of descriptors

● Root stored on H1

Root Stored in Cr50 NVMEM

Hashes in root and inner nodes

Users credential metadata in leaves:
{
 leaf_label;
 num_failed_attempts;
 last_failed_attempt_tstamp;
 high_entropy_user_secret;
 high_entropy_reset_secret;
 H1_signed_MAC;
}

U2F Security Key

● Built in U2F

● Power button used for PP

● PK stored in H1

Questions?

Thank you!

