
Lightweight Distributed Trust Propagation

Daniele Quercia, Stephen Hailes, Licia Capra
Department of Computer Science, University College London, London, WC1E 6BT, UK

{D.Quercia, S.Hailes, L.Capra}@cs.ucl.ac.uk

Abstract

Using mobile devices, such as smart phones, people may
create and distribute different types of digital content (e.g.,
photos, videos). One of the problems is that digital content,
being easy to create and replicate, may likely swamp users
rather than informing them. To avoid that, users may or-
ganize content producers that they know and trust in a web
of trust. Users may then reason about this web of trust to
form opinions about content producers with whom they have
never interacted before. These opinions will then determine
whether content is accepted. The process of forming opin-
ions is called trust propagation. We design a mechanism
for mobile devices that effectively propagates trust and that
is lightweight and distributed (as opposed to previous work
that focuses on centralized propagation). This mechanism
uses a graph-based learning technique. We evaluate the ef-
fectiveness (predictive accuracy) of this mechanism against
a large real-world data set. We also evaluate the computa-
tional cost of a J2ME implementation on a mobile phone.

1 Introduction

Researchers are realizing that mobile devices may en-
gage people in many different ways. For example, mobile
devices allow people to take photos or shoot videos and dis-
tribute them to their local communities at very low cost.
Content distribution may help to engage people in, for ex-
ample, urban planning or creative expression [4, 19]. But
what happens if everybody is distributing content? In that
case, to paraphrase Italo Calvino, we would live in an un-
ending rainfall of content [5].

To avoid content overload, we need new ways of filter-
ing content (of deciding which content to accept). Conven-
tional wisdom holds that one such way is to maintain a web
of trust [11, 24] of content producers. A web of trust is
a network of trust relationships: we trust (link to) only a
handful of other people; these people, in turn, trust (link to)
a limited number of other individuals; overall, these trust

relationships form a network (a web of trust) of individu-
als linked by trust relationships. Based upon this web of
trust, individuals may form opinions of other individuals
(in technical parlance, they propagate trust in other individ-
uals) from whom they have never received content before.
Individuals then decide whether to accept content according
to these opinions.

Section 2.2 will show that existing ways of propagat-
ing trust cannot be readily applied in mobile computing
because they are usually designed to work on a centrally
stored web of trust and to run on high-end machines. Thus
we set out to design a novel way of propagating trust that
works in distributed settings (e.g., P2P networks) and runs
on (resource-constrained) mobile phones. Our core contri-
butions include:

• A new trust propagation model that exploits a graph-
based semi-supervised learning scheme [12, 23], care-
fully adapted to our domain. The key idea is that each
mobile device stores a very limited subset of the web of
trust; on that subset, it then applies a machine learning
technique for propagating trust. Section 2.3 introduces
the technique and Section 3 describes it in details.

• Evaluation of the accuracy of our proposition on a real
and large web of trust (Section 4.1).

• Evaluation of its robustness against simulated uncoop-
erative users (Section 4.2).

• Evaluation of the computational overhead of a J2ME
implementation on a Nokia mobile phone (Sec-
tion 4.3).

2 Overview

We now describe our research problem more formally.
We will then demonstrate that existing solutions are not
suitable for mobile devices. Finally, we will briefly intro-
duce our proposed solution.

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.64

282

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.64

282

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.64

282

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.64

282

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.64

282

Figure 1. (a) A simple web of trust represent-
ing the statement “C rates 2 its trust in D”.
(b) A web of trust of four people connected
by their trust relationships.

2.1 Problem Statement

One may represent the statement “C trusts D” as a web-
of-trust of two persons and one trust relationship going from
C to D (Fig. 1(a)). The relationship may also be labeled
with a rating representing the extent to which C trusts D in
a given range of trust values (for example, in Fig. 1(a), C
rates its trust for D as 2 in a discrete range {1, 2, 3}1). Now,
consider the web of trust in Fig. 1(b), where we have four
people A, B, C and D. Not everyone has interacted with
everyone else. For example, A and B have never interacted
(no link between them). For the sake of argument, suppose
that A now wishes to interact with B and, as a consequence,
it has to form an opinion about B. A may do so by predict-
ing its trust for B. The goal of this paper is to study how a
mobile user A may form an opinion about another user B
without prior interaction.

2.2 Existing Solutions: Unfit for Mobile
Computing

To form an opinion about B, A may use the ratings of its
past experiences [6, 17, 18]. However, that is not possible
if A has never interacted with B. In that case, literature
suggests that A may create a web of trust from third-party
ratings and, based on that, may then set its trust (propagate
its trust) for B.

There is substantial literature on how to propagate trust.
That literature breaks roughly into two camps. In the first,
techniques assign a global trust value to each user. That is,
A’s trust in B corresponds to a global trust value in B. By
global, we mean a trust value that is accepted and shared by
all users. In peer-to-peer networks, EigenTrust [13] assigns
a global trust rating to each peer similar to how Google’s
PageRank [16] ranks web pages. Global ratings are then
used by peers to exclude untrustworthy peers (which send

1For simplicity’s sake, our examples use a trust scale {1, 2, 3}. How-
ever, our model by no means requires this as it works on any scale.

inauthentic files) and to select peers from whom to down-
load files. As a consequence, the number of inauthentic files
in the network decreases. In a free software developer com-
munity, Advogato [15] assigns a global trust to each com-
munity member. It does so by arranging ratings in a web
of trust and by composing ratings between members using
max flow from designated trusted members. The idea of
max flow is that between any two nodes, the quantity of trust
flowing from one node to another cannot be greater than
the weakest rating somewhere on the path between the two
nodes. This way of composing ratings has proved to be at-
tack resistant - it successfully isolates unreliable members.
More recently, Ziegler and Lausen [24] proposed to rank all
users by spreading “activation models” (by arranging rat-
ings in a matrix and finding the principal eigenvector), while
Dell’Amico [7] focused on peer-to-peer networks and pro-
posed to rank peers by using link-analysis techniques in a
fully distributed setting.

By contrast, in the second literature camp, techniques as-
sign a pairwise (local) trust rating to each pair of users. That
is, A assigns a personalized trust rating in B. Personalizing
trust is beneficial because it makes it possible for two indi-
viduals to have different opinions about the trustworthiness
of the same person (which may well happen in reality). In
2003, Golbeck et al. [9] proposed different algorithms for
propagating trust in this way. For example, they proposed
a variation of max flow that accounts for path length. To
Domingos et al. [20] and Guha et al. [11] goes the merit
of presenting the first comparative studies of different trust
propagation algorithms in which pairwise ratings are com-
puted. These algorithms have been evaluated against Epin-
ions [1], a large collection of binary ratings2. By binary we
mean that each rating simply expresses whether an individ-
ual trusts another individual or not. Despite being evaluated
on binary ratings, these algorithms are general in the sense
that they can take discrete ratings (not necessarily binary).

Most of the work on assigning pairwise trust ratings is
based on a simple, yet effective mechanism: A finds all
paths leading to B; for each path, A then concatenates the
ratings along the path; A finally aggregates all path concate-
nations into a single trust rating for B. Algorithmically, this
is equivalent to A arranging trust ratings into a matrix and,
over a series of iterations, propagating trust by, for example,
direct propagation: if A trusts C and C trusts B, then trust
propagates from A to B. The resulting matrix values are
then rounded into a single trust rating. Unfortunately, this
way of propagating trust suffers from two main limitations:

• Literature has proved direct trust propagation to be ex-
tremely effective, but it has done so only on data sets
of binary ratings. There is no published work on how

2In Epinions, quality assessments of products are on a scale {1, . . . , 5},
but user ratings are binary.

283283283283283

direct propagation would perform on a large data set of
discrete ratings, not necessarily binary3. An individual
may express whether she trusts another individual or
not, and, if she does, she may then express the extent
to which she trusts by a discrete value. For example,
in Advogato [15], users express their trust with 3-level
ratings (ratings in {1,2,3}). Given that, one may won-
der how direct trust propagation would perform against
the Advogato data set. We have evaluated direct trust
propagation on Advogato as Section 4 will describe.
Unfortunately, as Fig. 2 shows, the predictive accu-
racy (fraction of correct predictions) is low. More pre-
cisely, considering a large sample of Advogato’s trust
ratings (55.455 ratings), direct trust propagation cor-
rectly predicts 50.76% of the ratings (as a reference,
consider that a naive prediction (random guess) cor-
rectly predicts 31.1% of the ratings4). Therefore, di-
rect trust propagation does not predict the actual rating
in roughly half of the cases.

• Direct trust propagation does not scale on mobile de-
vices. Direct trust propagation is meant for Web ap-
plications in which centralized servers store full webs
of trust upon which trust is then propagated by multi-
plying vectors and matrices whose dimensions are ex-
tremely high. As a consequence, it is computationally
expensive and would not scale well on any existing
portable device. Moreover, mobile devices would only
know a very small subset of the web of trust at any
given time (it is unrealistic to assume complete knowl-
edge) because of, for example, network partition, de-
vice (un)availability, and limited resources.

It thus seems that a different way of propagating trust
in mobile computing scenarios is needed. But what sort of
method should we use?

2.3 Our Proposal

Our problem is to find a way of propagating trust that is
both effective and scalable. To do so, we propose to use a
class of semi-supervised learning techniques that have been
proved to be effective when applied to various problem do-
mains (e.g., to predict movie reviews [10], to recognize dig-
its [12], to classify text [23]).

These techniques work on a graph in which: not links
but nodes are either rated or unrated, and those nodes are

3One may point out the existence of PGP’s web of trust [25]. Unfortu-
nately, that web of trust is not suitable for what we call trust propagation
(i.e., computation of single pairwise ratings). On that web of trust, it makes
only sense to combine pairwise ratings (as PGP does) - each of these rat-
ings cannot be propagated but must be set by a user. Any research on PGP
(including that in mobile settings) solves a problem different from ours,
i.e., how to make it possible to combine (not to compute) pairwise ratings.

4Its predictive accuracy is 31.1% and not 33% because ratings are not
uniformly distributed across the three possible discrete values.

Figure 2. Predictive Accuracy. The fraction of
correct predictions for naive prediction (ran-
dom guess) and direct trust propagation.

then connected to each other if they are related (the tech-
niques consider that two nodes are related if their ratings
are similar). Informally, these techniques exploit knowl-
edge already present in the graph (rated nodes) to construct
a function that is capable of predicting unrated nodes. To
choose the most effective function (the function with the
highest predictive accuracy), the techniques impose that: on
input of each rated node in the graph, the chosen function
returns the node’s actual rating (this serves to choose a func-
tion that is consistent with existing ratings); given two con-
nected nodes xi and xj , the chosen function returns f(xi)
similar to f(xj) (this serves to choose a function that as-
signs similar ratings to connected nodes).

Let us now imagine a graph whose nodes are trust rela-
tionships (we call this graph ‘relationship graph’). A node
is rated if the corresponding relationship in the web of trust
is known and rated (e.g., in Fig. 3(a), C → B is known
and rated, so that in the relationship graph the node repre-
senting this relationship will be rated). By contrast, a node
is unrated if the corresponding relationship is unknown and
has to be predicted (e.g., A → B in Fig. 3(a)). Predicting
a trust relationship thus means finding a function that effec-
tively rates the corresponding node. Finding such a function
is exactly the problem solved by the semi-supervised learn-
ing techniques described above. In order to exploit these
techniques, we first need to represent (part of) a web of
trust as a relationship graph. We explain how to do so in
the following section.

3 The Proposed Model

To describe our model, we refer to our running example
of how A may propagate its trust in B given the web of trust
shown in Fig. 3(a). The following four steps are required,
each of which is described in the following subsections:

1. A determines the trust relationships that our propaga-

284284284284284

Figure 3. (a) A web of trust and (b) the cor-
responding relationship graph for predicting
A → B’s rating.

tion scheme may find relevant for predicting A’s trust
in B (Section 3.1).

2. A restricts its attention to the subset of the web of
trust that it knows and that includes those relationships
(Section 3.2).

3. From this subset, A builds a relationship graph (Sec-
tion 3.3).

4. A finally applies the machine learning technique to de-
termine a function that predicts A → B (Section 3.4).

Before describing these steps in details, we spell out our
assumptions:

• We opt to target a class of applications in which users
do not maliciously modify ratings. That is, for ex-
ample, the case for the Advogato community - most
users rate themselves (they judge their own expertise
in developing software) with the lowest level of trust.
More generally, this assumption holds for all applica-
tions whose users share a value system (e.g., connect-
ing with other people, creating an online identity, ex-
pressing oneself, etc.) similar to the one that has re-
cently contributed to the success of Wikipedia, open
source software, tagging systems, and many other
technologies reported in a recent book by Tapscott
and Williams [21]. However, there are applications in
which users may maliciously modify their ratings. To
tackle this problem, we are currently studying whether
a distributed hash table on top of a mobile ad-hoc net-
work may store user ratings and prevent their mali-
cious modification.

• We consider the web of trust to be a network in which
the small world phenomenon holds (i.e., the distance
between any two people is short). We argue this is a
perfectly plausible assumption given that the web of
trust is a social network, for which the small world
phenomenon emerges.

• We consider that anonymous tokens identify users.
This may protect user anonymity but makes the system
vulnerable to Sybil attacks (whose impact is discussed
in Section 5).

3.1 Determining Relevant Trust Relation-
ships

To begin with, A determines the trust relationships that
our propagation scheme may find relevant for predicting A’s
trust in B, that is, those relationships related to A → B. As
defined in Section 2.3, two relationships are related if their
ratings are similar. Hence we consider related any:

• Two relationships with the same rater. For example,
A → B and A → D are related as they have the
same rater A, and the more alike B and D perform,
the more related A → B and A → D are. We call
this kind of relation performing relation, and denote
it as relp(B, D). More formally, the weight between
the ith trust relationship “A trusts B” and the jth trust
relationship “A trusts D” is

wij = c · relp(B, D), (1)

where c is the weight given to performing relations.
How do we quantify the performing relation between
B and D? We may do so by considering that the more
alike B and D perform, the closer the ratings about
them. Along these lines, we: (1) take all people who
have rated both B and D. In our example (Fig. 3(a)),
this is only C. (2) For each such person, compute the
absolute difference between her rating in B and that
in D. In our example, the absolute difference between
C → D and C → B is 3 − 2 = 1. (3) Normal-
ize those differences in [0, 1], and aggregate them. We
will shortly describe two ways of aggregating differ-
ences. For the time being, consider that, in our ex-
ample, there is only one person who has rated both B
and D, thus only one difference (so no need for any
aggregation). Given that ratings are given in a dis-
crete scale [1, 3], the normalized difference value is
(3 − 2)/(3 − 1) = 1/2. Having the aggregated value,
we may then say that the bigger this is, the less alike B
and D perform (the lower relp(B, D)). For this rea-
son, we define relp(B, D) = 1 − v, where v is the
aggregated value. In our example, we had only one
difference so we did not need any aggregation at the
third step. In general, we may have more than one per-
son who has rated both B and D, thus more than one
difference (for example, let us assume we have two
normalized differences 1/2 and 2/2). In that case, we
need to aggregate those differences. The simplest way
to do so is to compute the average difference (in our

285285285285285

(a) (b)

Figure 4. (a) A’s view of the web of trust. (b)
A schematic representation of a relationship
graph. On that graph, our algorithm predicts
xi’s rating.

example, that is 1/2+2/2
2 = 3/4). However, whether

the average is a good choice depends on the number
of the differences across which we average and their
variance. The average is a good choice when there are
many differences whose variance is very low. However
that is not necessarily true. Therefore, we consider a
second way of aggregating that accounts for both num-
ber of differences and their variance: we compute the
confidence interval of the average (with 95% of confi-
dence) and take the higher extreme. We will evaluate
which aggregation leads to the highest predictive accu-
racy in Section 4.1.

• Two relationships in which the same person is rated.
A → B and C → B are an example, as they both
rate B. People may differ in the way they rate. We
thus have to compute a judging relation for which, the
more alike two raters (A and C) have judged the same
person (B), the higher their relation. We denote this
as relg(A, C). The corresponding weight between the
two relationships is

wij = d · relg(A, C), (2)

where d is the weight given to judging relations. To
compute relg(A, C), we take all persons who have
been rated by both A and C; for each person, we com-
pute the difference between A’s and C’s ratings; fi-
nally, we aggregate all differences. Again, we aggre-
gate by computing the average difference and its con-
fidence interval.

3.2 Taking Part of the Web of Trust

To use our propagation scheme for predicting its trust for
B, A needs to know part of the web of trust. To see which

part is needed, we must consider the two steps through
which A predicts its trust for B. In so doing, we will re-
fer to Fig. 4(a) and consider the following sets: S1, that is,
the set of ratings of A’s outgoing relationships; and S2, that
is, the set of all ratings from nodes that have rated B.

Step 1. A determines the trust relationships related to
A → B. Those relationships take the form A → X
and Y → B (where X and Y are generic persons dif-
ferent from A and B). To determine those relation-
ships, A needs the ratings of its outgoing relationships
(set S1) plus the ratings of B’s incoming relationships
(relationships in S2 going into B).

Step 2. A determines the extent to which each pair of those
edges are related. More specifically:

• A determines the extent to which any pair of
edges A → X and A → B are related. This
requires to quantify the (performing) relation be-
tween B and X — to quantify how alike B and
X perform. To do so, A needs the ratings of the
relationships in S2 plus those in S1.

• A determines the extent to which any pair of
edges Y → B to A → B are related. This re-
quires to quantify the (judging) relation between
Y and A — to quantify how alike Y and A rate.
Again, to do so, A needs the ratings of the rela-
tionships in S2 plus those in S1.

Overall, to use our propagation scheme for predicting its
trust in B, A needs the ratings of the relationships in S1 and
in S2. The former are readily available, as we can assume
that A stores locally the ratings it has produced. And the
latter are received from B. In fact, those ratings have been
generated by the people who have rated B; therefore, B
may have all the ratings of the relationships in S2, as it has
received them from its raters. As a result, each user stores
a very small subset of the web of trust — she stores the
ratings she generates plus those generated by her raters.

3.3 Building the Relationship Graph

At this point, A knows which trust relationships are re-
lated to the one that has to be propagated, and the extent to
which they are so; A can then build a relationship graph.
The key idea is to create a graph whose nodes include the
trust relationship to be predicted plus related relationships.
Fig. 3(b) shows one such graph whose nodes are: A → B
(trust relationship to be predicted), A → C, A → D, and
C → B (related relationships). Nodes are linked and the
label on a link expresses the extent to which the two linked
nodes are related.

More generally, there are n trust relationships
x1, . . . , xn, of which r are rated (x1, y1), . . . , (xr, yr)

286286286286286

and u are unrated xr+1, . . . , xr+u (an ‘unrated’ relation-
ship is a relationship that has no rating on the web of trust).
The numerical ratings are defined as being y1, . . . , yr ∈ L,
where L = {l1, . . . , lp} with l1 < . . . < lp. For example,
a system with p = 3 possible rating levels may have
L = {1, 2, 3}. Our problem is now to build a connected
graph G = (V, E) with nodes V corresponding to the n
trust relationships. We do so step by step with reference
to an example (Fig. 3(b)) and to a general representation
(Fig. 4(b)). To understand the rationale behind this con-
struction, we must remember our end goal of finding a
predictive function f : V → R on G capable of assigning
ratings to unrated nodes (note that f assigns a real value to
a trust relationship; this value will then be mapped to the
nearest discrete rating in L). In particular, let xi be the trust
relationship we wish to predict (e.g., A → B in Fig. 3(b))
among the unrated ones.

• The node xi is connected to its k most related nodes
that are rated. We call these nodes xi’s rated neigh-
bors. Connecting xi to those nodes serves to impose
that the function f rates xi and its rated neighbors
with similar ratings. Let xj denote one of xi’s rated
neighbors. The weight of the edge between xi and xj

is a · wij . The coefficient a is the weighting factor
for rated neighbors, and wij is determined as per for-
mula (1) or (2) (depending on whether the relation be-
tween xi and xj is performing or judging relation). For
example, in Fig. 3(b), A → B is connected to A → D
and to C → B and the corresponding weights are 0.5
and 1, respectively.

• The node xi is also connected to the k′ most related
nodes that are unrated (e.g., in Fig. 3(b), A → B is
connected to A → C). We call these nodes xi’s un-
rated neighbors. Connecting xi to those nodes serves
to impose that the function f rates xi and its unrated
neighbors with similar ratings. Let xh denote one of
those unrated nodes. The weight of the edge between
xh and xi is b · whi. The coefficient b is the weighting
factor for unrated neighbors, and whi is determined as
per formula (1) or (2).

• Each rated node xj is connected to an “observed node”
(dark circles in both reference figures) whose value is
the rating yj . The observed node is a ‘dongle’ because
it connects only xj . The edge weight is a large number
M . Setting M to a large number serves to pull f(xj)
towards the true rating yj (in particular, if M → ∞
then f(xj) = yj). That corresponds to the first condi-
tion for choosing an effective function f (Section 2.3):
making the function consistent with existing ratings.

The coefficients in a relationship graph are thus M , a,
b, k, and k′. M is set to an arbitrary large number (106).

Figure 5. A relationship graph and corre-
sponding matrices. In the relationship graph,
there are two rated nodes x1 : A → D and x2 :
C → B; and two unrated nodes x3 : A → C
and x4 : A → B. The prediction algorithm
populates the rating matrix y, the diagonal
dongle matrix C, and the weight matrix W̄ .
Then, it computes the predictive function f.

The remaining coefficients will be set by cross validation
(Section 4.1).

3.4 Finding a Predictive Function on the
Graph

Having the relationship graph, A now has to find a func-
tion that predicts all unrated nodes in that graph, including
that of interest (e.g., A → B).

Let us formalize the problem and the construction of
its solution. We have a graph G of n nodes xi, i ∈
[1, n], r of which have ratings yi, and the remaining u
(xr+1, . . . , xr+u) are unrated. The set R contains the in-
dices of the rated nodes and U those of unrated nodes. Our
problem is to seek a function f that rates each of the un-
rated nodes (the nodes whose indices are in U). Section 2.3
mentioned that to choose a function that rates effectively,
one has to impose that: on input of each rated node in the
graph, the chosen function returns the node’s actual rating
(that has been done in the previous Section 3.3 by setting the
coefficient M to a large number); on input of either of two
connected nodes, the chosen function’s outputs are similar.

The latter condition is equivalent to saying that (refer to
Fig. 4(b)): for any pair of related nodes xi and xj , the differ-
ence of their ratings f(xi) and f(xj) should be minimum.
In other words, (f(xi)− f(xj))2 should be minimum. This
expression represents the rating difference over one edge.
One may compute the difference over the graph by sum-
ming the rating differences of all edges. We denote this
difference as L(f). We will see that such a difference de-
pends on the chosen function f . Our problem is to find the
function f for which the difference over the graph is mini-
mum. We do so in Appendix A and find that such a function

287287287287287

Factor Description Tuning Range
fr = k

|R| Fraction of rated nodes used as neighbors. {0.05, 0.1, 0.15, 0.2, 0.3 }
fu = k′

|U| Fraction of unrated nodes used as neighbors. {0.05, 0.1, 0.15, 0.2, 0.3}
β = b

a Relative weight between rated and unrated nodes. {10−3, 10−2, 10−1, 1, 10}
γ = d

c Relative weight between judging and performing relations. {10−3, 10−2, 10−1, 1, 10}
α How to compute rel(A, B), i.e., the extent to which A and B

perform or judge alike.
Two ways: average differ-
ence or confidence interval

Table 1. Parameters of our prediction algorithm. To find the optimal values, we tune the parameters
in the reported ranges.

is f =
(
C + L

)−1

Cy. Let us now introduce this notation

and the three steps of the algorithm for computing f (refer
to Fig. 5):

1. Populate 3 matrices:

• The rating matrix y = (y1, . . . , yr, 0, . . . , 0)�.
This is an n×1 matrix whose first r rows contain
the ratings of the rated nodes, and any remaining
row contains zero. For example, Fig. 5 shows a
relationship graph and the corresponding rating
matrix.

• The diagonal dongle weight matrix C. The ele-
ments that correspond to rated nodes contain M
(otherwise 0):

Cii =
{

M, i ∈ R
0, i ∈ U

In Fig. 5, the first two nodes are rated.

• The n × n weight matrix W̄ :

W̄ij =




awij , j ∈ RN(i)
bwij , j ∈ UN(i)
0, otherwise

RN(i): set of indices of i’s rated neighbors;
UN(i): set of indices of i’s unrated neighbors.

2. Compute: the symmetrized version of W̄ : W =
max(W̄ , W̄�); the diagonal degree matrix Dii =∑n

j=1 Wij (we consider a node’s degree to be the sum
of its edge weights); and the combinatorial Laplacian
matrix L = D − W .

3. Finally, compute f =
(
C + L

)−1

Cy. This has the

form f = (f(x1), . . . , f(xn))�, and its last u elements
are the predicted ratings for the nodes in U . Appendix
A shows that the so computed f minimizes the rating
difference over the relationship graph. For example,
in the relationship graph of Fig. 5, A → B’s rating is
predicted to be f4 = 2.7.

That concludes the description of our model. In the next
section, we turn to evaluating it.

4 Evaluation

The goal of our algorithm is to predict trust ratings on
portable devices. To ascertain the effectiveness of our algo-
rithm at meeting this goal, our evaluation ought to answer
three questions:
(1) (Predictive Accuracy) How accurate is our algorithm in
predicting trust ratings?
(2) (Prediction Robustness) What is the impact of uncoop-
erative users upon the algorithm’s accuracy?
(3) (Overheads) What time, storage, and communication
overheads does our algorithm impose on a mobile phone?

To see whether our algorithm effectively predicts trust
and whether it is usable on portable devices, we need a
large-scale deployment. Only so can we separate statisti-
cal significant answers from plausible insights gained by a
small-scale deployment. Plus, a deployment needs to be
evaluated in the long-term to see whether our algorithm is
robust against, for example, uncooperative users.

Unfortunately, we do not have a long-term evaluation of
a large-scale mobile computing deployment. We do, how-
ever, have a large rating data set from the Advogato com-
munity that has been around for more than a decade5. Us-
ing this data set (described next), we evaluate whether our
algorithm is effective in predicting real trust ratings (Sec-
tion 4.1). Then, to evaluate how robust our algorithm is,
we emulate how users may rationally turn to be uncooper-
ative (Section 4.2). Finally, we implement our algorithm to
assess whether it is usable on a mobile phone (Section 4.3).

To begin with, let us describe the Advogato data set. Ad-
vogato is a community discussion board for free software
developers. Using the Advogato’s trust metric [15], each

5Since webs of trust tend to contain private information, only a limited
number are publicly available, and those few are quite small (they do not
allow for thorough evaluation). The only exception is the Advogato data
set.

288288288288288

Figure 6. Predictive accuracy of four algo-
rithms.

user has a single (global) trust value computed by compos-
ing other users ratings. There are three possible ratings: ap-
prentice, journeyer, and master. Global trust is used to con-
trol access to the discussion board: ‘apprentices’ can only
post comments, whereas ‘journeyers’ and ‘masters’ are able
to post both stories and comments. From this community,
we have extracted 55,455 trust relationships.

4.1 Predictive Accuracy

We evaluate the predictive accuracy of our algorithm by
using leave-one-out cross validation.

Validation Execution. The cross validation unfolds as
follows. We take Advogato’s web of trust. We mask one
trust relationship and then predict the relationship’s rating
in four different ways. We repeat this on all relationships.
In doing this, we measure the predictive accuracy, i.e., the
fraction of correct predictions.

The four ways of predicting the rating of a masked re-
lationship A → B that we have compared are: naive pre-
diction (random guess); median of ratings about B; direct
trust propagation (as described in Section 2.2); and our al-
gorithm. Since we cannot assume complete knowledge in
mobile settings, we consider that our algorithm does not
know the whole web of trust, but predicts A → B on in-
put of only the ratings known by A (as described in Sec-
tion 3.2). Instead, we allow distributed trust propagation to
know all paths (and corresponding ratings) between A and
B because it is the only way it can be carried out.

Our propagation algorithm has five parameters. We tune
each parameter in the range shown in Table 1. This leads
to 1250 possible combinations. For each combination, we
compute the predictive accuracy.

Figure 7. Fraction of unknown predictions as
a function of uncooperative users (users who
are not willing to make their ratings avail-
able).

Validation Results. For our algorithm, we first computed
the optimal parameters (parameters for which the accuracy
is highest) as described above: they turn out to be γ = 1,
α =“confidence interval”, fr = 0.1, fu = 0.2, β = 0.1,
and k = k′ = 20 (a relationship graph should contain at
most 20 edges). We expect that these values will apply in
other domains; that is because they, informally speaking,
specify reasonable and intuitive choices. More specifically,
they indicate that to predict the rating of a trust relation-
ship, the learning algorithm has: to consider relevant those
relationships that include people who perform or rate alike
(γ = 1); to estimate relevance by aggregating ratings using
the confidence interval of their average (α =“confidence in-
terval”); to consider a small fraction of those relevant rela-
tionships (fr = 0.1, fu = 0.2); to weight the actual ratings
more than the ratings it predicts during the learning process
(β = 0.1).

This preliminary analysis allow us to move on to answer
the key question: how would the predictive accuracy of our
algorithm compare to that of any of the algorithms previ-
ously mentioned. Fig. 6 shows that direct trust propagation
performs better than naive prediction, but is comparable to
a median of ratings. It also shows that our algorithm’s accu-
racy is as high as 82.9%. In all cases in which our algorithm
failed to predict (17.1%), the actual rating and the predicted
rating differed by one only (with L = {1, 2, 3}).

4.2 Prediction Robustness

All trust propagation techniques rely on knowing rat-
ings. In mobile computing, this translates into users making
available their ratings. For privacy reasons, some users may
well decide not to do so. Being this plausible, we now eval-

289289289289289

uate how our algorithm would cope if different fractions of
users did not disclose their ratings. Again, we measure pre-
dictive accuracy by cross validation: we mask one trust rela-
tionship and then predict its rating upon the limited knowl-
edge of the nodes subject of the trust relationship; we do so
for all relationships that link any pair of cooperative users
(users willing to make their ratings available). That is be-
cause we consider that users willing to be subject to predic-
tion are also willing to cooperate.

Fig. 7 shows the fraction of predictions for which a
relationship graph is not defined (percentage of unknown
predictions) as a function of the fraction of uncooperative
users. If at most 60% of the users are not willing to make
their ratings available, the remaining users can still propa-
gate their trust, and they do so with a high predictive accu-
racy (82.9%). However, as Fig. 7 shows, if the number of
uncooperative users reaches a critical point (if it is higher
than 60%), the remaining users are abruptly unable to form
a relationship graph. In other words, if at least 40% of the
users make their ratings available, those users can still ef-
fectively propagate trust. For one possible explanation of
this result, consider that the web of trust is a social network
and that social networks are robust because they are scale-
free. Albert et al. [2] studied the fraction of nodes that must
be removed at random from a scale-free network to break
it into pieces: they “removed as many as 80% of all nodes
and the remaining 20% still hung together, forming a highly
interlinked cluster” [3]6.

4.3 Overheads

Communication and Storage Overheads. Both commu-
nication and storage overheads are minimal. As described
in Section 3.2, any device stores the ratings of its outgo-
ing relationships plus those of its incoming neighbors in a
table. Each tuple of this table corresponds to a trust rela-
tionship, i.e., to two identifiers (of the connected persons)
and one rating. Hence, say that the size of a tuple is roughly
10B. Even with 50 incoming and 50 outgoing edges (which
is pessimistically high), the table size is 30KB. Also, for
a single trust propagation, the data to be sent is less than
30KB.

Computational Overhead. We ran a J2ME implementa-
tion of our algorithm on a Nokia 3230 mobile phone whose
features include: Symbian operating system 7.0, 32 MB of
memory, 32-bit RISC CPU (123 MHz). In Section 4.1, we
evaluated that a relationship graph should contain 20 nodes

6Our scheme does not work if more than 60% of the nodes are removed.
The reason is that, to propagate trust from A to B, our scheme does not
simply need a connecting path between A and B (which may likely exist
even if 80% of the nodes are removed), but needs the set of links that are
necessary for propagating trust (as per Section 3.2). And those links likely
disappear after removing more than 60% of the nodes.

at most. We run our algorithm in this worst case scenario.
We minimized background activities by shutting down all
applications other than our algorithm. The computation
overhead, given as the mean of 10 runs, is as low as 2.8
milliseconds.

5 Discussion

Based on the previous results, we now discuss some open
questions.

Privacy Concerns. By exchanging their web of trust,
users reveal their social ties (people with whom they have
interacted), and some users may not feel comfortable doing
so for privacy concerns [14]. Our design alleviates these
concerns for two reasons. First, users are identified by
anonymous tokens. Second, one inherent property of dis-
tributed trust propagation is that users’ ratings are not made
available on public servers, but each user discloses her rat-
ings whenever she finds convenient to do so. Moreover, dur-
ing our evaluation, we found that if at least 40% of the users
make available their ratings, those users can still propagate
their trust without relying on any other user (Section 4.2).

Sybil Users. Given that users’ identifiers correspond
to anonymous tokens, one may rightly point out that user-
token bindings need to be certified to avoid sybil attacks [8],
in which a malicious user takes on multiple identities and
pretends to be multiple, distinct users. In mobile comput-
ing, user-token bindings cannot be certified by a central au-
thority. However, those bindings may be statistically guar-
anteed by mechanisms similar to SybilGuard [22]. If those
mechanisms will prove ineffective, one might be interested
in knowing whether our model is robust against sybil at-
tacks. We evaluate the predictive accuracy of our algorithm
as follows: we mask one trust relationship A → B; we
create n sybil identities who highly rate B; we then predict
A → B’s rating. We do so for all trust relationships. Re-
gardless of n, the prediction accuracy remains unchanged
(82.9%). The reason for this result is that sybil users are not
connected in the same way as real users are and, as a con-
sequence, their ratings do not influence trust propagation.

Distrust. Previous work has shown that introducing dis-
trust may be beneficial to trust propagation [11]. Despite
not explicitly modeling distrust, we may introduce it by
simply adding an additional rating level. For example, if
we have 3 possible ratings, we may simply add a fourth rat-
ing representing distrust.

Dynamic Ratings. Since ratings may change over time,
we have allowed for rating tables to be updated either re-
actively or proactively and the storage and communication
overheads of doing so are minimal (Section 4.3).

290290290290290

6 Conclusion

We proposed a model that makes it possible for mobile
users to predict their trust for content producers from whom
they have never received content before. The model scales
(it entails minimal storage and communication overhead)
and is effective (its predictive accuracy on a large data set is
as high as 82.9%). That accuracy remains unchanged even
if most of the users were not to make available their ratings.
The model also runs on portable devices (a J2ME imple-
mentation spends at most 2.8ms for one propagation on a
Nokia phone). To further evaluate our model, we are cur-
rently designing controlled experiments to be run in a large-
scale deployment.

Acknowledgments: We thank Mark Herbster for ex-
plaining us different ways of learning over graphs. We also
thank Matteo Dell’Amico, Neal Lathia, Ilias Leontiadis,
Paolo Garza, Tania Cerquitelli, and the anonymous review-
ers for their contributions, and Microsoft Research Cam-
bridge for its financial support.

References

[1] http://www.epinions.com/.
[2] R. Albert, H. Jeong, and A. L. Barabasi. Error and attack

tolerance of complex networks. Nature, July 2000.
[3] A.-L. Barabasi. Linked: How Everything Is Connected to Ev-

erything Else and What It Means. Penguin, 2003.
[4] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan,

S. Reddy, and M. B. Srivastava. Participatory sensing. In
Proc. of ACM WSW, 2006.

[5] I. Calvino. Six Memos for the Next Millennium. Harvad Uni-
versity Press, 1996.

[6] L. Capra. Engineering human trust in mobile system collabo-
rations. In Proc. of FSE, 2004.

[7] M. Dell’Amico. Neighbourhood Maps: Decentralised Rank-
ing in Small-World P2P Networks. In Proc. of HotP2P, 2006.

[8] J. R. Douceur. The Sybil Attack. In Proc. of IPTPS, 2002.
[9] J. Golbeck, B. Parsia, and J. Hendler. Trust Networks on the

Semantic Web. In Proc. of CoopIS, 2003.
[10] A. Goldberg and X. Zhu. Seeing stars when there aren’t

many stars: Graph-based semi-supervised learning for sen-
timent categorization. In Proc. of Textgraphs, 2006.

[11] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propaga-
tion of trust and distrust. In Proc. of ACM WWW, 2004.

[12] M. Herbster, M. Pontil, and L. Wainer. Online learning over
graphs. In Proc. of ICML, 2005.

[13] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
Eigentrust algorithm for reputation management in P2P net-
works. In Proc. of ACM WWW, 2003.

[14] N. Lathia, S. Hailes, and L. Capra. Private Distributed Col-
laborative Filtering using Estimated Concordance Measures.
In Proc. of ACM RecSys, 2007.

[15] R. Levien and A. Aiken. Attack-resistant trust metrics for
public key certification. In Proc. of USENIX Security, 1998.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical
report, Stanford University, 1998.

[17] D. Quercia, S. Hailes, and L. Capra. B-trust: Bayesian
Trust Framework for Pervasive Computing. In Proceedings
of iTrust. LNCS, 2006.

[18] D. Quercia, S. Hailes, and L. Capra. TRULLO - local trust
bootstrapping for ubiquitous devices. In Proc. of IEEE Mo-
biquitous, 2007.

[19] H. Rheingold. Smart Mobs: The Next Social Revolution.
Perseus Books Group, 2002.

[20] M. Richardson, R. Agrawal, and P. Domingos. Trust Man-
agement for the Semantic Web. In Proc. of ISWC, 2003.

[21] D. Tapscott and A. D. Williams. Wikinomics: How Mass
Collaboration Changes Everything. Portfolio, Penguin, 2006.

[22] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybil-
Guard: defending against sybil attacks via social networks. In
Proc. of ACM SIGCOMM, 2006.

[23] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised
learning using Gaussian fields and harmonic functions. In
Proc. of ICML, 2003.

[24] C.-N. Ziegler and G. Lausen. Spreading activation models
for trust propagation. In Proc. of IEEE EEE, 2004.

[25] P. Zimmermann. The Official PGP User’s Guide. MIT Press,
1995.

Appendix A

Given the graph described in Section 2 and shown in
Fig. 4(b), the loss L(f) over the whole graph is

L(f) =
∑
j∈R

M · (f(xj) − yj)2 +

+
∑
i∈U

∑
j∈RN(i)

a · wij · (f(xi) − f(xi))2 +

+
∑
i∈U

∑
h∈UN(i)

b · whi · (f(xh) − f(xi))2 (3)

where:

R: set of indices of rated nodes;
U : set of indices of unrated nodes;
RN(i): set of indices of i’s rated neighbors;
UN(i): set of indices of i’s unrated neighbors.

Expression (3) can be written as:

L(f) = (f − y)�C(f − y) + f�Lf (4)

Being C and L symmetric, the gradient is:

δL(f)
δf

= 2C(f − y) + 2Lf. (5)

To solve the optimization problem minfL(f), we set the

gradient to zero, δL(f)

δf = 0, and obtain:

f =
(
C + L

)−1

Cy (6)

291291291291291

