AMCP-706-177

AMC PAMPHLET

P 706-177

 $\stackrel{\text{des}}{\to} \pm \epsilon$

ENGINEERING DESIGN HANDBOOK

EXPLOSIVES SERIES

PROPERTIES OF EXPLOSIVES

OF MILITARY INTEREST

LOAN COPY ONLY - DO THE PROPERTY OF REDSTONE SCIENTIFIC INFORMATION CENTER 13 APR 1973

FOR REFERENCE ONLY

HEADQUARTERS, U.S. ARMY MATERIEL COMMAND

J**an**uary 1971

HEADQUARTERS UNITED STATES ARMY MATERIEL COMMAND WASHINGTON. D. C. 20315

29 January 1971

AMC PAMPHLET No. 706-177*

ENGINEERING DESIGN HANDBOOK PROPERTIES OF EXPLOSIVES OF MILITARY INTEREST

	Page
PREFACE	V
ABBREVIATIONS AND SYMBOLS	VII
INTRODUCTION	1
Amatol, 80/20	12
Amatol. 60/40	14
Amatol. 50/50	16
Ammonal	19
Ammonium Nitrate	21
Ammonium Perchlorate	26
Ammonium PicrateSee. Explosive D	
Baratol	29
Baronal	33
Black Powder	36
1.2. 4-Butanetriol Trinitrate (BTIN) Liquid	40
Composition A-3	43
Composition B	46
Composition B. Desensitized	51
Composition C	53
Composition C-2	55
Composition C-3	57
Composition C-4	59
Copper Chlorotetrazole	63
Cyanuric Triazide	66
Cyclonite (RDX)	69
Cyclotol. 75/25	76
Cyclotol. 70/30	79
Cyclotol. 65/35	81
Cyclotol. 60/40	83
Cyclotrimethylene Trinitrosamine	86
DBX (Depth Bomb Explosive)	91
1.3-Diamino-2.4. 6-Trinitrobenzene (DATNB)	95
Diazodinitrophenol	99
Diethylene Glycol Dinitrate (DEGN) Liquid	103
Bis(2,2-Dinitropropyl) Fumarate (DNPF)	107
Bis(2,2-Dinitropropyl) Succinate (DNPS)	110
2.2-Dinitropropyl-4.4. 4-Trinitrobutyrate (DNPTB)	113

*This pamphlet supersedes AMCP 706-177, 22 March 1967. including Change 1. 20 December 1967.

•

TABLE OF CONTENTS (cont'd)

.

	<u>Page</u>
2.4-Dinitrotoluene (DNT)	116
Dipentaerythritol Hexanitrate (DPEHN)	119
Dynamite, Low Velocity. Picatinny Arsenal (LVD)	122
Dynamite. Medium Velocity. Hercules (MVD)	125
EC Blank Fire	128
EDNASee. Haleite	
Ednatol, 55/45	130
Ethylene Glycol Di-Trinitrobutyrate (GINB)	133
Explosive D (Ammonium Picrate)	136
Glycerol Monolactate Trinitrate (GLIN) Liquid	140
Glycol Dinitrate (GDN) Liquid	143
н-б	146
Haleite (Ethylene Dinitramine) (EDNA)	150
HBX-1	156
HBX-3	159
HEX-24	164
HEX-48	166
2,4,6,2',4',6'-Hexanitro-oxanilide (HNO)	170
beta-HMX	173
HTA-3	178
Lead Azide	182
Lead 2,4-Dinitroresorcinate (LDNR)	187
Lead 4,6-Dinitroresocrinol Basic (LDNR Basic)	190
Lead Styphnate	193
Mannitol Hexanitrate (Nitromannite)	197
Mercury Fulminate	201
Metriol Trinitrate (MIN) Liquid (or Trimethylolethane Trinitrate)	.206
Minol-2	209
MOX-1	213
MOX-2B	215
MOX-3B	218
MOX-4B	220
MOX-6B	222
Nitrocellulose. 12.6% N (NC)	226
Nitrocellulose. 13.45% N (NC)	227
Nitrocellulose. 14.14% N (NC)	228

TABLE OF CONTENTS (cont'd)

	Page
Nitroglycerin (Liquid)	233
Nitroguanidine	239
Nitroisobutylglycerol Trinitrate (NIBTN) Liquid)	243
Nitromethane <i>See</i> . PLX Liquid	
Nitrostarch Demolition Explosive (NSX)	246
Octol. 70/30	249
Octol. 75/25	254
PB-RDX	259
Pentaerythritol Trinitrate (PETRIN)	265
Pentaerythritol Trinitroacrylate (PETRIN Acrylate) (Trinitroxypentaerythritol	
Acrylate)	269
Pentolite, 50/50; 10/90	272
PETN (Pentaerythritol Tetranitrate)	276
Picramide (TNA) (2.4,6-Trinitroaniline)	282
Picratol, 52/48	285
Picric Acid	288
PIPE	294
Plumbatol	296
PLX (Liquid)	298
Potassium Dinitrobenzfuroxan (KDNBF)	302
PTX-1	306
PTX-2	309
PVA-4	312
PVN (Polyvinyl Nitrate)	315
RDXSee. Cyclonite; Compositions A-3; B; C-2; C-3; C-4	
RIPE	318
Silver Azide	320
Tetracene	324
Tetranitrocarbazole (TNC)	327
2,4,2',4'-Tetranítro-oxanilide (TNO)	331 🛰
Tetryl	335
Tetrytol, 80/20	341
Tetrytol. 75/25	343
Tetrytol. 70/30	345
Tetrytol. 65/35	347
TNT (Trinitrotoluene)	350

TABLE OF CONTENTS (cont'd)

	Page
Torpex	359
1,3,5-Triamino-2,4,6-Trinitrobenzene (TATNB)	364
Triethylene Glycol Dinitrate (TEGN) Liquid	367
Trimonite	370
2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate (TNETB)	373
Trinitro Triazodibenzene	378
Tripentaerythritol Octanitrate (TPEON)	381
Tritonal. 80/20	386
Veltex No. 448	391

PREFACE

The Engineering Design Handbook Series of the Army Materiel Command is a coordinated series of handbooks containing basic information and fundamental data useful in the design and development of Army materiel and systems. The handbooks are authoritative reference books of practical information and quantitative facts helpful in the design and development of Army materiel so that it will meet the tactical and technical needs of the Armed Forces.

AMCP 706-177, Properties of Explosives of Military Interest, is one of a series on Explosives. One hundred and ten explosive compounds or mixtures are listed herein, alphabetically, with their properties, including composition variations. These explosives were selected because of their current or probable application to military use.

The tabulated data reflect the results of tests, and were first compiled for publication at Picatinny Arsenal, Dover, New Jersey, by W. R. Tomlinson, Jr. These data were later revised by Oliver E. Sheffield, also of Picatinny Arsenal, for the Engineering Handbook Office of Duke University, prime contractor to the Army Materiel Command.

The Handbooks are readily available to all elements of AMC, including personnel and contractors having a need and/or requirement. The Amy Materiel Command policy is to release these Engineering Design Handbooks to other D0D activities and their contractors and to other Government agencies in accordance with current Amy Regulation 70-31, dated 9 September 1966. Procedures for acquiring these Handbooks follow:

a. Activities within AMC and other DOD agencies order direct on an official form from:

Commanding Officer Letterkenny Amy Depot, ATTN: AMXLE-ATD Chambersburg, Pennsylvania 17201

b. Contractors who have Department of Defense contracts should submit their requests through their contracting officer with proper justification to the address listed in par. a.

c. Government agencies other than DOD having need for the Handbooks may submit their requests directly to the address listed in par. a or to:

Commanding General U. S. Amy Materiel Command ATTN: AMCAM-ABS Washington, D. C. 20315

d. Industries not having Government contracts (this includes colleges and Universities) must forward their requests to:

Commanding General U. S. Amy Materiel Command ATTN: AMCRD-TV Washington, D. C. 20315

e. All foreign requests must be submitted through the Washington, D. C. Embassy to:

Assistant Chief of Staff for Intelligence Foreign Liaison Office Department of the Amy Washington, D. C. 20310

All requests, other than those originating within DOD, must be accompanied by a valid justification.

Comments and suggestions on this handbook are welcomed and should be addressed to Army Research Office-Durham, Box CM, Duke Station, Durham, North Carolina 27706.

ABBREVIATIONS AND SYMBOLS

~	approximately. This symbol is used before numbers.
AC	Advisory Council on Scientific Research and Develop- ment, Great Britain.
AC S	American Chemical Society.
AISI	American Iron and Steel Institute.
Ann	Liebig's Annalen der Chemie.
Ann chim phys	Annales de chimie et de physique.
AP	armor-piercing.
APG	Aberdeen Proving Ground.
atm	atmosphere; atmospheric pressure.
Beil	Beilstein Organische Chemie, 4th Edition.
Ber	Berichte der Deutschen Chemischen Gesellschaft.
BIOS GP2-HEC	British Intelligence Overseas Service or Objective
	Subcommittee, Group 2, Halstead Exploiting Center.
BM	Bureau of Mines, United States Department of Interior.
Bull Soc chim	Bulletin de la societe'chimique de France.
CA	Chemical Abstracts.
calc	calculated.
Chem Met Eng	Chemical and Metallurgical Engineering.
Chim et Ind	Chimie et Industrie. Comptes rendus hebdomadaires des seances de
Comp rend	l'Academie des Sciences (Paris).
C D	centipoise.
ср CR	Comptes rendus hebdomadaires des seances de
CIX	l'Academie des Sciences (Paris).
dec	decomposes.
AH	difference in heat (i.e., heat evolved) by decomposition.
DRP	Deutsches Reichspatent.
E	modulus of elasticity or "Young's modulus"; longitudinal
	stress/change in length; (force/area)/(elongation/
	length); expressed in lb/inch ² .
E	same as E, but expressed in dynes/cm ² .
Gazz chim ítal	Gazzetta Chimica Italiana.
GP	general purpose.
HE	high explosive.
HEAT	high explosive antitank.
Ind Eng Chem	Industrial & Engineering Chemistry.
J Am Chem Soc J Chem Ind	Journal of the American Chemical Society The Journal of the Society of Chemical Industry (London).
J Chem Ind J Chem Soc	Journal of the Chemical Society (London).
J Frank Inst	Journal of the Franklin Institute.
J Ind Explo-	oodinal of the flanklin institute.
sives Soc	Journal of the Industrial Explosives Society (Japan).
J prakt Chem	Journal für praktische Chemie.
LA	lead azide
Land-Bornst	Landolt-Bornstein Physikalish-Chemische Tabellen,
	5th Edition (Berlin).
М	molar.
	Monatshefte fur Chemie (Wein).
Mem poudr	Mémorial des poudres et salpêtres (Paris).
mg	milligram.

ABBREVIATIONS AND SYMBOLS (cont'd)

min ml m/s MW NAVORD NC	minimum. milliliter. meters per second. molecular weight. Bureau of Ordnance (U. S. Navy) nitrocellulose.
$n \frac{D}{20}$	index of refraction, with D band of sodium as light source, at twenty degrees centigrade.
NDRC	National Defense Research Committee.
NFOC	National Fireworks Ordnance Corporation.
NG NOL	nitroglycerin. U. S. Naval Ordnance Laboratory, White Oak, Silver
NOL	Spring, Maryland.
NOTS	U. S. Naval Ordnance Test Station, China Lake, Calif.
NRC	National Research Council.
OB	oxygen balance.
OCM	Ordnance Committee Minutes.
OSRD	Office of Scientific Research and Development
PA	Picatinny Arsenal.
PATR	Picatinny Arsenal Technical Report.
Phil Trans	Philosophical Transactions of the Royal Society of London.
Pogg Ann	Poggendorf's Annalen der Physik.
Proc Roy Soc	Proceedings of the Royal Society of London.
Rec trav chim	Recueil des travaux chimiques des Pays-Bas.
RH	relative humidity.
RI	Report of Investigation.
SAE	Society of Automotive Engineers.
SAP	semi-armor-piercing.
sol	solution.
Spec	Specifications.
std dev	standard deviation.
ТМ ТМ/ТО	Technical Manual, Department of the Army.
1 11/10	joint publication, as a TM and as a Department of the Air Force Technical Order.
Trans Farad Soc	Transactions of the Faraday Society
vac stab	vacuum stability.
Z angew Chem	Zeitschrift fur angewandte Chemie.
Z anorg Chem	Zeitschrift für anorganische und allgemeine Chemie.
Z ges Schiess-	Zeitschrift fur das gesamte Schiess und Sprengstoff-
Sprengstoffw	wessen (Munchen).
Z/sec	atoms of oxygen per second.

viii

PROPERTIES OF EXPLOSIVES OF MILITARY INTEREST

INTRODUCTION

1. PREDOMINANTLY A REPORT OF STANDARD TESTS. No effort was made to cover all the existing literature, either open or classified security information, on any explosive. Rather, the main resource has been reports from facilities using standard or well-known test procedures.

2. ORIGIN. Compilation of data resulting in this handbook was undertaken by Picatinny Arsenal personnel who desired to provide a manual tabulating the characteristics of explosives, based on tests, with regard to current, and possible future, interest. The first resulting Picatinny Arsenal publication was dated 20 June 1949. Revision 1, PA Technical Report No. 1740, dated April 1958, with revisions, provides the data used herein.

<u>3. SCOPE</u> Tabulated data of tests on one hundred and ten explosive compounds or mixtures include sensitivity to friction, impact, heat; performance characteristics or effectiveness in weapons; physical and chemical properties; and method of preparation, synthesis or manufacture, with comments on historical origin, and supplementary references.

4. REFERENCE NOTATIONS AND SOURCES. The references, as to sources of data or for more details in methods of testing, have been listed, when available, at the end of each section devoted to a given explosive compound, explosive mixture, or explosive ingredient. Where no reference is given, it can be assumed that these data represent typical values obtained by standard procedures. When evailable any reference should be consulted for more details in interpreting test data.

Also there are listed Picatinny Arsenal Technical Reports which contain additional information on the particular explosive. These report numbers are given in ascending order, in columns corresponding to their terminal digits, and in accordance with the "Uniterm Index" prepared for Picatinny Arsenal by Documentation Incorporated under Contract RAI-36-034-501-ORD-(P)-42 (1955).

5. EXPLANATION OF TERMS AND METHODS OF TESTING. Data are tabulated herein on three form-type pages, in the following sequence of headings. Many of these terms are self-explanatory.

a. First tabular page.

(1) Name of the explosive in each instance.

- (2) "Composition."
- (3) "Impact Sensitivity, 2 Kg Wt."
 - (a) Impact sensitivity test for solids. (a)*

A sample (approximately 0.02 gram) of explosive is subjected to the action of a falling weight, usually 2 kilograms. A 20-milligram sample of explosive is always used in the Bureau of Mines (BM) apparatus when testing solid explosives. The weight of sample used in the Pica-tinny Arsenal (PA) apparatus is indicated in each case. The <u>impact test value</u> is the minimum

^{*}Reference publications (a through q), applying to this introduction, are listed at the end of the introduction.

height at which at least one of 10 trials results in <u>explosion</u>. For the BM apparatus, the unit of height is the centimeter; for the PA apparatus, it is the inch. In the former, the explosive is held between two flat, parallel hardened (C 63 ± 2) steel surfaces; in the latter case, it is placed in the depression of a small steel die-cup, capped by a thin brass cover, in the center of which is placed a slotted-vented-cylindrical steel plug, slotted side down. In the BM apparatus, the impact impulse is transmitted to the sample by the upper flat surface, in the PA, by the vented plug. The main differences between the two tests are that the PA test (1) involves greater confinement, (2) distributes the translational impulse over a smaller area (due to the inclined sides of the die-cup cavity), and (3) involves a frictional component (against the inclined sides).

The test value obtained with the PA apparatus depends, to a marked degree, on the sample density. This value indicates the hazard to be expected on subjecting the particular sample to an impact blow, but is of value in assessing a material's inherent sensitivity only if the apparent density (charge weight) is recorded along with the impact test value. The values tabulated herein were obtained on material screened between 50 and 100 mesh, U. S. Standard Screens where single component explosives are involved, and through 50 mesh for the mixtures.

(b) Impact sensitivity test for liquids. (b)

The PA Impact Test for liquids is run in the same way as for solids. The die-cup is filled and the top of the liquid meniscus adjusted to coincide with the plane of the top rim of the die-cup. To date, this visual observation has been found adequate to assure that the liquid does not wet the die-cup rim after the brass cap has been set in place. Thus far the reproducibility of data obtained in this way indicate that variations in sample size obtained are not significant.

In the case of the EM apparatus, the procedure that was described for solids is used with the following variations:

1. The weight of explosive tested is 0.007-gm.

<u>2.</u> A disc of desiccated filter paper (Whatman No. 1)9.5-millimeter diameter, is laid on each drop, on the anvil, and then the plunger is lowered on the sample absorbed in the filter paper.

(4) "Friction Pendulum Test." (c)

A 7.0-gm sample of explosive, 50-100 mesh, is exposed to the action of a steel, or fiber, shoe swinging as a pendulum at the end of a long steel rod. The behavior of the sample is described qualitatively to indicate its reaction to this experience, i.e., the most energetic reaction is explosion, and in decreasing order of severity of reaction: snaps, cracks, and unaffected.

(5) "Rifle Bullet Impact Test." (d)

Approximately 0.5-pound of explosive is loaded in the same manner as it is loaded for actual use: that is, cast, pressed, or liquid in a 3-inch pipe nipple (2-inch inside diameter, 1/16-inch wall) closed on each end by a cap. The loaded item, in the standard test, contains a small air space which can, if desired, be filled by inserting a wax plug. The loaded item is subjected to the impact of a caliber .30 bullet fired perpendicularly to the long axis of the pipe nipple, from a distance of 90 feet.

(6) "Explosion Temperature." (a)

A 0.02-gm sample (0.01-gm in the case of initiators) of explosive, loose loaded in a No. 8 blasting cap, is immersed for a short period in a <u>Wood's metal</u> bath. The temperature determined is that which produces explosion, ignition or decomposition of the sample in 5 seconds, and the behavior of the sample is indicated by "Explodes" or "Ignites" or "Decomposes" placed beside the value. Where values were available for times other than 5 seconds, these have been included. For 0.1-second values, no cap was used, but the explosive was placed directly on <u>Wood's metal</u> bath, immediately after cleaning. The value 0.1 second is estimated, not determined, and represents an interval regarded as instantaneous to the observer's eye. Dashes indicate no action.

(7) "75°C International Heat Test." (a)

A 10-gm sample is heated for 48 hours at 75° C. The sample after this exposure is observed for signs of decomposition or volatility.

(8) "100°C Heat Test." (a)

A 0.6-gm sample is heated for two 48-hour periods at 100° C. It is also noted whether exposure at 100° C for 100 hours results in explosion.

(9) "Flammability Index." (h)

The measure of the likelihood that a bare charge will catch fire when exposed to flames is the index of flammability. The test is made by bringing an oxyhydrogen flame to bear on the explosive. The maximum time of exposure which gives no ignition in 10 trials and the minimum exposure which gives ignition in each of 10 trials are determined. The index of flammability is 100 divided by the mean of the two times in seconds. The most flammable substances have high indices, e.g., 250.

(10) "Hygroscopicity."

A 5- to 10-gm sample is exposed for hygroscopicity under the stated conditions, until equilibrium is attained, or in cases where either the rate is extremely low, or very large amounts of water are picked up, for the stated time. The sample, if solid, is prepared by sieving through a 50 and on a 100 mesh screen.

(11) "Volatility."

A 10-gm sample is exposed for volatility under the stated conditions. The sample if solid is prepared by sieving through a 50 and on a 100 mesh sieve.

(12) "Molecular Weight."

The molecular weight (MW) of a mixture can be calculated from the equation

MW of mixture =
$$\frac{100}{\frac{a}{mw_1} + \frac{b}{mw_2} + \frac{c}{mw_3} + \frac{n}{mw_n}}$$

where a, b, c and n are the weight percents of the components, and mw_1 , mw_2 , mw_3 and mw_n their corresponding molecular weights.

(13) "Oxygen Balance."

The oxygen balance (OB) is calculated from the empirical formula of a compound in percentage of oxygen required for complete conversion of carbon to carbon dioxide (or carbon monoxide) and hydrogen to water. When metal is present the reactions are assumed to occur in the following order:

Metal + 0 \longrightarrow Metal Oxide C + H₂0 \longrightarrow CO + H₂ CO2 + H₂ \longrightarrow CO + H20 2CO + O₂ \longrightarrow 2CO₂

Procedure for calculating oxygenbalance is to determine the number of gramatoms of oxygen which are excess or deficient for 100 grams of a compound. This number multiplied by the atomic weight of oxygen gives

the oxygen balance: 1600 (2X + $\frac{Y}{Z}$ - Z)

 \div molecular weight of compound = oxygen balance to C02 and H₂O, where X = atoms of carbon, Y = atoms of hydrogen, Z = atoms of oxygen. The oxygen balance of a mixture is equal to the sum of the percent composition times the oxygen balance for each component.

The carbon/hydrogen (C/H) ratio is calculated as follows:

 $\frac{\text{Number of } C \text{ atoms } (\%C + \%H)}{\text{Number of } H \text{ atoms } (100)} = C/H \text{ ratio}$

- (14) "Density."
- (15) "Melting Point."
- (16) "Freezing Point."
- (17) "Boiling Point."
- (18) "Refractive Index."
- (19) "Vacuum. Stability Test." (a)

A 5.0-gm sample (1.0 gm for initiators), after having been carefully dried, is heated for 40 hours, in vacuo at the desired temperature.

- (20) "200 Gram Bomb Sand Test."
 - (a) Sand test for solids. (a)

A 0.4-gm sample of explosive, pressed at 3000 pounds per square inch into a No. 6 cap, is initiated by lead azide, or mercury fulminate (or, if necessary, by lead azide and tetryl), in a sand test bomb containing 200 gm of "on 30 mesh" Ottawa sand. The amount of azide, or of tetryl, that must be used, to insure that the sample crushes the maximum net weight of sand, is designated as its sensitivity to initiation and the net weight of sand crushed, finer than

•

30 mesh, is termed the <u>sand test value</u>. The net weight of sand crushed is obtained by subtracting from the total the amount crushed by the initiator when shot alone.

(b) Sand test for liquids. (b)

The sand test for liquids is made in accordance with the procedure given for solids except that the following procedure for loading the test samples is substituted:

Cut the closed end from a No. 6 blasting cap and load one end of the resulting cylinder with 0.20 gm of lead azide and 0.25 gm of tetryl, using a pressure of 3000 psi for consoli-dating each charge. With a pin, prick the powder train in one end of a piece of miner's black powder fuse 8 or 9 inches long. Crimp to the pricked end a loaded cylinder, taking care that the end of the fuse is held firmly against the charge in the cap. Crimp near the mouth of the cap so as to avoid squeezing the charge. Transfer a weighed portion of 0.400 gm of the test explosive to an aluminum cap, taking precautions when the explosive is liquid to insert the sample in such a manner that as little as possible adheres to the side walls of the cap, and when a solid material is being tested use material fine enough to pass through a No. 100 U. S. Standard Sieve. The caps used shall be of the following dimensions: length 2.00 inches, internal diameter 0.248-inch, wall thickness 0.025-inch. Press solid explosives, after insertion into the aluminum cap, by means of hand pressure to an apparent density of approximately 1.2 gn per cubic centimeter. This was done by exerting hand pressure on a wooden plunger until the plunger had entered the cap to a depth of 3.93 centimeters. Following are the dimensions of the interior of the cap: height 5.00 cm, area of cross section 0.312 square centimeters. Insert the cylinder containing the fuse and explosive charge of tetryl and lead azide into the aluminum cap containing the test explosive for the determination of sand crushed.

(21) "Sensitivity to Initiation."

This is <u>sensitivity to initiation</u> as described under the preceding heading. The minimum detonating charge, in grams, required to detonate the explosive sample, is given.

(22) "Ballistic Mortar, % TNT." (e)

The amount of sample under test which is necessary to raise the heavy ballistic mortar to the same height to which it is raised by 10 gm of trinitrotoluene (TNT) is determined. The sample is then rated, on a proportionate basis, as having a certain TNT value, i.e., as being a certain percent as effective as TNT in this respect. The formula is

TNT value =
$$\frac{10}{\text{sample weight}}$$
 x 100.

The ballistic mortar consists of a long compound supporting rod, at the end of which is supported a heavy short-nosed mortar. The mortar contains a chamber about 6 inches in diameter and 1 foot long. A projectile occupies about 7 inches of the chamber and the sample to be tested occupies a small portion of the remainder of the chamber. When the sample is detonated, the projectile is driven into a sand bank, and the mortar swings through an angle which is marked on paper by a pencil attached to the mortar. The angle thus indicates the height to which the pendulum is raised by the explosion, and this latter represents the energy measured by this test procedure.

(23) "Trauzl Test, % INT." (d)

A sample of the explosive to be tested (of the order of 10 gm) is exploded in a cavity, or borehole, 25-mm in diameter and 125-mm deep, in a lead block 200-mm in diameter and 200-mm in height. The borehole is made centrally in the upper face of each block, which is cast in a mold from desilverized lead of the best quality. Although these tests have been made under a variety of conditions, where possible the data have been taken from or related to those of Reference f (Naoum). Here a No. 8 blasting cap was used for initiation of the sample contained in glass. The weight of sample used was adjusted to give, with the initiator, a total expansion of 250 to 300 cc, since within this range expansion and sample weight were linearly related under the conditions of Naoum's test. Thus expansions for equivalent weights were readily calculated, and the test value expressed in percent of the expansion of an equivalent weight of TNT.

(24) "Plate Dent Test." (d)

Two methods were used for plate dent tests.

(a) Method A - The charge is contained in a copper tube, having an internal diameter of 3/4-inch and 1/16-inch wall. This loaded tube is placed vertically on a square piece of cold-rolled steel plate, 5/8-inch thick; 4-inch and 3-1/4-inch square plate gave the same results. The steel plate is in a horizontal position and rests in turn on a short length of heavy steel tubing 1-1/2 inches ID and 3 inches OD. The charge rests on the center of the plate, and the centers of the charge, plate, and supporting tube are in the same line. A 20-gm charge of the explosive under test is boostered by a 5-gm pellet of tetryl, in turn initiated by a No. 8 detonator.

(b) Method B - A 1-5/8-inch diameter, 5-inch long uncased charge is fired on a 1-3/4-inch thick, 5-square inch cold-rolled steel plate, with one or more similar plates as backing. The charge is initiated with a No. 8 detonator and two 1-5/8-inch diameter, 30-gm tetryl boosters.

Plate dent test value, or relative brisance = $\frac{\text{Sample Dent Depth}}{\text{Dent Depth for TNT at 1.61 gm/cc}} \times 100.$

(25) "Detonation Rate." (g)

The detonation rates reported in the tables contained herein were determined principally by using the rotating drum camera, under the conditions stated, e.g., usually charges 1 inch in diameter, 20 inches long, wrapped in cellulose acetate sheet, and initiated by a system designed to produce high order stable detonation at the maximum rate under the particular conditions. A typical initiating system for this consisted of four tetryl pellets 0.995 inch in diameter, 0.75 inch long, pressed to 1.50 gm/cc, with a Corps of Engineers special blasting cap placed in a central hole in the end pellet.

b. Second tabular page.

(1) "Booster Sensitivity Test." (p)

The booster sensitivity test procedure is a scaled up modification of the Bruceton method (unconfined charge). The source of the shock consists of two tetryl pellets, each 1.57 inches diameter by 1.60 inches high, of approximately 100 gm total weight. The initial shock is degraded through wax spacers of cast Acrawax B, 1-5/8 inches diameter. The test charges are 1-5/8 inches diameter by 5 inches long. The value given is the thickness of wax in inches at the 50% detonation point. The weight of tetryl pellet noted is the minimum which will produce detonation with the spacer indicated.

(2) "Heat of" (calorimetric tests). (i)

Heats of combustion and explosion are generally determined on samples weighing of the order of 1 to 2 gm, in standard calorimeter bombs such as the Parr or Emerson, approximately 400 cc (for low loading density), or the Boas, approximately 45 cc (for high loading density). For

heats of combustion the sample is burned under about 40 atmospheres or oxygen; for heats of explosion, nitrogen, or one atmosphere of air is used.

- (3) "Specific Heat."
- (4) "Burning Rate."
- (5) "Thermal Conductivity."
- (6) "Coefficient of Expansion."
- (7) "Hardness, Mohs' Scale."
- (8) "Young's Modulus."
- (9) "Compressive Strength."
- (10) "Vapor Pressure."
- (11) "Decomposition Equation."
- (12) "Armor Plate Impact Test." (j)
 - (a) 60-mm Mortar Projectile.

A modified 60-mm, M49A2, mortar projectile is loaded with the explosive to be tested, drilled to the proper depth (about 1/2 inch), and a flat-based steel plug screwed into the projectile to give a smooth close-fit between the plug base and the charge. The part of the plug outside the projectile is rounded off in the form of a spherical section. The loaded projectile with fins attached is fired from a five foot length of 2-3/8 inches ID x 3-3/8 inches 0D Shelby steel tubing. The igniter and propelling charge, consisting of an igniter for a 2.36-inch rocket (bazooka), 5 gm of 4F black power, and a quantity of shotgun propellant sufficient to give the desired velocity (read from a calibration chart) are conveniently loaded into the "gun" through a simple breech plug. The velocities are measured electronically, and the reaction, inert or affected, is determined by observation (e.g., whether or not flash occurs on impact). Within the range of flight stability of the projectile, 200-1100 ft/sec, the 50% point is located.

- (b) 500-lb General Purpose Bombs.
- (13) "Bomb Drop Test."

Bomb drops are made using bombs assembled in the conventional manner, as for service usage, but containing either inert or simulated fuzes. The target is usually reinforced concrete.

- c. Third tabular page.
 - (1) "Fragmentation Test." (1)

The weight of each empty projectile and weight of water displaced by the explosive charge is determined, and from this the specific gravity of the charge is calculated. All 3-inch and 90-mm projectiles are initiated by M20 Booster pellets, and those used with 3-inch HE, M42Al, Lot KC-5 and 90-mm HE, M71, Lot WC-91 projectiles are controlled in weight and height as follows: 22.50 ± 0.10 gm, and 0.480 to 0.485 inch.

The projectile assembled with fuze, actuated by a Blasting Cap, Special, Type II (Spec 49-20) placed directly on a lead of comparable diameter, and booster, are placed in boxes constructed of half-inch pine. The 90-mm projectiles are fragmented in boxes $21 \times 10-1/2 \times 10-1/2$ inches and the 3-inch projectiles in boxes $15 \times 9 \times 9$ inches outside dimensions. The box with projectile is placed on about 4 feet of sand in a steel fragmentation tub, the detonator wires are connected, and the box covered with approximately 4 feet more of sand. The projectile is fired and the sand run onto a gyrating 4-mesh screen on which the fragments are recovered.

(2) "Fragment Velocity."

Charges 10-1/8 inches long and 2 inches in diameter, containing a booster cavity, filled by a 72-gm tetryl pellet (1-3/8) inches diameter, 2 inches long, average density 1.594) are fired in a model projectile of Shelby seamless tubing, 2 inches ID, 3 inches OD, SAE 1020 steel, with a welded-on cold rolled steel base. The projectile is so fired in a chamber, connected to a corridor containing velocity stations, that a desired wedge of projectile casing fragments can be observed. The fragment velocities are determined by shadow photographs, using flash bulbs, and rotating drum cameras, each behind three slits. The drum cameras have a writing speed of 30 meters per second.

(3) "Blast (Relative to TNT)."

The blast pressures and impulses given were determined almost exclusively with tourmaline gages, and the usual necessary specialized electrical circuits, shielded co-axial cables, oscillographs, etc. In general, the data represent results of tests with large cased charges.

(4) "Shaped Charge Effectiveness, TNT = 100." (k, m)

Unconfined charges 2 inches in diameter and 6 inches *long*, boostered by a 10-gm pressed tetryl pellet, set in a 20-mm pellet (truncated cone) of cast 60/40 cyclotol, are shot against 3-inch homogeneous armor plate at a 1-3/16 inches standoff. The cones used are commercial Pyrex glass funnels, sealed off at the start of the stem, 2 inches in diameter, 0.110 to 0.125 inch wall thickness.

Unconfined charges 1.63 inches in diameter and 6 inches long are tested at a standoff of 1.63 inches against stacks of $4 \times 4 \times 1$ inch mild steel plates. M9Al steel cones are used. Results are averages of 4 trials.

- (5) "Color."
- (6) "Principal Uses."
- (7) "Method of Loading."
- (8) "Loading Density."
- (9) "Storage."

Ammunition and bulk explosives in storage represent varying degrees of hazard and compatibility. This has led to their being divided into a number of hazard classes and compatibility groups as indicated in subparagraphs (b) and (c) below.

- (a) Method: Wet or dry.
- (b) Hazard Class (Quantity-Distance).

Ammunition and bulk explosives are divided into quantity-distance classes, Class 1 through 12, according to the damage expected if they explode or ignite (Reference: Army Materiel Command Regulation, AMCR 385-100, <u>AMC Safety Manual</u>, chapter 17). All standard explosives in bulk are included in four of these classes: Class 2, 2A, 9, and 12 (TM 9-1910/TO 11A-1-34).

(c) Compatibility Group.

Explosives and ammunition are grouped for compatibility with respect to the following factors:

- 1. Effects of explosion of the item.
- 2. Rate of deterioration.
- 3. Sensitivity to initiation.
- 4. Type of packing.
- 5. Effects of fire involving the item.
- <u>6.</u> Quantity of explosive per unit.
- (d) Exudation.
- d. Miscellaneous entries.

Where available and appropriate, the following or related data are given, in space at the bottom of the third form, or on plain pages.

- (1) Solubility.
- (2) Methods of manufacture.
- (3) Historical information.
- (4) Bulk compressibility modulus. (q)

The direct experimental measurement of the dynamic bulk modulus of a solid is difficult, and few such measurements have been made. One apparatus has been developed at the Naval Ordnance Laboratory and is described in detail in Reference q. Bulk modulus (its reciprocal is the compressibility) is defined as the ratio of stress to strain when the stress is a pressure applied equally on all surfaces of the sample and the strain is the resulting change in volume per unit volume.

(5) Hydrolysis tests. (0)

The 240-hour hydrolysis test is conducted as follows: A 5-gm sample of the dry nitrocellulose is weighed accurately in a tare-weighed 250-cc Pyrex flask having a ground glass connection for a Pyrex condenser. Then 100 cc of distilled water is added to the nitrocellulose in the flask and the flask fitted to the condenser. The flask is placed in a steam bath in which the water is kept boiling constantly by means of electric hotplates. At the end of 240 hours the mount of solid developed by the hydrolysis of the nitrocellulose is measured by an electromatic pH method.

(6) Sensitivity to initiation by electrostatic discharge. (n)

The samples are tested under two amounts of confinement, designated as unconfined and confined. In the unconfined test, a sample of approximately 0.05 gm is dumped into a shallow depression in a steel block and flattened out with a spatula. In the confined tests (partly confined), the sample of approximately 0.05 gm is introduced into soft-glass tube ($\sim 7 \text{ mm}$ ID x 18 mm *long*) which fits over a metal peg. The volume of the space around the charge at zero gap is ~ 0.15 cc; at a gap of 0.6 mm, it is ~ 0.4 cc. In addition to providing moderate confinement, this system also minimizes dispersion of the sample by the test spark, and reduces the effect of material being repelled from the needle point by electrostatic field effect.

When a test is to be made, the needle point electrode is screwed up until the gap between electrodes is greater than the critical gap discharge at the test voltage. The sample is then placed in position, the high-voltage terminal of the charged condensor is switched to the point electrode by means of a mercury switch, and the electrode is screwed down until discharge occurs.

The spark energy (in joules), for zero probability of ignition, is determined.

(7) Destruction by chemical decomposition.

Burning is the preferred method of destroying explosives. Initiating type explosives (in quantity) are usually destroyed by detonation with demolition blocks. Destruction of explosives by chemical decomposition can be effectively used where small laboratory quantities are involved. Procedures given are standard for only lead azide, mercury fulminate and nitrogly-cerin.

(8) Other information.

(9) References.

6. REFERENCES CITED 1N INTRODUCTION, ¹

a. W. H. Rinkenbach and A. J. Clear, Standard Laboratory Procedures for Sensitivity, Brisance, and Stability of Explosives, PATR No. 1401, 18 March 1944, Revised 28 February 1950.

b. W. R. Tomlinson, Jr. and A. J. Clear, <u>Development of Standard Tests -- Application of the Impact and Sand Tests to the Study of Nitroglycerin and Other Liquid Explosives</u>, PATR No. 1738, 13 June 1949.

c. J. H. McIvor, Friction Pendulum, PA Testing Manual 7-1, 8 May 1950.

d. Departments of the Amy and the Air Force Joint Technical Manual and Technical Order, TM 9-1910/TO 11A-1-34, <u>Military Explosives</u>, April 1955.

e. J. H. McIvor, Ballistic Mortar Test, PA Testing Manual 7-2, 8 May 1950.

f. Ph. Naoum, Z ges Schiess-Sprengetoffw, pp. 181, 229, 267 (27 June 1932).

g. G. J. Mueller, <u>Equipment for the Study of the Detonation Process</u>, PATR No. 1465, 4 July 1945.

h. NDRC Interim Report, <u>Preparation and Testing of Explosives</u>, Nos. PT-19 and PT-20, February-April 1944.

i. Linnie E. Newman, PA Chemical Laboratory Report Nos. 127815 and 134476, 11 January 1951.

j. Report AC-2983/0rg Expl 179.

¹For information regarding source of references, inquiries should be made to the Commander, U.S. Army Research Office--Durham, ATTN: CRDARD-EH, Box CM, Duke Station, Durham, North Carolina 27706.

r

k. Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, <u>Section 111</u>, <u>Variation of</u> <u>Cavity Effect with Composition</u>, NDRC Contract W-672-ORD-\$723.

.

.

1. J. H. McIvor, Fragmentation Test Procedures, PA Testing Manual 5-1, 24 August 1950.

m. Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.

n. F. W. Brown, D. H. Kusler, and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by <u>Electrostatic Discharges</u>, U. S. Department of Interior, Bureau of Mines, R. I. 3852, 1946.

o. D. D. Sager, <u>Study of Acid Adsorption and Hydrolysis of Cellulose Nitrate and Cellulose</u> <u>Sulphate</u>, PATR No. 174, 12 January 1932.

p. L. C. Smith and E. H. Eyster, <u>Physical Testing of Explosives</u>, Part III, Miscellaneous <u>Sensitivity Tests</u>, <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, 27 December 1945.

q. C. S. Sandler, An Acoustic Technique for Measuring the Effective Dynamic Bulk Modulus of Elasticity and Associated Loss Factor of Rubber and Plastics, NAVORD Report No. 1524, 1 September 1950.

W. S. Cramer, <u>Bulk Compressibility Data on Several Explosives</u>, NAVORD Report No. 4380, 15 September 1956.

.

Composition :	Molecular Weight: 92
% Ammonium Nitrate 80 TNT 20	Oxygen Balance: CO, % +1 CO % +11
	Density: gm/cc Cast 1.46
	Melting Point: °C
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 90	Boiling Point: °C
Sample Wt 20 mg	Refractive Index, n ^D ₂₀
Picatinny Arsenal Apparatus, in. 15 Sample Wt, mg 17	n ⁵ ₂₅
· · · · · · · · · · · · · · · · · · ·	n_30
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Unaffected	cc/40 Hrs, at 90°C
Fiber Shoe Unaffected	100°C 0.45
Rifle Bullet Impact Test: 5 Trials	120°C 0.95
%	135°C
Explosions 0 Partials 0	150°C 6.8
Burned 0	200 Gram Bomb Sand Test:
Unaffected 100	Sand, gm 35.5
Explosion Temperature: °C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm
1 5 kcomposes 280	Mercury Fulminate Lead Azide 0.20
10	
15	Tetryl 0.07
20	Ballistic Mortar, % TNT: (a) 130
	Trauzi Test, % TNT: (b) 123
75°C International Heat lest: % Loss in 48 Hrs 0.06	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 0.03	Confined
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc
Explosion in 100 Hrs None	Brisance, % TNT
Flammability Index:	Detonation Rate:
	Confinement None None
Hygroscopicity: %	Condition Cast Cast Charge Diameter, in. 1.0 1.0
0	-
30°C, 90%RH, 2 days 61	Density, gm/cc 1.46 1.50

.

AMCP 706-177

-

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Buff-yellow
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc	Principal Uses: Bombs, HE projectiles
Charge Wt, Ib	
Total No. of Fragments: For TNT For Subject HE	Method of Looding: Cast
	Loading Density: gm/cc 1.46
Fragment Velocity:ft/sec(f)At 9 ft1900At 25½ ft1750Density,gm/cc	Storage: Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation Does not exude a t 65 ⁰ C
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Booster Sensitivity Test:(a)ConditionPressedTetryl, gn100Wax, in. for 50% Detonation0.83Density, gm/cc1.65Heat of:(d, eCombustion, cal/gm1002*Explosion, cal/gm490*Gas Volume, cc/gm930*
	*Calculated from composition of mixture.

٠

Amatol, 60/40

Composition: %		Molecular Weight:	108
Mitrate 70 707	€0 40	Oxygen Balance: CO, % CO %	-18 + 2
		Density: gm/cc Cast	1.60
		Melting Point: °C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	95	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	93 16 17	Refractive Index, n ^o ₂₀ n ^o 25	
Friction Pendulum Test:		n ^D ₃₀	
Steel Shoe Fiber Shoe		Vacuum Stability Test: cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials % Explosions Partiols		100°C 120°C 135°C 150°C	
Burned Unaffected		200 Gram Bomb Sand Test: Sand, gm	41.5
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate	
5 Decomposes 270		Lead Azide	0.20
10 15		Tetryl	0.06
20		Ballistic Mortar, % TNT: (a)	128
		Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs		Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	None
Hygroscopicity: %		Condition Charge Diameter, in.	Cast 1.0
Volatility:	Ni 1	Density, gm/cc Rate, meters/second	1.50 5760

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$:
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Steel Cones
Density, gm/cc	1.49	Hole Volume
Charge Wt, Ib	1.971	Hole Depth
Total No. of Fragments:		Color: Buff-yellow
For TNT	703	Burr yenow
For Subject HE	583	Principal Uses: Bombs, HE projectiles
3 inch HE, M42A1 Projectile, Lo	t KC-5:	
Density, gm/cc	1.57	
Charge Wt, Ib	0.827	
Total No. of Fragments:		Method of Loading: Cast
For TNT	514	
F o r Subject HE	408	Loading Density: gm/cc 160
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:
Density, gm/cc		Method Dry
Blast (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9
A 1		Compatibility Group Group I
Air: Peak Pressure	95	
Impulse	85	Exudation Does not exude at 65°C
Energy	84	
Air, Confined:		<u>Heat of</u> : (d, e)
Impulse		Combustion, cal/gm 1658*
Under Water: Peak Pressure		Explosion, ca 1/gm 633* Gas Volume, cc/gm 880*
Impulse		
Energy		
Underground: Peak Pressure		
Impulse		
Energy		
		*Calculated from composition of mixture.

Amatol, 50/50

Composition:	Molecular Weight: 118
% Ammonium Nitrate 50 TNT 50	Oxygen Balance: <i>CO</i> , % –27 <i>CO</i> % – 3
	Density: gm/cc Cast 1.59
	Melting Point: "C
C/H Ratio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 95	Boiling Point: "C
Sample Wt 20 mg	Refractive Index, n ^D ₂₀
Picatinny Arsenal Apparatus, in. 16 Sample Wt, mg 17	n ^D ₂₅
	n ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Unaffected	cc/40 Hrs, at
Fiber Shoe Unaffected	90°C
Rifle Bullet Impact Test: Trials	100°C 0.2 120°C 1.0
%	135°C
Explosions 0	150°C
Partia ls 0	150 0
Burned O	200 Gram Bomb Sand Test:
Unaffected 100	Sand, gm 42.5
Explosion Temperature: "C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm
1 5 Decomposes 265	Mercury Fulminate
10	Lead Azide 0.20 Tetryl 0.05
15	Tetryl 0.05
20	Ballistic Mortar, % TNT: (a) 124
	Trouzl Test, % TNT:
75°C International Heat Test:	Plate Dent Test:
% Loss in 48 Hrs	Method B
100°C Heat Test:	Condition Cast
% Loss, 1st 48 Hrs	Confined No
% Loss, 2nd 48 Hrs	Density, gm/cc 1.55
Explosion in 100 Hrs	Brisance, % TNT 52
	Detonation Rate:
Flammability Index:	Confinement None None
	Condition Cast Cast
Hygroscopicity: % Ni1	Charge Diameter, in. 1.0 1.0
Volatility:	Density, gm/cc 1.55 1.55
	Rate, meters/second 6430 6230

ragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$:
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Steel Cones (g)
Density, gm/cc	1.55	Hole Volume 53
Charge Wt, Ib	2.053	Hole Depth 69
Total No. of Fragments:		Color: Buff-yellow
For TNT	703	
For Subject HE	630	Principal Uses: Bombs, HE projectiles
3 inch HE, M42A1 Projectile, L	ot KC-5:	
Density, gm/cc	1.54	
Charge Wt, Ib	0.819	
Total No. of Fragments:		Method of Loading: Cast
For TNT	514	Method of Loading: Cast
For Subject HE	385	
		Loading Density: gm/cc 1.59
ragment Velocity: ft/sec At 9 ft At 25½ ft		 Storage:
Density, gm/cc		Method Dry
last (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9
Air:		Compatibility Group Group I
Peak Pressure	97	
Impulse	87	Exudation Does not exude at 65°C
Energy	·	
Lingy		Booster Sensitivity Test: (a)
Air, Confined:		Condition Cast
Impulse		Tetryl, gm 100
		Wax, in. for 50% Detonation 0.60
Under Water:		Density, gm/cc 1.55
Peak Pressure		$\frac{\text{Heat of:}}{(d, e)}$
Impulse		Combustion, cal/gm 1990 Explosion, cal/gm 703*
Energy	98	Explosion, cal/gm 703* Gas Volume, cc/gm 855*
Underground.		*Calculated from composition of mixture.
Peak Pressure	104	Specific Heat: $cal/gm/^{\circ}C$ (i)
Impulse	104	Temp, 20° to 80° C 0.383
Energy	104	Bomb Drop Test: T7, 2000-1b Semi-Armor-Piercing Bomb vs Concrete:

Compatibility with Metals:

Dry - Metals unaffected are zinc, iron, tin, brass, brass tin plated, brass NRC coated, brass shellac coated, nickel aluminum, steel, steel plated with nickel, zinc or tin, stain-less steel, Parkerized steel, and steel coated with acid-proof black paint. Metals slightly affected are copper, bronze, lead and copper plated steel.

Preparation :

In preparing amatols the proper granulation of ammonium nitrate is required if the maximum density of the cast amatol is desired. The ammonium nitrate should be dried so as to contain not more than 0.25% moisture. It should be heated to about 90° C before being added to the appropriate weight of molten TNT contained in a melting vessel equipped with an agitator. Continue mixing to insure uniformity and load by pouring into shell or bombs.

Origin:

Developed by the British during World War I in order to conserve TNT.

References: ²

(a) L. C. Smith and E. H. Eyster, <u>Physical Testing of Explosives</u>, Part 111, Miscellaneous <u>Sensitivity Tests</u>, <u>Performance Tests</u>, <u>OSRD Report 5746</u>, 27 December 1945.

- (b) Report AC-17/Phys Ex 1.
- (c) D. P. McDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(d) Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD Report No. 5406, 31 July 1945.

(e) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(f) R. W. Drake, Fragment Velocity and Panel Penetration of Several Explosives in Simulated <u>Shells</u>, OSRD Report No. 5622, 2 January 1946.

(g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.

(h) Also see the following Picatinny Arsenal Technical Reports on Amatols:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>1</u>	<u>5</u>	6	<u>7</u>	<u>8</u>	<u>9</u>
240 350 630 950 1300 1530	681 731 901 1051 1311 1451 1651	132 182 1302 1352 1372 1552	743 1173 1373 1323 1493 1783	364 694 734 874 1344	65 425 695 715 1145 1225 1345 1455 1885	266 556 986 1376 1446 1636 1796	1207 1457 1797 1827 2167	548 638 838 1098 1148 1388 1568 1838	549 799 929 1129 1219 1369 1559

(i) TM 9-1910/TO 11A-1-34, Military Explosives, April 1955.

²See footnote 1, page 10.

Ammonal

Composition: %		Molecular Weight:	102
Ammonium Nitrate TNT Aluminum	22 67 11	Oxygen Balance: CO, % CO %	-55 -22
Alummum		Density: gm/cc Cast	1.65
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	91 11 19	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₃ n ^S ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe		Vacuum Stability Test: cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials % Explosions Partials		─ 100°C 120°C 135°C 150°C	4.4
Burned Unaffected		200 Gram Bomb Sand Test: Sand, gm	47.8
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Decomposes 265 10		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	0.20
15 20		Ballistic Mortar, % TNT: (a)	122
		Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.00	Confined	
% Loss, 2nd 48 Hrs	0.10	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs	None		
Flammability Index:		Detonation Rate: Confinement Condition	
Hygroscopicity: %		Charge Diameter, in. Density, gm/cc	
Volatility:		Rate, meters/second	

Ammonal

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color:
For Subject HE	Principal Uses: Projectile filler
3 inch HE, M42A1 Projectile, Lot KC-5:	
Density, gm/cc 1.65	
Charge Wt, Ib	
Total No. of Fragments:	Method of Loading: Cast
For TNT 655	Method of Loading: Cast
For Subject HE 550	
	Loading Density: gm/cc 1.65
Fragment Velocity: ft/sec	
At 9 ft At 25½ ft	Storage:
Density, gm/cc	
	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air:	Compatibility Group
Peak Pressure	
Impulse	Exudation
Energy	
	Origin:
Air, Confined: Impulse	Castable mixture developed in United States
	during World War I.
Under Water:	References:
Peak Pressure	(a) W. R. Tomlinson, Jr., Physical and Ex-
Impulse	plosive Properties of Military Explosives,
Energy	PAIR No. 1372, 29 November 1943.
Underground:	(b) Also see the following Picatinny Ar-
Peak Pressure	sen al Technical Reports on Ammonals: 1108, 1286, 1292, 1308 and 1783.
Impulse -	1200, 1292, 1300 and 1703.
Energy	
Preparation:	
Procedure same as described under Amatols, except aluminum is added to the ammonium ni- trate-TNT molten mixture under agitation un- til uniformity in composition is obtained. Loading is accomplished by pouring into the appropriate projectile.	

Composition: %		Molecular Weight: $(H_4 N_2 O_3)$	80
л 35 н 5	ин _ц ио _З	Oxygen Balance: CO, % CO %	+20 +20
		Density: gm/cc Crystal	1,73
0 60		Melting Point: °C	170
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	100+ 31 17	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
	fected	Vacuum Stability lest: cc/40 Hrs, at 90°C	0.2
Rifle Bullet Impact lest: Trials %		─ 100°C 120°C 135°C	0.3 0.3
Explosions 0 Partials 0		150°C	0.3
Burned 0 Unaffected 100		200 Gram Bomb Sand Test: Sand, gm	Ni 1
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Ignites 465 10 15 20		Sensitivity to Initiation: Minimum Detonating Charge, g Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT: (a)	m 0.20 0.25 56
75°C International Heat lest: (a) % Loss in 48 Hrs	0.0	Plate Dent lest: Method	
100°C Heat lest: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	0.74 0.13 None	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:		Detonation Rote: (b) Confinement None Condition Soli	-
Hygrascopicity; %	Extreme	Charge Diameter, in. 1.25 Density, gm/cc 0.9	, -
Volatility : Decomposes a	t 210 ⁰ C	Rate, meters/second 1000	

Ammonium Nitrate

Booster Sensitivity Lest:	Decoxygeosition $(f)_{10}^{13.8}$ $(h)_{10}^{12.3}$
Condition	(Z/sec)
Tetryl, gm	Heat, kilocolorie/male 40.5 38.3
Wax, in. for 50% Detonation	(AH, kcal/mal) Temperature Range, °C 243-261 217-267
Wax, gm	
Density, gm/cc	Phase Liquid
Heat of: Combustion, col/gm 346 Explosion, cal/gm 346	Armor Plate Impact lest:
Gas Volume, cc/gm 980	60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec
Formation, col/gm 1098	Aluminum Fineness
Fusion, cal/gm 18.23	
	500-1b General Purpose Bombs:
Specific Heat: col/gm/°C (e)	Plate Thickness, inches
-150 0.189 0 0.397	
-100 0.330 50 0.414	1
-50 0.364 100 0.428	11/4
	11/2
	13⁄4
Burning Rate:	
cm/sec	Bomb Drop lest:
Thermal Conductivity: col/sec/cm/°C 2.9−3.9 x 10 ^{−14}	T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:	Max Safe Drop, ft
Linear, %/°C	500-lb General Purpose Bomb vs Concrete:
Volume, %/°C	Height, ft
	Trials
Hardness, Mohs' Scale:	Unaffected
	Low Order
Young's Modulus:	High Order
E', dynes/cm²	
E, lb/inch²	1000-ib General Purpose Bomb vs Concrete:
Density, gm/cc	
	Height, ft
Compressive Strength: lb/inch ²	Trials
	Unaffected
Vapor Pressure: (g)	Low Order
°C mm Mercury	High Order
188 3.25	
205 7.45	
216 11.55	
223 15.80 237 27:0	
249 41.0	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT=100$:					
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth					
Total No. of Fragments: For TNT	Color: Colorless					
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Explosive ingredient of mixtures used in bombs or large caliber projectiles					
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed or cast depending on composition of mixture					
	Loading Density: gm/cc Variable					
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:					
Density, gm/cc	Method Dry					
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 12					
Air: Peak Pressure Impulse Energy	Compatibility Group Group D Exudation None					
Air, Confined: Impulse	Effect of Temperature on Impact Sensitivity (Chemically pure grade): (b) Temp. PA Impact Test					
Under Water: Peak Pressure	$\frac{^{\circ}C^{2}}{25} \qquad \frac{2 \text{ Kg } \hat{\mathbb{W}}t, \text{ inches}}{31}$					
Impulse Energy	75 28 100 27 150 27					
Underground: Peak Pressure	175 12					
Impulse						
Energy	In the presence of moisture, ammonium nitrate reacts with copper, iron steel, brass, lead and cadmium.					
	Entropy: (g)					
	cal/mol at 25°C 36.0					

Ammonium Nitrate

Wa	ater	Alco	hol	Aceti	c Acid	Nitric	Acid	<u>Py</u>	ridine
<u>°c</u> 0 20 40 60 80 100	7 118 192 297 421 580 871	о _с 20 40 60 78	<u>4</u> 2.5 5 7.5 10.5	<u>c</u> 16.6 27.0 80.9 101.0 120.0	<u>#</u> 0.0 0.39 5.8 20.7 125	$\begin{array}{ccc} & & & \frac{\sigma}{6} \\ \hline 0 & 4 \overline{5.1} \\ 15 & 73.0 \\ 30 & 106 \\ 75 & 201 \end{array}$	[₱] Nitric Acid 30.0 21.7 20.8 31.6	° <u>C</u> 25	~ 2 0-2 5

Solubility of ammonium nitrate, grams in 100 grams (\$) of: (e)

Preparation:

Ammonium nitrate is prepared by the neutralization of an aqueous solution of ammonia with nitric acid and evaporation of the solution. The product which is very pure is dried in a graining kettle.

Origin:

First prepared by Glauber in 1659 and first used as an explosive ingredient in 1867 when a Swedish patent was granted to Ohlsson and Norrbin for a composite dynamite.

Destruction by Chemical Decomposition:

Ammonium nitrate is decomposed by strong alkalies with the liberation of ammonia, and by sulfuric acid with the formation of ammonium sulfate and nitric acid.

References: 3

(a) Departments of the Amy and the Air Force TM 9-1910/TO lla-1-34, Military Explosives, April 1955.

(b) P. F. Macy, T. D. Dudderar, E. F. Reese and L. H. Eriksen, <u>Investigation of Sensitivity</u> of Fertilizer Grade Ammonium Nitrate to Explosion, PATR No. 1658, 11 July 1947.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

(e) International Critical Tables, McGraw-Hill Book Co., N. Y., Land-Bornst.

G. D. Clift and B. T. Federoff, <u>A Manual for Explosives Laboratories</u>, Vol. 11, Lefax Society, Inc., Philadelphia, 1943.

(f) R. J. Finkelstein and G. Gamow, <u>Theory of the Detonation Process</u>, NAVORD Report No. 90-46, 20 April 1947.

(g) George Feick, The Dissociation Pressure and Free Energy of Formation of Ammonium Nitrate, Arthur D. Little, Inc., J Am Chem Soc, <u>76</u>, 5858-60 (1954).

(h) M. A. Cook and M. Taylor Abegg, "Isothermal Decomposition of Explosive;,' University of Utah, <u>Ind Eng Chem</u>, June 1956, pp. 1090 to 1095.

³See footnote 1, page 10.

Ammonium Nitrate

(I)			0	*		1			
<u>o</u>	<u>1</u>	2	3	4	<u>5</u>	6	<u>7</u>	8	೨
240 350 630 1290 1720	681 731 1051 1241 1311 1391 1431	182 1302 1682	743 1323 1783 2183	364 984 1094 1214 1234 1304	695 1145 1225 1455 1635 1675 1675 1725	596 666 676 946 1106 1696	907 1117 1947 2167	548 638 938 1008 1038	799 1369 1409

(i) Also see the following Picatinny Arsenal Technical Reports on Ammonium Nitrate:

Coyorition:	Molecular Weight: (ClH ₁₄ NO ₁₄)	117.5			
Cl 30.2 N 11.9	Oxygen Balance: CO, % CO %	+27·3 +27·3			
NH ₁ , ClO ₁ ,	Density: gm/cc	1.95			
н 3.4 4 7	Melting Point: °C				
54.5 €/Н _{Ratio}	Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 67 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 24 Sample Wt, mg 24	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀				
Friction Pendulum Test: Steel Shoe Snaps Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	0,13			
Rifle Bullet Impact Test: Trials	120°C 135°C	0.20			
Explosions Partia Is	150°C	0.32			
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 6.0				
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 435	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide	0.20			
10	Tetryl	0.25			
20	Ballistic Mortar, % TNT:				
	_, Trauzl Test, % TNT:				
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method				
100°C Heat Test:	Condition				
% Loss, 1st 48 Hrs 0.02	Confined				
% Loss, 2nd 48 Hrs 0.00	Density, gm/cc Brisance, % TNT				
Explosion in 100 Hrs None					
Flammability Index:	Detonation Rate: Confinement Condition				
Hygroscopicity: %	Condition Charge Diameter, in.				
Volatility :	Density, gm/cc Rate, meters/second				

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:			
90 mm HE, M71 Projectile, Lot WC-91 : Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments : For TNT	Color: Colorless			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Explosive ingredient of mixtures used in pyrotechnics and as projectile filler			
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed or cast depending on composition of mixture			
	Loading Density: gm/cc Variable			
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method Dry			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None			
Air, Confined: Impulse	Solubility in Water gm/100 cc saturated solution: 0°C 12			
Under Water: Peak Pressure Impulse	25°C 20 60°C 39 100°C aa			
Energy	Preparation:			
Underground: Peak Pressure Impulse Energy	The perchlorates are prepared by the action of the acid on a suitable base; by the ther- mal decomposition of certain chlorates; and by the electrolysis of chlorates (see origin). <u>Heat of:</u>			
	Formation, cal/gm 665			

Origin: (c)

E. Mitscherlich first prepared, in 1832, crystals of ammonium perchlorate from barium perchlorate and ammonium sulfate (Pogg Ann 25, 300). T. Schlosing treated a hot solution of sodium perchlorate with ammonium chloride, and on cooling, crystals of ammonium perchlorate were obtained (Comp rend, 73, 1269, [1871]). U. Alvisi treated a mixture of 76 parts of ammonium nitrate with 213 parts of sodium perchlorate, and obtained a crop of small crystals of ammonium perchlorate which were purified by recrystallization from hot water (German Patent, 103, 993, 1898). A. Miolati mixed magnesium or calcium perchlorate with ammonium chloride and crystals of ammonium perchlorate deposited from the solution of very soluble magnesium or calcium chloride (German Patent, 112, 682, 1899).

References: 4

(a) W. R. Tomlinson, Jr., <u>Physical and Explosive Properties of Military Explosives</u>, PATR No. 1372, 29 November 1943.

(b) T. L. Davis, <u>The Chemistry of Powder and Explosives</u>, John Wiley and Sons, Inc., New York, 1943.

(c) J. W. Mellor, <u>A Comprehensive Treatise on Inorganic and Theoretical Chemistry</u>, Vol. 11, Longmanns, Green and Co., London, 1922, p. 396.

(d) Also see the following Picatinny Arsenal Technical Reports on Ammonium Perchlorate:

۵	1	3	4	5	<u>a</u>	9
100	321	843 1783	354 604 854	1095 1725 2205	1726	1049 1969

⁴See footnote 1, page 10.

AMCP 706-177

Composition:	Molecular Weight: 125
% Barium nitrate 67	Oxygen Balance: CO % CO %
TNT 33	Density: gm/cc Cast 2.55
	Melting Point: "C
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 35 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 11 Sample Wt, mg 24	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C
Rifle Bullet Impact Test: Trials % Explosions Partials	100°C 120°C 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 26.8
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Ignites 3 ⁸ 5 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide 0.20 Tetryl 0.10 Ballistic Mortar, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Trauzi Test, % TNT: Plate Dent Test: (a) 73/27 Method B
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	ConditionCastConfinedNoDensity, gm/cc2.52Brisance, % TNT61
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % 30 ⁰ C, 90% RH 0.00	Condition Charge Diameter, in. Density, gm/cc
Volatility:	Rate, meters/second

Baratol

Booster Sensitivity Test: Condition Cast	Decomposition Equation: Oxygen, otoms/sec
	(Z/sec)
Tetryl, gm 100 Wax, in. for 50% Detonation 0-32	Heat, kilocolorie/mole
	(AH, kcol/mol) Temperature Range, °C
Wax, gm	
Density, gm/cc 2,55	Phase
Heat of: Combustion, col/gm	Armor Plate Impact Test:
Explosion, cal/g m	60 mm Mortar Projectile:
Gas Volume, cc/gm	50% Inert, Velocity, ft/sec
Formation, col/gm	Aluminum Fineness
Fusion, col/gm 75/25 Baratol 2.8 (d)	
	500-lb General Purpose Bombs:
Specific Heat: col/gm/°C (d) 75/25 Baratol <u>°C</u>	Plate Thickness, inches
	1
-75 0.152 75 0.280 0 0.147 85 0.213	11/4
25 0.180 90 0.201	
50 0.229 100 0.171	
Burning Bate	13⁄4
Burning Rate: cm/sec	Bomb Drop Test:
Thermal Conductivity	1 '
Thermal Conductivity: cal/sec/cm/°C	T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:	Max Safe Drop, ft
Linear, %/°C	500-Ib General Purpose Bomb vs Concrete:
Volume, %/°C	Height, ft
	Trials
Hardness, Mohs' Scale:	Unaffected
	Low Order
Young's Modulus:	High Order
E', dynes/cm²	
E, Ib/inch ²	1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc	
Compressive Observable 16 /inst-2	Height, ft
Compressive Strength: Ib/inch ²	Trials
	Unaffected
Vapor Pressure:	Low Order
°C mm Mercury	High Order
	1

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragment s: For TNT	Color:			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments :	Principal Uses: Bomb filler			
For TNT For Subject HE	Method of Loading: Cast			
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc 2.55 Storage: Method Dry			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation			
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	<u>Preparation:</u> The appropriate weight of barium nitrate heated to about 90°C is added to molton TNT contained in a melting vessel equipped with an agitator. Continue mixing until uniform, and load by pouring at the lowest practical temperature. <u>Origin:</u> Baratol, an explosive containing barium nitrate and TNT, the proportions varied to suit the required purposes, was developed during World War I.			

Baratol

References: 5

(a) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(b) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, Part III - Miscellaneous <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(c) Also see the following Picatinny Arsenal Technical Reports on Baratol:

<u>o</u>	<u>3</u>	<u>6</u>	8
2010 2160	1-783 2233	2226	2138

(d) C. Lenchitz, W. Beach and R. Valicky, <u>Enthalpy Changes</u>, <u>Heat of Fusion and Specific</u> <u>Heat of Basic Explosives</u>, PATR No. 2504, January 1959.

⁵See footnote 1, page 10.

Composition:	Molecular Weight:	111
% Barium nitrate 50 TNT 35	Oxygen Balance: C0, % C0 %	-24 - 7
Aluminum 15	Density: gm/cc	2.32
	Melting Point: °C	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 30 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 12 Sample Wt, mg 22	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Impact Test: Trials % Explosions Particils	120°C 135°C 150°C	
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	39.8
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Ignites 3 ¹⁴ 5	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate	
10	Lead Azide Tetryl	0.20 0.10
15 20	Ballistic Mortar, % TNT: (a)	96
	Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: (b) Confinement	None
	Condition Charge Diameter, in.	Cast 1.0
Hygroscopicity: %		1.0

Baronal

Fragmentation Test:	Shaped Charge Effectiveness, $TNT=4$	100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel	Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color:	
For TNT		
For Subject HE	Principal Uses: Bomb filler	
3 inch HE, M42A1 Projectile, Lot KC-5:		
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Loading: Cast	
For TNT		
For Subject HE		
	Loading Density: gm/cc 232	
Fragment Velocity: ft/sec At 9 ft		
At 25½ ft	Storage:	
Density, gm/cc		
	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
		~ -
Air: Peak Pressure	Compatibility Group	Group I
Impulse	Exudation	
Energy		
	Preparation:	
Air, Confined:		
Impulse	Procedure same as described	
Under Water:	except aluminum is added to th trate-INT molton mixture under	
Peak Pressure	until uniformity in comparison	is obtained.
Impulse	Booster Sensitivity Test:	
Energy		(c)
Underground:	Condition Tetryl, gm	Cast 100
Peak Pressure	Wax, in. for 50% Detonation	0.86
impulse	Density, gm/cc	2.32
Energy	Heat of:	
	Combustion, cal/gm	2099
	Explosion, cal/gm	1135
	Gas Volume, cc/gm	410

Barona 1

References: 6

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, 27 December 1945.

(b) G. H. Messerly, <u>The Rate of Detonation of Various Explosive Compounds</u>, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) Arthur D. Little Report, Study of Pure Explosive Compounds, Part III, Correlation of Composition of Mixture with Performance, Contract No. DA-19-020-ORD-12, I May 1950.

(e) S. J. Lowell, Propagation of Detonation in Long and Narrow Columns of Explosives, PATR No. 2138, February 1955.

⁶See footnote 1, page 10.

AMCP 706-177

Black Powder

Composition:	Molecular Weight: 84
 Potassium nitrate 74.0 Sulfur 10.4 Charcoal 15.6 	Oxygen Balance: CO, %-22 - 2CO %- 2Density: gm/ccVariable
C/H Ratio	Melting Point: °C Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 3 ² Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 16	Boiling Point: "C Refractive Index, n ^D ₂₀
Sample Wt, mg 16	n ² 3 n ³⁰
Friction Pendulum lest: Steel Shoe Snaps Fiber Shoe Unaffected Rifle Bullet Impact lest: Trials %	Vacuum Stability lest: cc/40 Hrs, at 90°C 100°C 0.5 120°C 0.9 135°C
Explosions Partials Burned Unaffected	150°C 200 Gram Bomb Sand Test: Sand, gm 8
Explosion Temperature: "C Seconds, 0.1 (no cap used) 510 1 490 5 Ignites 10 356	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryi Sensitive to igniting fuse
15 20	Ballistic Mortar, % TNT: 50
	Trauzi lest, % TNT: (a) 10
75°C International Heat lest: % Loss in 48 Hrs 0.31	Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
26°C, 75% RH 0.75 Hygroscopicity: % 25°C, 90% RH 1.91 30°C, 90% RH 2.51	Condition Charge Diameter, in.
Volatility:	Density, gm/cc 1.6 Rate, meters/second 400

Fragmentation Test:	Shaped Charge Effectiveness, $TNT=100$:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Black
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: 1. Igniter powder 2. Time rings (fuzes)
Total No. of Fragments: For TNT	Method of Loading: 1. Loose (granulated) 2. Pressed
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc p si x 10 ³ 25 50 60 65 70 75 1.74 1.84 1.86 1.87 1.88 1.89
At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group O Exudation None
Air, Confined: Impulse	100°C Vacuum Stability Test,cc gas/40 hrs:Initial Value0.5After 2 hours at 65°C0.86
Under Water: Peak Pressure Impulse Energy	After 2 hours at 65°C, 75% RH1.46Sensitivity to Electrostatic(b)Unconfined>12.5
Underground: Peak Pressure Impulse Energy	Confined 0. a <u>Compatibility with Metals:</u> Dry - Compatible with all metals when moisture content is less than 0.20%.
<u>Initiating Efficiency:</u> Grams Required to Initiate	Wet - Attacks all common metals except stainless steel. Heat of:
Igniter Comp K-312.0Igniter Comp K-292.3	Explosion, cal/gm 684 Gas Volume, cc/gm 271

Black Powder

Preparation:

Willow or alder charcoal, flour of sulphur and 2-3% of water are placed in a tumbling barrel and mixed for a short period (about 1/2 hour). The mixture is transferred to a "wheel mill" and crystalline potassium nitrate containing 3-4% moisture is added and the mixture is incorporated for several hours. During the incorporation period the mixture is kept damp (2-3% moisture) by adding water at intervals. The mill cake is then pressed at 6000 psi between aluminum plates. The pressed cakes are broken up between rubber or wood rolls. The material is screened and the various particle sizes are separated as desired. The screened material is then transferred to canvas trays and dried in hot air ovens at 60° C. If it is desired to glaze the black powder, the material before drying is polished by rotation in a tumbling barrel to give it a smooth surface. It is next screened to remove the dust. The smooth particles are then placed in a wooden barrel and rotated with graphite. The material is again screened to remove the excess graphite, and dried. Material finer than #40 U. S. Sieve is not graphited.

WARN ING

The batches of black powder must be of sufficient size to cover the bed of the "wheel mill." If the wheels run off on the bare bed, explosions usually result.

Origin:

The exact date of the discovery of black powder is unknown. Historians attribute its discovery to the Chinese, Hindus or Arabs. The Greeks used it during the 7th Century. Marcus Graecus in the 9th Century and Roger Bacon in the 13th Century described compositions similar to the present powder. Beginning with the 16th Century, the composition of black powder containing potassium nitrate, charcoal and sulfur has remained unchanged with respect to the proportionality (75/15/10) of the ingredients.

Destruction by Chemical Decomposition:

Black powder can be desensitized by leaching with water to dissolve the potassium nitrate. The washings must be disposed of separately because the residue of sulfur and charcoal is combustible but not explosive.

References: 7

(a) Ph. Naoum, Nitroglycerine and Nitroglycerine Explosives, Baltimore, 1928.

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by <u>Electrostatic Discharges</u>, U. S. Department of the Interior, Bureau of Mines R1 3852, 1946.

(c) Also see the following Picatinny Arsenal Technical Reports on Black Powder:

'See footnote 1, page 10.

				Blac	<u>k Powder</u>				AMCP 706-177
<u>o</u>	1	2	<u>3</u>	4	5	6	1	8	<u>9</u>
250 710 850 1010 1450	91 471 661 901 1111 1241 1451 1541 1711 1911 1951 2051	222 272 322 492 582 762 872 1022 1622 1712 1802 1912	1633634538431043125312431333149315831683181318431973	354 454 554 554 574 654 664 774 844 1114 1154 1244 1504	65 415 545 605 1145 1275 1815 1885 1905 1915	56 176 356 686 1256 1316 1536 1576 1586 1946	347 407 547 757 847 1097 1797 1807 1827	188 31.8 428 558 598 608 618 698 838 898 1068 1388 1528 1778 1808 1838 1928 2178	379 819 839 849 859 899 1259 1309 1339 1349 1589 173P 1869 1889

Composition:	Molecular Weight: (C ₄ H- _N N ₃ 0 ₉) 241
б С 19.9 н 2.9 ^н 2 ^{с-омо} 2	Oxygen Balance: -17 C0, % 10
н ₂ с N 17.5 /	Density: gm/cc Liquid 1.52
0 59.7	Melting Point: °C
^H 2 ^{C−ON0} 2 C/H Ratio 0,13	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 58 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. <u>~1</u> Sample Wt, mg	Boiling Point: °C Refractive Index, n ^o ₂₀ 1.4738 n ^o ₂₅ n ^o ₃₀
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 2.33
Rifle Bullet Impact Test: Trials % Explosions Partials	120°C 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test:Sand, gm48.6
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Decomposes 230 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide 0.20 Tetryl 0.10
15 20	Ballistic Mortar, % TNT:
	Trauzi Test, % TNT:
75°C International Heat lest: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs 1.5 % Loss, 2nd 48 Hrs 1.2 Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % (a) 100 ^o F, 95% RH, 24 hrs 0.14 Volatility:	Condition Charge Diameter, in. Density, gm/cc
Volatility: 60°C, mg/cm ² /hr 46	Rate, meters/second

1,2,4-Butanetriol Trinitrate (BTTN) Liquid

AMCP 706-177

agmentation lest:		Shaped Charge Effectiveness, TNT	- 100.
90 mm HE, M71 Projectile, Lot WC	-91:	Glass Cones Ste	eel Cones
Density, gm/cc		Hole Volume	
Charge Wt, Ib		Hole Depth	
Total No. of Fragments:		Color: Yellow	oil
For TNT			0
For Subject HE		Principal Uses: Explosive pla	asticizer for
3 inch HE, M42A1 Projectile, Lot K	C-5:	nitrocellulo	
Density, gm/cc			
Charge Wt, Ib			
Total No. of Fragments: For TNT		Method of Loading:	
For Subject HE		Loading Density: gm/cc	1.52
			1.52
agment Velocity: ft/sec At 9 ft			_
At 25½ ft		Storage:	
Density, gm/cc		Method	
ast (Relative to TNT):		Hazard Class (Quontity-Distance	e)
Air:		Compatibility Group	
Peak Pressure			
Impulse		Exudation	
Energy			
Air, Confined:		Solubility in Water, gm/100 gm, at:	(a)
Impulse		20 ⁰ C	0.08
Under Water:		60 ⁰ C	0.15
Peak Pressure		Solubility of Water in,	(a)
Impulse		gm/100 gm:	Ò.Ó4
Energy		Solubility, gm/100 gm, at 25°C, in:	
Underground:			
Peak Pressure		Ether Alcohol	w 00
Impulse		2:1 Ether:Alcohol	00
Energy		Acetone	w
Heat of:	(a)	Viscosity, centipoises:	(a)
Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm	2168 1457 840	Temp. 25 ⁰ C	59

Preparation (Laboratory Procedure):

To a cooled mixture of 73.8 gm of 100% nitric acid, 46.2 gms of 106.2% sulfuric acid and 60.0 gm of 96.1% sulfuric acid, 30 gms of the original (or redistilled) 1,2,4-butanetriol was added dropwise with agitation for a period of thirty minutes. The temperature of the reaction mixture was kept at $0^{\circ}-5^{\circ}$ C. When the agitation was completed, stirring was continued for one and one-half hours. The mixture was poured into ice water, and the resulting oil suspension was extracted with three 100 milliliter portions of ether. The combined ether extracts were washed with water, then with a 5% sodium bicarbonate solution and finally with water. The neutralized extract was dried with anhydrous calcium chloride and then the ether was evaporated. The yellow oil was dried in a vacuum desiccator over anhydrous calcium chloride until the material was brought to constant weight.

Origin:

1,2,4-butanetriol was first synthesized by Wagner and Ginsberg in 1894 by oxidizing allyl carbinol with potassium permanganate under mild conditions (Ber 27, 2437). Recently the U. S. Rubber Laboratory, under the direction of P. Tawney, devised a new synthesis carried out with allyl acetate and formaldehyde to give 1,2,4-butane triacetate which was readily hydrolysed to butanetriol (U. S. Rubber Company Quarterly Report, May 1948). Working with pure 1,2,4-butane-triol prepared by an improved technique of the Wagner method, the U. S. Naval Laboratory in 1948 nitrated the butanetriol on a laboratory and a pilot plant scale (Reference a).

References: 8

(a) J. A. Gallaghan, F. Macri, J. Bednarik, and F. McCollum, <u>The Synthesis of 1,2,4-Butane-triol and the Evaluation of Its Trinitrate</u>, U. S. Naval Powder Factory Technical Report No. 19, 10 September 1948.

(b) Also see the following Picatinny Arsenal Technical Reports on Butanetriol Trinitrate: 1755 and 1786.

⁸See footnote 1, page 10.

Composition A-3

AMCP 706-177

Composition:		Molecular Weight:	227
% RDX 9 1		Oxygen Balance: CO₂ % CO %	-48
Wax 9		Density: gm/cc 12,000 ps	
пал		Density: gm/cc 12,000 ps Melting Point: °C	31
		-Melting Point: °C	
		Freezing Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	16	Refractive Index, $\mathbf{n}_{20}^{\mathbf{D}}$	
Sample Wt, mg	17	n ₂₅	
· · · ·		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Unaffe	cted	cc/40 Hrs, at	
Fiber Shoe Unaffe	cted	90°C	0.3
Rifle Bullet Impact Test: Trials		100°C 120°C	0.6
%		135°C	0.0
Explosions 0		150°C	
Partiols 0		130 C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 100		Sand, gm	51.5
Explosion Temperature: "C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charg	
1		Mercury Fulminote	0.22*
5 Decomposes 250)	Lead Azide	0.25*
10		* Tetryi Alternative initiating	charges
15			a) 135
20		TrauzI Test, % TNT:	
75°C International Heat Test:		Plate Dent Test: (b)	
% Loss in 48 Hrs		Method B	В
		Condition Pre	ssed Pressed
100°C Heat Test: % Loss, 1st 48 Hrs	0.15	Confined No	No
% Loss, 2nd 48 Hrs	0.15	Density, gm/cc 1.6	1 1.20
Explosion in 100 Hrs	None	Brisance, % TNT 126	5 75
• • • • • • • • • • • • • • • • • • • •		 Detonation Rate: (c)	
Flammability Index:	195	Confinement	None
-		Condition	Pressed
Hygroscopicity: % 30⁰C, 90% RH	0.0	Charge Diameter, in.	1.0
Valatility 5000 15 to		Density, gm/cc	1.59
Volatility: 50°C, 15 days	0.03	Rate, meters/second	8100

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$:
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Steel Cones
Density, gm/cc	1.62	Hole Volume
Charge Wt, Ib	2.102	Hole Depth
Total No. of Fragments:		Calor: White-buff
For TNT	70 <u>3</u>	
For Subject HE	1138	Principal Uses: HE, SAP, AP projectiles;
3 inch HE, M42A1 Projectile, Lo	ot KC-5:	Shaped Charges
Density, gm/cc	1.64	
Charge Wt, Ib	0.861	
Total No. of Fragments: For TNT	514	Method of Loading: Pressed
For Subject HE	710	
		Loading Density: gm/cc psix 10 ³
Fragment Velocity: ft/sec		3 12 1.47 1.65
At 9 ft At 25½ ft	2800 2530	Storage:
Density, gm/cc	1.61	Method Dry
Blast (Relative to TNT);		Hazard Class (Quantity-Distance) Class 9
Air:		Compatibility Group Group I
Peak Pressure		Exudation Does not exude at 65°_{2} C when waxes
Impulse		melting sharply at or above 75°C are used.
Energy		
Air, Confined:		Preparation:
Impulse		A water slurry of RDX is heated to 100 ^o C with agitation. Wax and a wetting agent are added and the mixture, under agitation, is
Peak Pressure		cooled below the melting point of the wax. The wax coated RDX is collected on a filter and air dried at 75°C.
Impulse Energy		Effect of Temperature on Rate of Detonation: (e)
Underground: Peak Pressure		16 hrs at, ^o c -54 21 Density, gm/cc 1.51 1.51
Impulse		Rate, m/sec 7600 7620
Energy		Booster Sensitivity Test: (d)
		ConditionPressedTetryl, gn100Wax, in. for 50% Detonation1.70Density, gm/cc1.62
		Heat of: Combustion, cal/gm 1210

Compatibility with Metals:

Dry - Aluminum, stainless steel, mild steel, mild steel coated with acid-proof black paint and mild steel plated with nickel or zinc are unaffected. Copper, magnesium, magnesium-aluminum alloy, brass and mild steel plated with cadmium or copper are slightly affected.

Wet - Stainless steel is unaffected. Copper, aluminum, magnesium, brass, mild steel, mild steel coated with acid-proof black paint and mild steel plated with copper, cadmium, nickel or zinc are slightly affected.

Origin:

Developed by the British during World War II as RDX and beeswax. Subsequent changes in the United States replaced beeswax with synthetic waxes, changed the granulation of RDX and improved the method of manufacture.

Destruction by Chemical Decomposition:

RDX Composition A-3 (RDX/wax, 91/9) is decomposed by adding it slowly to 25 times its weight of boiling 5% sodium hydroxide. Boiling of the solution is continued for one-half hour.

References: 9

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.

M D. Hurwitz, <u>The Rate of Detonation of Various Compounds and Mixtures</u>, OSRD Report No. 5611, 15 January 1946.

(a) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NOL Mano 10,303, dated 15 June 1949.

(e) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explo-</u> sives at Several Different Temperatures. PATR No. 2383, November 1956.

(f) Also see the following Picatinny Arsenal Technical Reports on RDX Composition A-3:

<u>o</u>	1	2	3	4	<u>5</u>	6	<u>_7</u>	8	9
1380 1910	1451 1761	1492 2112	1493	1424 1614 1634 2154	1325 1585 1595 1715 1885 2235	1556 1936	1687 1787 1797	1338 1388 1728 1838	1639 2179

⁹See footnote 1, page 10.

Composition:	Molecular Weight: 224
% RDX 60 TNT 40	Oxygen Balance: CO, % -43 CO % 10
	Density: gm/cc Cast 1.65
Wax, added 1	Melting Point: "C (1) 78-80
C/H Ratio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 75	Boiling Point: °C
Sample Wt 20 mg	Refractive Index, ⊓₂₀
Picatinny Arsenal Apparatus, in. 1^{h} Sample Wt mg 19	n ₂₅
Sample Wt, mg 19	n ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Unaffected	cc/40 Hrs, at
Fiber Shoe Unaffected	90°C 100°C 0.7
Rifle Bullet Impact Test: Trials	100°C 0.7 120°C 0.9
. %	135°C
Explosions 3	150°C 11+
Partials 13	
Burned 4	200 Gram Bomb Sand Test:
Unaffected 80	Sand, gm 54.0
Explosion Temperature: "C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used) 526	Minimum Detonating Charge, gm
1 3 68	Mercury Fulminate 0.22*
5 Decomposes 278	Lead Azide 0.20*
10 255	* Tetryl Alternative initiating charges
15 > 250	
20 > 250	
75°C International Heat Test	Trauzi Test, % TNT: (b) 130
% Loss in 48 Hrs	Plate Dent Test: (c)
	Method B
100°C Heat Test:	Condition Cast
% Loss, 1st 48 Hrs 0.2	Confined No
% Loss, 2nd 48 Hrs 0.2	Density, gm/cc 1.71
Explosion in 100 Hrs None	Brisance, % TNT 132
	Detonation Rate:
Flammability Index: 177	Confinement None
Hygroscopicity: % 30 [°] C, 90% RH 0.02	Condition Cast
Hygroscopicity: % 30°C, 90% RH 0.02	Charge Diameter, in. 1.0
Volatility:	Density, gm/cc 1.68
voraunty.	Rate, meters/second 7840

Booster Sensitivity Test: Condition	(d) Cast	Decomposition Equation: Oxygen, atoms/sec		
Tetryl, gm	100	(Z/sec) Heat, kilocolorie/molo	2	
Wax, in. for 50% Detonation	1.40	(AH, kcol/mol)		
Wax, gm		Temperature Range, '	°C	
Density, gm/cc	1.69	Phase		
Heat of: Combustion, col/gm	(e) 2790	Armor Plate Impact Tesi	t:	(e)
Explosion, col/gm Gas Volume, cc/gm	1240	60 mm Mortar Project 50% Inert, Velocity	y, ft/sec	209
Formation, cal/gm Fusion, cal/gm (1)	8.0	Aluminum Finenes		
		500-1b General Purpo	se Bombs:	
Specific Heat: col/gm/°C (1)		Plate Thickness, in	ches	
			Trials	<u>% Inert</u>
-75 0.235 $750 0.220 85$	0,376 0,354	1	4	100
0 0.220 85 25 0.254 90	0.341	۱1⁄4	6	50
50 0,305 100	0.312	11/2	2	0
		18/4	0	
Burning Rate: cm/sec		Bomb Drop Test:		
Thermal Conductivity: col/sec/cm/"C		T7, 2000-Ib Semi-Arr	nor-Piercing I	Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft		
Linear, %/°C		500-1b General Purpo	No Seal	Concrete: Seal
Volume, %/°C		Height, ft	4000	4000
		Trials	65	39
Hardness, Mohs' Scale:		Unaffected	58	36
		Low Order	2	2
Young's Modulus: E', dynes/cm²		High Order	5	1
E, lb/inch ²		1000-lb General Purp	ose Bomb vs	Concrete:
Density, gm/cc				
		Height, ft		
Compressive Strength: Ib/inch ² (b)	1610-2580	Trials		
Density, gm/cc	1.68	Unaffected		
Vapor Pressure:		Low Order		
"C mm Mercury		High Order		

Composition_B

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot	MC-91.	(g) (h) Glass Cones Steel Cones
N2	1.65	Hole Volume 178 162
De n sity, gm/cc Charge Wt, Ib	2.187	Hole Depth 125 148
Charge Wi, 10	2.107	
Total No. of Fragments:		
For TNT	703	Color: Yellow-brown
For Subject HE	998	
3 inch HE, M42A1 Projectile, Lo	N+ KC-5.	Principal Uses: Fragmentation bombs, HE projectiles, grenades, shaped
Density, gm/cc	1.67	charges
Charge Wt, Ib	0.882	
	0.002	
Total No. of Fragments:		Method of Loading: Cast
For TNT	514	Method of Loading.
For Subject HE	701	
		Loading Density: gm/cc 1.68
Fragment Velocity: ft/sec		
At 9 ft At 25½ ft	2940	Storage:
Density, gm/cc	2680 1.68	Giorage.
Donsky, grif de	1.00	Method Dry
Blast (Relative to TNT);	(f)	Hozord Class (Quantity-Distance) Class 9
Air:		Compatibility Group Group I
Peak Pressure	110	croup in a croup i
Impulse	110	Exudation Very slight when stored at 71°C
Energy	116	
		Origin:
Air, Confined:	75	
Impulse	75	RDX Composition B was developed by the British between World War I and World War 11.
Under Water:		It was standardized by the United States
Peak Pressure	110	early in World War 11.
Impulse	108	Effect of Temperature on
Energy	121	Rate of Detonation: (i)
Underground:		16 hrs at, ^o C -54 24
Peak Pressure	104	Density, gm/cc 1.69 1.69
Impulse	97	Rate, m/sec 7720 7660
Energy	-	Bulk Modulus a t Room (j) Temperature (25°-30°C):
Crater radius cubed	107	
		% Wax in Comp B 1 2 3 Dynes/cm ² x 10 ⁻¹⁰ 5.10 3.56 2.34
		Density, gm/cc 1.72 1.70 1.68
		Viscosity, poises:
		Temp, 83°C 3.1 95°C 2.7

Compatibility with Metals:

Dry - Magnesium, aluminum, magnesium-aluminum alloy, mild steel, stainless steel, mild steel coated with acid-proof black paint and mild steel plated with zinc or nickel are unaffected. Copper, brass and mild steel plated with copper or cadmium are slightly affected.

Wet - Aluminum and stainless steel are unaffected. Copper, brass, mild steel, mild steel coated with acid-proof black paint and mild steel plated with cadmium, copper, nickel or zinc are slightly affected. Magnesium and magnesium-aluminum alloy are more heavily affected.

Preparation:

Water wet RDX is added slowly with stirring to molten TNT melted in a steam-jacketed kettle at a temperature of 100° C. Some water is poured off and heating and stirring are continued until all moisture is evaporated. Wax is then added and when thoroughly mixed, the composition is cooled to a satisfactory pouring temperature. It is cast directly into ammunition components or in the form of chips when Composition B is to be stored.

Destruction by Chemical Decomposition:

RDX Composition B is decomposed in 12 parts by weight of technical grade acetone heated to 45° C. While this is stirred vigorously, there is added 12 parts of a solution, heated to 70° C, of 1 part sodium sulfide (Na₂S·9H₂O) in 4 parts water. The sulfide solution is added slowly so that the temperature of the acetone solution does not rise above 60° C. After addition is complete, stirring is continued for one-half hour.

References:¹⁰

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, 27 December 1945.

(b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NOL Mano 10,303, 15 June 1949.

(e) Committee of Divisions 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD Report No. 5406, 31 July 1945.

(f) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(g) Eastern Laboratory, du Pont, Investigation of Cavity Effect, Sec 111, Variation of Cavity Effect with Explosive Composition, NDRC Contract W672-ORD-5723.

(h) Eastern Laboratory du Pont, <u>Investigation of Cavity Effect</u>, Final Report, E Lab du Pont, Contract W-672-ORD-5723, 18 September 1943.

(i) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PAIR No. 2383, November, 1956.

¹⁰See footnote 1, page 10.

Composition B

(j) W. S. Cramer, <u>Bulk Compressibility Data on Several High Explosives</u>, NAVORD Report No. 4380, 15 September 1956.

(k)	Also see th	e followi	ng Picati	nny Arsei	nal Techn	ical Repo	rts on RDX	Composi	tion B:
<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	8	2
1360 1530 2100 2160 2190	1211 1451 2131 2151	1402 1482 1592	1313 1433 1803 1983 2053 2063 2103 2233	1224 1424 1944 2004 2104	1325 1435 1585 1595 1865 1885 2125 2125 2-75 2-35	1466 1476 1556 1756 1956 2236	1207 1437 1457 1737 1797 2007 2147	1338 1388 1438 1458 1688 1728 1828 1838 1978 2008 2138 2168	1339 1379 1469 1819 2019

(1) C. Lenchitz, W. Beach and R. Valicky, <u>Enthalpy Changes. Heat of Fusion and Specific Heat</u> of Basic Explosives, PAIR No. 2504, January 1959.

Composition B. Desensitized

Composition:	<u></u> *	II**	Molecular Weight:	<u>I*</u>	<u>II**</u> See Comp B
% RDX TNT Wax, added, (Stamoulind or Aristowax, 1650/	60 40 5	55.2 40.0	Oxygen Balance: CO, % See	Cyclonite Cyclonite Cyclonite	
1700F) Vinylseal (MA28-14),	2		Density: gm/cc Cast	1.65	1.65
added Vistanex (B120) Albacer Wax	2	1.2 3.6	Melting Point: "C		
C/H Ratio			Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	<u>I*</u> 95 14 17	<u>II**</u> 13 16	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₃ n ^D ₃₀		
Friction Pendulum Test:			Vacuum Stability Test:	<u></u>	II**
Steel Shoe Un affect			cc/40 Hrs, at	<u></u>	
Fiber Shoe Un affect	ted		90°C 100°C		
Rifle Bullet Impact Test: Trials			120°C	0,99	0.92
% Explosions	$\frac{I*}{0}$	$\frac{11^{**}}{0}$	135°C		
Partiols	0	0	150°C	11+	11+
Burned	5	0	200 Gram Bomb Sand Test:	<u>I*</u>	<u>II**</u>
Unaffected	95	100	Sand, gm	52.7	55.0
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1	Τ	<u> </u>	Sensitivity to Initiation: Minimum Detonating Char Mercury Fulminote	<u>⊥*</u> rge, gm	<u> </u>
5 Decomposes 10	260	270	Lead Azide Tetryl	0.22	0.26
15 20			Ballistic Mortar, % TNT:		
			Trauzi Test, % TNT:		
75°C International HeatTest: % Loss in 48 Hrs			Plate Dent Test: Method		
100°C Heat Test:	<u>I*</u>	II**	Condition		
% Loss, 1st 48 Hrs	0.05	0.12	Confined		
% Loss, 2nd 48 Hrs	0.19	0.18	Density, gm/cc Brisance, % TNT		
Explosion in 100 Hrs	None	None			
Flammability Index:			Detonation Rate: Confinement Condition		
Hygroscopicity: % 30 ⁰ C, 90% RH	0.00	0.00	Charge Diameter, in.		
Volatility:	Ni 1	0.00 Ni 1	Density, gm/cc Rate, meters/second		

*Desensitized Comp B, designated I, uses emulsified wax. **Desensitized Comp B, designated 11, uses coated RDX.

Fragmentation Test:			Shaped Charge	e Effectivene	ess, TNT $= 1$	00:
90 mm HE, M71 Projectile, Lo Density, gm/cc Charge Wt, Ib	ot WC-91:		Hole Volum Hole Depth	Glass Cor le	nes Steel (Cones
Total No. of Fragments: For TNT			Color:		Yellow-	brown
For Subject HE 3 inch HE, M42A1 Projectile, Density, gm/cc	Lot KC-5: I* I-65	<u>11**</u> 1.65	Principal Uses	::	Bombs	
Charge Wt, Ib	0.87	0.86				
Total No. of Fragments: For TNT	514 609	514 659	Method of Lo	ading:	Cast	
For Subject HE	009		Loading Densi	ity: gm/cc	1.65	
Fragment Velocity: ft/sec At 9 ft At 25½ ft			Storage:			
Density, gm/cc			Method			Dry
Blast (Relative to TNT):			Hazard Cla	ss (Quantity-	Distance)	Class 9
Air: Peak Pressure			Compatibili	ity Group		Group I
Impulse Energy			Exudation			
Air, Confined: Impulse			Viscosity, Temp, 83 ⁰ 95 ⁰	^о с	<u>I*</u> 3.5 2.6	
Under Water: Peak Pressure			References:		2.0	
Impulse Energy			(a) See Technical I Desensitize	Reports on	wing Picat RDX Comp	inny Arsenal position B,
Underground : Peak Pressure			<u>1</u>	<u>3</u>	<u>5</u>	<u>6</u>
Impulse Energy			2151	1313 2053	1435 1865	1756
*Desensitized Comp B, desi emulsified wax. **Desensitized Comp B, desi coated RDX.	-					

Composition: %	Molecular Weight:				
RDX 88.3 Plasticizer, non-	Oxygen Balance: CO, % CO %				
explosive 11.7*	Density: gm/cc				
*Nonexplosive oily plasticizer containing 0.6%lecithin.	Melting Point: "C				
C/H Ratio	Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt : Bureau of Mines Apparatus, cm 100+	Boiling Point: "C				
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀				
Friction Pendulum Test:	Vacuum Stability Test:				
Steel Shoe	cc/40 Hrs, at 90°C				
Fiber Shoe	100°C 0.3				
Rifle Bullet Impact Test: Trials	120°C 0.7				
Explosions 0	135°C				
Partials 0	150°C				
Burned 0 Unaffected 100	200 Gram Bomb Sand Test: Sand, gm 46.5				
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate				
5 Decomposes 285	Lead Azide 0.25				
10	Tetryl 0.11				
15 20	Ballistic Mortar, % TNT: (a) 120				
	Trauzl Test, % TNT:				
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method A				
100°C Heat Test:	Condition Hand Tamped				
% Loss, 1st 48 Hrs 0.04	Confined Yes				
% Loss, 2nd 48 Hrs 0.00	Density, gm/cc 1.58 Brisance, % TNT 112				
Explosion in 100 Hrs None					
Flammability Index:	Detonation Rate: Confinement				
Hygroscopicity: % 30 ⁰ C, 95% RH 0.25	Condition Charge Diameter, in.				
Volatility: 25 ^o C, 5 days 0.00	Density, gm/cc Rate, meters/second				

Composition C

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100: (f) (g)
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones
Density, gm/cc	Hole Volume 113 114
Charge Wt, Ib	Hole Depth 101 114
- · · ·	
Total No. of Fragments:	Color: White
For TNT	
For Subject HE	Principal Uses: Plastic demolition explosive
3 inch HE, M42A1 Projectile, Lot KC-5:	,
Density, gm/cc	
Charge Wt, Ib	
Total No. of Fragments:	Method of Loading: Hand tamped
For TNT	
For Subject HE	
	Loading Density: gm/cc 1.49
Fragment Velocity: ft/sec	
At 9 ft At 2 5½ ft	Storage:
Density, gm/cc	
	Method Dry
Plact (Polotive to TNT)	Hazard Class (Quantity-Distance) Class 9
Blast (Relative to TNT):	
Air:	Compatibility Group Group I
Peak Pressure	
Impulse	Exudation Exudes above 40 ⁰ C
Energy	
Air, Confined:	Plasticity:
Impulse	Below 0 ^o C Brittle (0 ^o C)
	0-40°C Plastic
Under Water: Peak Pressure	Above 40 [°] C Exudes (40°C)
Impulse	References :
Energy	
	See references for Composition C-4.
Underground:	
Peak Pressure	
Impulse -	
Energy	

Composition:		Molecular Weight:				
% RDX 78.7 TNT 5.0 DNT 12.0		Oxygen Balance: CO, % CO %				
MNT 2.7 NC 0.6		Density: gm/cc				
Solvent 1.0		Melting Point: °C				
C/H Ratio		Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	90	Boiling Point: °C				
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	50	Refractive Index, n ^o ₂₀ n ^o 25 n ^o 30				
Friction Pendulum Test: Steel Shoe Fiber Shoe		Vacuum Stability Test: cc/40 Hrs, at 90°C	2.0			
Rifle Bullet Impact Test: Trials % Explosions 0 Partigls 20		- 100°C 120°C 135°C 150°C	2.0 9.0			
Burned 0 Unaffected 80		200 Gram Bomb Sand Test: Sand, gm	47.5			
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Decomposes 285 10		Sensitivity to Initiation: Minimum Detonating Cl Mercury Fulminote Lead Azide Tetryl	harge, gm 0.25 0.10			
15 20		Ballistic Mortar, % TNT:				
		Trauzl Test, % TNT:				
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	(c) B			
100°C Heat Test:		Condition	Hand tamped			
% Loss, 1st 48 Hrs	1.8	Confined Density, gm/cc	No 1.52			
% Loss, 2nd 48 Hrs	1.4	Brisance, % TNT	111			
Explosion in 100 Hrs	None					
Flammability Index:	178	Detonation Rate: Confinement Condition	(d) None Hand tamped			
Hygroscopicity: % 30 ⁰ C,95% RH	0.55	Charge Diameter, in.	1.0			
Volatility: 25°C, 5 days	0.00	Density, gm/cc Rate, meters/second	1.57 7660			

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments: For TNT	Principal Uses: Plastic demolition explosive Method of Loading: Hand tamped
For Subject HE	Loading Density: gm/cc 1.57
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage:
	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation Volatilizes above 52 ⁰ C
Air, Confined: Impulse Under Water: Peak Pressure impulse Energy Underground: Peak Pressure Impulse Energy	Plasticity: Below 0°C Plastic (-30°C) 0-40°C Plastic above 40°C Hard (52°C)* *Due to volitalization of plasticizer. References: See references for Composition C-4.

Composition:	Molecular Weight:
HDX 77 Tetryl 3 TNT 4	Oxygen Balance: CO, % CO %
DNT 10 MNT 5	Density: gm/cc
NC J	Melting Point: °C
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 100+	Boiling Point: °C
Sample Wt 20 mg	Refractive Index, n ^D ₂₀
Picatinny Arsenal Apparatus, in. 14 Sample Wt, mg 33	
	n ^D 30
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Unaffected	cc/40 Hrs, at
Fiber Shoe Unaffected	90°C 100°C 1.21
Rifle Bullet Impact Test: Trials	100°C 1.21 120°C 11+
9/0	135°C
Explosions 0	150°C
Particils 40	
Burned 0	200 Gram Bomb Sand Test:
Unaffected 60	Sand, gm 53-1
Explosion Temperature: °C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm
1	Mercury Fulminote
5 Decomposes 280	Lead Azide 0.20
10	Tetryl 0.08
15 20	Ballistic Mortar, % TNT: (a) 126
	Trauzi Test, % TNT: (b) 117
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: (c)
	Method B Condition Hand tamped
100°C Heat Test:	
% Loss, 1st 48 Hrs 3.20	Confined NO Density, gm/cc 1.57
% Loss, 2nd 48 Hrs 1.63	Brisance, % TNT 118
Explosion in 100 Hrs None	
Flammability Index:	Detonation Rate: (d) Confinement None
	Condition Hand tamped
Hygroscopicity: % 30 ⁰ C, 95% RH 2.4	Charge Diameter, in. 1.0
	Density, gm/cc 1.60
Volatility: 25°C, 5 days 1.15	Rate, meters/second 7625

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$:				
90 mm HE, M71 Projectile, Lot Density, gm/cc Charge Wt, lb	WC-91 : 158 2045	Glass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragments: For TNT For Subject HE	70 3 944	Color: Yellow Principal Uses: Plastic demolition explosive				
3 inch HE, M42A1 Projectile, Lo Density, gm/cc Charge <i>Wt,</i> lb	ot KC-5 : 1.60 0 . 842	Principal Uses: Plastic demolition explosive				
To tal N o. o f Fragments : For TNT For Subject HE	514 671	Method of Loading: Hand tamped				
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc		Loading Density: gm/cc 1.58 Storage: Method Dry				
Blast (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9 Compatibility Group Group I				
Peak Pressure Impulse Energy	105 109	Exudation Exudes a t 77°C				
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy		Plasticity:Below 0°CHard (-29°C)0-40°CPlasticAbove 40°CExudes (77°C)Booster Sensitivity Test:(h)ConditionPressedTetryl, gm100Wax, in. for 50%DetonationDensity, gm/cc1.62References:See references for Composition c-4.				

Composition: %		Molecular Weight:				
RDX	91	Oxygen Balance: CO, %				
Plasticizer, non- explosive 9*		CO % Density: gm/cc				
* Contains polyisobutylene 2.1 1.6% and di(2-ethylhexyl)	1%; motor oil sebacate 5.3%.	Melting Point: °C				
C/H Ratio		Freezing Point: "C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: "C				
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	19 27	Refractive Index, n ^o ₂₀ n ^b 25 n ^D 30				
Friction Pendulum Test:		Vacuum Stability Test:				
Steel Shoe Unaffe	cted	cc/40 Hrs, at				
Fiber Shoe Unaffe	cted	90°C				
 Rifle Bullet Impact Test: Trials		100°C	0.26			
·		120°C				
80 Explosions 0		135°C				
Particils 0		150°C				
Burned 20		200 Gram Bomb Sand Test:				
Unaffected 80		Sand, gm	55.7			
Explosion Temperature: "C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Ct	narge, gm			
1		Mercury Fulminate				
5 290		Lead Azide	0.20			
10		Tetryl	0.10			
15			(a) 130			
20		Ballistic Mortar, % TNT:	(a) 130			
75°C International Heat Test:		Trauzl Test, % TNT:				
% Loss in 48 Hrs		Plate Dent Test: Method	(c) B			
100°C Heat Test:		Condition	Hand tamped			
% Loss, 1st 48 Hrs	0.13	Confined	No			
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	1.60			
Explosion in 100 Hrs	None	Brisance, % TNT	115			
Flammability Index:		Detonation Rate: Confinement	(d) None			
		Condition	Hand tamped			
	Hygroscopicity: % 30°C, 95% RH Nil					
Hygroscopicity: % 30°C, 95% RH	Nil	Charge Diameter, in.	1.0			
Hygroscopicity: % 30°C, 95% RH	Nil	Charge Diameter, in.	1.0 1.59			

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm∕cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Light brown
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Plastic demolition explosive
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Hand tamped
Fragment Velocity: ft/sec At 9 ft	Loading Density: gm/cc 1.60
At 25½ ft Density, gm/cc	Storage: Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) $Class$ 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation None at 77 ⁰ C
Air, Confined: Impulse	Effect of Temperature on (i) Rate of Detonation:
Under Water: Peak Pressure Impulse Energy	16 hrs at, °C -54 21 Density, gm/ee 1.36 1.35 Rate, m/sec 7020 7040 Plasticity: 1 1
Underground: Peak Pressure Impulse Energy	Below 0 ^o C Plastic (-57 ^o C) 0-40 ^o C Plastic Above 40 ^o C Plastic (77 ^o C)

-

Preparation:

In manufacturing Composition C-3, the mixed plasticizing agent is heated in a melting kettle at 100°C. Water-wet RDX is added and heating and stirring are continued until all the water is evaporated. This mixture is then cooled and hand pressed into demolition blocks or special item ammunition.

Composition C-4 is prepared by hand kneading and rolling, or in a Schrader Bowl mixer, RDX of 144 micron size or less with the polyisobutylene-plasticizer previously made up in ether. The thoroughly blended explosive is dried in air at 60° C and loosely packed by hand tamping to its maximum density.

Origin:

Developed by the British during World War II as a plastic explosive which could be hand shaped. It was standardized in the United States during World War II and subsequent development led. to mixtures designated C-2, C-3 and C-4.

Destruction by Chemical Decomposition:

Composition C-3 is decomposed by adding it slowly to a solution composed of 11/4 parts sodium hydroxide, 11 parts water, and 4 parts 95% alcohol, heated to 50°C. After addition of Composition C-3 is complete, the solution is heated to 80°C and maintained at this temperature for 15 minutes.

References: 11

(a) Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD No. 5406, 31 July 1945.

(b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, <u>Methods of Physical Testing</u>, OSRD Report No. 803, 11 August 1942.

L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, <u>The Rate of Detonation of Various Compounds and Mixtures</u>, OSRD Report No. 5611, 15 January 1946.

(e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(f) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, <u>Sec III</u>, <u>Variation of Cavi-</u> ty Effect with Explosive Composition, NDRC Contract W672-ORD-5723.

(g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.

(h) L. C. Smith and S. R. Walton, <u>4 Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NOL Mamo 10, 303, 15 June 1949.

¹See footnote 1, page 10.

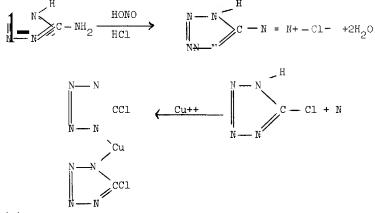
Compositions C, C-2, C-3, C-4

(i) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explo-</u> sives at Several Temperatures, PATR No. 2383, November 1956.

(j) Also see the following Picatinny Arsenal Technical Reports on RDX Composition C:

	<u>0</u>	<u>1</u>	<u>3</u>	<u>4</u>	2	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
Comp C	1260		1293					1518 1838	
Comp C-2 Comp C-3		1611	1293 1713	2154	1595 1695 1885	1416 1416 1556 1766	1797	1518 1518 2028	
Comp C-4						1766	1907	1828 1958	1819

Coyorition:	Molecular Weight: (CuC ₂ N ₈ Cl ₂) 271		
C 8.9 N N N CCL N 41.5 N N N N	Oxygen Balance: CO, % -30 CO % -18		
26.2 N _ N	Density: gm/cc 2.04		
	Melting Point: "C		
C/H Ratio	Freezing Point: "C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C Refractive Index, n ^D ₂₀		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 1; (1 1b wt) <i>3</i> Sample Wt, mg 9	n ₂₅ n ₃₀		
Friction Pendulum Test: Steel Shoe Exploded Fiber Shoe Exploded	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 120°C 135°C 150°C		
Rifle Bullet Impact Test: Trials % Explosions Partials			
Burned Unaffected	200 Gram Bomb Sand Test: (f) Sond, gm 27.4 25.3 Black powder fuse 17.0		
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 305 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide 0.20 0•30 Tetryl 0.10		
15 20	Ballistic Mortar, % TNT:		
75°C International Heat Test: % Loss in 48 Hrs	Trauzl Test, % TNT: Plate Dent Test: Method		
100°C Heat Test: % Loss, 1st 48 Hrs 2.67 % Loss, 2nd 48 Hrs 0.10 Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT		
Flammability Index:	Detonation Rate: Confinement		
Hygroscopicity: % 30°C, 90% RH 3.11	Condition Charge Diameter, in.		
Volatility:	Density, gm/cc Rate, meters/second		


Copper Chlorotetrazole

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones
Density, gm/cc	Hole Volume
Charge Wt, Ib	Hole Depth
Total No. of Fragments:	Color: Blue
For TNT	
For Subject HE	Principal Uses: Primary explosive
3 inch HE, M42A1 Projectile, Lot KC-5:	
Density, gm/cc	
Charge Wt, Ib	
Total No. of Fragments:	Method of Loading: Pressed
ForTNT	
For Subject HE	Loading Density: cm/cc $psi \times 10^3$ (c)
	Loading Density: gm/cc 10 20 40 70
Fragment Velocity: ft/sec	1.49 1.63 1.74 1.86
At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Wat
	Method Wa
Blost (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air:	Compatibility Group Group M
Peak Pressure	
Impulse	Exudation None
Energy	
Air, Confined:	<u>Stab Sensitivity:</u> (c)
Impulse	Density Firing Point (inch-ounces)
Under Water:	<u>gm/cc 0% 50% 100%</u>
Peak Pressure	1.49 9 11 ¹⁵
Impulse	1.63 8.5 io 12
Energy	1.74 6 7 9 1.86 4 5 6
Underground:	Heat of":
Peak Pressure	
Impulse	Explosion, cal/gm 432
Energy	<u>Specific Heat, cal/gm/⁰C</u>
	Temp range 0° - 30° C 0.155
	Wt of sample, gn 0.8910

Copper Chlorotetrazole

Preparation: (a)

Five grams of 5-aminotetrazole are dissolved in a mixture of 200 ml of water and 70 ml of concentrated HCl. Enough kerosene or nujol (which gives a slightly cleaner product) is added to provide a layer of oil approximately $1/4^{"}$ thick on the surface. With only moderate stirring and external cooling to 10° - 15° C, a solution of 5 grams of sodium nitrite in 70 cc of water is added rapidly by means of a burette extending below the oil layer. Immediately after this addition, a solution of 5 gms of cupric chloride in a minimum amount of water is added all at once, and stirring is continued for about 1 hour. The reaction mixture is allowed to stand for a few minutes till the bright blue copper salt separates. The oil is removed by decantation and may be reused. The salt is filtered; washed with water, alcohol, and ether; and dried - giving a yield of 6 grams or 74%.

Origin:

The copper salt of 5-chlorotetrazole was first described in 1929 by R. Stolle' (with E. Schick, F. Henke-Stark and L. Krauss) who prepared the compound by reaction of the diazonium chloride of 5-aminotetrazole with copper chloride (Ber $\underline{62}A$, 1123).

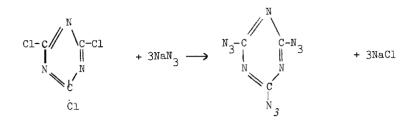
References: 12

(a) R. J. Gaughran and J. V. R. Kaufman, <u>Synthesis and Properties of Halotetrazole Salts</u>, PATR No. 2136, February 1955.

(b) A. M. Anzalone, J. E. Abel and A. C. Forsyth, <u>Characteristics of Explosive Substances</u> for Application in Ammunition, PATR No. 2179, May 1955.

(c) A. C. Forsyth, Pfc, S. Krasner and R. J. Gaughran, <u>Development of Optimum Explosive</u> <u>Trains. An Investigation Concerning Stab Sensitivity versus Loading Density of Some Initiating</u> <u>Compounds</u>, PAIR No. 2146, February 1955.

¹²See footnote 1, page 10.


Composition: %	Molecular Weight: (C ₃ N ₁₂) 204	
c 17.6 N_3 N 82.4	Oxygen Balance: -47.1 CO, % -23.5	
N N	Density: gm/cc Crystal 1.54	
	Melting Point: °C 94	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm $$ 1 kg wt $$ 7	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in Sample Wt, mg _	Refractive Index, n₂₀ n₂₅ n₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Impact Test: Trials % Explosions Partiols	120°C 135°C 150°C	
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 32.2	
Explosion Temperature: "C Seconds, 0.1 (no cap used) 252 1 5 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate - Lead Azide 0.20 Tetryl 0.10	
20	Ballistic Mortar, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Trauzi Test, % TNT: Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement -	
Hygroscopicity: %	Condition - Charge Diameter, in. 0.3	
Volatility: Decomposes above 100 ⁰ C	Density, gm/cc 1.15 Rate, meters/second 5550-5600	

	Shanad Charge Effectiveness T	NT 400
Fragmentation Test:	Shaped Charge Effectiveness, T	NT == 100;
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones	Steel Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color:	Colorless
For TNT		
For Subject HE	Principal Uses: Not used by	ecause of difficulty
3 inch HE, M42A1 Projectile, Lot KC-5:	in control	ling sensitivity.
Density, gm/cc		
Charge Wi, Ib		
Total No. of Fragments:	Method of Loading:	Pressed
For TNT		
For Subject HE		
	Loading Density: gm/cc At 200 atmospheres	1.4
Fragment Velocity: ft/sec	At 800 atmospheres	1.5
At 9 ft At 25½ ft	Storage:	
Density, gm/cc		
	Method	
Blast (Relative to TNT):	Hazard Class (Quantity-Dista	nce) Class 9
Air:	Compatibility Group	
Peak Pressure		
Impulse	Exudation	None
Energy		
Air, Confined:		
Impulse		
Under Water: Peak Pressure		
Impulse		
Energy		
Underground: Peak Pressure		
Impulse		
Energy		

Cyanuric Triazide

Preparation:

By the reaction of cyanuric chloride with an aqueous solution of sodium azide:

Recrystallization should be avoided as it leads to very large crystals which explode when broken.

Origin:

Cyanuric Triazide was prepared in 1847 by Cahours from chlorine and methyl cyanate. Later James improved the process (JCS 51, 268 (1887) and in 1921 E. Ott patented the preparation from cyanuric chloride and sodium azide (Ref b) Taylor and Rinkenbach prepared cyanuric triazide in a pure state and determined its properties (Ref c).

Initiating Efficiency:

Reported to be more efficient than lead azide. Capable of initiating Explosive D.

Solubility:

Insoluble in water; readily soluble in hot ethanol, acetone, benzene, and ether.

Heat of:

Formation, cal/gm -1090 to -1138

References: ¹³

(a) A. H. Blatt, <u>Compilation of Data on Organic Explosives</u>, OSRD Report No. 2014, 29 February 1944.

- (b) Ott and Ohse, Ber <u>54</u>, 179 (1921).
- (c) Taylor and Rinkenbach, Bureau of Mines, RI 2513 (1923).

Taylor and Rinkenbach, J Frank Inst 204, 369 (1927).

¹³See footnote 1, page 10.

Composition: CH2		Moleculor Weight: $(C_3H_6N_6O_6)$	222
16.3 $0_2 N - N N - 1_2 C C H_2$		Oxygen Bolance: CO % CO %	-22 0.0
N 37.8 N		Density: gm/cc Crystal	1.82
$ \begin{array}{c} $		Melting Point: °C	204
C/H Ratio 0.095		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	32	Boiling Point: "C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	-	Refractive Index, $\mathbf{n}_{20}^{\mathbf{D}}$	
Picatinny Arsenal Apparatus, in.	8 18	n ₂₅	
Sample Wt, mg	10	n ⁰ ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Explode		cc/40 Hrs, at 90°C	
Fiber Shoe Unaffec	ted	90°C 100°C	0.7
Rifle Bullet Impact Test: Trials		100°C 120°C	0.9
Kine Bullet Impact Test. Mais			0.9
Explosions 100		135°C 150°C	2.5
Partials 0			2)
Burned 0		200 Gram Bomb Sand Test:	())
Unaffected 0		Sand, gm	60.2
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 405		Minimum Detonating Charge, gm	
1 316		Mercury Fulminate	0.19*
5 Decomposes 260		Lead Azide	0.05*
10 240		* Tetryl Alternative initiating char	TOPS
15 235		Ballistic Mortar, % TNT: (a)	150
20 -		Trauzi Test, % TNT: (b)	157
75°C International Heat Test:	0.00	Plate Dent Test: (c)	·
% Loss in 48 Hrs	0.03	Method	А
		Condition	Pressed
100°C Heat Test:	0.04	Confined	Yes
% Loss, 1st 48 Hrs	0,00	Density, gm/cc	1.50
% Loss, 2nd 48 Hrs Explosion in 100 Hrs	None	Brisance, % TNT	135
Explosion In Too Hrs	TYONG	Detenation Poto:	
Flammability Index: (d)	278	Detonation Rate:	None
		Condition	Pressed
Hygroscopicity: % 25°C, 100% RH	0.02	Charge Diameter, in.	1.0
		Density, gm/cc	1.65
Volatility:	Ni 1	Rate, meters/second	8180

*Name given by Clarence J. Bain of Picatinny Arsenal. Germans call it Hexogen; Italians call it T4; British, RDX.

Cyclonite (RDX)

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Detonator base charge, and ingredient for projectile and bomb fillers
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Loading Density: gm/cc p s i x 10 ³ 3 10 12 15 20 1.46 1.52 1.60 1.63 1.65 1.68 Storage:
Density, gm/cc	Method Wat
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group M (wet) Group L (dry) Exudation None
Air, Confined: Impulse	Effect of Temperature on <u>Rate of Detonation:</u> (k) <u>16 hrs at</u> , ^o C -54 21 <u>Density</u> , gm/cc 1.61 1.62
Under Water: Peak Pressure Impulse	Rate, m/sec 8100 8050
Energy	Effect of Temperature on Impact Sensitivity:
Underground: Peak Pressure Impulse Energy	Temp.PA Impact Test°C2Kg Wt. inchesRoom932.281045

Cyclonite (RDX)

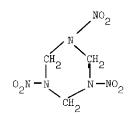
Water	Alcohol	Acetone	Benzene	Toluene
$\begin{array}{ccc} \circ_{\rm C} & {}_{\mathcal{B}} \\ \hline 30 & 0.005 \\ 50 & 0.025 \\ 70 & 0.076 \\ 90 & 0.19 \\ 100 & 0.28 \end{array}$	⁰ C 0 0.040 20 0.105 40 0.240 60 0.579 78 1.195	° <u>c</u> <u>%</u> 20 7.3 40 11.5 60 18.	20 0.05 40 <i>0.09</i> 60 0.20 80 0.41	$\begin{array}{c c} & & & & \\ \hline 0 & 0.015 \\ 20 & 0.02 \\ 40 & 0.05 \\ 60 & 0.13 \\ 80 & 0.30 \\ 100 & 0.65 \end{array}$
Ethvl acetate	<u>Carbon</u> tetrachloride	Methanol	Ether	INT
° <u>c</u> ∯ 28 2.9 94 18.	<u>°c</u> <u>∉</u> 50 0.005 60 0.007 70 0.009	° <u>c</u> <u>%</u> 0 0.14 20 0.23 40 0.47 60 1.1	°c ₫ 10 0.05 20 0.056 30 0.076	°C % 80 4.4 85 5.0 90 5.55 95 6.2 100 7.0 105 7.9
Isoamyl alcohol	<u>Methyl</u> acetate	<u><i>B</i>-Ethoxyethyl</u> <u>acetate</u>	Chlorobenzene	Trichloro- ethylene
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} \bullet_{C} & \phi_{0} \\ \hline 20 & 2.9 \\ 30 & 3.3 \\ 40 & 4.1 \\ 50 & 5.6 \end{array}$	o _c	°c ∉ 20 0.33 30 0.44 40 0.56 50 0.74	°c ₡ 20 0.20 30 0.22 40 0.24 50 0.26
<u>Tetra-</u> chloroethane	<u>Isopro-</u> panol	Isobutanol	Chloroform	Mesityloxide
°c <u>%</u> 38 0.09	<u>°c ∯</u> 38 0.18	° <u>c</u> <u>₫</u> 23 0.0	<u>°c</u> <u>∦</u> 20 0.01	$ \frac{\circ_{\mathbf{C}}}{27} \frac{\%}{3.2} \\ 97 12.2 $
<u>Cyclo-</u> hexanone	<u>Nitro-</u> Þ onson e	Nitro- ethane	Cyclo- pentanone	Acetonitrile
<u>°c</u> 25 12.7 97 25	<u>oc</u> <u>%</u> 25 1.5 97 12.4	<u>°c ∦</u> 28 3.6 93 19	°c ∦ 28 11.5 90 37	${ \circ_{\rm C} \atop 28 \ 11 \atop 82 \ 33 } { {\rm A} \atop 11 \atop 32 \ 33 }$
		l ethyl ketone		
	°c 28 95	<u>7</u> 5.6 14		

Solubility of Cyclonite; gm/100 gm of the following substances: (j)

Solubility of Cyclonite, Holston Lot E-2-5 in Various Solvents:

Solubility

Solvent


Solvent	<u>Boiling</u> <u>Point,</u> <u>oc</u>	Grade or Source*	28 ⁰ C	Heated	Crystalline Form
Acetone	56	CP	8.2	16.5 at 60°C	hexagonal-thick
Cyclohexanone	155.6	CP	13.0	24.0 at 93°C	cubic (massive form)
Nitromethane	100.8		1.5	12.4 at 97°C	plates
Acetonitrile	81.6	Miacet	11.3	33.4 at 93°C	plates
		Chem. Co.	1 4	10.6 at 93 ⁰ 0	short needles
1-Nitropropane	126.5	EK Pract	1.4		short needles
2-Nitropropane	120	EK Pract	2.3	11.6 at 93°C	
2,4-Pentanedione	140.5	Carbide &	2.9	18.3 at 93°C	flat prisms
		Carbon		0.6	1
Methylisobutylketone	115.8		2.4	9.6 at 93°C	long prisms
n-Propylacetate	101.6	EK Red Label	1.5	6.0 at 93 ⁰ C	long prisms, some cubic
n-Butylformate	105.6	EK Red Label	1.4	4.6 at 93°C	long prisms
Ethyl acetate	77.1	Baker's OP	2.0	6.1 at boil.	hexagonal plates
	121	EK Red Label	0.8	1.6 at 93°C	short prisms, some
n-Propylpropionate	121				cubic
Butylacetate	126.5	EK Technical	1.1	4.0 at 93 ⁰ 0	long prisms
Methylethylketone	79.6		5.6	13.9 at boil.	coarse plates
Nitroethane	114.2	EK Red Label	3.6	19.5 at 93 ⁰ 0	plates
Isopropylacetate	88-90	CP	1.1	3.2 at boil.	long prisms
Mesityloxide	128	EK Red Label	4.8	14.5 at 93°C	plates
n-Amylaceta t e	146	CP	1.0	2.1 at 93°C	prisms
Dimethylcarbonate	88-91	EK Red Label	1.4	6.6 at boil.	plates
Diethylcarbonate	125-126.5	EK Red Label	0.7	3.2 at 93°C	prisms
Isoamylacetate	132	CP	1.2	3.6 at 9300	prisms
Ethylpropionate	98-100	EK Red Label	3.0	10.7 at 93°C	fairly thick hex
Linyipiopionate	<i>y</i> o 1 0		-		plates
Methyl-n-butyrate	101.5-103.5	EK Red Label	1.2	4.9 at 93 ⁰ 0	needles
Cyclopentanone	130.6	EK Red Label	11.5	39.0 at 93.5%	
Acrvlonitrile	77.3	Cyanamid Co.	4.0	16.4 at boil.	flat plates
Methylcellosolveacetat		Carbide &	1.6	8.8 at 93°C	massive hexagons and
inethy reenosory caectar	U 177.J	Carbon			prisms
		caroon			

* EK, Eastman Kodak; Pract, practical.

Preparation:

(Summary Technical Report of the NDRC, Div 8, Vol 1)

$$(CH_2)_6 N_4 + 4HNO_3 + 2NH_4NO_3 + 6(CH_3CO)_2 O$$

Ammonium nitrate and acetic anhydride are placed in a flask and, while the mixture is stirred at 75°C, the following three liquids are introduced concurrently and proportionately: acetic anhydride, concentrated nitric acid, and a solution of hexamine in glacial acetic acid. The final mixture is held for a short time at 75°C, diluted with water to 30% acetic acid, and simmered to hydrolyze unstable reaction by-products, which are a mixture of various nitrated and acetylated derivatives of hexamine fragments. After simmering, the slurry is cooled and the precipitated cyclonite removed by filtration. The yield is 78% of the theoretical amount (2 moles) of cyclonite melting at 199°C. By dissolving the ammonium nitrate in the nitric acid, a continuous process, based on 3 liquids, is possible.

The product is recrystallized from acetone, or cyclohexanone, to (a) remove acidity, (b) control particle size and (c) to produce stable β -HMX. The preparative procedure described above, the Bachmann or Combination process, yields cyclonite containing 3-8%HMX.

Origin:

First prepared by Henning in 1899 (German Patent 104,280) and later by von Hertz (U. S. Patent 1, 402,693) in 1922 who recognized its value as an explosive. Not used on a large scale in explosive ammunition until World War 11.

Destruction by Chemical Decomposition:

Cyclonite (RDX) is decomposed by adding it slowly to 25 times its weight of boiling 5% sodium hydroxide. Boiling should be continued for one-half hour.

References: 14

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD Report No.</u> 5746, 27 December 1945.

- (b) Ph. Naoum, <u>Z. ges Schiess Sprengstoffw</u>, pp. 181, 229, 267 (27 June 1932).
- (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

¹⁴See footnote 1, page 10.

Cyclonite (RDX)

(e) Armament Research Department (Woolwich), <u>Solubility of RDX in Nitric Acid</u> (ARD Expl Rpt 322/43 September 1943).

(f) Report AC-2587.

(g) <u>International Critical Tables</u> Land. Bornst.

B. T. Fedoroff et al, <u>A Manual for Explosives Laboratories</u>. Lefax Society Inc, Philadelphia, 1943-6.

(h) E. Hutchinson, <u>The Thermal Sensitiveness of Explosives</u>. <u>The Thermal Conductivity of</u> <u>Explosive Materials</u>, AC 2861, First Report, August 1942.

(i) R. J. Finkelstein and G. Gamow, <u>Theory of the Detonation Process</u>, NAVORD Report No. 90-46, 20 April 1947.

(j) International Critical Tables.

(k) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PAIR No. 2383, November 1956.

(1) Also see the following Picatinny Arsenal Technical Reports on Cyclonite:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u> .	<u>5</u>	<u>6</u>	<u>7</u>	8	9
1170 1290 1360 1450 1760 1980 2100	$1211 \\ 1241 \\ 1311 \\ 1421 \\ 1481 \\ 1561 \\ 1611 \\ 1651 \\ 1741 \\ 1751 \\ 1761 \\ 2131 \\ 2151$	582 1342 1352 1372 1402 1452 1492 1532 2062 2112	863 1193 1293 1433 1483 1503 1693 1713 1793 1923	1184 1414 1454 1614 1634 2024 2154 2204	65 1175 1185 1435 1445 1715 1885 1915 1935 2095 2125 2205	$1236 \\1316 \\1416 \\1446 \\1466 \\1476 \\1516 \\1556 \\1756 \\1756 \\1766 \\1796 \\1836 \\1956 \\1956 \\2016 \\2056$	857 1207 1427 1437 1517 1617 1687 1737 1747 1787 1797 1957 2147 2227	1438 1458 1498 1578 1958 1958 2008 2028 2178 2198	709 1379 1429 1449 1469 1709 1909 2059 2179

2176

Composition:	Molecular Weight: 224
% RDX 75 INT 25	Oxygen Balance: CO, % - 35 CO % - 6
	Density: gm/cc Cast 1.71
	Melting Point: °C
C/H Ratio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test: Steel Shoe Un affected Fiber Shoe Un affected	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials % Explosions 30	- 100°C 0.23 120°C 0.41 135°C - 150°C
Partials Smokes 40 Burned 0 Unaffected 30	200 Gram Bomb Sond Test: Sand, gm
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide Tetryl Ballistic Mortar, % TNT:
20	Trauzl Test, % YNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement None None
Hygroscopicity: %	Condition Cast Cast Charge Diameter, in. 1.0 1.0
Volatility:	Density, gm/cc1.701.71Rate, meters/second80357938

Booster Sensitivity Test: Condition		Decomposition Equation: Oxygen, otoms/sec (Z/sec)
Tetryl, gm		Heat, kilocalarie/male
Wax, in. for 50% Detonation		(AH, kcal/mal)
Wax, gm		Temperature Range, °C
Density, gm/cc		Phase
Heat of: Combusticn, col/gm	2625*	Armor Plate Impact Test:
Explosion, cal/gm	1225*	60 mm Mortar Projectile:
Gas Volume, cc/gm	862	50% Inert, Velocity, ft/sec
Formation, col/gm		Aluminum Fineness
Fusion, col/gm (h)	5.0	
*Calculated from composition of miz	<u>xture.</u>	500-Ib General Purpose Bombs:
Specific Heat: col/gm/°C (h) O_{C} O_{C}		Plate Thickness, inches
-75 0.220 75 0.352		1
0 0.225 85 0.325		11/4
25 0.254 90 0.332		11/2
50 0.296 100 0.351		134
Burning Rate:		- '/4
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-1b Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-1b General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
1		Low Order
Young's Modulus:		High Order
E', dynes/cm²		
E, Ib/inch²		1000-Ib General Purpose Bomb vs Concrete:
Density, gm/cc		
		Height, ft
Compressive Strength: Ib/inch ²		Trials
		Unaffected
		Low Order
°C mm Mercury		High Order

Fragmentation Test:		Shaped Charge Effectiveness, TNT	= 100:
90 mm HE, M71 Projectile, Lo	t WC-91:	Glass Cones S	teel Cones
Density, gm/cc	1.72	Hole Volume	
Charge Wt, Ib	2.22	Hole Depth	
Total No. of Fragments:			
For TNT	703	Color: Yellow-but	I
For Subject HE	1514	Principal Uses: Shaped charge	e bomb especially
3 inch HE, M42A1 Projectile,	_ot KC-5:		; HE projectiles;
Density, gm/cc		grenades	
Charge Wt, Ib			
Total No. of Fragments: For⊤N⊤		Method of Loading:	Cast
For Subject HE		Loading Density: gm/cc	1.71
			1.71
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT):	(d)	Hazard Class (Quantity-Distance	e) Class 9
		Compatibility Group	Group I
Air: Peak Pressure	111		Gloup 1
	126	Exudation	
Impulse	120		
Energy		Preparation: See Compositio	n B
Air, Confined:		Origin: Developed by the Br	
Impulse		Wars I and II and standar States early in World Wa	rdized in the United
Under Water: Peak Pressure		Black Modulus at Room Temperature (25°-30°C):	
Impulse		Dynes/cm ² x 10-10	3.09
Energy		Density, gm/cc	1.7 ⁴
Undergr o und : Peak Pressure		Absolute Viscosity, poises: Temp, 85°C 90°C	210**
Impulse		Efflux Viscosity, Saybolt S	econds:
Energy		Temp, 85°C	9-14
		 Compositions using Spec G Class A RDX. ** Composition prepared using particle size. 	

Composition: %	Molecular Weight:	224
70 RDX 70 TNT 30	Oxygen Balance: CO, % CO %	- 37 - 8
	Density: gm/cc Cast	1.71
	Melting Point: °C	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 60 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 14 Sample Wt, mg 20	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₃ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Unaffected Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Impact Test: Trials Kerplosions 30 Partials 30	120°C 135°C 150°C	0.86
Burned 0 Unaffected 40	200 Gram Bomb Sand Test: Sand, gm	56.6
Explosion Temperature: °C Seconds, 0.1 (no cap used) - 1 - 5 Decomposes 265 10	Sensitivity to Initiation: Minimum Detonating Charge, g Mercury Fulminate Lead Azide Tetryl * Alternative initiating char	0.21* 0.20*
15 20	Ballistic Mortar, % TNT: (a)	135
	Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: (b) Method	В
100°C Heat Test: % Loss, 1st 48 Hrs 0.07 % Loss, 2nd 48 Hrs 0.08 Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT	Cast No 1.725 136
Flammability Index:	Detonation Rate: Confinement	None
Hygroscopicity: % N i 1	Condition Charge Diameter, in.	Cast 1.0
Volatility: N i 1	Density, gm/cc Rate, meters/second	1.73 8060

ragmentation Test:		Shaped Charge Effectiveness, TNT ==	100:
90 mm HE, M71 Projectile, Lo	t WC-91:	Glass Cones Steel	Cones (e)
Density, gm/cc	1.71	Hole Volume	
Charge Wt, Ib	2.213	Hole Depth 1	30
Total No. of Fragments:		Color: Ye	llow-buff
For TNT	70 3		.110 w - 0 u 11
For Subject HE	1165	Principal Uses: Shaped charge bo	
3 inch HE, M42A1 Projectile, L	ot KC-5:	especially fragm	entation HE
Density, gm/cc	1.72	projectiles, gre	nades
Charge Wt, Ib	0.923		
Total No. of Fragments:		Mathad of Londian	Gent
For TNT	514	Method of Loading:	Cast
For Subject HE	828		
		Loading Density: gm/cc	i.71
ragment Velocity: ft/sec			
At 9 ft At 25½ ft		.Storage:	
Density, gm/cc			Dry
		Method	Diy
last (Relative to TNT):	(d)	Hazard Class (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure	110		
Impulse	120	Exudation	
Energy			
Air, Confined:		Preparation: See Composition B	
Impulse		Origin: Developed by the Briti	
		World Wars I and II and stan the United States early in	
Under Water:		-	MOLTA Mai T
Peak Pressure		Absolute Viscosity, poises:*	
Impulse		Temp, 85°C 90°C	 52 0
Energy		Efflux Viscosity, Saybolt Seco	53.2 nds:
Underground:		Temp, 85°C	
Peak Pressure		Heat of:) **
Impulse			2605
Energy		Combustion, cal/gm Explosion, cal/gm	2685 1213
		Gas Volume, cc/gm	854
		* Composition using Spec Grade	'Type A,
		** Class A RDX.	<u> </u>
		Calculated from composition	ot mixture.

Composition:	Molecular Weight:		
% RDX 55	Oxygen Balance: CO, % CO %	-40	
TNT 35		- 9	
	Density: gm/cc Cast	1.71	
	Melting Point: "C		
C/H Ratio	Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	Refractive Index, n ^o ₂₀		
Sample Wt, mg	n ^D ₂₅		
	n_30		
Friction Pendulum Test:	Vacuum Stability Test:		
Steel Shoe Unaffected	cc/40 Hrs, at		
Fiber Shoe Unaffected	90°C 100°C		
Rifle Bullet Impact Test: Trials	120°C		
%	135°C		
Explosions	150°C		
Partials			
Burned	200 Gram Bomb Sand Test:	55.4	
Unaffected	Sand, gm))···	
Explosion Temperature: °C	Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm		
1 5 Decomposes 270	Mercury Fulminote		
10			
15	Tetryl		
20	Ballistic Mortar, % TNT: (a)	134	
	Trauzi Test, % TNT:		
75°C International Heat Test:	Plate Dent Test:		
% Loss in 48 Hrs	Method		
100°C Heat Test:	Condition		
% Loss, 1st 48 Hrs	Confined		
% Loss, 2nd 48 Hrs	Density, gm/cc		
Explosion in 100 Hrs	Brisance, % TNT		
· · · · · · · · · · · · · · · · · · ·	Detonation Rate:		
Flammability Index:	Confinement	None	
	Condition	Cast	
Hygroscopicity: % Ni 1	Charge Diameter, in.	1.0	
NA TRANSPORT	Density, gm/cc	1.72	
Volatility: Ni 1	Rate, meters/second	7975	

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 2$	100:
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Steel	Cones (e)
Density, gm/cc	1.71	Hole Volume	
Charge Wt, Ib	2.253	Hole Depth 130)
Total No. of Fragments:		Color: Yellow-bu	οfε.
For TNT	703	16110w-bd	(1)
For Subject HE	1153	Principal Uses: Shaped charge bon	
3 inch HE, M42A1 Projectile, L	ot KC-5:	especially fragm	
Density, gm/cc	1.71	projectiles, gren	lades
Charge Wt, Ib	0.922		
Total No. of Fragments:		Method of Loading:	Cast
For TNT	514	U	
Far Subject HE	769	Loading Density: gm/cc	1.71
		Loading Density, gni/ cc	1.71
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	
Density, gm/cc			
Benaity, giny ee		Method	Dry
Blast (Relative to TNT);		Hazard Class (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure			L.
Impulse		Exudation	
Energy			
		Preparation: See Composition B	
Air, Confined:			
Impulse		Origin: Developed by the Britis World Wars I and II and stand the United States early in Wa	lardized in
Under Water: Peak Pressure			
Impulse		Eutectic Temperature, ^O C:	79
Energy		gm RDX/100 gm TNT	
		79°C	4.16
Underground:		95 ⁰ C	5.85
Peak Pressure		Absolute Viscosity, poises:*	
Impulse			
Energy		Temp, 85°C 90°C	30.2
Heat of:	*	* Composition using Spec Grade	26.0
Combustion, cal/gm Explosion, cal/gm * Gas Volume, cc/gm	2755 1205 845	Class A RDX.	туде А,
* Calculated from composi	tion of mixture.		

Composition: %	Molecular Weight:	224
70 RDX 60 TNT 40	Oxygen Balance: CO, % CO %	-43 10
	Density: gm/cc Cast	1.68
	Melting Point: °C	
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 75 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 1 ¹ / ₄ Sample Wt, mg 19	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₃ n ^D ₃₀	
Friction Pendulum lest: Steel Shoe Unaffected Fiber Shoe Unaffected	Vacuum Stability lest: cc/40 Hrs, at 90°C	
Rifle Bullet Impact lest: Trials % Explosions 5 Partio Is 55		0.29
Burned25Unaffected15	200 Grcm Bomb Sand Test: Sand, gm	54.6
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Decomposes 280 10	Sensitivity to Initiation: Minimum Detonating Charge, gn Mercury Fulminate Lead Azide Tetryl. <u>*Alternative_initiating_char</u>	0.22* 0.20*
15	Ballistic Mortar, % TNT: (a)	1.33
20	Irauzliest, % TNT:	
75°C International Heat lest: % Loss in 48 Hrs	Plate Dent lest: (b) Method	В
100°C Heat lest: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	Cast No 1.72 1.32
Flammability Index:	Detonation Rate: Confinement	None
Hygroscopicity: % Ni 1	Condition Charge Diameter, in.	Cast 1.0
Volatility: N i 1	Density, gm/cc Rate, meters/second	1. 7 2 7900

.

Cyclotol, 60/40

Fragmentation lest:		§hoped Charge Effectiveness, $TNT = T$	100:
90 mm HE, M71 Projectile, Lot	WC-91:		Cones (e)
Density, gm/cc	1.65	Hole Volume 178 1	62
Charge Wt, Ib	2.187	Hole Depth 125 1	48
Total No. of Fragments:		Color: Yello	ow-buf f
For TNT	703		
For Subject HE	998	Principal Utes: Shaped charge bo	mb;
3 inch HE, M42A1 Projectile, Lo	t KC-5:	especially fragm projectiles, gre	entation HE
Density, gm/cc	1. 67	1 2 7 3	
Charge Wt, Ib	0.882		
Total No. of Fragments:		Method of Loading:	Cast
For TNT	514		
For Subject HE	701	Loading Density: gm/cc	1.68
	(-)		1.00
Fragment Velocity: ft/sec At 9 ft	(c) 2965		
At 25½ ft	2800	Storage:	
Density, gm/cc			
		Method	Dry
last (Relative to TNT):	(d)	Hazard Class (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure	104		
Impulse	116	Exudation	
Energy			
Air, Confined:		Preparation: See Composition E	3
Impulse		Origin: Developed by the Briti	sh between
		World Wars I and II and stan	dardized in
Under Water: Peak Pressure		the United States early in V	world War II.
		Bulk Modulus at Room	
Impulse		Temperature (25°-30°C):	
Energy		Dynes/cm ² x 10 ⁻¹⁰	4.14
Underground:		Dynes/cm ⁻ x 10 Density, gm/cc	4.14 1.72
Peak Pressure			
Impulse		Absolute Viscosity, poises:*	
Energy	*	Temp, 85 ^o C	12.3
Heat of:	0	90°C	
Combustion, cal/gm	2820	* Compositions using Spec Grade	Type A
Explosion, cal/gm	1195 845	Class A RDX.	Type A,
Gas 'Volume, cc/gm	2 nah ²		
Compressive Strength: 1b/i	<u>nen</u> 2200-3000		

X Calculated from composition of mixture.

References: 15

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

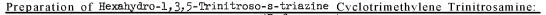
(c) R. W. Drake, <u>Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells</u>, OSRD Report No. 5622, 2 January 1946.

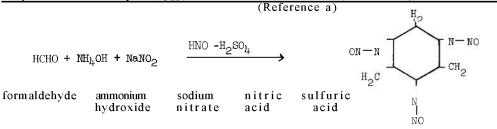
(d) V. Philipchuk, Free Air Blast Evaluation of RDX-TNT-A1, RDX-TNT, and TNT-Metal Systems, National Northern Summary Report, NN-P-34, April 1956.

(e) Eastern Laboratory, du Pont, Investigation of Cavity Effect. Section 111, Variation of Cavity Effect with Composition, NDRC Contract W-672-ORD-5723.

(f) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1956.

(g) Also see the following Picatinny Arsenal Technical Reports on Cyclotols:


<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	5	<u>6</u>	<u>7</u>	<u>8</u>	9
1290 1530	1651 1741	1482	1483 1793 1983	1824 1834 1944 2004	1435 1585	1476 1756 1796 1876	1427 1507 1747	1398 1488 1838	1469 1509 1709


(h) C. Lenchitz, W. Beach and R. Valicky, <u>Enthalpy Changes</u>, <u>Heat of Fusion and Specific</u> <u>Heat of Basic Explosives</u>, PAIR No. 2504, January 1959.

¹⁵See footnote 1, page 10.

Composition: H		Molecular Weight: (C ₃ H ₆ N ₆ O ₃)	174
% 12 с 20.6 н 3.5 О=N-N	<u>∕</u> n−n=o	Oxygen Balance: CO, % CO %	-55 -28
N 48.3 H ₂ C	CH ₂	Density: gm/cc	
0 27.6		Melting Point: "C	105 to 107
C/H Ratio 0.12		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	15 to 22 17 to 20	Refractive Index, n ^D ₂₀ n ^D ₂₅	
Friction Pendulum Test:		Vacuum Stability Test:	(c)
Steel Shoe	Unaffected	cc/40 Hrs, at 90°C 0.20	
Fiber Shoe	Unaffected	100°C 9.19	3.71*
Rifle Bullet Impact Test: Trials %		*Average value of 5 gn sample lized from isoamyl alcohol.	
Explosions			
Partials			
Burned Unaffected		200 Gram Bomb Sand Test: Sand, gm	59.2 54.1
Explosion Temperature: "C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.200**
5 220		Lead Azide	0,100**
10		**Alternative initiating charg	;es.
20		Ballistic Mortar, % TNT:	130
		Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	8.79	Confined	
% Loss, 2nd 48 Hrs	2.98	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	(b) None
Hygroscopicity: % 30 [°] C , 90% RH	0.02	Condition Charge Diameter, in.	Cast 1.2
Volatility:		Density, gm/cc	1.42 100 to 7300

Fragmentation Test:	Shaped Charge Effectiveness, TNT ==	100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Hole Volume Hole Depth	l Cones
Total No. of Fragments: For TNT	Color:	Yellow
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of pr	ojectile filler
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed or c melting poin	ast with added t depressants
	Loading Density: gm/cc S	see below
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Densîty, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group M None
Air, Confined: Impulse	Density at Various Pressures: lb/inch ²	(b) gm/cc
Under Water: Peak Pressure Impulse Energy	2,420 4,830 9,650 14,500 24,200 33,800 42,500	1.10 1.23 1.37 1.44 1.53 1.57 1.59
Underground: Peak Pressure Impulse Energy	<u>Heat of:</u> Combustion, cal/gm	3158
	Explosion, cal/gm Formation, cal/gm	876 -914

An ammoniacal solution of an amine is prepared by adding aqueous formaldehyde to ammonium hydroxide. The rate of addition of formaldehyde is regulated to maintain a solution temperature of 30° to 35° C.

Sodium nitrite is dissolved in water and the solution or slurry is then poured into the previously prepared amine-ammonia solution and totally dissolved by stirring. This solution is chilled to below $0^{\circ}C$.

Into a mixed acid solution, previously prepared by dissolving concentrated nitric acid in water and adding concentrated sulfuric acid, all chilled to -9 C, there is added the cold amine-nitrite solution below the surface of the acid mixture. The addition is regulated to take 20 to 30 minutes.

The resulting foamy head of cyclotrimethylene trinitrosamine is allowed to sit over the icy spent liquor for 1/2 hour and is then collected on a sintered glass funnel and washed to neutrality. The moist cyclotrimethylene trinitrosamine is removed from the funnel and air-dried on filter paper. The dry crude product melts at 106° to 107° C. Recrystallization from isoamyl alcohol gives a pure compound melting at 105° to 107° C.

Orinin:

Cyclotrimethylene trinitrosamine was discovered in 1888 simultaneously by Griess and Harrow (Ber 21 (1888), p. 2737) and by Mayer (Ber 21 (1888), p. 2883) when sodium nitrite was allowed to react with hexamethylene tetramine in acid solution. This compound was later studied by Duden and Scharff (Ann 288 (1895), p. 218) and by Delepine who determined its heat of formation, which was negative (Bull Soc chim (3) 15 (1896), p. 1199). Because cyclotrimethylene trinitrosamine could be made at first in very poor yield only, it was a long time before it received consideration for practical application as an explosive. However, the study of cyclotrimethylene trinitrosamine was continued and investigations were made as to its behavior in mixtures with other substances (Prof. D. G. Romer "Report on Explosives," BIOSGP 2-HEC 5742).

Destruction by Chemical Decomposition:

Cyclotrimethylene trinitrosamine is easily decomposed by acid or alkali and even by boiling in water.

Cyclotrimethylene Trinitrosamine

<u>Ingli remperature Decomposition. 0.02 an rin rome rest ruce.</u>	High Temperature	Decomposition.	0.02	gm in	10 ml	Test Tube:	(b)
---	------------------	----------------	------	-------	-------	------------	-----

I					
		Temp. ^O C			
(1)	Melting begins Decomposition begins Nitrous gas Entire decomposition	105 150 160 170			
(2)	Some bubbles Very slow decomposition Decomposes in 2 minutes Decomposes in 40 seconds Immediate decomposition	110 150 200 250 300			

Long Term Stability: (b)

Cyclotrimethylene Trinitrosamine loosely packed in covered wooden boxes for six years at ambient temperature and protected from the sun:

- 1. Explosive showed no color change.
- 2. Melting point decreased from 104.5° to 104° C.
- 3. Coefficient of "Utilisation Practique" decreased from 125.5 to 123.5.
- 4. An Abel Test at 110^oC gave no color to iodine starch paper in 15 minutes.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Melting _o Point, C	I	<u>Øv</u> clotrimethylene Trinitrosamine, %
60 69 70 77 95 95	68 62 55 55 (Eutectic) 61 69 77		20 30 40 42 50 60 70

Fusion Tests, Mixtures of Cyclotrimethylene Trinitrosamine and TNT: (b)

42% Cyclotrimethylene Trinitrosamine 58%TNT

7,000

```
AMCP 706-177
```

<u>Reaction of Cyclotrimethylene Trinitrosamine With Other Materials:</u> (b)

1.	Iron powder	Slight reaction
2.	Copper powder	Slight reaction
3.	Aluminum powder	Slight reaction
4.	2 parts picric acid + 1part R-Salt	 a. Violent decomposition after 2 hours at 10°C b. Violent decomposition after 10 to 15 minutes at 100°C

Detonation Rate: (b)

Confinement	Paper cartridge
Condition	Pressed
Charge Diameter, in.	1.18
Rate, meters/second	Density, gm/cc
5180 5760 6600 7330 7600 7800	0.85 1.00 1.20 1.40 1.50 1.57

References: 16

(a) Arthur D. Little, Inc. Progress Report No. 106, Fundamental Development of High Explosives, April 1955, Contract No. DAI-19-020-501-0RD(P)-33.

(b) Louis Médard and Maurice Dutour, "Étude Des Proprietés De La Cyclotriméthyléne Trinitrosamine, "Mém poudr, <u>37</u>, 1924 (1954).

(c) H. A. Bronner and J. V. R. Kaufman, "Synthesis and Properties of R-Salt," PATR in preparation 1959.

(d) Also see the following Picatinny Arsenal Technical Reports on Cyclotrimethylene Trinitrosamine: 1174, 2179.

16See footnote 1, page 10.

DBX (Depth Bomb Explosive)

Composition: %	Molecular Weight: 83
Ammonium Nitrate 21	Oxygen Balance: CO, % -46 CO % -26
RDX 21	
TNT 40	Density: gm/cc Cast 1.68
Aluminum 18	Melting Point: "C
C/H Ratio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 35 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 13 Sample Wt, mg 14	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C
Rifle Bullet Impact Test: Trials % Explosions Partiols	120°C 6.15 135°C 150°C
Burned Unaffected	200 Grom Bomb Sand Test: Sand, gm 58.5
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Ignites 400 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide 0.20 Tetryl 0.10
15	Ballistic Mortar, % TNT: (a) 146
20	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: (b) Method B
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	ConditionCastConfinedNoDensity, gm/cc1.76Brisance, % TNT102
Flammability Index:	Detonation Rate: (c) Confinement None Condition Cast
Hygroscopicity: %	Charge Diameter, in. 1.6
Yolatility :	Density, gm/cc 1.65 Rate, meters/second 6600

DBX (Depth Bomb Explosive)

Booster Sensitivity Test:	(e)	Decomposition Equation:
Condition	Cast	Oxygen, otoms/sec
Tetryl, gm	100	(Z/sec) Heat, kilocolorie/mole
Wax, in. for 50% Detonation	1.35	(AH, kcol/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc	1.76	Phase
Heat of:	(d)	Armer Diete Impect Test
Combustion, cal/gm		Armor Plate Impact Test:
Explosion, col/gm	1700	60 mm Mortar Projectile:
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec
Formation, col/gm		Aluminum Fineness
Fusion, col/gm		
		500-Ib General Purpose Bombs:
Specific Heat: col/gm/°C	(d)	
-5° C, density 1.75 gm/cc	0.25	Plate Thickness, inches
		1
		11/4
		11/2
		13⁄4
Burning Rate:		
cm/sec		
		Bomb Drop Test:
Thermal Conductivity:	-4	T7, 2000-1b Semi-Armor-Piercing Bomb vs Concrete:
col/sec/cm/"C	13.2×10^{-4}	17, 2000-16 Semi-Amor-Piercing Bomb +3 Concrete.
Density 1.75 gm/cc		Max Safe Drop, ft
Coefficient of Expansion: Linear, %/°C -73 ⁰ -75 ⁰ C	4.5 × 10 ⁻⁵	
Linear, $\%/^{\circ}C = 73^{\circ} = 15^{\circ}C$	4.5 x 10 ²	500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
Handasaa Mahal Casta		Trials
Hardness, Mohs' Scale:		Unaffected
	(a)	Low Order
Young's Modulus:	(d)	High Order
E', dynes/cm²	10.4×10^{10}	
E, lb/inch ²	1.51 x io ⁶	1000-Ib General Purpose Bomb vs Concrete:
Density, gm/cc	1.72	
		Height, ft
Compressive Strength: $lb/inch^2$ (d)	3210-3380	Trials
Density 1.78 gm/cc		Unaffected
Vapor Pressure:		Low Order
"C mm Mercury		High Order
,		

Fragmentation Test:		Shaped Charge Effectiveness, T N T	= 100:
Fragmentation rest.			
90 mm HE, M71 Projectile, L	ot WC-91:		teel Cones
Density, gm/cc			
Charge Wt, Ib		Hole Depth	
Total No. of Fragments:		Color:	Gray
For TNT			Gruy
For Subject HE		Principal Uses:	Depth charge
3 inch HE, M42A1 Projectile,	Lot KC-5:		· -
Density, gm/cc			
Charge Wt, Ib			
Total No. of Fragments:		Method of Loading:	Cast
For TNT			
For Subject HE		Loading Density: gm/cc	1.61-1.69
Fragment Velocity: ft/sec			·
At 9 ft		2447777	
At 25½ ft		Storage:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT):	(d)	Hazard Class (Quantity-Distance	e) Class 9
Air:		Compatibility Group	Group I
Peak Pressure	118		
Impulse	127	Exudation	
Energy	138		
Air, Confined:		Preparation:	
Impulse		DBX can be manufactured	hy slowly adding
		water-wet RDX to molten TNT	melted in a steam-
Under Water: Peak Pressure		jacketed kettle equipped wi all the water has evaporate	
Impulse		is added and with heating a	nd stirring con-
Energy	136	tinued, grained aluminum is ture is cooled with stirrin	added. The mix-
		maintain uniformity and whe	
Underground: Peak Pressure			BX can also be made
		by adding 21% ammonium nitr num to 42% cyclotol or Com	
Energy		RDX/TNT content plus 19% of	TNT previously
		melted at about 100°C.	

Origin:

DBX was developed and used by the United States and Great Britain during World War II.

References: 17

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) G. H. Messerly, <u>The Rate of Detonation of Various Explosive Compounds</u>, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(d) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(e) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>. NOL Mano 10,303, 15 June 1949.

(f) Also see the following Picatinny Arsenal Technical Reports on DBX: 1585 and 1635.

¹⁷See footnote 1, page 10.

Composition:	Molecular Weight: $(C_6H_5N_5O_6)$	2 3
$\begin{array}{c} \% \\ \textbf{C} \textbf{29.6} \\ \textbf{H} \textbf{2.1} \\ \end{array} \xrightarrow{\text{NH}_2} \\ \text{NO}_2 \\ \end{array}$	Oxygen Balance: CO, % CO %	
N 28.8	Density: gm/cc C	Crystal 1.83
0 3 9.5 ^{NO} 2	Melting Point: "C	(a) 290
C/H Ratio 0.380	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: "C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 18 Sample Wt, mg 9	Refractive Index, n ^D ₂₀ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials % Explosions Partials Burned Unaffected	100°C 120°C 135°C 150°C	
	200 Gram Bomb Sand Test: Sand, gm	46.6
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 10	Sensitivity to Initiation: Minimum Detonating Charge, gr Mercury Fulminate Lead Azide Tetryl	m 0.20 0.10
15 20	Ballistic Mortar, % TNT:	100
	Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs 0.00 % Loss, 2nd 48 Hrs 0.4 Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT	
Ficammability Index:	Detonation Rate: Confinement	None
Hygroscopicity: %	Condition Charge Diameter, in.	Pressed 0.5
Volatility:	Density, gm/cc Rate, meters/second	1.65 7500

Fragmentation Test:	Shaped Charge Effectiveness, TN	T = 100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones	Steel Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color:	Yellow
For TNT		
For Subject HE	Principal Uses:	
3 inch HE, M42A1 Projectile, Lot KC-5:		
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments: For TNT	Method of Loading:	Pressed
For Subject HE	Loading Density: gm/cc At 50,000 psi	1.65
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distan	ce)
Air:	Compatibility Group	
Peak Pressure	Exudation	None
Impulse	Exudation	None
Energy		
Air, Confined: Impulse	<u>Cook-Off</u> Temperature: ^O C Time, minutes	320 8
	Heat of:	
Under Water: Peak Pressure	Explosion, cal/gm	2876
Impulse		
Energy		
Underground: Peak Pressure		
Impulse		
Energy		

Preparation:

Fifty grams (50 gm) of dry styphnic acid was added to 200 gm of anhydrous pyridine with stirring. The resulting slurry was stirred for an additional 30 minutes. The yellow product, dipyridinium styphnate, was collected by filtration and washed with approximately 100 milli-liters of diethyl ether. The product was dried over phosphorus (V) oxide, at room temperature, for 5 hours. Yield of 77 gm (94%), melting point 168° to 170° C (literature melting point 173° C).

To 50 milliliters of phosphorus oxytrichloride, 29.8 gm of the dipyridinium styphnate were added in small portions, with stirring. The reaction mixture was then warmed on a steam bath for 15 minutes. This solution was quenched in 500 gm of ice water. The light yellow precipitate was separated by filtration and washed with water until the washing was neutral to litmus. Yield of 1,3-dichloro-2,4,6-trinitrobenzene 20.4 gm (98%), MP 130 to 131°C (literature MP 128°C).

A suspension of 3 gm of 1,3-dichloro-2,4,6-trinitrobenzene in 9 milliliters of absolute methanol was prepared. This slurry was cooled to 0° C, and dry ammonia was bubbled into the stirred suspension. After 20 minutes the reaction mixture was allowed to warm to room temperature, filtered by suction and washed with methanol and ether until a negative Beilstein test for chloride ion was obtained on the washings. Yield of 1,3-diamino-2,4,6-trinitrobenzene 2.5 gm (97%), MP 288° to 290°C (literature MP 285°C).

Origin:

DATNB, also called 2,4,6-trinitro-1,3-diamino-benzol or 2,4,6-trinitro-phenylenediamine-(1,3), was first obtained by Noelting and Collin in 1884 (Ber <u>17</u>, 260) and also by Barr in 1888 (Ber <u>21</u>, 1546) from 2,4,6-trinitroresorcin dimethylether in contact with ammoniacalalcohol for several days. J. J. Blanksma obtained the same product in 1902 by reacting either 2-chloro-2,4,6-trinitroanisole or 3-chloro-2,4,6-trinitrophenetol with ammoniacalalcohol (Rec trav chim <u>21</u>, 324) and from 2,4,6-trinitroresorcin methylethyl ether with ammoniacal alcohol (Rec trav chim <u>27</u>, 56 (1908)).

Meisenheimer and Patzig in 1906 prepared DATMB in the form of yellow needles, MP 280° C from 1,3,5-trinitrobenzene hydroxylamine and sodium methylate in methyl alcohol (Ber <u>39</u>, 2540). The product was slightly soluble in glacial acetic acid but poorly soluble in other solvents. It decomposed into NH₃ and 2,4,6-trinitroresorcin when boiled with dilute N4OH or KOH (Beil <u>13</u>, 60).

Körner and Contardi prepared DATNB by the reaction of either 2,4-dichloro-1,3,5-trinitrobenzene or 2,4-dibromo-1,3,5-trinitrobenzene with ammoniacal alcohol at room temperature or better by heating to 100° C (Atti R. Accad Lincei (5), 171, 473 (1908)); (5) 18 I, 101 (1909)). A method of preparation by prolonged reaction of N-nitro-N-methyl-2,3,4,6-tetranitroaniline with a saturated ammonia solution was reported in 1913 by van Romburgh and Schepers (Akad Amsterdam Versl 22, 297).

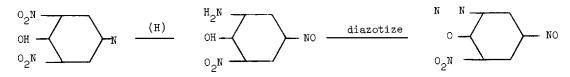
C. F. Van Duin obtained DATNB melting at 301° C by reacting a concentrated aqueous ammonia solution with N-nitro-N,N,N-trimethyl-2,4,6-trinitrophenylenediamine-(1,3) or with N-nitro-N-methyl-N-phenyl-2,4,6-trinitrophenylenediamine-(1,3) (Rec trav chim <u>38</u>, 89-100 (1919)). Later Van Duin and Van Lennep reacted concentrated aqueous ammonia with 2,4,6-trinitro-3-aminoanisole or 2,4,6-trinitro-3-aminophenetol to obtain DATNB melting at 287° to 288°C (Rec trav chim <u>39</u>, 147-77 (1920)). In 1927 Lorang prepared the same compound by boiling 2,4,6-trinitro-1,3-bis (-nitroethyl ureido) benzene with water or by heating it with ammoniacal alcohol in a tube at 100° C (Rec trav chim <u>46</u>, 649) (Beil E <u>17</u>, E II 33).

A recent report describes the preparation of DATNB in two steps from commercially available starting materials. First m-nitroaniline was nitrated with H_2SO_4 -HNO₃ acid mixture to tetranitroaniline. The crude tetranitroaniline was converted by methanolic ammonia to diaminotrinitro-benzene in a high degree of purity. A conversion of 100 parts of m-nitroaniline into 110 parts of DATNB was obtained by this method, which can easily be carried out on a commercial scale.

Composition:	N	Molecular Weight: (C6H2N4O5)	210
% c 34.3 H 0.9 or*		Oxygen Balance:	-61 -15
\mathbb{N} 26.7 $\mathbb{O}_2^{\mathbb{N}}$ \mathbb{I} $\mathbb{N}_2^{\mathbb{O}_2^{\mathbb{N}}}$	4 NO ⁵	Density: gm/cc Crystal	1.63
0 38.1	Ö	Melting Point: °C	157
C/H Ratio 1.056		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 4 Sample Wt, mg	; (1 1b wt) 7 15	Refractive Index, ກ ^ວ ວ ກ ^ວ ສ ກ ₃₀	
Friction Pendulum lest:		Vacuum Stability lest:	
Steel Shoe	Detonates	cc/40 Hrs, at	
Fiber Shoe	Detonates	90°C	7.6
Rifle Bullet Impact lest: Trials		100°C 120°C	1.0
%		135°C	
Explosions		150°C	
Partials			
Burned Unaffected		200 Gram Bomb Sand lest:	47.5 45.6
		Sand am Black powder fuse	45.6
Explosion Temperature: "C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Charge, gm	
1 200		Mercury Fulminate	
5 195		Lead Azide	0.20
10 180		Tetryl	0.10
15			07
20		Ballistic Mortar, % TNT: (a)	97
75°C International Heat lest:		Irauzilest, % TNT:	
% Loss in 48 Hrs		Plate Dent lest: Method	
100°C Heat lest:		Condition	
% Loss, 1st 48 Hrs	2.10	Confined	
% Loss, 2nd 48 Hrs	2.20	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	4
Hygroscopicity: % 30°C, 90% RH	0.04	Charge Diameter, in.	essed
Volatility: 50°C, 30 months	Unaffected	• • •	1.5 1.6 600 6900

^{(Until} it is established which picramic acid (melting point 169^oC) isomer is involved (Ref: <u>J</u> <u>Chem Soc</u>, 2082, August 1949).

Diazodinitrophenol


Fragmentation Test:	Shaped Charge Effectiveness, $TNT=100$:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT For Subject HE	Color: Yellow needles
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Percussion caps
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Loading Density: gm/cc Apparent 0.27 At 3000 psi 1.14 Storage:
Density, gm/cc	Method Under water Hazard Class (Quantity-Distance) Class 9
Blast (Relative to TNT): Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Solubility:Soluble in nitroglycerin, nitrobenzene, aniline, pyridine, concentrated hydrochloric acid, and in most common organic solvents.Heat of:Combustion, cal/gm3243 820 Gas Volume, cc/gmGas Volume, cc/gm865Sensitivity to Electrostatic Discharge, Joules:0.012

Diazodini

<u>Solubility: gm/100 gm of the following substances:</u> (c	c))
--	----	---

<u>Solubility at 50%</u>	<u>c</u>
Solvent	<u>%</u>
Ethyl acetate Methanol Ethanol Ethylenedichloride Carbon tetrachloride Chloroform Benzene Toluene Petroleum ether Ethyl ether Carbon disulfide	2.45 1.25 2.43 0.79 trace 0.11 0.23 0.15 Insoluble (at 20°C) 0.08 (30°C) trace (30°C)

Preparation: (Chemistry of Powder and Explosives, Davis)

Ten gn of picramic acid is suspended in 120 cc of 5% hydrochloric acid, and under efficient agitation at about 0° C. 3.6 gn sodium nitrite in 10 cc water is dumped into the suspension. Stirring is continued for 20 minutes, the product filtered off and washed thoroughly with ice water. The **dark** brown product, if dissolved in acetone and precipitated in water, turns brilliant yellow.

Origin:

Discovered by Griess in 1858 (Annalen 106, 123; 113, 205 (1860) and studied extensively by L. V. Clark (Ind Eng Chem 25, 663 (1933). Developed for commercial use in 1928. This compound was patented in the United States by Professor William M. Dane.

Destruction by Chemical Decomposition:

Diazodinitrophenol is decomposed by adding the water-wet material to 100 times its weight of 10% sodium hydroxide. Nitrogen gas is evolved.

References: 18

(a) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by

¹⁸See footnote 1, page 10.

Diazodinitrophenol

Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(c) L. V. Clark, "Diazodinitrophenol, A Detonating Explosive," Ind Eng Chem 25, 663 (1933).

Seidell, <u>Solubilities of Inorganic and Organic Compounds</u>, Van Nostrand and Co., N. Y.

(d) Also see the following Picatinny Arsenal Technical Reports on Diazodinitrophenol:

۵	2	4	5	Z	8	9
150 610 2120	1352	34 214	355	827	318 1838	2179

		10(
Composition: %	Molecular Weight: $(C_4H_8N_2O_7)$	196
c 24.5 H_2^{C} ONO ₂ H 4.1 H_2^{C} ONO ₂	Oxygen Balance: CO, % CO %	- ⁴ 1 - 8
	Density: gm/cc Liquid	1.38
$\begin{bmatrix} N & 14.3 & {}^{12} \\ 0 & 57.1 & {}^{12} \\ H_2 C & ONO_2 \end{bmatrix}$	Melting Point: °C	2
C/H Ratio 0.143	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 100+	Boiling Point: °C Decomposes	160
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 9 Sample Wt, mg	Refractive Index, n ^D n ^D ₂₅ n ^D ₃₀	1.4498
Friction Pendulum Test: Steel Shoe Explodes Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	0.3cc/20 hr/gm
Rifle Bullet Impact Test: Trials % Explosions Partioːs	120°C 135°C 150°C	o. 300, 20 m², 3m
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	42.2
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 237 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	
15 20	Ballistic Mortar, % TNT:	90
	- Trauzl Test, % TNT:	77
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs 4.0 % Loss, 2nd 48 Hrs 3.0 Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: %	Condition Charge Diameter, in. Density, gm/cc	1.38
Volatility: 60°C, mg/cm ² /hr 193	Rate, meters/second	6760

Booster Sensitivity lest: Condition		Decomposition Equation: Oxygen, atams/sec
Tetryl, gm		(Z/sec)
Wax, in. for 50% Detonation		Heat, kilocalarie/mole
Wax, gm		(AH, kcol/mol) Temperature Range, ℃
Density, gm/cc		Phase
Heat of:		Armer Plate Impact locit
Combustion, cal/gm	2792	Armor Plate Impact lest:
Explosion, cal/gm	841	60 mm Mortar Projectile:
Gas Volume, cc/gm	796	50% Inert, Velocity, ft/sec
Formation, cal/gm	2020	Aluminum Fineness
Fusion, cal/gm		
		500-1b General Purpose Bombs:
Specific Heat: col/gm/°C		Plate Thickness, inches
Burning Rate:		- 1¾
cm/sec		
		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-Ib General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:		High Order
E', dynes/cm²		
E, Ib/inch ²		1000-Ib General Purpose Bomb vs Concrete:
Density, gm/cc		
		Height, ft
Compressive Strength: Ib/inch ²		Trials
		Unaffected
Vapor Pressure:		Low Order
"C mm Mercury		High Order
20 0.0036 60 0.130		
60 0.130		

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, ¹ b	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Colorless
For Subject HE	Principal Uses: Propellant compositions
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	
Total No. of Fragments: For TNT	Method of Loading:
For Subject HE	Loading Density: gm/cc
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Liquid
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation
Air, Confined: Impulse Under Water: Peak Pressure	Preparation: DECN can be prepared with approxi- mately 85% yield by adding diethyleneglycol to mixed acid (50% HNO ₃ , 45% H ₂ SO ₄ , and 5% H ₂ O). The temperature is kept at 30°C or lower. The separated DEGN is purified by washing with successive portions of water,
Impulse Energy	dilute sodium carbonate solution and water until neutral.
Underground: Peak Pressure	Hydrolysis, % Acid: 10 days at 22°C 0.003 5 days at 60°C 0.003
Impulse Energy	$\begin{array}{c c} Solubility in Water, gm/100 gm, at: \\ \hline 25\% C & 0.40 \\ \hline 60\% C & 0.60 \\ \end{array}$
<u>Viscosity, centipoises:</u> Temp, 20 ⁰ C 8.1	Solubility, gm/100 gm, at 25°C, in:Ether00Alcohol002:1 Ether:Alcohol00Acetone00

Origin:

First prepared and studied by Wm H. Rinkenbach in 1927 (Ind Eng Chem <u>19</u>, 925 (1927) and later by Rinkenbach and H. A. Aaronson (Ind Eng Chem <u>23</u>, 160 (1931)) both of Picatinny Arsenal. Used in propellant compositions by the Germans during World War **11**.

structi by Chemical Decomposition:

	1 i	s de	composed	by adding	it	slo	wly (o 10	times	;i	W	1 18%	sodiur	n sulf	fide
			Heat is	liberated	by	thi	rea	iction	but	this	is not	hazar	i	sti	is
mai		ď	the	tion	of	DEGN	and	conti	nued	until	solut	i s	comple	te.	

References: 19

See the following Picatinny Arsenal Technical Reports on DEN:

<u>o</u>	<u>1</u>	2	<u>3</u>	4	<u>6</u>	Z	<u>9</u>
50 180 620 1490 1990	231 551 1391 1421	72 602 1282 1392	673 1443	494 1624	346 1516 1616 1786	487 1427 1487 1817	279 579 1439

¹⁹See footnote 1, page 10.

106

Composition:	Molecular Weight: (C10 ^H 12 ^N 4 ⁰ 12)	380
% с 31.6 н 3.2 ¶ ^{снсо} 2 ^{сн} 2 ^{сн} 3	Oxygen Balance: CO, % CO %	-59 -17
и 14.7 снсо ₂ сн ₂ с(NO2)2сн3	Density: gm/cc Crystal	1.60
0 50.5 C/H Ratio	Melting Point: "C Form II Freezing Point: "C	89 86
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 100+ Sample Wt 20 mg Picatinny Arsenal Apparatus, in, 18 Sample Wt, mg 18	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum lest: Steel Shoe Unaffected Fiber Shoe Unaffected	Vacuum Stability lest: cc/40 Hrs, at 90°C 100°C	0.66
Rifle Bullet Impact lest: Trials % Explosions Partiols	120°C 135°C 150°C	0.91
Burned Unaffected	200 Gram Bomb Sand lest: Sand, gm	
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 4 Smokes 250 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide Tetryl	
20	Ballistic Mortar, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Trauzl lest, % TNT : Plate Dent lest: Method	
100°C Heat lest: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: %	 Condition Charge Diameter, in. 	
Volatility:	 Density, gm/cc Rate, meters/second 	1.49 6050

Fragmentation Test:	Shaped Charge Effectiveness, TN	IT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm∕cc Charge Wt, Ib	Glass Cones Hole Volume Hole Depth	Steel Cones
Total No. of Fragments: For ⊤N⊤ For Subject HE	Color:	White
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses:	
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Cast
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc Storage:	1.50 Dry
Blast (Relative to TNT):	Method Hazard Class (Quantity-Distar	·
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	None
Air, Confined: Impulse	<u>Heat of:</u> Combustion, cal/gm Detonation, cal/gm	3070 (calculated) 767
Under Water: Peak Pressure Impulse Energy	Viscosity, poises: Temp, 98.9°C 106.5 c	(calculated) 0.586 0.435
Underground: Peak Pressure Impulse Energy	Liquid Density, gm/cc: Temp, 98.9°C 106.5°C Origin:	1.382 1.375
	Synthesized in 1952 by U.S. Naval Ordnance Labor Maryland.	

Preparation:

(a, b)

HC-COC1 -со₂сн₂с(мо₂)₂сн₃ AlCla + 2CH₃C(NO₂)₂CH₂OH H-COCL HC-CO2CH2C(NO2)2CH2 3.3 mol 83%yield 7.3 mol 1.6 mol fumaryl chloride 2,2-dinitropropanol aluminum bis(dinitropropyl) fumarate chloride

Dinitropropanol was mixed with chloroform (1320 milliliters) and the mixture heated to boiling. The distillate was collected in a water separator. At first the distillate was cloudy and this was dried with calcium chloride before being returned to the system. When no more water was collected in the water separator, the mixture was cooled to room temperature and the separator removed. Fumaryl chloride was introduced, followed by the aluminum chloride which was added in four equal portions. Air was blown into the flask for a minute to effect mixing, and the reaction sustained itself without the addition of heat for one hour. Steam was gradually introduced so that the reflux temperature was reached 2-1/2 hours after the beginning of the reaction. After 3 hours of reflux, the hot liquid was poured into a bucket. As cooling took place the slurry was vigorously agitated until it finally set up at room temperature. This material was broken up and mixed with dilute ice cold HCL. The solid product was collected on a sintered funnel, washed with water and with hexane. The crude material was recrystallized from methanol to give a product melting at 86° C (uncorrected), but after storage for several days the melting point was 89° C.

References: 20

(a) M. E. Hill, Preparation and Properties of 2,2-Dinitropropanol Esters, NAVORD Report No. 2497, 3 July 1952.

(b) D. L. Kouba and H. D. McNeil, Jr., Hercules Report on High Explosives, Navy Contract Nord-11280, Task A, 26 May 1954.

²⁰See footnote 1, page 10.

Composition:	Molecular Weight: $(C_{10}H_{14}N_{4}O_{12})$	382			
% C 31.4 H 3.7	Oxygen Balance: O, % CO %	-63 -21			
$ \begin{array}{c} CH_2CO_2CH_2C(NO_2)_2CH_3 \\ N 14.7 \\ 1 \end{array} $	Density: gm/cc Crystal	1.51			
$\begin{array}{c} \text{CH}_{2}\text{CO}_{2}\text{CH}_{2}\text{C}(\text{NO}_{2})_{2}\text{CH}_{3}\\ \text{N} 1^{4} \cdot 7 \\ 0 50.2 \text{CH}_{2}\text{CO}_{2}\text{CH}_{2}\text{C}(\text{NO}_{2})_{2}\text{CH}_{3} \end{array}$	Melting Point: °C	86			
C/H Ratio 0.250	Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C				
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₂₀				
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	 o.lo			
Rifle Bullet Impact Test: Trials % Explosions Partials Burned Unaffected	120°C 135°C 150°C				
	200 Gram Bomb Sand Test: Sand, gm				
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 >400 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:				
20	Trauri Test, % TNT:				
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method				
100°C Heat lest: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT				
Flammability Index:	Detonation Rate: Confinement				
Hygroscopicity: %	Condition Charge Diameter, in.				
Volatility:	Density, gm/cc Rate, meters/second				

Bis(2,2-Dinitropropyl) Succinate (DNPS)

AMCP 706-177

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:					
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Co Hole Volume Hole Depth	ones				
Total No. of Fragments: For TNT	Color:	White				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments: For TNT	Principal Uses: Method of Loading:	Cast				
For Subject HE	Loading Density: gm/cc					
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method	Dry				
Blast (Relative to TNT):	Hazard Class (Quontity-Distonce)					
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	None				
Air, Confined: Impulse Under Water: Peak Pressure	<u>Origin:</u> Synthesized in 1953 by M. E. U.S. Naval Ordnance Laboratory, Maryland.	Hill of the White Oak,				
Impulse Energy						
Underground: Peak Pressure Impulse Energy						

Preparation:

$$\begin{array}{c} 2 \operatorname{CH}_3 \operatorname{C}(\operatorname{NO}_2)_{2}_{\operatorname{CH}^2 \operatorname{OH}} & + \begin{array}{c} \operatorname{CH}_2 \operatorname{COCl} \\ \operatorname{CH}_2 \operatorname{COCl} \end{array} & \xrightarrow{\operatorname{AlCl}_3} & \operatorname{CH}_2 \operatorname{COOCH}_2 \operatorname{C}(\operatorname{NO}_2)_2 \operatorname{CH}_3 \\ \operatorname{CH}_2 \operatorname{COOCH}_2 \operatorname{C}(\operatorname{NO}_2)_2 \operatorname{CH}_3 \end{array} & + 2 \operatorname{Hcl} \\ \operatorname{dinitropropanol} & \operatorname{succinyl} \\ \operatorname{chloride} & \operatorname{chloride} \end{array} & \operatorname{bis}(2,2-\operatorname{dinitropropyl}) \operatorname{succinate} \end{array}$$

A methylene chloride solution of dinitropropanol (0.02 mol in 15 milliliters) was mixed with 0.01 mol of succinyl chloride. To this solution 0.003 mol of crushed anhydrous aluminum chloride was added. It was necessary to cool the reaction vessel due to the vigorousness of the reaction. After 25 minutes at room temperature the reaction solution was refluxed 1-1/2 hours. Fine needle-like crystals formed upon cooling and adding hexane. The crystals were slurried in dilute hydrochloric acid and on recrystallization from methanol gave a 93% yield of DNPS (melting point 85° to 85.6° C).

References: 21

(a) M. E. Hill, Synthesis of New High Explosives, NAVORD Report No. 2965, 1 April 1953.

²¹See footnote 1, page 10.

2,2-Dinitropropyl-4,4,4-Trinitrobutyrate (DNPTB)

AMCP 706-177

Composition: %	Molecular Weight: $(C_7H_9N_5O_{12})$ 355
^ю с 23.6 н 2.5 <u>осн₂с(NO₂)₂сн₃</u>	Oxygen Balance: CO, % -29 CO % +2.3
N 19.7 C=0	Density: gm/cc Crystal 1.68
0 54.2 CH2CH2C(NO3)	Melting Point: "C Form I 11 Form II 95 Form III 59
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Boiling Point: "C Refractive Index, n ⁰ ₂₀ n ^D ₂₅ n ³⁰
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C
Rifle Bullet Impact Test: Trials % Explosions Partic Is	120°C 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 300 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:
20	
75°C International Heat Test: % Loss in 48 Hrs	Trauzi Test, % TNT: Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: %	Condition Charge Diameter, in.
Volatility:	Density, gm/cc 1.67 Rate, meters/second 7600

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT For Subject HE	Color: White			
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses:			
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Cast			
	Loading Density: gm/cc 1.67			
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method Dry			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)			
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None			
Air, Confined: Impulse	$\begin{array}{ccc} \underline{\text{Heat of:}} & (c) & \underline{\text{Solvent}} \\ \hline \text{Transition, cal/gm} & \underline{\text{CCL}}_{\mu} & \underline{\text{DMF}} \\ \text{I} & \longrightarrow \text{III} & 6.2 & 4.8 \end{array}$			
Under Water: Peak Pressure Impulse Energy	II I -16.6 -22.0 <u>Heat of Solution, 30⁰C:</u> <u>ΔH Solution, cal/gm</u> <u>Materia 1</u>			
Underground : Peak Pressure Impulse Energy	Form III 29.5 8.1 Form I 35.6 12.8 Form II 19.1 -9.1			
	<u>Origin:</u> Synthesized in 1952 by M. E. Hill of the U.S. Naval Ordnance Laboratory, White Oak, Maryland.			

 $\begin{array}{rcl} {}^{\mathrm{CH}_{3}\mathrm{C}(\mathrm{NO}_{2})_{2}\mathrm{OH}} & + & (\mathrm{NO}_{2})_{3}\mathrm{CCH}_{2}\mathrm{CH}_{2}\mathrm{COCl} & \\ & & & \\ & & \\ \mathrm{dinitropropanol} & & \\$

dinitropropyl trinitrobutyrate

(c)

Dinitropropanol, trinitrobutyryl chloride and aluminum chloride were slowly mixed in carbon tetrachloride at 60° C. This mixture was refluxed at 75° C for two hours. After the reaction was completed, the mixture was cooled and the crystalline product separated and purified. Water in the dinitropropanol was removed by azeotropic distillation before the acid chloride was added. The purified product had a melting point of 95° to 96° C.

Crystallographic Data:

Three distinct crystallographic modifications of DNPTB have been observed. These polymorphs have been characterized by means of X-ray diffraction and microscopic observation. Form I crystallizes from solution in carbon tetrachloride, chloroform, acetone, chloroformhexane, acetone-water, or methanol-water at room temperature. Prolonged standing of Form I at room temperature under the mother liquor promotes a transition to Form 11. Upon solidification of molten DNPTB, Form II is always observed.

Temperature,	Average Rate, sq inch/hour		Standard Deviation	Average Rate, mm/hour
15	0.347	1	0.036	0.012
20	0.435		0.025	0.128
25	0.452		0.048	0.133
30	0.475		0.049	0.140
35	0.253		0.037	0.075

Both Forms I and III gave very erratic sensitivity values. The high temperature polymorph, Form II of DNPTB, gave consistent sensitivity values.

References: 22

(a) M. E. Hill, <u>Preparation and Properties of 2,2-Dinitropropanol Esters</u>, NAVORD Report No. 2497, 3 July 1952.

(b) W. B. Hewson, Hercules Report on High Explosives. Navy Contract Nord-11280, Task A, 18 October 1954.

(c) J. R. Holden and J. Wenograd, <u>Physical Properties of an Experimental Castable Explo</u>sive 2,2-Dinitropropyl 2,4,4-Trinitrobutyrate DNPTB, NAVORD Report No. 4427, **11** December 1956.

²²See footnote 1, page 10.

Composition:	Molecular Weight: $(C_7H_6N_2O_4)$	1.82
$^{\%}$ $^{CH}_3$ c 46.3 $^{NO}_2$	Oxygen Balance: O, % CO %	-114 - 53
N 15.4	Density: gm/cc	1.521
0 35.0 NO ₂	Melting Point: "C	71
C/H Ratio 0.579	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in	Boiling Point: °C Decomposes Refractive Index, n ⁰ ₂₀ n ⁰ ₂₅	300
Sample Wt, mg	n ₃₀	
Friction Pendulum Test: Steel Shoe Unaffected Fiber Shoe Unaffected Rifle Bullet Impact Test: Trials % 0 Portials 0	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 120°C 135°C 135°C 150°C	0.04
Burned 0 Unaffected 100	200 Gram Bomb Sand Test: Sand, gm	19.3
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Decomposes 310	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide	0.20
10	Tetryl	0.25
15 20	Ballistic Mortar, % TNT: (a)	71
75°C International Heat Test: % Loss in 48 Hrs	Trauzl Test, % TNT: (b) Plate Dent Test: Method	64
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 25°C, 100% RH 0.00	Condition Charge Diameter, in. Density, gm/cc	
Volatility:	Rote, meters/second	

2,4-Dinitrotoluene (DNT)

fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Hole Volume Hole Depth	Cones		
Total No. of Fragments: For TNT	Color: Y	<i>C</i> ellow		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of propellant powder, dynamites and plastic explosives			
Total No. of Fragments: For TNT	Method of Loading: Pressed, ext composition	ruded or cast		
For Subject HE	Loading Density: gm/cc	Variable		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method	Dry		
Blost (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 12		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group D		
Air, Confined: Impulse	65.5 ⁰ C KITest: Minutes	60+		
Under Water: Peak Pressure Impulse Energy	Heat of: Combustion, cal/gm (b) Thermal Conductivity:	1545		
Underground: Peak Pressure Impulse Energy	cal/sec/cm/ ^o C Density 1.322 gm/cc	6.28 x 10 ⁻⁴		

Preparation:

See TMT.

Solubility: gm/100 gm of the following substances.;

Ethyl	<u>30%</u> Alcohol	Nitrog	glycerin		Water	
<u>°c</u>	<u>%</u>	<u>oc</u>	K	<u>oc</u>	Ľ	
25 35 45 55 60	0.16 0.29 0.49 0.77 1.03	20	30	22 50 100	0.027 0.037 0.254	

Solubility at 15°C, in:

Solvent	<u>%</u>	Solvent	20
$\begin{array}{c} \overset{\mathrm{CHCl}}{_{\mathrm{Ccl}}}_{4} \\ \overset{\mathrm{CcHc}}{_{\mathrm{CfHc}}} \\ \mathrm{Toluol} \\ \overset{\mathrm{CHC}}{_{\mathrm{CcHc}}}_{2\mathrm{H}_{5}\mathrm{CH}} (96\%) \end{array}$	65.076	ତ୍ର୍ୟୁକୁଡିH (absolute)	3.039
	2.431	Ether (absolute)	9.422
	60.644	Acetone	81.901
	45.470	Ethyl acetate	57.929
	5.014	CS ₂	2.306
	1.916	Pyridine	76.810

Origin:

Occurs as 75% of the products obtained on the nitration of toluene, the remaining 25% being mainly 2,6-DNT and other isomers of DNT. Also occurs as an impurity in crude TNT obtained by standard manufacturing process. Used in explosive mixtures at least since 1931.

References: 23

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives, Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD Report No. 5/46</u>, 27 December 1945.

(b) A. H. Blatt, <u>Compilation of Data on Organic Explosives</u>, OSRD Report No. 2014, 29 February 1944.

- (c) Report AC-2861.
- (d) Also see the following Picatinny Arsenal Technical Reports on DNT:

<u>o</u>	<u>1</u>	2	3	4	5	<u>م</u>	ヱ	8	9
810 1830	1351 1501 1651 1781 1821 2031 2221	72 372 922 1142 1672 1692	43 233 673 1023 1663 1743 2013	394 804 1044 1094 1164 1324 1464 1524 1674 1754 2094	1615 2125	186 1556 1816 1896	97 817 837	768 938 1538	69 149 249 279 779 1749

23See footnote 1, page 10.

Composition :	Molecular Weight: $(C_{10}H_{16}N_{6}O_{19})$ 554
% C 21.7 H 2.9 N 15.2 ONO ₂ ONO ₂ O 60.2 I 2 ¶ ²	Oxygen Balance: CO, % -26 CO % + 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Density: gm/cc Crystal 1.63
$ON_2OCH_2C - CH_2 - O - CH_2 - CH_2ONO_2$	Melting Point: "C 73.7
\dot{c}_{1}^{H} \dot{c}_{2}^{H}	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 1 ¹ 4	Boiling Point: "C
Bureau of Mines Apparatus, cm 1 ¹ 4 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. ¹ 4 Sample Wt, mg 10	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel ShoeExplodesFiber ShoeUnaffected	cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials	100°C 3.7
w	120°C 11+ 135°C
Explosions	150°C
Partio Is Burned	200 Gram Bomb Sand Test:
Unaffected	Sand, gm 57.4
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 300 5 Explodes 255 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl
15 20	Ballistic Mortar, % TNT: (a) 142
	Trauzi Test, % TNT: (b) 128
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 0.11	Confined Density, gm/cc
% Loss, 2nd 48 Hrs 0.10	Brisance, % TNT
Explosion in 100 Hrs None	()
Flammability Index:	Confinement Copper tube
Hygroscopicity: % 0.03	Condition Pressed Charge Diameter, in. 0.39
Volatility:	Density, gm/cc 1.59 Rate, meters/second 7410

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragment s: For TNT	Color: White		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of priming compositions		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed		
	Loading Density: gm/cc		
Fragment Velocity: ft/sec	At 3000 to 4000 psi 1.59		
At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) $Class 9$		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation		
Air, Confined: Impulse	Preparation: (Chemistry of Powder and Explosives, Davis)		
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	2(H0-CH ₂) ₄ C <u>Dehydration</u> (H0-CH ₂) ₃ C-O-C(CH ₂ -OH) ₃ (O ₂ NO-CH ₂) ₃ C-O-C(CH ₂ -ONO ₂) ₃ Dipentaerythritol Hexanitrate is procured in the pure state (melting point 72°C) by fractional crystallization of crude PEIN from moist acetone. <u>Origin:</u> Formed as an impurity in the prepa- ration of PEIN. Properties first described by W. Frederick and W. Brün in 1930 (Berichte <u>63</u> , 2861 (1930); Z. ges Schiess- Sprengstoffw 27, 73-6, 125-7, 156-8 (1932))		
	$\frac{\text{Heat of:}}{\text{Combustion, cal/gm}} = 2260$		

References: 24

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>: <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) A. Stettbacher, <u>Die Schiess und Sprengstoffe</u>, Leipsiz, p. 363.

(c) T. L. Davis, The Chemistry of Powder and Explosives, John Wiley and Sons, Inc., Nav York (1943) pp. 218-283.

(d) S. Livingston, <u>Characteristics of Explosives HMX and DPMN</u>, PAIR No. 1561, 6 September 1945.

²⁴See footnote 1, page 10.

Composition: 99.5/0.5 RDX/1-MA dye* 17.5	Molecular Weight:
% TNT 67.8 Tripentaerythritol 8.6 68/32 Vistac No 1/DOS binders* 4.1	Oxygen Balance: CO, % CO %
Cellulose acetate, LH-1 2.0 *RDX, Class E; 1-MA is 96% pure 1-methylamino- anthraquinone.	Density: gm/cc Loading 0,9
**Vistac No 1 is low MW polybutene; DOS is dioctylsebacate.	Melting Point: "C
C/H Ratio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 22	Reftactive Index, n ^D ₂₀
Sample Wt, mg 19	n ^D 23
	n ^D ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Unaffected	cc/40 Hrs, at 90°C
Fiber Shoe Unaffected	100°C
Rifle Bullet Impact Test: Trials	120°C 0.90
% Explosions	135°C
Portials	150°C
Burned	200 Grom Bomb Sand Test:
Unaffected	10.5
Explosion Temperature: "C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm
1	Mercury Fulminate
5 Ignites 480	Lead Azide 0.20
10	Tetryl 0.15
15	Ballistic Mortar, % TNT:
20	Treuzi Test, % TNT:
75°C International Heat Test:	IFGUZI JEST, % INT.
% Loss in 48 Hrs	Plate bent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs	Brisance, % TNT
Flammability Index:	Detonation Rate:
	Confinement None
Hyproscopicity: % 0.31 71°C, 95% RH, 30 days Satisfactory	Condition Hand tamped Charge Diameter, in. 1.25
71°C, 95% RH, 30 days Satisfactory Volatility:	Density, gm/cc 0.9
	Rote, meters/second 4397; or 14400 ft/sec

L

Dynamite, Low Velocity, Picatinny Arsenal (LVD)

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:			
90 mm HE, M71 Projectile, Lot WÇ-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Co Hole Volume Hole Depth	nes		
Total No. of Fragments: For TNT	Color:	Pink		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments: For TNT	Principal Uses: Excavation, demo and cratering Method of Loading: Hall Packer mac			
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc Tamped cartridge 1-1/2" diamete	0.9 r, 8" long		
At 9 ft At 25½ ft Density, gm/cc	Storage: Method	Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group A		
Air, Confined: Impulse	Sensitivity to Initiation: Stick dry, No. 6 Electric cap Stick dry, Corps of Engineers Stick wet, Corps of Engineers	Positive Positive Positive		
Under Water: Peak Pressure Impulse Energy	Air Gap Propagation: Max distance will, inch min distance will not, inch Stick Water Immersion:	2-1/2 3		
Underground: Peak Pressure Impulse Energy	Weight gain, % <u>Heat of:</u> Explosion, cal/gm Gas Volume, cc/gm <u>Cold Storage:</u> Plastic to Low Temperature Usage: -65°F, 1 day, M2 cap	9-16 625 611 -65°F tisfactory		

Preparation:

To date this dynamite has been prepared on a laboratory scale, the details of which are classified, It has been shown, however, to be machine loadable on a Hall packing machine,

Origin:

Nobel invented the original dynamite in 1866 and gave the name dynamite to mixtures of nitroglycerin and kieselguhr. The strength of a dynamite was indicated by the percentage of NG in the mixture. Later oxidants and combustibles were substituted for the kieselguhr, and ammonium nitrate and/or nitrostarch replaced the NG, bringing into existence new types of dynamites. World War II military operations required special demolition and cratering explosives free from the objectionable characteristics of NG and many "dynamite substitutes" were developed for specific applications. The subject low velocity dynamite was developed in 1956 by Picatinny Arsenal (Ref a).

References: 25

(a) H. W. Voigt, <u>Development of Low-Velocity Military Explosives Equivalent to Commercial</u> Dynamites, PA Technical Report 2374, March 1957.

(b) Also see the following Picatinny Arsenal Technical Reports on Dynamites:

<u>o</u>	1	2	4	٤	<u>6</u>	ユ	8	<u>9</u>
1260 1360 1720 1760	1381 1611	782 1532	864 1464	1285	1416 1436 1506 2056	507 957	848 1828	1819

²⁵See footnote 1, page 10.

Composition:	Molecular Weight:	
% RDX 75 TIVT 15 Starch 5	Oxygen Balance: CO, % -51 CO %	
SAE No. 10 0 i l 4 Vistanex o i l gel* 1	Density: gm/cc Loading 1.1	
80/15/5, SAE No. 10 weight o 1/Vistanex B-	Melting Point: °C	
120XC/Navy D2 wax. C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	Nitroglycerin Equivalent, 🖇 60	
Bureau of Mines Apparatus, cm >100 Sample Wt 20 mg 18	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. 25	n ^D ₂₅	
Sample Wt, mg	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Crackles	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impact Test: Trials	100°C 0.80 120°C 0.94	
%		
Explosions 0	135°C	
Partials 0	150°C	
Burned 10	200 Gram Bomb Sand Test:	
Unaffected 90	Sand, gm 52.6	
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate	
5	Lead Azide 0.20	
10	Tetryl 0.10	
15	Ballistic Mortar, % TNT: 122	
20		
75°C International Heat Test:	Plate Dent Test:	
% Loss in 48 Hrs	Method	
	Condition	
100°C Heat Test:	Confined	
% Loss, 1st 48 Hrs 0.62 % Loss, 2nd 48 Hrs 0.12	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
	Detonation Rate:	
Flammability Index:	Confinement None	
· · ··································	Condition Machine ta	amped
Hygroscopicity: %	Charge Diameter, in. 1.50	
71°C, 95% RH, 30 days Satisfactor		
Volatility:	Rate, meters/second 6000-6600; or 20,	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Buff		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, 1b	Principal Uses: Excavation, demolition, and cratering		
Total No. of Fragments: For TN T For Subject HE	Method of Loading: Hall Packer machine loaded		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Loading Density: gm/cc 1.1 Cartridge 1-1/2" diameter, 8" long Storage:		
Density, gm/cc	Method Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) $ m Class~9$		
Air: Peak Pressure Impulse Energy	Compatibility Group Group A		
Air, Confined: Impulse	Sensitivity to Initiation: Stick dry, No. 6 Electric cap Positive Stick dry, Corps of Engineers Positive Stick wet, Corps of		
Under Water: Peak Pressure Impulse Energy	Engineers > 50% Positive <u>Air Gap Propagation:</u> <u>Max distance will</u> , inch 1 <u>Min distance will not</u> , inch 2-1/2 Quarry Performance: 4 tons rock/ton		
Underground: Peak Pressure Impulse Energy	explosiveStick Water Immersion:Weight gain, %25-27Heat of: Explosion, cal/gm935Gas Volume, cc/gm945Cold Storage:Plastic to -70°FLow Temperature Usage:		
•	-65°F, 1 day, M2 cap crimper Satisfactory		

Preparation:

Manufactured on standard dynamite line and packaged on a Hall packing machine. Details of handling materials and techniques of manufacture are classified.

Orinin:

Military forces frequently require excavation, demolition, and cratering operations for which standard high explosives are unsuitable. Commercial blasting explosives, except black powder, are called dynamites although they may contain no nitroglycerin. The subject dynamite substitute was developed in 1952 by the Hercules Powder Company (Ref a).

References: 26

(a) W. R. Baldwin, Jr., <u>Blasting Explosives (Dynamite Substitute)</u>, Hercules Powder Company Formal Progress Report, RI 2086, 15 August 1952, Army Contract DA-36-034-0RD-110.

(b) H. W. Voigt, <u>Development of Low-Velocity Military Explosives Equivalent to Commercial</u> Dynamites, PA Technical Report No. 2374, March 1957.

²⁶See footnote 1, page 10.

EC Blank Fire

Composition: %	Molecular Weight: Approximately 503
Nitrocellulose, 13.25% N 80 Barium Nitrate 8 Potassium Nitrate 8	Oxygen Balance: $\begin{array}{c} & & & +5 \\ & & & & -25 \end{array}$
Starch 3 Diphenylamine 0.75	Density: gm/cc
Aurine 0.25	Melting Point: "C
C/H Ratio	Freezing Point: "C
Impact Sensitivity 2 K with ty, z Kg with Bureau of Mines Apparatus, cm <u>19</u> Sample Ma 20	Boiling Point: °C
Sample Wit Zu ma Picatibhy Arsenal Apparatus, in. Sample Wt, mg 20	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test: Steel Shoe Snaps Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials % Explosions	100°C 120°C 135°C
Partials Burned	150°C
Unaffected	200 Gram Bomb Sand Test: Sand, gm 46.8
Explosion Temperature: "C Seconds, 0.1 (no cap used) ¹ ⁵ Decomposes 200 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate 0.22 Lead Azide Tetryl
15 20	Ballistic Mortar, % TNT:
/5°C International Heat Test;	Trauzi Test, % TNT:
% Loss in 48 Hrs 1.8	Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs 2.0 % Loss, 2nd 48 Hrs 0.2 Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % 30°C, 90% RH 6.2	Condition Charge Diameter, in.
Volatility:	Density, gm/cc Rate, meters/second

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 1	00:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel C Hole Volume Hole Depth	Cones
Total No. of Fragments: For TNT	Color:	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, 1b	Principal Uses: Grenades; caliber	.30 blank
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Loose
Fragment Velocity: ft/sec	Loading Density: gm/cc	0.40
At 9ft At 25½ ft	Storage:	
Density, gm/cc	Method	W e t
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class O
Air: Peak Pressure	Compatibility Group	Group J
Impulse Energy	Exudation	
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Preparation: EC Blank Fire is a colloided propellant manufac cess using either acetone an mixture of butyl acetate and gelatinize only a part of th lose. The process is contro the product passes through a and is retained on a No. 50	tured by a pro- d ethanol or a benzene to e nitrocellu- lled so that No. 12 sieve
Underground: Peak Pressure Impulse Energy	Origin: Invented in 1882 as bulk spo less) powder by W. F. Reid and the Explosive Company (whence t in England (British Patent 619)	D. Johnson at he name "EC")
References: ²⁷ (a) See the following Picatinny Arsenal Technical Reports on EC Blank Fire: 891 901, 372, 512, 822, 233, 1373, 854, 65, 667, 817, 69, 579 and 1399.	120 [°] C Heat Test: Salmon Pink Red Fumes Explodes	Minutes 150 300+ 300+

²⁷See footnote 1, page 10.

Ednatol, 55/45

Composition:	Molecular Weight:	178
%	Oxygen Bulonce:	
Haleite (Ethylene Dinitramine) 55	CO. %	-51 -17
INT 45	CO %	-11
	Density: gm/cc Cast	1.62
	Metring Point: "C Eutectic	80
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt;	Bailing Point; °C	
Bureau of Mines Apparatus, cm. 95 Sample Wt 20 mg	Refractive Index, n20	
Picotinny Arsenol Apparatus, in.	h25	
Sample Wt, mg 20	n ^D ₃₀	
	¥130	
Friction Pendulum Test: Steel Shoe Unaffected	Vacuum Stability Test:	
	cc/40 Hrs, at 90°C	
Fiber Shoe Un affected	- 100°C	1.0
Rifle Bullet Impact Test: Trials	120°C	11+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	135°C	
Explosions 0 Partials 0	150°C	
Burned 7	200 Gram Bamb Sand Test:	
Unaffected 93		49.4
+	Sand, gm	
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 <b>(no</b> cap used) 435 1 248	Minimum Detonating Charge, gm Mercury Fulminate	
5 Decomposes 190	Lead Azide	0.22* 0.26*
10 183	*Alternative initiating charp	
15 176		,
20 168	Ballistic Mortar, % TNT: (a)	119
*Composition Haleite/INT, 60/40.	Trouzi Teat, % TNT: (b)	120
75°C International Heat Test: % Loss in 48 Hrs	Plote Dent Test:	52/48
	Method	В
100°C Heat Test:	Condition	Cast
% Loss, 1st 48 Hrs 0.2	Confined	No
% Loss, 2nd 48 Hrs 0.1	Density, gm/cc	1.62
Explosion in 100 Hrs None	Brisance, % TNT	112
	Detonation Rote:	
Flammability Index: Will not continue to burn	Confinement	None
	Condition	Cast
Hygroscopicity: % None	Charge Diameter, in.	1.0
Volatility:	Density, gm/cc	1.63 72ko
V0	Rate, meters/second	7340

Fragmentation Test: 90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc 1.56 1.62			Shaped Charge Effectiveness, $TNT = 100$ : $50/50$ Glass Cones Steel Cones Hole Volume 126 123		
<b>Total No.</b> of <b>Fragments</b> : For TNT	70 <b>3</b>	703	Color:	Yellow	
For Subject HE	842	902	Principal Uses: Projectiles, bor	nbs; special	
3 inch HE, M42A1 Projectile,	Lot KC-5:		ammunition comp	onents	
Density, gm/cc		1.60			
Charge Wt, Ib		0.845			
Total No. of Fragments: For TNT		514	Method of Looding:	Cast	
For Subject HE		536			
•			Loading Density: gm/cc	1.65	
Fragment Velocity: ft/sec		2730			
At 9 ft At 25½ ft		2430	Storage:		
Density, gm/cc		1.62	Method	Dry	
Blast (Relative to TNT):	Blast (Relative to TNT):		Hazard Closs (Quantity-Distance)	Class 9	
Air:			Compatibility Group	Group I	
Peak Pressure		108			
Impulse		110	Exudation Does no	t exude at 65°	
Energy		108			
Air, Confined:			Eutectic Temperature, ^O C:	79.8	
Impulse			gm Haleite/100 gm TNT 79.8°C	0.48	
			95.0°C	1.12	
Under Water: Peak Pressure			Compatibility with Metals:		
Impulse			Brass, aluminum, stain المنتخط		
Energy		113	mild steel, mild steel coated proof black paint, and mild st	eel plated	
<b>Underground:</b> Peak Pressure			with cadmium or nickel are una per, magnesium, magnesium-alum mild steel plated with copper	inum alloy an	
Impulse			slightly affected.		
Energy			Wet: Copper, brass, magnesiu		
Booster Sensitivity Tes	st:	(d)	aluminum alloy, mild steel, mi with acid-proof black paint an		
Condition Totryl m		Cast 100	plated with copper, cadmium, n	ickel or zinc	
Tetryl, gm Wax, in. for 50% Deto	nation	1.28	are heavily attacked. Aluminu	n is slightly	
Density, gm/cc		1.62	affected and stainless steel i	s unaffected.	

#### Preparation:

Wet Haleite is added slowly to molton TNT heated at about  $100^{\circ}$ C in a steam jacketed melting kettle equipped with a stirrer. Heating and stirring are continued until all moisture is evaporated. Loading is done by pouring the mixture cooled to  $85^{\circ}$ C.

#### Origin:

Mixtures of Haleite (EDNA) and TNT, designated Ednatol, were developed at Picatinny Arsenal just prior to World War II.

### References: 28

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Philip C. Keenan and Dorothy C. Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, <u>Methods of Physical Testing</u>, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NOL Mano 10,303, 15 June 1949.

(e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(f) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, See III, Variation of <u>Cavity Effect with Composition</u>, NDRC Contract W-672-ORD-5723.

(g) Eastern Laboratory, du Pont, <u>Investigation of Cavity_Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.

(h) Also see the following Picatinny Arsenal Technical Reports on Eduatol:

<u>0</u>	1_	2	<u>3</u>	4	5	6	<u>7</u>	8	<u>2</u>
1290 1400 1420 1530	1291 1451 1651	1162 1372 1482	1193 1363 1493	1294 1434	1325 1395 1885	1796	1457 1477 1737 1797	1198 1388 1838	1279 1469

²⁸See footnote 1, page 10.

Composition:	Molecular Weight: $(C_{10}H_{12}N_6O_{16})$	468
% с 25.6 н 2.6	Oxygen Balance: CO, % CO %	- 34 0
$\begin{array}{c} \mathbb{N}  17,1 \\ \mathbb{CH}_2^{CO_2 CH_2 CH_2 CH_2 C}(\mathbb{N}O_3) \\ \mathbb{CH}_2^{CO_2 CH_2 CH_2 C}(\mathbb{N}O_3) \end{array}$	Density: gm/cc Crystal	1.63
$o 54.7$ $cH_2 cO_2 cH_2 cH_2 c(NO_3)$	Melting Point: °C	96
C/H Ratio 0.235	Freezing Point: °C	
Impact Sensitivity, 2 <b>Kg Wt:</b> Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum lest: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Impact lest: Trials % Explosions Partials Burned Unaffected	120°C 135°C 150°C	
	200 Gram Bomb Sand lest: Sand, gm	
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 550% point 230 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	
15 20	Ballistic Mortar, % TNT:	
	Trauzi lest, % TNT:	
75°C International Heat lest: % Loss in 48 Hrs 100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Plate Dent lest: Method Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: %	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc Rate, meters/second	1.63 7340

## Ethylene Glycol Di-Trinitrobutyrate (GTNB)

Fragmentation <b>Test</b> :	Shaped Charge Effectiveness, TNT = $'$	100:		
90 mm ME, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color:			
For Subject HE	Principal Uses: Casting medium for HE comp			
3 inch Hf, M42A1 Projectile, Lot KÇ-5; Density, gm/cc				
Charge Wt, Ib				
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Cast		
	Loading Density: gm/cc	1.60		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/c <b>c</b>	Method	Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)			
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	None		
Air, Confined: Impulse	Preparation: (a) By the addition of nitroform to ethylene glycol diacrylate. As the method of prepa- ration often leads to products difficult to <b>purify</b> , a preparation from ethylene glycol and pure trinitrobutyric acid is in process.			
Under Water: Peak Pressure Impulse				
Energy	<u>Origin:</u>			
Underground: Peak Pressure Impulse	First synthesized in 1951 b Rubber Company, Research and D General Laboratories, Passaic,	Development		
Energy	Viscosity, poises:			
	Тетр, 98.9 ⁰ с 106.5°с	0.246 0.193		
	Liquid Density, gm/cc: Temp, 98.9°C 106.5°C	1.467 1.459		

### References:29

(a) U. S. Rubber Company Progress Report No. 14, Navy Contract Nord-10129, 1 February 1951 to 1 May 1951.

(b) U. S. Naval Ordnance Laboratory, Silver Spring, Maryland, Letter from Dr. O. H. Johnson to Commanding Officer, Picatinny Arsenal, 8 April 1955 (ORDBB 471.86/44-3, Registry No. 39815); and NOL Letter from Dr. D. V. Sickman to Commanding Officer, Picatinny Arsenal, 29 November 1955 (ORDBB 471.86/159-1; Serial No. 02894).

²⁹See footnote 1, page 10.

Composition: %	Molecular Weight: $(C_{6}H_{6}N_{4}O_{7})$	246
C 29.3 $0 - NH_{1_4}$ H 2.4 $0_2N - NO_2$	Oxygen Balance: OO, % CO %	-52 -13
N 22.7	Density: gm/cc Crystal	1.72
0 45.6	Melting Point: "C Decomposes	265
C/H Ratio 0.317	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. $17$	Refractive Index, n ^D ₂₀ a _O	1.508
Sample Wt, mg 18	þ _o	1.870 1.907
Friction Pendulum lest:         Steel Shoe       Unaffected         Fiber Shoe       Unaffected	Vacuum Stability lest: cc/40 Hrs, at 90°C	
Rifle Bullet Impact lest: Trials	100°C	0.2
%	120°C 135°C	0.4
Explosions 0	150°C	0.4
Partiols 0 Burned 30		
Unaffected 70	200 Gram Bomb Sand lest: Sand, gm	39.5
Explosion Temperature: "C Seconds, 0.1 (no cap used) 405 1 367 5 Decomposes 318	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate	
10 314	Lead Azide	0.20
15 299	Tetryl	0.06
20 295	Ballistic Mortar, % TNT: (a)	99
75°C International Heat lest:	_ Trauri lest, % TNT:	
% Loss in 48 Hrs	Plate Dent lest: Method	A
100°C Heat lest:	Condition	Pressed
% Loss, 1st 48 Hrs 0.1	Confined	Yes
% Loss, 2nd 48 Hrs 0.1	Density, gm/cc	1.50
Explosion in 100 Hrs None	Brisance, % TNT	91
Flammability Index:	Detonation Rate: Confinement	None
Hygroscopicity: % 100% RH 0.1	Condition Charge Diameter, in	Pressed
	Density, gm/cc	1.0 1.55
Volatility:		6850
1	Rate, meters/second	0000

Fragmentation Test:		Shaped Charge Effectiveness, TNT =	100:
90 mm HE, M71 Projectile, Lot V	NC-91:	Glass Cones Steel	Cones
Density, gm/cc	1.50	Hole Volume	
Charg <del>e</del> Wt, Ib	1.94	Hole Depth	
Total No. of Fragments:		Color: Ye	ellow-orange
For TNT	703		or or unge
For Subject HE	649	Principal Uses: AP projectiles	and bombs
3 inch HE, M42A1 Projectile, Lo	t KC-5:		
Density, gm/cc	1.55		
Charge Wt, Ib	0.82		
Total No. of Fragments:		Method of Loading:	Pressed
For TNT	514	J	
For Subject HE	508		
		Loading Density: gm/cc psix1	.0 ⁻⁵ 15 20
Fragment Velocity: ft/sec		1.33 1.41 1.47 1.49	1.51 1.53
At 9 ft At 25½ ft		Storage:	, <u></u>
Density, gm/cc		Method	Dry
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure		E	( <del>65</del> 0a
Impulse		Exudation Nor	ne at 65°C
Energy			
Air, Confined:		Sensitivity to Electrostatic	(-)
Impulse		Discharge, Joules:	(d)
		Through 100 Mesh:	
Under Water:		Confined	6.0
Peak Pressure		Unconfined	0.025
Impulse -		Booster Sensitivity Test:	(c)
Energy		Condition	Pressed
Underground:		Tetryl, gn Way in fan 50% Detensti	100 am 1 97
Peak Pressure		Wax, in. for 50% Detonati Density, gm/cc	on 1.27 1.54
Impulse		Heat of:	
Energy			2900
		Combustion, cal/gm Explosion, cal/gm	2890 800
		Formation, cal/gm	395

### Preparation:

Explosive D is manufactured by suspending picric acid in hot water and neutralizing it with gaseous or liquid ammonia. As the picrate is formed, it goes into solution; on cooling, it precipitates. An excess of ammonia leads to formation of the red form of ammonium picrate. This should be avoided. The separated crystals are washed with cold water and dried.

#### Effect of Storage on Sand Test Values:

	<u>Minimum</u> Detonating <u>Charge</u>					
<u>Stor</u> Years	<u>age</u> C	<u>Mercury</u> Fulminate (gm)	Tetryl (gm)	Crushe (gm)		
0 3.5 2 * 4 * 2 **	50 Normal Nomal 50	0.25 0.24	0.06 0.03 0.04	23 23 23 23 23 23		
2 **		0.24		23		

After 3.5 years at 50°C. ** After 3.5 years at 50°C and 2 years at magazine temperature.

## <u>Solubility: gm/100 gm (%), of:</u> (e)

W	ater	Alcohol		Ethy	1 Acctate
o _C	1/2	°C	<u>%</u>	<u>°c</u>	20
<b>20</b> 100	<b>1.1</b> 75	0 10 30 50 <b>80</b>	0.515 0.690 1.050 1.890 3.620	0 10 30 <i>50</i> 80	0.290 0.300 0.380 0.450 0.560

### Origin:

First prepared by Marchand in 1841 and used by Brugere in admixture with potassium nitrate as a propellant in 1869. Used as a high explosive after 1900.

### Destruction by Chemical Decomposition:

Explosive D (ammonium picrate) is decomposed by dissolving in 30 times its weight of a solution made from 1 part of sodium sulfide ( $Na_2S \cdot 9H_2O$ ) in 6 parts of water.

### References: 30

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD</u> Report No. 5746, 27 December 1945.

³⁰See footnote 1, page 10.

Explosive D (Ammonium Picrate)

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NOL Mamo 10,303, 15 June 1949.

(d) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(e) Various sources in the open Literature.

(f) Also see the following Picatinny Arsenal Technical Reports on Explosive D:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	5	6	<u>7</u>	<u>8</u>	<u>9</u>
340 870 1380	1441 1651	132 582 1172 1352 1372 1492	a43	694 704 874 1234 1724	65 425 1585 1655 1725 1885 1895	266 556 796 986 1466 1796	<b>1737</b> 1797	328 838 1838	1729 1759

AMCP 706-177

Glycerol Monolactate Trinitrate (GLTN) Liquid

Composition: %	Molecular Weight: (C ₆ H ₉ N ₃ O ₁₁ ) 299
24.1 0 0N0 3.0 $CH_{2} - 0 - C - CH - CH$	Oxygen Balance:         -30           CO, %         3
N 14.1 CH-ONO ₂	Density: gm/cc Liquid 1.47
о 58.8 ^{Сн} 2 ^{— омо} 2	Melting Point: "C
C/H Ratio 0.180	Freezing Point: "C
Impact Sensitivity, 2 <b>Kg</b> Wt: Bureau of Mines Apparatus, cm 15 <b>(11</b> b wt); 42 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ 1.464 n ^D ₃₀
Friction Pendulum Test: Steel Shoe Unaffected Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials % Explosions Portials	100°C 5.9 120°C 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 13-1
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 223 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide Tetryl Ballistic Mortar, % TNT:
20	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:           % Loss, 1st 48 Hrs         2.5           % Loss, 2nd 48 Hrs         1.8           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rote: Confinement
Hygroscopicity: %	Condition Charge Diameter, in.
Volatility: 60°C, mg/cm ² /hr 28	Density, gm/cc Rate, meters/second

140

# Glycerol Monolactate Trinitrate (GLTN) Liquid

AMCP 706-177

ragmentation Test:	Shaped Charge Effectiveness, TNT =	100:
90 mm 旺, M71 Projectile, Lot WC-91:	Glass Cones Steel	Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color:	
For TNT		
For Subject HE	Principal Uses: Gelatinizer for n	itrocellulose
3 inch HE, M42A1 Projectile, Lot KC-5:		
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments: For TNT	Method of Loading:	
Far Subject HE	Loading Density: gm/cc	
ragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Liquid
last (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
<b>.</b>	Compatibility Group	
Air: Peak Pressure		
Impulse	Exudation	
Energy		
Air, Confined:	Hydrolysis, % Acid:	
Impulse	10 days at 22 ⁰ C 5 days at 60 ^o C	0.021 0.014
Under Water: Peak Pressure	Solubility in Water, gm/100 gm, at:	
Impulse	25 ⁰ .c 60 ^o c	<0.01
Energy		< 0.015
Underground:	Solubility, gm/100 gm, at 25 ⁰ C, in:	
Peak Pressure	Ether	8
Impulse Energy	2: 1 Ether:Alcohol Acetone	m ∞
5,	Heat of:	
	Combustion, cal/gm	2407

### Preparation:

Glycerol monolactate (GML) is prepared by heating a glycerol lactic acid mixture containing  $\frac{4\%}{16}$  excess lactic acid at 116°C for 112 hours with dry air bubbling through the liquid. The product which contains 0.67% free acid is carefully mixed with 6 parts of  $\frac{40}{60}$  HNO₃/H₂SO₄ maintained at 20°C, stirred for 1 hour, cooled to 5°C, and poured on ice. It is extracted with ether, water-washed, adjusted to pH 7 by shaking with a sodium bicarbonate solution, and again water-washed three times. It is then dried with calcium chloride, filtered and freed of ether by bubbling with air until minimal loss in weight is obtained. The product has a nitrate-nitrogen content of 13.43% (theoretical 14.1% N). Another batch, prepared from GML obtained from glycerol-lactic acid containing 6.5% excess glycerol, had a nitrate-nitrogen content of 14.30%, dorresponding to a mixture containing 5.5% nitroglycerin. It is not considered practicable to prepare the pure GLTN.

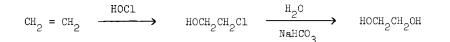
### Origin:

The preparation of a nitrated ester of lactic acid and glycerol, by nitrating a glyceryl lactate with nitric and sulfuric acids, for use in explosives, was reported in 1931 by Charles Stine and Charles Burke (U. S. Patent 1,792,515).

The preparation of glycerol monolactate by heating glycerol with equimolar proportions of a lactic acid ester of an alcohol boiling below 100°C (ethyl lactate) was patented by Richie H. Locke in 1936 (British Patent 456,525 and U. S. Patent 2,087,980).

#### Reference: 31

(a) P. F. Macy and A. A. Saffitz, <u>Explosive Plasticizers for,Nitrocellulose</u>, PATR No. 1616, 22 July 1946.


³¹See footnote L, page LO.

Composition: %	Molecular Weight: $(C_2H_4N_2O_6)$	) 1.52
c 15.8 ONO ₂	Oxygen Bolance: CO, % CO %	0.0 21
N 184	<b>Density</b> : gm/cc Liquid, 25	^D C 1.48
0 63.2	Melting Point: "C	-20
C/H Ratio 0.092	freezing point: "C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C	
Bureau of Mines Apparatus, cm 4 (1 1b wt); 56 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₃ n ^D ₃₀	1.4452
Friction Pendulum Test:	Vacuum \$toþilit <del>y</del> Test:	
Steel Shoe Fiber Shoe	cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials	100°C 120°C	
Explosions	135°C 150°C	
Partials Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Explodes 257 10	<b>Sensitivity to Initiation:</b> Minimum Detonating Charge, Mercury <b>Ful</b> minote Lead Azide Tetryl	gm
15 20	Ballistic Morter, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, <b>gm/cc</b> Brisance, % <b>TNT</b>	
Flammability Index:	Detonation <b>Rate:</b>	Class tuba
-	Confinement Condition	Glass tube Liquid
Hygroscopicity: % 30 [°] C, 90% RH 0.00	Charge Diameter, in.	10
Volatility:	Density, gm/cc Rate, meters/second	<b>1.485</b> 7300 and 2050

Fragmentation Test:	Shaped Charge Effectiveness, TNT == 100:			
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For ⊤N⊤	Color: Yellow			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of nonfreezing dynamite			
Total No. of Fragments: For TNT For Subject HE	Method of Loading:			
Fragment Velocity: ft/sec	Loading Density: gm/cc			
At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method Liquid			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure impulse Energy	Compatibility Group Exudation			
Air, Confined: Impulse	$\frac{\text{Solubility in 1000 cc Water:}}{\frac{\text{Temp.} ^{\text{O}}\text{C}}{15}} \frac{\text{Grams}}{6.2}$			
Under Water: Peak Pressure	20 6.8 50 9.2			
Impulse Energy	Viscosity, centipoises: Temp, 20 ⁰ C 4.2			
<b>Underground:</b> Peak Pressure Impulse Energy	Vapor Pressure: $^{\circ}C$ mm Mercury           0         0.0044           20         0.038           40         0.26           60         1.3           80         5.9           100         22.0           Heat of: $22.0$			
	InterviewCombustion, cal/gm1764Formation, cal/gm(b)366			

#### Preparation:

Glycol dinitrate (ethylene glycol dinitrate, dinitroglycol, nitroglycol, dinitrodimethyleneglycol) may be prepared by nitration of ethylene glycol,  $HOCH_2CH_2OH$ , with a mixed nitric acid in the same apparatus that is used for the preparation of nitroglycerin. The glycol is prepared by synthesis from ethylene, and ethylene chlorohydrin:



#### Origin:

Henry was the first to prepare and identify glycol dinitrate (Ber 3, 529 (1870) and Ann chim phys [4] 27, 243 (1872) but Kekulé had previously nitrated ethylene and obtained an unstable oil which he supposed to be glycol nitrate-nitrate. No immediate practical use was made of glycol diqitrate because glycol itself was relatively rare and expensive at the time. It was 1904 before a patent was granted covering the use of GDN as an explosive (DRP 179,789), but it was seven years later before its actual use as an explosive was recorded (Mém poudr 16 (1911) p. 214). The principal physical properties of GDN were determined or recorded by Rink-enbach (Ref b).

# References: 32

(a) Ph. Naoum, <u>Nitroglycerin and Nitroglycerin Explosives</u>, translation, E. M. Symmes, The Williams and Wilkins Company, Baltimore (1928), p. 224.

(b) Wm H. Rinkenbach, "The Properties of Glycol Dinitrate," Ind Eng Chem 18, 1195 (1926).

(c) Wm H. Rinkenbach, "Glycol Dinitrate in Dynamite Manufacture," Chem Met Eng, <u>34</u>, 296 (1927).

(d) Wm H. Rinkenbach, <u>Application of the Vacuum Stability Test to Nitroglycerin and Nitro-</u> glycerin Explosives, PAIR 1624, 27 August 1946.

³²See footnote 1, page 10.

# <u>H-6</u>

Composition:	Molecular Weight:	
%		93
RDX 45	Oxygen Balance:	
TNT 30 Aluminum 20	CO %	-36
D-2 Wax 5	Density: gm/cc Cast	2 (7)
Calcium Chloride,	Density: gm/cc Cast	1.74
added 0.5	Melting Point: °C	
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in, (c) 14	n25	
Sample Wt, mg 18		
Frietian Dandukum Tasti	n ₃₀	
Friction Pendulum Test: Steel Shoe Unaffected	Vacuum Stability Test:	
Fiber Shoe Unaffected	cc/40 Hrs, at	
	90°C 100°C	
Rifle Bullet Impact Test: Trials (b)	120°C	0.47
%	135°C	
Explosions 80	150°C	
Partials	130 0	
Burned	200 Gram Bomb Sand Test:	
Unaffected 20	Sand, gm	49.5
Explosion Temperature: °C (a)	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate	
10	Lead Azide	0.20
15	Tetryl	0.10
20	Ballistic Mortar, % TNT: (d)	135
	Trauri Test, % TNT:	-07
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.78	Confined	
% Loss, 2nd 48 Hrs 0.00	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Detonation Rate:	(a, b)
	Confinement	None
Hygroscopicity: % 30°C, 95% RH, 7 days 2.01	Condition	Cast
Hygroscopicity: % 30°C, 95% RH, 7 days 2.01 71°C, 95% RH, 7 days 1.77	Charge Diameter, in.	1.0
Volatility:	Density, gm/cc	1.71
	Rate, meters/second	7191

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc Heat of: Combustion, cal/gm Explosion, cal/gm Formation, cal/gm Fusion, cal/gm	3972 923 733 10.25	Decomposition Equation: Oxygen, atams/sec (Z/sec) Heat, kilocolorie/mole (AH, kcal/mol) Temperature Range, °C Phase Armor Plate Impact lest: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec Aluminum Fineness
a <u>nness</u> a <u>nn</u> e		500-lb General Purpose Bombs:
Specific Heat: col/gm/°C 30 ^୦ ୯	(b) 0.269	Plate Thickness, inches
50°C	0.268	1 11/4 11/2 13/4
Burning Rate: cm/sec		Bomb Drop Test:
Thermal Conductivitv: col/sec/cm/°C 35°℃	(b) -3 1.10 x 10	T7, 2000-Ib Semi-Armor-Piercing Bomb ♥\$ Concrete:
Coefficient of ,Expansion: Linear, <b>∆ℓ</b> /inch 0 [°] C 35 [°] C 70 [°] C	$40 \times 10^{-4}$ $83 \times 10^{-1}$ $131 \times 10^{-1}$	Max Safe Drop, ft 500-Ib General Purpose Bomb vs Concrete: Height, ft
Hardness, Mohs' Scale:		Trials Unoffected
Young's Modulus: E', dynes/cm² E, Ib/inch² Density, gm/cc	(b) 9.0 x 10 ⁹ 1.30 x <i>i</i> 5 ¹ 1.71	Low Order High Order 1000-1b General Purpose Bomb vs Concrete: Height, ft
Compressive Strength: Ib/inch ²	See below	Trials Unaffected
Vapor Pressure: °C mm Mercury		Low Order High Order
Compressive Strength: 1b/inch Density, gm/cc Ultimate deformation, %	2 1083 1.71 1.32	

# AMCP 706-177

# <u>H-6</u>

Fragmentation Test:	(b)	Shaped Charge Effectiveness, TNT =	100:
<b>90 mm HE, M71 Projectile, Lot</b> EGS-1– Density, gm/cc Charge Wt, Ib	17:	Glass Cones Steel Hole Volume Hole Depth	Cones
Total No. of Fragments: For Composition B	998	Color:	Gray
For Subject HE For 80/20 Tritonal	714 616	Principal Uses:	HE charge
3 inch HE, M42A1 Projectile, Lot KC-5 Density, gm/cc Charge Wt, Ib			
Total No. of Fragments: For TNT		Method of Loading:	Cast
For Subject HE		Loading Density: gm/cc	1.71
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT):	(a)	Hazard Class (Quantity-Distance)	Class 9
Air: 3.25" diameter sphere Peak Pressure Δ psi Catenary	25.4	Compatibility Group	Group I
Impulse NFOC Pendulum Energy	19.8	Exudation	None
Air, Confined: Impulse			
Under Water: Peak Pressure			
Impulse Energy			
<b>Underground:</b> Peak Pressure			
Impulse Energy			

		(Reference	e)		
Explosive	Simulated Altitude, i <u>Feet</u>	<u>One-Inch</u> Confined m/s	Column Inconfined m/s	$\frac{\text{Two-Inc}}{\frac{\text{Confined}}{\text{m/s}}}$	h Column <u>Unconfined</u> m/s
TNT,	Ground	6820	6720	6670	5270
density, gm/cc 1.59	30,000	6660	69 <b>30(2)</b>	6610	6760(4)
8 <i>,</i>	60,000	, 6800	-	6520	6400 (4)
	90,000	6810	6720	6550	6610 <b>(1)</b>
Average		6798	6790	6588	6260
н-6,	Ground	7190	7360	7340	6870
density, gm/cc 1.69	. 30,000	7300(2)	7430	7360	7980
6-7 ··· 1.00	60,000	7280	7490	7550	7010
	90,000	7300(3)	7270	7500	7000
Average		7268	7385	7438	7215

Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity*

*Confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gm tetryl booster was used to initiate each charge.

Average Fragment Velocities at Various Altitudes* (e)

Explosive	Charge Diameter, <u>Inches</u>	Si <u>Ground</u> m/s	mulated Alti <u>30,000</u> m/s	tude, Feet <u>60,000</u> <u>m/s</u>	<u>90,000</u> m/s
		2940	2991	6	
gm/cc 1.51		-			
н-6,	1	3461	3405	3467	3563
density, gm/cc 1.71	2	4603	4726	4998	5288

*Outside diameter  $\overline{2.54}$ ; inside diameter  $\overline{2.04}$ ; length  $\overline{7}$ .

## References:

See HBX-1; HBX-3 reference list.

# Haleite (Ethylene Dinitramine) (EDNA)

# (In recognition of its development as a military explosive $\ensuremath{\mathtt{b}}\xspace$ the

Composition:			
%	NO	Molecular Weight: $(C_2H_6N_4O_4)$ 150	)
С 16.0 H ₂ Н 4.0		Oxygen Balance:           CO, %         -32           CO, %         -10.	<u>.</u> 5
N 37.3		Density: gm/cc Crystal 1.7	71
0 42.7 H ₂ (	$\frac{1}{2}$ $\frac{NO_2}{NO_2}$	Melting Point: °C Decomposes 175	+
C/H Ratio 0.066	H	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus,	<b>cm</b> 48	Boiling Point: °C	
Sample Wt 20 mg		Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus Sample Wt, mg	s, in. 14 17	n ₂₅	
		n ₃₀	
Friction Pendulum Test:	······································		
Steel Shoe	Unaffected	Vacuum Stability lest:	
Fiber Shoe	Unaffected	cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: T	rials	•••	
1	%	120°C 1.5   135°C	
Explosions	0		
Partials 6	30	150°C 11+	
Burned 2	20	200 Gram Bomb Sand Pest:	
Unaffected 2	20	Sand, gm 52.	3
Explosion Temperature:	°C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	265	Minimum Detonating Charge, gm	
1	216	Mercury Fulminate 0,21	
5 Decomposes	189	Lead Azide 0.13	
10	178	Tetryl	
15	173		
20	170	Ballistic Mortar, % TNT: (a) 139	
75°C International Heat Test:	-	Trauri Test, % TNT:         (b)         122	
% Loss in 48 Hrs	0.01	Plate Dent Test: (c)	
		Method A	
100°C Heat Test:		Condition Pres	sed
% Loss, 1st 48 Hrs	0.2	Confined Yes	
% Loss, 2nd 48 Hrs	0.3	Density, gm/cc 1.50	
Explosion in 100 Hrs	None	Brisance, % TNT 122	
Flammability Index:	138		onfined
Hygroscopicity: %	0.01	Condition Press Charge Diameter, in. 1.0	sed
Volatility:	Nil	Density, gm/cc 1.49 Rate, meters/second 7570	

## Haleite (Ethylene Dinitramine) (EDNA)

AMCP 706-177

Booster Sensitivity Test: Condition	(ð) Pressed	Decomposition Equation: (e) (e) (f) Oxygen, atoms/sec $10^{12.8}$ $10^{12.1}$ $10^{1}$
Tetryl, gm	100	(Z/sec) Heat, kilocolorie/mole 30.5 37.3 30.4
Wax, in. for 50% Detonation	2.09	(AH kcal/mol)
Wax, gm		Temperature Range, °C 184-254 144-1
Density, gm/cc	1.42	Phase Liquid Solid Soli
Heat of:		Armor Plate Impact Test:
Combustion, cal/gm	2477	
Explosion, cal/gm	1276	60 mm Mortar Projectile:
Gas Volume, cc/gm	908	50% Inert, Velocity, ft/sec
Formation, col/gm	134	Aluminum Fineness
Fusion, cal/gm		500-lb General Purpose Bombs:
Specific Heat; cal/gm/°C		
••••••••••••••••••••••••••••••••••••••		Plate Thickness, inches
		1
		11/4
		11/2
		13/4
Burning Rate:		
cm/s <b>e</b> c		Bomb Drop Test:
Thermal Conductivity:		T7, 2000-1b Semi-Armor-Piercing Bomb vs Concrete:
cal/sec/cm/°C		T7, 2000-10 Setti-Athlot-Pletchy Bothb 13 Conclete.
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:		High Order
E', dynes/cm²		
E, Ib/inch ²		1000-Ib General Purpose Bomb vs Concrete:
Density, gm/cc		
		— Height, ft
Compressive Strength: Ib/inch ²		Trials
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercury		High Order

# AMCP 706-177

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 7$	100:
90 mm HE, M71 Projectile, Lot WC- Density, gm/cc Charge Wt, Ib	91: 1.61 	Glass Cones Steel Hole Volume	Cones
Total No. of Fragments:		Hole Depth Color:	White
For TNT For Subject HE			
3 inch HE, M42A1 Projectile, Lot KC Density, gm/cc Charge Wt, Ib	- <b>5:</b> <u>Haleite/wax</u> 1.56 	Principal Uses:	Booster
Total No. of Fragments: For TNT 51 ^կ		Method of Loading:	Pressed
For Subject HE Fragment Velocity: ft/sec At 9 ft At 251/2 ft	600	Loading Density: gm/cc psi x 5 10 12 15 1.28 1.38 1.41 1.44 Storage:	10 ³ 20 1.49
Density, gm/cc		Method	Dry
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure		Compatibility Group	
Impulse Energy		Exudation	None
Air, Confined: Impulse			
<b>Under Water:</b> Peak Pressure			
Impulse Energy			
<b>Underground:</b> Peak Pressure			
Impulse Energy			

### Compatibility with Metals:

<u>Dry</u> - Copper, brass, aluminum, mild steel, stainless steel, mild steel coated with acidproof black paint, and mild steel plated with copper nickel, cadmium or zinc are unaffected. Magnesium and magnesium-aluminum alloy are slightly affected.

Wet - Copper, brass, mild steel coated with acid-proof black paint, and mild steel plated with copper, cadmium, nickel or zinc are heavily corroded. Aluminum is slightly affected and stainless steel is unaffected.

### Impact Sensitivities of Various Crystal Habits:

Bureau of Mines	Impact	Test,	2 Kg	Wt:
Habit				em
lst plate 2nd plate Bi-pyramid Bracydome Sphenoid				55 55 71 66 46

## Solubility: gm/100 gm (%) of:

Water		Alc	ohol
<u>°c</u>	<u>%</u>	്പ	%
20 40 60 80 100	0.25 0.75 2.13 6.38 >20	20 40 60 78	1.00 2.46 5.29 10.4

Preparation:

(Summary Technical Report of the NDRC, Div 8, Vol 1)

$$\begin{array}{c} \mathrm{CH}_{2}\mathrm{O} + \mathrm{HCN} \rightarrow \mathrm{HO} \ \mathrm{CH}_{2}\mathrm{CN} \\ & (98\%\mathrm{yield}) \\ \mathrm{HO} \ \mathrm{CH}_{2}\mathrm{CN} + \mathrm{NH}_{3} \rightarrow \mathrm{NH}_{2}\mathrm{CH}_{2}\mathrm{CN} + \mathrm{H}_{2}\mathrm{O} \\ & (82\%\mathrm{yield}) \\ \mathrm{NH}_{2}\mathrm{CH}_{2}\mathrm{CN} + \mathrm{2H}_{2} \rightarrow \mathrm{H}_{2}\mathrm{N} \ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{NH}_{2} \\ & (88\%\mathrm{yield}) \end{array}$$

$$\begin{array}{c} \overset{\mathrm{CH}_2 \longrightarrow \mathrm{NH}}{\underset{\mathrm{CH}_2 \longrightarrow \mathrm{NH}_2}{\overset{\mathrm{CH}_2 \longrightarrow \mathrm{H}_2}{\overset{\mathrm{CH}_2 \longrightarrow \mathrm{H}_2}{\overset{\mathrm{CH}_2 \longrightarrow \mathrm{NH}}{\overset{\mathrm{CH}_2 \longrightarrow \mathrm{NH}}{\overset{\mathrm{CH}_2 \longrightarrow \mathrm{H}_2}{\overset{\mathrm{CH}_2 \longrightarrow \mathrm{H}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2}}{\overset{\mathrm{C$$

Haleite (Ethylene Dinitramine) (EDNA)

$$\begin{array}{c} CH_2 \longrightarrow NH \\ | \\ CH_2 \longrightarrow NH \end{array} \xrightarrow{(CH_2 - N \longrightarrow NO_2)} CO + 2HNO_3 \xrightarrow{(CH_2 - N \longrightarrow NO_2)} CO + 2H \\ | \\ CH_2 \longrightarrow NH \longrightarrow NO_2 \end{array} \xrightarrow{(CH_2 - N \longrightarrow NO_2)} CO + H_2O \xrightarrow$$

The raw materials used in this process are cheap and available; the first three reactions proceed smoothly, rapidly and in good yield (70% overall), and only the third requires high pressures. The reaction of ethylenediamine with carbon dioxide at about  $220^{\circ}C$  and 820 atmospheres has been worked out and is more satisfactory for the preparation of ethyleneurea than the use of chlorethyl carbonate or urea and better than the reaction of acetic anhydride and ethylenediamine to yield N,N'-diacetyl-ethylenediamine which can be treated in a way similar to the above to yield Haleite.

Ethyleneurea is very easily nitrated, with strong nitric acid (98%), st ordinary temperature, and in a very short time, and the dinitroethyleneurea produced appears of Lydrolyze, yielding Haleite, immediately after solution in water at 95°C. Both the nitration and hydrolysis are practically quantitative.

### Origin:

First described in 1877 by Franchimont and Klobbie (Rec trav chim 7, 17 and 244) but it was 1935 before its value as an explosive was recognized. Standardized during World War II as a military explosive.

### Destruction by Chemical Decomposition:

Haleite is decomposed by addition to hot, dilute sulfuric acid. Nitrous oxide, acetaldehyde and ethylene glycol are evolved. Haleite is also decomposed by addition to 5 times its weight of 20% sodium hydroxide.

### References: 33

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

- (b) Report AC-2983/Org Ex 179.
- (c) D. P. MacDougall, <u>Methods of Physical Testing</u>, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Mamo 10,303, 15 June 1949.

(e) R. J. Finkelstein and G. Gamow, <u>Theory of the Detonation Process</u>, NAVORD Report No. 90-46, 20 April 1947.

(f) ^{M.} A. Cook and ^{M.} Taylor Abbeg, "Isothermal Decomposition of Explosives," University of Utah, <u>Ind Eng Chem</u> (June 1956) pp. 1090-1095.

³³See footnote 1, page 10.

# Haleite (Ethylene Dinitramine) (EDNA)

<u>_</u>	<u>1</u>	2	3	4	<u>5</u>	6	_7	8	೨
1200 1290 1360 1380 1400 1600	1231 1451 1651	1162 1232 1252 1352 1372	1113 1493 1923	414 1294 1434	1255 1325 1395 1885	786 1796	897 1737 1797 1937	1198 1288 1378 1388 1838	1279 1319 1379 1469 1489 2179

 $_{\rm (g)}\,$  Also see the following Picatinny Arsenal Technical Reports on Haleite:

# HBX-1

Composition:	Molecular Weight:	102
⁷⁰ RDX 40 TNT 38 A 7uminum 17	Oxygen Balance: CO, % CO %	-68 -35
D-2 Wax 5	Density: gm/cc Cast	1.72
Calcium Chloride, added 0.5	Melting Point: "C	
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 16	Refractive Index, $n_{20}^{O}$	
Sample Wt, mg 21	n ^D 25	
	n ₃₀	
Friction Pendulum Test: (b)	Vacuum Stability Test:	(a, b)
Steel Shoe Unaffected	cc/40 Hrs, at	
	90°C	
Rifle Bullet Impact Test: Trials (b)	100°C 120°C	0.47 0.98
%	135°C	-
Explosions 73	150°C	11+
Partials		
Burned	200 Gram Bomb Sand Test:	
Unaffected 28	Sand, gm	48.1
Explosion Temperature: °C (a) Seconds, 0.1 (no cap used)	Sensitivity to Initiation:	
1	Minimum Detonating Charge, gm	
5 480	Mercury Fulminate	
10	Lead Azide	0.20
15	Tetryl	0.10
20	Ballistic Mortar, % TNT: (d)	133
	Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
	Method	
100°C Heat Test: (b)	Condition	
% Loss, 1st 48 Hrs 0.058	Confined	
% Loss, 2nd 48 Hrs 0.00	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	(a, b) None
Hygroscopicity: % 30 [°] C, 95% RH, 7 days 2.98 71°C, 95% RH, 7 days 1.13	Condition Charge Diameter, in.	Cast <b>1.0</b>
Volatility:	Density, gm/cc Rate, meters/second	1.69 7224

# <u>HBX-1</u>

Poortor Consistivity Test	(c)	Decomposition Equation:
Booster Sensitivity Test: Condition	Cast	Oxygen, atoms/sec
Tetryl, gm	100	(Z/sec)
Wax, in. for 50% Detonation	1.25	Heat, kilocalarie/male <b>(AH,</b> kcal/mal)
Wax, gm		Temperature Range, °C
Density, gm/cc	1.73	Phase
Heat of:	(b) 3882	Armor Plate Impact Test:
Combustion, cal/gm	-	A.
Explosion, col/gm	919	60 mm Mortar Projectile:
Gas Volume, cc/gm	758	50% Inert, Velocity, ft/sec
Formation, col/gm	758 9•25	Aluminum Fineness
Fusion, cal/gm 78 ⁰ C	9.25	500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C	(b)	
30°C	0.249	Plate Thickness, inches
50 [°] C	0.264	1
		11/4
		11/2
		13/4
Burning Rate: cm/sec		
		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C 35 [°] C	(b) 0.97 x 10 ⁻³	T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:	(b)	Max Safe Drop, ft
Linear AllAnch	$46 \times 10^{-4}$	500-lb General Purpose Bomb vs Concrete:
0°C 35°C	$46 \times 10^{-4}$ 95 x 10 ⁻⁴	
70°C	159 x 10 ⁻⁴	Height, ft
Hardness. Mohs' Scale:		Trials
fratuless, wong scale.		Unaffected
Young's Modulus:	(b)	Low Order
E, dynes/cm ²	10.3 x $10^9$	High Order
E, Ib/inch ²	$1.49 \times 10^{-7}$	1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc	1.69	• m
	01	Height, ft
Compressive Strength: Ib/inch ²	See below	Trials
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercury	(b)	High Order
Compressive Strength: lb/inch ² Density, gm/cc	1303 1.69	
Ultimate deformation, %	1.38	

# AMCP 706-177

# HBX-1

Fragmentation Test:	(b)	Shaped Charge Effectiveness, TNT =	100:
<b>90 mm HE, M71 Projectile, Lot</b> EGS-1 [.] Density, gm/cc Charge Wt, Ib	-17:	Glass Cones Steel Hole Volume Hole Depth	Cones
Total No. of Fragments: For Composition B	998	Color:	Gray
For Subject HE For 80/20 Tritonal 3 inch ME, M42A1 Projectile, Lot KC-5: Density, gm/cc	910 616	Principal Uses:	HE charge
Charge Wt, Ib Total No. of Fragments: For TNT For Subject HE		Method of Loading:	Cast
Frogment Velocity: ft/sec		Loading Density: gm/cc	1.69
At 9 ft At 25½ ft Density, gm/cc		Storage:	
Blast (Relative to TNT):	(a)	Method Hazard Class (Quantity-Distance)	Dry Class 9
Air: 3.25" diameter sphere Peak Pressure A psi Catenary Impulse NFOC Pendulum	24.7 19.6	Compatibility Group	Group I
Energy		Exudation	None
Air, Confined: Impulse			
<b>Under Water:</b> Peak Pressure			
Impulse Energy			
<b>Underground:</b> Peak Pressure			
impulse Energy			

	Oxygen Balance:	
	CO.2 %	-75
	CO %	-49
	Density: gm/cc Cast	1.84
	Melting Point: °C	
	Freezing Point: "C	
	Boiling Point: °C	
15 23	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
	Vacuum Stability Jest	(a, b)
Unaffected	cc/40 Hrs, at	
	90°C	
(b)		0.45
		<i>(</i> - <b>)</b>
	200 Gram Bomb Sand lest: Sand, gm	(ъ) 44.9
(a)	Sensitivity to Initiation: Minimum Detonating Charge, gm	
		0.20
	Tetryl	0.10
	Ballistic Mortar, % TNT: (d)	111
	Trauzl Test, % TNT:	
	Plate Dent lest: Method	
(b)	Condition	
0.70	Confined	
0.00	Density, gm/cc	
None	Brisance, % TNT	
	Detonation Rate: Confinement	(a, b) None
7 days 2.01 7 days 0.31	Condition Charge Diameter, in.	Cast 1.0
	23 Unaffected (b) (a) (b) 0.70 0.00 None 7 days 2.01	C0 %         Density: gm/cc       Cast         Metting Point: °C         Freezing Point: "C         Boiling Point: °C            Refractive Index, n ^D ₂₀ n ^D ₂₀ vacuum Stability lest:         cc/40 Hrs, at         90°C         100°C         120°C         135°C         150°C         200 Gram Bomb Sand lest:         Sand, gm         (a)       Sensitivity to Initiation:         Minimum Detonating Charge, gm         Mercury Fulminate         Lead Azide         Terryl         Ballistic Mortar, % TNT:         Plate Dent lest:         Method         Condition         0.00         None         Detonation Rate:         Confinement         Condition         Condition         Ontiment         Condition         Obtonation Rate

# HBX-3

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc		Decomposition Equation: Oxygen, otoms/sec (Z/sec) Heat, kilocolorie/mole (AH, kcal/mol) Temperature Range, °C Phase
Heat of: Combustion, col/gm Explosion, col/gm <i>Gas</i> Volume, cc/gm Formation, col/gm Fusion, col/gm Specific Heat: col/gm/°C 30 [°] C 50 [°] C	(b) 4495 877 491 9.30 0.254 0.254	Armor Plate Impact Test: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec A luminum Fineness 500-lb General Purpose Bombs: Plate Thickness, inches I 11/4 11/4 11/2
Burning Rate: cm/sec Thermal Conductivity: col/sec/cm/°C 35 ^o C	(b) 1.70 x 10 ⁻³	Bomb Drop Test: T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion: Lineor, ∆ℓ/inch 0°C 35°C 70°C Hardness, Mohs' Scale:	(b) 40 x 10 ⁻⁴ 83 x 10 ⁻⁴ 130 x 10 ⁻⁴	Max Safe Drop, ft 500-Ib General Purpose Bomb vs Concrete: Height, ft Trials
Young's Modulus: E, dynes/cm² E, lb/inch² Density, gm/cc	(b) 11.5 x 10 ⁹ 1.67 x 10 ⁵ 1.81	Unaffected Low Order High Order 1000-Ib General Purpose Bomb vs Concrete: Height, ft
Compressive Strength: lb/inch ² Vapor Pressure: °C mm Mercury <u>Compressive Strength:</u> lb/inch ² Density, gm/cc	See below 1610 1.81	Trials Unaffected Low Order High Order
Ultimate deformation, 🐔	1.37	

160

# HBX-3

Fragmentation Test:		Shaped Charge Effectiveness, TNT $=$	100:
<b>90 mm HE, M71 Projectile, L</b> ot EGS~1~: Density, gm/cc Charge Wt, Ib	17:	Glass Cones Steel Hole Volume Hole Depth	Cones
Total No. of Fragments: For Composition B	998	Color:	Gray
For Subject HE For 80/20 Tritonal	476 616	Principal Uses:	HE charge
<b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib			
Total No. of Fragments: For TNT		Method of Loading:	Cast
For Subject HE,		Loading Density: gm/cc	1.81
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT):	(a)	– Hazard Class (Quantity-Distance)	Class 9
Air: 3.25" diameter sphere Peak Pressure ∆psi Catenary Impulse NFOC Pendulum Energy	25.5 20.6	Compatibility Group Exudation	Group I None
Air, Confined: Impulse			
<b>Under Water:</b> Peak Pressure Impulse Energy			
<b>Underground:</b> Peak Pressure Impulse			
Energy			

### HBX-1; HBX-3

Them 1 a dá tra	Moisture,	Acidity,	100°C Vac	Stab Test Hours	Hygrosco	picity, % RH
Explosive Composition	26	<u>%</u>	CC gas	nours	30°C	71°C
Standard HBX-1 +0.2% moisture +0.4% moisture +0.6% moisture	0.73	0.011	0.47 0.68 0.62 0.50	40 40 40 40	+2.98	+1.13
1992 1 without <u>CaCl</u> e +0.2% moisture +8.4% moisture +0.6% moisture	[!] 0.00	0.029	0.36 0.25 0.23 0.27	40 40 40 40	<b>-0.</b> 06	-0,25
HBX-1 with silica gel	0.06	0.031	0.73	40	+0.08	+0.04
Standard HBX-3 +0.2% moisture +0.4% moisture +0.6% moisture	0.54	0.012	0.45 0.47 0.43 0.41	40 40 40 40	+2.01	+0.31
HDX 3 without CaCl +8:2% moisture +0.6% moisture +0.6% moisture	0.02	. 0.049	0.46 0.26 0.26 0.20	40 40 40 40	-0.06	-0.29
HBX-3 with silica gel	0.04	0.100	0.45	40	+0.09	+0.05
<u>Standard H-6</u> +0.2% moisture +0.4% moisture +0.6% moisture	0.71	0.017	0.47 0.88 0.63 0.65	40 40 40 40	+2.01	+1.77
H-6 without CaCl +0.2% moisture +0.4% moisture +0.6% moisture	0.03	0.082	0.40 0.10 0.25 0.23	40 40 40 40	-0.06	-0.25
<del>II 6 with silica gel</del>	0.05	0.028	0.43	40	+0.09	+0.06

## The Stability of HEX Compositions Made With and Without Desiccants and Containing Added Moisture

* All samples were ground to 20/100 mesh size, 7 days before tests. Silica gel used was Fisher Scientific Company, Lot 541492, through 100 mesh U. S. Standard Sieve.

1

#### Preparation:

HBX explosive mixtures are prepared by melting TNT in a steam-jacketed melt kettle equipped with a mechanical stirrer. Water-wet RDX is added slowly with stirring and heating until all the water is evaporated. Aluminum is added, and the composition is stirred until uniform. D-2 wax and calcium chloride are then added. The desensitizer wax, also known as Composition D-2, consists of 84% paraffin and other waxes, 14% nitrocellulose and 2% lecithin. The mixture is cooled from approximately 95° to 100°C to a temperature considered suitable for casting (the lowest practicable pour temperature). HBX can also be made by adding the calculated amount of TNT to Composition B to obtain the desired proportion of RDX/TNT. The appropriate weights of the other ingredients are added to complete the mixture.

#### Origin:

Developed during World War 11, as relatively insensitive mixtures, by adding 5% desensitizer to Torpex II, for high blast explosive applications.

## References: ³⁴

(a) 0. E. Sheffield, <u>Blast Properties of Explosives Containing Aluminum or Other Metal</u> Additives, PATR No. 2353, November 1956.

(b) S. D. Stein, G. J. Horvat and O. E. Sheffield, <u>Some Properties and Characteristics</u> of HBX-1, HBX-3 and H-6, PATR No. 2431, June 1957.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Memo. 10,303, 15 June 1949.

(d) S. R. Walton, <u>Report on the Program to Develop an Improved HBX-Type Explosive</u>, NAVORD Report No. 1502, 26 July 1950.

(e) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, Detonation Velocity Determinations and Fragment Velocity Determinations of Varied Explosive Systems and Conditions, National Northern Corporation Final Summary Report MNC-F-13, February 1958 (Contract DAI-19-020-501-0RD-(P)-58).

(f) Also see the following Picatinny Arsenal Technical Reports on HBX Explosives: 1756, 2138, 2169.

³⁴See footnote 1, page 10.

## <u>HEX-24</u>

Composition: %		Molecular Weight:	47.6
Potassium Perchlorate (17 microns) Aluminum, atomized (20 microns)	32 48	Oxygen Balance: CO, % CO %	-42 - <b>14</b>
RDX (through 325 mesh) Asphaltum (through 100 mesh)	16 4	Apparent Apparent Pressea at 20,000 psi Melting Point: "C	1.39 2.1
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	 16 24	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Detonates	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: Trials % Explosions Partiols		100°C 120°C 135°C 150°C	1.25
Burned		200 Gram Bomb Sand Test:	
Unaffected		Sand, gm	12.5
Explosion Temperature: "C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Charge, gm	
1 5 520		Mercury Fulminate Lead Azide	0.20
15		Tetryl	0.25
20		Ballistic Mortar, % TNT:	
		Trauzl Test, % TNT:	
<ul> <li>75°C International Heat Test:</li> <li>% Loss in 48 Hrs</li> </ul>		Plate Dent Test: Method	
∣00°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.15	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
lammability Index:		Detonation Rate: Confinement	
Hygroscopicity: %	None	Condition Charge Diameter, in.	
Volatility:	None	Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Gray
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: HE filler for small caliber projectiles
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed
Fragment Velocity: ft/sec	Loading Density: gm/cc Pressed at 20,000 psi 2.1
At 9ft At 25½ ft Density, gm/cc	Storoge: Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Enerav Flame Temperature, ^O K 2552 Activation Energy, kcal 20.4 Temp, ^O C 450 to 570	Static Tests:         20 mm T215E1 Projectile:         PA Peak Pressure, psi       55         NFCC 20" Blast Cube       44         AFG 24" Blast Cube       44         Static Tests:       20 mm M97 Projectile:         20 mm M97 Projectile:       12.4         Exclose       46         Duration, microsec 533          AFG 24" Blast Cube       36         24 32       Heat of:         Combustion, cal/gm       1858         Gas volume, cc/gm       159
Specific reaction	

Composition: %	Molecular Weight:	47.6		
Pctassium Perchlorate 32 (17 microns) Aluminum, flaked (1 micron) 48	Oxygen Balance: <i>CO</i> , % <i>CO</i> %	-42 -3 ¹		
RDX (through 325 mesh)16Asphaltum (through 100 nesh)4	Density: gm/cc Apparent Pressed at 20,000 psi	0.69		
	Melting Point: "C			
C/H Ratio	Freezing Point: "C			
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C			
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀			
Friction Pendulum Test: Steel Shoe Partially detonates Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C			
Rifle Bullet Impact Test: Trials % Explosions Partials	- 100°C 120°C 135°C 150°C	1.52		
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	23.7		
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 545 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	0.20 0.25		
15 20	Ballistic Mortar, % TNT:			
75°C International Heat Test: % Loss in 48 Hrs	Trauzi lest, % TNT: Plate Dent Test: Method			
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd <b>48</b> Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT			
Flammability Index:	Detonation Rote: Confinement			
Hygroscopicity: %	Condition Charge Diameter, in.			
Volatility:	Density, gm/cc Rate, meters/second			

# HEX-48

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Gray
For Subject HE	Principal Uses: HE filler for small caliber projectiles
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed
Fragment Velocity: ft/sec	Loading Density: gm/cc Pressed at 20,000 psi 1.62
At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None
Air, Confined: Impulse	Static Tests:20 mm T215E1 Projectile:PA Peak Pressure, psi77NFOC 20" Blast Cube45APG 24" Blast Cube42
Under Water: Peak Pressure Impulse	<u>Static Tests:</u> <u>20 mm M97 Projectile:</u> HEX-48 TNT Tetryl
Energy Underground: Peak Pressure	Fosboro psi         17.3         2.8         3.5           Catenary-psi         43         28         28           Duration, microsec         517         560         530           APG 24" Blast Cube         29          10
ImpulseEnergyFlame Temperature, OK2382Activation Energy, kcalComp, OCSpecific reactionrate, k7.84 x 10	Heat of:Combustion, cal/gm4119Explosion, cal/gm1735Gas Volume, cc/gm200

## AMCP 706-177

### HEX-48

# Cook-Off Tests: (c)

_				_		Г
_	Projectile No.	,	cut-Off Temp ^O C		Cook-Off	
 ;	1		170		Yes (198)	•
	2		150	İ	77~	ī
•	3		155		Yes (190)	•
'	1.		150 to 175	ł.	No	

20 mm T215E1 HEX-48 Loaded Projectiles With Dye-Coated RDX Top-Off

National Northern Projectile Load:

195

3 1

ļ

					<u>Avg. No.</u> <u>Round</u>	of Penetra in Zone 65	tions_per
,	Projectile	Filler	Altitude, Feet	26	0.020"	0.040"	0.051"
-	T215E1	HEX-48	Ground		352	264	282
			60 <b>,000</b>	:	676	432	( ⁻ 388

The fragment penetration test records numbers of complete penetrations of aluminum panels of various thicknesses at 2.5 feet from the static detonation. The total penetrations recorded on the 24ST-3 aluminum panels occurred with the projectile nose always pointed toward  $^{\circ}$  and the base toward  $180^{\circ}$ .

The test data indicate that on the thicker panels, 0.040" and 0.051," the HEX-48 loaded T215El projectile produced more complete fragment penetrations at ground and altitude than MOX-2B loaded T282El and EX8 Mod 0 projectiles.

ti

The HEX compositions were prepared by blending the appropriate weight of the dry ingredients in a Patterson-Kelly twin-shell blender for at least 30 minutes.

An alternate procedure for 100 to 200 gram batches used a "Cradle-Roll" mixing device. This device consisted of a half-barrel type container constructed of wood and lined with an electrical conductive material. A plastic roll was allowed to move over the ingredients by remote control action of the container. The roll action prevented caking of the mix but had no adverse effect on the particle size of the ingredients. The period of time required to obtained a uniform and intimate mixture was approximately fifteen minutes.

### Origin:

The development of "slow-burning" explosive mixtures which would produce increased blast effects in enclosed or nearly enclosed spaces directed attention to their use for possible military application. In 1950 Picatinny Arsenal developed a high capacity filler for 20mm projectiles consisting of 85/10/5 RDX/aluminum/desensitizer which was more powerful than standard tetryl filler. However, in comparison with MOX type explosives, there was little doubt as to the superior performance of the MOX mixture. HEX (high energy explosive) mixtures were developed at Picatinny Arsenal in 1953 (Ref a) as superior high blast compositions suitable for use in small Caliber projectiles.

#### References: 35

(a) O. E. Sheffield and E. J. Murray, <u>Development of Explosives—Metallized Explosives—</u> <u>High Blast Fillers for Small Caliber Shell</u>, Picatinny Arsenal Memorandum Report No. MR-49, 21 December 1953.

(b) 0. E. Sheffield, <u>Properties of MOX-Type Explosive Mixtures</u>, PAIR No. 2205, October 1955.

(c) National Northern Corporation, Letter from Dr. C. M. Saffer, Jr., to Commanding Officer, Picatinny Arsenal, 12 June 1957.

³⁵See footnote 1, page 10.

Composition:	Molecular Weight: $(C_{1l_4} \mathbb{H}_6 \mathbb{N}_8 \mathbb{O}_{1l_4})$
%         0         0           C         33.0         C         C           H         1.2         NH         NH	Oxygen Balance: CO, % -53.4 CO % - 9.4
21.9 0 ₂ N - 1.0 ₂ 0 ₂ N	Density: gm/cc
43.9	Melting Point: °C Decomposes 302
C/H Ratio 0.797 NO ₂ NO,	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 15 Sample Wt, mg 12	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum lest: Steel Shoe Unaffected Fiber Shoe Unaffected Rifle Bullet Impact Test: Trials & Explosions Partials	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 0.40 120°C 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 52.1
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 384 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide 0.30 Tetryl 0.25 Ballistic Mortar, % TNT:
	Trauzl lest, % TNT:
75°C International Heat Test:         % Loss in 48 Hrs         100°C Heat Test:         % Loss, 1st 48 Hrs       0.07         % Loss, 2nd 48 Hrs       0.05	Plate Dent Test: Method Condition Confined Density, gm/cc
Explosion in 100 Hrs None	Brisance, % TNT
Flammability Index:	Detonation Rate:, Confinement
Hygroscopicity: % 25 ⁰ C, 90% RH 0.19	Condition Charge Diameter, in.
Volatility:	Density, gm/cc Rate, meters/second

2,4,6,2',4',6'-Hexanitro-oxanilide (HNO)

AMCP 706-177

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$	100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Hole Volume Hole Depth	Cones
Total No. of Fragments: For TNT	Color: Almo	st white
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: Igniter powder; compositions	pyrotechnic
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed and e	xtruded
	Loading Density: gm/cc	
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	None
Air, Confined: Impulse		
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy		

2,4,6,2',4',6'-Hexanitro-oxanilide (HNO)

### Solubility in the following substances:

Solvent	
Nitrobenzene	<3 gm in 100 cc, at 23°C ∼ 5 gm in 100 cc, at 210°C
Water	0.10 gm in 100 cc, at 100°C
Alcohol (Ethyl)	Insoluble
Acetone	Insoluble
Benzene	Insoluble
Butyl acetate	Insoluble
Carbon tetrachloride	Insoluble
Dimethylformamide	Very soluble
Ether (Ethyl)	Insoluble
Acetic Acid	Insoluble
Nitric Acid	Soluble
Crystalline form	Long rectangular glistening plates from nitrobenzene

#### Preparation:

To prepare hexanitro-oxanilide, first prepare tetranitro-oxanilide as described herein under the entry "2,4,2',4'-Tetranitro-oxanilide (TNO)."

A 1.5 liter round bottom flask is equipped with a stirrer of the type which causes a downward swirl. The flask is jacketed for hot and cold water. 187 grams of nitric acid of specific gravity 1.49 (commercial grade) is placed into the flask and 100 grams of sulphuric acid is added to the nitric acid under agitation. The mixed acid is cooled to  $10^{\circ}$ C. 29.2 grams of tetranitro-oxanilide is slowly added to the mixed acid under rapid agitation maintaining the temperature at  $8^{\circ}$ - $10^{\circ}$ C. After the addition of the TNO is completed (approximately 25 minutes) the temperature is raised to  $85^{\circ}$ C over a period of 2 hours and held at  $85^{\circ}$ - $90^{\circ}$ C for one hour. The hexanitro-oxanilide (HNO) "slurry" is filtered on a Buchner funnel and purified as explained under "Tetranitro-oxanilide."

### Origin:

A. G. Perkin in 1892 obtained hexanitro-oxanilide directly by heating to boiling a solution of tetranitro-oxanilide in a mixture of sulfuric and nitric acids. He also prepared the same compound from oxanilide by the action of a boiling mixture of fuming nitric and sulfuric acids (J Chem Soc <u>61</u>, 462 (1892)).

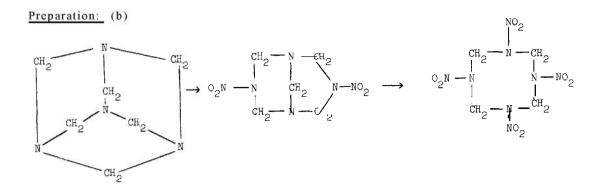
### References: 36

(a) L. Gowen and R. Dwiggens, <u>Case Gun Ignition Studies</u>, NAVORD Report No. 2321, 13 June 1952.

(b) D. Dubrow and J. Kristal, <u>Substitution of Tetranitro Oxanilide and Hexanitro Oxanilide</u> <u>for Tetranitro Carbazole</u>, PA Pyrotechnic Research Laboratory Report 54-TF1-88, 20 December 1954.

(c) S. Livingston, <u>Preparation of Tetranitro Carbazole</u>, PA Chemical Research Laboratory Report 136,330, 11 April 1951.

(d) S. Livingston, Development of Improved Ignition Type Powders, PATR No. 2267, July 1956.


³⁶See footnote 1, page 10.

Composition:	Molecular Weight: $(C_{4}H_{8}N_{8}O_{8})$ 296
$\begin{bmatrix} C & 16.2 & O_2 N - N & N - NO_2 \\ H & 2.7 & H_2 C & CH_2 \\ H & 2.7 & H_2 C & CH_2 \end{bmatrix}$	Oxygen Balance: 00, % -21.6 CO % 0.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Density: gm/cc Crystal 1.90
0 <b>43.2</b>	Melting Point; °C Capillary method 273 Koffer Micro Hot Stage 280
C/H Ratio 0.095	Freezing Point: "C
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm 32 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 9 Sample Wt, mg 23	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test:         Steel Shoe       Explodes         Fiber Shoe       Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 0.37
Rifle Bullet Impact Test: Trials % Explosions	100°C     0.37       120°C     0.45       135°C
Partials Burned	150°C         0.62           200 Gram Bomb Sand Test:
Unaffected	Sand, gm 60.4
Explosion Temperature: "C Seconds, 0.1 (no cap used) 380 1 5 327 10 306	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide 0.30 Tetryl
15 20	Ballistic Mortar, % TNT: 150
	Trauzi Test, % TNT: 145
75°C International Heat Test: % Loss in <b>48</b> Hrs	Plate Dent Test: Method
100°C Heat Test:           % Loss, 1st 48 Hrs         0.05           % Loss, 2nd 48 Hrs         0.03           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % 30 ^o C, 95% RH (c) 0.00 Volatility:	<ul> <li>Condition</li> <li>Charge Diameter, in.</li> <li>Density, gm/cc</li> <li>Rate, meters/second</li> <li>9124</li> </ul>

# beta-HMX

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc Heat of: Combustion, cal/gm (e) 1356 Gas Volume, cc/gm	Decomposition Equation: Oxygen, otoms/sec (Z/sec) Heat, kilocolorie/mole (AH, kcal/mol) Temperature Range, °C Phase Liquid Armor Plate Impact lest: 60 mm Mortar Projectile: 50% inert, Velocity, ft/sec
Formation, cal/gm (e) -60.5 Fusion, cal/gm	Aluminum Fineness 500-lb General Purpose Bombs:
Specific Heat: col/gm/°C         Recrystallized (g) <u>°c</u> <u>°c</u> -75         0.153         85         0.288           0         0.228         90         0.290           25         0.248         100         0.295           50         0.266         125         0.307           75         0.282         150         0.315	Plate Thickness, inches 1 1¼ 1¼ 1½ 1¾
cm/sec 	Bomb Drop Test:
col/sec/cm/°C	17, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion: Linear, %/°C	Max Safe Drop, ft 500-lb General Purpose Bomb ♥ Concrete:
Volume, %/°C	Height, ft Trials
Hardness' Mohs' Scale: (e) 2.3	Unaffected Low Order
Young's Modulus: E', dynes/cm² E, lb/inch²	High Order
E, 10/inch* Density, gm/cc	1000-Ib General Purpose Bomb ♥ Concrete:
Compressive Strength: Ib/inch ²	Height, ft Trials Unaffected
Vapor Pressure: "C mm Mercury	Low Order High Order

beta-HMX



Two men are required to regulate the addition of reagents and control the temperature during the initial stage addition; one man can complete the procedure. A 1-liter 5-necked flask is used, the center neck for an efficient stirrer, one side neck for a thermometer, and the other necks for burrettes and a gas outlet (to water trap). The flask is placed in a pan with steam and cold water inlets, for temperature control.

Five cc of acetic anhydride and 250 cc glacial acetic acid are poured into the flask and the temperature brought to  $45 \pm 1^{\circ}$ C, and held there for the duration of the entire reaction. The reagents (a solution of 33.6 gn hexamine in 55 gn of glacial acetic acid, 100 cc of acetic anhydride and 40 cc of a solution of 42.3/57.7-ammonium nitrate/98% nitric acid) are then added simultaneously, continuously and equivalently over a 25-minute period. The reaction mixture is aged 15 minutes.

The second stage reagents (60 cc of 42.3/57.7, ammonium nitrate/98% nitric acid and 150 cc acetic anhydride) are then added simultaneously, continuously and equivalently over a 25-minute period. The mixture is aged 65 minutes, poured into 1.5 liter of water and simmered on a steam bath for 12 hours. Cool, filter and dry the RDX-HMX precipitate (yield 73% HMX).

The RDX is destroyed, leaving HMX, as follows: 1025 gm of the crude product are placed in a solution of 15 gm sodium tetraborate decahydrate in 5 liters of water, heated to boiling with agitation, and 5 N NaOH added at the rate of 3 cc/min. When about 730 cc have been added the pH increases sharply from a little over 8.7 to over 9.7 which corresponds to complete destruction of the RDX. Filter the HMX from the hot mixture; yield 612 gm, mp 279.5°-280.5°C. Recrystallization from nitromethane yields material melting at  $281^{\circ}-282^{\circ}C$ .

#### Origin:

Was discovered as an impurity (by-product) in the nitration of hexamethylene-tetramine to form RDX. It is now manufactured directly by the process described above and has valuable use in explosive systems.

Removal of RDX from HMX-RDX Mixtures and Recovery of a RDX-HMX Mixture (This procedure appears suitable for use with mixtures containing 80% or more HMX):

#### beta-HMX

#### Procedure:

500 grams of HMX containing 12.25% RDX are placed in a 1500 cc beaker, 500 cc of acetone is added and the slurry is agitated for several minutes at room temperature. Before complete settling, the RDX-HMX-acetone solution is decanted.

To the residual HMX-RDX, another 500 cc of acetone is added. The slurry is heated on the steambath and while boiling, agitated for several minutes. The boiling RDX-HMX-acetone solution is decanted. The residual HMX is now washed with cold acetone into a funnel. This HMX is now taken up in 95% alcohol, filtered and dried. Yield 353.9 gn or 70.78%.

All the acetone extracts are combined and evaporated to dryness. Yield 137.5 gn or 26.5%.

#### Yield Balance:

Pure HMX obtained - 353.9 gn Total RDX-HMX mixture recovered -	<b>70.</b> 788
137.5 gm Samples taken during process -	26.50%
2.4 gn Loss during process	0.48% 2.24%
Total	100.00%

Various samples were analyzed for RXD content:

1.	Crude	HMX	12.25% RDX
2.	After	first acetone washing	6.0% RDX
3.	After	second acetone washing	2.0% RDX
4.	After	third acetone washing	0.0% RDX
RDX	-HMX sa	ample recovered	54.5% RDX

Preparation of Fine Particle-size HMX by the Aspirator Method:

- 1. Dissolve 1100 gm HMX in 4400 cc of dimethyl sulfoxide.
- 2. Filter the HMX solution.
- 3. Connect a clean aspirator to the water line.
- 4. Place a 55 gallon clean drum under the aspirator.
- 5. Fasten a polyethylene tubing, long enough to reach easily to the bottom of the HMXdimethyl sulfoxide container, to the side intake of the aspirator.
- 6. Fasten to the bottom of the aspirator another polyethylene tube long enough to reach to the bottom of the 55 gallon drum.
- Open the water faucet and then place the polyethylene tube in the HMX container. 7.
- 8. White milky fine HMX separates out in the drum. Total duration of run is approximately 7 minutes.
- 9. After all the HMX solution is sucked out of the container, the water is turned off.
- 10. The material is filtered and water washed.
  11. If dry HMX is required, the material can be alcohol and ether washed.

#### A more efficient method to recover the RDX-HMX mixture:

- 1. Filter the combined hot acetone extracts.
- 2. Pour while agitating the filtered extracts into at least 4 times its volume of water.
- 3. Filter and dry, etc.

beta-HMX

Color:

White

# Storage:

Method	Dry
Hazard Class (Quantity-Distance)	Class 9
Compatibility Group	Group L (dry) Group M (wet)
Exudation	None

# References: 37

(a) O. E. Sheffield, E. J. Murray, A. L. Rosen and B. W. Kanouse, <u>Properties of HMX</u>, PA Chemical Research Laboratory Report No. 52-IML-23, 7 April 1952.

(b) W. E. Bachmann, The Preparation of HMX, OSRD Report No. 1981, 3 November 1943.

(c) & Livingston, Characteristics of Explosives HMX and DPMN, PAIR No. 1561, 6 September 1945.

(a) R. J. Finkelstein and G. Gemow, <u>Theory of the Detonation Process</u>, NAVORD Report No. 90-46, 20 April 1947.

(c) 0. H. Johnson, <u>HMX as a Military Explosive</u>, NAVORD Report No. 4371, 1 October 1956.

(f) Also see the following Picatinny Arsenal Technical Reports on HMX:

<u>1</u>	3	<u>6</u>	<u>7</u>	<u>9</u>
1741	2183	2016	1737	1709 2059

(g) C. Lenchitz, W. Beach and R. Valicky, <u>Enthalpy Changes. Heat of Fusion and Specific</u> <u>Heat of Basic Explosives</u>, PATR No. 2504, January 1959.

³⁷See footnote 1, page 10.

Composition: %		Molecular Weight:	91
HMX	49	Oxygen Balance: CO ₂ % CO %	- 51 -27
TMT	29		
Aluminum	22	Density: gm/cc Cast	1.90
		Melting Point: "C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: "C	
Sample Wt 20 mg	17	Refractive Index, n ⁰ ₂₀	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	25	n ₂₅	
	-	n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: 10 Trials ,	76	100°C	
<u>3/16" Steel</u>	1/8" Al	120°C	0.37
Explosions 90	50	135°C 150°C	
Partiais		150 C	
Burned lo		200 Gram Bomb Sand Test:	
Unaffected 0	50	Sand, gm	61.3
Explosion Temperature:	°C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
		Mercury Fulminate	
5 Flames erratically	370	Lead Azide	0.30
10 15		Tetryl	
20		Ballistic Mortar, % TNT:	120
		Trauzl Test, % TNT:	
75°C International Heat Test:		Plate Dent Test:	
% Loss in 48 Hrs		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
		Detonation Rate:	
Flammability Index:		Confinement	None
		Condition	Cast
Hygroscopicity: %		Charge Diameter, in.	1.0
Volatility:		Density, gm/cc	1.90
volatinty.		Rate, meters/second	7866

HTA-3

Booster Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, otoms/sec
Tetryl, gm		(Z/sec)
Wax, in. for 50% Detonation		Heat, kilocolorie/mole (AH, kcal/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc		Phase
Heat of:	3687	Armor Plate Impact Test:
Combustion, cal/gm	1190	
Explosion, cal/gm	-	60 mm Mortar Projectile:
Gas Volume, cc/gm	680	50% Inert, Velocity, ft/sec
Formation, col/gm		Aluminum Fineness
Fusion, cal/gm		
Specific Heats californ (°C		500-Ib General Purpose Bombs:
Specific Heat: col/gm/°C 32'' to 74 ^o C	0,245	Plate Thickness, inches
		11/4
		11/2
		18/4
Burning Rate:		
cm/s <b>ec</b>		Bomb Drop Test:
Thermal Conductivity:		
cal/sec/cm/°C		T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
		Max Safe Drop, ft
Coefficient of Expansion: Linear, %/°C		500 lb Conorol Dumono Pomb un Conorolou
		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:		High Order
E, dynes/cm ²		
E, Ib/inch ²		1000-Ib General Purpose Bomb vs Concrete:
Density, gm/cc		
Compressive Strength: lb/inch ²	2260	Height, ft
Compressive Strength: ID/Inch*	See below	Trials
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercury 2	*	High Order
Compressive Strength: 1b/inch ² Average (10 tests)	2260	
High	2530	Ultimate Deformation: %
Low	1910	Average (10 tests)         2.81           High         3.22
		$L_{\text{OW}}$ $2.52$
*		$n_{ataly} (3 \text{ gm}) \text{ prograd} at 3 tons (6.000 \text{ lb}) total$

* Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

# <u>HTA-3</u>

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color:	Gray
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc	Principal User: HE projectile and bomb	filler
Charge Wt, Ib		
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Cast
-	Loading Density: gm/cc	1.90
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure	Compatibility Group	Group I
Impulse Energy	Exudation	None
Air, Confined: Impulse	Work to Produce Rupture:ft-lb/inch3Average (10 tests)2.77High3.39	,
Under Water: Peak Pressure Impulse Energy	Low 2.40 Efflux Viscosity, Saybolt Seconds:	24.8
<b>Underground</b> : Peak Pressure Impulse Energy		
~	*Test specimen 1/2" x 1/2" cylinder ( mately 3 gm) pressed at 3 tons (6,00 total load or 30,000 psi with a 2 m time of dwell.	0 1b)

	Modulus	of	Elasticity:	Ŷ
--	---------	----	-------------	---

		lb/inch ²
	Average	89,200
1	High	97,400
*	Low	76,300

* Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Setback Sensitivity Test: (a)

Critical Pressure	119,000 psi *
Density, gm/cc	1.92

* Pressure below which no initiation is obtained and above which an increasing percentage of initiations can be expected as the setback pressure increases.

### Preparation:

Procedure similar to that used for Torpex.

# References: 38

(a) 1st Indorsement from Chief, Explosives Development Section, to Chief, Explosives Research Section, Picatinny Arsenal, dated 12 May 1958. Subject: "Properties of Octols and HTA-3."

(b) R. Brown and R. Velicky, <u>Heat Capacity of HTA-3</u>, Picatinny Arsenal General Laboratory Report No. 58-H1-509, 5 May 1958.

³⁸See footnote 1, page 10.

Lead Azide

Composition:	Molecular Weight: (PbN ₆ ) 291
% N 28.8 N = N = N - Pb - N = N = N	Oxygen Balance:           0, %           -5:5
Pb 71.2	Density: gm/cc Crystal 4.80 Destrinated 4.38
	Melting Point: "C Decomposes
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Pure Bureau of Mines Apparatus, cm 10 17	Boiling Point: °C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3 5	Refractive Index, n ^D ₂₀
Sample Wt, mg 30 28	n ⁰ 25 n ₃₀
Friction Pendulum Test:	-
Steel Shoe Exp 10 des	Vacuum Stability Test: <u>Dextrinated</u> cc/40 Hrs, at
Fiber Shoe Explodes	90°C
Rifle Bullet Impact Test: Trials	100°C 1.0 120°C 0.07
% Explosions	135°C
Partials	150°C
Burned	200 Gram Bomb Sand Test:
Unaffected	Sand am Black powder fuse 19.0
Explosion Temperature: "C Seconds, 0.1 (no cap used) 396	Sensitivity to Initiation: Minimum Detonating Charge, gm
1 356 5 Explodes 340	Mercury Fulminate
5 Explodes 340 10 335	Lead Azide
15 335	Tetryl
20 335	Ballistic Mortar, % TNT:
75°C International Heat Test:	Trauzl Test, <b>% TNT</b> : (a) 39
% Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 0.34	
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc Brisance, % TNT
Explosion in 100 Hrs None	
Flammability Index:	Detonation Rate: <u>Pure Lead Azide</u> Confinement
Hygroscopicity: % Dextrinated Not Dextrinated 30°C, 90% RH 0.8 0.03	Condition Pressed Charge Diameter, in.
Volatility:	Density, gm/cc 2.0 3.0 4.0 Rate, meters/second 4070 4630 5180

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White-buff
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Detonators, priming compositions, and commercial blasting caps
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed
Fragment Velocity: ft/sec	Loading Density: gm/cc p s i x 10 ³ 3 5 10 15 2.62 2.71 2.96 3.07
A t 25½ ft Density, gm/cc	Storage: Method Wet
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group     Group M (wet)       Exudation     None
Air, Confined: Impulse	<u>Compatibility with Metals:</u> Dry lead azide does not react with or cor- rode steel, iron, nickel, aluminum, lead, zinc, copper, tin or cadmium. It does not
Under Water: Peak Pressure Impulse Energy	affect coatings of acid-proof black paint, oil, NRC compound or shellac. Lead azide in the presence of moisture corrodes zinc and copper; and with copper, it forms the extreme. ly sensitive and dangerous copper azide.
Underground: Peak Pressure	Specific Heat: cal/gm/ ^O C
Impulse Energy <u>Heat of:</u> Combustion, cal/gm 6 <b>30</b>	-50 0.110 0 0.110 25 0.110 50 0.110
Explosion, cal/gm 367 Gas Volume, cc/gm 308 Formation, cal/gm -346	Thermal Conductivity: cal/sec/cm/°C (Pure)1.55 x 10~4

# Lead Azide

# Compatibility with Metals:

Dry: Steel, iron, nickel, aluminum, lead, zinc, copper, tin, stainless steel, brass and bronze were unaffected by six years' contact with dry lead azide at ambient temperature and 50°C. Monel, chrome-nickel and Inconel were unaffected under the same conditions' in two and one-half years.

<u>Wet:</u> Copper and zinc are rapidly attacked by moist lead azide, while aluminum is not attacked in 24 hours. Monel, chrome-nickel and Inconel are not attacked by lead azide  $(\frac{1}{2}\%)$  moisture) after 29 months' exposure at ambient temperature and 50°C, and J-1 magnesium-aluminum alloy is very slightly corroded.

Sample Tested	Lead Azide Dry	<u>p</u>	<u>Azide</u> lus Water	Lead A plu 20% Wa	S	Lead Azide plus 20% Ethyl Alba-
Friction Pendulum T	est:					
(All IA dextrinated)	)					
Shoe	Fiber	F <del>iber-</del>	Steel-	Fiber	Steel	Fiber
No. of Trials Explosions Cracklings Unaffected	<b>1</b> <b>1</b> 0	$     \begin{array}{c}       10 \\       0 \\       0 \\       10     \end{array} $	12 0 2 10	10 0 0 10	4 1 2 1	1 1 0 0
Impact Sensitivity,	2 Kg Wt:					
(All IA dextrinated)						
PA Apparatus, inc	ches 4	9			9	4
Activation Energy:	(c)					
Kcal/mole Induction Period,	seconds	23.74 0.5-10				
Initiating Efficienc	y, Grams Requi	ired to Giv	ve Complet	e Initiati	ions of:	
		Dextrinate	ed Azide (	gm)		
TNT       0.25         Tetryl       0.10         RDX       0.05         PEIN       0.02						
Sensitivity to Stati	c Discharge, J	oules (Pu	e Lead Az	ide) (b)		0.0070

#### Lead Azide

Compatibility of Dextrinated Lead Azide with Black	Powder:
100°C Vacuum Stability Test, cc/40 hr:	

Sample Wt (g	<u>m)</u>	Material	cc
1.0 1.0 2.0		Lead Azide Black Powder 50/50,Lead Azide/Black Powder	0.50 0.38 1.26
Solubility of Pure I	Lead Azide; gm/100 gn	n of Water:	
<u>°a</u>		<u>K</u>	
20		0.05	

Preparation of Lead Azide (Dextrinated): (du Pont procedure)

2 Na – N = N = N + Pb  $(NO_3)_2 \rightarrow Pb(N_3)_2 + 2 NaNO_3$ 

<u>Lead nitrate solution</u>: This is prepared by dissolving 164 lbs lead nitrate and 8.25 lbs dextrine in deioni'zed water, the solution allowed to settle, and sodium hydroxide added to bring the solution to a pH of 5.4. The final concentration of the solution is then adjusted to 7.4% lead nitrate, 0.375% dextrine by addition of deionized water.

The lead azide is precipitated at a solution temperature of  $160^{\circ}F$ , using 60 parts lead nitrate and 50 parts sodium azide solution. The latter is added to the former in 23 minutes, under agitation (no baffles are used in the precipitation vessel), the mixture cooled to room temperature in 12 minutes, and allowed to settle 10 minutes. The mother liquor is decanted and the remaining slurry washed before packing.

#### Origin:

First prepared in 1891 by T. Curtius (Ber 24, 3345-6) by adding lead acetate to a solution of sodium or ammonium azide. F. Hyronimus (French Patent 384,792) should be credited with the first attempt in 1907 to use lead azide with some success in the explosive industry. Its commercial manufacture started in Europe before World War II and in the United States since 1931 as military or commercial grade "dextrinated" lead azide.

### Destruction by Chemical Decomposition:

Lead azide can be decomposed by

(1) mixing with at least five times its weight of a 10% solution of sodium hydroxide and allowing the mixture to stand for 16 hours. Decant the supernatant solution of sodium azide and drain into the soil.

(2) dissolving in a 10% solution of ammonium acetate and adding a 10% solution of sodium or potassium bichromate until no more lead chromate is precipitated.

(3) wetting with 500 times its weight of water, slowly adding 12 times its weight of 25% sodium nitrite, stirring, and then adding 14 times its weight of 36% nitric or glacial acetic acid. A red color produced by the addition of ferric chloride solution indicates Lead Azide is still present.

#### Lead Azide

(4) dissolving in 50 times its weight of 15% ceric ammonium nitrate. The azide is decomposed with the evolution of nitrogen.

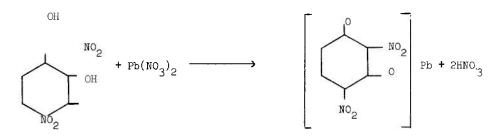
# References: 39

(a) Ph. Naoum, Z ges Schiess Sprengstoffw, 181, 229, 267 (27 June 1932).

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(c) C. Lenchitz, <u>Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven</u> Organometallic Compounds, PATR #2224, November 1955.

# (d) Also see the following Picatinny Arsenal Technical Reports on Lead Azide:


0	<u>1</u>	2	<u>3</u>	<u>1</u>	<u>5</u>	6	<u>7</u>	<u>8</u>	2
550 580 600 760 1450	561 861 1451 1651	832 852 882 932 1132 1152 1352 1372	393 1393 1493 2093 <b>21</b> 33	534 784 824 944 2164 2204	255 525 1325 1485	326 856 866 1316 1486 1556	567 637 657 707 1737 2227	628 708 748 788 838 1388 1528 1838 2198	609 719 749 769 849 999 2179

³⁹See footnote 1, page LO.

Composition:	Molecular Weight: (PbC6H2N206) 405			
$ \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & H & & 0.5 \\ & N & & 6.9 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & $	Oxygen Balance: CO, % -32 CO % - 8			
0 23.7 Pb 51.1	Density: gm/cc _{Crystal} 3.2			
	Melting Point: "C			
C/H Ratio 0.549	Freezing Point: "C			
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 1 kg wt 30	Boiling Point: "C			
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	Refractive Index, $n_{20}^{D}$ $n_{23}^{D}$ $n_{30}^{D}$			
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C			
Rifle Bullet Impact Test: Trials % Explosions Partio Is	- 100°C 120°C (73 minutes) Exp Modes 135°C 150°C			
Burned Unaffected	200 Gram Bomb Sand Test: Sond, gm Black powder fuse 20			
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Explodes 265 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl			
20	Ballistic Mortar, % TNT:			
75°C International Heat Test: % Loss in 48 Hrs	TrouzI Test, % TNT: Plate Dent Test: Method			
100°C Heat Test:           % Loss, 1st 48 Hrs         0.20           % Loss, 2nd 48 Hrs         0.02           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT			
Flammability Index:	Detonation Rote: Confinement			
Hygroscopicity: % 30°C, 90% RH 0.73	<ul> <li>Condition</li> <li>Charge Diameter, in.</li> </ul>			
Volatility:	Density, gm/cc Rate, meters/second			

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, 1b	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color: Red or yellow	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, lb	Principal Uses: Electric detonators	
Total No, of Fragments: For TNT	Method of Loading: Pressed	_
For Subject HE	Loading Density: gm/cc	
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	_
Density, gm/cc	Method Wat	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) $Class 9$	
Air: Peak Pressure Impulse	Compatibility Group Exudation None	
Energy Air, Confined: Impulse	Initiating Efficiency: 0.4 gn LDNR does not initiate tetryl pressed at 3000 psi.	
Under Water: Peak Pressure Impulse Energy	Heat of: Explosion, cal/gm 270	
<b>Underground:</b> Peak Pressure Impulse Energy		

Preparation:



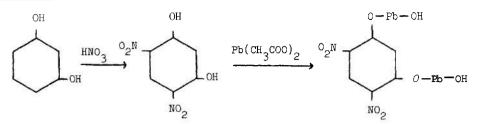
To a solution of 5 grams of purified dinitroresorcin and 2.65 grams of anhydrous sodium carbonate in 500 cc of boiling water is added slowly a solution of 10 grams of lead nitrate dissolved in 60 cc of boiling water. The reaction mixture is constantly stirred during the addition of the lead salt and for about an hour afterward while the solution is allowed to cool to room temperature. The precipitate is filtered and washed thoroughly first with water and then with alcohol and ether. It is dried in a steam oven.

#### Origin:

2,4-dinitroresorcin was described in the 1881 edition of Beilstein (Beil VII, 885). The same compound was described in more detail by Weselsky, Benedikt and Hübl in 1882 (M 11, 323). The lead salt of 2,4-dinitroresorcinol appears to have been prepared between World War I and World War II by treating resorcinol with nitrous acid and oxidizing the resulting dinitrosoresorcinol to dinitroresorcinol. Lead nitrate solution was then added to a solution of the 2,4-dinitroresorcinol to which sodium carbonate had been added to form the soluble sodium salt (J. D. Hopper, PATR No. 480, March 1934). The LDNR exists in two forms differing in physical characteristics but possessing similar explosive properties. These forms are red and orange in color (K. S. Warren, PATR 1448, September 1944).

# References: 40

(a) See the following Picatinny Arsenal Technical Reports on Lead 2,4-Dinitroresorcinate:


<u>o</u>	<u>3</u>	<u>4</u>	8	<u>9</u>
480 580	453	1004	1328 1448	859 1079

⁴⁰See footnote 1, page 10.

Compositions	Molecular Weight: (PboCcHi, NoCa) 646
Composition:	Molecular Weight: (Pb ₂ C ₆ H ₄ N ₂ O ₈ ) 646
$^{\%}$ 0 - Pb - 0H C 11.2 H 0.6 $_{2}N$ 0H N 4.3 $_{2}N$ 0H	Oxygen Balance:         -20           CO %         - 5
0 19.8 Pb 64.1 0 - Pb - OH	Density: gm/cc
Υ NO ₂	Melting Point: °C 213
C/H Ratio 0.177	Freezing Point: "C
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm 1 kg wt 60	Boiling Point: °C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe	cc/40 Hrs, at
Fiber Shoe	90°C
Rifle Bullet Impact Test: Trials %	100°C 120°C
Explosions	135°C
Partials	150°C
Burned	200 Gram Bomb Sand Test:
Unaffected	Sand powder fuse 15
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Explodes 295 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide
15	Tetryl
20	Ballistic Mortar, % TNT:
75%0 https://	Traurl Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 0.4	Confined
% Loss, 2nd 48 Hrs 0.0	Density, gm/cc
Explosion in 100 Hrs None	Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: %	Condition Charge Diameter, in.
Volatility:	Density, gm/cc Rate, meters/second

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :	
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT For Subject HE	Color:     Red or yellow       Principal Uses:     Electric detonators	
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed	
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc Storage: Method Wet	
Blast (Relative to TNT): Air: Peak Pressure Impulse	Hazard Class (Quantity-Distance) Class 9 Compatibility Group Exudation None	
Energy Air, Confined: Impulse Under Water: Peak Pressure	Initiating Efficiency: 0.4 gm LDNR Basic does not initiate tetryl pressed at 3000 psi.	
Impulse Energy		
Underground: Peak Pressure Impulse Energy		

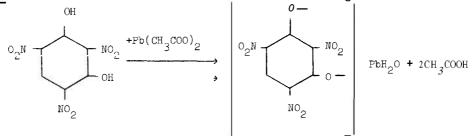




(a) One hundred grams of pure resorcin is fused in a porcelain casserole and immediately poured on a glass plate. After cooling, the cake is ground in a mortar to pass a U. S. Standard No. 6 mesh screen. Four hundred grams of 98 percent nitric acid in a one pint capacity Dewar jar is stirred mechanically while carbon dioxide snow is added in small pieces. When the temperature falls to  $-20^{\circ}$ C, 40 grams of the granulated resorcin is added in small quantities. Simultaneous addition of solid carbon dioxide as required prevents a rise of temperature of more than 5 degrees throughout the entire experiment. Five minutes after the last portion of resorcin is introduced, the mixture is further cooled to minus  $50^{\circ}$ C, and finally drived, weight 43.6 grams. The crude 4,6-DNR is purified by first dissolving the product in an aqueous 5 percent sodium hydroxide solution (17.4 grams of sodium hydroxide in 340 cc of water). The resulting solution is then neutralized by gradually adding it to a boiling solution of 21.4 grams of 98 percent sulphuric acid in 150 cc of water. The resulting precipitate of 4,6-DNR is filter and air-dried. Yield, 27.5 grams (37.8 percent of the theoretical).

(h) Five hundredths (0.05) mole (18.96 grams) of lead acetate is dissolved in 67 cc of warm water, into which is gradually stirred 0.10 mole (4.0 grams) of sodium hydroxide dissolved in 67 cc of water. Stirring is continued for five minutes. After settling, the white lead hydroxide is washed by decantation three times with 100 cc portions of distilled water, and used immediately for the next operation.

(c) A 0.0278 mole (5.56 grams) quantity of the 4,6-DNR prepared under (a) above, is dispersed in 270 cc of water by vigorously beating with a motor stirrer. After heating this dispersion to 90°C, the 0.05 mole of lead hydroxide prepared above in slurry form is introduced in **small** portions. Agitation is continued for three hours at 90°C. The basic lead 4,6-DNR is washed once by decantation, and again on the filter with alcohol. After drying overnight in a desiccator charged with calcium chloride, the product weighs 15.6 grams.


#### Origin:

Roth the 2,4- and 4,6-dinitroresorcin were described in some detail by Weselsky, Benedikt and Hübl in 1882 (M 11, 323). Typke prepared the 4,6-dinitroresorcin in 1883 by hydrolyzing the nitration product of resorcin diacetate (Ber 16, 551). A more direct and economical method of preparation suitable for production scale manufacture was developed during World War II by the British (Ministry of Supply Pouch Item W-154-21a, "Manufacture of 4,6-Dinitroresorcin and Lead 4,6-Dinitroresorcinate"). This procedure consisted of preparing 4,6dinitroresorcinol by direct nitration of granulated resorcin and allowing the product in slurry to react with an excess of lead hydroxide at  $90^{\circ}$ C. This basic salt can be prepared in two forms: (1) a micro-crystalline, yellow, low-density form and (2) a denser, brick-red form. Both products have the same chemical composition and the same sensitivity to impact (PATR 1448, September 1944).

Composition: NO2	Molecular Weight: (PbC ₆ H N 0 ) 468
$ \begin{array}{c c} & & & & & & & \\ C & & 15.4 & & & & \\ H & & 0.6 & & & & \\ N & & 9.0 & & & & \\ \end{array} $	Oxygen Balance:         -19           CO %         2
0 30.8 Pb 44.2	Density: gm/cc Crystal 3.02
NO	Melting Point: "C Explodes 260-310
C/H Ratio 0.320	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 17	Boiling Point: "C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3; (8 oz wt) 8 Sample Wt, mg 22	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test: Steel Shoe Detonates Fiber Shoe Detonates	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials	100°C 0.4 120°C 0.3
% Explosions Portials	135°C 150°C
Burned Unaffected	200 Grom Bomb Sand Test: Sand, gm 24 Black bowder_fuse
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Explodes 282 10 276 15 272 20 267	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Trace* Lead Azide Trace* * <.001 gm, alternative Ballistic Mortar, % TNT:
	Trauzi Test, % TNT: (a) 40
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat lest:           % Loss, 1st 48 Hrs         0.38           % Loss, 2nd 48 Hrs         0.73           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % 25 ^o C, 100% RH 0.05 30 ^o C, 90% RH 0.02	Condition Charge Diameter, in.
Volatility:	Density, gm/cc 2.9 Rate, meters/second 5200

Fragmentation lest:	Shaped Charge Effectiveness, TNT :	= 100:				
<i>90</i> mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth					
Total No. of Fragments: For TNT	Color: Orange-reddish	brown				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Igniting charge, and ingredient of priming compositions					
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Pressed				
Fragment Velocity: ft/sec	Loading Density: gm/cc					
At 9 ft At 25½ ft	Storage:					
Density, gm/cc	Method	Wet				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9				
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group M (wet) None				
Air, Confined: Impulse	Activation Energy: kcal/mol	75.39				
Under Water: Peak Pressure Impulse Energy	Induction Period, sec <u>Specific Heat: _cal/cm/°C</u>	0.5-10 (c)				
Underground: Peak Pressure Impulse Energy <u>Heat of:</u> Combustion, cal/gm 1251 Explosion, cal/gm 457	-50 0 25 50	0.141 0.158 0.164 0.167				
Explosion, cal/gm 457 Gas Volume, cc/gm 368 Formation, cal/gm -92						

# Preparation:



Dissolve 14.4 gn lead nitrate and 1 cc of 36% acetic acid in 320 cc distilled water. Dissolve 4 gn 2,4,6-trinitroresorcinol and 1.73 gn sodium carbonate in 80 cc distilled water. Add the lead acetate solution to the trinitroresorcinol solution, under agitation, keeping the temperature at  $70^{\circ}$ - $75^{\circ}$ C and continue stirring for 3 hours at this temperature. Cool to  $20^{\circ}$ C in 5 hours. Evaporate the solution to 1/3 its volume, cool, filter and wash the product well with water (to neutrality).

Sensitivity to Static Discharge, joules: (b)					
Loss in Weight at 105°C; %					
3 hours 6 hours 9 hours	0.02 0.23 0.23				
Effect of Storage for 2 Months at 80°C, on:					
Explosion Temperature Test Value Sand Test Value Sensitivity to Initiation	N i 1 N i 1 N i 1				
Solubility, gm/100 gm (%) in:					
Glycol Diacetate					

Glycol	Diacetate
°C	Z
20 <b>-</b> 25	0.1

# Origin:

First described in 1914 by von Hurtz and found to be a relatively poor initiator by Wallbaum in comparison to other primary explosives. (2 ges Schiess Sprengstoffw (2, 126, 161, 197, 1939)). Moisak showed that lead styphnate could be used as an insulating (cover) material for lead azide providing protection from mechanical and chemical influences and, at the same time, increasing the detonating ability of the total charge (Transactions of Butlerov Inst Chem Tech Kasan (Russia) (2, 81-5, 1935).

#### Lead Styphnate

# Destruction by Chemical Decomposition:

Lead sty-phnate is decomposed by dissolving it in at least 40 times its weight of 20% sodium hydroxide or 100 times its weight of 20% ammonium acetate and adding a solution of sodium dichromate, equal to half the weight of styphnate and 10 parts of water.

# References: 41

(a) Report AC-956/Org Ex 74.

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(c) C. Lenchitz, Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven Organometallic Compounds, PAIR No. 2224, November 1955.

(d) Also see the following Picatinny Arsenal Technical Reports on Lead Sty-phnate:

<u>o</u>	1	2	<u>3</u>	<u>4</u>	6	ユ	8	9
1450 2220	11	1352 2032	<b>45</b> 3 2093	2164	1316	407 1737 2077	318	2179

⁴¹See footnote 1, page 10,

Composition:	Molecular Weight: (C ₆ H ₈ N ₆ 0 ₁₈ ) 452
% ^{CH} 2 ^{ONO} 2	Oxygen Balance:
c 15.9 ⁰ 2 ^{NOCH}	CO, % 7.1
н 1.8 ^о 2 ^{Nocн}	<b>CO</b> % 28.3
N 18.6 HCONO ₂	Density: gm/cc 1.73
$\frac{\text{HCONO}_2}{2}$	Melting Point: °C 112-113
C/H Ratio 0.133	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 11	Boiling Point: "C Decomposes 150
Sample Wt 20 mg	Refractive Index, n ^D ₂₀
Picatinny Arsenal Apparatus, in. 4	n ^D ₂₅
Sample Wt, mg 11	n ₃₀
Friction Pendulum Test:	
Steel Shoe Detonates	Vacuum Stability Test: cc/40 Hrs, at
Fiber Shoe Unaffected	90°C
	100°C
Rifle Bullet Impact Test: Trials	120°C
%	135°C
Explosions	150°C
Partials Burned	200 Over Death Oracl Test
Unaffected	200 Gram Bomb Sand Test: Sand, gm 68.5
Explosion Temperature: "C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used) 160-170 (a)	Minimum Detonating Charge, gm Mercury Fulminate
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
10	Lead Azide 0.06 Tetryl
15	
20	Ballistic Mortar, % TNT:
	Trauzl Test, % TNT: (c) 172
75°C International Heat Test: % Loss in 48 Hrs 0.4	Plate Dent Test:
	Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs (Frothed) 48 hours	Brisance, % TNT
	Detonation Rate: (d)
Flammability Index:	Confinement Yes
where we apply and put to the	Condition Pressed
Hygroscopicity: % 30 ^o C, 90% RH 0.17	Charge Diameter, in. 0.5
Volatility:	Density, gm/cc 1.73
volatinty.	Rate, meters/second 8260

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :				
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, ≀b	Glass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragments: For TNT	Color:				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Secondary charge in detonators (ref i), and in blasting caps designed to be initiated by a fuse (ref j)				
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed				
	Loading Density: gm/cc				
Fragment Velocity: ft/sec At 9 ft At 251/ ₂ ft	Storage:				
Density, gm/cc	Method Dry				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9				
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None				
Air, Confined: Impulse	<u>65.5[°]C KI Test:</u> Minutes 6				
<b>Under Water:</b> Peak Pressure	Heat of: (e, f, g)				
Impulse Energy	Combustion, cal/gm 1515 1525 Explosion, cal/gm 1390 1454 1468 1520 Formation, cal/gm 337 345 366				
<b>Underground:</b> Peak Pressure					
Impulse Energy					

# Solubility:

- a. Insoluble in water.
- b. Slightly soluble in cold alcohol (2.9 gm at 13°C).
- c. Slightly soluble in ether (4 gm at  $9^{\circ}$ C).
- d. Very soluble in hot alcohol.

#### Preparation: (Laboratory Method) (k)

a. Cool to below  $0^{\circ}$ C, 50 gm of 98%-100% nitric acid placed in a 300 milliliter Erlenmeyer Pyrex flask provided with a thermometer and immersed in an ice-salt mixture.

b. Introduce in small portions, 10 gm of d-mannitol, while swirling the flask to break up any lumps of mannite which might form. Keep the temperature below  $0^{\circ}C_{\bullet}$ .

c. After solution is complete, add 100 gm of concentrated sulfuric acid from a dropping funnel, swirling the flask in an ice-salt mixture to keep the temperature below 0°C.

d. Filter the resulting porridge-like slurry through a filter paper previously hardened by treatment with mixed acid.

e. Rinse the precipitate directly on the filter with water followed by dilute aqueous sodium carbonate and finally with water. (The resulting crude mannitol hexanitrate gives 18.2% N as determined by the nitrometer.)

f. Dissolve the crude mannitol hexanitrate in boiling alcohol and filter through a waterheated funnel.

 $g_{\rm .}$  Bring the filtrate to boiling and gradually add hot water until the appearance of the first turbidity.

h. Cool in an ice-salt bath, separate and dry the crystals. (Yield should be about 23 gm of material, melting at  $112^{\circ}-113^{\circ}$ C and having 18.58% N, the nitrogen being determined by the nitrometer. Theoretical yield would be 24.8 gm.)

### Origin:

Mannitol hexanitrate was discovered in 1847 by Ascanio Sobrero who recommended it as a substitute for mercury fulminate in percussion caps (Comp rend, 1847, 121). It is the hexanitric ester of d-mannitol which is widely distributed in nature, particularly in the plant Fraxinus ornus. N. Sokoloff, a Russian chemist, investigated the explosive properties of HM and recommended in 1878 a method of preparation. Mannitol hexanitrate was thoroughly studied by Berthelot, Sarran and Vieille, Domonte, Menard, Strecker, Tichanowich (Ph. Naoum, Nitroglycerin and Nitroglycerin Explosives, Baltimore, 1928, pp. 156, 247-250), and particularly by J. H. Wigner (Ber <u>36</u>, 796 (1903)). More recent data have been reviewed by Guastalla and Racciu ("Modern Explosives," Industria Chimica <u>8</u>, 1093-1102 (1933)).

## References:⁴²

(a) G. C. Hale, Abstract of Available Information on the Preparation and Explosive Properties of Hexanitromannite, PA Special Report No. 238, 30 July 1925.

⁴²See footnote 1, page 10.

(b) C. A. Taylor and W. H. Rinkenbach, "Sensitiveness of Detonating Compounds to Frictional Impact, Impact, and Heat," J. Frank Inst 204, 369-76 (1927).

(c) Ph. Naoum, Z ges Schiess - Sprengstoffw (Munich), pp. 181, 229, 267 (27 June 1932).

- (d) H. Kast, Z angew Chem, <u>36</u>, 74 (1923).
- (e) A. Schmidt, Z ges Schiess Sprengstoffw 29, 262, (1934).

Landolt and Börnstein, E III, p. 2914.

(f) A. Marshall, <u>Explosives, Their Manufacture, Properties, Tests, and History</u>, Vol 111, London (1932) p. 39. Ph. Naoum, <u>Nitroglycerin and Nitroglycerin Explosives</u>, Baltimore, (1928), pp. 156, 247-250.

(g) A. Schmidt, Z ges Schiess - Sprengstoffw 29, 262 (1934) G. Fleury, L. Brissand and P. Lhoste, "Structure and Stability of Nitric Esters," Comp rend 224, 1016-18 (1947). W. R. Tomlinson, Jr., Fundamental Properties of High Explosives. Thermodynamic Relations for Use in the Estimation of Explosive Properties, PATR No. 1651, 22 April 1947.

- (h) Sarran and Vielle, Mém poudr 2, 161 (1884-1889).
- (i) E. von Hurtz, U. S. Patent 1,878,652 (20 September 1932).
- (j) L. A. Burrows, U. S. Patent 2,427,899 (23 September 1947).

(k) B. T. Fedoroff, <u>Handbook of Explosives and Related Items</u>, Picatinny Arsenal (unpublished).

(1) O. E. Sheffield, Literature Survey on Mannitol Hexanitrate, PA Chemical Research Laboratory Report No. 52-TMI-16, 23 January 1952.

(m) Also see the following Picatinny Arsenal Technical Reports on Mannitol Hexanitrate:

2	4	ح	<u>6</u>
1352	24 64	85	6

Composition: %	Molecular Weight: $(HgC_2N_2O_2)$ 285
$\begin{array}{ccc} & 8.4 & & 0 - \mathbf{N} = \mathbf{C} \\ \mathbf{N} & 9.8 & & \mathbf{Hg} \end{array}$	Oxygen Balance:         -17           CO, %         -5.5
0   11.2   0 - N = C	Density: gm/cc Crystal 4.43
нд 70.6	Melting Point: "C Decomposes
C/H Ratio	Freezing Point: "C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 5; (1 kg wt) 35	Boiling Point: "C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 2; (11b wt) 4 Sample Wt, mg 30	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀
Friction Pendulum Test:         Steel Shoe       Explodes         Fiber Shoe       Exp 1 odes	Vacuum Stability Test: cc/40 Hrs, at 90 °C
Rifle Bullet Impact Test: Trials % Explosions PartioIs	- 100°C Explodes 120°C 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand gm Black powder fuse 21.4
Explosion Temperature :       "C         Seconds, 0.1 (no cap used)       263         1       239         5       Explodes         10       199         15       194	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:
20 190	
75°C International Heat Test: % Loss in 48 Hrs 0.18	Trauzi Test, % TNT: (a) >1 Plate Dent Test: Method
100°C Heat Test: Exploded in 16 hours % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % 30 ⁰ C, 90% RH 0.02	Condition Pressed Charge Diameter, in.
Volatility:	Density, gm/cc 2.0 3.0 4.0 Rate, meters/second 3500 4250 5000

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones
Density, gm/cc	Hole Volume
Charge Wt, Ib	Hole Depth
Total No. of Fragments:	Colore William Annual
For TNT	Color: White to gray
For Subject HE	Principal Uses: Detonators and ingredient of
3 inch HE, M42A1 Projectile, Lot KC-5:	priming compositions
Density, gm/cc	
Charge Wt, Ib	
Total No. of Fragments:	Method of Loading: psi x 10 ³
For TNT	<u>3</u> 5 10 12 15 20
For Subject HE	3.00 3.20 3.60 3.70 3.82 4.00
	Loading Density: gm/cc
Fragment Velocity: ft/sec	
At 9 ft At 25½ ft	Storage:
Density, gm/cc	
	Method Wet
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air:	Compatibility Group Group M (wet)
Peak Pressure	
Impulse	Exudation None
Energy	
Air, Confined:	Stab Sensitivity:
Impulse	Density Firing Point (inch-ounces) gm/cc 0 <u>5</u> 505 1005
Under Water:	3.91 3.2 4.3 5.5
Peak Pressure	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Impulse	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Energy	Activation Energy:
	kcal/mol 29.81
Underground: Peak Pressure	Induction Period, sec 0.5-10
Impulse	Heat of:
Energy	Combustion, cal/gm 938 Explosion, cal/gm 427
	Gas Volume, cc/gm 243 Formation, cal/gm -226
	Specific Heat: $cal/gm/^{\circ}C$ 1.1
	Thermal Conductivity:
	1100000000000000000000000000000000000

### Mercury Fulminate

### Initiating Efficiency; Grams Required to Give Complete Initiation of:

	Fulminate, gm
INT	0.25
Tetryl	0.20
RDX	0.19
PEIN	0.17

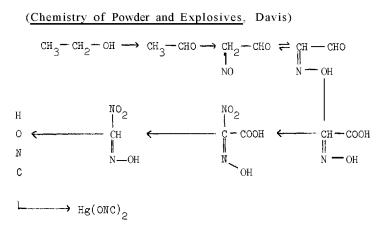
#### Compatibility with Metals:

<u>Dry:</u> Reacts rapidly with aluminum and magnesium. Reacts slowly with copper, zinc, brass and bronze. Iron and steel are not affected.

Wet: Reacts immediately with aluminum and magnesium. Reacts rapidly with copper, zinc, brass and bronze. Iron and steel are not affected.

Sensitivity to	Static Discharge,	Joules: (b	) 0.025
----------------	-------------------	------------	---------

The	Effect	of	Storage	at	50 ⁰ C	(Dry)	on	the	Purity	of'	Mercury	Fulminate


Months Storage	<u>.979</u>	Recrystall <u>980</u>	ized Lots <u>981</u>	<u>982</u>	Uncrystall 505.6-7/31	ized Lots 505.3-5/11
0	99•75	99•77	99•79	99.79	98.86	98.7
4	99 <b>• 3</b> 8	99.45	99•54	99•47	95+95	98.7
8 9					94.95	97.4
10 12 13 14	98.74 98.26 98.22	99.56	97.49	99.06 98.79	90.65	94.9
15 16	97.52 97.00	99•30 98•66	99.30 99.01	98.19 97.75 96.69	83.76	
17 18 23 26	95.70 94.81	98.58 98.58	98.46	95 <b>.</b> 99	79,99 74.52 63.80	

#### Chemistry:

Mercuric f'ulminate readily decomposes in the presence of aqueous solutions, chlorides, carbonate and many other materials. Due to the presence of small amounts of mercury, formed by exposure to light or elevated temperatures, it readily forms amalgams with copper, brass and bronze, thus components containing these metals must be protectively coated if used with fulminate.

°C	de Pe
12	0.07
49	0.18

Preparation:



Five gn mercury is dissolved in 25 cc of nitric acid (sp gr 1.42) without agitation, and this solution poured into 50 cc of 90% ethyl alcohol, resulting in a vigorous reaction, attended by evolution of white fumes and subsequent appearance of fulminate crystals. Red fumes then appear as precipitation of the product accelerates, and then white fumes again are evolved as the reaction moderates. After about 20 minutes the reaction is over; water is added, and the crystals are repeatedly washed, by decantation, with water to remove all acidity. The product is purified, rendered white, by solution in strong ammonium hydroxide, followed by reprecipitation with 30% acetic acid.

#### Origin:

Mercury fulminate was first prepared by John K. von Lowenstern (1630-1703) and in 1800 its preparation and properties were first described in detail by Edward Howard in a paper presented to the Royal Society of London (Phil Trans, 204 (1800). It was 1867 before the compound was used as an initiating agent, when Alfred Nobel invented the blasting cap and used mercury fulminate to detonate nitroglycerin (British Patent 1345 (1867)).

Destruction by Chemical Decomposition:

Mercury fulminate is decomposed by adding it, while stirring, to at least 10 times its weight of 20% sodium thiosulfate. Some poisonous cyanogen gas may be evolved.

### References: 43

(a) Ph. Naoum - Z ges Schiess-Sprengstoffw (Munich), pp. 181, 229, 267 (27 June 1932).

(b) F. W. Brown, D. H. Kusler, and F. C. Gibson, Sensitivity of Explosives to Initiation by <u>Electrostatic Discharges</u>, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

⁴³See footnote 1, page 10.

-/	11150	see the	10110 1115	ricatinny	7 ti Senta	i i com	litear rept	5115 01	ricicary	1 armina o
	<u>o</u>	<u>1</u>	2	<u>3</u>	<u>1</u>	5	<u>6</u>	<u>7</u>	8	<u>9</u>
	250 480 510 550 610 680 760 1220 1450	301 381 561 1651	132 452 522 782 882 932 1192 1352 1372 1722 2032	23 203 433 833 1183 1393 2093	144 294 534 624 694 784 874 1104	65 105 255 285 365 415 425 1325 1365	266 366 556 866 986 1316 1486 1556 2146	277 297 407 537 567 637 857 1737	28 78 278 318 788 1838	199 609 749 849 999 1079 1389 2179

(c) Also see the following Picatinny Arsenal Technical Reports on Mercury Fulminate:

# AMCP 706-177 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate)

Composition: %	Molecular Weight: (C ₅ H _a N ₃ 0 _a ) 255				
$\begin{array}{cccc} & 23.5 & o_2 \text{NO} - \text{CH}_2 \\ \text{H} & 3.5 & o_2 \text{NO} - \text{CH}_2 \\ \text{N} & 16.6 \\ \text{O} & 56.4 \end{array} \qquad \begin{array}{c} c - c \text{H}_3 \\ c_2 \text{NO} - c \text{H}_2 \end{array}$	Oxygen Balance:         - 35           CO, %         - 3				
$0.0 - CH_2 - C - CH_3$ N 16.6	Density: gm/cc Liquid 1.47				
$o_{2}^{NO-CH_{2}}$	Melting Point: "C – 3				
C/H Ratio 0.150	Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 47; (11b wt) 4 Sample Wt 20 mg	Boiling Point: °C				
Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	Refractive Index, n ^D ₂₀ n ^D ₂₃ 1.4752 n ^O ₃₀				
Friction Pendulum Test: Steel Shoe Explodes Fiber Shoe Rifle Bullet Impact Test: Trials % Explosions	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C cc/gm 1.9 120°C 135°C				
Partio Is Burned Unaffected	150°C 200 Gram Bomb Sand Test: Sand, gm 43.7				
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Ignites 235 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl				
15 20	Ballistic Mortar, % TNT: (a) 136				
	Trauzi Test, % TNT: (b) 140				
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method				
100°C Heat Test:           % Loss, 1st 48 Hrs         2.5           % Loss, 2nd 48 Hrs         1.8           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT				
Flammability Index:	Detonation Rate: Confinement				
Hygroscopicity: % 30 ⁰ C, 90% RH <b>0.07</b>	Condition Charge Diameter, in. Density, gm/cc Rate, meters/second				
Volatility: 60°C, mg/cm ² /hr 24					

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :				
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragments: For TNT	Color: Oily, slightly turbid				
For Subject HE 3 inch HE , M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of rocket and double base propellants				
Total No. of Fragments: For TNT	Method of Loading:				
For Subject HE	Loading Density: gm/cc				
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:				
Density, gm/cc	Method Liquid				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)				
<b>Air:</b> Peak Pressure Impulse Energy	Compatibility Group Exudation				
Air, Confined: Impulse	Solubility in Water, gm/100 gm, at:				
<b>Under Water:</b> Peak Pressure	25°C < 0.015 60°C < 0.015				
Impulse	Heat of:				
Energy	Combustion, cal/gm 2642				
<b>Underground:</b> Peak Pressure	Hvdrolvsis, % Acid:				
Impulse Energy	10 days at 22°C       0.018         5 days at 60°C       0.115				

#### Preparation:

Metriol (trimethylolmethylmethane) is obtained by the following procedure, based on work by Hosaeus (Annalen 276, 76 (1893):

Into a 5 liter round bottom flask is weighed 2700 gms of water. To this are added 267 gms of 36% formaldehyde and 60 gms of propionaldehyde. The mixture is stirred for a few seconds. To the mixture is added 150 gms of calcium oxide previously slaked with 600 gms of water. The mixture is heated in boiling water for four hours, and then allowed to cool spontaneously overnight. After filtering off the insoluble calcium hydroxide, the solution is heated and treated with a saturated aqueous solution of oxalic acid to precipitate all the calcium. The precipitated calcium oxalate is filtered off, and the pale-yellow filtrate concentrated as much as possible on the steam bath to a thick lemon-yellow syrup. After dissolving in absolute alcohol, the solution is filtered and concentrated in the steam bath to about twice the volume of the concentrated syrup. The solution is then chilled in a cold box to hasten crystallization. After allowing it to warm up to just above 0°C, the mixture is filtered. The resulting product is not sufficiently pure and is recrystallized from absolute alcohol. The melting point of the product (40.3 gm) is then about  $196^{\circ}C$  (Hosaeus gives  $199^{\circ}C$ ).

Metriol is nitrated by carefully mixing it with 3.5 parts of  $65/3.5 \text{ HNO}_3/\text{H}_2SO_4$  maintained at 20°C, stirring for 30 minutes, cooling to 5°C, and pouring the reaction mixture on ice. It is extracted with ether, water-washed, and adjusted to pH 7 by shaking with a sodium bicarbonate solution and again water-washed three times. It is then dried with calcium chloride, filtered, and freed of ether by bubbling with dry air until minimal rate of loss in weight is attained. The yield is 88% of the theoretical. The product has a nitrate-nitrogen content of 16.35% (calculated: 16.47%). Its refractive index at 25°C is 1.4752.

#### Origin:

MTN, according to Italian sources, was first prepared and patented by Bombrini-Parodi-Delfino Company of Italy under the name "metriolo." A German Patent of 1927 also describes the preparation and gives some properties. This compound was known in France before World War II under the name of "Nitropentaglycerin" and Burlot and Thomas determined its heat of combustion (Ref b).

#### References: 44

(a) A. H. Blatt, <u>Compilation of Data on Organic Explosives</u>, OSRD Report No. 2014, 29 February 1944.

(b) E. Burlot and M. Thomas, Mem poudr 29, 262 (1939).

(c) Also see the following Picatinny Arsenal Technical Reports on Metriol Trinitrate: 1616 and 1817.

⁴⁴See footnote 1, page 10.

## <u>Minol-2</u>

Composition : %	Molecular Weight:	71
Ammonium Nitrate 40	Oxygen Balance: O, % CO %	- 3 ⁸ - 20
	Density: gm/cc	1.62-1.68
Aluminum 20	Melting Point: "C	
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: "C	
Bureau of Mines Apparatus, cm 35 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 13 Sample Wt, mg 17	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability lest: cc/40 Hrs, at 90°C	
Rifle Bullet Impact lest: Trials % Explosions Partials	100°C 120°C 135°C 150°C	2.1
Burned Unaffected	200 Gram Bomb Sand lest: Sand, gm	21 · 27 ·
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Ignites 435 10 15	Sensitivity to Initiation: Minimum Detonating Charg Mercury Fulminate Lead Azide Tetryl	ie, gm
20	Ballistic Mortar, % TNT: (a	a) 143
		b) 165
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent lest: (c Method	c) B
100°C Heat lest: % Loss, 1st <b>48</b> Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	Pressed No 1.73 66
Flammability Index: 100	Detonation Rate: (c Confinement	None
Hygroscopicity: %	Condition Charge Diameter, in.	<b>Cas</b> t 1.6
Volatility:	Density, gm/cc Rate, meters/second	1.68 58 <b>20</b>

# <u>Minol-2</u>

Booster Sensitivity Test: Condition	(e) Pressed	Decomposition Equation:
		Oxygen, atams/sec (Z/sec)
Tetryl, gm	100	Heat, kilocalorie/mole
Wax, in. for 50% Detonation	1.46	(ΔH, kcal/mal)
Wax, gm		Temperature Range, °C
Density, gm/cc	1.74	Phase
Heat of:	(f)	Armor Plate Impact Test: (f)
Combustion, cal/gm	3160	
Explosion, cal/gm	1620	60 mm Mortar Projectile:
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec 828
Formation, cal/gm		Aluminum Fineness
Fusion, cal/gm		
		500-lb General Purpose Bombs:
Specific Heat: col/gm/°C		
At -5°C	0.30	Plate Thickness, inches
Density, gm/cc	1.74	1
		11/4
		11/2
		- 134
Burning Rate:		• /4
cm/sec		
		Bomb Drop Test:
Thermal Conductivity: col/sec/cm/°C	(b) 16.5 x 10 ⁻⁴ 1.74	T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Density, gm/cc	1./4	 Max Safe Drop, ft
Coefficient of Expansion: Linear, %/°C		
		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
Hardness, Mohs' Scale:		Trials
Hardness, Mons Scale.		Unaffected
Young's Modulus:	(b)	Low Order
E', dynes/cm ²	5.03 x 10 ¹⁰	High Order
E, Ib/inch ²	$0.73 \times 10^{6}$	
Density, gm/cc	1.66	1000-lb General Purpose Bomb vs Concrete:
		Height, ft
Compressive Strength: Ib/inch ² (b)	1910-2070	Trials
Density, gm/cc	1.68	Unaffected
Vapor Pressure:		
"C mm Mercury		
- ····································		High Order

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$ :		
<b>90 mm HE, M71 Projectile, L</b> Density, gm∕cc Charge Wt, Ib			l Cones	
Total No. of Fragments: For TNT		Color:	Gray	
For Subject HE		Principal Uses: Bombs and depth	charges	
3 inch HE, M42A1 Projectile, Density, gm/cc Charge Wt, Ib	Lot KC-5:			
Total No. of Fragments: For TNT		Method of Loading:	Cast	
For Subject HE		Loading Density: gm/cc 1	.62-1.68	
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:		
Density, gm/cc		Method	Dry	
Blast (Relative to TNT);		Hazard Class (Quantity-Distance)	Class 9	
Air:		Compatibility Group	Group I	
Peak Pressure	115			
Impulse	116	Exudation		
Energy	133			
Air, Confined: Impulse	90	Preparation: Minol is a castable mixture	consisting of	
Under Water: Peak Pressure	108	40 percent TNT, 40 percent an and 20 percent powdered alumin fore can be prepared by addin	num and there-	
Impulse	126	gredients to molten TNT at 90	^O C under agita-	
Energy	140	tion. Minol also can be prep 25 parts of aluminum to 100 p amatol previously prepared.	ared by adding arts of 50/50	
<b>Underground</b> : Peak Pressure	134	amator previously prepared.		
Impulse	139			
Energy	147			

## Minol-2

## Origin:

Minols are British ternary explosives developed during World War 11. There are three formalations:

Composition. %:	Minol-1	Minol-2	Minol-3
TWL	48	40	42
Ammonium Nitrate	42	40	38
Aluminum	10	20	20

References: 45

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>. Part III - Miscellaneous <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(a) G. H. Messerly, <u>The Rate of Detonation of Various Explosive Compounds</u>, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(e) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> Tetryl in Boosters, NL Mamo 10,303, 15 June 1949.

(f' Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD No. 5406, 31 July 1945.

(g) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Technical Div Lecture, 9 April 1948.

(h) Also see the following Picatinny Arsenal Technical Reports on Minol-2: 1585 and 1635.

 $^{\rm 45}See$  footnote 1, page IO.

Composition:		Molecular Weight:	40.6
% Oxidizing agent (Ammonium Perchlorate) Aluminum, atomized Cupric Oxide	35.0 26.2	Oxygen Balance: CO, % CO %	-44 -37
Magnesium, atomized Other ingredient (Tetryl)	26.2 9.7	Density: gm/cc Pressed	2.0
Other ingredient (Tetryl) Calcium Stearate	1.9 1.0	Melting Point: "C	
Graphite, artificial C/H Ratio	1.0	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	 13 22	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₃ n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Detonates	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: Trials % Explosions		100°C 120°C 135°C 150°C	0.47
Partials			
Burned Unaffected		200 Gram Bomb Sand Test: Sand, gm	10.6
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 285 10 15 20		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:	0.20 0.25
20		TrauzI Test, % TNT:	
<ul> <li>75°C International Heat Test:</li> <li>% Loss in 48 Hrs Discoloration, fumes, odor</li> <li>100°C Heat Test:</li> <li>% Loss, 1st 48 Hrs</li> <li>% Loss, 2nd 48 Hrs</li> <li>Explosion in 100 Hrs</li> </ul>	None 0.10 0.01 None	Plate Dent Test: Method Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	
Hygroscopicity: %		Condition Charge Diameter, in. Density, gm/cc	
Volatility:		Density, gm/cc Rate, meters/second	

_

# <u>MOX-1</u>

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 10$	00:		
90 mm HE, <b>M71 Projectile, Lot WC-91:</b> Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth Color: Gray powder mixture Principal Uses: Small caliber antiaircraft projectiles			
Total No. of Fragments: For TNT				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib				
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Pressed		
Fragment Velocity: ft/sec	Loading Density: gm/cc A t 30,000 ps i	<b>~</b> 2.0		
At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method	Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9		
<b>Air:</b> Peak Pressure Impulse Energy	Compatibility Group Bureau of Explosives Classifi Exudation	Group I cation Class A		
	Heat of:			
Air, Confined: Impulse Under Water:	Combustion, cal/gm Explosion, cal/gm Gas volume, cc/gm	4087 2087 212		
Peak Pressure Impulse Energy	Performance Tests: 20 mm T215E1 Projectile:			
Underground: Peak Pressure Impulse	NFOC Pressure Cube APG Blast Cube Activation Energy:	35 40		
Energy	kcal/mol Temp, °C Time to ignition, seconds	12.5 300 to 380 1.78 x 10 ⁻⁴		

## MOX-2B

Coyorition:		Molecular Weight:	42
Oxidizing agent (Ammonium Perchlorate) Aluminum, atomized Cupric Oxide	35.0 52.4	Oxygen Balance: CO, % CO %	-49 -43
Magnesium, atomized		Density: gm/cc Pressed	2.0
Other ingredients* Calcium Stearate Graphite, artificial	9.7 1.9 1.0	Melting Point: °C	
*5.8% RDX and 3.9% TNT coated pe		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	12	Refractive Index, n ^D ₂₀ n ^D ₂₅	
Sample Wt, mg	24	п ₂₅ П ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected Unaffected	cc/40 Hrs, at 90°C	
Fiber Shoe	Onarrected		0.21
Rifle Bullet Impact Test: Trials		120°C	
%		135°C	
Explosions Partials		150°C	
Burned		200 Gram Bomb Sand Test:	
Unaffected		Sand, gm	11.5
		Sensitivity to Initiation: Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5 375		Lead Azide	0.20
10		Tetryl	0.20
15 20		Ballistic Mortar, % TNT:	
		TrauzI Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs Discoloration, fumes, odor	None	Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.27	Confined	
% Loss, 2nd 48 Hrs	0.12	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detonation Rate:     Confinement     Condition	
Hygroscopicity: %		Charge Diameter, in.	
Volatility:		Density, gm/cc Rate, meters/second	

## MOX-2B

Fragmentation Test:			Shaped Charge Effectiveness, $TNT = 100$ :	
<b>90 mm HE, M71 Projectile,</b> Density, gm/cc Charge Wt, Ib	Lot WC-91:		Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT		Color:	Gray	
For Subject HE			Principal Uses: HE filler for small ca	liber
<b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib		projectiles		
<b>Total No. of Fragment</b> s: For TNT For Subject HE			Method of Loading:	Pressed
			Loading Density: gm/cc	2.0
Fragment Velocity: ft/sec At 9 ft				
At 25½ ft			Storage:	
Density, gm/cc			Method	Dry
Blast (Relative to TNT):			Hazard Class (Quantity-Distance)	Class 9
Air: Bare Charge: Peak Pressure	<u>EW*</u> 1.02	$\frac{EV*}{1.34}$	Compatibility Group Bureau of Explosives Class A	Group I
Impulse	1.08	1.41	Exudation	None
Energy Density, gm/cc <b>Air, Confined:</b> Impulse		1.96	Heat of:	4494
Cased Charge in Air:**			Combustion, cal/gm Explosion, cal/gm Gas volume, cc/gm	4484 1472 221
Peak Pressure	1.09	1.44	Performance Tests:	221
Impulse Energy	1.16	1.53	20 mm T215El Projectile:	
Density, gm/cc		1.98	NFOC Pressure Cube	29
Underground: Peak Pressure			APG Blast Cube	30
Impulse			Aviation Energy:	
Energy *EW, equivalent weight a EV, equivalent volume a			kcal/mol Temp, °C 340 to Time to ignition, seconds 1.39	7.6 470 x 10 ⁻²
**Strong paper-base pheno	lic case.			

## MOX-2B

Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity* (Reference g)

_					
	Ground	- All and and		4730	
1	30,000		Charge would not	4530(3)	Charge would

*Confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gm tetryl booster was used to initiate each charge.

# Average Fragment Velocity at Various Altitudes* (g)

	Explosive	Charge Diameter, Inches	Ground m/s	30,000 m/s	<i>60,000</i> m/s	3	<b>90,000</b> m/s	IT
ſ	MOX-2B,	' 1	2012	**	**	٠	<del>**</del>	-
	density, 207	2	3314	3351	3247		<del>**</del>	I

*Outside diameter 2.54"; inside diameter 2.04"; length 7".

**Charge would not propagate detonation.

# MOX-3B

Composition:	Molecular Weight:	45.6
O%idizing agent (Potassium Nitrate) 18	Oxygen Balance:	
Aluminum, atomized 50 Cupric Oxide	CO, %	-52
Magnesium, atomized	CO %	-43
Other ingredients*32Calcium Stearate**2.0	Density: gm/cc Pressed	2.0
Graphite, artificial** 1.0 *29.1% RDX, 0.9% wax, and 2.0% TNT.	Melting Point: "C	
**Per cent added.	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C	
Sample Wt 20 mg	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. 17 Sample Wt. mg 24	n ^D ₂₅	
Sample Wt, mg 24	n ₂₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impact Test: Trials	100°C	0.57
%	120°C	
Explosions	135°C	
Partials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	33.2
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 5 5 510	Mercury Fulminate	
5 540 10	Lead Azide	0.20
15	Tetryl	0.15
20	Ballistic Mortar, % TNT:	-
	Trauzi Test, % TNT:	
75°C International Heat Test:	Plate Dent Test:	
Discoloration, fumes, odor None	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.35	Confined	
% Loss, 2nd 48 Hrs 0.13	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
	Detonation Rate:	
Flammability Index:	Confinement	
	Condition	
Hygroscopicity: %	Charge Diameter, in.	
I	J	
Volatility:	Density, gm/cc	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel C Hole Volume Hole Depth	Cones	
Total No. of Fragments: For TNT	Color: Gray powder	mixture	
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principol Uses: Small caliber ant projectiles	iaircraft	
Total No. of Fragments: For TNT	Method of Loading:	Pressed	
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc A t 30,000 psi	<b>~</b> 2.0	
At 9 ft At 25½ ft Density, gm/cc	Storage:		
	Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Bureau of Explosi	Group I ves Class A	
Air, Confined: Impulse	<u>Heat of:</u> Combustion, cal/gm Explosion, cal/gm	4331 980	
Under Water: Peak Pressure Impulse Energy	Gas volume, cc/gm Performance Tests: 20 mm T215El Projectile:	232	
Underground: Peak Pressure	NFOC Pressure Cube APG Blast Cube	37 52	
Impulse Energy	Temp, ^{OC} due Time to ignition, niti	es not included to erratic ig- on under condi- s of test.	

# MOX-4B

Composition:	Molecular Weight:	48
%Oxidizing agent (Barium Nitrate)18Aluminum, atomized50Cupric OxideMagnesium, atomized	Oxygen Balance: CO, % CO %	-53 -43
Other ingredients*32Calcium Stearate**2.0	Density: gm/cc Pressed	2.0
Graphite, artificial** 1.0	Melting Point: °C	
*29.1% RDX, 0.9% wax, and 2.0% TNT. **Per cent added.	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 78	Boiling Point: "C	
Sample Wt 20 mg	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. 18 Sample Wt, mg 26	n ₂₅	
	n ₃₀	
Friction Pendulum Test: Steel Shoe Sparks Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C	
	100°C	 0.67
Rifle Bullet Impact Test: Trials	120°C	0.07
% Explosions	135°C	
Partials	150°C	
Burned		
Unaffected	200 Gram Bomb Sand Test: Sand, gm	22.6
Endering Transactions IIO		33.6
Explosion Temperature: "C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm	
1	Mercury Fulminate	
5 610	Lead Azide	0.20
10	Tetryl	0.15
15		
20	Ballistic Mortar, % TNT:	
75°C International Heat Test:	Trauzl Test, % TNT:	
% Loss in 48 Hrs	Plate Dent Test:	
Discoloration, fumes, odor None	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.22	Confined	
% Loss, 2nd 48 Hrs 0.12	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs None		
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: %	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Gray powder mixture
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Small caliber antiaircraft projectiles
Total No. of Fragments: For TNT	Method of Loading: Pressed
For Subject HE'	Loading Density: gm/cc A t 30,000 psi
At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group I Bureau of Explosives Class A
Air, Confined: Impulse Under Water: Peak Pressure	Heat of:Combustion, cal/gm4392Explosion, cal/gm709Gas volume, cc/gm208
Impulse Energy	Performance Tests: 20 mm T215El Projectile:
<b>Underground:</b> Peak Pressure Impulse Energy	NFOC Pressure Cube43APG Blast Cube53Aviation Energy:100kcal/molValues not includedTemp, °Cdue to erratic igni-Time to ignition, secondstion under conditions of test.

# <u>MOX-6</u>B

Composition:		Molecular W <b>eigh</b> t:	43
% Oxidizing agent Aluminum, atomized Cupric Oxide Magnesium, atomized Other ingredients* Calcium Stearate Graphite, artificial *28.7% RDX coated, 0.9% wax. C/H Ratio	49.2 19.7 29.6 1.5	Øxygen Balance:         CO %         Density:       gm/cc         Melting Point:       "C         Freezing Point:       "C	-50 -42
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg		Boiling Point: °C Refractive Index, n ^D 20 n ^D 25 n ^D 30	
Friction Pendulum Test: Steel Shoe Fiber Shoe Rifle Bullet Impact Test: Trials % Explosions	Unaffected Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 120°C 135°C	0.43
Partials Burned Unaffected Explosion Temperature: "C		150°C 200 Gram Bomb Sand Test: Sand, gm Sensitivity to Initiation:	10.8
Seconds, 0.1 (no cap used) 1 5 510 10 15 20		Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:	0.20 0.16
75°C International Heat Test: % Loss in 48 Hrs Discoloration, fumes, odor 100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	0.02/10 gm 0.00 0.00 0.00 None	Trauzl Test, % TNT: Plate Dent Test: Method Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index: Hygroscopicity: % 30°C, 90% RH, two weeks Volatility:	0.79	Detonation Rate: Confinement Condition Charge Diameter, in. Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Gray powder mixture
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: Small caliber antiaircraft projectiles
<b>Total No. of Fragments:</b> For TNT For Subject <b>HE</b>	Method of Loading: Pressed
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Loading Density: gm/cc A t 30,000 psi -2.0 Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Bureau of Explosives Class A
Air, Confined: Impulse Under Water:	Heat of:Combustion, cal/gm4293Explosion, cal/gm750Contact750
Peak Pressure Impulse	Gas volume, cc/gm 204 Activation Energy:
Energy <b>Underground:</b> Peak Pressure Impulse Energy	kca 1/mo 1 Temp, °C Values not included due to erratic igni- tion under conditions seconds of test.

## Preparation:

The various ingredients used in the preparation of MOX explosives are coated separately as follows:

Dichromated Atomized Aluminum - Seventy-five grams of chemically pure grade sodium dichromate is dissolved in 1500 milliliters of water at  $100^{\circ}$ C under mechanical agitation. Six hundred grams of the atomized aluminum powder is added gradually (2 to 3 minutes) and stirring is continued for half an hour. The dichromated metal is filtered, washed with water (15 to 20 times) until the washings show only a slight cloudiness with silver nitrate. The water-wet product is then dried in an oven at 50°C. The dried material is hand-rolled to reduce any conglomerates, and blended before use.

Wax-Coated RDX - Eighteen grams of molten Be Square Special Wax (manufacturer's  $180^{\circ}$  to 185 Fahrenheit grade amber) is added to 582 grams of finely divided RDX (water precipitated from acetone solution) in a water slurry under mechanical agitation. The temperature of the wax-RDX slurry is maintained above the melting point of the wax (about 90°C). The stirring is continued for half an hour. After cooling to 50°C, the wax-coated RDX is recovered by filtration in a Büchner funnel and dricd in air. The RDX thus coated and presumed to be 3% waxed RDX or a 97/3 RDX/wax mixture is hand-rolled to crush any conglomerates formed, and blended by hand before use.

<u>INT-Coated Barium Nitrate</u> - Thirty grams of TNT in alcohol solution is added to 270 grams of barium nitrate in an alcohol slurry under agitation. The temperature of the TNT-barium nitrate mixture is maintained at  $80^{\circ}$ C and stirring is continued until most of the alcohol is evaporated. The coated material is spread in a thin layer on a tray to dry in air overnight. The barium nitrate thus coated, with 10% TNT is reduced to an intimate mixture by hand-rolling ard blending before use.

<u>INT-Coated Potassium Nitrate</u> - The TNT-coated potassium nitrate is prepared by the same procedure as is used for coating barium nitrate.

<u>RDX/INT-Coated Ammonium Perchlorate</u> - The ammonium perchlorate is coated by dissolving the appropriate weights of RDX and TNT in hot alcohol. After adding the ammonium perchlorate, the slurry is stirred until most of the solvent is evaporated. The treated ammonium perchlorate is spread on a tray to dry overnight. Agglomerates formed during the process are crushed by hand-rolling and blending the mixture before use.

<u>HNT-Coated RDX</u> - Sixty grams of molten TNT are added to a water slurry of 540 grams of finely divided RDX (water precipitated from acetone solution) under mechanical agitation. The temperature of the TNT-RDX slurry is maintained at about 90°C and stirring is continued for half an hour. After cooling to about 50°C, the TNT-coated RDX is recovered by filtration. The RDX thus treated, and presumed to be 10% coated or a 90/10 RDX/TNT mixture, is further blended by hand after rolling to crush any aggregates formed during the process.

The MOX explosive mixtures are prepared by blending the appropriate weights of the dry ingredients in a Patterson-Kelly twin-shell blender for at least 30 minutes.

#### Origin:

MOX type explosive mixtures were developed beginning in 1950 by National Northern, technical. division of the National Fireworks Ordnance Corporation, West Hanover, Massachusetts. References: 46

(a) A. O. Mirarchi and A. T. Wilson, <u>Development of MOX Explosives for Improved 20 mm</u> <u>Amunition</u>, Navy Contract Nord-10975, Task 1, National-Fireworks Ordnance Corporation, First Yearly Summary, August 1950 to August 1951.

(b) A. T. Wilson, <u>Development of MOX Explosives: Various Oxidants in MOX</u>, First Progress Report NFOC-6, Navy Contract Nord-12382, National Fireworks Ordnance Corporation, December 1952.

(c) A. O. Mirarchi, <u>Properties of Explosives: Theory of the MOX Explosion</u>, First Progress Report NFOC-10, Navy Contract NOrd-11393, National Fireworks Ordnance Corporation, December 1952.

(d) A. O. Mirarchi, Properties of Explosives: MOX Explosives in Various Atmospheres, First Progress Report NFOC-9, Navy Contract NOrd-11393, National Fireworks Ordnance Corporation, 1952.

(e) A. T. Wilson, <u>Development of MOX Explosives</u>: <u>Composition Variations</u>, First Progress Report NFOC-7, Navy Contract NOrd-12382, National Fireworks Ordnance Corporation, 1952.

(f) A. T. Wilson, Development of MOX Explosives: Various Oxidants in MOX, Second Progress Report NFOC-14, Navy Contract Nord-13684, National Fireworks Ordnance Corporation, October 1953.

(g) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, Detonation Velocity Determinations and Fragment Velocity Determinations of 'Varied Explosive Systems and Conditions, National Northern Corporation Final Summary Report NNC-F-13, February 1958 (Contract DAI-19-020-501-ORD-(P)-58).

(h) P. Z. Kalanski, <u>Air Blast Evaluation of MOX-2B Cased and Bare Charges</u>, NAVORD Report No. 3755, 5 April 1956.

(i) Also see the following Picatinny Arsenal Technical Reports on MOX Explosives: 1935, 1969, 2204, 2205.

⁴⁶See footnote 1, page 10.

Composition: / % H O	Molecular Weight:	(272,39) _n
$\begin{array}{c} c \\ H \\ H \\ N \\ 12.60 \end{array} \xrightarrow{26.46} H_{2} \xrightarrow{1}_{X} \xrightarrow{H}_{H} \xrightarrow{H}_{X} \xrightarrow{H}_{H} $	Oxygen Balance: CO, % CO %	-35 0.6
$\begin{array}{c} 0 \\ X=0NO_2 \end{array}$	Density: gm/cc	
	Melting Point: "C	Decomposes
C/H Ratio 0.23	Freezing Point: "C	
Impact Sensitivity, <b>2 Kg W</b> t: Bureau of Mines Apparatus, cm ⁸	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, <b>n</b> ^D ₂₀	
Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 5	n ⁰ ₂₅	
	n ^o ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Fiber Shoe	cc/40 Hrs, at 90°C	0.17
	100°C	1.0
Rifle Bullet Impact Test: Trials	120°C 16 hours	11.+
% Explosions	135°C	
Partials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	45.0
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Decomposes 170	Sensitivity to Initiation: Minimum Detonating Charge, grr Mercury Fulminate Lead Azide	0.10
10	Tetryl	0.10
15		
20	Ballistic Mortar, % TNT:	
75"C International Heat Test:	Trauzl Test, % TNT:	
% Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH 3	Condition Charge Diameter, in.	
Volatility: 60°C, mg/cm ² /hr 0.0	<ul> <li>Density, gm/cc</li> <li>Rate, meters/second</li> </ul>	

Composition: / % H O	Molecular Weight: (286.34	) _n
$\begin{array}{c c} & 25.29 \\ H & 2.52 \\ N & 13.45 \end{array} \begin{array}{c} H \\ H_{21} \\ H \\ H \\ H \end{array}$	Oxygen Balance:         -29           CO %         4.7	
0 58.74 0 X	Density: gm/cc	
	Melting Point: °C Decompose	es
C/H Ratio 0.23	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 9 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 5	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test:           cc/40 Hrs, at         0'.42           90°C         0'.42           100°C         1.5	
Rifle Bullet Impact Test: Trials % Explosions Partials	120°C ll.+ 135°C 150°C	
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 49.0	
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 230 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide 0.10 Tetryl	
15 20	Ballistic Mortar, % TNT: 125	
75°C International Heat Test: % Loss in 48 Hrs	Trausl Test, % TNT: Plate Dent Test: Method	
100°C Heat Test:         0.3           % Loss, 1st 48 Hrs         0.0           % Loss, 2nd 48 Hrs         0.0           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH ~2	Condition Charge Diameter, in.	
Volatility: 60°C, mg/cm ² /hr 0.0	Density, gm/cc1.20Rate, meters/second7300	

Composition:	Molecular Weight:	(297.15) _n
$\begin{array}{c c} C & 24.25 \\ H & 2.37 \\ N & 14.14 \end{array} \xrightarrow{H_2C}_{H} H \\ X \\ X \\ H \end{array}$	Oxygen Balance: CO, % CO %	-24 8
0 59.24 0 H X=ONO ₂	Density: gm/cc	1.65-1.70
	Melting Point: "C	Decomposes
C/H Ratio 0.23	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 8	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 5	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 14 hours	1.46 11.+
Rifle Bullet Impact Test: Trials % Explosions Partials	120°C 16 hours 135°C 150°C	11.+
Burned Unaffected	200 Grom Bomb Sand Test: Sand, gm	52.3
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5	Sensitivity to Initiation: Minimum Detonating Charg Mercury Fulminate Lead Azide	e, gm 0.10
10 15 20	Tetryl Ballistic Mortar, % TNT:	
20	Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	<ul> <li>Detonation Rate:</li> <li>Confinement</li> </ul>	
Hygroscopicity: % 30°C, 90% RH ≁ 1	Condition Charge Diameter, in.	
Volatility: $60^{\circ}$ C, mg/cm ² /hr 0.0	Density, gm/cc Rate, meters/second	

228

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Pyroxylin (12%N), blasting explosives; pyrocellulose (12.60% N), smokeless powder; guncotton (13.35% N minimum), propellants
Total No. of Fragments: For TNT For Subject HE	Method of Loading:
	Loading Density: gm/cc
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Wet (8% to 30% water)
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 12
Air: Peak Pressure Impulse	Compatibility Group Group M (wet) Exudation None
Energy Air, Confined: Impulse	Heat of: Combustion, cal/gm 2409* 2313** 2228*** Explosion, cal/gm 855* 965** 1058*** Gas Volume, cc/gm 919* 883** 853***
Under Water: Peak Pressure Impulse Energy	Formation, cal/gm 617* 561** 513*** * 12.6% N ** 13.45% N
Underground: Peak Pressure	***     14.14% N       Vapor Pressure:
Impulse Energy	<u>^oC</u> <u>mm Mercury</u>
	25 0.00 60 0.00

Nitrocellulose (NC)

Solubility in Water, gm/100 gm, at:	12.6% N	13.45%n	14.0% N
25°C 60°C	Insoluble Insoluble	Insoluble Insoluble	Insoluble Insoluble
Solubility, gm/100 gm, 25 ⁰ C, in:			
Ether Alcohol	Insoluble Very slight- ly soluble	Insoluble Practically insoluble	Insoluble Insoluble
2:1-Ether:Alcohol	Soluble	Slightly soluble (6%-11%)	Practically insoluble (1 + %)
Acetone	Soluble	Soluble	Soluble
240-Hour Hydrolysis Test, <u>³/₂ Nitric Acid</u>	1.22	1.03	

## Preparation of Nitrocellulose from Cotton Linters:

(Laboratory Procedure)

<u>Nitration</u>: Second cut cotton linters, previously dried to a moisture content of less than 0.5%, are nitrated by immersion in mixed acid under the following conditions:

Ratio of Mixed Acid to cotton 55 to 1

Composition of Mixed Acid (approximate)

- a. for 12.6% N: H₂SO₄ 63.5%, HNO₃ 21%, H₂O 15.5%
- b. for 13.4% N: H2SO4 68%, HNO3 22%, H2O 10.0%

Temperature of acid at the start  $34^{\circ}$ C

Time of nitration 24 minutes

During the nitration period the mixture is turned over occasionally to keep the acid homogeneous. The mixture is then filtered on a Buchner funnel with suction for about three minutes and then drowned rapidly with strong hand stirring in at least 50 volumes of cold water. After the nitrocellulose has settled, most of the water is decanted and fresh water added. The nitrocellulose-water mixture is boiled and the acidity adjusted to 0.25% to 0.50% as  $H_2SO_4$ . The sour boil is continued for at least 24 hours for pyrocellulose and at least 40 hours for gun-cotton. Additional boiling with changes of water are made in accordance with the governing specification (JAN-N-244).

<u>Pulping:</u> The nitrocellulose is then pulped in a laboratory Holland-type paper beater. Enough sodium carbonate is added to keep the reaction faintly alkaline to phenolphthalein. Pulping is continued to the desired degree of fineness.

<u>Poaching:</u> After washing the nitrocellulose from the beater, the mixture is filtered and the product boiled for 4 hours with fresh water while stirring mechanically. From time to time a little sodium carbonate solution is added to maintain the mixture faintly alkaline to phenolphthalein. The water is decanted and the boiling continued. According to the specification, the total boiling treatment with poaching is as follows:

- 4 hours boiling with or without sodium carbonate
- 2 hours boiling without sodium carbonate
- 1 hour boiling without sodium carbonate

1 hour boiling without sodium carbonate.

Each boil is followed by settling and change of water.

<u>Washing:</u> The nitrocellulose is then washed by mechanical agitation with water. A minimum of two washes are given. If a sample taken after the water washes gives a minimum test of 35 minutes in the  $65.5^{\circ}$ C Heat Test and 30 minutes in the  $13^{4}.5^{\circ}$ C Heat Test, the nitrocellulose is satisfactorily stabilized. Otherwise additional washes should be given.

#### Orinin:

Cellulose occurs in nature. It is wood fiber, cell wall and the structural material of all plants. Cotton fiber is pure cellulose. Nitrocellulose was discovered about 1847 by C. F. Schonbein at Basel and R. Bottger at Frankfort-on-the-Main independently of each other when cotton was nitrated. T. J. Pelouze had nitrated paper earlier (1838) and was probably the first to prepare nitrocellulose.

Pyroxylin or collodion, which is soluble in a mixture of ether and ethanol, contains from 8% to 12% nitrogen. It is used in the manufacture of celluloid and in composite blasting explosives.

<u>Pyrocellulose</u>, a type of nitrocellulose of 12.6% nitrogen content, completely soluble in a mixture of 2 parts ether and one part ethanol, was developed by Mendeleev (1891-1895). This material, when colloided, formed the first smokeless powder for military use in the United States (1898).

<u>Guncotton</u> for military purposes today contains a minimum of 13.35% nitrogen. It is only slightly soluble in ether-ethanol, but completely soluble in acetone. Principal use is in flashless powders and as flame carriers. 14.14% N nitrocellulose represents a theoretical limit.

In the manufacture of propellants, there is used a mixture of pyrocellulose and guncotton (blended nitrocellulose) of 13.15% to 13.25% nitrogen content.

#### Destruction by Chemical Decomposition:

Nitrocellulose is decomposed by adding it, with st rring, to 5 times its weight of 10% sodium hydroxide heated to  $70^{\circ}$ C. Stirring is continued for 15 minutes after all the nitrocellulose has been added.

## References: 47

(a) See the following Picatinny Arsenal Technical Reports on Nitrocellulose:

⁴⁷See footnote 1, page 10.

Nitrocellulose (NC)

<u>o</u>	<u>1</u>	2	<u>3</u>	4	5	6	2	8	9
10 390 420 660 730 960 1020 1150 1190 1210 1240 1300 1320 1350 1410 1430 1490 1580 1660 1810 1830 1990 2210	$\begin{array}{c} 41\\ 101\\ 231\\ 351\\ 551\\ 831\\ 851\\ 971\\ 1031\\ 1041\\ 1071\\ 1151\\ 1201\\ 1221\\ 1331\\ 1351\\ 1391\\ 1421\\ 1501\\ 1421\\ 1501\\ 1541\\ 1681\\ 1691\\ 1731\\ 1811\\ 1831\\ 1851\\ 1931\\ 1961\\ 1991\\ 2071\\ 2101\\ 2101\\ 2201\end{array}$	72 332 402 422 542 572 652 662 752 802 952 1012 1032 1142 1242 1362 1392 1642 1852 1912 1992 2022 2102	13 33 43 133 233 253 273 653 673 683 773 963 1023 1273 1443 1653 1813 1863 1973 1973	$\begin{array}{c} 4\\ 24\\ 114\\ 174\\ 194\\ 334\\ 394\\ 724\\ 804\\ 1024\\ 1054\\ 1074\\ 1274\\ 1304\\ 1374\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1394\\ 1454\\ 1814\\ 2144\end{array}$	$\begin{array}{c} 125\\ 475\\ 485\\ 555\\ 965\\ 1025\\ 1265\\ 1265\\ 1265\\ 1275\\ 1375\\ 1915\\ 1915\\ 1955\\ \end{array}$	86 576 586 796 916 1026 1026 1206 1256 1276 1316 1516 1556 1616 1786 2056	167 327 407 717 787 987 1187 1297 1267 1297 1427 1447 1487 1587 1637 1717 1827 1827 1827 1827 1637 2107 2137	8 198 208 278 388 408 588 758 758 758 758 758 128 128 128 128 128 128 1248 1348 1348 1348 1528 1638 1638 1638 1898 1918 2098 2208	19 29 69 169 279 499 659 669 709 739 779 809 1399 1399 1399 1349 1399 1449 1619 1799 1869 2119 2189

232

$\%$ Oxygen Balance: CO $\%$ $3.5$ CO $\%$ $3.5$ CO $\%$ H2.2 $HC = ORO_2$ H2.2 $HC = ORO_2$ J18.5 $H_2C = ORO_2$ O63.4 $1.592$ C/H Ratio 0.109Pressing Point: "CImpact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, in: Sample Wt, 20 mg15Friction Pendulum Test: Steel ShoeExplodesFiber ShoeIstrict TrialsFride Builet Impact Test: TrialsTrialsVacuum Stability Test: Co $\%$ 1.6O'C co/gm/16 hrs1.6Unaffected0Burned0Unaffected0Burned0Seconds, 0.1 (no cap used)1Seconds, 0.1 (no cap used)11520Trauzi Test; $\%$ TNT: (a)100°C Heat Test: % Loss, 1st 48 Hrs3.6% Loss, 1st 48 Hrs3.6% Loss, 1st 48 Hrs3.5Explosion 100 HrsNoneFleer StoceCondition Confined100°C Heat Test: % Loss, 1st 48 Hrs3.6% Loss, 1st 48 Hrs3.5Explosion 100 HrsNoneFleer StoceCondition Confined100°C Heat Test: % Loss, 1st 48 Hrs3.5Explosion 100 HrsNoneFleer Millity Index:Detonation Rate: ConfinedConfined % Loss, 1st 48 Hrs3.5Explosion 100 HrsNoneFleer Millity Index:0.06Volatility: Index:0.06Condition </th <th>Composition :</th> <th>Molecular Weight: (CHNO) 227</th>	Composition :	Molecular Weight: (CHNO) 227
0       63.4       Melting Point: *C Stable form 15:2         C/H Ratio 0.109       Freezing Point: *C         Impact Sensitivity, 2 kg Wt: Bureau of Mines Apparatus, cm       15         Sample W1 20 mg       1         Pricatinny Arsenal Apparatus, in.       1 lb vt         Steel Shoe       Explodes         Fiber Shoe       Explodes         Riffe Bullet Impact Test:       Trials         Steel Shoe       100         Partials       0         Burned       0         Unaffected       0         Steplosion Temperature:       *C         Seconds, 0.1 (no cap used)       15         Story of the Hrs       16         20       Explodes         21       5         Explosion Temperature:       *C         Seconds, 0.1 (no cap used)       Marting Wortar, % TNT:         15       20         75°C International Heat Test:       % Loss, 1st 48 Hrs         % Loss, 1st 48 Hrs       3-6         % Loss, 1st 48 Hrs       3-6         % Loss, 1st 48 Hrs       3-5         Explosion In 100 Hrs       None         Flate Dent Test:       Confined         % Loss, 1st 48 Hrs       3-5 <tr< td=""><td>с 15.9 _{Н2}С оло₂</td><td>CO₂% 3.5 CO% 24.5</td></tr<>	с 15.9 _{Н2} С оло ₂	CO ₂ % 3.5 CO% 24.5
0       63.4       Maring Foint C_STABLE Torm       13.2         C/H Ratio 0.109       Freezing Point: "C       Bioling Point: "C       Becommoses       14.5         Bureau Of Mines Apparatus, cm       15       Barlau Of Mines Apparatus, in, 1 lb vt       1       Refractive Index, ng       1.4732         Picatinny Arsenal Apparatus, in, 1 lb vt       1       ng       1.4732       ng         Friction Pendulum Test       Steel Shee       Explodes       50°C cc/gm/6 hrs       1.6         Fiber Shoe       %00       135°C       120°C       135°C         Partials       0       100°C cc/gm/6 hrs       1.1       11         Rifle Builet Impact Test:       Trials       120°C       135°C       120°C         Burned       0       200 Gram Bomb Sand Test:       1.1       140         Seconds, 0.1 (no cap used)       1       5       Explodes       222       10       181       140         75°C International Heat Test:       %       0.48       181       140       140         75°C International Heat Test:       %       1.6       140       140         75°C International Heat Test:       %       1.6       140         75°C International Heat Test:       %.6       3.6<	N 18.5 $H_2 C - ONO_2$	
Impact Sensitivity, 2 Kg Wt:       15         Bureau of Mines Apparatus, cm       15         Sample Wt 20 mg       10 vt         Picatinny Arsenal Apparatus, in, 1 lb vt       1         Sample Wt, mg       1.45         Friction Pendulum Test:       steel Shoe         Explosions       100         Riffe Bullet Impact Test:       Trials         Partials       0         Burned       0         Uaffected       0         Banded Solution       150°C         Seconds, 0.1 (no cap used)       10         1       5         Explosion Temperature:       °C         Seconds, 0.1 (no cap used)       Mercury Fulminate         1       Lead Azide         1       3.6         20       Ballistic Mortar, % TNT: (a)         140°C       140         75°C International Heat Test:       3.6         % Loss, 1st 48 Hrs       3.6         % Loss, 1st 48 Hrs       3.6         % Loss, 2nd 48 Hrs       3.5         Explosion in 100 Hrs       Nonc         Plate Dent Test:       Condition         % Loss, 2nd 48 Hrs       3.5         % Loss, 2nd 48 Hrs       3.5	0 63.4	Melting Point: °C Labile form 13.2
Bureau of Mines Apparatus, cm         15           Sample WI 20 mg         10 vt         1           Picatinny Arsenal Apparatus, in.         1 lb vt         1           Sample WI, mg         ng         1.4732           Pricatinny Arsenal Apparatus, in.         1 lb vt         1           Sample WI, mg         ng         1.4713           Pricationy Arsenal Apparatus, in.         1 lb vt         1           Sample WI, mg         1         1           Friction Pendulum Test:         Stell Shoe         Explodes           Fiber Shoe         00°C cc/gm/6 hrs         1.6           No°C cc/gm/16 hrs         1.6           100°C cc/gm/16 hrs         1.6           Do°C cc/gm/16 hrs         1.6           100°C cc/gm/16 hrs         1.6           Partials         0           Damed         0           Unaffected         0           Seconds, 0.1 (no cap used)         Minimum Detonating Charge, gm           Mercury Fulminate         Lead Azide           12         1           20         Trauzi Test, % TNT: (b)           75°C International Heat Test:         3.6           % Loss, 1st 48 Hrs         3.6           % Loss, 2nd 48 Hrs	C/H Ratio 0.109	Freezing Point: "C
Sample Wt 20 mg       1.4732         Picatinny Arsenal Apparatus, in, 1 1b vt, 1       1         Sample Wt, mg       n2         Friction Pendulum Test:       steel Shoe         Steel Shoe       Explodes         Fiber Shoe       90°C cc/gm/16 brs         Rifle Builet Impact Test:       Trials         90°C cc/gm/16 brs       1.4713         Rifle Builet Impact Test:       Trials         90°C cc/gm/16 brs       1.4713         100°C cc/gm/16 brs       1.4713         110°C       100°C		Boiling Point: "C Decomposes 145
Sample Wt, mg     It is 1.441.3       Friction Pendulum Test:     Na       Steel Shee     Explodes       Fiber Shee     Explodes       Fiber Shee     1.6       Rifle Bullet Impact Test:     Trials       Rifle Bullet Impact Test:     Trials       0     100°C       Partials     0       Burned     0       Unaffected     0       Seconds, 0.1 (no cap used)     Minimum Detonating Charge, gm       1     5       5     Explodes       20     Explosion Temperature:       *     °C       5     Explodes       20     Seconds, 0.1 (no cap used)       1     5       5     Explodes       20     Trauzl Test, % TNT: (a)       14     140       75°C International Heat Test:     %       % Loss, 1st 48 Hrs     3.6       % Loss, 2nd 48 Hrs     3.5       Explosion in 100 Hrs     None       Plate Dent Test:     Method       % Loss, 2nd 48 Hrs     3.5       Explosion in 100 Hrs     None       Elamability Index:     Detonation Rate:       Condition     Liquid       Charge Diameter, in.     0.39       0.41     Condition	Sample Wt 20 mg	Refractive Index, n ^D ₂₀ 1.4732
Priction Pendulum Test: Steel Shoe     Explodes       Fiber Shoe     Explodes       Rifle Bullet Impact Test:     Trials       Rifle Bullet Impact Test:     Trials       Barned     0       Burned     0       Unaffected     0       Burned     0       Unaffected     0       1     5       Explosion Temperature:     "C       Seconds, 0.1 (no cap used)     Minimum Detonation:       1     5       20     Explodes       20     Ballistic Mortar, % TNT:       75°C International Heat Test:     3.6       % Loss, 1st 48 Hrs     3.6       % Loss, 2nd 48 Hrs     3.5       Explosion In 100 Hrs     None       Plate Dent Test:     Method       % Loss, 2nd 48 Hrs     3.5       Explosion In 100 Hrs     None       Plate Dent Rate:     Confined       Confined     Glass       9 0.06     Chrage Diameter, in.       0.39° C, 90% RH     0.06       Volatility:     60°C, mg/cm2/hr       0.11     0.14		n ₂₅ 1.4713
Steel Shoe       Explodes       Cc/40 Hs, at 90°C cc/gm/16 hrs       1.6         Rifle Bullet Impact Test:       Trials       0       100°C cc/gm/16 hrs       1.1+         Rifle Bullet Impact Test:       Trials       0       135°C       135°C         Explosions       100       150°C       200 Gram Bomb Sand Test:       5         Unaffected       0       200 Gram Bomb Sand Test:       5         Unaffected       0       200 Gram Bomb Sand Test:       5         Unaffected       0       200 Gram Bomb Sand Test:       5         Seconds, 0.1 (no cap used)       Mercury Fulminate       Lead Azide       1         1       5       Explodes       222       Ballistic Mortar, % TNT:       (a)       140         75°C International Heat Test:       %       Loss, 1st 48 Hrs       3.6       Condition       Condition         100°C Heat Test:       %       Loss, 1st 48 Hrs       3.6       Density, gm/cc       Brisance, % TNT         %       Loss, 1st 48 Hrs       3.6       Confined       Density, gm/cc       Glass       Steel         Condition       Condition       Condition       Condition       Condition       1.25         Volatility:       60°C, mg/cm2/hr       0.11		n ₃₀
Fiber Shoe       90°C cc/gm/6 hrs       1.6         Rifle Bullet Impact Test:       Trials       1.6         Rifle Bullet Impact Test:       700       135°C         Explosions       100       150°C         Partials       0       200 Gram Bomb Sand Test:         Unaffected       0       200 Gram Bomb Sand Test:         Unaffected       0       200 Gram Bomb Sand Test:         Seconds, 0.1 (no cap used)       1       5         1       5       Explodes       222         10       15       20       Sensitivity to Initiation:         15       20       Mercury Fulminate       Lead Azide         10       15       20       Trauzl Test, % TNT: (a)       140         75°C International Heat Test:       % Loss, ist 48 Hrs       3.6       Onition       Condition         % Loss, ist 48 Hrs       3.6       Density, gm/cc       Brisance, % TNT       Estiguid       Etonation Rate:         Condition       Liquid       Liquid       Liquid       Liquid       Condition         100°C Heat Test:       0.06       Onesity, gm/cc       1.6       1.6         % Loss, 1st 48 Hrs       3.5       Explosion in 100 Hrs       None       Detonation Rate: <td></td> <td>Vacuum Stability Test:</td>		Vacuum Stability Test:
Rifle Bullet Impact Test:       Trials       100°C cc/gm/16 hrs       11+         Rifle Bullet Impact Test:       %       135°C       135°C         Explosions       100       150°C       200 Gram Bomb Sand Test:       200 Gram Bomb Sand Test:         Unaffected       0       200 Gram Bomb Sand Test:       Sand, gm       Liquid method       51.5         Explosion Temperature:       "C       Sensitivity to Initiation:       Minimum Detonating Charge, gm       Mercury Fulminate         10       15       20       Ballistic Mortar, % TNT:       (a)       140         75°C International Heat Test:       3.6       Method       101       140         100°C Heat Test:       3.6       Onfined       Condition       Steel         % Loss, 1st 48 Hrs       3.6       Density, gm/cc       Brisance, % TNT       Estive Confined       Steel         % Loss, 2nd 48 Hrs       3.5       Explosion in 100 Hrs       None       Detonation Rate:       Condition       Liquid       Liquid         Hygroscopicity: % 30°C, 90% RH       0.06       Charge Diameter, in.       0.39       1.25         Volatility:       60°C, mg/cm2/hr       0.11       11       Steel       Condition       Liquid		cc/40 Hrs, at
Rifle Bullet Impact Test:       Trials       120°C         Burned       0       135°C         Burned       0       200 Gram Bomb Sand Test:         Unaffected       0       200 Gram Bomb Sand Test:         Unaffected       0       200 Gram Bomb Sand Test:         Unaffected       0       Sensitivity to Initiation:         Seconds, 0.1 (no cap used)       Minimum Detonating Charge, gm         1       5       Explodes         15       Explodes       222         10       15       Ballistic Mortar, % TNT: (a)         15       140       Trauzl Test; % TNT: (b)       181         75°C International Heat Test:       3-6       20         % Loss, 1st 48 Hrs       3-6       2-5         % Loss, 2nd 48 Hrs       3-5       Brisance, % TNT         Flammability Index:       Detonation Rate:       Condition         Flammability Index:       0.06       Charge Diameter, in.       0-39         Hygroscopicity: % 30°C, 90% RH       0.06       Charge Diameter, in.       0-39       1.25	Fiber Shoe	$-100^{\circ}C cc/gm/16 hrs 11+$
Explosions     100     100     100 °       Partials     0     150 °C       Burned     0     200 Gram Bomb Sand Test: Sand, gm     1       Unaffected     0     Sensitivity to Initiation: Minimum Detonating Charge, gm     51.5       Explosion Temperature:     "C     Sensitivity to Initiation: Mercury Fulminate     6       1     5     Explodes     222     Mercury Fulminate       15     20     Ballistic Mortar, % TNT:     (a)     140       75°C International Heat Test: % Loss in 48 Hrs     3.6     Plate Dent Test: Method     181       70°C Heat Test:     9     Loss, 1st 48 Hrs     3.6       % Loss, 2nd 48 Hrs     3.5     Brisance, % TNT     Explosion in 100 Hrs       % Loss, 2nd 48 Hrs     3.5     Brisance, % TNT     Ensity, gm/cc       Flammability Index:     0.06     Condition     Liquid       Hygroscopicity: % 30°°C, 90% RH     0.06     Charge Diameter, in.     0.39     1.25       Volatility:     60°C, mg/cm2/hr     0.11     0.11     0.11	Rifle Bullet Impact Test: Trials	
Partials0 $150^{\circ}C$ Burned0 $200 \text{ Gram Bomb Sand Test:}$ Sand, gm Liquid method $51.5$ Explosion Temperature:"CSensitivity to Initiation: Minimum Detonating Charge, gm $1$ 5Explodes $222$ Lead AzideMercury Fulminate Lead Azide $10$ $15$ $20$ Taul Test, % TNT: $(a)$ $15$ $20$ Trauzl Test, % TNT: $(b)$ $181$ Plate Dent Test: Method $Condition$ Condition $00^{\circ}C$ Heat Test: $3.6$ $\%$ Loss, 1st 48 Hrs $3.6$ $9.5$ Loss, 2nd 48 Hrs $3.6$ $3.5$ Explosion in 100 Hrs $0.06$ Flammability Index:Detonation Rate: ConfinementCondition LiquidLiquid LiquidHygroscopicity: $30^{\circ}C$ , $90\%$ RH $0.06$ $0.39$ $1.25$		135°C
Burned       0       200 Gram Bomb Sand Test:         Unaffected       0       Sand, gm       Liquid method       51.5         Explosion Temperature:       "C       Sensitivity to Initiation:       Minimum Detonating Charge, gm         1       5       Explodes       222       Mercury Fulminate       Lead Azide         10       15       16       Tetryl       Tetryl       181         75°C International Heat Test:       % Loss, 1st 48 Hrs       3.6       Onition       Condition         % Loss, 1st 48 Hrs       3.6       Density, gm/cc       Brisance, % TNT       Detonation Rate:         Flammability Index:       Detonation Rate:       Condition       Liquid       Liquid         Hygroscopicity:       % 30°C, 90% RH       0.06       Onition       Liquid       Liquid         Hygroscopicity:       60°C, mg/cm2/hr       0.11       0.11       Density, gm/cc       1.6       1.6		150°C
Unaffected     0     Sand, gm     Liquid method     51.5       Explosion Temperature:     "C     Sensitivity to Initiation:     Minimum Detonating Charge, gm       1     5     Explodes     222     Minimum Detonating Charge, gm       1     5     Explodes     222       10     15     20     Ballistic Mortar, % TNT:     (a)       75°C International Heat Test:     % Loss, 1st 48 Hrs     3.6       % Loss, 1st 48 Hrs     3.6     Density, gm/cc       % Loss, 2nd 48 Hrs     3.5     Brisance, % TNT       Flammability Index:     Detonation Rate:     Confinement       Flammability Index:     0.06     Charge Diameter, in.     0.39       Volatility:     60°C, mg/cm2/hr     0.11     0.11		200 Orem Damb Cand Test
Explosion Temperature:       "C         Seconds, 0.1 (no cap used)       1         1       5         5       Explodes         10       15         20       16         75°C International Heat Test:         % Loss in 48 Hrs         3.6         % Loss, 1st 48 Hrs         3.6         % Loss, 1st 48 Hrs         3.6         % Loss, 1st 48 Hrs         3.6         % Loss, 2nd 48 Hrs         3.5         Explosion in 100 Hrs         Flammability Index:         Planemability Index:         Play Order         Detonation Rate:         Condition         Liquid         Hygroscopicity: % 30°C, 90% RH       0.06         Volatility: 60°C, mg/cm2/hr       0.11		
Seconds, 0.1 (no cap used)       Minimum Detonating Charge, gm         1       5       Explodes       222         10       Mercury Fulminate       Lead Azide         10       Trauzl Test, % TNT:       (a)       140         75°C International Heat Test:       % Loss in 48 Hrs       Plate Dent Test:       Method         % Loss, 1st 48 Hrs       3.6       Condition       Condition         100°C Heat Test:       % Loss, 1st 48 Hrs       3.5       Explosion in 100 Hrs       None         Flammability Index:       Detonation Rate:       Condition       Liquid       Liquid         Hygroscopicity: % 30°C, 90% RH       0.06       0.11       0.11       0.11		
1       5       Explodes       222         10       15       20         15       20       Ballistic Mortar, % TNT:       (a)       140         75°C International Heat Test:       % Loss in 48 Hrs       (b)       181         75°C International Heat Test:       % Loss in 48 Hrs       3.6       Ornical Condition       100°C Heat Test:       Method         100°C Heat Test:       % Loss, 1st 48 Hrs       3.6       Onfined		
5       Explodes       222         10       Tetryl         15       Ballistic Mortar, % TNT:       (a)       140         20       Trauzl Test, % TNT:       (b)       181         75°C International Heat Test:       Plate Dent Test:       Method         % Loss in 48 Hrs       3.6       Condition       Condition         100°C Heat Test:       Method       Condition       Condition         % Loss, 1st 48 Hrs       3.6       Density, gm/cc       Brisance, % TNT         % Loss, 2nd 48 Hrs       3.5       Brisance, % TNT       Explosion in 100 Hrs       Detonation Rate:         Flammability Index:       Detonation Rate:       Condition       Liquid       Liquid         Hygroscopicity: % 30°C, 90% RH       0.06       Charge Diameter, in.       0.39       1.25         Volatility:       60°C, mg/cm2/hr       0.11       Density, gm/cc       1.6       1.6		
$\begin{array}{c c c c c c c c } 10 & Tetryl & Tetryl & \\ 15 & & \\ 20 & & & \\ 20 & & & \\ \hline \end{array}$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $		
15       20       Ballistic Mortar, % TNT: (a)       140         75°C International Heat Test:       75°C International Heat Test:       (b)       181         75°C International Heat Test:       % Loss in 48 Hrs       9       181         75°C Heat Test:       Method       100°C Heat Test:       Method         100°C Heat Test:       0.06       Condition	10	
20       Trauzi Test, % TNT: (b)       181         75°C International Heat Test: % Loss in 48 Hrs       Plate Dent Test: Method       Plate Dent Test: Method         100°C Heat Test: % Loss, 1st 48 Hrs       3.6       Condition         % Loss, 1st 48 Hrs       3.6       Density, gm/cc         % Loss, 2nd 48 Hrs       3.5       Brisance, % TNT         Flammability Index:       Detonation Rate: Condition       Condition         Flammability Index:       0.06       Condition         Hygroscopicity: % 30°C, 90% RH       0.06       Charge Diameter, in.       0.39         Volatility:       60°C, mg/cm2/hr       0.11       Density, gm/cc       1.6	15	
75°C International Heat Test:       Plate Dent Test:         % Loss in 48 Hrs       3.6         100°C Heat Test:       Condition         % Loss, 1st 48 Hrs       3.6         % Loss, 2nd 48 Hrs       3.5         Explosion in 100 Hrs       None         Flammability Index:       Detonation Rate:         Condition       Liquid         Hygroscopicity: % 30°C, 90% RH       0.06         Volatility:       60°C, mg/cm2/hr         0.11       0.11	20	
% Loss in 48 Hrs       Plate Dent Test: Method         100°C Heat Test: % Loss, 1st 48 Hrs       3.6         % Loss, 1st 48 Hrs       3.6         % Loss, 2nd 48 Hrs       3.5         Explosion in 100 Hrs       None         Flammability Index:       Detonation Rate: Confinement         Glass       Steel         Condition       Liquid         Hygroscopicity: % 30°C, 90% RH       0.06         Volatility:       60°C, mg/cm2/hr         0.11       0.11	75°C International Heat Test:	
100 C Hear rest:       3.6       Confined         % Loss, 1st 48 Hrs       3.5       Density, gm/cc         % Loss, 2nd 48 Hrs       3.5       Brisance, % TNT         Explosion in 100 Hrs       None       Detonation Rate:         Flammability Index:       Confinement       Glass       Steel         Hygroscopicity:       30°C, 90% RH       0.06       Charge Diameter, in.       0.39       1.25         Volatility:       60°C, mg/cm2/hr       0.11       Density, gm/cc       1.6       1.6		
% Loss, 1st 48 Hrs       3.6       Confined         % Loss, 2nd 48 Hrs       3.5       Density, gm/cc         Explosion in 100 Hrs       None       Brisance, % TNT         Flammability Index:       Detonation Rate:       Confinement         Hygroscopicity:       30°C, 90% RH       0.06         Volatility:       60°C, mg/cm2/hr       0.11	100°C Heat Test:	Condition
% Loss, 2nd 48 Hrs     3.5     Density, gm/cc       Explosion in 100 Hrs     None     Brisance, % TNT       Flammability Index:     Detonation Rate: Confinement     Class       Hygroscopicity: % 30°C, 90% RH     0.06     Charge Diameter, in.     0.39       Volatility:     60°C, mg/cm2/hr     0.11		
Explosion in 100 H/s     None       Flammability Index:     Detonation Rate: Confinement       Hygroscopicity: % 30°C, 90% RH     0.06       Volatility:     60°C, mg/cm2/hr       0.11	,	
Flammability Index:       Confinement       Glass       Steel         Hygroscopicity: % 30°C, 90% RH       0.06       Condition       Liquid       Liquid         Volatility:       60°C, mg/cm2/hr       0.11       Density, gm/cc       1.6       1.6	Explosion in 100 Hrs None	Brisance, % TNT
Hygroscopicity: % 30°C, 90% RH     0.06     Condition     Liquid     Liquid       Volatility:     60°C, mg/cm2/hr     0.11     Density, gm/cc     1.6	Flammability Index:	
Hygroscopicity:         % 30°C, 90% RH         0.06         Charge Diameter, in.         0.39         1.25           Volatility:         60°C, mg/cm2/hr         0.11         Density, gm/cc         1.6         1.6		
Volatility:60°C, mg/cm2/hr0.11Density, gm/cc1.6	Hygroscopicity: % 30 ⁰ C, 90% RH 0.06	
I Rate meters/second 1600-1000 7700	volatility: $60^{\circ}$ C, mg/cm ² /hr 0.11	Rate, meters/second 1600-1900 7700

Booster Sensitivity Test:		Decomposition Equation:	17.3	10 ^{19.2}
Condition		Oxygen, otoms/sec (Z/sec)	10 ^{17•3}	10 -2.2
Tetryl, gm Wax, in. for 50% Detonation		Heat, kilocolorie/mole	41.4	45.0
Wax, m. for 50% Detonation Wax, gm		(AH, kcal/mol)		
		Temperature Range, °C	90-135	125-150
Density, gm/cc		Phase	Liquid	Liquid
Heat of:	-	Armor Plate Impact Test:		
Combustion, cal/gm	1616	· · · · · · · · · · · · · · · · · · ·		
Explosion, cal/gm	1600	60 mm Mortar Projectile:		
Gas Volume, cc/gm	715	50% Inert, Velocity, ft,	/sec	
Formation, col/gm	400	Aluminum Fineness		
Fusion, col/gm Detonation, cal/gm	1486			
Specific Heat: col/gm/°C		500-1b General Purpose Bo	ombs:	
Liquid	0.356	Plate Thickness, inches		
Solid		1		
30114	0.315	11/4		
		11/2		
		13/4		
Burning Rate:		1-74		
cm/sec				
		Bomb Drop Test:		
Thermal Conductivity:			iensies Death	. O an analas
col/sec/cm/°C		T7, 2000-Ib Semi-Armor-P	vercing Bomb v	s Concrete:
Coefficient of Expansion:		Max Safe Drop, ft		
Linear, %/°C		500-Ib General Purpose Be	omb vs Concre	te:
Volume, %/°C				
volume, <i>by</i> C		Height, ft		
Hardness, Mohs' Scale:		Trials		
		Unaffected		
Young's Modulus:		Low Order		
E', dynes/cm ²		High Order		
E, lb/inch ^a				
Density, gm/cc		1000-lb General Purpose B	omb vs Concret	e:
Commenceire Dimentity II (1 - 1 - 1		Height, ft		
Compressive Strength: Ib/inch ²		Trials		
		Unaffected		
Vapor Pressure:		Low Order		
<u>oc</u> <u>mm_Mercury</u> <u>oc</u>	mm Mercury	High Order		
0.00025 60	0.0188			
30 0.00083 70	0.043			
<u>°C</u> <u>mm Mercury</u> <u>°C</u> 20 0.00025 60	0.0188	Low Order		

Fragmentation Test:	Shaped Charge Effectiveness	, TNT = 100:			
<b>90 mm HE, M71 Projectile, Lot WC-91</b> : Density, gm/cc Charge Wt, Ib	Glass Cones Hole Volume Hole Depth	Steel Cones			
Total No. of Fragmenis: For TNT	Color:	Colorless			
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: Propellant ingredient, demoli- tion explosive ingredient, grenade burster ingredient				
Total No. of Fragments: For TNT	Method of Loading:				
For Subject HE	Loading Density: gm/cc				
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:				
Density, gm/cc	Method With acctone generally no				
Blast (Relative to TNT):	Hazard Class (Quantity-D	istance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation				
Air, Confined: Impulse	Heat of Transition, cal Transition:	1/gm:			
Under Water: Peak Pressure	Liquid → labile Labile → stable Liquid → stable	5.2 28.0 33.2			
Impulse Energy	Hydrolysis, % Acid:				
<b>Underground:</b> Peak Pressure Impulse	10 days at 22°C 5 days at 60°C 82.1°C KI Test:	< 0.002 0.005			
Energy	Minutes	10+			

Sample Wt, Temperatur Time, hour Volume of	re, ^o C 65 rs 20	1.6	75 40 nil
Viscosity: (	2)		
° _C	Centipoises		
10 20 30 40 50 60	69.2 36.0 21.0 13.6 9.4 6.8		

## Gas Evolved at Atmospheric Pressure, cc:

# Fragmentation Test:

20 mm HE, Mark 1, Projectile, Total No. of Fragments for:

Nitroglycerin	22
Tetranitromethane	17
Tetranifromethane	17

## Minimum Propagating Diameter: (d)

<u>[%] Dimethylphthalate</u> <u>in NG</u>	<u>Min. Propagating</u> Diameter, inches	Maximum Diameter for 2 Failures in 2 Trials, inches
0 5 10 15	(3/16 cairns) 1/8 1/4	1/16 B/A6 3/8
20 22.5 25	3/4 1 1.55	17192 2

# Sensitivity to Electrostatic Discharge, Joules (test condition, unconfined;no value given for confinement):> 12.5

Solubility,	grams	$\mathbf{of}$	nitroglycerin/100	gn	(%)	of:

$\underline{\mathbf{W}}_{i}$	ater	Alc	<u>ohol</u>	Trichlor	ethylene	Carbon Tetr	achloride
°C	<u>%</u>	o _C	76	<u>oc</u>	<u>%</u>	<u>°</u> C	%
15 20 50	0.16 0.18 0.25	0 20	37•5 54.0	Rm	22	Rm	2

Carbon Disulfide					gm/100 gn (%), at 25 ⁰ C in			
<u>°c</u>		<u>%</u>		-	Ether [∞] 2: 1 Ether:Alcohol > 100			
Ambi	ent	1			Acetone		W PIC	10
Sol	uble in a	11 Pro	portion	s in:				
MethanolPherAcetonePyriEtherXyleEthyl acetateNitroAmyl acetatep-NMethyl nitrateLiquEthyl nitrateChloNitroglycolEthyTetranitrodiglycerineEthyAcetic acidTetrBenzeneDick						nzene otoluene DNT corm chloride oromide nloroethy coethylen		itrate
Sol	ubilitv i	n NG,	of:					
	<u>ohol</u>	D	NT	T	NT	Wa	ter	
°c	%	o _C	<u>%</u>	°C	<u>%</u>	°C	<u>%</u>	
0 20 50	3.4 5.4 ∞	20	35	20	30	25	0.06	
Prepar	ation:							

 $\begin{array}{c} CH_2 \longrightarrow OH \\ I \\ CH \longrightarrow OH \\ CH_2 \longrightarrow OH \end{array} + 3HNO_3 \longrightarrow \begin{array}{c} CH_2 \longrightarrow ONO_2 \\ I \\ CH \longrightarrow ONO_2 \\ I \\ CH_2 \longrightarrow ONO_2 \end{array} + 3H_2O$ 

Glycerine is usually nitrated at  $25^{\circ}$ C, or below, by adding it very slowly to a well agitated mixture of nitric and sulfuric acids, e.g., 40/59.5/0.5, nitric acid/sulfuric acid/water, using an acid/glycerine ratio of approximately 6. Agitation of the reaction mixture is accomplished by use of compressed air. A rapid temperature rise, or appearance of red fumes, automatically requires dumping of the charge, immediately, into a drowning vessel filled with water. After all the glycerine has been added to the nitrator, agitation and cooling are continued until the temperature drops to about  $15^{\circ}$ C, and the charge is then run into a separator where the NG rises to the top, and is run off' to the neutralizer. The nitroglycerin is washed first with water, then with sodium carbonate, and finally with water. The resultant NG when washed with water, produces washings which do not color phenolphthalein, and itself is neutral to litmus paper.

237

## Origin:

Nitroglycerin was first prepared in 1846 or 1847 by Ascanio Sobrero, an Italian chemist (Mem Acad Torino (2) 10, 195 (1847)). For several years after this discovery, nitroglycerin attracted little interest as an explosive until Alfred Nobel in 1864 patented improvements in its manufacture and method of initiation (British Patent <u>1813</u>). Nobel gave the name dynamite to mixtures of nitroglycerin and non-explosive absorbents, such as charcoal, siliceous earth or Kieselguhr (British Patent <u>1345</u> (1867)). Later developments led to gelatine dynamites, ammonia dynamites, and so called straight dynamites. The first propellants using nitroglycerin were called Ballistite (Nobel, British Patent <u>1471</u> (1888))- and Cordite (Abel and Dewar, British Patents <u>5614</u> and <u>11,664</u> (1889)).

## Destruction by Chemical Decomposition:

Nitroglycerin is decomposed by adding it slowly to 10 times its weight of 18% sodium sulfide (Na₂S.9H₂O). Heat is liberated by this reaction; but this is not hazardous if stirring is maintained during the addition of nitroglycerin and continued until solution is complete.

## References: 48

(a) A. H. Blatt, <u>Compilation of Data on Organic Explosives</u>, OSRD Report No. 2014, 29 February 1944.

- (b) Ph. Naoum, Z ges Schiess-Sprengstoffw, pp. 181, 229, 267 (27 June 1932).
- (c) Landolt Bornstein, Physikalisch-Chemische Tabellen, 5th Ed. (1923).

International Critical Tables.

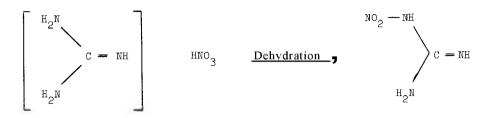
B. T. Fedoroff et al, <u>A Manual for Explosive Laboratories</u>, Vol I-IV, Lefax Society, Inc., Philadelphia, 1943, 1946.

(d) H. A. Strecker, Initiation, Propagation and Luminosity Studies of Liquid Explosives, OSRD Report No. 5609, 3 December 1945.

(e) Also see the following Picatinny Arsenal Technical Reports on Nitroglycerin:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	5	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
620 660 800 1020 1150 1210 1410 1620 1680	511 551 701 891 911 1031 1041 1151 1611 1651 1651 1781 1851 1851 1931	652 672 922 1142 1282 1362 1542 1662 1742 1752 1992	233 343 673 903 1023 144 3 164 3 1663 1863 1993	454 494 1024 1074 1084 1454 1524 1624 1674 1754	1155 1235 1955 2015	1206 1456 1496 1556 1616 1786 1816 1896 2056	817 837 1197 1297 1637 1817 1847	768 1348 1398 1738 1918 2098	69 249 579 709 1349 1359 2119

⁴⁸See footnote 1, page 10.


2021 2181 2201

Composition: %		Molecular Weight: $(CH_4N_4O_2)$	104
C 11.5 NH ₂		Oxygen Balance: CO ₂ % CO %	-31 -15.4
H $3.9$ HN = C		Density: gm/cc Crystal	1.72
N 53.8 NH NO ₂			232
0 30.8 2		Melting Point: °C	232
C/H Ratio 0.038		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	47 26 7	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test:	(e)		
Steel Shoe	Unaffected	Vacuum Stability Test: cc/40 Hrs. at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: 5 Trials	(e)	– 100°C 120°C	0.37 0.44
%	ζ,	135°C	0.44
Explosions 0		150°C	
Portials 0 Burned 0		200 Gram Bomb Sand Test:	
Unaffected 100		Sand, gm	36.0
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate	
5 Decomposes 275		Lead Azide	0.20
10		Tetryl	0.10
15		Ballistic Mortar, % TNT: (a)	104
20		Trauzi Test, % TNT: (b)	101
75°C International Heat Test: % Loss in 48 Hrs	0.04	Plate Dent Test: (c) Method	А
100°C Heat Test:		Condition	Pressed
% LOSS, 1st 48 Hrs	0.18	Confined	No
% Loss, 2nd 48 Hrs	0.09	Density, gm/cc Brisance, % TNT	<b>1.50</b> 95
Explosion in 100 Hrs	None		
Flammability Index:		Detonation Rate: (e)     Confinement     Condition	
Hygroscopicity: % 30 ⁰ C, 90% RH	None	Charge Diameter, in.	,
Volatility:	None	Density, gm/cc	1.55

Fragmentation lest:	Shaped Charge Effectiveness, $TNT = 100$ :					
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth					
Total No. of Fragments: For TNT	Color: Color	rless				
For Subject HE	Principal Uses:					
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Propellant composition ingred bursting charge ingredient	lient,				
Total No. of Fragments: For TNT	Method of Loading:					
For Subject HE	Loading Density: gm/cc					
Fragment Velocity: ft/sec	A t 3000 psi	0.95				
At 9 ft At 25½ ft	Storage:					
Density, gm/cc	Method	Dry				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9				
Air: Peak Pressure Impulse	Compatibility Group Exudation	Group I				
Energy	Solubility, gm/100 gm (%), in:					
Air, Confined: impulse	Water 2	5 0.44				
<b>Under Water:</b> Peak Pressure Impulse	10 1.0 N Potassium Hydroxide 2 40% Sulfuric Acid 2	5 1.2 0 3.4*				
Energy	* gm/100 cc solution					
<b>Underground:</b> Peak Pressure Impulse Energy	Booster Sensitivity Test: Condition Tetryl, gn Wax, in. for 50% Detonation Density, gm/cc	(d) Pressed 100 0.67 1.41				
	Heat of: Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm Formation, cal/gm	1995 721 1077 227				

Preparation:

(Chemistry of Powder and Explosives, Davis)



Four hundred gms of dry guanidine nitrate is added in small portions to 500 cc concentrated sulfuric acid at  $10^{\circ}$ C, or below. As soon as all crystals have disappeared the milky solution is poured into 3 liters of ice-water, and allowed to stand until crystallization is complete. The product is filtered, rinsed with water, and recrystallized from about 4 liters of boiling water, yield about 90%.

#### Origin:

Nitroguanidine was first prepared in 1877 by Jousselin, but it was 1900 before it found use in propellant compositions. During World War I, nitroguanidine was used by the Germans as an ingredient of bursting charge explosives.

#### Destruction by Chemical Decomposition:

Nitroguanidine is decomposed by dissolving in 15 times its weight of 45% sulfuric acid at room temperature and warming the solution until gas is evolved. Heating is continued for one-half hour.

## References: 49

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Canadian Report, CE-12, 1 May-15 August 1941.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NL Memo 10,303, 15 June 1949.

(e) Departments of the Army and the Air Force TM 9-1910/TO 11A-1-34, Military Explosives, April 1955.

⁴⁹See footnote 1, page 10.

# Nitroguanidine

(f) Also see the following Picatinny Arsenal Technical Reports on Nitroguanidine:

<u>o</u>	<u>1</u>	2	3	<u>6</u>	<u>_7</u>	8	2
1490	1391 2181 2201	1282 1392 2142	1183 1423 2193	1336	907 2177	758	1439 1749

Composition: %	Molecular Weight: $(C_{4}H_{6}N_{4}O_{11})$	286
c 16.8 $O_2 NO - CH_2$	Oxygen Balance: CO₂ % CO %	0.0 22
0_NO-CH C - NO	Density: gm/cc 20 [©] C	1.64
0 61.5 0 ₂ NO - CH ₂	Melting Point: "C	
C/H Ratio 0.126	Freezing Point: °C	- 39
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 25 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	1.4896 1.4874
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Impact Test: Trials % Explosions Partials	100°C 120°C 135°C 150°C	
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 0.2 gm sample absorbed by 0.2 gm of kleselguhr	28
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Ignites 185 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide Tetryl	
15 20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % <b>Los</b> s in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:		s (1mm wall)
Hygroscopicity: %	Condition Charge Diameter, in. Density, gm/cc	Liquid 0.39 1.64
Volatility: 25°C, mg/cm ² /24 hrs 0.127 x 10 ⁻³	Rate, meters/second	7860

# Nitroisobutylglycerol Trinitrate (NIBTN) Liquid

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Yellow oil
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib Total Ne, of Frameworks	Principal Uses: Gelatinizing agent for nitrocellulose
Total No. of Fragments: For T N T For Subject HE	Method of Loading:
Fragment Velocity: ft/sec	Loading Density: gm/cc
At 9 ft At 25½ ft Density, gm/cc	Storage: Method Liquid
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
<b>Air:</b> Peak Pressure Impulse Energy	Compatibility Group Exudation
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground:	Solubility: Soluble in methyl and ethyl alcohols, ace- tone, ether, ethylenedichloride, chloroform and benzene. Insoluble in water, carbon disulphide, and petroleum ether. <u>Toxicity:</u> Slight, decidedly less than nitroglycerin.
Peak Pressure Impulse Energy	Gelatinizing Action:         Slight on nitrocellulose.         82.2°C KT Test:         Minutes       2

## Preparation:

A total of 675 gn 37% formalin is added to 150 gn nitromethane containing 2 gn potassium carbonate hemi-hydrate. The first 200 gn formalin is added slowly, keeping the temperature below  $30^{\circ}$ C, and then the heat of reaction is allowed to raise the temperature to  $80^{\circ}$ C, and the mixture then heated two hours at  $90^{\circ}$ C. The reaction mixture is then concentrated at reduced pressure and diluted, and this process repeated several times to remove formaldehyde. After the final concentration the cooled mixture is filtered and the crystalline product recrystallized from alcohol and then several times from ether and dried.

The nitrated product is then obtained by nitrating 50 gm nitroisobutylglycerol with 300 gm mixed acid (60/38/2, sulfuric acid/nitric acid/water) below 15°C for 1.5 hours.

#### Origin:

This explosive (also called Trimethylolnitromethane Trinitrate, Nitroisobutanetriol Trinitrate, Nitroisobutylglycerin Trinitrate and incorrectly but widely used Nitroisobutylglycerol Trinitrate) was first described in 1912 by Hofwimmer (Z ges Schiess - Sprengstoffw 7, 43 (1912). Hofwimmer prepared the compound by the condensation of 3 moles of formaldehyde with 1 mole of nitromethane in the presence of potassium bicarbonate, the subsequent nitration of the product. The explosive can now be produced from coke, air, and natural gas.

# References: 50

(a) H. A. Aaronson, <u>Study of Explosives Derived from Nitroparaffins</u>, PATR No. 1125, 24 October 1941.

- (b) M. Aubry, Me'' poudr, 25, 197-204 (1932-33); CA 27, 4083 (1933).
- (c) A. Stettbacher, Nitrocellulose 5, 159-62, 181-4, 203-6 (1934); CA 29, 1250 (1935).
- (d) W. de C. Crater, U.S. Patent 2,112,749 (March 1938); CA 32, 3964 (1938).

(e) H. J. Hibshman, E. H. Pierson, and H. B. Haas, Ind Eng Chem <u>32</u>, 427-9 (1940); CA <u>34</u>, 3235 (1940).

(f) A. Stettbacher, Z ges Schiess Sprengstoffw 37, 62-4 (1942); CA 38, 255 (1944).

⁵⁰See footnote 1, page 10.

## Nitrostarch Demolition Explosive (NSX)

Composition: %		Molecular Weight:	325
Nitrostarch (12.50% N) Barium Nitrate Mononitronaphthalene	49 40 7	Oxygen Balance: CO, % CO %	-19 a
Paranitroaniline	3	Density: gm/cc	
0 i <b>1</b>	1	Melting Point: "C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	21	Boiling Point: °C	
Sample Wt 20 mg	а	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	a	n ₂₅	
		n ^D 30	
Friction Pendulum Test:		Vacuum Stability Test:	
	kles, snaps	cc/40 Hrs, at	
Fiber Shoe Unafi	fected	90°C	
Rifle Bullet Impact Test: 10 Trials	8 Trials*	100°C	11+
%	%	120°C	
Explosions 90	õ	135°C	
Partials 0	13	150°C	
Burned 0	0 200 Gram Bomb Sand Test:		
*Rindated cited paper 10	87	Sand, gm	39.5
Explosion Temperature: °C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.26
5 Decomposes 195		Lead Azide	
10		Tetryl	
15			
20		Ballistic Mortar, % TNT: (a)	96
75°C International Heat Test:		Trauzl Test, % TNT:	
% Loss in 48 Hrs	0.2	Plate Dent Test:	
	_	Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.3	Confined	
% Loss, 2nd 48 Hrs	0.3	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs	None		
Flammability Index:		Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH	2.1	Condition Charge Diameter, in.	
Volatility:		Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm/cc Charge Wt, Ib	<b>Glass</b> Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color:
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib <b>Total No. of Fragments:</b> For TNT	Principal Uses:       Demolition, bursting charges, and priming compositions         Method of Loading:       Hand tamped
For TNT For Subject HE	
Fragment Velocity: ft/sec At 9 ft	Loading Density: gm/cc Apparent 0.92
At 25½ ft Density, gm/cc	Storage:
	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse	Compatibility Group     Group I       Exudation     None
Energy Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	120°C Heat Test:       Minutes         Salmon Pink       70         Red Fumes       255         Explodes       256

### Nitrostarch Demolition Explosive (NSX)

#### Preparation: (b)

The nitration of starch proceeds with the formation of hexanitro starch according to the following equation:

 $2C_{6}H_{10}O_5 + 6HNO_3 \rightarrow C_{12}H_{14}O_4(ONO_2)_6 + 6H_2O_5$ 

Tapioca starch is considered the best for nitration purposes, although other starches give fairly stable products. The starch, pretreated to remove oils, fats and water soluble impurities, is dried and screened. Feeding of the dried starch into stainless steel nitrators containing mixed acid (62%-63% HNO₃ and 37%-38% H₂SO₄) is done slowly with constant agitation of the mixture. The heat evolved must be controlled by cooling coils. The nitrated starch is separated from the spent acid, washed with a large amount of water and centrifuged. Final drying is on trays heated to  $35^{\circ}$ - $40^{\circ}$ C with air. This product is so sensitive even a static discharge might cause explosion.

Nitrostarch demolition explosives contain a high percentage of nitrostarch, an oxidizing agent, mineral oil, a stabilizer and/or other ingredients.

#### Orinin:

Nitrostarch was first prepared in 1833 by Branconnot, who called it xyloidine (Ann chim phys [2] 52, 290 (1833)). T. J. Pelouze studied xyloidine further and reported its explosive properties (Compt rend 7, 713 (1838). It found military use in the United States during World Wars I and II as blasting explosives and as an ingredient of bursting charges and priming compositions.

### References: 51

(a) W. R. Tomlinson, Jr., <u>Physical and Explosive Properties of Military Explosives</u>, PATR No. 1372, 29 November 1943.

(b) G. D. Clift and B. T. Fedoroff, <u>A Manual for Explosives Laboratories</u>, Vol I, Lefax Society, Inc., Philadelphia (1942).

(c) Also see the following Picatinny Arsenal Technical Reports on Nitrostarch Explosives:

1	2	4	Z	<u>a</u>	<u>0</u>
1611	782 2032	1034	1117	838 <b>848</b>	1269

⁵¹See footnote 1, page 10.

# Octol, 70/30

Composition: %		Molecular Weight:	265
70 HMX TNT	70 30	Oxygen Balance: CO, % CO %	-38 -7•5
		Density: gm/cc Ca	ast 1.80
		Melting Point: °C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	18 26	Refractive Index, n ^D ₂₀ n ^D ₂₃	
Sample Wt, mg	20	n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected Unaffected	cc/40 Hrs, at 90°C	
Fiber Shoe	Ollaffected	100°C	
Rifle Bullet Impact Test: Trials		120°C	0.37
Systems %		135°C	21
Explosions Partials		150°C	
Burned		200 Gram Bomb Sand Test;	
Unaffected		Sand, gm Exploratory	58.4
Explosion Temperature: Seconds, 0.1 (no cap used)	° _C	Sensitivity to Initiation: Minimum Detonating Charge, gm	
1 5 Elemente en esta el la	v 335	Mercury Fulminate	
5 Flames erratical 10 15	IY 333	Lead Azide Tetryl	0.30
20		Ballistic Mortar, % TNT:	115
		Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	None
Hygroscopicity: %		Condition	Cast
		Charge Diameter, in. Density, gm/cc	1.0 1.80
			1.00

.

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc		Decomposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilacalarie/male (AH, kcal/mal) Temperature Range, °C Phase
Heat of: Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm Formation, cal/gm Fusion, cal/gm	2722 107 ¹ 4 847	Armor Plate Impact Test: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec Aluminum Fineness 500-lb General Purpose Bombs:
Specific Heat: col/gm/°C		Plate Thickness, inches 1 1¼ 1½ 1½ 1¾
Burning Rate: cm/sec Thermal Conductivity: col/sec/cm/°C		Bomb Drop Test: T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion: Linear, %/°C		Mox Safe Drop, ft 500-lb General Purpose Bomb vs Concrete:
Volume, %/°C Hardness, Mohs' Scale:		Height, ft Trials
Young's Modulus: E, dynes/cm²		Unaffected Low Order High Order
E, lb/inch² Density, gm/cc		1000-IbGeneral Purpose Bomb vs Concrete:
Compressive Strength: Ib/inch ²	1510 See below	Height, ft Trials Unaffected
Vapor Pressure: "C mm Mercury <u>Compressive Strength:</u> 1b/inch ²	*	Low Order High Order
Average (10 tests) High Low	1510 17 ⁴ 0 1330	Ultimate Deformation:%Average (10 tests)2.26High2.58Low1.97

*Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :	
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color:	Buff
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: HE projectile and bomb	filler
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Cast
	Loading Density: gm/cc	1.80
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group I
Air, Confined: Impulse Under Water: Peak Pressure	Work to Produce Rupture: ft-lb/inch ³ Average (10 tests) High Low	* 1.55 1.87 1.10
Impulse Energy	Efflux Viscosity, Saybolt Seconds:	5.9
<b>Underground:</b> Peak Pressure Impulse Energy		
	*Test specimen 1/2" x 1/2" cylinder (a mately 3 gm) pressed at 3 tons (6,000 total load or 30,000 psi with a 2 min time of dwell.	1b)

Explosive	Simulated Altitude, Feet	One-Inc Confined m/s	h Column Unconfined , m/s		h Column Unconfined m/s
70/30, RDX/INT; density, gm/cc 1.62	Ground	7900	8100	7660	8030
	30,000	8020	8120	7900(4)	7800
Average		8005	8085	7895	7873
70/30, HMX/INT;	Ground	7960	7900(4)	7870	7640(4)
density, gm/cc 1.61	30,000	8050	8060	7930	7710
	60,000	8020	7930	7890	7650
	90,000	7950	8000	7940	7650
Average		7995	7973	7908	7663

# Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity* (Reference b)

*70/30 Octol confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gn tetry booster was used to initiate each charge.

		Į į	Himilated Al	.t.itude, Fe	et
Explosive	<u>Charge Diameter.</u> <u>Inches</u>	Ground m/s	30,000 m/s	<u>60,000</u> m/s	90,000 m/s
70/30, RDX/INT	1	3415	3672	3666	3685
	2	4647	5192	5236	6011
	2	4703	5464	6089	6111

# Average Fragment Velocities at Various Altitudes* (g)

*Outside diameter 2.54"; inside diameter 2.04"; length 7".

Tensile Strength:*

	lb/inch ²
Average (8 tests)	169
High	204
Low	128

*Test specimen as per Picatinny Arsenal sketch XL-076B, at 21°C.

Modulus of Elasticity:*	
1	lb/inch ²
Average (10 tests)	73,200
High	79,300
· Low	63,000

*Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Setback Sensitivity Test: (a)

Critical Pressure	92,000 psi*
Density, gm/cc	1.72

1/2 - 2	1297
2 - 5	665
5 - 10	497
10 - 25	661
25 <b>-</b> 50	471
50 - 75	247
75 - 150	322
150 - 750	295
750 - 2500	12
Total Number	4467

Octol, 75/25

Composition:	Molecular Weight:	276
75 HMX 75 TNT 25	Oxygen Balance: O, % CO %	- 35 - 6.3
	Density: gm/cc Cast	1.81
	Melting Point: °C	
C/H Ratio	Freezing Point: "C	
Impoct Sensitivity, 2 <b>Kg</b> Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg	Boiling Point: "C Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. 17 Sample Wt, mg 25	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability lest:	
Steel Shoe Unaffected Fiber Shoe Unaffected	cc/40 Hrs, at 90°C	
92.	100°C	
Rifle Bullet Impoct Test: 10Triols <i>%</i> <u>3/16" Stee1 1/8" A1</u>	120°C	0,39
Explosions 70 70	135°C	
Partials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected 30 30	Sand, gm Exploratory	62.1
Explosion Temperature: ^O C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate	
5 Flames erratically 350	Lead Azide	0.30
10	Tetryl	
15	Ballistic Mortar, % TNT:	116
20	Trouri Test, % TNT:	110
75°C International Heat Test:	,	
% Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
Elemmehility ledev:	Detonation Rote:	
Flammability Index:	Confinement	None
Hygroscopicity: %	Condition Charge Diameter, in.	Cast 1.0
··· ·	Density, gm/cc	1.0
Yolatility:	Rate, meters/second	8643

Booster Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, atoms/sec (Z/sec)
Tetryl, gm		Heat, kilocalorie/ mole
Wox, in. for 50% Detonation		(AH, kcal/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc		Phase
Heat of:		Armor Plate Impact Test:
Combustion, cal/gm	2676	
Explosion, cal/gm	1131	60 mm Mortar Projectile:
Gas <b>Volume</b> , cc/gm	830	50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, cal/gm	29.4*	
*Calculated for 76.9% HMX, 23.1% Th	NT.	500-Ib General Purpose Bombs:
Specific Heat: cal/gm/°C	**	
Specific Heat: cal/gm/°C -79°C -80° to +80°C 22° to 74°C	0.200	Plate Thickness, inches
-80° to +80°C 33° to 74°C	$0.240 \\ 0.245$	
90° to 150°C	0.243	1
**Determined for 76.9% HMX, 23.1%		11/4
		11/2
		134
Burning Rate:		
cm/sec		Bomb Drop Test:
Thermal Conductivity:		T7, 2000-Ib Semi-Armor-Piercing Bomb ₩ Concrete:
cal/sec/cm/"C		
		Max Safe Drop, ft
Coefficient of Expansion: Linear, %/°C		
		500-Ib General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:		High Order
<b>E</b> , dynes/cm²		
E, Ib/inch ²		1000-ib General Purpose Bomb <del>vs</del> Concrete:
Density, gm/cc		
	n oluc	Height, ft
Compressive Strength: Ib/inch ²	1340 See below	Trials
	See Delow	Unaffected
Vapor Pressure:		Low Order
"C mm Mercury		High Order
Compressive Strength: 1b/inch ²	***	
Average (10 tests)	1340	Ultimate Deformation: %
High	1560	Average (10 tests) 2.43
Low	1040	High 2.89 Low 2.04
***************************************		

***Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 1b) total load or 30,000 psi with a 2 minute time of dwell.

Octol, 75/25

Fragmentation lest:	Shaped Charge Effectiveness, $TNT = 100$ :	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color:	Buff
For Subject HE	Principal Uses: HE projectile and bomb	filler
3 inch <b>HE, M42A1</b> Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib		
Total No. of Fragments: For TNT For Subject <b>HE</b>	Method of Loading:	Cast
	Loading Density: gm/cc	1.81
Fragment Velocity: ft/sec At 9 ft A t 25½ ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to <b>TNT</b> ):	Hazard Closs (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse	Compatibility Group Exudation	Group I
Energy Air, Confined: Impulse	Work to Produce Rupture: ft-lb/inch ³ Average (10 tests)	* 1.31
Under Water: Peak Pressure Impulse Energy	High Low Efflux Viscosity, Saybolt Seconds:	1.57 1.07 9.0
Underground: Peak Pressure Impulse		
Energy	*Test specimen 1/2" x 1/2" cylinder (a mately 3 gm) pressed at 3 tons (6,000 total load or 30,000 psi with a 2 mi time of dwell.	) lb)
	mately 3 gm) pressed at 3 tons (6,000 total load or 30,000 psi with a 2 mi	) lb)

Fragment Velocity Test: M26 Hand Grenade:

Compositio 75/25 Cyc 75/25 Octo	lotol	4948 4908 5124	

(a)

Modulus of Elasticity:*	c
	lb/inch ^c
Average (10 tests)	62,100
High	75,900 45,200
LOW	45,200

*Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

	1
Weight Group, grains	No. of Fragments
1/2 - 2	1611
2 - 5	777
5 - 10	535
10 - 25	719
25 - 50	480
50 - 75	246 i
75 - 150	339
	1

Octol, 70/30; Octol, 75/25

# Preparation: 🔭

Water-wet HMX is added slowly to molten TNT in a steam-jacketed kettle at a temperature of  $100^{\circ}$ C. The mixture is heated and stirred until all moisture is evaporated. The composition is cooled to a satisfactory pouring temperature and cast directly into ammunition components or prepared in the form of chips to be stored for later use.

### References: 52

(a) 1st Indorsement from Chief, Explosives Development Section, to Chief, Explosives Research Section, Picatinny Arsenal, dated 12 May 1958. Subject: "Properties of Octols and HTA-3."

(b) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, Detonation Velocity Determinations and Fragment Velocity Determinations of Varied Explosive Systems and Conditions, National Northern Corporation Final Summary Report NNC-F-13, February 1958 (Contract DAI-19-020-501-ORD-(P)-58).

* 58 word Standard Operating Procedure.

⁵²See footnote 1, psge 10.

Composition:		Molecular Weight:	245			
% RDX	90	Oxygen Balance: CO, % CO %	-62 -18			
Polystyrene (unmodified)	8.5		0.81			
Dioc ^t ylphthalate	1.5	Density: gm/cc Unpressed Pellet pressed at 30,000 psi Melting Point: "C	1.6?			
C/H Ratio		Freezing Point: "C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Unpressed 28 15 20	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀ Vacuum Stability Test:				
Friction Pendulum lest: Steel Shoe Fiber Shoe	Unaffected Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C	*-			
Rifle Bullet Impact lest: 10 Trials	<del>.</del>	- 100°C 120°C	 0.41			
%Explosions10Partic Is90		135°C 150°C				
Burned O Unaffected O		200 Gram Bomb Sand Test: Sand, gm				
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Smokes 275 10 15		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide TetryI Ballistic Mortar, % TNT:				
20						
75"C International Heat lest: % Loss in 48 Hrs		Trauzl Test, % TNT: Plate Dent lest: Method				
100°C Heat lest: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	0.00 0.00 None	Condition Confined Density, gm/cc Brisance, % TNT				
Flammability Index:		Detonation Rate: Confinement				
Hygroscopicity: %		Condition Charge Diameter, in.				
* Test procedure described in May 1956.	n PATR No. 2247,	Density, gm/cc Rate, meters/second				

Booster Sensitivity Test:		Decomposition Equation:
		Oxygen, otoms/sec (Z/sec)
Tetryl, gm		Heat, kilocolorie/mole
Wax, in. for 50% Detonation		(AH, kcal/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc		Phase
Heat of:		Armor Plate Impact Test:
Combustion, cal/gm	3027	
Explosion, cal/gm	983	60 mm Mortar Projectile:
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec
Formation, col/gm		Aluminum Fineness
Fusion, col/gm		500 th Osmani Durness Benches
Specific Heat: col/gm/°C		500-lb General Purpose Bombs:
		Plate Thickness, inches
		1
		11/4
		11/2
		134
Burning Rate:		
cm/sec		Bomb Drop Test:
Thermal Conductivity: col/sec/cm/"C		T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-Ib General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
•	See below	High Order
E, dynes/cm ²		
E, lb/inch ²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc		
		Height, ft
Compressive Strength: Ib/inch ² 240 Percent 8.	)3 2149 9 13,1	Trials
Percent 8.	7 13,1	Unaffected
Vapor Pressure:		Low Order
"C mm Mercury		High Order
	<u>Femperature</u>	
E, lb/inch ² (avg of 5) Ambier 39,955		

*Pellets (Lot OAC-596-55) 0.750 inch diameter by 0.750 inch long, pressed at 30,000 psi with 30-second dwell.

Fragmentation Test:	Shaped Charge Effectiveness, TNT	= 100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones St	teel Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color:	White
For TNT		
For Subject HE	Principal Uses: High mechanic	al strength
3 inch HE, M42A1 Projectile, Lot KC-5:	explosive	
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Loading:	Pressec
ForTNT		
For Subject HE		J, v 10J
	Loading Density: gm/cc Presse 0 10 20 30	d, psi x 10 ⁵
Fragment Velocity: ft/sec	<b>1.10 1.49 1.59 1.6</b>	
At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Dry
	Hazard Class (Quantity-Distance	e) Class
Blast (Relative to TNT):		
Air:	Compatibility Group	Group
Peak Pressure		None
Impulse	Exudation	INDITE
Energy		<u>.</u>
Air Confined.	Rockwell Hardness, "R" Sc	
Air, Confined: Impulse	1/2 inch diameter Penetra	tor, 60 Kg Load:
	Pellet Specific	
Under Water:	No.* Gravity	Hardness
Peak Pressure Impulse	1.624	84
Energy	2 1.623	90
Livigy	3 1.611 4 1.600	84 80
Underground:	5 1,590	75
Peak Pressure	6 1.571 7 1.548	73 62
Impuls <b>e</b>	8 1.524	49
Energy		
	*Pellets (Lot HOL-E-93) we in diameter and 3/4 inch b	ere 1-1/2 inches high.

o Initia	lion by .	Type 11	Special I	Blasting	Caps	(a)
Gap , 0.250	(Distan <u>ce</u> 0.300	E From B 0.350	asc of C 0.400	ap to Pe 0.450	11et), In 0.500	nches 0.750
1	8	5	6	2	1	1
0.082	0.090	0.087	0.080	0.080		
0	1	3	4	1	1	1
3	8	9	4	3	5	2
0.090	0.089	0.087	0.084	0.087	0.075	
0	0	2	3	2	3	2
5	3	5	5	5	5	5
0.109	0.096	0.095	0.09 <b>2</b>	0.097	0.087	
	Gap . 0.250 . 1 0.082 0 . 3 0.090 0 . 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gap       (Distance       From       Base of       C $0.250$ $0.300$ $0.350$ $0.400$ 1       8       5       6 $0.082$ $0.090$ $0.087$ $0.080$ $0$ 1       3       4         3       8       9       4 $0.090$ $0.089$ $0.087$ $0.084$ $0$ $0$ $2$ $3$ $5$ $3$ $5$ $5$	Gap (Distance From Base of Cap to Pe $0.250$ $0.300$ $0.350$ $0.400$ $0.450$ 1       8       5       6       2 $0.082$ $0.090$ $0.087$ $0.080$ $0.080$ 0       1       3       4       1         3       8       9       4       3 $0.090$ $0.089$ $0.087$ $0.084$ $0.087$ 0       2       3       2 $3$ 2         5       3       5       5       5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Sensitivity of I	B-RDX and	98/2 1	RDX/Stearic	Acid
Pellets* to Initiati	on by Type	e II S	pecial Blast	ting Caps

** Mild steel plate 5" x 5" x 1".

# Performance of PB-RDX as Booster: (b, d)

Ten 2.75 inch HEAT ML Rocket Heads were unaffected in performance by storage at  $71^{\circ}$ C for 28 days. Thus, PB-RDX was not desensitized by contact with TNT-bearing explosives. Tetryl, similarly used, becomes desensitized when stored in bursting charges at elevated temperatures.

In addition, 108 modified M307Al 57 mm projectiles were fired for performance against armor. Each round contained a PB-RDX booster pellet. There was no evidence in these firings that the projectiles were inadequately boostered.

#### Preparation:

The purchase description sheet for polystyrene-bonded RDX (X-PA-PD-1088, 25 October 1956) requires that the PB-RDX shall be a mixture of RDX, coated and surrounded by a homogeneous mixture of polystyrene and dioctylphthalate. The specified percentage of RDX shall consist of a mixture of 757% Type B, Class A RDX and 25% Type B, Class E RDX. The granulation of the unpressed composition shall be as follows:

Through U. S. Standard Sieve No.	· · · ·	Minimum %	Maximum 🖇	r 2
6		100		
12		60		
20			2	1
২ন			0	

Two methods have been reported for the preparation of PB-RDX (Reference: L o Alamos Scientific Laboratory, Contract W-7405-Eng 36 with U.S. Atomic Energy Commission, Report No. IA-1448). The earlier method employed a Baker-Perkins type mixer to blend the components. This procedure gave a product with good pressing characteristics. However, the molding composition was nonuniform in granulation and tended to be dusty. The slurry method of PB-RDX preparation gave a product which was uniform, free-flowing and dustless. In addition, PB-RDX granulated by the slurry method exhibited satisfactory drying, handling and pressing characteristics.

The final procedure incorporating the better features found from the study of such variables as solvents, solvent/plastic ratios, lacquer addition and temperature, agitation, RDX particle size distribution, dispersants and rosin additive, was as follows (Reference c):

Forty-two and five-tenths grams (42.5 gm) of polystyrene and 8 cc dioctylphthalate were dissolved in 200 cc toluene in a lacquer dissolver. Steam was introduced into the jacket until the temperature reached  $65^{\circ}$ C. The lacquer was agitated constantly until it was ready to be added to the granulator. This lacquer contained a 1:4 ratio of plastic-plasticizer to toluene.

Four hundred and fifty grams (450 gm) of RDX and 4500 grams of  $H_2O$  (ratio 1:10) were added to the granulator. The agitator was set for 400 rpm and the temperature was raised to 75°C by introducing steam into the jacket. The temperature differential between the lacquer solution and the RDX/water slurry was 5° to 10°C.

The lacquer solution was poured through the charging funnel into the granulator. As soon as the lacquer was added, a solution of gelatin in water was added, and the mixture was agitated until the lacquer was well dispersed in the RDX slurry (approximately 5 minutes). Granulation took place at this point. Steam was introduced again into the jacket to distill the solvent until the temperature reached  $98^{\circ}$ C. Cooling water was then run into the jacket to cool the batch to  $40^{\circ}$ C. The coated material from the granulator was collected on a Buchner funnel and dried in a tray at  $70^{\circ}$ C for 24 hours. Temperatures below  $70^{\circ}$ C did not furnish enough heat, but a temperature of  $80^{\circ}$ C produced stickiness and caking of PB-RDX.

#### Origin:

An explosive consisting of RDX coated with polystyrene plasticized with dioctyphthalate was initially developed in 1952 for the Atomic Energy Commission by Los Alamos Scientific Laboratory of the University of California (Contract W-7405-Eng 36 with U. S. Atomic Energy

Commission, Report No. LA-1448). The specific formulation of 90/8.5/1.5 RDX/polystyrene/ dioctylphthalate was subsequently standardized by Los Alamos. This explosive, originally designated PBX, has been redesignated PB-RDX. The detailed requirements for the present polystyrene-bonded RDX(PB-RDX) are given in purchase description X-PA-PD-1088, 25 October 1956.

## References: 53

(a) B. J. Zlotucha, T. W. Stevens and C. E. Jacobson, <u>Characteristics of Polystyrene-Bonded RDX(PB-RDX)</u>, PAIR No. 2497, April 1958.

(b) A. J. Pascazio, The Suitability of a Bare PBX Booster Pellet in the 2.75 Inch M1 HEAT Rocket Head, PAIR No. 2271, November 1955.

(c) J. L. Vermillion and R. C. Dubberly, Plastic-Bonded RDX, Its Preparation by the Slurry Method, Holston Defense Corporation, Control No. 20-T-16 Series A (PAC 1081), 5 March 1953.

(d) C. J. Eichinger, <u>Report on Cartridge HEAT 57 mm M307A1</u> (Mod) with Modified Copper Liner, Aberdeen Proving Ground, Development and Proof Services, First Report on OC Project TA3-5204, October 1957.

⁵³See footnote 1, page 10.

Composition:	Molecular Weight: $(C5^{H}9^{N}3^{O}10)$	271
% с 22.1 н 3.3	Oxygen Balance: CO₂ % CO %	-27 3
$\begin{bmatrix} 1 & 3 & 5 \\ & & \text{HOCH}_2 & & C \\ N & 15.5 \end{bmatrix} = \begin{bmatrix} 1 & -CH_2 & 0NO_2 \\ & & & \text{CH}_2 & 0NO_2 \end{bmatrix}$	Density: gm/cc	1.54
CH ₂ ONO ₂	Melting Point: "C	26 to 28
C/H Ratio 0.141	Freezing Point: °C	
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 5 to 10 Sample Wt, mg 38	Boiling Point: "C 4 mm <i>Hg</i> Decompos Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^S ₃₀	es 130
Friction Pendulum Test: Steel Shoe Fiber Shoe Rifle Bullet Impact Test: Trials	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 120°C	 2.54 to 5.ගි
% Explosions Partials	135°C 150°C	
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	
Explosion Temperature: [°] C Seconds, 0.1 (no cap used) 1 5 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	
15 20	Ballistic Mortar, % TNT:	
	Trauri Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: %	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: Explosive, propellant or igniter ingredient
<b>Total No. of Fragments</b> : For TNT For Subject <b>HE</b>	Method of Loading:
	Loading Density: gm/cc
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
<b>Air:</b> Peak Pressure Impulse Energy	Compatibility Group Exudation None
Air, Confined: Impulse	PETRIN esters are listed in reference (b) and most of these esters have been shown to have explosive properties.
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy <u>Absolute Viscosity, poises:</u> Temp, $17^{\circ}$ C 14.8 $23^{\circ}$ C 4.8 $28^{\circ}$ C 3.0 $38^{\circ}$ C 1.2	An infrared spectrophotometric procedure was developed for the determination of the acetone content of PETRIN (ref c). A 2.5 gm sample of PETRIN is dissolved in chloroform and the volume increased to 25 milliliters in a volumetric flask. The acetone content of the PETRIN solution is determined by its infra red absorption at $5.82\mu$ in a 0.5 mm cell. A double beam method is used with a reference cell containing chloroform and acetone-free PETRIN. The quantity of the latter must be carefully adjusted to give a good balance be- tween the test sample and reference cells for the strong PETRIN peak at $6.02\mu$ maximum. Heat of:
	Explosion, cal/gm 1204

### Preparation:

с(сн ₂ он) ₄ +	3HNO 3	H ₂ SO ₄	ohch ₂ c(ch ₂ no ₃ ) ₃	+	3н ₂ 0
pentaerythritol	nitric	sulfuric	pentaerythritol		water
MW 136	acid MW 63	acid _{MW} 98	trinitrate MW 271		MW 18

The earliest procedure used for the manufacture of PETRIN was that developed at Alleghany Ballistics Laboratory. In this process, called the "A process," 80% HNO₃ and the solid pentaerythritol were charged to the reactor and 80% H₂SO₄ was added slowly at a rate to permit control of temperature at 0° to 5°C. This mixture was held for a 2-1/2-hour reaction period, then drowned in water and filtered to give a cake containing both the tri- and tetra-nitrates of pentaerythritol. The cake was dissolved in acetone and neutralized in solution with ammonium carbonate, after which the PETN was precipitated by the addition of water. After filtration, the PETRIN was recovered from the filtrate by stripping off the solvent under vacuum. Yields by this process averaged about 40%.

An improved process, called the "B process," used the same primary reaction procedure but a different work-up procedure. After the reaction holding period, water was added to dilute the mixed acid and the batch was extracted in situ with methylene chloride. The organic layer was separated, neutralized with aqueous sodium bicarbonate, and stripped of methylene chloride under vacuum to yield the product directly. Yields by this process were about 50% and quality of the product was much improved over that of the "A process."

The "C process," currently in use, involves essentially the simultaneous synthesis and extraction of PETRIN from the reaction mixture. Methylene chloride approximately equal to the total weight of the other components is added to the reaction mixture before the sulfuric acid. After a suitable time following the addition of sulfuric acid, the solvent is removed and replaced by fresh solvent one or more times. The combined extracts are neutralized and concentrated. Because of their initially relatively large volume, PEIN must be removed by filtration from the concentrated PETRIN solution before the final solvent is stripped. Yields by this process have been 60% to 65%.

#### Origin:

The nitration products of pentaerythritol or its derivatives containing not more than three  $NO_2$  groups were patented for use as explosives, propellants or ignition materials in 1936 (German Patents 638,432 and 638,433; CA 31, 1212 (1937)).

A process in which pentaerythritol monoacetate was converted to pentaerythritol trinitrate monoacetate, which was then saponified under carefully controlled conditions to PETRIN, was reported in 1954 (N. S. Marans, D. E. Elrick and R. F. Preckel, J Am Chem Soc <u>76</u>, 1304). PETRIN was also prepared by the nitration of pentaerythritol with a mixture of <u>80%</u> HNO₃ and <u>80%</u> H₂SO₄ in 1955 (A. T. Camp, N. S. Marans, D. E. Elrick and R. F. Preckel, J Am Chem Soc <u>72</u>, 751).

# References:54

(a) Rohm and Haas Company, Redstone Arsenal Division, Process for the Manufacture of Pentaerythritol Trinitrate Monoacrylate and Petrin Acrylate Propellants, 12 March 1956.

(b) E. Berlow, R. H. Barth and J. E. Snow, <u>The Pentaerythritols</u>, ACS Monograph No. 136, p. 65, Reinhold Publishing Corporation, New York, 1958.

(c) R. H. Pierson, An Infrared Spectrophotometric Method for Determination of Acetone <u>Content of Pentaerythritoltrinitrate</u>, U.S. Naval Ordnance Test Station Report NOTS 1877, NAVORD Report No. 5649, 3 February 1958.

⁵⁴See footnote 1, page 10.

Composition %	Molecular Weight: (C8H11N3O11) 325 (Monomer) 325					
с 29.5 н 3.4 сн ₂ оло ₂	Oxygen Balance:         -54           CO, %         -12					
$CH_2 = CH - CO_2 CH_2 C - CH_2 ONO_2$ N 12.9	Density: gm/cc					
о 54.2 ^{СН₂ОNO₂}	Melting Point: "C 78 to 79					
C/H Ratio 0.239	Freezing Point: "C					
Impact Sensitivity, 2 Kg Wt:	Boiling Point: "C					
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, $n_{20}^D$ $n_{25}^D$ $n_{30}^D$					
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C					
Rifle Bullet Impact Test: Trials % Explosions Partials Burned Unaffected	120°C 135°C 150°C 200 Gram Bomb Sand Test: Sand, gm					
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:					
75°C International Heat Test:	Trauzi Test, % TNT:					
<ul> <li>% Loss in 48 Hrs</li> <li>100°C Heat Test:</li> <li>% Loss, 1st 48 Hrs</li> <li>% Loss, 2nd 48 Hrs</li> <li>Explosion in 100 Hrs</li> </ul>	Plate Dent Test: Method Condition Confined Density, gm/cc Brisance, % TNT					
Flammability Index:	Detonation Rate: Confinement					
Hygroscopicity: % Ni 1	Condition Charge Diameter, in.					
Volatility:	Density, gm/cc Rate, meters/second					

# Pentaerythritol Trinitroacrylate (PETRIN Acrylate)

Fragmentation Test:	Shaped Charge Effectiveness, $TNT=$ 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total №. of Frogments: For TNT	Color: White			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, lb Total No. of Fragments:	Principal Uses: Ingredient of composite rocket propellants			
For TNT For Subject HE	Method of Loading:			
Fragment Velocity: ft/sec	Loading Density: gm/cc			
At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry at temperatures below melting point			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)			
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None			
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Heat of: Combustion, cal/gm 2923 Explosion, cal/gm 791			

	Pre	parat	ion:
--	-----	-------	------

HOCH2C(CH2NO3)3	+ (	CH ₂ = CHC	:0Cl +	C6H	5N(CH ₃ ) ₂
pentaerythritol trinitrate (PETRIN) MW 271 0		acrylyl chloride MW 90.5	;	an	ethyl iline 121
(02NOCH2)3CCH2OCCH	= CH ₂	+	с _б н ₅ м(сн	3)2HCl	

(a)

pentaerythritol trinitrate monoacrylate (PETRIN acrylate)

dimethylanine

MW 325

hydrochloride

The original synthesis for PETRIN acrylate employed trifluoroacetic anhydride and glacial acrylic acid as the acrylation agent for PETRIN. These two materials were charged to a reaction vessel and the initial reaction was controlled by the slow addition of PETRIN at a temperature of 10° to 15°C. Following a period of one hour, the batch was drowned in water, precipitating the PETRIN acrylate. This solid was separated by filtration, dissolved in chlo-roform, and neutralized in solution with sodium bicarbonate. The product was then crystallized during a period of 16 hours at  $0^{\circ}$ C and dried under vacuum to remove traces of solvent. The yield for this process was about 60%.

A significant improvement in yield (to about 74%) and purity (approximately 98%) was realized by the substitution of methanol for chloroform and crystallization of the product from the solution without neutralization, residual acid being removed by washing the filter cake with water.

Because of the high cost and hygroscopic nature of trifluoroacetic anhydride, a new process, based on dimethylaniline and acrylyl chloride, was considered. This process is currently under development in the Rohm and Haas Chemical Processing facilities and is not considered optimum. Yields averaged 46% and product purities averaged 93.5%.

#### PETRIN Acrylate Propellants:

PETRIN acrylate could be used as a monopropellant because it has a specific impulse of 214 lb-sec/lb and a burning rate of 0.2 in/sec. The addition of an oxidizer increases both the impulse and burning rate.

A composition which presently appears most promising is as follows:

	Composition M
PETRIN acrylate (> 97% purity), %	34.3 (binder)
Triethylene glycol trinitrate, 🐐	11.8 (plasticizer)
Glycol diacrylate, 🖇	2.9 (crosslinker)
Ammonium perchlorate, %	51.0 (oxidizer)
Hydroquinone, %	0.014 (polymerization inhibitor)

Measured specific impulse 238 lb-sec/lb, at density of 1.3.

## Reference:55

(a) Rohm and Haas Company, Redstone Arsenal Division, Process for the Manufacture of Pentaerythritol Tetranitrate Monoacrylate and Petrin Acrylate Propellants, 12 March 1956.

55See footnote 1, page 10.

Composition:		Molecular Weight:	50/50 265	10/90 234
PEIN 50	10 90	Oxygen Balance: CO, % CO %	-42 - 5	-68 -21
TNT 50	<i>,</i> ,	Density: gm/cc	1.65	1.60
		Melting Point: "C		76
C/H Ratio		Freezing Point: "C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	<u>50/50 10/90</u> 34 65	Boiling Point: °C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	12 14 15 <b>18</b>	Refractive Index, $n_{20}^{D}$ $n_{25}^{D}$ $n_{30}^{D}$		
Friction Pendulum Test:		Vacuum Stability Test:	50/50	10/90
Steel Shoe Fiber Shoe	Unaffected Unaffected	cc/40 Hrs, at 90°C	<u>yo</u> , yo	20, 90
Rifle Bullet Impact Test: 25 Trials,	50/50	100°C	3.0	3.0
%		120°C	11+	11+
Explosions 72		135°C		
Partials 20		150°C		
Burned 0		200 Gram Bomb Sand Test		
Unaffected 8		Sand, gm	55.6	49.5
Explosion Temperature: °C, Seconds, 0.1 (no cap used) 290	50/50	Sensitivity to Initiation: Minimum Detonating C	harge, gm	50/50
1 266 5 Decomposes 220		Mercury Fulminate Lead Azide		0.19* 0.13*
10 204				-
<b>15</b> 197		Tetryl *Alternative initiati	ng charges.	
<b>20</b> >190		Ballistic Mortar, <b>%</b> TNT:	(a)	126
75°C International Heat Test:		Trauzl Test, % TNT:	(b)	122
% Loss in 48 Hrs		Plate Dent Test: Method	(c)	В
100°C Heat Test:	50/50	Condition		Cast
% Loss, 1st 48 Hrs	0.0	Confined		No
% Loss, 2nd 48 Hrs	0.2	Density, gm/cc		1.66
Explosion in 100 Hrs	None	Brisance, % TNT Detonation Rate:		121
Flammability Index: Will not con	tinue to burn	Confinement		None
		Condition		Cast
Hygroscopicity: % 30°C, 90% RH		Charge Diameter, in,		1.0
Voletility:		Density, gm/cc		1.66
-		Rate, meters/second		7465

Pentolite, 50/50; 10/90

Booster Sensitivity Test: (d) Condition Pressed Tetryl, gm 100 Wax, in. for 50% Detonation 2.36 Wax, gm Density, gm/cc 1.60	50/50 Cast 100 2.08 1.65	Decomposition Equation: Oxygen, otoms/sec (Z/sec) Heat, kilocolorie/mole (AH, kcol/mol) Temperature Range, °C Phase	
Heat of: Combustion, col/gm Explosion, col/gm Gas Volume, cc/gm Formation, col/gm Fusion, col/gm Specific Heat: col/gm/°C	1220	Armor Plate Impact Test: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec Aluminum Fineness 500-Ib General Purpose Bombs: Plate Thickness, inches 1 31/4	<u>50/50</u> 170
Burning Rate: cm/sec		1 %4 1 <u>1 %4</u> 	
Thermal Conductivity: col/sec/cm/"C		Bomb Drop Test: T7, 2000-1b Semi-Armor-Piercing Bom	nb vs Concrete:
Coefficient of Expansion: Linear, %/°C		Max Safe Drop, ft 500-Ib General Purpose Bomb vs Con	crete:
Volume, %/°C		Height, ft Trials	
Hardness, Mohs' Scale:		Unaffected Low Order	
Young's Modulus: E', dynes/cm²		High Order	
E, Ib/inch ² Density, gm/cc		1000-Ib General Purpose Bomb vs Con	crete:
Compressive Strength: Ib/inch ² 200 Density, gm/cc Vapor Pressure: °C mm Mercury	1.68	Height, ft Trials Unaffected Low Order High Order	

Fragmentation Test:	50/50	Shaped Charge Effectiveness, TNT = 100: 50/50 10/90 50/50 25/75
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones(f) Steel Cones (g)
Density, gm/cc	1.65	Hole Volume 157 105 149 119
Charge Wt, Ib	2.147	Hole Depth 116 116 131 119
Total No. of Fragments:		Color: Yellow-white
For TNT	703	
For Subject HE	968	Principal Uses: Shaped charges, bursting
3 inch HE, M42A1 Projectile, Lot KC-5:		charges, demolition blocks
Density, gm/cc	1.65	
Charge Wt, Ib	0.872	
Total No. of Fragments:		Method of Loading: Cast
ForTNT	514	
For Subject HE	650	Loading Density: gm/cc 5 <del>0/50</del> 1 <del>0/90</del>
FragmentVelocity: ft/sec		1.65 1.60
At 9 ft At <b>25</b> ½ ft	2810 2580	Storage:
Density, gm/cc	1.66	Method
Blast (Relative to TNT):	(e)	Hazard Class (Quantity-Distance) $Class 9$
Air:		Compatibility Group Group I
Peak Pressure	105	
Impulse	107	Exudation
Energy		
Air, Confined: Impulse		<u>Compatibility with Metals:</u> <u>Dry:</u> Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, mild steel coated
Under Water: Peak Pressure		with acid-proof black paint, and mild steel plated with copper, cadmium or nickel are not affected. Zinc plated steel is only slightly
Impulse		affected.
Energy		Wet Stainless steel, aluminum and mild steel coated with acid-proof black paint are
Underground: Peak Pressure		not affected. Copper, brass, magnesium, mag- nesium-aluminum alloy, mild steel and mild
Impulse		steel plated with copper, cadmium, zinc or nickel are slightly affected.
Energy		Effect of Temperature on (h)
Eutectic Temperature. ^o C:	<b>7</b> 6	Rate of Detonation: 50/50
gn PEIN/100 gn INT 76°C 95°C	13.0 28.3	16 hrs at, °C       -54 ^{2-1,2-2} 21         Density, gm/cc       1.67       1.66         Rate, m/sec       7470       7440

#### Preparation:

Pentolite is manufactured by either the slurry method or coprecipitation of PEIN and TNT. In the slurry method PEIN, in water, is stirred and heated above  $80^{\circ}$ C. TNT is added and when molten, it coats the particles of PEIN. The slurry is cooled with rapid stirring and the separated granules are collected on a filter and dried below  $75^{\circ}$ C.

In coprecipitation, PEIN and TNT are dissolved separately in acetone. The solutions are mixed and the explosives are precipitated simultaneously by pouring the mixed solution into cold water under vigorous agitation. The precipitated solid is collected on a filter and dried in air.

### Origin:

Standardized during World War 11, with the 50-50 PETN/INT mixture being the more important for bursting charges and booster-surround charges.

#### References :56

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; Performance Tests, <u>OSRD Report No. 5746</u>, 27 December 1945.

(b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute, for</u> <u>Tetryl in Boosters</u>, NOL Memo 10, 303, 15 June 1949.

(e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(f) Eastern Laboratory, du Pont, Investigation of Cavity Effect, Sec 111, Variation of Cavity Effect with Explosive Composition. NDRC Contract W672-ORD-5723.

(g) Eastern Laboratory, du Pont, Investigation of Cavity Effect, Final Report, Contract W-672-ORD-5723, E. Lab, du Pont, 18 September 1943.

(h) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PAIR No. 2303, November 1956.

(i) Also see the following Picatinny Arsenal Technical Report on Pentolite:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	6	<u>7</u>	8
1360 1420 1570	1291 1451 1651	1212 1262 1372	1133 1193 1213 1363	1284 2004	1325	1436 1466 1796	1477 1677 1737	1388 1598 1668 1838

⁵⁶See footnote 1, page 10.

Composition: %		Molecular Weight: $(C_5 H_8 N_4)$	D ₁₂ ) 316
C 19.0 0NO ₂		Oxygen Balance:	
н 5.2 сн5		00, %	-10 15
		C0 %	1)
N 17.7 $o_2^{NO-CH} = C - CH$	2 0102	Density: gm/cc Cryst	ta <b>1</b> 1,77
0 60.8 ^{CH} 2		Melting Point: °C	141
C/H Ratio 0,134 0N02		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	17 6 16	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Crackles	cc/40 Hrs, at	
Fiber Shoe	Jnaffected	90°C	
Rifle Bullet Impact Test: 5 Trials *		100°C	0.5
When Bullet impact rest. 5 mais *		120°C	11+
Explosions 100		135°C	
Partials 0		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unoffected 0 <u>*4.86% moisture in samples</u>		Sand, gm	62.7
Explosion Temperature: "C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 272		Minimum Detonating Charg	e, gm
1 <b>244</b>		Mercury Fulminate	0,17*
5 Decomposes 225		Lead Azide	0.03*
<b>10</b> 211		Tetryl *Alternative initiating	ahargas
15		<b>•</b> • • •	
20			a) 145
75°C International Heat lest:			b) 173
% Loss in 48 Hrs	0.02	Plate Dent Test: ( Method	c) A
100°C Heat Test:		Condition	Pressed
% Loss, 1st 48 Hrs	0.1	Confined	Yes
% Loss, 2nd 48 Hrs	0.0	Density, gm/cc	1.50
Explosion in 100 Hrs	None	Brisance, % TNT	129
Flammability Index: Will not contin	ue to burn	Detonation Rate: Confinement	None
Hygroscopicity: % 30 ⁰ C, 90% RH	0.0	Condition Charge Diameter, i <b>n</b> .	Pressed 1.00
Volatility:	0.0	Density, gm/cc	1.70
····••• ·		Rate, meters/second	8300

# PETN (Pentaerythritol Tetranitrate)

Booster Sensitivity Test:	(c)	Decomposition Equation: (e) (e) (f) Oxygen, otoms/sec 10 ^{19.8} 10 ^{20.6} 10 ^{23.1}
Condition	Pressed	Oxygen, otoms/sec 10 ¹⁹⁺⁸ 10 ²⁰⁺⁶ 10 ²³⁺¹ (Z/sec)
Tetryl, gm	5	Heat, kilocolorie/mole 47.0 50.9 52.3
Wax, in. for 50% Detonation		(AH kcol/mol)
Wax, gm	3	Temperature Range, °C 161-233 108-120 137-157
Density, gm/cc	1.6	Phase Liquid Solid At mel ing poin
Heat of: Combustion, cal/gm	1960	Armor Plate Impact Test:
Explosion, col/gm	1385	
Gas Volume, cc/gm	790	60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec
Formation, col/gm	383	Aluminum Fineness
Fusion, col/gm	0-5	
Fusion, cut/gm		500-lb General Purpose Bombs:
Specific Heat: col/gm/°C	(d)	Plate Thickness, inches
Room Temperature	0.26	Plate Thickness, inches
		1
		11/4
		11/2
		184
Burning Rate:		
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Piercing Bomb <b>vs</b> Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb <del>vs</del> Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:	1.9	Unaffected
Voursie Medulue		Low Order
Young's Modulus:		High Order
E, dynes/cm² E = b (inch²		
E, b/inch ²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc		Height ft
Compressive Strength: lb/inch ²		— Height, ft Trials
compressive energy in a more		Unaffected
		Low Order
Vapor Pressure: "C mm Mercury		
		High Order

# PETN (Pentaerythritol Tetranitrate)

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$	:				
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm∕cc Charge Wt, Ib	Glass Cones Steel Co Hole Volume Hole Depth	nes				
Total No. of Fragments: For TNT	Color:	White				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5:	Principal Uses: Class A - Detonating fuse and boosters					
Density, gm/cc Charge Wt, Ib	Class B - Priming compositions					
Total No. of Fragments: For TNT	Method of Loading:					
For Subject HE	Loading Density: gm/cc psi x 1 3 5 10 20 30	40				
Fragment Velocity: ft/sec At 9 ft At 25½ ft	1.37 1.58 1.64 1.71 1.73 Storage:	1.74				
Density, gm/cc	Method	Wet				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9				
Air: Peak Pressure Impulse	Compatibility Group Exudation	Group M (wet None				
Energy						
Air, Confined: Impulse	Bulk Modulus at Room Temperature (25°-30°C) :	(i)				
Under Water: Peak Pressure	Dynes/cm ² x 10 ⁻¹⁰ Density, gm/cc	4.60 1.77				
Impulse Energy						
Underground: Peak Pressure						
Impulse Energy						
	1					

100

112

15.920

30.900

### Compatibility with Metals:

Dry: Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, stainless steel, mild steel, mild steel coated with acid-proof black paint and mild steel plated with copper, cad-mium, nickel or zinc are not affected.

Wet: Stainless steel is unaffected and aluminum only vary slightly so after prolonged storage. Copper, brass, magnesium, magnesium-aluminum alloy, mild steel, mild steel coated with acid-proof black paint and mild steel plated with cadmium, copper, nickel or zinc are affected.

### Sensitivity of PEIN to electrostatic discharge, joules; Through 100 Mesh: (g)

Unconfined	0.06
Confined	0.21

## Solubility, grams of PETN per 100 grams (%) of: (h)

	rethylene Icohol	Ac	etone	Be	enzene	<u>To</u>	luene
<u>°c</u>	<u>%</u>	<u>°</u> _	<u>%</u>	<u>°</u>	%	o _C	of
0 20 40 <b>60</b>	0.070 0.195 0.415 1.205	0 20 40 60	14.37 24.95 30.56 42.68	0 20 40 80	0.150 0.450 1.160 7.900	<b>0</b> 20 40 60 80	0.150 0.430 0.620 2.490 5.850

Methyl acetate		Eth	er	<u><i>B</i>-Ethoxy-ethyl-</u> <u>acetate</u>		Chloro	Chlorobenzene	
°c	Z	<u>oc</u>	K	°c	<u>%</u>	<u>oc</u>	%	
20 30 40 50	13 17 22 31	0 20 34.7	0.200 0.340 0.450	20 30 40 50 60	1.5 4.1 7.6 11.2 14.2	20 30 40 50 60	0.35 2.8 6.1 9.2 12.2	

Ethylenedichloride Methanol		anol	Tetrachloroethane		<u>Carbon</u> tetrachloride		
<u>о</u> с	<u>%</u>	<u>°</u>	4	o _C	<u>%</u>	<u>o</u> c	%
10 30 50	0.9 1.5 <b>2</b> .6	20 40 60	0.46 1.15 2.6	20 <b>30</b> 40 50	0.18 0.27 0.40 0.58	20 30 40 50	0.096 0.108 0.118 0.121

PEIN (Pentaerythritol Tetranitrate)

Iso	propanol	<u>Isobu</u>	tanol	Chlor	roform	, -	INT
o _c	<u>%</u>	<u>°с</u>	<u>%</u>	<u>°c</u>	<u>%</u>	°C	<u>%</u>
15 20 30 40 50	0.02 0.0 ^{1,} 0.15 0.36 0.46 Eutetic of the s and 87% TNT at 7	20 30 40 50 system PET 76 ⁰ C.	0.27 0.31 0.39 0.52 N-TNT is abo	20 Dut 13% PETN	0.09	80 85 90 95 100 105 110 115 120 125	19.3 25.0 32.1 39.5 48.6 58.2 70.0 87.8 115 161

#### Preparation:

#### (Nitroglycerin and Nitroglycerin Explosives, Naoum)

 $8\text{HCHO} + \text{CH}_3\text{CHO} + \text{Ca}(\text{OH})_2 \rightarrow 2\text{C}(\text{CH}_2\text{OH})_4 + \text{Ca}(\text{HCOO})_2 \text{ C}(\text{CH}_2\text{OH})_4 + 4\text{HNO}_3 \rightarrow \text{C}(\text{CH}_2\text{ONO}_2)_4 + 4\text{H}_2\text{O}$ 

1. In this preparation 1940 gm of formaldehyde and 600 gm of aceteldehyde are dissolved in 90 liters of water containing 1600 gm suspended slaked lime. The reaction is complete in about 3 weeks if agitated several times a day. The solution is filtered, the calcium formate precipitated with oxalic acid, filtered off, and the water removed under reduced pressure. On cooling the mother liquor about 1200 gm crude pentaery-thritol, melting point  $235^{\circ}-240^{\circ}c$ are obtained. Purification is readily effected by stirring with a little alcohol, filtering and recrystallization from water.

2. To 400 cc of strong white nitric acid, are added 100 gm of pentaerythritol (through 50 mesh), at  $5^{\circ}$ C or below, under good agitation. After addition is complete stirring, at  $5^{\circ}$ C, is continued for 15 minutes. The mixture is drowned in 3 liters of ice-water, filtered, the product washed free of acid with water and then digested 1 hour in 1 liter of hot 0.5% sodium carbonate solution. The product is filtered, and recrystallized from acetone.

### Origin:

PETN was known as an explosive in 1894 when it was proposed as an addition to smokeless powders to raise their flammability and ease of combustion (German Patent <u>81,664</u> (1894). Modern methods of preparation are described by Vignon and Gerin (Compt rend <u>133</u>, 590 (1901) and German Patent 265,025 (1912) and A. Stettbacher (Z ges Schiess - Sprengstoffw <u>11</u>, 112, 182 (1916) and <u>24</u>, 259 (1929)). PETN was not used on a practical basis until after World War I.

#### Destruction by Chemical Decomposition:

PETN is decomposed by dissolving in 8 times its weight of technical grade acetone and burning the solution in a shallow container. If preferred, warm the acetone solution to  $40^{\circ}$ C, stir and add 7 parts by weight, to each part of PETN, of a solution of 1 part sodium sulfide (Na₂S·9H₂O) in 2 parts water heated to 80°C. The aqueous solution should be added at such a rate that the acetone solution does not boil. After mixing is complete continue stirring for one-half hour. References :57

(a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests: Performance Tests, OSRD Report No. 5746, 27 December 1945.

- (b) Ph. Naoum, Z ges Schiess Sprengstoffw, pp. 181, 229, 267 (27 June 1932).
- (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) International Critical Tables.

(e) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utah, <u>Ind & Eng Chem</u>, (June 1956), pp. 1090-1095.

(f) A. J. B. Robertson, "The Thermal Decomposition of Pentaerythritol Tetranitrate, Nitroglycerin, Ethylenediamine Dinitrate and Ammonium Nitrate," J Chem Ind <u>67</u>, 221 (1948).

(g) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by Electrostatic Discharges, U.S. Dept of Int, Bureau of Mines, R1 3052, 1946.

(h) Various sources in the open literature.

(i) W. 5. Cramer, <u>Bulk Compressibility Data on Several High Explosives</u>, NAVORD Report No. 4380, 15 September 1956.

(i) Also see the following Picatinny Arsenal Technical Reports on PETN:

<u>o</u>	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	6	<u>1</u>	<u>8</u>	2
760 1170 1260 1290 1300 1320 1360 1380 1390 1430 1450 1570	1041 1311 1381 1451 1561 1611 1651	772 922 1182 1192 1212 1262 1342 1352 1352 1372 1452	843 863 1063 1133 1253 1343 1493 1533	904 1274 1284 1414	1305 1325 1445 1705 1885 2125	1246 1276 1316 1376 1446 1456 1466 1556 1796	407 527 857 1247 1517 1617 1737 1797	318 838 1238 1318 1388 1568 1598 1838 2178	1379 1429 1489 1559 2179

57See footnote 1, page 10.

Composition:	Molecular Weight: $(C_{6}H_{4}N_{4}O_{6})$	228			
$\begin{array}{c} \% \\ c & 31.5 \\ H & 1.8 \\ \end{array} \qquad \begin{array}{c} NH_2 \\ 0_2 N \\ \end{array} \qquad \begin{array}{c} NH_2 \\ NO_2 \end{array}$	Oxygen Balance: CO, % CO %	-56 -14			
N 24.5	Density: gm/cc Crystal	1.76			
0 42.2 NO ₂	Melting Point: °C	189 to 190			
C/H Ratio 0.500	Freezing Point: "C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C Decomposes befo	re boiling point			
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 23 Sample Wt, mg 20	Refractive Index, n ² ₂₀ n ² 5 n ³ 30				
Friction Pendulum lest: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C	 0.9			
Rifle Bullet Impact lest: Trials % Explosions Partials	100°C 120°C 135°C 150°C	0.9			
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	48.1			
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate				
10	Lead Azide Tetryl	0.30			
15 20	Ballistic Mortar, % TNT:	100			
75°C International Heat Test:	Trauzl Test, % TNT:	107			
% Loss in 48 Hrs	Plate Dent Test: Method				
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT				
Flammability Index:	Detonation Rate: Confinement	None			
Hygroscopicity: %	Condition Charge Diameter, in.	Pressed 0.5			
Volatility:	Density, gm/cc Rate, meters/second	1.72 7300			

Frogmentotion Test:	Shaped Charge Effectiveness, $TNT = 100$ :		
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm∕cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Ye	llow	
For Subject <b>HE</b> <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: High temperature heat resistant explosive		
<b>Total No. of Fragments:</b> For TNT For Subject HE	Method of Loading:	Pressed	
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Loading Density: gm/cc A t 50,000 p s i Storage:	1.72	
Density, gm/cc	Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group I None	
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	<u>Solubility:</u> Insoluble in water, slightly so alcohol and ether. Soluble in hot acetic acid, hot ethyl acetate and and acetone. <u>Heat of:</u> Combustion, cal/gm (a) Explosion, cal/gm Formation, cal/gm (a)	glacial	

#### Preparation:

Five grams of picryl chloride were dissolved in 180 milliliters of absolute methanol. The solution was then saturated with anhydrous, gaseous ammonia. The time required was approximately 30 minutes. The amino derivative precipitated in 78% yield (3.6 gm) melting at  $190^{\circ}$ C (literature MP  $189^{\circ}$ C).

### Origin:

Picramide (2,4,6-trinitroaniline) was first prepared in 1854 by Pisani who treated picryl chloride with ammonium carbonate (CR 39, 853). The use of picramide, as a brisant explosive, was patended by Chemische Fabrik Griesheim 26 May 1894 (German Patent 84,628). Meisenheimer and Patzig reacted trinitrobenzene with hydroxylamine in cold alcohol solution to obtain picramide (Ber 39, 2534 (1906)). Witt and Witte obtained the compound by nitrating a solution of aniline in glacial acetic acid or concentrated  $H_2SO_4$  at about 5°C with concentrated HNO₃ (Ber 41, 3091 (1908)). Holleman gives details of the prep ation from p-nitroaniline and from acetanilide (Rec trav chim 49, 112 (1930)).

## Reference: 58

(a) William H. Rinkenbach, "The Heats of Combustion and Formation of Aromatic Nitro Compounds," J Am Chem Soc 52, 116 (1930).

⁵⁸See footnote 1, page 10.

Composition: %		Molecular Weight:	236
Explosive D 52		Oxygen Balance: ◯◯凵 % ◯◯ %	-63 -19
111		Density: gm/cc Cast	1.62
		Melting Point: °C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: "C Refractive Index, <b>n</b> ^D ₂₀	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	17 19	n ₂₅	
Friction Pendulum Test: Steel Shoe	Unaffected	Vacuum Stability Test:	
Fiber Shoe	Unaffected	cc/40 Hrs, <b>::</b> 90°C	
	onuncetea	- 100°C	0.37
Rifle Bullet Impact Test: Trials		120°C	0.68
Explosions 0		135°C	
Partials 0		150°C	0.7
Burned 40		200 Gram Bomb Sand Test:	
Unaffected 60		Sand, gm	45.9
Explosion Temperature: "C Seconds, 0.1 (no cap used) 456		Sensitivity to Initiation: Minimum Detonating Charge, gm	
1 <b>354</b> 5 Decomposes 285		Mercury Fulminate Lead Azide	0.20
10 265		Tetryl	0.05
15 260			
20 255		Ballistic Mortar, % TNT: (a)	100
75°C International Heat Test: % Loss in 48 Hrs	0.0	Plate Dent Test: (b)	
		Method Condition	B Cast
100°C Heat Test:		Confined	No
% Loss, 1st 48 Hrs	0.0	Density, gm/cc	1.63
% Loss, 2nd 48 Hrs Explosion in 100 Hrs	0.05 None	Brisance, % TNT	100
Flammability Index:		Detonation Rate: (b) Confinement	None
-		- Condition	Cast
Hygroscopicity: % 30 ⁰ C,90%RH	0.02	Charge Diameter, <b>in.</b>	1.0
Volatility:		Density, <b>gm/cc</b>	1.63
		Rate, meters/second	6970

## Picratol, 52/48

Emgmentation Test:		Shaped Charge Effectiveness, TNT = 100	:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	1.61 2.075	Glass Cones Steel Cor Hole Volume Hole Depth	es
Total No. of Fragments: For TNT For Subject HE	70 <b>3</b> 76 <del>9</del>		n-yellow
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	1.61 0.850	Principal Uses: AP, SAP projectiles	and bombs
Total No. of Fragments: For TNT For Subject HE	514 <b>487</b>	Method of Loading:	Cast
Fragment Velocity: ft/sec		Loading Density: gm/cc	1.62
At 9 ft At 25½ ft Density, gm/cc	2590 2 <i>320</i> 1.62	Storage:	
		Method	Dry
Blost (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	100 100 	Compatibility Group	Group I None at 65 ⁰ C
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy		Preparation: Picratol is made by heating TNT 90°C in a steam-jacketed melt ket sive D is added slowly, without pr and the mixture stirred until unif position. This slurry is cooled to and poured into the appropriate and component.	tle. <b>Explo-</b> ceheating, form in com- to about 85°C
Underground: Peak Pressure Impulse Energy Bamb Drop Test: T7, 2000-1b Semi-Armor-Piercing Bomb vs Concrete: Max Safe Drop, ft 10,000-1		Origin: Developed during World War II as tive, melt-loaded AP bomb and pro Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Density, gm/cc	

References: 59

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, <u>Methods of Physical Testing</u>, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NOL Mamo 10,303, 15 June 1949.

(d) R. W. Drake, <u>Fragment Velocity and Panel Penetration of Several Explosives in Simu-</u><u>lated Shells</u>, OSRD Report No. 5622, 2 January 1946.

(e) Also see the following Picatinny Arsenal Technical Reports on Picratol:

<u>o</u>	ک	6	<u>_7</u>	<u>8</u>	<u>9</u>
1470	1885	1466 1796 1956	1737 1797	1838	1729

⁵⁹See footnote 1, page 10.

Composition:		Molecular Weight: (C6	^H 3 ^N 3 ^O 7 ⁾	229
C 31.5	Oxygen Balance: O, %		-45	
н 1.3 о2и	T NO2	CO %		-3.5
N 18.3	] -	Density: gm/cc	Crystal	1.76
o 48.9 Y		Melting Point: "C		122
C/H Ratio 0.656 NO ₂		Freezing Point: "C		
Impact Sensitivity, <b>2</b> Kg Wt: Bureau of Mines Apparatus, cm	85	Boiling Point: °C		
Sample Wt 20 mg		Refractive Index, no		
Picatinny Arsenal Apparatus, in. Sample Wt, mg	13 17	n ^D 23		
Campie we, mg	τI	n ₃₀		
Friction Pendulum Test:				-
Steel Shoe		Vacuum Stability Test: cc/40 Hrs, at		
Fiber Shoe		90°C		
Dide Dullet Immed Tests Trial		100°C		0.2
Rifle Bullet Impact Test: Trials		120°C		0.5
% Explosions 0		135°C		
Partials 60		150°C		
Burned 40		200 Gram Bomb Sand Test	t:	
Unaffected 0		Sand, gm		48.5
Explosion Temperature: "C		Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detonating C	harge, gm	
1 5 December 220		Mercury Fulminate	0.26*	
5 Decomposes 320		Lead Azide		0.24*
10 15		Tetryl *Alternative initiatin	ng charges.	
15 20		Ballistic Mortar, % TNT:	(a)	112
20		Traurl Test, % TNT:	(b)	101
75°C International Heat Test:				
% Loss in 48 Hrs	0.05	Plate Dent Test: Method	(c)	A
100°C Heat Test:		Condition		Pressed
% Loss, 1st 48 Hrs	0.03	Confined		No
% Loss, 1st 46 Hrs % Loss, 2nd 48 Hrs	0.03 0.09	Density, gm/cc		1.50
		Brisance, % TNT		107
Explosion in 100 Hrs	None	Detonation Rate:	1.55	-
Flammability Index:		Confinement	(d) Ur	confined
Hygroscopicity: % 30°C, 90% RH	0.04	Condition Charge Diameter, <b>in.</b>	Pressed 1.0	Cast 1.25
		Density, gm/cc	1.64	1.25
Volatility:				

•

Booster Sensitivity lest:	(c)	Decomposition Equation:
Condition	Pressed Cast	Oxygen, otoms/sec
Tetryl, gm	10 5	(Z/sec)
Wax, in. for 50% Detonation		Heat, kilacolarie/male
,	2 0	(ΔH, kcol/mal) Tomporatura Bango °C
Wax, gm		Temperature Range, °C
Density, gm/cc	1.6 1.7	Phase
Heat of: Combustion, cal/gm	2672	Armor Plate Impact lest:
Explosion, cal/gm	1000	60 mm Mortar Projectile:
Gas Volume, cc/gm	675	50% Inert, Velocity, ft/sec
Formation, col/gm	248	Aluminum Fineness
Fusion, col/gm (e)	20.4	
Temperature, ^O C	122	500-16 General Purpose Bombs:
Specific Heat: col/gm/°C (e)	I	Plate Thickness, inches
$\frac{O_{C}}{O}$	0.235	
30	0.258	1
60	0.282	11/4
90	0.310 0.337	11/2
120	0+001	
		134
Burning Rate:		
cm/sec		Bomb Drop lest:
Thermal Conductivity: (f)	).	
col/sec/cm/°C	$6.24 \times 10^{-4}$	17, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Densitv.gm/cc	1.406	
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:	2.1	Unaffected
Young's Modulus:		
E', dynes/cm²		High Order 🚬
E lb/inch ²		1000-lh General Rumose Rombye Concrete
Density, gm/cc		1000-Ib General Purpose Bomb vs Concrete:
Donary, griv co		Height, ft
Compressive Strength: Ib/inch ²		Trials
		Unaffected
		Low Order
Vapor Pressure: "C mm Merci	107	
	ury	High Order
195 2		
255 50		

Fragmentation Test:	Sheped Charge Effectiveness, $TNT = 10$	)0:				
90 mm HE, M71 Projectile, lot WC-91: Density, gm/cc Charge Wt, lb	Gloss Cones Steel Cones Hole Volume Hole Depth					
Total No. of frequents: For TNT	Cobr: Yellow					
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, ib	<b>Principel Uses:</b> Formerly projectile filler, now explosive admixture; and for the manufacture of Explosive D					
Total No. of Fragments: For TNT For Subject <b>HE</b>	Method of Looding: Pr	ressed				
Frogment Velocity: ft/sec At 9 ft At 25½ ft		10 ³ 15 20 .61 1.64				
Density, gm/cc	Method	Dry				
Blast (Relative to TNT);	Hazard Class (Quantity-Distance)	Class 9				
Air: Peak Pressure Impulse Energy	Compot <b>i</b> bili <del>ty</del> Group Exudation	Group I None				
Air, Confinedr Impulse						
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy						

Wat	Water Alcohol Benzene Toluene Ether								
<u></u>	ž	<u>°c</u>	ž	<u>م</u>	<u></u>	<u>م</u>	Z	<u>e</u>	2
0 20 40 60 80 100	0.85 1.17 1.88 2.98 4.53 7.1	0 20 40	4.5 6.9 12.0	0 20 40 60	~2 9.6 27.5 59	<b>20</b> 60	~13 ~30	20 34.7	~3 3.96
Chlore	oform	Ethyl	acetate	<u>Ca</u> tetra	<u>bon</u> chloride	Pyr	ridine	Acet	one
° _C	76	<u>°</u>	26	<u>°c</u>	Z	°c	ž	<u>o</u> c	2
20 60	-2 ~6	20 30 40 50	42 50 58 69	20 60	~0.07 ~0.4	10 30 50	24 37.5 58	<b>20</b> 30 40 50	125 137 164 208
Me	<u>ethanol</u> ,	Isog	propyl alc	<u>ohol</u>	Propano	<u>01-1</u>	Carbon d	isulfide	
oC	2	o _C		2	<u>°c</u>	2	<u>°c</u>	2	
0 20 40 50	<b>14</b> 19 31 41	10 30 50		6.4 9.8 15.5	0 20 40 5 <b>0</b>	2.4 3•3 5.4 7•4	20 30	0.12 0.16	
Preparati	on: (Sum	mary Re	port of ND	RC, MV 8	3, Vol I)				
C6H6	+ Hg(NO3)	2		>	C6H5HgNO3	+ HNO3		(	1)
с ₆ н ₅ 1	HgN03 + N2	04			с ₆ н ₅ No + 1	1g(N03)2		(	2)
•	NO + 2NO							(	3a)
C6H51	N2 ^{NO} 3 + H2	0		>	с6н20н + 1	¹ 2 + HNO3		(	3b)
с ₆ н ₅ с	OH + HNO3	<del></del>	NO2	>	о ₂ мс ₆ н ₄ он	+ н ₂ о		(	3c)
с _{6^н5}	NO oxidat	H Ion and	INO rearrangei	ment >	о ₂ мс _б н ₄ он			(	4)
02NC	_б он + нюо _З		NO2	>	(02N)2C6H	₃ он + н ₂ о		(	(5)
(0 ₂ N	)2 ^{C6H3OH} +	HN03	NO2	>	(02N)3C6H2	₂ 0H + H ₂ 0		(	6 <b>)</b>

Solubility: grams per 100 grams (%) of: (g)

.

The two variables of greatest importance in this process are nitric acid concentration and the effective concentration of benzene (i.e., benzene dissolved in the oxynitration solution). The optimal concentration of nitric acid is in the range 10.4 to 11.6 molar (or the equivalent of 50% to 55% by weight for pure acid). The acid concentration greatly influences the over all rate of reaction, below 10.4 molar the rate falls off rapidly, while above 10.4 molar the rates of both the oxynitration reaction and various side reactions, such as direct nitration, increase rapidly. The range mentioned above seems, in general, to give the lowest proportion of neutral nitro-compounds to nitro-phenols with, at the same time, an adequate rate of oxynitration. The oxynitration solution must be fortified frequently, or, preferably, continuously with nitric acid. Strengths of nitric acid between 95% and 98% are best, due to the smaller increase in reaction volume than if weaker acid were used. The use of absolute nitric acid requires that its direct contact with liquid benzene be avoided.

The effective concentration of benzene is probably the most critical variable affecting the proportion of neutral nitro-compounds to nitrophenols and amounts of colored by-products. Saturation of the oxynitration solution with benzene is undesirable and thus in batch processes slow benzene addition is preferable to the addition of it in one portion; in continuous processes where an excess of benzene is used the rate of agitation is important.

The concentration of mercuric nitrate catalyst does not appear to be a critical factor over a fairly wide range. Concentrations of 0.37 to 0.5 mole of mercuric nitrate per liter of oxynitration solution have been found to give satisfactory results in most cases.

A continuous process, known as the continuous solution process, works on the following cycle. The oxynitration solution is saturated with benzene by vigorous agitation with excess benzene at room temperature, the saturated solution is separated from excess benzene and circulated through a heated coil; it is then cooled to room temperature and agitated again, with benzene, which extracts the organic product and resaturates the oxynitration solution. In evaluating this process, the rate of formation of dinitrophenol per liter of reacting solution in the coil is determined; 70 gm of dinitrophenol per liter per hour is representative performance. The dinitrophenol is, of course, nitrated to picric acid.

#### Origin:

Picric Acid was first prepared in 1771 by Woulff who found the reaction of nitric acid and indigo yielded a dye. Hausmann isolated Picric Acid in 1778 and studied it further (Journal de physique 32, 165 (1788)). The preparation was studied by many chemists but in 1841 Laurent established its identity (Ann chim phys 111, 3, 221 (1841)). It was used as a yellow dye until Turpin, in 1885, proposed Picric Acid as a bursting charge for high explosive shell (French Patent 167,512). The British adopted Picric Acid as a military explosive in 1888 under the name of lyddite and other nations soon began to use it as the first meltloaded high explosive. Mixtures of other explosives and Picric Acid were developed until it was gradually replaced by TNT about 1900. Today Picric Acid is used for the manufacture of Explosive D.

### Destruction by Chemical Decomposition:

Picric Acid is decomposed by dissolving in 25 times its weight of a solution made from 1 part sodium hydroxide and 21 parts sodium sulfide ( $Na_2S'9H_2O$ ) in 200 parts of water. Some hydrogen sulfide and ammonia are evolved.

References: 60

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Ph. Naoum, Z ges Schiess-Sprengstoffw, pp. 181, 229, 267 (27 June 1932).

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) G. H. Messerly, <u>The Rate of Detonation of Various Explosive Compounds</u>, OSRD Report No. 1219, 22 February 1943.

M D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.

(e) International Critical Tables.

(f) E. Hutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity Explosive Materials, AC Report No. 2861, First Report, August 1942.

(g) Values taken from various sources in the open literature.

(h) Also see' the following Picatinny Arsenal Technical Reports on Picric Acid:

1	2	<u>3</u>	4	<u>5</u>	6	7	8	9
1651	132 582 1172 1352 1372	1383	694 764 874	65 425 1585	266 556 926 976 986 1446 1556	<b>1347</b> 1557	1118	1549

⁶⁰See footnote 1, page 10.

Composition: %		Molecular Weight:	310
PETN Gulf <b>Crown</b> E Oil	81 19	Oxygen Balance: CO, % CO %	-74 -31
		Density: gm/cc Hand tam	1.35
		Melting Point: "C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm		Boiling Point: "C	
Sample Wt 20 mg	44	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	<b>11</b> 27	N25	
		n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
	fected	cc/40 Hrs, at 90°C	
Fiber Shoe Unaf	fected	100°C	0.48
Rifle Bullet Impact Test: Trials		120°C 16 hours	11+
%		135°C	**'
Explosions 0		150°C	
Partials 0			
Burned 0		200 Grem Bomb Sand Test:	44.0
Unaffected 100		Sand, gm	41.6
Explosion Temperature: "C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Chorge	e, gm
1 5 Decomposes*		Mercury Fulminate	0.20*
10		Lead Azide	0.20*
15		*Alternative initiating c	harges.
20		Ballistic Mortar, % TNT:	
*No value obtained.		Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: (	a)
% Loss in 46 His		Method	-,
100°C Heat Test:		Condition	Hand tamped
% Loss, 1st 48 Hrs	0.17	Confined	No
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	1.33
Explosion in 100 Hrs	None	Brisance, % TNT	76
Flammability Index:		Detonation Rate:	
termine may marked		Confinement	None
Hygroscopicity: % 30 ⁰ C, 90% RH	0.02	Condition	Hand tamped
rightscopicity. 70 30 63 90% rul	0.02	Charge Diameter, in.	1.0
Volatility:		Density, gm/cc Rate, meters/second	1.37
		Rale, meters/second	7075

## PIPE

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc l+33 Charge Wt, Ib l+723	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments:For TNT703For Subject HE519	Color:
3 inch HE, M42A1 Projectile, Lot KC-5:         Density, gm/cc       1.39         Charge Wt, Ib       0.735         Total No. of Fragments:       For TNT         For Subject HE       428	Principal Uses:       Plastic demolition explosive         Method of Loading:       Hand tamped         Loading Density:       1.35
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry
Blast (Relative to TNT): Air: Peak Pressure Impulse	Hazard Class (Quantity-Distance) Class 9 Compatibility Group Group I Exudation
Energy Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy <u>Preparation:</u> PIPE is manufactured by simple mechanica mixing of PETN in oil.	Origin:PIPE, a mechanical mixture of PEIN and Gulf Crown E 0il, was developed in the United States during World War 11.References: 61(a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III-Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.(b) S. Livingston, Properties of Explosives RIPE, PIPE and PEP-3, Picatinny Arsenal Techni- cal Report 1517, 24 April 1945.

⁶¹See footnote 1, page 10.

Composition:		Molecular Weight:	291
% Lead Nitrate	70	Oxygen Balance: CO, % CO %	-5.4 +9•3
IMI	30	Density: gm/cc	
		Melting Point: "C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 <b>Kg</b> Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg		Boiling Point: "C	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	13 22	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe		Vacuum Stability Test: cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials % Explosions Partiols		100°C 120°C 135°C 150°C	
Burned Unaffected		200 Gram Bomb Sand Test: Sand, gm	32.4
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Decomposes 238 10 15		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminote Lead Azide Tetryl	 0.20 0.10
20		Ballistic Mortar, % TNT:	
75°C International Heat lest: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs		Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:		Detonation Rate: (b) Confinement	
Hygroscopicity: %		Condition Charge Diameter, in.	
Volatility:		Density, gm/cc Rate, meters/second	2. <b>89</b> 4850

Fragmentation lest:	Shaped Charge Effectiveness, $TNT = 100$ :			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel C <b>o</b> nes (a) Hole Volume 114 Hole Depth 103			
Total No. of Fragments: For TNT	Color: Light yellow			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses:			
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Cast			
	Loading Density: gm/cc			
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method Dry			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse	Compotibility Group Group I			
Energy Air, Confined: Impulse	Origin: An explosive containing 70% lead nitrate and 30% TNT has been used in Belgium under the name of "Marcarite."			
Under Water: Peak Pressure Impulse Energy	(a) Eastern Laboratory, du Pont, <u>Investi-</u> gation of Cavity Effect, Sec III, Variation of			
Underground: Peak Pressure Impulse	Cavity Effect with Explosive Composition, NDRC Contract W-672-ORD-5723. (b) Thorpe's Dictionary of Applied Chem- istry, Fourth Edition, Vol IV, Longmans, Green			
Energy Preparation:	and Company, London - New York - Toronto, p. 464.			
Plumbatol is manufactured by simple mechanical mixing of lead nitrate in molten TNT.				

62_{See} footnote 1, page 10.

_

PLX (Liquid)

Composition:			Molecular Weight:	$\frac{100}{61}$	$\frac{95/5}{61}$
Nitromethane Ethylenediamine	100	5	Oxygen Balance: CO, % CO %	-39 -13	-48 -21
*The mixture 95/5 Nitromethane/Ethylenediamine is designated PLX (for Picatinny Liquid Explo-			Density: gm/cc	1.14	1.12
sive). See note und	er <u>Stora</u>	<u>ge</u> .	Melting Point: °C	-29	
C/H Ratio			Freezing Point: "C		
Impact Sensitivity, 2 Kg W Bureau of Mines Appara		<u>100</u> <u>95/5</u> 100+ 100+	Boiling Point: °C	101	
Sample Wt 20 rng Picatinny Arsenal Appar	ratus, in.		Refractive Index, n ^D ₂₀		
Sample Wt, mg		20 20	n ₂₅ n ₃₅		
friction Pendulum Test:			Vacuum Stability Test:		
Steel Shoe		Unaffected	cc/40 Hrs, at		
Fiber Shoe		Unaffected	90°C		
Rifle Bullet Impact Test:	10 Trials	5 Trials	100°C 120°C		
Explosions	% 0	% O	135°C		
Partials	0	0	150°C		
Burned	0	0	200 Gram Bomb Sand Tes		<u>95/5</u>
Unaffected	100	100	Sand, gm	st: <u>100</u> 8.1	<u>50.6</u>
Explosion Temperature: Seconds, 0.1	"C 100	°c 95/5	Sensitivity to Initiation: Minimum Detonating (	Chorao am	
Seconds, U.1	100	<u>7777</u>	Mercury Fulminate	Sharge, gin	
5	430	430	Lead Azide		
10		-			
15			Tetryl		
20			Ballistic Mortar, % TNT:	134	
75°C laterational linet T			Trauzl Test, <b>%</b> PA	127	
75°C International Heat Te % Loss in 48 Hrs	est.		Plate Dent Test: Method		
100°C Heat Test:			Condition		
% Loss, 1st 48 Hrs			Confined		
% Loss, 2nd 48 Hrs			Density, gm/cc		
Explosion in 100 Hrs			Brisance, % TNT		
Flammability Index:			Detonation Rate: Confinement	1/32"* Glass	1/32"* Glass
				Liquid	Liquid
Hygroscopicity: %			Charge Diameter, in.	-	0.94
			Density, gm/cc	1.14	1.12
Volatility:			· · · ·		

## PLX (Liquid)

AMCP 706-177

Booster Sensitivity lest: Nitromethane	Decomposition Equation: (d) <u>Nitromethane</u>
Condition	Oxygen, atoms/sec
Tetryl, gm	(Z/sec) Heat kilocalarie/male 56.6
Wax, in. for 50% Detonation	Heat, kilocalarie/male 56.6 (AH, kcal/mal)
Wax, gm	Temperature Range, °C 380-430
Density, gm/cc	Phase Gaseous
Heat of: (a)	Armor Plate Impact Test:
Combustion, cal/gm 2830	Amor Flate Impact rest.
Explosion, cal/gm	60 mm Mortar Projectile:
Gas Volume, cc/gm	50% Inert, Velocity, ft/sec
Formation, cal/gm =348	Aluminum Fineness
<b>Fusion, cal/gm</b> Vaporization, cal/gm 149	500-lb General Purpose Bombs:
Specific Heat: col/gm/°C (b)	
$C = 0.4209 \cdot 0.00076t + 0.0000061t^2$ P for 15°C to 70°C	Plate Thickness, inches
	1
	11/4
	11/2
	134
Burning Rate:	
cm/sec	Bomb Drop Test:
Thermal Conductivity: col/sec/cm/°C	T7, 2000-1b Semi-Armor-Piercing Bomb vs Concrete:
	Max Safe Drop, ft
Coefficient of Expansion: Linear, %/°C	500-Ib General Purpose Bomb <b>vs</b> Concrete:
Volume, %/°C	Height, ft
	Trials
Hardness, Mohs' Scale:	Unaffected
	Low Order
Young's Modulus:	High Order
E, dynes/cm² E, lb/inch²	
E, ID/Inch ² Density, gm/cc	1000-Ib General Purpose Bomb vs Concrete:
	Height, ft
Compressive Strength: Ib/inch ²	Triols
-	Unaffectea
Vapor Pressure: (c)	Low Order
°C mm Mercury	High Order
70 258	
85 444	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: Light yellow			
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: Minefield clearing			
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pumping			
Fragment Velocity: ft/sec	Loading Density: gm/cc <u>100</u> 95/5 1.14 1.12			
At 9 ft At 25½ ft Density, gm/cc	Storage: Method Components stored separately; mixed only when ready to use			
Blast (Relative to TNT): Air: Peak Pressure Impulse Energy	Hazard Class (Quantity-Distance) Compatibility Group Exudation			
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure impulse Energy	nimum Propagating100 $95/5$ Thickness. in: $0.5$ $0.063$ Viscosity centipoises:(e)Temp, $10^{\circ}C$ $0.748$ $25^{\circ}C$ $0.625$ $40^{\circ}C$ $0.533$ Compatibility with Metals:Stainless steel, mild steel and durironnot affected; corrodes brass.			

### Origin:

Nitromethane has been known since 1872 (Kolbe, J prakt Chem (2)  $\underline{5}$ , 427 (1872), but was available only as a laboratory product until it appeared as an industrial chemical in 1940. A number of patents have been issued for nitromethane produced as a by-product of the nitration of propane (U. S. Patent 1,967,667 (1934); British Patent 443,707 (1937); and Canadian Patent 371,007 (1938).

The development of nitromethane liquid explosives was based on information that nitromethane is sensitized to initiation and propagation of detonation by the addition of various amines. This study made at Picatinny Arsenal in 1945 indicated that mixtures of nitromethane with 5% of ethylenediamine, n-butyl-amine, or morpholine showed considerable promise for application in mine-field clearance (L. H. Eriksen and J. W. Rowen, PATR No. 1565, 17 September 1945).

## References:63

(a) D. E. Holcomb and C. F. Dorsey, "Thermodynamic Properties of Nitroparaffins," Ind Engr Chem  $\underline{\mu_1}$ , 2788 (1949).

(b) J. W. Williams, "A Study of the Physical Properties of Nitromethane," J Am Chem Soc <u>47</u>, 2644 (1925).

(c) L. Medard, "Explosive Properties of Nitromethane," Mem poudr 33, 125 (1951).

(d) T. L. Cottrell, T. E. Graham and T. J. Reid, "The Thermal Decomposition of Nitromethanes," Transactions of the Faraday Society  $\frac{47}{5}$ , 584 (1951).

(e) F. Bellinger, H. B. Friedman, W. H. Bauer, J. W. Eastes and W. C. Bull, "Chemical Propellants: Stability of Mononitromethane," Ind Engr Chem <u>40</u>, 1320 (1948).

(f) Also see the following Picatinny Arsenal Technical Reports on Nitromethane:

<u>o</u>	<u>1</u>	3	5	<u>م</u>	Z	B	9
1660	1681 1831	2113	1565 .	2016	1747	1708	1619

⁶³See footnote 1, page 10.

Composition:	Molecular Weight: $(KC_6H_4N_4O_6)$	225
% с 27.3 н 0.4 N 21.2	Oxygen <b>Balance:</b> CO ₂ % CO %	-60 -18
$\begin{array}{c} n \\ 0 \\ 36.3 \\ 0_2 n \\ \end{array}$	Density: gm/cc	2.21
к 14.8	Melting Point: °C Explodes	210
<b>C/H</b> Ratio 0.416	Freezing Point: °C	
Impoct Sensitivity, 2 Kg Wt: Bureou of Mines Apparatus, cm *-	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3 (11b wt) 6 Sample Wt, mg 7	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₂₀	
Friction Pendulum Test:	Vocuum Stability Test:	
Steel Shoe Explodes	cc/40 Hrs, at	
Fiber Shoe Explodes	90°C 	
Rifle Bullet Impact Test: Trials	120°C	
%	135°C	
Explosions Partio Is	150°C	
Burned	200 Grom Bomb Sand Teat:	
Unaffected	Sond, gm 44.8 Black povder, fuse 9.5	43.6
Explosion Temperature: "C Seconds, 0.1 (no cap used)	Sensitivity to Initiatien: Minimum Detonating Charge, gm	
1	Mercury Fulminate 0.30	0.20
5 250 10	Lead Azide Tetryl	0.10
		······································
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent lest: Method	<u> </u>
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.03	Confined	
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs None		
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 75% RH 0.11 30°C, 90% RH 0.27	Condition Charge Diameter, in.	
	Density, gm/cc	

Baester Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, atoms/sec
Tetryl, gm		(Z/sec)
Wax, in. for 50% Detonation		Heat, kilocalorie/mole (AH kcol/mol)
Wax, gm		Temperature Ronge, °C
• •		Phase
Density, gm/cc		
Heat of:	2209	Armor Plate Impact Test:
Combustion, col/gm		
Explosion, cal/gm	725	60 mm Mortar Projectile:
Gas Volume, cc/gm	604	50% tncrt, Velocity, ft/sec
Formation, col/gm		Aluminum Fineness
Fusion, col/gm		500-lb General Purpose Bambs;
Specific Heat; col/gm/°C (b)		
		Plate Thickness, inches
<del>~~</del> 50	0.217	1
0	0.217	
25	0.217	11/4
50	0.217	11/2
Burning Rate:		1%
cm/sec		
		Somb Drop Test:
Thermal Conductivity:		77, 2000-1b Semi-Armer-Piercing Bomb vs Concrete:
col/sec/cm/°C		TT, AVV-ID Jenni-Armor-Freezeng Bond Ts Concepte.
Coefficient of Expansion;		Mex Safe Drop, ft
Linear, %/°C		500-16 General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
¥		Low Order
Young's Modulus:		High Order
Ę′, dynes∕cm²		
E, lb/inch ²		1000-ib General Purpose Bomb vs Concrete:
Density, gm/cc		
		Height, ft
Compressive Strangth: Ib/inch ²		Triols
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercury		High Order
		-

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones			
Density, gm/cc	Hole Volume			
Charge Wt, Ib	Hole Depth			
Total No. of Fragments:	Color: Orange to brown			
For TNT				
For Subject HE	Principal Uses: Primary explosive			
3 inch HE, M42A1 Projectile, Lot KC-5:				
Density, gm/cc				
Charge Wt, Ib				
Total No. of Fragments:	Method of Loading: Pressed			
For TNT	Method of Loading. Flessed			
For Subject HE				
	Loading Density: gm/cc psix 10 ⁻³			
Fragment Velocity: ft/sec	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
At 9 ft At 25½ ft	Storage:			
Density, gm/cc				
	Method Wat			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9			
Air:	Compatibility Group Group M (wet)			
Peak Pressure	Fredetien			
	Exudation			
Energy				
Air, Confined:	Solubility in Water, gm/100 gm solvent, at:			
Impulse	30°C 0.245			
Under Water:	Stab Sensitivity:			
Peak Pressure Impulse	Density Firing Point (inch-ounces)			
Energy	<u>gm/cc 0% 50% 100%</u>			
Licity	1.63 73 79 84 1.77 66 75 ⁸ 3			
Underground:	1.81 42 48 64			
Peak Pressure	1.86 12 15 18 1.93 11 17 21			
Impulse	1.93 $11$ $11$ $211.98$ $7$ $11$ $14$			
Energy	Activation Energy:			
	kcal/mol 82.6 Induction Period, sec 0.5-10			

## Preparation of Potassium Salt of 4,6-dinitrobenzfuroxan: (a)

Benzfuroxan, made by the reaction of ortho-nitroaniline and alkaline sodium hypochlorite, was dissolved in 6 parts of 96% sulf'uric acid and nitrated at  $5^{\circ}$ -20°C with a 4 to 1 sulfuricnitric acid mixture. The salt was prepared by neutralization of the 4,6-dinitrobenzfuroxan with potassium bicarbonate followed by recrystallization from hot water. The product forms in small golden orange plates which explode at 210°C.

### Origin:

The potassium salt of 4,6-dinitrobenzfuroxan was first prepared in 1899 by von P. Drost (Ann 307, 56 (1899)).

## References: 64

(a) R. J. Gaughran, J. P. Picard and J. V. R. Kaufman, "Contribution to the Chemistry of Benzfuroxan Derivatives," J Am Chem Soc <u>76</u>, 2233 (1954).

(b) C. Lenchitz, <u>Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven</u> <u>Organometallic Compounds</u>, PATR No. 2224, November 1955.

(c) Also see the following Picatinny Arsenal Technical Reports on Potassium Dinitrobenzfuroxan:

2	3	<u>6</u>	<u>9</u>
2122	2093	2146	2179

⁶⁴See footnote 1, page 10.

Composition: %		Molecular Weight:	252
RDX	30	Oxygen Balance:	-45 - 9
Tetryl	50		
TNT	20	Density: gm/cc	1.68
		Melting Point: "C Eutectic	67
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm	44	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg		Refractive Index, n ^O ₂₀ n ^O 25 n ^O 30	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C 	2.0
Rifle Bullet Impact Test: Trials		120°C	3.0
Surlaciona 20		135°C	
Explosions 20 Partials 20		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 60		Sand, gm	54.8
Explosion Temperature: "C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1 5		Mercury Fulminate	0.23*
10		Lead Azide	0.22*
15		Tetry! *Alternative initiating charges.	
20		Ballistic Mortar, <b>%</b> TNT: (a)	132
		Trauzi lest, % TNT:	
75°C International Heot lest: % Loss in 48 Hrs		Plate Dent Test: (b)	
		Method	В
100°C Heat Test:		Condition	Cast
% Loss, 1st 48 Hrs		Confined	No
% Loss, 2nd 48 Hrs		Density, gm/cc	1.68
Explosion in 100 Hrs		Brisance, % TNT	127
Flammability Index:		Detonation Rate:	None
		Confinement Condition	Cast
Hygrosco _o icity: %		Charge Diameter, in.	Last 1.0
30 <b>0</b> C, 90%RH, 15 days	0.00	Density, gm/cc	1.64
Volatility:		Rate, meters/second	7655

## PTX-1

Fragmentation Test:		Shaped Charge Effectiveness, TNT =	100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	1.64 2.180	Glass Cones Stee Hole Volume Hole Depth	l Cones
Total No. of Fragments: For TNT	703	Color:	
For Subject HE	999	Principal Uses: Land mines and o	demolition
3 inch HE, M42A1 Projectile, Lot KC-5:		charges	
Density, gm/cc	1.63		
Charge Wt, Ib	0.864		
Total No. of Fragments:		Method of Loading:	Cast
For TNT	514		
For Subject HE	<b>68</b> 5	Loading Density: gm/cc	1.68
Fragment Velocity: ft/sec	0/00		
At 9 ft At 25½ ft	2690 <b>2460</b>	Storage:	
Density, gm/cc	1.64	Method	Dry
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air:	(d)	Compatibility Group	Group I
Peak Pressure	111		Exudes at 65 ⁰ C
Impulse	109	Exudation	Exudes at 05 C
Energy			
Air, Confined:		Preparation:	
Impulse <b>Under Water:</b> Peak Pressure Impulse Energy		The ternary explosive syste RDX, tetryl and TNT is prepare appropriate weight of water-w tol (40/60) previously melted jacketed melt kettle. Heating are continued until all the w and the mixture is uniform in PTX-1 is also prepared by add Coinposition B.	ed by adding the et RDX to a tetry in a steam- g and stirring vater is evaporated composition.
Underground: Peok Pressure		Composition B. Compatibility with Metals:	
Impulse		Dry: Aluminum, mild steel	not affected.
Energy		Wet: Aluminum, mild steel	not affected.
Tetryl, gm 1 Wax, in. for 50% Detonation 1	ssed Cast 00 100 .94 1.82 .61 1.68		

#### Origin:

The possibility of employing ternary mixtures to obtain explosives having greater power and higher brisance than binary mixtures was suggested by the analysis of Russian 76 mm, armor piercing high explosive rounds (PATR No. 1311, 17 July 1943). The Russian'type ternary explosives, based on the composition and laboratory studies of such mixtures, were indicated to be effective pressed fillers. In conducting *a* preliminary study of <u>castable</u> ternary explosive mixtures suggested by the Russian fillers, a mixture consisting of RDX/tetryl/TNT, designated PTX-1 was developed which had explosive and physical properties offering considerable advantage for military applications (PATR No. 1360, 27 October 1943; and 1379, **11** January 1944).

A PTX-3 composition, prepared by the addition of Haleite to 40/60 tetrytol, also offered promise but limited to applications where the charge would not be required to withstand storage at  $65^{\circ}$ C without exudation.

### References: 65

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, <u>Methods of Physical Testing</u>, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Mamo 10,303, 15 June 1949.

(d) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(e) Also see the following Picatinny Arsenal Technical Reports on PTX-1:

<u>o</u>	2	<u>3</u>	6	<u>7</u>	2
153C	1402	1623	1466 1506	1437	1379 1429 1469

⁶⁵See footnote 1, page 10.

PTX-2

AMCP 706-177

Composition:	Molecular Weight: 244	243
% RDX 44 - 41 PETN <b>28 -</b> 26	Oxygen Balance: <i>CO</i> , % - 33 CO % - 3	-36 - 4
TNT 28 - 33	Density: gm/cc	1.70
	Melting Point: "C Eutectic	75
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 35 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Boiling Point: °C Refractive Index, n ⁰ ₂₀ n ⁰ ₂₃ n ⁰ ₃₀	
Friction Pendulum Test: Steel Shoe Crackle Fiber Shoe	vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	2.6
Rifle Bullet Impact Test: Trials % Explosions 60 Partials 0	120°C 135°C 150°C	11+
Burned O Unaffected 40	200 Gram Bomb Sand Test: Sand, gm	56.9
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	0.21 0.00 0.00
<b>15</b> 20	Ballistic Mortar, <b>%</b> TNT: (a)	138
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: (b) Method	В
100°C Heat Test: % Loss, 1st 48 Hrs % <b>Loss,</b> 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	Cast No 1.71 141
Flammability Index:	Detonation Rate: Confinement	None
Hygroscopicity: % 30°C, 90% RH, 15 days 0.00	Condition Charge Diameter, in. Density, gm/cc	Cast 1.0 1.70
Volatility:	Rate, meters/second	8065

## <u>PTX-2</u>

Fragmentation Test:		Shoped Charge Effectiveness, $TNT = 10$	0:	
<b>90 mm 旺, M71 Projectile, Lot WC</b> Density, gm/cc Charge Wt, Ib	2-91: 1.68 2.226	Glass Cones Steel Co Hole Volume $\sim$ 130 Hole Depth	ones	
Total No. of Fragments: For TNT	703	Color:		
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot K</b> Density, gm/cc Charge Wt, Ib	1128 <b>C-5:</b> 1.70 0.897	Principal Uses: Shaped charges Fragmentation cha	rges	
Total No. of Fragments: For TNT For Subject HE	514 750	Method of Loading:	Cast	
Fragment Velocity: ft/sec At 9_ft	3020	Loading Density; gm/cc	1.70	
A t 25½ ft Density, gm/cc	2850 1.70	Storage: Method	Dry	
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9	
<b>Air:</b> Peak Pressure Impulse Energy	(d) 113 113	Compatibility Group	Group I None at 65 ⁰ C	
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy Rooster Sensitivity Test: Condition Tetry1, gn Wax, in. for 50% Detonation	() Pressed Cast 100 100 1.87 2.32	Preparation:The ternary explosive system consisting of RDX, PETN and TNT is prepared by adding the appropriate weight of water-wet RDX to a pen- tolite (30/70) previously melted in a steam- jacketed melt kettle. Heating and stirring are continued until all the water is evaporated and the mixture is uniform in composition. PTX-2 is also prepared by adding water-wet PETN to RDX Composition B. Compatibility with Metals:Dry:Aluminum, mild steel not affected. Wet: Aluminum not affected.		

#### Origin:

The possibility of employing ternary mixtures to obtain explosives having greater power and higher brisance than binary mixtures was suggested by the analysis of Russian 76 mm, armorpiercing high explosive rounds (PATR No. 1311, 17 July 1943). The Russian type ternary explosives, based on the composition and laboratory studies of such mixtures, were indicated to be effective <u>pressed</u> fillers. In conducting a preliminary study of <u>castable</u> ternary explosive mixtures suggested by the Russian fillers, a mixture consisting of <u>RDX/PETN/TNT</u>, designated PTX-2 was developed which had explosive and physical properties offering considerable advantage for military applications (PATR No. 1360, 27 October 1943; and 1379, **11** January 1944).

A PTX-4 composition, prepared by the addition of Haleite to 30/70 Pentolite, also offered promise but because of border-line stability in accelerated stability tests, PTX-4 must be proven by long term storage to be acceptable for use in standard ammunition.

#### References: 66

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III - Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance</u> Tests, <u>OSRD Report No. 5746</u>, 27 December 1945.

(b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NOL Mamo 10,303, 15 June 1949.

(d) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(e) Also see the following Picatinny Arsenal Technical Reports on PTX-2:

Ω	2	3	4	5	<u>6</u>	8	<u>9</u>
1530	1482	1483 162 <b>3</b>	1414	1445	1466	1838	<i>1379</i> 1429 1469

⁶⁶See footnote 1, page 10.

## PVA-4

Composition: %		Molecular Weight:	217
RDX	90	Oxygen Balance:	
		CO <u>∘</u> % CO %	-37 -10
Polyvinyl Acetate	8		
Dibutylphthalate	2	Density: gm/cc Pressed	1.60
		Melting Point: °C Softening Point: °C	92
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	39	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	9	Refractive Index, $\mathbf{n}_{20}^{\mathrm{D}}$	
Sample Wt, mg	13	∩ ^D ₂₅	
		n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Crackles	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	• · -
Rifle Bullet Impact Test: 5 Triols *		100°C	0.45
20		120°C	0.88
Explosions		135°C	
Portials 0		150°C	11+
Burned 60		200 Gram Bomb Sand Test:	
Unoffected *100 trials at -46°C - Unaffe	cted	Sand, gm	58.5
Explosion Temperature: "C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1 330		Mercury Fulminate	
5 Decomposes 375		Lead Azide	0.22
<b>10</b> 265		Tetryl	
15		Ballistic Mortar, % TNT:	
20		Trauri Test, % TNT:	
75°C International Heat Test:		· · · · · · · · · · · · · · · · · · ·	
% Loss in 48 Hrs		Plate Dent Test:	
		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.10	Confined	
% Loss, 2nd 48 Hrs	0.06	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs	None		
Flammability Index:		Detonation Rate:	News
		Confinement	None
Hygroscopicity: % 30 ⁰ C, 90% RH	0.20	Condition	Cast
		Charge Diameter, in. Density, gm/cc	$1.0 \\ 1.60$
Volatility: 55°C, vacuo, 6 hrs	0.03	Rate, meters/second	
		Kate, meters/second	7910

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :	
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm/cc Charge Wt, Ib	Glass Cones Steel Co Hole Volume Hole Depth	ones
Total No. of Fragments: For TNT	Color:	White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Demolit	ion charges
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed or	extruded
	Loading Density: gm/cc	1.60
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation Not	Group <b>I</b> ne at 71 [°] C
Air, Confined: Impulse	Plasticity: -40 ⁰ C	Cracked
<b>Under Water:</b> Peak Pressure Impulse Energy	25 [°] C	0.3
<b>Underground:</b> Peak Pressure Impulse Energy		

### PVA-4

### Preparation:

Explosive FVA-4, a semi-plastic composition of Canadian origin, consists of 90% RDX, 8% polyvinyl acetate and 2% dibutylphthalate (DBP). This formulation was developed by Dr. Sutherland of Shawinigan Chemicals, Ltd. In evaluating various types of polyvinyl acetate commercially available in the United States, a type obtained from Union Carbide and Carbon, under the industrial named or designation "AYAT" was the most promising coating for RDX in the proportions RDX/PVA (AYAT)/DBP 92/6/2.

A practical method of preparing this composition was by the addition of a solution of the coating agent to an aqueous RDX slurry. Based dn the quality of the product and the pellet densities obtained, a procedure of adding an acetone solution of PVA + DBP to a hot water slurry of RDX, under agitation, was adopted as standard.

### References: 67

(a) See the following Picatinny Arsenal Technical Reports on PVA-4: 1532 and 1634.

⁶⁷See footnote 1, page 10.

Composition;		Molecular Weight: $(C_2H_3NO_3)_n$	(89) _n
% C 27 3.4		Qxygen Balance: CO, % CO %	-45 - 9
(H ₂ C-CH-ONO ₂ ) _n 15.6		Density: gm/cc	
<i>o</i> 54		Melting Point: °C (Soft Pb)	50
C/H Ratio 0.203		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatys, cm	14.86%N 	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	4	Refractive Index, n ^D ₂₀	
Sample Wt, mg	7	n ₂₅	
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
	ackles	cc/40 Hrs, at	
Fiber Shoe Un	affected	90°C	<b>11</b> .
Rifle Buttet Impact Test: Trials			-
%		120°C 16 hou 135°C	15 11+
Explosions			
Partials		150°C	
Burned		200 Gram Bomb Sand Test:	
Unaffected		Sand, gm	49.9
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1 5 265		Mercury Fulminate	
10		Lead Azide	
15		Tetryl	
20		Bellistic Mortar, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	1.9	Confined	
% Loss, 2nd 48 Hrs	2.1	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index :		Detonation Rate: Confinement	
<b>Hygroscopicity:</b> % 30 [°] C, 90% RH	0.62	Condition Charge Diameter, in.	
Volatility :		Density, <b>gm/cc</b>	
<b></b>		Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TN	T = 100:	
90 mm HE, M71 Projectile, Lot WC-91:	Class Capes	Stool Cones	
Density, gm/cc	Glass Cones Steel Cones Hole Volume		
Charge Wt, Ib	Hole Depth		
Total No. of Fragments:			
For TNT	Color:		
For Subject HE			
3 inch HE, M42A1 Projectile, Lot KC-5:	Principal Uses:		
· · · ·			
Density, gm/cc			
Charge Wt, Ib			
Total No. of Fragments:			
For TNT	Method of Loading:		
For Subject HE			
	Loading Density: gm/cc		
ragment Velocity: ft/sec			
At 9 ft At 25½ ft	Sternwei		
Density, gm/cc	Storage:		
	Method		
last (Relative to TNT);	 Hazard Class (Quantity-Distanc	e)	
Air:			
Peak Pressure	Compatibility Group		
Impulse	Exudation		
Energy			
Air, Confined:	55.5°C KI Test:		
Impulse			
	Minutes	60+	
Under Water: Peak Pressure	<u>_34.5°C Heat Test:</u>	Minutor	
Impulse	Salmon Pink	<u>Minutes</u> 20	
Energy	Red Fumes	25	
	Explodes	300+	
Underground:	40-Hour Hydrolysis Test:		
Peak Pressure	% hno ₃	5.07	
Impulse	<u>'eat of:</u>	- 1	
Energy			
	Combustion, cal/gm	2960	
	Explosion, cal/gm Gas Volume, cc/gm	900 8 2 8	
		838	

### Preparation:

Polyvinyl alcohol is mixed with acetic anhydride. The mixture is cooled to  $-5^{\circ}C$  and the nitric acid is added slowly while the mass is being stirred. The temperature is controlled by the rate of acid addition so that when all the acid has been added the temperature does not rise above  $20^{\circ}C$ .

When the nitration is complete, the mixture is drowned by allowing a fine stream of the syrupy liquid to flow from the nitrator and mix intimately with a large stream of water. This causes the product to precipitate in a fine state.

The finely divided precipitate is purified by boiling in frequent changes of water.

#### Origin:

The first preparation of polyvinyl nitrate was reported in 1929 by solution of polyvinyl alcohol in concentrated sulfuric acid and treatment with nitrating acid at a temperature not over  $50^{\circ}$ C. (German Patent 537,303). Later patents issued relative to polyvinyl nitrate included U. S. Patent 2,118,487 (1938) and German Patent 737,199 (1943).

Composition:	· · · · · · · · · · · · · · · · · · ·	Molecular Weight:	230
RDX Gulf Crown E Oil	85 15	Oxygen Balance: O, % CO %	-70 -35
		Density: gm/cc Hand tamped	1.37
		Melting Point: "C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	53	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, <b>mg</b>	13 25	Refractive Index, n ^D ₂₀ n ^D ₂₃ n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at 90°C	
Fiber Shoe	Unaffected	100°C	0.34
Rifle Bullet Impact lest: Trials		120°C	0.56
%		135°C	
Explosions 0 Portiats 0		150°C	
Portials 0 Burned 0		200 Gram Bomb Sand Test:	
Unaffected 100		Sand, gm	40.1
Explosion Temperature: "C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate	
1 5 Decomposes; no val	ue obtained		0.20
10		Tetryl	0.20
15		,.	
20		Ballistic Mortar, % TNT: (a)	118
75%		- Traurl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent lest: (b) Method	В
100°C Heat Test:		-	Hand tamped
% Lass, 1st 48 Hrs	0.03	Confined	No
% Loss, 2nd 48 Hrs	0.04	Density, g <b>m/cc</b>	1.37
Explosion in 100 Hrs	None	Brisance, % TNT	85
Flammability Index:		Detonation Rate: Confinement	None
Hygroscopicity: % 30 ⁰ C, 90% RH	0.04	Condition I Charge Diameter, in.	Hand tamped 1.0
Volatility:		Density, gm/cc Rate, meters/second	1.37 7390

### RIPE

	Fragmentation Test:		Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC	C-91:	Glass Canes Steel C	lones		
Density, gm/cc	1.36	Hole Volume			
Chorge Wt, Ib	1.766	Hole Depth			
Tatol Na. of Fragments:		Calar:	White		
For TNT	703		WIII CE		
For Subject HE	592	Principol Uses: Plastic demolitic	on explosive		
3 inch HE, M42A1 Projectile, Lot K	C-5:				
Density, gm/cc	1.42				
Chorge Wt, ib	0.756				
Total Na. of Frogments:		Method of Looding: Hand	tamped		
For TNT	514	•	L		
For Subject HE	501	Looding Density: gm/cc	1.37		
ragment Velocity: ft/sec					
At 9 ft At 25½ ft	2650 2 <b>3</b> 70	Storage:			
Density, gm/cc	1.395	Method	Dry		
lost (Relative to TNT);			Class 9		
Air:		Compatibility Group	Group I		
Peak Pressure		None at 85°C in 3 Exudation None at 95°C in 1	30 hrs		
Impuise Energy		Exudatian None at 95°C in I Exudes at 105°C i	in 48 hrs		
		Origin:	<u> </u>		
Air, Confined: Impulse					
		RIPE, a mechanical mixture of Crown E Oil, was developed in th			
Under Woter: Peak Pressure		during World War II.			
Impulse		References:68			
Energy		(a) L. C. Smith and E. G. Eys <u>Testing of Explosives</u> , Part III	ster, <u>Physical</u> - Miscellaneo		
<b>Underground:</b> Peok Pressure		Sensitivity Tests; Performance 1 port No. 5746, 27 December 1945.			
Impulse		(b) D. P. MacDougall, <u>Methods</u> <u>Testing</u> , OSRD Report No. 803, 11	August 1002		
Energy					
Preparation:		(c) Also see the following Pi Technical Reports on RIPE: 1713,	catinny Arsen		
RIPE is manufactured by si mixing of RDX in oil.	mple mechanical	recumical heports on RIFE: 1/13,	, 1097 and 171		

 68 See footnote 1, page 10.

319

Composition:	Molecular Weight: (AgN ₃ ) 150		
% N 28.0 Ag 72.0	Oxygen Balance:COL %CO %		
Ag-N=N≝N	Density: gm/cc Crystal 5.1		
C/H Ratio	Melting Point: °C (a) 251 Decomposes rapidly above melting point to Freezing Point: "C silver and nitrogen.		
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C		
Bureau of Mines Apparatus, cm 6 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 18	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀		
Friction Pendulum Test:PA Small ApparatusSteel ShoeDetonatesFiber ShoeDetonates	Vacuum Stability Test: cc/40 Hrs, at 90°C		
Rifle Bullet Impact Test: Trials % Explosions Portials	- 100°C 120°C 135°C 150°C		
Burned Unaffected	200 Gram Bomb Sand Test: Sond (b) Hage Powder fuse 18.9		
Explosion Temperature: "C Seconds, 0.1 (no cap used) 310 1 5 Explodes 290 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:		
20	, Trauzi Test, % Hg(ONC) ₂ (c) aa		
75°C International Heat Test: % Loss in <b>48</b> Hrs	Plate Dent Test: Method		
100°C Heat Test: % Loss, 1st <b>48</b> Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT		
Flammability Index:	Detonation Rate: Confinement Condition Charge Diameter, in.		
Hygroscopicity: % (b) 25°C, 100% RH 0.04			
Volatility: 75 ⁰ C, 24 hrs 0.00	Density, gm/cc Rate, meters/second		

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 10$	00:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel C Hole Volume Hole Depth	Cones
Total No. of Frogments: For TNT	Color: White	e <i>to</i> gray
For Subject HE	Principal Uses: Ini	itiators
<b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib		
Total No. of Fragments: For TNT	Method of Loading: Pres	ssed
For Subject HE	Loading Density: gm/cc Var	iable
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	W e t
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air:	Compatibility Group	Group M
Peak Pressure Impulse	Exudation	None
Energy		
Air, Confined: Impulse	Initiating Efficiency: Grams Required to Give Complete Initiation of TNT	(c) 0.02-0.05
Under Water: Peak Pressure	Solubility in 100 gm Solvent at Room Temperature:	
Impulse Energy	<u>Solvent</u> Water (b)	<u>Grams</u> 0.006
<b>Underground:</b> Peak Pressure Impulse Energy	Ammonium hydroxide Nitric acid Ether (b) Ethyl alcohol, 95% Acetone	Soluble Decomposes 0.017 0.006 0.015
Explosive Power: (f)	Unaffected by water and CO ₂ .	(d)
Kilogram meters 192,000 % Mercury Fulminate 1.097	Heat of: Explosion, cal/gm (c, d) Formation, cal/gm (e)	<b>452</b> 67 <b>.</b> 8

Preparation:

 $NaN_3 + AgNO_3 \rightarrow AgN_3 + NaNO_3$ 

Prepare the following aqueous solutions:

- a. 5% NaN₃, sodium azide, 50 cc
- b. 25% AgNO₃, silver nitrate, 25 cc

The silver nitrate solution is placed in a 200 cc cdnductive rubber beaker equipped with a hard wood stirrer operated by an air motor. The sodium azide solution is placed in a separatory funnel fastened in a ring stand above the beaker containing the silver nitrate. A long cord (10 ft) is fastened to the stopcock of the separatory funnel so that the funnel can be emptied by remote control. The silver nitrate solution is now stirred very rapidly and the sodium azide is slowly run into the nitrate solution. Stirring is continued for 5 minutes. The contents of the beaker are filtered through folded filter paper and washed free of sodium azide and silver nitrate with distilled water.

Silver azide should be stored under water in a conductive rubber container. This preparation will yield approximately 7 grams.

The preparation should be conducted under a hood and behind a barricade. The product obtained by the above procedure has a very fine particle size, almost colloidal. Very fine silver azide is safer to handle and is just as efficient and stable as the large, coarse crystalline material (Ref b). When a thin film of fine silver azide is precipitated on mercury fulminate, tetryl, etc., these substances are as efficient weight for weight as pure silver azide (Ref g). White silver azide is less affected by light than mercury or lead azide (Ref h). Long colorless crystals which explode on breaking are obtained from ammonium hydroxide.

#### Origin:

Silver azide was first prepared in 1890-1 by T. Curtius (Ber 23, 3032; Ber 24, 3344-5) by passing hydrazoic acid ( $HN_2$ ) into neutral silver nitrate solution. Taylor and Rinkenbach prepared pure "collocial" aggregates and showed its sensitivity depends upon its particle size (Army Ordnance 5, 824 (1925). Silver azide was found in a detonator of foreign ammunition for the first time in 1945 (Ref i).

### References:⁶⁹

(a) A. R. Hitch, "Thermal Decomposition of Certain Inorganic Trinitrides," J Am Chem Soc <u>40</u>, 1195 (1918).

(b) C. A. Taylor and Wm. H. Rinkenbach, "Silver Azide: An Initiator of Detonation," Amy Ordnance, Vol 5, p. 824 (1925).

- (c) E. De W. S. Colver, High Explosives, London and New York, p. 527.
- (d) A. Stettbacher, Spreng u. Schlesstoffe, Rascher, Zurich, p. 97 (1948).
- (e) A. Marshall, Explosives, 2nd Ed, Vol II, p. 767, London.
- (f) A. Stettbacher, Z ges Schiess-Sprengstoffw 10, pp. 193-214 (1915).

⁶⁹See footnote 1, page 10.

### Silver Azide

.

(g) F. Blechta, Chim et Ind Special No. 921-5 (June 1933); C. A. 28, 646.

(h) L. Wohler and W. Krupko, Berichte <u>46</u>, 2047-2050 (1913).

(i) F. G. Haverlak, Examination of 120/45 MM HE Shell. Italian (FMAM-464), PATR No. 1515, 10 April 1945.

Composition:	Molecular Weight: (C ₂ H ₈ N ₁₀ 0) 188		
% C 12.8 H 4.3 II //	Oxygen Balance:           CO ₂ %           CO %		
C-NH-NH-N = N-C	Density: gm/cc At 3000 psi 1.05		
o 8.5 ^{NH} 2 NH-NH-NO	Melting Point: "C Explodes 140-1 60		
C/H Ratio 0.068	Freezing Point: "C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 7	Boiling Point: "C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.2; (8 oz wt) 8 Sample Wt, mg	Refractive Index, <b>n</b> ^D ₂₀ <b>n</b> ^D ₂₅ <b>n</b> ^D ₃₀		
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C		
Rifle Bullet Impact Test: Trials % Explosions Partials	100°C 120°C 135°C 150°C		
Burned Unaffected	200 Gram Bomb Sand Test:       Sand gm       Black powder_fuse       4.0		
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 160 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate 0.40 Lead Azide Tetryl		
15 20	Ballistic Mortar, % TNT:		
	Trauzi Test, % TNT: (a) 61		
75°C International Heat Test:% Loss in 48 Hrs0.5	Plate Dent Test: Method		
100°C Heat lest:	Condition		
% Loss, 1st 48 Hrs 23.2	Confined		
% Loss, 2nd 48 Hrs 3.4	Density, gm/cc		
Explosion in 100 Hrs None	Brisance, % TNT		
Flammability Index:	<ul> <li>Detonation Rate:</li> <li>Confinement</li> <li>Condition</li> <li>Charge Diameter, in.</li> </ul>		
Hygroscopicity: % 30 ^o C, 90% RH 0.77			
Volatility:	Density, gm/cc Rate, meters/second		

ragmentation Test:	Shaped Charge Effectiveness, TNT = 10	)0:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel C	ones
Density, gm/cc	Hole Volume	
Charge Wt, ¹ b	Hole Depth	
Total No. of Fragments:	Color: Pale	yellow
For TNT		
For Subject HE	Principal Uses: Priming compositi detonators	ons and
3 inch HE, M42A1 Projectile, Lot KC-5:	detonators	
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments: For TNT	Method of Loading:	Pressed
For Subject HE	Loading Density: gm/cc A t 3000 psi 1.0	
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storoge:	
Density, gm/cc	Method	Wat
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
	Compatibility Group	Group M
Air: Peak Pressure		• •
Impulse	Exudation	
Energy		
Air, Confined:	Solubility:	
Impulse Under Water:	Practically insoluble in wat acetone, ether, benzene, carbon or ethylenedichloride.	er, alcohol, tetrachlorido
Peak Pressure Impulse	Sensitivity to Electrostatic Discharge, Joules:	(b)
Energy	Unconfined Confined	0.010 0.012
Underground: Peak Pressure	Heat of:	
Impulse Energy	Explosion, cal/gm Gas Volume, cc/gm	658 1190
	Initiating Efficiency:	
	Tetracene is not efficient in high explosives.	n initiating

Tetracene

#### Preparation:

(Rinkenbach and Burton, Amy Ordnance 12, 120 (1931)).

Tetracene is prepared by dissolving 5 gms of aminoguanidine dinitrate in 30 cc of water, cooling to  $0^{\circ}$ C and mixing with a solution of 2.5 gms of sodium nitrate in 15 cc of water. The temperature is maintained at about  $10^{\circ}$ C and 0.5 gm of acetic acid is added. The tetracene separates out and is washed with water, alcohol and ether. It is then dried.

Tetracene may also be prepared by placing aminoguanidine sulphate and sodium nitrite in a large beaker and adding water heated to  $30^{\circ}$ C. The heat of reaction causes the mixture to boil; after standing for two or three hours the separated tetracene is filtered off, washed thoroughly and dried.

#### Oriain:

Tetracene was first prepared in 1910 by Hoffman and Roth (Ber  $\frac{43}{2}$ , 682) who also studied its chemical reactions and determined. its structure (Hoffman et al, Ber  $\frac{43}{2}$ , 1087, 1866 (1910); Ber  $\frac{44}{2}$ , 2496 (1911); and Ann 380, 131 (1911)). W. H. Rinkenbach and O. Burton made an extensive study of tetracene and described its manufacture and explosive properties (Army Ordnance 12, 120 (1931)).

### Destruction by Chemical Decomposition:

Tetracene is decomposed by adding it to boiling water and continuing boiling for some time to insure complete decomposition.

### References: 70

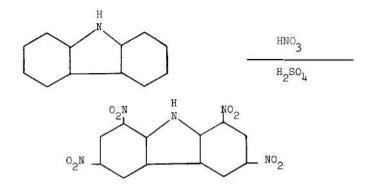
(a) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD Report No.</u> 5746, 27 December 1945.

(b) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(c) Also see the following Picatinny Arsenal Technical Reports on Tetracene:

<u>o</u>	<u>1</u>	<u>3</u>	4	<u>7</u>	<u>8</u>	<u>9</u>
1450	11	453	$1104 \\ 2164$	407	318	859 2179


⁷⁰See footnote 1, page 10.

Composition:	Molecular Weight: $(C_{12}H_5N_5O_8)$ 347
$%$ $O_2N$ H $NO_2$ c 41.6	Oxygen Balance; O, % -85 CO % -30
H 1.4 $\circ_2$ N N $\circ_2$	 Density: gm/cc
N 20.0	Melting Point: °C Pure 1,3,6,8-isomer 296
0 37+0 C/H Ratio 1.032	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 100+ Sample Wt 20 mg	Boiling Point: °C Refractive Index, n ^o ₂₀
Picatinny Arsenal Apparatus, in. 18 Sample Wt, mg 14	n ^D ₂₅
Friction Pendulum Test:         Steel Shoe       Unaffected         Fiber Shoe       Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials % Explosions Particls	100°C     0.2       120°C     0.2       135°C     150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 41.3
Explosion Temperature: "C Seconds, 0.1 (no cap used) 5 Decomposes 470 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide 0.20 Tetryl 0.25
<b>15</b> 20	Ballistic Mortar, % TNT:
	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:           % Loss, 1st 48 Hrs         0.15           % Loss, 2nd 48 Hrs         0.05           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	<ul> <li>Detonation Rate:</li> <li>Confinement</li> </ul>
Hygroscopicity: % 30 ⁰ C, 90% RH 0.01	Condition Charge Diameter, in.
Volatility:	Density, gm/cc Rate, meters/second

# Tetranitrocarbazole (INC)

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel C Hole Volume Hole Depth	ones	
Total No. of Fragments: For TNT	Color: Lig	ht yellow	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Component of igni pyrotechnic comp	ter and ositions	
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Pressed	
Fragment Velocity: ft/sec	Loading Density: gm/cc		
At 9 ft At <b>25</b> ½ ft Density, gm/cc	Storage:	-	
	Method	Dry	
Blest (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation		
Air, Confined: Impulse	Solubility in Water, gm/100 gn (%), at:		
Under Water:	95°C	0.10	
Peak Pressure Impulse	Qualitative Solubilities:	C - 11-11+ -	
Energy	<u>Solvent</u> Nitrobenzene	<u>Solubility</u> Very soluble	
Underground: Peak Pressure Impulse Energy	Acetone Benzene Chloroform Carbontetrachlori de Ether Ether, petroleum	Soluble Insoluble Insoluble Insoluble Insoluble Insoluble	

Preparation:



<u>Sulfonation</u>: Fifty-six gms of carbazole is dissolved in 320 gms of  $H_2SO_{\rm h}$  (96%, specific gravity 1.84). The solution is agitated during the addition of the carbazole and the temperature maintained at 25°-35°C. After the addition of the carbazole is completed, the agitation is continued and solution completed by raising the temperature to  $80^{\circ}-85^{\circ}C$  and maintaining this temperature  $\notin$  or one hour. The sulphate is now cooled to  $20^{\circ}C$ .

<u>Nitration</u>: The sulfonate solution is slowly added to 168 gms of  $HNO_3$  (Plant grade specific gravity 1.525 at 15°C) maintaining the temperature at 30° to 50°C. (Time required - 1 hour 25 minutes). The temperature is then gradually raised to 70° to 75°C and maintained for one hour after which the temperature is raised to 85° to 90°C and held for one hour, then lowered to room temperature before drowning.

<u>Drowning:</u> The nitration mixture is drowned by pouring it into 2 to 3 volumes of ice and water.

<u>Filtering</u>: The separated light yellow product is filtered on a Buchner Funnel and washed with water twice to remove most of the acid.

<u>Purification</u>: The TNC is placed in hot water  $(95^{\circ} \text{ to } 100^{\circ}\text{C})$  and boiled for five to ten minutes with rapid agitation, allowed to settle then filtered and washed once. This procedure is repeated twice, making a total of three "boilings." The final wash is acid free.

Drving: The TNC is spread in a thin layer and dried at 100° to 110°C for four hours.

Yield: 73.3%.

Melting Point of TNC as prepared: 280°C (compares to 296°C for pure 1,3,6,8-isomer in preceding data).

#### Origin:

The preparation of Tetranitrocarbazole (TNC) was first reported in 1880 by C. Graebe (Ann 202, 26 (1880)) who nitrated carbazole with 94% nitric acid. Similar procedures were followed by R. Escales (Ber <u>37</u>, 3596 (1904)) and P. Zierch (Ber <u>42</u>, 3800 1909)). However, G. L. Ciamician and P. P. Silber observed the formation of four isomeric TNC's when acetyl carbazole was treated with fuming nitric acid (Gazz chim ital <u>12</u>, 272 1882)). In 1912 and 1913 patents were issued to the dyestuff manufacturer, Casella and Company, covering the preparation of polynitrocarbazoles (German Patent 268, 173 and French Patent 464, 538). The Casella process of

#### Tetranitrocarbazole (TNC)

preparing polynitrocarbazoles by dissolving carbazole in sulfuric acid and treating the solution of sulfonic acids with strong nitrating agents is essentially the process used today in the United States. The crude product, thus prepared, contains principally 1,3,6,8-TNC (W. Borsche and B. G. B. Scholten Ber 50, 596 (1917) and about 10% of the 1,2,6,8-TNC isomer (D. B. Murphy et al J Am Chem Soc  $\overline{75}$ , 4289 (1953). TNC was used in explosives by the Germans during World War II.

References: 71

(a) D. B. Murphy, F. R. Schwartz, J. P. Picard and J. V. R. Kaufman, "Identification of Isomers Formed in the Nitration of Carbazole," J Am Chem Soc, <u>75</u>, 4289-4291 (1953).

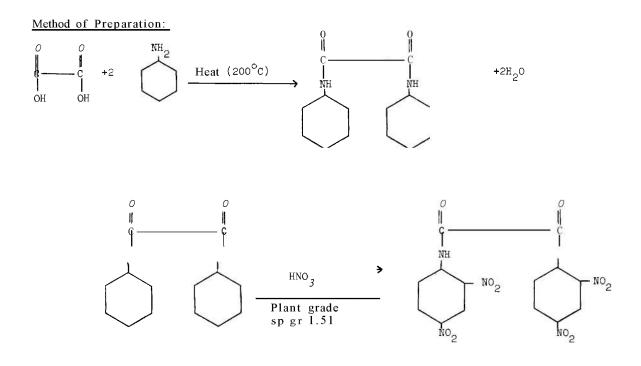
(b) S. Livingston, <u>Preparation of Tetranitrocarbazole</u>, PA Chemical Research Laboratory Report No. 136,330, 11 April 1951.

(c) D. B. Murphy et al, Long Range Basic Technical Research Leading to the Development of Improved Ignition Type Powders - The Chemistry of Tetranitrocarbazole, PA Memorandum Report No. 22, 2 September 1952.

(d) S. Livingston, Development of Improved Ignition Type Powders, PATR No. 2267 July 1956.

(e) Also see the following Picatinny Arsenal Technical Reports on Tetranitrocsrbazole:

<u>0</u>	2	3	<u>4</u>	<u>_7</u>
2180	1802	1973	1984	1647 1937


⁷¹See footnote 1, page 10.

330

Composition:	Molecular Weight: $(C_{14}H_8N_6O_{10})$ 420		
С 40.0 С О С О С О С О С О С О С О С О С О С	Oxygen Balance:         -84           CO, %         -31		
N 20.0	Density: gm/cc		
	Melting Point: °C Decomposes 313		
C/H Ratio 0.735 NO2 NO2	Freezing Point: "C		
Impact Sensitivity, 2 Kg Wt:	Boiling Point: "C		
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 30 Sample Wt, mg 11	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀		
Friction Pendulum Test: Steel Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at		
Fiber Shoe Unaffected	90°C		
Rifle Bullet Impact Test: Trials % Explosions	- 100°C 120°C 0.11 135°C		
Partials	150°C		
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 16.3		
Explosion Temperature: "C Seconds, 0. i (no cap used) 1	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate		
5 392	Lead Azide 0.20		
10	Tetryl 0.25		
15 20	Ballistic Mortar, % TNT:		
	- Trauzi Test, % TNT:		
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method		
100°C Heat Test:	Condition		
% Loss, 1st 48 Hrs 0.07	Confined		
% Loss, 2nd 48 Hrs 0.00	Density, gm/cc Brisance, % TNT		
Explosion in 100 Hrs None			
Flammability Index:	Detonation Rate: Confinement		
Hygroscopicity: % 30 ⁰ C, 90% RH Trace	Condition Charge Diameter, in.		
Volatility:	Density, gm/cc Rate, meters/second		

# 2,4,2',4'-Tetranitro-oxanilide (INO)

Frogmentation lest:	Shaped Charge Effectiveness, $TNT=100$ :		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Totol No. of Fragments: For TNT	Color: Light yellow		
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: Component of black powder type and pyrotechnic compositions		
Total No. of Fragments: ForTNT For Subject HE	Method of Loading: Pressed and extruded compositions		
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc Storage:		
Blast (Relative to TNT):	Method Dry Hazard Class (Quantity-Distance) Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation		
Air, Confined: Impulse	Solubility, gm/100 cc Solvent, in: <u>o</u> c <u>%</u>		
Under Water: Peak Pressure Impulse	Water100<0.10		
Energy Underground: Peak Pressure Impulse Energy	SolventSolubilityEthyl alcoholInsolubleBenzeneInsolubleButyl acetateInsolubleCarbontetrachlorideInsolubleEthyl etherInsolubleAcetic acidSolubleNitric acidSolubleCaustic potashSolubleDimethyl formamideVery soluble		



### Oxanilide:

Two parts of oxalic acid are mixed with one part of aniline in a round bottom flask. The mixture is stirred and heated until the reaction is complete as evidenced by the cessation of effervescence. The mass is cooled to room temperature, poured into several volumes of water  $(21^{\circ}-24^{\circ}C)$ , filtered on a Büchner funnel and washed free of oxalic acid with water and then washed free of aniline with acetone. The oxanilide is air dried to remove the acetone and then dried at  $100^{\circ}-110^{\circ}C$ .

#### Tetranitro-oxanilide (TNO):

A 5 liter round bottom flask is equipped with a stirrer of a type which will produce a downward "swirl." The flask is surrounded with a water jacket for hot and cold water. Fifteen hundred grams (1.5 kilograms) of 98% plant grade nitric acid is placed into the flask. Five hundred (500) grams of oxanilide is slowly added to the acid under rapid agitation while the temperature is maintained below  $40^{\circ}$ C. After the addition of the oxanilide is completed ( $2\frac{1}{2}$ -3 hrs), the agitation is continued 10-15 minutes. The temperature is then raised to  $80^{\circ}$ C over a period of one hour and maintained at  $80^{\circ}$ -85°C for 3 hours. The acid slurry is then cooled to room temperature and drowned by pouring over cracked ice. The product is filtered on a Buchner funnel and washed with water until it is almost acid free. The filter cake is placed in a beaker and sufficient water added to form a "slurry." Live steam is run into the "slurry" under agitation for 10 minutes. The slurry is filtered and the residue washed. The latter treatment of the "slurry" is repeated until the wash water is found to be neutral to

### 2,4,2',4'-Tetranitro-oxanilide (TNO)

litmus paper. The TNO is washed with alcohol, then acetone, air dried and finally dried at  $100^{\circ}-110^{\circ}C$ .

Yield = 90% to 97.546 of theoretical.

### Origin:

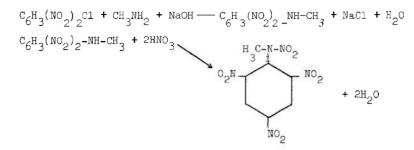
A. G. Perkin in 1892 obtained tetranitro-oxanilide directly by heating a solution of finely powdered oxanilide in nitric acid. He also obtained the same compound by the action of a cooled mixture of nitric and sulfuric acids on oxanilide and precipitating the product by pouring the solution into water (J Chem Soc  $\underline{61}$ , 460 (1892).

#### References: 72

(a) S. Livingston, Development of Improved Ignition Type Powders, PATR No. 2267, July 1956.

(b) D. Dubrow and J. Kristel, <u>Substitution of Tetranitro Oxanilide and Hexanitro Oxanilide</u> for Tetranitro Carbazole, PA Pyrotechnic Research Laboratory Report 54-TF 1-88, 20 December 1954.

⁷²See footnote 1, page 10.


Composition:		Molecular Weight: (C7H5N508)	287
$^{\%}$ C 29.3 H 1.7 H 0 ₂ N	-NO2	Oxygen Balance: CO ₂ % CO %	-47 - 8
N 24.4	2	Density: gm/cc Crystal	1.73
0 44.6		Melting Point: "C	130
C/H Ratio 0,420 NO	2	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	26 8 18	Boiling Point: °C Refractive Index, n ^D ₂₀ n ^D ₂₅	
Friction Pendulum Test:		n ^D ₃₀	
Steel Shoe Fiber Shoe	Crackles Unaffected		
Rifle Bullet Impact Test: Trials %		120°C	0.3 1.0
Explosions 13 Partials 54		135°C 150°C	 11+
Burned 10 Unaffected 23		200 Gram Bomb Sand Test: Sand, gm	54.2
Explosion Temperature:         "C           Seconds, 0.1 (no cap used)         340           1         314           5         Ignites         257           10         238           15         236           20         234		Sensitivity to Initiation; Minimum Detonating Charge, gm Mercury Fulminate Lead Azide <u>Tetry:</u> <u>*Alternative initiating charges.</u> Bgllistic Mortar, % TNT; (a)	0.20* 0.10* 
20 - 34		Trourl Test. % TNT; (b)	125
75°C International Heat Test: % <b>Los</b> s in 48 Hrs	0.01	Plate Dent lest: (c) Method A	В
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	0.1 0.0 None	Condition Pressed Confined Yes Density, gm/cc 1.50 1.5 Brisance, % TNT 116 115	
Flammability Index:	244	Detonction Rate: Confinement	None
Hygroscopicity: % 30°C, 90% RH	0.04	Condition Charge Diameter, in.	Pressed
Volatility: 25 ^o c	0.00	Density, gm/cc Rate, meters/second	1.71 7850

Booster Sensitivity lest:	(d)	Decomposition Equation:	$\binom{(g)}{10^{15.4}}$ $\binom{(h)}{10^{12.9}}$
Tetryl, gm	100	(Z/sec)	
Wax, in. for 50% Detonation	2.01	Heat, kilocalorie/mole (AH, kcol/mol)	38.4 34.9
Wax, gm		Temperature Range, °C	211-260 132-164
Density, gm/cc	I.58	Phase	Liquid Liquid
Heat of:	2025	Armor Plate Impact Test:	
Combustion, col/gm	2925		
Explosion, col/gm	1080-1130 760	60 mm Mortar Projectile:	
Gas Volume, cc/gm	•	50% Inert, Velocity, ft/	sec
Formation, col/gm Fusion, sol/em_o(e)	-14 22.2	Aluminum Fineness	
Temperatúre, C	127	500-16 General Purpose Bo	mbs;
Specific Heat: col/gm/°C	(e)	Plate Thickness, inches	
-100	0.182	Flate HILCKIESS, INCHES	
- 50	0.200	1	
0 50	0.212 0.223	11/4	
100	0.236	11/2	
		13⁄4	
Burning Rate:			
cm/sec		Bomb Drop Test:	
Thermal Conductivity: (f) col/sec/cm/°C 5.81 x 10 ⁻¹ 4 6.83 x 10 ⁻¹ 4	at 1.394 gm/cc at 1.528 gm/cc	T7, 2000-Ib Semi-Armor-Pi	iercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft	
Linear, %/°C		500-1b General Purpose Bo	omb vs Concrete:
Volume, %/°C		Height, ft	
Hardness, Mohs' Scale:		Trials	
		Unaffected	
Young's Modulus:		Low Order	
E, dynes/cm ²		High Order	
E, Ib/inch²		1000-lb General Purpose B	omb vs Concrete:
Density, gm/cc			
		Height, ft	
Compressive Strength: Ib/inch ²		Trials	
		Unaffected	
Vapor Pressure:		Low Order	
"C mm Mercury	/	High Order	

Fragmentation lest:		Shaped Charge I	Effectiveness, T	NT = 100	<b></b>	
90 mm HE, M71 Projectile, Lot WC-91			Glass Cones	Steel Cor	les	
Density, gm/cc	1.58	Hole Volume				
Charge Wt, Ib	2.052	Hole Depth				
	2,002	There Depin				
Total No. of Fragments:		Color:		Light	yellow	
For TNT	70 3			÷		_
For Subject HE	864	Principal Uses:				
3 inch HE, M42A1 Projectile, Lot KC-5:			sive mixtu blasting c		mators, a	ant
Density, gm/cc	1.62		brasting d	արե		
Charge Wt, Ib	0.848					
Total No. of Fragments:		Method of Load	lina:		Pressee	1
For TNT	51 ⁴					
For Subject <b>HE</b>	605			_		
		Loading Density	:gm/cc	See belo	DW .	
Fragment Velocity: ft/sec						
At 9 ft At 25½ ft		Storage:				
Density, gm/cc		-longe.				
		Method			Dry	
Blast (Relative to TNT):		Hazard Class (Quantity-Distance) Class			)	
		Compatibility	Group		Group	1
Air:		Compatibility	Gloup		Group	∎,
Peak Pressure		Exudation	D	oes not e	kude at 6	.J.
Impulse _		Extraction				2 .
Energy						
Air, Confined:		Loading Densi	<u>ty:</u> gm/ee			
Impulse		Cast 1.62	Pressed		1.03	
		Cast 1.02	riesseu	psix	10	
Under Water:		0 3	5 10 1.47 1.57	12	15	50
Peak Pressure		0.9 1.40	1.47 1.57	7 1.60	1.63	167
Impulse			30			
Energy			1.73	_		
Underground:		Effect of Ten	nnerature on		(;)	
Peak Pressure		Rate of Deton			(07	
Impulse			•			
Energy		16 hrs at,	°C	- 54	21	
		Density, g Rate, m/se	m/ee	- <b>1.52</b> 71.50	1.53 7170	
			-	1 4 7 0	1410	
						!

#### Preparation:

(Manufacture of Tetryl by Dinitromonomethylaniline Process, Wannamaker Chemical Co., Inc.)



To a solution of 202.5 gm dinitrochlorbenzene in 200 cc benzene, at  $75^{\circ}$ C with good agitation, in 15 to 20 minutes, add 112 gm of 30% aqueous monomethylamine. Then add 129 gm of 31%aqueous sodium hydroxide, in 15 to 20 minutes, at such a rate as to cause refluxing; continue agitation for 3 hours at  $70^{\circ}$ C. The mixture is concentrated to a liquid temperature of  $101^{\circ}$ - $102^{\circ}$ C, cooled, filtered and the precipitate washed with distilled water until the washings give no test with silver nitrate, dried at  $60^{\circ}$ C (melting point  $167.2^{\circ}$ C).

The dinitromethylaniline is nitrated to tetryl by solution of it in 88% sulf'uric acid (197 gm nitroaniline/1190 gm sulfuric) at 25°C, followed by addition of nitric acid. The process is carried out so that the water content remains at 16%. Solution (per 197 gm nitroaniline) requires 5 to 10 minutes, nitration, by addition of the sulfuric acid solution to nitric acid, about 1 hour at 30°C, plus 48 minutes at 50° to 55°C at the end. The mixture is then cooled to 20°C and filtered. The tetryl is dumped into 1 liter water, washed 2 or 3 times with 200 cc cold water, and then stirred 10 to 15 minutes at 50°C with 500 cc water, filtered warm and then washed with water until the washings are neutral to methyl orange. The tetryl dried to constant weight at 70°C weighs about 270 gm.

Tetryl filtered from an acid containing 87% sulfuric acid (or more) -13\% water, at  $40^{\circ}C$  (or over) may fire in 30 minutes to 1 hour and 30 minutes, if not drowned in water. A safe nitration procedure, even on plant scale involves:

1. The concentration of sulfuric in the spent acid is maintained at a low level (approx 80/1.8/18.2 sulfuric/nitric/water).

- 2. Nitration maximum temperature is 50°C.
- 3. The slurry is cooled to 35°C before filtration.
- 4. Filtration time prior to drowning, is minimized (15 minutes maximum).

The crude tetryl produced is recrystallized to remove impurities and occluded acid and to control its granulation.

Sensitivity of tetryl electrostatic	discharge, joules;	<u>through 100 mesh:</u> (	(i)
-------------------------------------	--------------------	----------------------------	-----

Uncc Conf	onfined fined		0.007 4.4						
<u>Solubility</u>	of tetryl,	grams in 10	0 grams (%)	of:					
Wa	ter	Carbo	on tetrachlo	ride		Eth	ier	95	Se Alcohol
<u>°c</u>	<u>%</u>	<u>°c</u>		%		<u>°c</u>	<u>%</u>	<u>00</u>	<u>%</u>
0 20 40 80 100	0.0050 0.0075 0.0110 0.0810 0.184	0 20 40 60	(	0.007 0.015 0.058 0.154		0 10 20 30	0.188 0.330 0.418 0.493	0 10 20 30 50 75	0.320 0.425 0.563 0.76 1.72 5.33
<u>Chlo</u>	roform	<u>Carbon</u> d	sulfide	Ethy1	Lene dic	hloride		Aceton	e
<u>°c</u>	<u>%</u>	<u>°c</u>	<u>%</u>	<u>°c</u>		Z	<u>0</u> ,	c	<u>%</u>
0 20 40 60	0.28 0.39 1.20 2.65	0 10 20 30	0.009 0.015 0.021 0.030	25 75		4.5 45	2 3 4 5		75 95 116 138
Trichlor	oethylene	Ethyl ac	etate		Benzene			Toluer	ie
<u>°c</u>	<u>%</u>	<u>°c</u>	<u>%</u>	<u>°c</u>		<u>%</u>	0	c	<u>%</u>
0 20 40 60 80 86	0.07 0.12 0.26 0.67 1.50 1.76	20	<b>~</b> 40	20 30 40 50		7.8 10.0 12.5 16.0	2	0	8.5
		Xy	lene		T	<u>TN</u>			
		<u>°c</u>	<u>%</u>		°C	K			
		20 30 40 50	3,3 4.4 5.4 6.0		80 100 120	82 149 645			

### Origin:

Tetryl was first described in 1879 by Michler and Meyer (Ber 12, 1792), van Romburgh and Martens studied its properties and proved its structure (Rec trav chim 2, 108 (1883); 6, 215 (1887); and Ber 19, 2126 (1886)). Tetryl was not used as an explosive until World War I.

Destruction by Chemical Decomposition:

Tetryl is decomposed by dissolving in 12 times its weight of a solution prepared from 1 part, by weight of sodium sulfite  $(Na_2SO_2^*7H_2O)$  in 4 parts water. The sulfite solution may be heated to  $80^{\circ}C$  to facilitate decomposition of the Tetryl.

### References: 73

(a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u> - <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Ph Naoum, Z ges Schiess---Sprengstoffw, pp. 181, 229, 267 (27 June 1932).

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wex Mixtures as a Substitute for</u> Tetryl in Poosters, NOL Mamo 10, 303; 15 June 1949.

(e) C. A. Taylor and Wm H. Rinkenbach, "The Solubility of Trinitro-Phenylmethyl-Nitramine (Tetryl) in Organic Solvents," J Am Cham Soc 45, (1923) p. 104.

(f) E. Hutchinson, <u>The Thermal Sensitiveness of Explosives</u> The Thermal Conductivity of Explosive Materials, AC 2861, First Report, August 1942.

(g) R. J. Finkelstein and G. Gemow, <u>Theory of the Detonation Process</u>, NAVORD Report No. 90-46, 20 April 1947.

(h) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utah. <u>Ind Eng Chem</u> 1090-1095 (June 1956).

(i) J. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by <u>Electrostatic Discharges</u>. U. S. Dept of Int, Bureau of Mines, R1 3852, 1946.

(j) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military</u> <u>Explosives at Several Different Temperatures</u>, PAIR No. 2383, November 1956.

<u>0</u>	<u>1</u>	<u>2</u>	3	<u>4</u>	د	6	I	8	2
30 Goo 7770 810 1380 1350 1350 1400 1450 1450 1510 1510	11 361 381 621 861 1041 1261 1261 1431 1431 1431 1651	132 582 832 1192 1352 1372 1402 1452 1592	453 493 623 833 863 1113 1373 2053 2163 2233	84 144 294 314 694 774 784 874 1134 1164 1234 1264 2024 2204	65 195 425 525 625 635 925 1145 1285 1405 1585 1935 2105 2125 2205	266 556 986 1086 1126 1316 1416 1466 1466 1556 1636 1956	117 197 637 707 807 857 1047 1137 1287 1337 1367 14 37 1737 1797 1937	28 438 628 708 788 838 1418 1788 1828 1838	129 179 319 609 709 849 999 1029 1209 1209 1429 1489 1819 1969

(k) Also see the following Picatinny Arsenal Technical Reports on Tetryl:

⁷³See footnote 1, page 10.

Composition: %		Molecular Weight:	274
Tetryl	80	Oxygen Balance: CO, % CO %	-52 -11
TNT	20	Density: gm/cc Cast	1.51
		Melting Point: °C	68
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	28	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	9 17	Refractive Index, N ^D ₂₀ N ^D ₂₅ N ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Fiber Shoe		cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials		100°C 120°C	3.0 11+
Explosions 0		135°C 150°C	
Partials 20 Burned 0		200 Gram Bomb Sand Test:	
Unaffected 80		Sand, gm	54.0
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Ignites 290		<b>Sen</b> si <b>tivity to Initiation:</b> Minimum Detonating Charge, gm Mercury Fulminate Lead Azide	0.22* 0.17*
10		*Alternative initiating charges.	
15 20		Ballistic Mortar, % TNT:	
		Trauri Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat lest:		Condition	
% Loss, 1st 48 Hrs	0.1	Confined	
% Loss, 2nd 48 Hrs	0.5	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index: Will not continue	to burn	Detonation Rote: Confinement	
Hygroscopicity: %	0.02	Condition Charge Diameter, in.	
Volatility:		Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: Light yellow to buff			
For Subject HE 3 inch HE, M42A1 Projectile, lot KC-5: Density, gm/cc Charge Wt, lb Total No. of Fragments:	Principal Uses: Bursters, demolition blocks Method of Loading:			
For TNT For Subject HE	Loading Density: gm/cc			
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage:			
Blast (Relative to TNT):	Method Dry Hazard Class (Quantity-Distance) Class 9			
<b>Air:</b> Peak Pressure Impulse Energy	Compatibility GroupGroupIExudationExudes at $65^{\circ}$ C			
Air, Confined: Impulse				
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy				

Tetrytol, 75/25

Composition:	Molecular Weight:	270
% Tetryl 75 TNT 25	Oxygen Balance: COୁ % CO %	-54 -12
	Density: gm/cc Cast	1.59
	Melting Point: °C	68
C/H Ratio	Freezing Point: °C	
Impact sensitivity, 2 Kg Wt:Bureau of Mines Apparatus, cm28Sample Wt 20 mg28Picatinny Arsenal Apparatus, in.10Sample Wt, mg17	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum lest: Steel Shoe Cracks Fiber Shoe Unaffected	Vacuum Stability lest: cc/40 Hrs, at 90°C	
Rifle Bullet Impact lest:TrialsSectors0Partials30		3.0 11+
Burned 0 Unaffected 70	200 Gram Bomb Sand lest: Sand, gm	53.7
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 Ignites 310 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide *Alternative initiating charges. Ballistic Mortar, % TNT: (a) Irauzl lest, % TNT:	0.23* 0.19* 122
75°C International Heat lest: % Loss in 48 Hrs	Plate Dent Test: (b) Method B	В
100°C Heat lest: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	ConditionCastConfinedNoDensity, gm/cc1.66Brisance, % TNT118	Cast Yes 1.62 114
Flammability Index: Will not continue to burn	Detonation Rate: Confinement	None
Hygroscopicity: % 0.03	Condition Charge Diameter, in.	Cast 1.0
Volatility:	Density, gm/cc Rate, meters/second	1.60 7385

Tetrytol, 75/25

Fragmentation Test:		Shaped Charge Effectiveness, TNT =	100:
90 mm HE, M71 Projectile, Lot WC-91 Density, gm/cc Charge Wt, Ib	1.59 2.101	Glass Cones Steel Hole Volume 127 Hole Depth 120	Cones (d)
Total No. of Fragments: For TNT For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5 Density, gm/cc Charge Wt, Ib	703 557 : 1.60 0.845	Color: Light yell Principal Uses: Bursters, demol	ow to buff ition blocks
Total No. of Fragments: For TNT For Subject HE	514 591	Method of Loading:	Cast
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc Blast (Relative to TNT):		Loading Density: gm/cc Storage: Method Hazard Class (Quantity-Distance)	1.59 Dry Class 9
Air: Peak Pressure Impulse Energy		Compatibility Group Exudation	Group I Exudes at 65 ⁰ C
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy		Eutectic Temperature, ^o C: gn Tetryl/100 gn TNT 67.5°C Booster Sensitivity Test: Condition Tetryl, gn Wax, in. for 50% Detonation Density, gm/cc	67.5 54-82 (c) Cast 100 1.66 1.66

Tetrytol, 70/<u>3</u>0

Composition: %	Molecular Weight:	
Tetryl 70	Oxygen Balance: CO, % CO %	-55 -13
TNT 30	Density: gm/cc Cast	1.60
	Melting Point: °C	68
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C	
Bureau of Mines Apparatus, cm28Sample Wt 20 mgPicatinny Arsenal Apparatus, in.11Sample Wt, mg18	Refractive Index, n ^D ₂₀ n ^D ₂₃	
Friction Pendulum lest:	Vacuum Stability lest:	
Steel Shoe Unaffected	cc/40 Hrs, at 90°C	
Fiber Shoe Unaffected	100°C	3.2
Rifle Bullet Impact lest: Trials	100 C	11+
%	135°C	
Explosions 0	150°C	
Partiols 55	150 C	
Burned 0	200 Gram Bomb Sand lest:	0
Unaffected 45	Sand, gm	53.2
Explosion Temperature: "C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 416	Minimum Detonating Charge, gm	
1 387	Mercury Fulminate	0.23*
5 Ignites 320	Lead Azide	0.22*
10 302	Tetry *Alternative initiating charges.	
15 289	Ballistic Mortar, % TNT: (a)	120
20 275	Trauzi lest, % TNT:	
75°C International Heat lest:	Plate Dent lest: (b)	
% Loss in 48 Hrs	Method	В
100%0 Hast Is st	Condition	Cast
100°C Heat lest: % Loss 1st 48 Hrs 0.1	Confined	Yes
,o	Density, <b>gm/c</b> c	1.60
% Loss, 2nd 48 Hrs 0.1 Explosion in 100 Hrs None	Brisance, % TNT	117
	Detonation Rate:	
Flammability Index: Will not continue to but		None
- is not continue to but	Condition	Cast
Hygroscopicity: % 0.02	Charge Diameter, in.	1.0
	Density, gm/cc	1.60
Volatility:	Rate, meters/second	7340

### <u>Tetrytol, 70/30</u>

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 10	00:
90 mm HE, M71 Projectile, Lot WC	C-91:	Gloss Cones Steel C	ones
Density, gm/cc	1.60	Hole Volume	
Charge Wt, Ib	2.090	Hole Depth	
Total No. of Fragments:		Color: Light vel	low to buff
For TNT	703		
For Subject HE	840	Principal Uses: Bursters, demolit	tion blocks
3 inch HE, M42A1 Projectile, Lot K	C-5:		
Density, gm/cc	1.60		
Charge Wt, Ib	0.842		
Total No. of Fragments:		Method of Loading:	Cast
For TN T	514	include of Louding.	Cast
For Subject HE	58 <b>5</b>	Loading Density: gm/cc	1.60
Fragment Velocity: ft/sec			
At 9 ft At 25½ ft		Storage:	
Density, gm/cc		Method	Dry
		_	-
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure			- (- ⁰ ~
Impulse		Exudation Exud	les at $65^{\circ}$ C
Energy			
Air, Confined: Impulse			
<b>Under Water</b> : Peak Pressure			
Impulse			
Energy			
Underground: Peak Pressure			
Impulse			
Energy			

### <u>Tetrytol</u>, 65/35

Composition:		Molecular Weight:	264
% Tetryl	65	Oxygen Balance: CO ₂ % CO %	-56 -14
TNT	35	Density: gm/cc	1.60
		Melting Point: °C	68
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	28	Boiling Point: °C	
Sample Wt 20 mg	11	Refractive Index, $\mathbf{n}_{z_0}^{D}$	
Picatinny Arsenal Āpporotus, in. Sample Wt, mg	17	n ₂₅	
Campie Wi, mg	-1	n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Cracks	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
		100°C	2.8
Rifle Bullet Impact Test: Trials		120°C	11+
Explosions 0		135°C	
		150°C	
l'altiais		200 Gram Bomb Sand Test:	
Baillea		Sand, gm	52.6
_			
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm Mercury Fulminate	0.23*
1 5 Ignites 325		Leod Azide	0.23*
5 ignites 5-0			
10		*Alternative initiating charges.	
20		Ballistic Mortar, % TNT:	
20		Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
		Detonation Rate:	
Flammability Index: Will not com	ntinue to burn	Confinement	None
		Condition	Cast
Hygroscopicity: %	0.02	Charge Diameter, in.	1.0
		— Density, gm/cc	1.60
Volatility:		Rate, meters/second	7310

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 10	0:		
90 mm HE, M71 Projectile, Lot WC-91:		(d) (e) Glass Cones Steel Cones			
Density, gm/cc	1.61	Hole Volume 133 126			
Charge Wt, Ib	2.010	Hole Depth 120 119			
Total No. of Fragments:					
For TNT	703	Color: Light yellow	to buff		
For Subject HE	856	Principal lients D			
3 inch HE, M42A1 Projectile, Lot KC-5	:	Principal Uses: Bursters, demolitie	DI DIOCKS		
Density, gm/cc	1.60				
Charge Wt, Ib	0.845				
Total No. of Fragments:					
For TNT	514	Method of Loading:	Cast		
For Subject HE	585				
Fragment Velocity: ft/sec		Loading Density: gm/cc	1.60		
At 9 ft					
At 25½ ft		Storage:			
Density, gm/cc			_		
		Method	Dry		
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9		
Air:		Compatibility Group	Group I		
Peak Pressure Impulse		Fundation Funda	es at 65°C		
Energy		Exudation Exude	es at op c		
Lincigy					
Air, Confined: Impulse					
mpulse					
<b>Under Water:</b> Peak Pressure					
Impulse					
Energy					
Underground: Peak Pressure					
Impulse					
Energy					

#### Compatibility with Metals:

<u>Dry:</u> Copper, brass, aluminum, magnesium, stainless steel, mild steel, mild steel conted with acid proof black paint and mild steel plated with copper, cadmium, zinc or nickel are unaffected. Magnesium-aluminum alloy is slightly affected.

Wet: Stainless steel and mild steel coated with acid-proof black paint are unaffected. Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, mild steel and thild steel plated with cadmium, copper, zinc or nickel are slightly affected.

#### Preparation:

Tetrytols are manufactured by heating TNT in a melting kettle, equipped with a stirrer, until all the TNT is melted. The necessary amount of tetryl is added and heating snd stirring are continued. The temperature is allowed to drop from  $100^{\circ}$ C until the mixture is of maximum viscosity suitable for pouring. Part of the tetryl dissolves in TNT forming a eutectic mixture which contains 55 percent tetryl. This mixture freezes at 67.5°C.

#### Origin:

Tetrytols were developed during World War II. The 70/30 tetryl/INT castable mixture is the most important in military applications.

#### References: 74

(a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Past III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report No. 5746, 27 December 1945.

(b) D. P. MacDougall, <u>Methods of Physical Testing</u>, OSRD Report No. 803, 11 August 1942.

(c) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Mano 10,303, 15 June 1949.

(d) Eastern Laboratory, du Pont, Investigation of Cavity Effect, Sec III, Variation of Cavity Effect with Explosive Composition, NDRC Contract W672-ORD-5723.

(e) Eastern Laboratory, du Pont, Investigation of Cavity Effect, Final Report, Easter:? Lab, du Pont, 18 September 1943, NDRC Contract W-672-ORD-5723.

(f) Also see the following Picatinny Arsenal Technical Reports on Tetrytol:

0	<u>1</u>	2	<u>3</u>	<u>5</u>	6	I	8	2
1260 1360 1420 1500 1530	1291 1311 1451 1651 1951	1372	1193 1213 1363 1493	1285 1325 1885 2125	1376 1436 1466 1506	1477 1737 1797	1158 1388 1838	1379

# TNT (Trinitrotoluene)

Composition: %		Molecular Weight: (C ₇ H ₅ N	3 ⁰ 6)	227
	^H 3	Oxygen Balance: CO, % CO %		-74 -25
0 ₂ N-	NO ₂			
N 18.5		Density: gm/cc Crys	tal	1.65
0 42.3		Melting Point: "C		81
C/H Ratio 0.549	° ₂	Freezing Point: "C		
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm	<b>95-</b> 100+	Boiling Point: °C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	14-15 17	Refractive Index, $n_{20}^{D}$	α β Τ	1.5430 1.6742 1.717
Friction Pendulum Test:				
Steel Shoe	Unaffected Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C		
Rifle Bullet Impact Test: Trials		100°C		0.10
%		120°C		0.23
Explosions 4		135°C		0.44
Partials 0		150°C		0.65
Burned 0		200 Gram Bomb Sand lest;		
Unaffected 6		Sand, gm		48.0
Explosion Temperature: "C Seconds, 0.1 (no cap used) 570		Sensitivity to Initiation: Minimum Detonating Char	ge, gm	
1 520		Mercury Fulminate		0.24*
5 kcomposes 475		Lead Azide		0.27*
10 465 15		Tetryl *Alternative initiating	charges.	
20		Ballistic Mortar, % TNT:		d=100
		Trauzl Test, <b>%</b> TNT:	st	d=100
75°C International Heat Test: % Loss in 48 Hrs	0.04	Plate Dent Test: Method A	(a) A	В
1002011		Condition Cas		D
100°C Heat Test:		Confined Yes	Yes	No
% Loss, 1st 48 Hrs	0.2	Density, gm/cc 1.61		1.61
% Loss, 2nd 48 Hrs Explosion in 100 Hrs	0.2 None	Brisance, % TNT 100	100	100
	None			
Flammability Index: (b)	100	Detonation Rate: Confinement U	Inconfined	Unconfined
			ressed	Cast
Hygroscopicity: % 30 ⁰ C, 90% RH	0.03		.0	1.0
		•	.56	1.56
Volatility: 30 ⁰ ℃	Ni <b>1</b>		825	6640

Beester Considuity Test				4. 1	1.5
Booster Sensitivity Test: Condition	(c) Pressed	Cast	Decomposition Equation: Oxygen, atoms/sec	(h) 10 ^{11.4}	(i) 10 ^{12.2}
Tetryl, gm	100	100	(Z/sec)		
Wax, in. for 50% Detor		0.82	Heat, kilocolorie/mole	34.4	43.4
		0102	(AH, kcɑl/mol) Temperature Range, ℃	275-310	238-277
<b>Wax,</b> gm Density, gm∕cc	1.55	1.60			
Density, gin/cc		1.00	Phase	Liquid	Liquid
Heat of:	(d)		Armor Plate Impact Test:		
Combustion, cal/gm		3620	Annor Plate impact rest.		
Explosion, cal/gm		1080	60 mm Mortar Projectile:		(j)
Gas Volume, cc/gm		730	50% Inert, Velocity, ft/	'sec	>1100
Formation, col/gm		78.5	Aluminum Fineness		
Fusion, cal/gm		22.34			
Temperature, °C		79	500-1b General Purpose Bo	mbs;	(j)
Specific Heat: col/gm/°C					d <b>-</b>
		0.309	Plate Thickness, inches	Trials	% Inert
20		0.328	1	0	
50		0.353		0 0	
80		0.374	11/4		100
			11/2	4	100
			13/4	4	50
Burning Rate: cm/sec					
			Bomb Drop Test:		
Thermal Conductivity:					
cal/sec/cm/°C	See next p	age.	T7, 2000-1b Semi-Armor-F	Piercing Bomb	vs Concrete:
			Max Safe Drop, ft	500	00-6000
Coefficient of Expansion:	(b)		Wax Sale Diop, It	200	00-0000
Linear, $\%/^{\circ}C - 40^{\circ}$ to	о 60°C <b>5.4</b> х о 60°C <b>6.7</b> х	$10^{-5}$ (b)	500-Ib General Purpose B		~ .
Volume, %/°C 27 ⁰ t d		na <b>-</b> 5		<u>No Seal</u>	Seal
volume, $\%$ / C 27 to $16^{\circ}$ to	o 70 ⁰ C <b>26.3</b> :	$x 10^{-5}$ (b) (n)	Height, ft	4,000	4-5,000
		<u>(n)</u>			
hardnoce Maha' Coole:	(a)	11	Trials	26	20
hardness, Mohs' Scale:	(e)	1.4	Trials Unaffected	26 24	20 20
		1.4			
Young's Modulus:	(b)	10	Unaffected	24	20
Young's Modulus: E', dynes/cm ²	(b)	5.45 x 10 ¹⁰	Unaffected Low Order	24 2	20 0
Young's Modulus: E', dynes/cm ² E, lb/inch ²	(b)	5.45 x 10 ¹⁰ 0.79 x 10 ⁶	Unaffected Low Order	24 2 0 Somb vs Concre	20 0 0
Young's Modulus: E', dynes/cm ²	(b)	5.45 x 10 ¹⁰	Unaffected Low Order High Order 1000-Ib General Purpose E	24 2 0 Bomb vs Concre <u>No Seal</u>	20 0 0 ete: <u>Sca 1</u>
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc	(b)	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft	24 2 0 30mb vs Concre <u>No Seal</u> 5,000	20 0 ote: <u>Sea 1</u> 5,000
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/in	(b)	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft Trials	24 2 0 30mb vs Concre <u>No Seal</u> 5,000 2 1	20 0 0 ete: <u>Sca 1</u> 5,000 26
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/in Density, gm/cc	(b)	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft Trials Unaffected	24 $2$ $0$ Romb vs Concrete No Seal 5,000 21 18	20 0 0 ete: 5,000 26 22
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/in Density, gm/cc Vapor Pressure:	(b) (nch ² 13800	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft Trials Unaffected Low Order	$24$ $2$ $0$ Somb vs Concre $\frac{No Seal}{5,000}$ $21$ $18$ $0$	20 0 0 ete: <u>Sea 1</u> 5,000 26 22 0
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/in Density, gm/cc Vapor Pressure: "C mm	(b) (c) nch ² 13800 Mercury	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 0-14000 1.62	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft Trials Unaffected	24 $2$ $0$ Romb vs Concrete No Seal 5,000 21 18	20 0 0 ete: 5,000 26 22
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/in Density, gm/cc Vapor Pressure: "C mm 80	(b) (c) nch ² 13800 Mercury 0.042	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 0-14000 1.62	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft Trials Unaffected Low Order	$24$ $2$ $0$ Somb vs Concre $\frac{No Seal}{5,000}$ $21$ $18$ $0$	20 0 0 ete: <u>Sea 1</u> 5,000 26 22 0
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/in Density, gm/cc Vapor Pressure: "C mm	(b) (c) nch ² 13800 Mercury	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 0-14000 1.62	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft Trials Unaffected Low Order	$24$ $2$ $0$ Somb vs Concre $\frac{No Seal}{5,000}$ $21$ $18$ $0$	20 0 0 ete: <u>Sea 1</u> 5,000 26 22 0
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/in Density, gm/cc Vapor Pressure: "C mm 80 85 90 95	(b) (c) nch ² 13800 Mercury 0.042 0.053 0.067 0.085	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 0-14000 1.62	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft Trials Unaffected Low Order	$24$ $2$ $0$ Somb vs Concre $\frac{No Seal}{5,000}$ $21$ $18$ $0$	20 0 0 ete: <u>Sea 1</u> 5,000 26 22 0
Young's Modulus: E', dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/in Density, gm/cc Vapor Pressure: "C mm 80 85 90	(b) (c) nch ² 13800 Mercury 0.042 0.053 0.067	5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161 0-14000 1.62	Unaffected Low Order High Order 1000-Ib General Purpose E Height, ft Trials Unaffected Low Order	$24$ $2$ $0$ Somb vs Concre $\frac{No Seal}{5,000}$ $21$ $18$ $0$	20 0 0 ete: <u>Sea 1</u> 5,000 26 22 0

# INT (Trinitrotoluene)

Fragmentation Test:		Shaped Charge Effectiveness, TNT =	100:
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Steel	l Cones
Density, gm/cc	1.60	Hole Volume 100 1	00
Charge Wt, ib	2.104	Hole Depth 100 1	00
Total No. of Fragments:			
ForTNT	703	Color: Light,	yellow
For Subject HE	703		
3 inch HE, M42A1 Projectile, Lot KC-5:		Principal Uses: GP bombs, HE pa demolition charges, dep grecades, propellant co	pth charges,
Densitv, gm/cc	1.60	ground, propertant of	
Charge Wt, Ib	0.848		
Total No. of Fragments:		Method of Loading: 1. Cast	
For TNT	514	Method of Loading: 1. Cast 2. Pressed	
For Subject HE	514		
		Loading Density: gm/cc	See below
ra <b>gment Velocity:</b> ft/sec At 9 ft	(k)		
At 9 If At 251/2 ft	260 236	Storage:	
Density, gm/cc	1.5	Method	Dry
lost (Relative to		Hazard Class (Quantity-Distance)	Class 9
Air:		Compatib <b>i⊪ty</b> Group	Group I
Peak Pressu	100		
Impulse	100	Exudation No	one at 65 ⁰ 0
-	100		
Air, Confined:		Loading Density: gm/cc	
Impulre	100	1. Cast 1.58-1.59 2. Press	ed psi x 10 ³
Under Water:		   3 5 10 15 2	- 20 30 50
Peak Pressur	100		55 1.59 1.
impulse	100	Thermal Conductivity:	
France	100	cal/sec/cm/°C	
Underground:		Density 1.19 gm/cc (g) 5.28	x 10-4
Peak Pressure	100	1.51 gm/cc (g) 7.12 1.54 gm/cc (b) 5.6	$x 10^{-4}$ x 10^{-4}
Impulse	100	1.54  gm/ec (b) $5.61.67  gm/ec$ (q) 12.21	x 10-4
Energy	100	'iscosity, poi.ses:	
		Temp, 85°C 100°C	0.139
		ulk Modulus at Room	0.095
			(m)
		Dynes/cm ² x 10 ⁻¹⁰	2.92

Effect of Temperature on Rat	te of Detona	tion: (1	)		
Temperature of Charge, ^o C	<b>-</b> 54	21	60	60	
Hours at Temperature	16	16	24	72	
Density, gm/cc	1.63	1.62	1.64	1.64	
Rate, meters/second	6700	6820	6770	6510	
Sensitivity to Electrostatic	Discharge,	Joules; '	Through 10	0 Mesh:	
Unconfined Confined	0.06 4.4				
Impact Sensitivity versus Te	emperature:				
Picatinny Arsenal Apparat	us, 2 kg wt,	inches:			
° <u>C</u>	inches				
-40 Room	17 14				
80 90	7				
105-110	3 2 (5 exp)	L in 20 ti	rials)		
Impact Sensitivity versus Lo	ading Metho	d, Large I	Impact Ap	paratus,	Inches:
Pressed at 1.60 gm/cc Cast at 1.60 gm/cc	70 26				
Rifle Bullet Impact Sensitiv	ity versus '	Femperatu	re, Confin	ement:	
Standard Iron Bomb		Ten	xm iperature		<u>105⁰ to 110⁰C</u>
No Air Space Trials			10		10
Explosions		1 very	low order		7
Air Space Trials Explosions			10 0		10 0

Tin or Cardboard Bombs:

With or Without Air Space		
Trials	10	10
Explosions	0	0

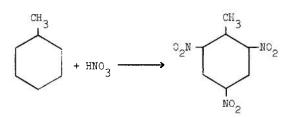
Explosion Temperature versus TNT Initial Temperature:

Explosio	n lemperature	e versus .	INI INITIAL	Temper	ature:		
TNT Te	mperature, In	niti al		Ex	plosion Tempera	ture, ^o (	2
R	000 05 ⁰ -100 ⁰ C				470 (Decompose 480 (Decompose		
Explosion	n Temperature	e versus (	Confinement	•C:			
	nfined d in glass ca y at 80.5 ⁰ C:	apillary	Decompos Explodes	es	470 320-335		
S = %	sity, X, cp I solid in slu cle size effe	irry		26			
Density,	gm/cc:						
<u>°c</u>			State		gm/cc		
<b>27</b> 80 82 87 95			Flaked Flaked Liquid Liquid Liquid		1.65 1.64 1.48 1.48 1.48		
Solubili	ty of TNT, gm	n/100 gm (	<b>%),</b> in: (f)	)			
Wa	ater	Acet	one	B	enzene	T	oluene
°c	<u>%</u>	<u>°c</u>	₽/2	<u>°c</u>	<u>%</u>	<u>°c</u>	
0 20 40 60	0.0100 0.0130 0.0285 0.0675	0 20 40 60	57 109 228 600	0 20 40 60 80	13 67 180 478 ? 2000	0 20 40 60 80	19 30 >170
<u>C</u>	Carbon					Tri	chloro

60	0.0675	60	600	60 80	478 ? 2000	60 80	367 >1700
	<u>arbon</u> chloride	Etl	her	Chlore	oform	<u>Trichl</u> <u>ethyl</u>	
°C	%	<u>°c</u>	<u>%</u>	°c	<u>%</u>	°C	<u>%</u>
0 0 40 60	0.20 0.65 1.75 6.90	0 20	1.73 3.29	0 20 40 60	6 19 66 302	25 55	3.5 60

Z

28 1393


70 75 17.34 24.35

					otoruene)		
<u>Pyri</u>	dine	Methy	l acetate	<u>Eth</u> dich	<u>ylene</u> loride	A-Ethernet	noxy- a cet at e
°c	1/2	<u>°c</u>	K	<u>°c</u>	<u>%</u>	<u>°c</u>	%
<b>20</b> 40 60 <b>70</b>	140 250 640 1250	<b>20</b> 40 50	73 135 <b>280</b>	<b>20</b> 40 60	34 123 460	<b>20</b> 40 50	<b>29.</b> 5 49 96
	<u>hloro-</u> ane	A	niline		<u>ropyl</u> ohol	Etha	<u>nol</u>
° _C	%	°c	<u>%</u>	<u>°c</u>	<u>%</u>	°C	Ź
<b>20</b> 40 50	18 50 100	10 30 50 70 80	6.1 11.5 29 74 130	20 40 50	0.76 1.96 2.95	0 20 40 60 70	0.62 <i>1.25</i> 2.85 8.4 15
Isobı	ıtyl alcoh	01		Carbon disu	lfide	Chlorobe	enzene
<u>°</u> с		<u>%</u>		o _C	<u>%</u>	<mark>о</mark> с	<u>%</u>
0 20 40 50		0.20 0.61 1.41 2.35		0 <b>20</b> 40	0.14 0.44 1.4	20 30 40 50	85 51 79 116

#### TNT (Trinitrotoluene)

#### Preparation:

(AC 7258, 7259, 7260 - Nitration Kinetics) (Chemistry of Powder and Explosives, Davis)



In older processes trinitrotoluene (TNT) was slowly and laboriously nitrated in three stages using successively stronger acids. Today, however, a single stage nitration is possible, in a short time (less than one hour) producing TNT at a cost of a little less than  $6\phi/lb$ . In England, a two stage continuous process was developed during World War 11; in the first counter current stage, toluene was nitrated to the mono stage mononitrotoluene (MNT); in the second stage, also counter current, MNE was nitrated to TNT.

#### TNT (Trinitrotoluene)

It was the British work, on the kinetics of nitration of toluene to TNT, that first pointed out the basic importance to nitration processes of the nitroxyl ion  $(NO_2^+)$ , on the one hand, and the role of the bisulfate ion  $(HSO_4^-)$  and unionized sulfuric acid on the other. These concepts were successful in explaining the maximum in nitration rate occurring at a sulfuric acid content of 92%. This work, for instance, leads to the following equation for the rate of formation of TNT from DNE

# $\frac{d (\text{INT})}{dt} = K (\text{NO}_2^+) [K' (\text{HSO}_4^-) + K'' (\text{H}_2\text{SO}_4)] (\text{DNT})$

<u>Three Stage Process</u>: Toluene (100 gm) is nitrated to the mono derivative by slowly adding a mixture of 294 gm sulf'uric acid (sp gr 1.84) and 147 gm nitric acid (sp gr 1.42) to it at  $30^{\circ}-40^{\circ}$ C, with good agitation. Acid addition requires 1-1.5 hour, and stirring at  $30^{\circ}-40^{\circ}$ C is continued 30 minutes longer. The mixture is cooled and the lower layer of spent acid drawn off.

Half the crude mono is dissolved in 109 gm sulfuric acid (sp gr 1.84) with cooling, the solution heated to  $50^{\circ}$ C and a mixture of 54.5 gm nitric acid (sp gr 1.50) and 54.5 gm sulfuric acid (sp gr 1.84) added, under agitation, at such a rate that the temperature is maintained between  $90^{\circ}$  and  $100^{\circ}$ C. Acid addition requires 1 hour, and stirring at  $90^{\circ}$ - $100^{\circ}$ C is continued 2 more hours.

While the dinitration mixture is still at  $90^{\circ}$ C, 145 gm fuming sulfuric acid (oleum containing 15% free  $$0_3$ ) is added slowly. A mixed acid of 92.5 gm each nitric acid (sp gr 1.50) and 15% oleum is slowl added, under good agitation at  $100^{\circ}$ -115°C over 1½-2 hours. The mixture is stirred at 100 -115°C for 2 more hours, cooled, filtered, and the TNT cake broken up and washed with water. The TNT is washed 3-4 times with hot water ( $85^{\circ}$ -95°C) with good agitation. The product can be purified either by recrystallization from alcohol or by washing it with 5 times its weight of 5% sodium bisulfite solution at 90°C for ½ hour with vigorous stirring, washing with hot water until the washings are colorless, and cooling slowly with stirring to granulate the product.

#### Origin:

TNT was first prepared in 1863 by Wilbrand (Ann 128, 178), later by Beilstein and Kuhlberg (Ber 3, 202 (1870) and also Tiemann (Ber 3, 217 (1870), each using different methods of starting materials. It was nearly 30 years later when Hausermann undertook its manufacture on an industrial scale (Z angew Chem, 1891, p. 508; J Chem Ind, 1891, p. 1028). After 1901 TNT began to be used extensively as a military explosive and Germany became the first nation to adopt it as a standard shell filler (1902-1904). During World War I all the major powers of the world were using TNT, with the quantity used limited only by the available supply of toluene. Prior to World War II the development of synthetic toluene from petroleum made available in the United States, an almost unlimited supply of this raw material. Because of the general suitability of TNT for melt-loading and its extensive use in binary and ternary explosive mixtures, TNT is considered the most important military explosive known today.

#### Destruction by Chemical Decomposition:

TNT is decomposed by adding it slowly, while stirring, to 30 times its weight of a solution prepared by dissolving 1 part of sodium sulfide ( $Na_2S \cdot 9H_2O$ ) in 6 parts of water.

#### References:75

(a) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

⁷⁵See footnote 1, page 10.

(b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for</u> <u>Tetryl in Boosters</u>, NOL Mano 10, 303, 15 June 1949.

(d) L. C. Smith and E. H. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u>, <u>Miscellaneous</u> <u>Sensitivity Tests</u>, <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, 27 December 1945.

(e) Report AC-2587.

(f) International Critical Tables and various other sources in the open literature.

(g) E. Hutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity of Explosive Materials, AC-2861, First Report, August 1942.

(h) A. J. B. Robertson, Trans Farad Society, <u>44</u>, 977 (1948).

(i) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utah, <u>Ind Eng Chem</u> (June 1956), pp. 1090-1095.

(j) Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD No. 5406, 31 July 1945.

(k) R. W. Drake, <u>Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells</u>, OSRD Report No. 5622, 2 January 1946.

(1) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PAIR No. 2383, November 1956.

(m) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1956.

(n) Mantrov, Journal of Chemical Industry (Russia) 6, 1929, pp. 1686-1688.

(o) Also see the following Picatinny Arsenal Technical Reports on TNT:

<u>0</u>	<u>1</u>	2	3	4	<u>5</u>	6	7	ھ	٩
$\begin{array}{c} 10\\ 30\\ 240\\ 350\\ 630\\ 760\\ 810\\ 1120\\ 1140\\ 1170\\ 1260\\ 1270\\ 1360\\ 1400\\ 1400\\ 1400\\ 1500\end{array}$	291 551 731 861 901 971 1041 1121 1391 1431 1431 1451 1491 1651 1821	132 582 782 892 972 1072 1182 1272 1272 1272 1342 1352 1352 1352 1352 1402 1452 1472	43 83 133 273 513 643 673 743 853 863 1063 1123 1123 1193 1243 1323	364 694 904 1094 1124 1224 1284 1294 1304 1314 1344 1444 1454	65 195 425 555 695 735 805 975 1145 1285 1305 1315 1395 1425	86 266 556 986 1046 1276 1446 1446 1446 1466 1456 1556 1636 1756	47 87 507 597 707 807 817 837 1107 1147 1217 1247 1307 1417 1427	118 288 638 738 768 838 1088 1098 1128 1148 1158 1158 1158 1198 1228 1258 1308	99 249 269 319 389 499 709 739 779 799 889 929 939 1099 1109 1129

# TNT (Trinitrotoluene)

<u>o</u>	2	3	4	<u>5</u>	6	Z	8	<u>9</u>
1530 1540 1550 1730 2010 2100 2160	1492 1562 1582 1712 1862	1373 1493 1553 1633 1693 1823 2063 2163	1524 1544 1564 1604 1674 1754 1924 2064 2214	$1435 \\ 1445 \\ 1495 \\ 1515 \\ 1535 \\ 1605 \\ 1605 \\ 1665 \\ 1865 \\ 1965 \\ 1715 \\ 1885 \\ 2125 \\ 2175 \\$	1956 2216	$1437 \\ 1457 \\ 1497 \\ 1537 \\ 1547 \\ 1557 \\ 1577 \\ 1597 \\ 1677 \\ 1737 \\ 1797 \\ 1827 \\ 1847 \\ 2007 \\ 2147 \\ 2167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ 167 \\ $	1318 1338 1418 1428 1578 1618 1688 1728 1828 1828 1838 1858 2008 2138 2168	$\begin{array}{c} 11 39 \\ 1179 \\ 1259 \\ 1289 \\ 1339 \\ 1369 \\ 1379 \\ 1419 \\ 1429 \\ 1429 \\ 1489 \\ 1529 \\ 1549 \\ 1529 \\ 1689 \\ 1529 \\ 1689 \\ 1709 \\ 1729 \\ 1749 \\ 1809 \end{array}$

Composition: %		Molecular Weight:	97
RDX	42	Oxygen Balance: CO, % CO %	<b>-</b> 55 - <b>26</b>
INT	40	Density: gm/cc Cast	1.76-1.81
Aluminum	18	Melting Point: "C	1.10-1.01
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	42 9 15	Boiling Point: °C Refractive Index, n ^o ₂₀ n ^b ₂₅ n ^b ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe		Vacuum Stability Test: cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test:Trials%20Partials80		100°C 120°C 135°C 150°C	1.0
Burned 0 Unaffected 0		200 Gram Bomb Sand Test: Sand, gm	59•5
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Decomposes 260 10		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	0.18
15 20		Ballistic Mortar, <b>%</b> TNT: (a)	138
		Trauzl Test, <b>% TNT</b> : (b)	164
<ul><li>75°C International Heat Test:</li><li>% Loss in 48 Hrs</li></ul>		Plate Dent Test: (c) Method	В
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	0.00 <b>0.10</b> None	Condition Confined Density, gm/cc Brisance, % TNT	Cast No 1.83 120
Flammability Index:	196	Detonation Rate: (d) Confinement	None
Hygroscopicity: % 30 [°] C, 90% RH	0.00	Condition Charge Diameter, in.	Cast 1.0
Volatility:		Density, gm/cc Rate, meters/second	1.81 7495

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detona Wax, gm Density, gm/cc Heat of: Combustion, cal/gm Explasion, cal/gm Formation, cal/gm Fusion, cal/gm	(c) Pressed 10 ation 2 1.64 (a)	Cast 5 0 1.81 3740 1800	Decomposition Equation: Oxygen, otoms/sec (Z/sec) Heat, kilocalorie/mole (AH, kcal/mol) Temperature Range, °C Phase Armor Plate Impact Test: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec Aluminum Fineness 500-ib General Purpose Bombs:
Specific Heat: col/gm/°C	(b)		
A t $-5^{\circ}$ C		0.22	Plate Thickness, inches
Density, gm/cc		1.82	1
At 15°C		0.24	11/4
AT LY U		0.24	11/2
			13⁄4
Burning Rate: cm/sec Thermal Conductivity: cal/sec/cm/"C Density, gm/cc Coefficient of Expansion: Linear, %/°C -73 to Volume, %/°C Hardness, Mohs' Scale: Young's Modulus: E, dynes/cm ² E, lb/inch ² Density, gm/cc Compressive Strength: lb/inc Density, gm/cc Vapor Pressure: °C mm M	(b) 9.53 1.38	$7 \times 10^{-4}$ 1.82 $0^{-5}$ (b) 1.77 1.77 1.77 1.77 1.77	Bomb Drop Test: 17, 2000-Ib Semi-Armor-Piercing Bomb <b>vs</b> Concrete: Max Safe Drop, ft 500-Ib General Purpose Bomb <b>vs</b> Concrete: Height, ft Trials Unaffected Low Order High Order 1000-Ib General Purpose Bomb <b>vs</b> Concrete: Height, ft Trials Unaffected Low Order High Order High Order

90 mm HE, M71 Projectile, Lot WC-91: Density, gm/ccGlass ConesSteel ConesDensity, gm/cc1.75Hole Volume150145Charge Wt, Ib2.316Hole Depth127131Total No. of Fragmentt: For TNT703Color:GrayFor Subject HE891Principal Uses:Depthcharges, bombs3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc1.79Principal Uses:Depthcharges, bombsTotal No. of Fragments: For TNT514Method of Loading:CastFor Subject HE647Loading Density: gm/cc1.76-1.8Fragment Velocity:ft/sec At 9 ft At 25½ ft2960 2800Storage: MethodDryBlast (Relative to TNT):(e)Hazard Class (Quantity-Distance)Class	Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100 50/36.5/13.5	):
Density, gm/cc1.75Hole Volume150145Charge Wt, lb2.316Hole Volume150145Total No. of Fragmentt: For TNT703 For Subject HE891Color:Gray3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc1.79Depth charges, bombsPrincipal Uses:Depth charges, bombs7 total No. of Fragments: 	90 mm HE, M71 Projectile, Lot WC-9	1:		nes
Charge Wt, Ib2.316Hole Depth127131Total No. of Fragmentt: For Subject HE691Color:Gray3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc1.79Principal Uses:Depth charges, bombs3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc1.79Principal Uses:Depth charges, bombsTotal No. of Fragments: For Subject HE647Method of Loading:CastFragment Velocity: ft/sec A125½ ft2960Loading Density: gm/cc1.76-1.8Fragment Velocity: ft/sec A125½ ft2960Storage:MethodDrzyBlast (Relative to TNT):(e)Hazard Class (Quantity-Distance)ClassAir: Peak Pressure126Effect of Temperature on Tempe SizeTompe C Sensitivity: TompTompe C Sensitivity: TompUnder Water: Peak Pressure116Tompe C Sensitivity: Size7 Total SizeYiscosity, poises: Temp, 83°C2.3Underground: peak Pressure127327 Total Size1.5 Size2.5 Tomp, 83°C4.5 Size			Hole Volume 150 145	
For TNT     703       For Subject HE     891       3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc     1.79       Charge Wt, Ib     0.940       Total No. of Fragments: For TNT     514       For Subject HE     647       Fragment Velocity: ff/sec At 25½ ft     2960       At 25½ ft     2800       Density, gm/cc        Blast (Relative to TNT):     (e)       Air: Peak Pressure     122       Impulse     125       Energy     146       Air, Confined: Impulse     116       Under Water: Peak Pressure     116       Under Water: Peak Pressure     116       Under Water: Peak Pressure     116       Under ground: Peak Pressure     127       Impulse     127       Storage: Impulse     125       Innuise     127       Storage: Impulse     153       Underground: Peak Pressure     126       Underground: Impulse     127       Temp, 83 ³⁰ C     4.5       Stocast; Peak Pressure     153       Underground: Impulse     53 ³⁰ C       Peak Pressure     126       Stocast; Peak Pressure     127       Temp, 83 ³⁰ C     4.5		2.316	Hole Depth 127 131	
For TNT     703       For Subject HE     891       3 inch HE, M42A1 Projectile, Lot KC-5:     Density, gm/cc       Density, gm/cc     1.79       Charge Wt, Ib     0.940       Total No. of Fragments:     For Subject HE       For Subject HE     647       Fragment Velocity: ff/sec     2960       At 9 ft     2800       Density, gm/cc        Method of Loading:     Cast       Loading Density: gm/cc     1.76-1.8       Fragment Velocity: ff/sec     2960       At 25½ ft     2800       Density, gm/cc        Blast (Relative to TNT):     (e)       Air:     Peak Pressure       Impulse     125       Energy     146       Air, Confined:     116       Impulse     127       Peak Pressure     116       Undergound:     25       Peak Pressure     116       Undergound:     25       Undergound:     25       Peak Pressure     126       Impulse     127       32     7       104     8       Viscosity, poises:     1.5       Temp, 83 ⁰ C     4.5	Total No. of Fragmentt:		Color	Grav
3 inch HE, M42A1 Projectile, Lot KC-5:       Density, gm/cc       1.79         Density, gm/cc       1.79         Charge Wt, Ib       0.940         Total No. of Fragments:       For TNT         For Subject HE       647         Fragment Velocity: ft/sec       2960         At 9 ft       2800         Density, gm/cc          Blast (Relative to TNT):       (e)         Air:       Peak Pressure         Impulse       125         Energy       146         Air, Confined:       116         Impulse       127         Peak Pressure       116         Under Water:       Peak Pressure         Peak Pressure       127         Energy       153         Underground:       Peak Pressure         Impulse       127         Sidout B       7         Job       8         Viscosity, poises:       Temp, $\frac{83^0 \circ}{9 \circ \circ}$ Underground:       Peak Pressure         Impulse       153	For TNT	703		eruj
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc       1.79 0.940         Total No. of Fragments: For TNT       514 For Subject HE       Method of Loading:       Cast         For Subject HE       647       Loading Density: gm/cc       1.76-1.8         Fragment Velocity: ft/sec At 9ft At 25½ ft       2960 2800       Storage:       Density: gm/cc       1.76-1.8         Blast (Relative to TNT):       (e)       Hazard Class (Quantity-Distance)       Class         Air: Peak Pressure       122 Impulse       Compatibility Group       Group         Air, Confined: Impulse       116       Impact Sensitivity: Top       Top         Under Water: Peak Pressure       116       Impact Test 25       15 32       7 1.04         Undergound: Peak Pressure       127       25       15 32       7 1.04       8         Undergound: Peak Pressure       127       25       15 32       7 2.5       15 3       104       8         Undergound: Peak Pressure       153       104       8       Viscosity, poises:       7 2.3	For Subject <b>HE</b>	891	Principal Uses: Depth charges, borr	bs
Charge Wi, Ib0.940Total No. of Fragments: For TNT514For Subject HE647Fragment Velocity: ff/sec At 9 ft At 25½ ft2960Density, gm/ccBlast (Relative to TNT):(e)Air: Peak Pressure122 ImpulseImpulse125 EnergyAir, Confined: Impulse116Under Water: Peak Pressure116Under ground: Peak Pressure127 153Underground: Peak Pressure153Underground: Peak Pressure153Under ground: Peak Pressure7 153Under Ground: Peak Pressure7 153Under Ground: Peak Pressure7 153Under Ground: Peak Pressure7 153Under Ground: Peak Pressure7 153Temp. 168 25 2 104Under Ground: Peak Pressure7 153Temp. 16830° 2 2 Under Ground: Peak Pressure7 	3 inch HE, M42A1 Projectile, Lot KC-	5:		
Total No. of Fragments: For TNT     514       For Subject HE     647       Fragment Velocity: ft/sec At 9 ft At 25 ft     2960 2800       Density. gm/cc        Blast (Relative to TNT):     (e)       Air: Peak Pressure     122 Impulse       Energy     146       Air, Confined: Impulse     116       Under Water: Peak Pressure     116       Under Water: Peak Pressure     116       Under Water: Peak Pressure     116       Under Water: Peak Pressure     116       Under ground: Peak Pressure     127       Underground: Peak Pressure     127       Underground: Peak Pressure     127       Temp, 83°C     4.5       Underground: Peak Pressure     13       Underground: Peak Pressure     153	Density, gm/cc	1,79		
For TNT       514         For Subject HE       647         Fragment Velocity: ft/sec       2960         At 9 ft       2800         Density, gm/cc          Blast (Relative to TNT):       (e)         Air:       Peak Pressure         Impulse       125         Energy       146         Air, Confined:       116         Impulse       127         Peak Pressure       116         Under Water:       Peak Pressure         Peak Pressure       116         Under Water:       116         Peak Pressure       116         Underground:       25         Peak Pressure       116         Impulse       127         32       7         104       8         Underground:       Viscosity, poises:         Peak Pressure       153         Impulse       25         104       8	Charge Wt, Ib	0.940		
For TNT       514         For Subject HE       647         Fragment Velocity: ft/sec       2960         At 9 ft       2800         Density. gm/cc          Blast (Relative to TNT):       (e)         Air:       Peak Pressure         Peak Pressure       122         Impulse       125         Energy       146         Vinder Water:       116         Peak Pressure       116         Impulse       127         Peak Pressure       116         Under Water:       116         Peak Pressure       116         Underground:       127         Peak Pressure       116         Impulse       127         Size       7         104       8         Underground:       Peak Pressure         Impulse       127         Size       7         104       8         Viscosity, poises:       127         104       8	Total No. of Fragments:		Method of Loading:	Cast
Fragment Velocity: ft/sec       2960         At 9 ft       2800         Density, gm/cc          Blast (Relative to <b>TNT</b> ):       (e)         Air:       Peak Pressure         Impulse       125         Energy       146         Air, Confined:       Impulse         Impulse       116         Under Water:       Peak Pressure         Peak Pressure       116         Under Water:       116         Peak Pressure       116         Under Water:       127         Peak Pressure       116         Under Water:       127         Peak Pressure       116         Underground:       25         Peak Pressure       116         Impulse       127         32       7         104       8         Underground:       Viscosity, poises:         Peak Pressure       153         Impulse       27         32       7         104       8         Viscosity, poises:       7         Temp, 83% C       4.5         95% C       2.3	For TNT	514		
Fragment Velocity: ft/sec     2960       At 9 ft     2800       Density, gm/cc        Blast (Relative to TNT):     (e)       Air:     Peak Pressure       Peak Pressure     122       Impulse     125       Energy     146       Air, Confined:     Impulse       Impulse     116       Under Water:     Peak Pressure       Peak Pressure     116       Under Water:     116       Peak Pressure     116       Under Water:     116       Peak Pressure     116       Under Water:     116       Peak Pressure     116       Underground:     25       Peak Pressure     127       Bigs 0     153       Underground:     Viscosity, poises:       Peak Pressure     16       Impulse     25       104     8	For Subject <b>HE</b>	647	Loading Density: gm/cc	1.76-1.81
At 9 ft At 25½ ft     2960 2800       Density, gm/cc        Blast (Relative to TNT):     (e)       Air: Peak Pressure     122 Impulse       Impulse     125 Energy       Air, Confined: Impulse     116       Under Water: Peak Pressure     116       Density, gm/cc        Method     Dry       Hazard Class (Quantity-Distance)     Class       Compatibility Group     Group       Effect of Temperature on Impact Sensitivity:     Impact Test       OC     25     15       32     7       104     8       Underground: Peak Pressure     127       Peak Pressure     126       Impulse     127       Impulse     127       Temp, 83°C     4.5       Impulse     Viscosity, poises:       Temp, 83°C     4.5       Temp, 83°C     4.5	Fragment Velocity: ft/sec			- ,
MethodDryBlast (Relative to TNT):(e)Hazard Class (Quantity-Distance)ClassAir: Peak Pressure122Compatibility GroupGroupImpulse125ExudationEffect of Temperature on Impact Sensitivity:Feffect of Temperature on 2 Kg Wt, inchesImpact Test 2 Kg Wt, inchesUnder Water: Peak Pressure116Impact Test 2 Kg Wt, inchesTemp. 2 Kg Wt, inchesUnder Water: Peak Pressure116Z Kg Wt, inches 2 Kg Wt, inchesUnderground: Peak Pressure1272515 32Underground: Peak Pressure153Uiscosity, poises: 30°CViscosity, poises: 2 Kg %C	At 9 ft	2960 2800	Storage:	
Blast (Relative to TNT):     (e)       Air:     Peak Pressure     122       Impulse     125     Exudation       Energy     146     Effect of Temperature on       Air, Confined:     116     Impact Sensitivity:       Impulse     116     Impact Test       Under Water:     Peak Pressure     116       Peak Pressure     116     Impact Test       Impulse     127     2 Kg Wt, inches       Energy     153     104       Underground:     Viscosity, poises:       Peak Pressure     Temp, 83°C       Impulse     2,3	Density, gm/cc		Method	Dry
Peak Pressure     122       Impulse     125       Energy     146       Air, Confined:     116       Impulse     116       Under Water:     Peak Pressure       Peak Pressure     116       Impulse     127       Energy     153       Underground:     153       Underground:     Viscosity, poises:       Peak Pressure     153       Underground:     Viscosity, poises:       Temp, 83°c     4.5       95°c     2.3	Blast (Relative to <b>TNT</b> ):	(e)	Hazard Class (Quantity-Distance)	Class 9
Impulse     125     Exudation       Impulse     125     Exudation       Air, Confined:     116     Impact Sensitivity:       Impulse     116     Impact Test       Under Water:     OC     2 Kg Wt, inches       Peak Pressure     116     25       Impulse     127     25       Impulse     127     32       Energy     153     32       Underground:     Viscosity, poises:       Peak Pressure     Temp, 83°C       Impulse     Temp, 83°C	Air:		Compatibility Group	Group I
Impulse149Energy146Air, Confined: Impulse116Impulse116Impact Sensitivity:Under Water: Peak PressurePA Impact Test 2 Kg Wt, inchesPeak Pressure116Impulse127Energy153Underground: Peak PressureViscosity, poises: 95°cPeak PressureTemp, 83°c 95°c	Peak Pressure	122		
Air, Confined: ImpulseI16Effect of Temperature on Impact Sensitivity:Under Water: Peak Pressure116 $\overline{Temp.}$ $2 Kg Wt, inchesImpulse12725Energy15332104Underground:Peak PressureViscosity, poises:Peak PressureTemp. 83^{\circ}c95^{\circ}c4.52.3$	Impulse	125	Exudation	
Air, Confined: ImpulseIIfImpact Sensitivity:Under Water: Peak Pressure116 $\overline{\frac{\text{Temp.}}{\text{OC}}}$ <u>PA Impact Test</u> Impulse1272515Signal153 $32$ 7Underground: Peak PressureViscosity, poises:Viscosity, poises:Peak PressureImpulseTemp, $83^{\circ}$ C4.595^{\circ}C2.31515	Energy	146		
Impulse116Impulse bension valueUnder Water: Peak Pressure116 $\frac{Temp.}{OC}$ PA Impact Test 2 Kg Wt, inchesImpulse1272515Energy1531048Underground: Peak Pressure ImpulseViscosity, poises: $95^{OC}$ 4.5	Air. Confined:		Effect of Temperature on	
Under Water: Peak Pressure116 $\overline{00}$ 2 Kg Wt, inchesImpulse1272515Energy153 $\overline{153}$ $\overline{32}$ 7Underground: Peak Pressure ImpulseViscosity, poises: $\overline{153}$ $\overline{104}$ Temp, $83^{0}$ C $4.5$ 95^{0}C2.3		116	THDACC BENELOTATON:	
Peak Pressure1162515Impulse127 $25$ 15Energy153 $104$ 8Underground:Viscosity, poises:Peak PressureTemp, $83^{\circ}$ C $4.5$ Impulse $25^{\circ}$ C $2.3$				
Impulse1272515Impulse127 $32$ 7Energy153 $104$ 8Underground:Viscosity, poises:Peak PressureTemp, $83^{\circ}$ C $4.5$ Impulse $95^{\circ}$ C $2.3$		116	2 Kg Wt, inches	
Impulse121327Energy153327Underground:Viscosity, poises:Peak PressureTemp, 83°c4.5Impulse25°c2.3			25 15	
Energy1031048Underground:Viscosity, poises:Peak PressureTemp, 83°CImpulse25°C2,3		•	32 7	
Peak Pressure Impulse Temp, 83°C 4.5 95°C 2.3	Energy	723	104 8	
Impulse         Temp, 83°C         4.5           Energy         95°C         2.3				
Energy 95 [×] C 2,3	Impulse		Temp, 83°C	4.5
			95 [~] C	2.3

#### Preparation:

Torpex is manufactured by heating TNT to approximately 100°C in a steam-jacketed kettle equipped with a stirrer. Water wet RDX is added slowly to the molten TNT, while mixing and heating, until all the water is evaporated. Aluminum is added and the mixture is stirred until uniform. The mixture is cooled, with continued stirring, until it is suitable for pouring. Torpex can also be made by adding the calculated amount of TNT to Composition B to maintain the desired proportion of RDX/TNT, heating and stirring, and adding 18 percent of aluminum to complete the mixture.

#### Origin:

Torpex, a castable high explosive, was developed in England during World War II for use as a filler in warheads, mines and depth bombs. Several variations in the composition of torpex have been evaluated but the following are those used in service munitions:

	<u>Torpex 2</u> <u>unwaxed</u>	Torpex 2 waxed	Torpex 3
	(a)	(b)	(c)
RDX, % TNT, % Aluminum, % Wax, % Calcium chloride, %	42 40 18	41.6 39•7 18.0 0•7	41.4 39.5 17.9 0.7 0.5

(a) Made from Composition B-2 or 60/40 Cyclotol.

(b) Made by the addition of aluminum to Composition B.

(c) Made by the addition of calcium chloride to Torpex 2.

Wax has the undesirable effect of (1)tending to coagulate the aluminum, thus giving a less homogeneous and more viscous product, (2) lowering the density of the cast explosive from 1.72-1.75 to 1.66-1.70 for waxed torpex, and (3) lowering the compressive strength from 3700 psi to 1970 psi for waxed torpex. However, wax is used in service torpex for reasons of safety, since there is evidence that its presence lowers the sensitivity of the explosive to impact as measured by laboratory drop tests and bullet sensitivity tests of small charges (Bureau of Ord Res Mano Rpt No. 24, January 1945).

### References: 76

(a) Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD No. 5406, 31 July 1945.

(b) Philip C. Keenan and Dorothy C. Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

L. C. Smith and E. H. Eyster, Physical Testing of Explosives, Part III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report No. 5746, 27 December 1945.

⁷⁶See footnote 1, page 10.

(d) G. H. Messerly, <u>The Rate of Detonation of Various Explosive Compounds</u>, OSRD Report No. 1219, 22 February 1943.

M. D. Hurwitz, <u>The Rate of Detonation of Various Compounds and Mixtures</u>, OSRD Report No. 5611, 15 January 1946.

(e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.

(f) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, <u>Sec</u> 111, <u>Variation of</u> <u>Cavity Effect with Explosive Composition</u>, NDRC Contract W672-ORD-5723.

(g) Also see the following Picatinny Arsenal Technical Reports on Torpex:

<u>o</u>	<u>1</u>	2	3	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
1530	1651	1292	2353	1585 1635 1885 2355	1796	1797	1838

Composition: %	Molecular Weight: (C ₆ H ₆ N ₆ O ₆ )	258
[%] ^{NH} ₂	Oxygen Balance:	
	<b>CO</b> . %	-56
H 2.3 $0_2^{N}$ N $0_2$	CO, % CO %	<b>-</b> 19
N 32.6 H ₂ N NH ₂	Density: gm/cc Crystal	1.93
0 37.2 ^{NO} 2	Melting Point: °C 330 (b, e)	360 (a)
C/H Ratio 0.302	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: "C	
Sample Wt 20 mg	Refractive Index, <b>n</b> ^D	
Picatinny Arsenal Apparatus, in. <b>11</b> Sample Wt, mg 7	N25	
Sample Wit, mg	n ₃₀	
Friction Pendulum Test:		
Steel Shoe	Vacuum Stability Test: cc/40 Hrs. at	
Fiber Shoe	90°C	
	100°C (a, b)	<b>0.3</b> 6
Rifle Bullet Impact Test: Trials	120°C	
% Explosions	135°C	
Portials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected		
_	Sand, gm	42.9
Explosion Temperature: °C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm	
1	Mercury Fulminate	
5	Lead Azide	0,30
10	Tetryl	
15 20	Ballistic Mortar, % TNT:	
20	Trauzi Test, % TNT:	
75°C International Heat Te <b>st:</b>		
% Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
	Density, gm/cc	
	Brisance, % TNT	
Explosion in 100 Hrs None		
Flammability Index:	Detonation Rate: Confinement	Non-
	Condition	None Brossod
Hygroscopicity: %	Charge Diameter, in.	Pressed 0.5
Volatility:	Density, gm/cc Rate, meters/second	1.80

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Stee Hole Volume Hole Depth	l Cones	
Total No. of Fragments: For TNT	Color:	Yellow	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments: For TNT For Subject HE Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Principal Uses: Method of Loading: Loading Density: gm/cc At 50,000 p s i Storage:	Pressed 1.80	
Blost (Relative to TNT):	Method Hazard Class (Quontity-Distance)	Dry	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation		
Air, Confined: Impulse	Detonation Velocity: Density, gm/cc	(a, b. c) Meters/sec	
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	1.290 1.345 1.675 1.675 1.882 1.835 <u>Heat of:</u> Explosion, cal/gm	5380 5628 6550 6575 7035 7220 2831	

#### Preparation:

#### (a)

Absolute alcohol (200 milliliters) was saturated with ammonia and then 12.5 gm (0.028 mol) of 1,3,5-tribromo-2,4,6-trinitrobenzene, prepared according to Hill (NAVORD Report No. 3709, 2 February 1953), was added. The flask was stoppered and allowed to stand at room temperature for a day. Additional ammonia was bubbled into the mixture, which was then heated under reflux for thirty minutes, filtered hot, and the insoluble product collected on a Buchner funnel. The product was washed with water, alcohol, and dried. The 4.7 gm of material recovered was recrystallized from nitrobenzene.

A disadvantage of the above method was that it could not be used for the preparation of large quantities of TATNB. Since it did not seem feasible to develop a new method of preparation, an investigation was made of the reported amination reactions (see Origin below). An attempt was made (Ref f) to find a modification which would produce high yields of a pure product. The process which evolved from this study may be summarized as follows (Ref f): 1,3,5-trichlorobenzene was nitrated "in one step" to 1,3,5-trichloro-2,4,6-trinitrobenzene in 85% yield. The crude nitration product was aminated in benzene with ammonia gas to TATNB, in yields of at least 95%.

#### Origin:

TATNE was prepared for the first time in 1888 by C. L. Jackson and J. F. Wing, who found the compound insoluble in alcohol, ether, chloroform, benzene, and glacial acetic acid; and soluble in nitrobenzene and aniline (Amer Chem Journal 10, 282 (1888)). B. Flurscheim and E. L. Holmes prepared TATNE from benzene free pentanitroaniline by gradually adding it to 10%aqueous ammonia (J Chem Soc, Pt 2,3045 (1928)). After boiling, an orange-yellow powder melting above  $300^{\circ}$ C was obtained. This product corresponded to that described by Jackson and Wing. These authors, as well as Palmer (Amer Chem Journal 14, 378 (1892)), attempted to reduce TATNE to hexa-aminobenzene. Either decomposition occurred or a hydrochloride of penta-aminobenzene was formed. Flurscheim and Holmes succeeded in reducing TATNE with phenylhydrazine by heating them together up to  $200^{\circ}$ C (J Chem Soc, Pt 1,334 (1929)) (Beil 13, 301 and EII, 147).

#### References: **

(a) F. Taylor, Jr., Synthesis of New High Explosives 11, Derivatives of 1,3,5-Tribromo-2,4,6-Trinitrobenzene, NAVORD Report No. 4405, 1 November 1956.

(b) L. D. Hampton, <u>Small Scale Detonation Velocity Measurements from May 1951 to May 1954</u>, NAVORD Report No. 3731, June 1954.

(c) E. M. Fisher and E. A. Christian, <u>Explosion Effects Data Sheets</u>, NAVORD Report No. 2986, 14 June 1955.

⁷⁷See footnote 1, page 10.

Composition : %	Molecular Weight: $(C_6H_{12}N_2O_8)$	240
$c$ 29.9 $H_2c$ H 5.4 $H_2c$	Oxygen Balance: CO, % CO %	-89 -27
N 11.7	Density: gm/cc 20°C 25°C	1.33 1.32
o 53.0 ^H 2 ^C	Melting Point: "C	
C/H Ratio 0.177 $H_2C < 20NO_2$	Freezing Point: "C	
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm 100+	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 43 Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	1.4540
Friction Pendulum Test:Steel ShoeUnaffectedFiber ShoeUnaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C	0.45
Rifle Bullet Impact Test: Trials % Explosions Partiols	100°C 120°C 8 hours 135°C 150°C	0.45 0.8
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	14.7
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 223 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	
15 20	Ballistic Mortar, % TNT:	
	Trauzl Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:           % Loss, 1st 48 Hrs         1.8           % Loss, 2nd 48 Hrs         1.6           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	Shelby steel
Hygroscopicity: %	Condition Charge Diameter, in.	Liquid 1.25
Volatility: 60°C, mg/cm ² /hr 40	Density, gm/cc Rate, meters/second	1.33 Fails

Fragmentation Test:	
regnonation root.	Shaped Charge Effectiveness, $TNT = 100$ :
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones
Density, gm/cc	Hole Volume
Charge Wt, Ib	Hole Depth
Total No. of Fragments:	
For TNT	Color:
For Subject HE	
	Principal Uses: Ingredient of rocket and double
3 inch HE, M42A1 Projectile, Lot KC-5:	base propellants
Density, gm/cc	
Charge Wt, Ib	
Total No. of Fragments:	
For TNT	Method of Loading:
For Subject HE	
	Loading Density: gm/cc
Fragment Velocity: ft/sec	
At 9 ft At 25½ ft	Storage:
Density, gm/cc	
	Method Liquid
Blast (Relative to <b>TNT</b> );	Hazard Class (Quantity-Distance)
A :	
Air: Peak Pressure	Compatibility Group
Impulse	Exudation
Energy	
	Solubility in Water,
Air, Confined: Impulse	$\frac{m/100 \text{ gm. at:}}{c^{-9}}$
	25 [°] C 0.55 60°C 0.68
Under Water:	Solubility, gm/100 gm,
Peak Pressure	at 25°C, in:
Impulse Energy	Ether w
Energy	Alcohol $\infty$ 2: 1 Ether: Alcohol $w$
Underground:	Acetone
Peak Pressure	Viscosity, centipoises:
Impulse	Temp, 20 ^o C 13.2
Energy	Hydrolysis, % Acid:
€eat of:	10 days at 22°C 0.032
Combustion, cal/gm 3428	5 days at 60°C 0.029 Japor Pressure:
Explosion, cal/gm 357 Gas Volume, cc/gm 851	<u>oc</u> mm Mercury
0)1	25 < 0.001
	— <u> </u>

#### Origin:

Lourenco prepared triethylene glycol in 1863 by heating glycol with ethylene bromide in a sealed tube at  $115^{\circ}-120^{\circ}C$  (Ann (3) <u>67</u>, 275). Later in the same year Wurtz prepared triethylene glycol by heating ethylene oxide with glycol at  $100^{\circ}C$ . By action of nitric acid triethylene glycol was oxidized to  $(H_2 \circ C \cdot C H_2 \circ - C H_2)_2$  (Ann (3) <u>69</u>, 331, 351).

The Germans and Italians were the first to prepare and use TECN during World War II as an ingredient of rocket and propellant powders. The commercial production of TEGN in quantity is still difficult and its use as a plasticizer for nitrocellulose is being replaced by other liquid nitrates.

# Preparation:

Triethylene glycol is purified by fractional distillation under vacuum in an 18-inch Vigeaux fractioning column. The assembly as a whole is equivalent to 4.5 theoretical plates. The distillation is conducted using a 5 to 1 reflux ratio, at a pot temperature of approximately  $180^{\circ}$ C, and a take-off temperature of approximately  $120^{\circ}$ C.

The purified triethylene glycol (TEG) is nitrated by carefully stirring it into 2.5 parts of 65/30/5 nitric acid/sulphuric acid/water maintained at  $0 \pm 5^{\circ}$ C. The rate of cooling is sufficient that 300 gm of TEG can be added within 40 minutes. The mixture is stirred and held at  $0 \pm 5^{\circ}$ C, for 30 additional minutes. It is then drowned by pouring onto a large quantity of ice and extracted three times with ether. The combined extract is water-washed to a pH of about 4, shaken with an excess of sodium bicarbonate solution, and further washed with 1% sodium bicarbonate solution until the washings are colorless. The ethereal solution is water-washed until it has the same pH value as distilled water. It is carefully separated from excess water, treated with chemically pure calcium chloride to remove dissolved water, and filtered. The ether is removed by bubbling with dry air until a minimal rate of loss in weight is attained. The yield is 1.34 gm per gm TEG (84% of theoretical) and the nitrogen content of different batches range from 11.60 to 11.69% by the nitrometer method (calculated 11.67%).

#### References: 78

(a) See the following Picatinny Arsenal Technical Reports on TEGN:

<u>3</u>	<u>5</u>	<u>6</u>	_7	<u>8</u>
1953 2193	1745	1 <b>78</b> 6 2056	1767 <b>1817</b>	1638

⁷⁸See footnote 1, page 10.

Trimonite

Copposition:	Molecular Weight	217
Picric Acid 88 - 90 Mononitronaphthalene 12 - 10	Oxygen Belance: CO ₂ % CO % Density: gm/cc Cast Melting Point: "C int: "C	-62 -14 1.60 90
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 10	Boiling Point: "C Exp todes Refractive Index, n ^o ₂₀ n ^o ₂₅ n ^o ₃₀	300
Friction Pendulum Test: Steel Shoe Fiber Shoe Rifle Bullet Impact Test: Trials	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 120°C	0.9
%Explosions0Partials0Burned0Unaffected100	135°C 150°C 200 Gram Bomb Sand Test: Sand, gm	44.2
Explosion Temperature: °C Seconds, 0.1 (no cap used) ¹ ⁵ Decomposes 315 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:	0.20 0.04
75°C International Heat Test: % Lass in 48 Hrs 100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Traurl Test, % TNT: Plate Dent Test: Method Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement Condition	None Cast
Hygroscopicity: % Volatility:	Charge Diameter, in. Density, gm/cc Rate, meters/second	1.0 1.60 7020

# <u>Trimonit e</u>

Shaped Charge Effectiveness, TNT == 100:		
Glass Cones Steel Cone Hole Volume Hole Depth	s	
Color:		
Principal Uses: TNT substitute in pro and bombs	)jectiles	
Method of Loading:	Cast	
Loading Density: gm/cc	1.60	
Storage: Method	Dry	
Hazard Class (Quantity-Distance)	Class 9	
Compatibility Group Exudation Exude	Group I a t 50°C	
Preparation: Picric acid and alpha-mononitron are melted together in an aluminum jacketed melt kettle equipped with Although picric acid alone requires perature for its melt loading (120° mixture forms a eutectic melting an must be taken to prevent the forman gerous metallic picrates. Trimonit interest as an emergency substitute	or tin steam a stirrer. s a high tem- C), the t 49°C. Care tion of dan- te is of	
	Glass Cones       Steel Cone         Hole Volume       Hole Depth         Color:           Principal Uses:       TNT substitute in proand bombs          Method of Loading:           Loading Density: gm/cc           Storage:       Method         Hazard Class (Quantity-Distance)           Compatibility Group       Exude         Preparation:           Picric acid and alpha-mononitror are melled together in an aluminum jacketed melt kettle equipped with Although picric acid alone requires perature for its melt loading (1200 mixture forms a eutectic melting at must be taken to prevent the formatigerous metallic picrates. Trimonities	

#### Trimonit e

### Origin:

Trimonite, a castable mixture of picric acid/mononitronaphthalene was developed by the British during World War II as an improvement over tridite which is a mixture of 80/20 picric acid/dinitrophenol. Both mixtures are suitable for melt-loading below  $100^{\circ}C$  and therefore represent an improvement over melt-loading picric acid alone (melting point  $122^{\circ}C$ ). However, tridite is slightly inferior to picric acid as an explosive and dinitrophenol is objection-able because of its toxicity. Trimonite is also slightly inferior to picric acid and TNT as an explosive. Because of the low eutectic temperature of the picric acid-mononitronaphthalene mixture ( $49^{\circ}C$ ), Tridite exudes when stored at elevated temperatures. It does not possess the disadvantages of picric acid (corrosive action on metals, ease of decomposition, etc.) and is a comparatively inexpensive substitute for TNT.

# References: 79

(a) See the following Picatinny Arsenal Technical Reports on Trimonite:

2	<u>5</u>	<u>6</u>	8
1352	1325	926	1098
1372		976	1838

⁷⁹See footnote 1, page 10.

# 2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate (TNETB)

AMCP 706-177

Composition:	Molecular Weight: $(C_{6}H_{6}N_{6}O_{14})$	386
% C 18.6 H 1.6	Oxygen Balance: <i>CO, %</i> CO %	-4.2 20.8
H 1.6 N 21.8 (NO 2) 3	Density: gm/cc Form I	1.78
c = 0 0 58.0	Melting Point: "C	93
C/H Rotio 0.202	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg 50% point, cm (a) 20	Refractive Index, n₂oForm I(e)Crvstal AxisαβΥ	1.518 1.5 <b>27</b> 1.546
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability lest: cc/40 Hrs, at 90°C	0.60
Rifle Bullet Impact Test: Trials % Explosions Partials	- 100°C 48 hrs 120°C 135°C 150°C	0.60
Burned Unaffected	200 Gram Bomb Sand lest: Sand, gm	
Explosion Temperature:         0           Seconds, 0.1 (no cap used)            1            5         50% point (Alhot bar) (a)         225           10         45	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	
15 20	Ballistic Mortar, % TNT: (b)	136
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate:     Confinement	
Hygroscopicity: % 30°C, 90% RH 75°C, 5 months Nil (a)	<ul> <li>Condition</li> <li>Charge Diameter, in.</li> </ul>	
Volatility:	Density, gm/cc         1.60           Rate, meters/second         7760	<b>1.76</b> 8290

Booster Sensitivity Test: Condition		Decomposition Equation: Oxygen, otoms/sec	4.4 x 10 ²¹
Tetryl, gm		(Z/sec)	
Wax, in. for 50% Detonation		Heat, kilocolorie/mole	43.4
Wax, gm		(∆H, kcol/mol) Temperature Range, °C	
Density, gm/cc		Phose	Liquid
Heat of: Combustion, col/gm	1685	Armor Plate Impact Test:	
Explosion, cal/gm		60 mm Mortar Projectile:	
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec	
Formation, col/gm	307	Aluminum Fineness	
Fusion, cal/gm	901		
Sublimation, cal/gm (est)	804	500-16 General Purpose Bombs:	
Specific Heat: col/gm/°C		Plate Thickness, inches	
		1	
		11/4	
		14	
		13/4	
Burning Rate:		- · /+#	
cm/sec			
		Bomb Drop Test:	
Thermal Conductivity: col/sec/cm/°C		T7, 2000-15 Semi-Armor-Piercin	g Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft	
Linear, %/°C		500-16 General Purpose Bomb	s Concrete:
Volume, %/°C		Height, ft	
		Trials	
Hardness, Mohs' Scale:		Unaffected	
		Low Order	
Young's Modulus:		High Order	
E', dynes/cm ²			
E, Ib/inch ²		1000-lb General Purpose Bomb	vs Concrete:
Density, gm/cc			
		Height, ft	
Compressive Strength: lb/inch ²		Trials	
		Unaffected	
Vapor Pressure:	(e)	Low Order	
°C mm Mercury 65 3.3 x 10_4		High Order	
<b>75 1.3</b> x			
$85 42 \times 10$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
<b>120</b> $1.4 \times 10^{-2}$			

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :
<b>90 mm HE, M71 Projectile</b> , Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Colorless
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses:
Total No. of Fragments: For TNT For Subject HE	Method of Loading:
Fragment Velocity: ft/sec * A t9 ft	Loading Density: gm/cc Form I 1.783 Form II 1.677 Liquid, 99 ⁰ C <b>,</b> 1.551
At 25½ ft Density, gm/cc	Storage: Method Wct
Blast (Relative to $H-6$ ; <u>Sphere</u> <u>Cylinder</u> (h)	Hazard Class (Quantity-Distance)
Air: 1-1b         Charge:         EW#         EV#         EW#         EV#           Peak Pressure         0.91         0.84         0.81         0.75           Impulse         0.73         0.67         0.74         0.69           Energy         Energy         Energy         EN#         EN#	Compatibility Group Exudation
	Bruceton Safety Test Results: (g)
	Mean and standard deviation of lengths of 0.300 diameter cylinder across which initia- tion is possible for 50% certainty:
	TNT         0.391         ±         0.040           RDX Comp B         0.381         ±         0.042           TNETB         0.920         ±         0.059
Underground: Peak Pressure	Absolute Viscosity, poises: (e)
Impulse Energy *EW, equivalent weight of H-6 for a unit weight of test mixture for equal performance at the same test distance; EV, equivalent volume of E-6 for a unit volume of test mixture for equal performance at the same test distance.	Temp, 98.9°C 0.173 106.5°C 0.138

#### 2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate (TNETB)

Solubility (Room Temperature):	(a)	
Solvent	Solubility	
Water n-Hexane Carbon tetrachloride Ethanol Chloroform Benzene Nitromethane Glacial acetic acid Ethyl acetate	Insoluble Insoluble Insoluble 5 gm/100 gm solvent 10 gm/100 gm solvent Very soluble Very soluble Very soluble Very soluble	And a statistic as

TNETB Forms	Eutectics	With	the	Following	Compounds:	(a)

a di manana panta provan	TNT BTNES (bis(trinitroethyl) succinate) BTNEN (bis(trinitroethyl) nitramine) TNB (trinitrobenzene) Compound A (C4HGN 07 formed by condensation of 1,1-dinitroethane) Trinitroethyl trinitrobenzoate (27%)	57 80+ 68.5 65 77 80.5 (f)
-	Timitioenyi minitiobenzoate (21%)	

#### Crystallographic Data:

Prenaration.

Three polymorphic crystalline forms have been observed. Low temperature Form I goes through a solid-solid transition at  $89^{\circ}$ C giving Form II. Form II has a melting point of 92.5° to 93°C. On cooling, Form II does not transform reversibly to Form I when  $89^{\circ}$ C is reached. However, Form II will transform to Form I at room temperature, usually taking a few hours to do so. Form III was observed, which appeared to be stable over a very narrow temperature range on the order of  $0.2^{\circ}$  to  $0.3^{\circ}$ C near 92.5°C.

(d)

(a)

(NO2)3ссн ⁵ сн ⁵ сн ⁵ сост + (NO ⁵ ) ³ сн	DOH .	H2SO4
trinitrobutyryl chloride trinitroet		sulfuric acid
(NO2) 3 CCH 2 CH 2 COOCH 2 C (NO2) 3 +	HCl	<b>~~~~~</b>
2,2,2-trinitroethyl-4,4,4-trinitro- butyrate	hydrocl acid	

Laboratory experiments indicate that the present slow step involving overnight treatment of 4,4,4-trinitrobutyryl chloride with 2,2,2-trinitroethanol and aluminum chloride can be replaced by a fast and simple esterification in sulfuric acid. Using 100% sulfuric acid or fortified  $H_2SO_h$ , the ester can be prepared in yields of 95% to 98% in 24 hours at 25°C, in 5 hours at 50°C, or in 3 hours at 65°C. Above 65°C the reaction time is less, but the yield falls off" and a less pure product is obtained. The crude white crystalline product on recrystallization from dilute methanol gives a material melting at 92° to 93°C.

376

#### Origin:

(e)

TNETE belongs to a new class of explosives characterized by trinitromethyl groups,  $-C(NO_2)_2$ . The chemistry of this class of compounds was studied in Germany by Drs. Schenck and Schimmelschmidt, who discovered in 1942-1943 that trinitromethane or nitroform, HC(NO₂)₃, was the source of new explosive derivatives. Dr. Schenck prepared the stable solid alcohol, 2,2,2-trinitroethanol, from nitroform and formaldehyde. Dr. Schimmelschmidt reacted nitroform with unsaturated organic compounds, such as acrylic acid, and predicted in 1943 that the ester of 4,4,4-trinitrobutyric acid with trinitroethanol would be an interesting explosive.

In 1947 the U.S. Navy began a program to explore these compounds. The initial task of investigating the chemistry of trinitroethanol was undertaken by the Hercules Powder Company (Navy Contract Nord-19925). The U.S. Rubber Company studied the chemistry of nitroform (Navy Contract Nord-10,129). After preparation of the first laboratory samples of TNETB, considerable interest was aroused. In early 1950 the Naugatuck Chemical Division of U.S. Rubber Company was assigned to prepare 100 pounds of TNETB. The Bureau of Ordnance in July 1953 raised the production to 800 pounds with the assistance of the Hercules Powder Company in augmenting the production at Naugatuck (Navy Contract NOrd-11,280). TNETB is a high oxygen content explosive.

# References: 80

(a) J. M. Rosen, <u>Properties of Trinitroethyl Trinitrobutyrate TNETB</u>, NAVORD Report No. 1758, 17 December 1950.

(b) Bureau of Mines Report No. 3107, Part IX, <u>Ballistic Mortar Tests on Trinitroethyl</u> <u>Trinitrobutyrate</u>, 5 April 1950.

(c) L. D. Hampton and G. Svadeba, Evaluation of 2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate as a Constituent of Castable Explosives, NAVORD Report No. 2614, 30 September 1952.

(d) U.S. Rubber Company Quarterly Progress Report No. 23, <u>Synthesis of New Propellants</u> and <u>Explosives</u>, Navy Contracts Nord-10-129 and -12,663, 19 August 1953.

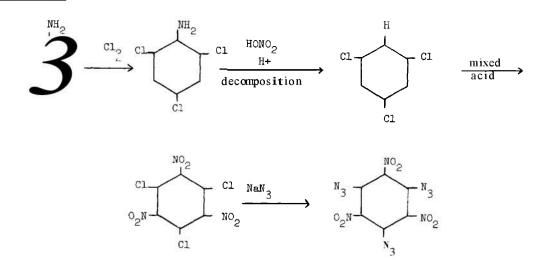
(e) M. E. Hill, O. H. Johnson, J. M. Rosen, D. V. Sickman and F. Taylor, Jr., <u>Preparation</u> and Properties of TNETB, a New Castable High Explosive, NAVORD Report No. 3885, 27 January 1955.

(f) M. E. Hill, Synthesis of New High Explosives, NAVORD Report No. 2965, 1 April 1953.

(g) Jacob Savitt, A Sensitivity Test for Castable Liquid Explosives, Including Results for Some New Materials, NAVORD Report No. 2997, 22 October 1953.

(h) R. W. Gipson, <u>Sensitivity of Explosives</u>, IX: <u>Selected Physico-Chemical Data of Ten</u> <u>Pure High Explosives</u>, <u>NAVORD Report No. 6130</u>, 18 June 1958.

⁸⁰See footnote 1, page 10.


Composition:	Molecular Weight: $(C_6O_6N_{12})$	<b>3</b> 36
$\begin{array}{c} \text{NO}_2\\ \text{C} & 21.4\\ \text{N} & 50.0 \end{array}$	Oxygen Balance: CO, % CO %	-29 0.0
	Density: gm/cc Crystal	1.81
0 20.0 2 7 -	Melting Point: "C Decomposes	1.31
C/H Ratio	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm(a) <b>≤</b> 25	Boiling Point: "C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Impact Test: Trials % Explosions Partials	120°C 135°C 150°C	
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	
Explosion Temperature: "C (a) Seconds, 0.1 (no cap used) 1 5 150 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	
20	Ballistic Mortar, % TNT:	
	Trausl Test, % PETN:	90
75°C International Heat Test: % <b>Loss</b> in <b>48</b> Hrs	Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st <b>48</b> Hrs % Loss, 2nd 48 Hrs Explosion in 100 <b>Hrs</b>	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 30 [°] C, 90% RH 0.00	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc Rate, meters/second	

# Trinitro Triazidobenzene

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:	:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Con Hole Volume Hole Depth	es		
Total No. of Fragments: For TNT	Color: Greenish-ye	ellow		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5:	Principal Uses: (c) Ingredient of	primer mix		
Density, gm/cc Charge Wt, lb				
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pr Dead presses at about 42,000 p	ressed osi		
Fragment Velocity: ft/sec	Loading Density: gm/cc A t 42,000 p s i	1.75		
At 9 ft At 25½ ft Density, gm/cc	Storage:			
Blast (Relative to TNT):	Method  Hazard Class (Quontity-Distance)			
Air: Peak Pressure	Compatibility Group			
Impulse Energy		None		
Air, Confined: Impulse	Qualitative Solubilities at Room Temperature: Solvent	Solubility		
Under Water: Peak Pressure Impulse	Chloroform Mode	ily soluble erately soluble ingly soluble luble		
Energy Underground: Peak Pressure	Commatibility with Metals: Wet: Does not attack iron, st or brass.	Wet: Does not attack iron, steel, copper		
Impulse Energy	Heat of: Combustion, cal/gm (a)	2554		
	Burning Rate: (b) cm/sec	0.65		

Trinitro Triazidobenzene

Preparation: (e)



Aniline is chlorinated to form trichloroaniline. The amino group is eliminated by the diazo reaction. The resulting sym-trichlorobenzene is nitrated. This nitration is carried out by dissolving the material in warm 32% oleum, adding strong nitric acid, and heating to  $140^{\circ}-150^{\circ}$ C until no trinitro trichlorobenzene (melting point  $187^{\circ}$ C) precipitates (Ref f). The chlorine groups are then replaced by azo groups. This is accomplished by adding an acetone solution of the trinitro trichlorobenzene, or better, and powdered substance alone, to an actively stirred solution of sodium azide in alcohol. The precipitated trinitro triazidobenzene is collected on a filter, washed with alcohol, water and dried. It may be purified by dissolving in chloroform, allowing the solution to cool, and collecting the greenish yellow crystals (melting point  $131^{\circ}$ C with decomposition).

#### Origin:

This initiating explosive was first prepared in 1923 by Turek who also perfected its manufacture.

#### References:81

(a) S. Helf, <u>Tests of Explosive Compounds Submitted by Arthur D. Little</u>, Inc., PATR 1750, 24 October 1949.

(b) A. F. Belyaeva and A. E. Belyaeva CR a.s. USSR <u>52</u>, 503-505 (1946) Chemical Abstracts <u>41</u>, 4310.

A. E. Belyaeva and A. F. Belyaeva, Doklady Akad Nauk. USSR 56, 491-494 (1947).

(c) French Patent 893,941, 14 November 1944 (Chemical Abstracts 47, 8374).

(d) A. D. Yoffe, "Thermal Decomposition and Explosion of Azides," Proc. Roy Soc A208, 188-199 (1951).

(e) T. L. Davis, The Chemistry of Powder and Explosives, John Wiley and Sons, Inc.,

(f) 0. Turek, Chim et Ind <u>26</u>, 781 (1931); German Patent 498,050; British Patent 298,981.

New York (1943), p. 436.

⁸¹See footnote 1, page 10.

Composition:	Molecular Weight: (C ₁₅ H ₂₄ N ₈ O ₂₆ )	732
% C 24.6 H 3.3 N 15.3 O 56.8	Oxygen Balance: CO ₂ % CO %	-35
$\begin{array}{c} \text{CH} \text{ONO}  \text{CH} \text{ONO}  \text{CH} \text{ONO} \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ \end{array}$	Density: gm/cc Crystal	1.58
02NOCH2CH2OCH2CCH2OCH2CCH2ON02	Melting Point: "C 82	to <b>84</b>
C/H Rotic 0.115	Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 9 Sample Wt, mg 24	Boiling Point: "C Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test: Steel Shoe Unaffected Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C	
	100°C Pure	2.45
Rifle Bullet Impact Test: Trials % Explosions Partials	120°C Specially purified 135°C 150°C	1.94
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	58.9
Explosion Temperature: "C Seconds, 0.1 (no cap used) 1 5 225 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	0.30 
20	Ballistic Mortar, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Trauzl Test, % TNT: Plate Dent Test: Method	
100°C Heat Test:           % Loss, 1st 48 Hrs         1.15           % Loss, 2nd 48 Hrs         0.75           Explosion in 100 Hrs         None	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	None
Hygroscopicity: %	Condition Charge Diameter, in.	Pressed 0.5
Volatility:	Density, gm/cc Rate, meters/second	1.56 7650

# Tripentaerythritol Octanitrate (TPEON)

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc Heat of: Combustion, cal/gm Explosion, cal/gm Formation, cal/gm Fusion, cal/gm	2632 1085 762	Decomposition Equation: Oxygen, otoms/sec (Z/sec) Heat, kilocalarie/mole (AH kcal/mol) Temperature Range, °C Phase Armor Plate Impact Test: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec Aluminum Fineness 500-lb General Purpose Bombs:	23.1 215 to 250 Liquid
Specific Heat: col/gm/°C <u>Specific Impulse:</u>		Plate Thickness, inches	
lb-sec/lb (calculated)	240	1 1 ¼ 1 ¼ 1 ¾	
Burning Rate: cm/sec		Bomb Drop Test:	
Thermal Conductivity: col/sec/cm/ "C		T7, 2000-Ib Semi-Armor-Piercing E	Bomb <b>vs</b> Concrete:
Coefficient of Expansion: Linear, %/"C		Max Safe Drop, ft 500-Ib General Purpose Bomb vs 0	Concrete:
Volume, %/°C		Height, ft	
Hardness, Mohs' Scale:		Trials Unoffected	
Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc		Low Order High Order 1000-Ib General Purpose Bomb <b>vs</b> (	Concrete:
Compressive Strength: Ib/inch ²		Height, ft Trials Unaffected	
Vopor Pressure: °C mm Mercury		Low Order High Order	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: White			
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: High explosive and as possible plasticizer for nitrocellulose			
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Cast or pressed			
Fragment Velocity: ft/sec At 9 ft	Loading Density: gm/cc Pressed at 60,000 psi 1.565			
At .25½ ft Density, gm/cc	Storage: Method Dry			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)			
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None			
Air, Confined: Impulse	Hygroscopicity,, Gain or Loss in Wt, %: <u>Time, Hrs</u> % RH at 30 ⁰ C			
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Acetone, hot Very soluble Benzene, hot Very soluble			

	NTN	PEIN ,	RDX	TPEON

#### Origin:

Twenty grams (0.054 mol) of nitration grade tripentaerythritol (TPE) (99%) minimum purity) were slowly added, with stirring, to 160 gm (2.55 mol) of 99% nitric acid at a temperature of  $-25^{\circ}$  to 0°C. On equivalent weight basis, this quantity of 99% nitric acid corresponds to an excess of 6.3 times the TPE used. After addition of the TPE, the reaction mixture was stirred for about one hour at 0° to 5°C and poured into eight times its volume of cracked ice. The product, when allowed to stand overnight, was crushed under water; filtered with suction; and washed copiously with water. It was then treated twice with about 5 times its weight of a 1% ammonium carbonate solution, stirred for several hours, filtered and washed with water until the final washings were neutral to litmus. The final product was washed successively with 50 cc each of ethanol and ether. The material dried in air weighed 37.8 gm or 96% of theory based on TPE. It had a melting range of 71° to 74°C. Crystallization of the crude TPEON from chloroform was found to be the most suitable method of obtaining pure TPEON.

TPEON prepared by the reaction of tripentaerythritol and 99% nitric acid at  $0^{\circ}$  to  $10^{\circ}$ C was reported by Wyler in 1945 (J. A. Wyler to Trojan Powder Company: U.S. Patent 2,389, 228, 20 November 1945).

References: 82

(a) J. J. LaMonte, H. J. Jackson, S. Livingston, L. B. Silberman and M. M. Jones, <u>The</u> Preparation and Explosive Properties of Tripentaerythritol Octanitrate, PAIR No. 2490, 1958.

(b) K. Namba, J. Yamashita and S. Tanaka, "Pentaerythritol Tetranitrate," J Ind Explosives Soc (Japan) 15, 282-9 (1954); CA 49, 11283 (1955).

(c) S. D. Brewer and H. Henkin, The Stability of PEIN and Pentolite, OSRD Report No. 1414.

(d) E. Berlow, R. H. Barth and J. E. Snow, <u>The Pentaervthritols</u>, ACS Monograph No. 136, Reinhold Publishing Corporation, New York, 1958.

⁸²See footnote 1, page 10.

Tritonal, 80/20

Composition: %		Molecular Weight:		81
TNT	80	Oxygen Balance:		
	00	00, %		-77
Aluminum	20	CO %		-38
		Density: gm/cc	Cast	1.72
		Melting Point: "C		
C/H Ratio		Freezing Point: "C		
Impact Sensitivity, <b>2 Kg</b> Wt: Bureau of Mines Apparatus, cm	85	Boiling Point: "C		
Sample Wt 20 mg	10	Refractive Index, n ^o ₂₀		
Picatinny Arsenal Apparatus, in, Sample Wt, mg	13 16	Π <mark>2</mark> 5		
	10	n ₃₀		
Friction Pendulum Test:		Vacuum Stability Test:		
Steel Shoe	Unaffected	cc/40 Hrs, at		
Fiber Shoe	Unaffected	90°C		
Rifle Bullet Impoct Test: Trials		100°C		0.1
0/-		120°C		0.2
		135°C		
		150°C		0.8
		200 Gram Bomb Sand Test:		
		Sand, gm		
		Sensitivity to Initiation:		
		Minimum Detonating Ch	arge, gm	
		Mercury Fulminate		
		Lead Azide		0.20
		Tetryl		0.10
		Ballistic Mortar, % TNT:	(a)	124
⁷ 5°C International Heat Test:		Traurl Test, % TNT:	(b)	125
% Loss in 48 Hrs		Plate Dent Test: Method	(c)	В
00°C Heat Test:		Condition		Cast
		Confined		NO
% Loss, 1st 48 Hrs				
% Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs		Density, gm/cc		1.75
% Loss, 2nd 48 Hrs Explosion in 100 Hrs		Density, gm/cc		1.75 9 <b>3</b>
% Loss, 2nd 48 Hrs	100	Density, gm/cc Brisance, % TNT	None	1.75
% Loss, 2nd 48 Hrs Explosion in 100 Hrs Iammability Index:		Density, gm/cc Brisance, % TNT Detonation Rate: Confinement Condition	Cast	1.75 93 None Pressed
% Loss, 2nd 48 Hrs Explosion in 100 Hrs	100	Density, gm/cc Brisance, % TNT Detonation Rate: Confinement		1.75 93 None

Tritonal, 80/20

AMCP 706-177

.

Booster Sensitivity lest: (d) Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc	Cast 100 0.58 1.75	Decomposition Equation: Oxygen, otoms/sec (Z/sec) Heat, kilocolorie/mole (AH kcol/mol) Temperature Range, °C Phase		
Heat of: (c) Combustion, col/gm Explosion, col/gm Gas Volume, cc/gm Formation, col/gm Fusion, col/gm	4480 1770	Armor Plate Impact lest: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/se Aluminum Fineness 500-Ib General Purpose Boml	100	>1100 12
Specific Heat: col/gm/°C (b) At -5 [°] C Density, gm/cc At 20 [°] C	0.23 1.74 0.31	Plate Thickness, inches 1 11/4 11/ <u>4</u> 13/4	<u>Trials</u> 0 16 6 0	<u>% Inert</u> 100 33
Burning Rate: cm/sec Thermal Conductivity: col/sec/cm/"C, (b) Density, gm/cc Coefficient of Expansion: Linear, %/°C	11 x 10 ⁻⁴ 1.73	Bomb Drop lest: (e 17, <b>2000-lb</b> Semi-Armor-Pier Max Safe Drop, ft	rcing Bomb <b>vs</b>	
Volume, %/°C Hardness, Mohs' Scale:		500-Ib General Purpose Bon Height, ft Trials Unaffected	<u>Seal</u> <u>4,000</u> 34 32	s: <u>Seal</u> 5,000 14 14
Young's Modulus: (b) E, dynes/cm ² E, Ib/inch ² Density, gm/cc	6.67 x 10 ¹⁰ 0.97 x 10 ⁶ 1.72	Low Order High Order 1000-Ib General Purpose Bor	0 2 mb vs Concrete	0 0 <u>Seal</u> 5,000
Compressive Strength: Ib/inch ² (b) Density, gm/cc Vapor Pressure: °C mm Mercury	2340 1.75	Height, ft Trials Unaffected Low Order High Order		24 23 0 <b>1</b>

Fragmentation Test:		Shaped Charge Effectiveness, $TNT = 100$	:
90 mm HE, M71 Projectile, Lot WC-9 Density, gm/cc Charge Wt, Ib	1: 1.71 2.272	Glass Cones Steel Con Hole Volume Hole Depth	nes
Total No. of Fragments: For TNT For Subject HE	7 <b>03</b> 616	Calor:	Gray
3 inch HE, M42A1 Projectile, Let KC-5 Density, gm/cc Charge Wt, Ib		Principal Uses: OP bombs	
Total No. of Fragments: For TNT For Subject HE	514 485	Method of Loading:	Cast
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	2460 2380 1.72	Loading Density: gm/cc l	65-1.72
Bbst (Relative to TNT):	(f)	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	110 115 119	Compatibility Group Exudation	Group I
Air, Confined: Impulse	130	Preparation: Tritonal is prepared by adding ' aluminum separately to a steam-ja	
Under Water: Peak Pressure Impulse Energy	105 118 119	kettle equipped with a stirrer. I the kettle and mixing of the ingre- continued until all the TNT is me the viscosity of the mixture is c satisfactory (about 85°C), the tr:	Heating of edients are elted. When onsidered itonal is
Underground: Peak Pressure Impulse Energy	117 127 136	poured into projectiles or bombs TNT.	the same as

#### Origin:

The Addition of aluminum to increase the power of explosives was proposed by Escales in 1899 and patented by Roth in 1900 (German Patent 172, 327). Some recent studies, directed towards establishment of the optimum amount of aluminum in the TNT/Aluminum system, have shown that (1)the blast effect increases to a maximum when the aluminum content is 30% (Ref g); the brisance, as measured by the Sand Test, passes through a maximum at about 17% aluminum (Ref h); in Fragmentation Tests, no maximum is observed, additions of aluminum causing a decrease in efficiency over the entire range from 0% to 70% aluminum (Ref i); and (4) the rate of detonation of cast charges is continuously decreased by additions of aluminum up to 40% (Ref j). For all practical purposes it is concluded that the addition of 18% to 20% aluminum to TNT improves its performance to a maximum. This conclusion is in agreement with that of British workers who measured performance of aluminized TNT-mixtures based on extensive Lead Block Test data (Ref k).

Tritonal, consisting of 80% TNT and 20% aluminum, was developed and standardized in the United States during World War II for use in bombs.

### References:83

(a) L. C. Smith and E. H. Eyster, <u>Physical Testing of Explosives</u>, <u>Part 111</u>, <u>Miscellaneous</u> <u>Sensitivity Tests</u>; <u>Performance Tests</u>, OSRD Report No. 5746, 27 December 1945.

(b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

(c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

(d) L. C. Smith and S. R. Walton, <u>A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters</u>, NOL Mano 10,303, 15 June 1949.

(e) Committee of Div 2 and 8, NDRC, <u>Report on HBX and Tritonal</u>, OSRD No. 5406, 31 July 1945.

(f) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>. PA Tech Div Lecture, 9 April 1948.

(g) W. B. Kennedy, R. F. Arentzen and C. W. Tait, <u>Survey of the Performance of TNT/A1 on</u> the Basis of Air-Blast Pressure and Impulse, OSRD Report No. 4649, Division 2, Monthly Report No. AES-6, 25 January 1945.

(h) W. R. Tomlinson, Jr., <u>Develop New High Explosive Filler for AP Shot</u>, PAIR No. 1290, First Progress Report, 19 May 1943.

(i) W. R. Tomlinson, Jr., <u>Develop New High Explosive Filler for AP Shot</u>, PATR No. 1380, Second Progress Report, 12 January 1944.

(j) L. S. Wise, Effect of Aluminum on the Rate of Detonation of TNT, PATR No. 1550, 26 July 1945.

(k) Armament Research Dept, <u>The Effect of Aluminum on the Power of Explosives</u>, British Report AC-6437, May 1944 (Explosives Report 577/44).

83See footnote 1, page 10.

# <u>Tritonal, 80/20</u>

(1) Also see the following Picatinny Arsenal Technical Reports on Tritonal:

<u>o</u>	3	4	<u>5</u>	6	<u></u> <i>Z</i>	8
1530 1560 2010	1693 2353	1444	1635	1956	1737 2127	2138

Composition:		Molecular Weight:	281
% HMX	70.0	Oxygen Balance:	
Nitrocellulose (13.15% N)	15.0	CO ₂ %	-26
Nitroglycerin	10.7	co %	-0.5
2-Nitrodiphenylamine	1.3	Density: gm/cc Pressed	1.72
Triacetin	3.0		
		Melting Point: "C	
C/H Ratio		Freezing Point: "C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: "C	
Sample Wt 20 mg		Refractive Index, <b>n</b> ^D ₂₀	
Picatinny Arsenal Apparatus, in. Sample Wt, mg		n ₂₅	
campo IV, mg		n _{so}	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact lest: Trials		100°C	1.29
········-		120°C 29 hours	11+
% Explosions		135°C	
Partiols		150°C	
Burned		200 Gram Bomb Sand Test:	
			CC 1
Unaffected		Sand, gm	66.4
Explosion Temperature: "C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5		Lead Azide	0.30
10		Tetryl	
15			
20		Ballistic Mortar, % TNT:	
75°C International Heat Test:		Trauzi Test, % TNT:	
% Loss in 48 Hrs		Plate Dent Test:	
		Method	
90 'C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.28	Confined	
% Loss, 2nd 48 Hrs	1.12	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
		Detonation Rate:	
Flammability Index:		Confinement	
		- Condition	
Hygroscopicity: %		Charge Diameter, <b>in.</b>	
		Density, gm/cc	
Volatility:		Rate, meters/second (calculated)	8 <b>500</b>

*See footnote on following page.

.

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc	Decomposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilocolorie/mole (AH kcol/mol) Temperature Range, °C Phase
Hoot of: Combustion, co l/gm 2359 Explosion, col/gm 1226 Gas Volume, cc/gm Formation, col/gm Fusion, col/gm	Armor Plate Impact Test: 60 mm Mortor Projectile: 50% Inert, Velocity, ft/sec Aluminum Fineness 500-lb General Purpose Bombs:
Compression at Rupture:\$8.26Work to Produce Rupture:ft-lb/inch ³ 9.62	Plate Thickness, inches 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Burning Rate: cm/sec Thermal Conductivity: col/sec/cm/"C	Bomb Drop Test: T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion: Linear, %/°C	Max Safe Drop, ft 500-lb General Purpose Bomb vs Concrete:
Volume, %/°C Hardness, Mohs' Scale:	Height, ft Trials Unaffected
Young's Modulus:E', dynes/cm2 $0.24 \times 10^{10}$ E, lb/inch2 $0.35 \times 10^{5}$ Density, gm/cc	Low Order High Order 1000-Ib General Purpose Bomb vs Concrete:
Compressive Strength: Ib/inch ² 2720	Height, ft Trials Unaffected
Vapor Pressure: "C mm Mercury	Low Order High Order
*Name assigned by Dr. Mark M. Jones, formerly of PA; based on original development by James H. Veltman.	

Fragmentation Test:	Shaped Charge Effectiveness, $TNT = 100$ :	
<b>90 mm HE, M71 Projectile, Lot WC-91:</b> Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color:	Orange
For Subject HE <b>3 inch HE, M42A1 Projectile, Lot KC-5:</b> Density, gm/cc Charge Wt, Ib	Principal Uses: High mechanical strength machinable explosive	1
Total No. of Fragments: For TNT For Subject HE	Method of Looding:	Pressed
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc A t 6,700 psi Storage: Method	1.72 Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation Machinability	None Excellent
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy		

#### Preparation:

The preparation of this class of explosive compositions is illustrated by the method used for Veltex No. 448: Place 675 cc of water in a slurry kettle equipped with an agitator. Add 5.85 gn of 2-nitrodiphenylamine and agitate for several minutes to obtain dispersion. Then add 93.7 gm of water-west nitrocellulose (dry weight 67.5 gm) in small portions. Raise the temperature to  $48^{\circ}$ C and maintain this temperature, but continue the agitation. A mixture of 48.2 gm of nitroglycerin and 13.5 gm of triacetin is added over a 5-minute period, with the mixing continuing for an additional 10 minutes at  $48^{\circ}$ C. The HMX (350 gm) is added over a 5-minute period with agitation continued for 30 minutes at  $48^{\circ}$ C. The slurry is cooled to room temperature and filtered. The filter cake is dried to a moisture content between 8% and 12%. The incorporation of this mix is completed by rolling 50 gm portions at a temperature of approximately 90°C. The finished colloid is then preheated on a heat table at  $66^{\circ}$ C. Increments of 25 gm each are pressed at 6700 psi for four minutes at  $71^{\circ}$ C. A cylinder is then built up by pressing together four 25 gm increments for a dwell time of 15 minutes.

#### Origin:

Veltex is the name given to a series of closely related nitrocellulose compositions prepared in 1957 at Picatinny Arsenal by the solventless process used for propellants. These compositions all contain a high percentage of solid high explosive. They were investigated to determinate the suitability of the Holtex type explosive developed by Hispano Suiza of Switzerland, France and Spain, but for which the composition was not reported (Ref a). Compositions similar to Veltex No. 448 and containing 60% to 80% HMX, with either nitroglycerin or triethyleneglycol dinitrate as colloiding agent for nitrocellulose, have also been prepared. In general these compositions showed lower heat stability than that of conventional high explosive compositions.

#### Reference: 84

(a) U. S. Air Intelligence Information Report IR-269-55, <u>Holtex--Hispano Suiza Explosive</u>,
 4 May 1955.

⁸⁴See footnote 1, page 10.

☆ U. S. GOVERNMENT PRINTING OFFICE : 1971 O - 430-508(6832A)

(AMC RD-TV)

FOR THE COMMANDER:

OFFICIAL:

winderston

P.R. HORNE Colonel, GS Chief, HQ Admin Mgt Ofc

DISTRIBUTION: Special

1

.

CHARLES T. HORNER, JR. Major General, USA Chief of Staff

# ENGINEERING DESIGN HANDBOOKS

Listed below are the Handbooks which have been published or are currently under preparation. Handbooks with publication dates prior to 1 August 1962 were published as 20-series Ordnance Corps Pamphlets. ANC Circular 310-38, 19 July 1963, redesignated those publications as 706-series AMC Pamphlets (e.g., CRDP 20-138 was redesignated AMCP 706-138). All new, reprinted, or revised Handbooks are being published as 706-series AMC Pamphlets.

100     *Design Guidance for Producibility     201     *Rotorcraft Engineering, Part One, Preliminary       104     *Value Engineering     Design       106     Elements of Armament Engineering, Part One, Sources of Energy     202	No.	Title	No.	Title
<ul> <li>Value Engineering of Amamerin Engineering, Part Dee, Design</li> <li>Value Engineering Carbon Schwarzer Engineering, Part Dee, Baltistic</li> <li>Elements of Amamerin Engineering, Part Dee, Baltistic</li> <li>Elements of Amamerin Engineering, Part Twee, 203</li> <li>Restorcart Engineering, Part Twee, Qualification Schwarzer Engineering, Part Dee, 203</li> <li>Tables of the Cumulative Binomial Probabilities</li> <li>Experimental Statistics, Section 7, Basic Con-215(5)</li> <li>Experimental Statistics, Section 7, Basic Con-215(5)</li> <li>Experimental Statistics, Section 7, Basic Con-215(5)</li> <li>Experimental Statistics, Section 7, Special Construction of Projectile Fight</li> <li>Experimental Statistics, Section 7, Special Construction of Projectile Fight</li> <li>Experimental Statistics, Section 7, Special Construction of Projectile Fight</li> <li>Experimental Statistics, Section 7, Special Construction Construction of Projectile Fight</li> <li>Tenvionmental Concepts</li> <li>Tenvionment</li></ul>	AVCP 706-		AMOP 706-	
Description         Elements of Amazine Engineering, Part Two, Delail         Protocrist Engineering, Part Two, Delail           107         Elements of Amazine Engineering, Part Two, Delail         Part Two, Delail           108         Elements of Amazine Engineering, Part Two, Delail         Part Two, Delail           109         Elements of Amazine Engineering, Part Two, Delail         Part Two, Delail           109         Elements of Amazine Engineering, Part Two, Delail         Part Two, Delail           109         Elements of Amazine Engineering, Part Two, Delail         Part Two, Delail           101         Elements of Amazine Engineering, Part Two, Delail         Part Two, Delail           101         Elements of Amazine Engineering, Part Two, Delail         Part Two, Delail           101         Elements of Amazine Engineering, Part Two, Delail         Part Two, Delail           112         Experimental Statistics, Section A, Part Two, Delail         Part Two, Delail           113         Experimental Statistics, Section A, Part Two, Delail         Part Two, Delail           114         Experimental Statistics, Section A, Part Two, Delail         Part Two, Delail           115         Experimental Statistics, Section A, Part Two, Delail         Part Two, Delail           116         Experimental Statistics, Section A, Part Two, Delail         Partoton Spectral Two, Delail			201	
107         Elements of Amamine Engineering, Part Two, Bayerinerinal Statistics, Section 1, Bask Can- Wapon Systems and Components         203         "Retorcial Engineering, Part Two, Wapon Systems and Components           108         Tables of the Cumulative Binomial Experimental Statistics, Section 1, Bask Can- Engineerinal Statistics, Section 4, Analysis of Engineerinal Statistics, Section 4, Analysis of Engineerinal Statistics, Section 4, Apecial Topics Classificatory Data         71215         Forze, Proximity, Electrical, Part Data (U) Forze, Proximity, Electrical, Part Pice (U) Connected and Pice (E) Forze, Proximity, Electrical, Part Pice (U) Forze, Proximital, Electrical, Pice (E) Forze, Proximity, Electrical, Part Pice (U) Forze, Proximity, Electrical, Part Pice (U) Forze, Proximity, Electrical, Pice (E) Forze, Forze, Pice (E) Forze, Forze, Pice (E) Forze, Forze, Pice (E) Forze, Forz		Elements of Armament Engineering, Part One,	202	*Rotorcraft Engineering, Part Two, Detail
109         Elements of Annament Engineering, Part Three, 205         * Timing Systems and Components           100         Experimental Statistics, Section 4, Daskitties         205         * Timing Systems and Components           101         Experimental Statistics, Section 4, Analysis or 214(5)         Fuzzs, Proximity, Electrical, Part Fue (U)           111         Experimental Statistics, Section 4, Special         214(5)         Fuzzs, Proximity, Electrical, Part Fue (U)           112         Experimental Statistics, Section 4, Special         233(5)         Fuzzs, Proximity, Electrical, Part Fue (U)           113         Experimental Statistics, Section 5, Tables         233(5)         * Fuzzs, Proximity, Electrical, Part Fue (U)           114         Forzes, Proximity, Electrical, Part Fue (U)         * Forzes, Proximity, Electrical, Part Fue (U)           115         Environmental Series, Part One, Basic Environ-         * Section 5, Tables         * Annaminion, Section 5, Control of Projection Flight           116         Teorized Military Systems, Part One, Basic Environ-         * Annaminion, Section 5, Lossper for Control of Projection * Annaminion, Section 4, Design for Control of Projection * Annaminion, Section 5, Lossper for Control of Projection * Annaminion, Section 5, Lossper for Control of Projection * Annaminion, Section 5, Lossper for Control of Projection * Annaminion, Section 5, Lossper for Control of Projection * Annaminion, Section 5, Lossper for Control of Projection * Annaminion, Section 5, Lossper for Control of Projecisting * Analysis of Dash * Annam	107	Elements of Armament Engineering, Part Two,	203	*Rotorcraft Engineering, Part Three, Qualifica-
<ul> <li>Tables of the Cumulative Biomaial Probabilities</li> <li>Tables of the Cumula</li></ul>	108	Elements of Armament Engineering, Part Three,		*Timing Systems and Components
10         Experimental Statistics, Section 1, Basic Con- control of Proximity, Electrical, Part Twe (U)           111         Experimental Statistics, Section 2, Analysis of Experimental Statistics, Section 2, Analysis of Experimental Statistics, Section 5, Planning and Analysis of Comparative Experiments and Analysis of Comparative Experiments end Analysis of Comparative Experiments and Analysis of Comparative Experiments end Index for Control of Mobile end Index for Series end Index for Seri	109			
Experimental Statistics, Section 2, Analysis of Experimental Statistics, Section 2, Analysis of Experimental Statistics, Section 2, Planning Experimental Statistics, Section 3, Planning Experimental Statistics, Section 4, Special Topics         Click (Figure 1) (Figure 2) (Figure 2) (Fi			212(S)	Fuzes, Proximity, Electrical, Part Two (U)
Enumeratis         Elseificiary Data         215(C)         Fuzes, Proximity, Elsetrical, Part Five (U)           Figure 1         Experimental Statistics, Section 5, Tables         235         "Small Ame Ammunition [D]           113         Experimental Statistics, Section 5, Tables         241(S)         "Carlet Mines (U)           114         Experimental Statistics, Section 5, Tables         241(S)         "Carlet Mines (U)           116         Environmental Series, Part One, Basic Environmental Generation, Section 7, Ammunition, Section 7, Ammunition, Section 7, Ammunition, Section 7, Design for Terminal           117         "Packaging and idea         Control of Mobile         246         Ammunition, Section 7, Design for Terminal           118         "Packaging and idea         Control of Projection         "Ammunition, Section 4, Design for Terminal           118         "Maintainability Engering Theory and Practice         247         Ammunition, Section 5, Design for Terminal           119         "Maintainability Engering Theory and Practice         247         Ammunition, Section 6, Design for Terminal           120         "Infrared Military Systems, Part Two (U)         247         Ammunition, Section 6, Design for Terminal           121         "Infrared Military Systems, Part Two, Walpon         247         Ammunition, Section 6, Design for Terminal           1221         Traretorical Maintainabili	111			
and Analysis of Comparative Experiments         239(5)         "Small Amis Aminumition (b)           114         Experimental Statistics, Section 5, Tables         240(5)         "Greades (U)           114         Experimental Statistics, Section 5, Tables         242         Design for Control of Projectile Flight           115         Environmental Series, Part Two, Basic Environ- mental Concepts         Section 1, Artillery Ammunition, Section 2, Design for Control of Projectile Flight Characteristics (FEPACED V = 242)           120         "Orieria for Environmental Series, Part Two (U)         Ammunition, Section 3, Design for Control of Projectile Flight Characteristics (FEPACED V = 242)           121         "Projectile Flight Characteristics (FEPACED V = 242)         Ammunition, Section 3, Design for Control of Projectile Flight Characteristics (FEPACED V = 242)           123         "Hight Characteristics (FEPACED V = 242)         Ammunition, Section 3, Design for Control of Projectile Flight Characteristics (FEPACED V = 242)           124         "Hight Characteristics (FEPACED V = 242)         Ammunition, Section 3, Design for Control of Projectile Projectile Flight Characteristics of Muzzle Flight Characteristics of Mu				
113         Experimental Statistics, Section 4, Special Topics         244(5) 241(5)         Greandes (U) 241(5)         241(5)         Greandes (U) 241(5)           114         Experimental Statistics, Section 7, Special mental Concepts         241(5)         242         Design for Control of Projectile Flight           115         "Francionmental Series, Part Two, Basic Environ- mental Factors         241(5)         Ammunition, Section 1, Artillery Ammunition- General, with Table of Contents, Glossary, and Index for Series         246           115         "Francinging and Pack Engineering         246         Ammunition, Section 3, Design for Control of Flight Characteristics of Projection Ammunition, Section 4, Design for Projection Aspects of Flight Characteristics of Projection Material         247         Ammunition, Section 4, Design for Projection Flight Characteristics of Projection Flight Characteristics of Projection Material           116         "Material Maintainability Engineering Theory and Signal Convertes         Ammunition, Section 1, Mary Interver Metallic Components of Artiflery Ammunition           117         Servomechanisms, Section 1, Amplification System Design         Ammunition, Section 2, Mary Interver Metallic Components of Artiflery Ammunition           118         Maintainability Guide for Polytication Servomechanisms, Section 1, Amplification System Design         Ammunition, Section 2, Mary Interver Metallic Components of Artiflery Ammunition           118         Maintainability System         Ammunition, Section 2, Mary Interver Metallic Compone	11 <b>2</b>			
<ul> <li>Topics</li> /ul>	113			
115       Environmental Series, Part One, Basic Environ- mental Concepts       Characteristics (REPLACES - 246)         116       "Environmental Series, Part Twe, Basic Environ- mental Factors       Characteristics (REPLACES - 246)         120       "Prackaging and Pask Engineering       246         121       "Hydraulic Fluids       Electrical Wire and Cable       247         122       Electrical Wire and Cable       247       Ammunition, Section 3, Design for Control of Flight Characteristics (REPLACED Br -242)         123       "Haitainability Engineering Theory and Practice       248       Ammunition, Section 4, Design for Appets of Ammunition, Section 1, Design of Appletation to Projection Signal Converters         123       "Maintainability Engineering Theory and Practice       240       Ammunition, Section 1, Marker of Muzzle Flash Automatic Wapons         124       Maintainability Guide for Design       250       Servomechanism, Section 1, Appletation to Projectice         124       Maintainability Engineering Theory and Practice       250       Section 1, Arctuated Davices         125       Servomechanism, Section 2, Messurement and Signal Converters       Servomechanism, Section 2, Messurement and Signal Converters       250         126       Trajectoriss, Gambal System       270       Propeliants of Harmial Ballistics Part Twe, Computers         126       Trajectoriss of Lamistices of Ammunitino for Projectice		Topics		
mental ConceptsAmmunition. Section 1, Artillery Ammunition- General with Table of Contents, Glossary, and Index for Series 2, Artillery Ammunition- General with Table of Contents, Glossary, and Index for Series 2, Design for Terminal Effects (U) Transport and Airdrop of Maintainability Engineering Theory and Practice Maintainability Engineering Theory and Practice Signal Converters Signal C			242	
<ul> <li>mental Factors</li> <li>*Criteria for Environmental Control of Mobile Systems</li> <li>*Trackajing an Pack Engineering</li> <li>*Trackajing Convertiers</li> <li>*Trackajing an Pack Engineering</li> <li>*Trackajineering</li> <li>*Trackajing an Pack Engineering</li> <li>*Trackajing Pack Engineering</li> <li>*Trackajing Packaging an Pack</li></ul>		mental Concepts	244	Ammunition, Section 1, Artillery Ammunition
120         **Criteria for Environmenial Control of Mobile         245(C)         Ammunition. Section 2, Design for Central of Fight Characteristics (FRCACD 9' - 242)           121         **Packaging and Pack Engineering         246         *Ammunition. Section 3, Design for Central of Fight Characteristics (FRCACD 9' - 242)           123         *trifrared Milliary Systems, Part One         247         *Ammunition. Section 3, Design for Act Control of Artiflery Ammunition Section 5, Inspection Aspects of Artiflery Ammunition Section 5, Inspection Aspects of Artiflery Ammunition Section 6, Manufacture of Metallic Components of Artiflery Ammunition Commons of Artiflery Ammunition Section 7, Massurement and Signal Converters         250         Spectral Characteristics of Muzzle Flash Antonatic Waspons           136         Servomechanisms, Section 1, Theory         251         Spectral Characteristics of Muzzle Flash Antonatic Waspons           137         Servomechanisms, Section 3, Amplification 7, Section 2, Massurement and Signal Converters         281         Spectral Characteristics of Muzzle Flash Antonatic Waspons           138         Servomechanisms, Section 4, Power Elements and Taracking Gimbal System         281         281           139         Servomechanisms, Section 4, Power Elements and Musile Propulsion differences (U)         281         281           140         Therior Ballistics, Part Tow, Fragets (U)         281         281         281           150         Lements of Tarrainal Ballistics, Part Tow, Application 10	116			
121       "*Packaging and Pack Engineering       246       *Ammunition, Section 3, Design for Control of Flight Characteristics (FPACCD B7 -242)         125       Electrical Wire and Cable       247       Ammunition, Section 5, Darsolin A, Design for Argeleta of Ammunition, Section 5, Inspired and Aperical Convertes         130       Design for A in Transport and Airdrop of       248       Ammunition, Section 6, Mandfacture of Metallic Components of Artillery Ammunition         131       "Maintainability Engineering Theory and Practice       249       Ammunition, Section 6, Mandfacture of Metallic Components of Artillery Ammunition         133       Servemechanisms, Section 1, Theory       250       Guns-General         134       Servemechanisms, Section 3, Amplification       250       Design of Aerodynamically Stabilized Frie         135       Servemechanisms, Section 3, Amplification       250       Design of Aerodynamically Stabilized Frie         135       Servemechanisms, Section 3, Amplification       250       Design of Aerodynamically Stabilized Frie         136       Servemechanisms, Section 3, Parking Gmbal System       221(SRD)       Heennis of Aircraft and Missile Propulsion         136       Interior Ballistics, Part Two, Yeapolites of Explosives of Military Interest       2245       Surface-to-Air Missiles, Part Four, Missile         137       Conteleta of Explosives of Military Interest       770       Splosive Trains<	120		245(C)	Ammunition, Section 2, Design for Terminal
<ul> <li>**Hydrautic Fluids</li> <li>Flight Characteristics (REPLACED BF -242)</li> <li>Ammunition, Section 4, Design for Projection</li> <li>*Infrared Military Systems, Part Two (U)</li> <li>Design for A in Transport and Airdrop of</li> <li>Waintainability Guide for Design</li> <li>Maintainability Guide for Design</li> <li>Servomechanisms, Section 1, Theory</li> <li>Servomechanisms, Section 1, Amplification</li> <li>System Design</li> <li>Trajectories, Differential Effects, and Data</li> <li>Tor Projectiles</li> <li>System Design</li> <li>Interior Ballistics, Part Two,</li> <li>Collection and Analysis of Data Concerning</li> <li>Targets (U)</li> <li>Elements of Terminal Ballistics, Part Two,</li> <li>Collection and Analysis of Data Concerning</li> <li>Targets (U)</li> <li>Collecton and Analysis of Data Concerning</li> <li>Application to Missiles, Part Two, Safety,</li> <li>Properities of Explosives of Military Interest</li> <li>Section 2 (U) (REPACED BF -177)</li> <li>Solid Propellants, Part One, System</li> <li>Military Protechnics, Part Three, Properties</li> <li>Solid Propellants, Part One, System Science Air Missiles, Part Three, Computers</li> <li>Military Protechnics, Part Three, Properties</li> <li>Military Protechnics, Part Three, Properties</li> <li>Military Protechnics, Part Three, Properties</li> <li>Military Protech</li></ul>	121		246	
<ul> <li>127 *Infrared Military Systems, Part Two (U)</li> <li>130 Design for Air Transport and Airdrop of Aritifery Ammunition Section 5, Inspection Aspects of Aritifery Ammunition Comparison of Aritifery Ammuniton Comparison of Aritifery Ammunicon</li></ul>	123			Flight Characteristics (REPLACED BY -242)
<ul> <li>128(S)</li> <li>*Intrared Military Systems, Part Two (U)</li> <li>Attillery Ammunition Design</li> <li>Maintainability Engineering Theory and Practice</li> <li>Maintainability Guide for Design</li> <li>Maintainability Guide for Design</li> <li>Maintainability Guide for Design</li> <li>Maintainability Guide for Design</li> <li>Servomechanisms, Section 1, Theory</li> <li>Servomechanisms, Section 3, Amplification</li> <li>System Design</li> <li>Trajectories, Differential Effects, and Data</li> <li>System Design</li> <li>Trajectories, Differential Effects, and Data</li> <li>System Design</li> <li>Trajectories, Differential Effects, Part One, Kill</li> <li>Mechanisms and Vulnerability Concentrations</li> <li>Mechanisms and Vulnerability Concentration</li> <li>Mechanism and Vulner</li></ul>				Ammunition, Section 4, Design for Projection
130         Design for Air Transport and Airdrop of Material         249         Amunition. Section 6, Manufacture of Metallic Components of Artillery Ammunition Guna-General           131         "Maintainability Guide for Design Inventions, Patense and Relation Signal Converters         250         Guna-Central Mazza Devices           133         Servomechanisms, Section 2, Measurement and Signal Converters         250         Spectral Characteristics of Muzzle Flash Automatic Weapons           134         Servomechanisms, Section 3, Amplification         250         Spectral Characteristics of Muzzle Flash Automatic Weapons           135         Servomechanisms, Section 3, Amplification         250         Spectral Characteristics of Muzzle Flash Automatic Weapons           136         Servomechanisms, Section 3, Amplification         270         Propellant Actuated Devices Rockets           136         Trajectories, Differential Effects, and Data System Design         270         Propulsion and Propellants (MEPLACED BY -285) Acrodynamics           136         Therroi et allistics, Part Two, Collection and Analysis of Data Concerning Targets (U)         281         Structures           137         Servomechanisms and Vulnerability (U)         281         Surface-to-Air Missiles, Part Two, Veapon Surface-to-Air Missiles, Part Two, Veapon		*Infrared Military Systems, Part Two (U)	240	Arti 1lery Ammunition Design
<ul> <li>Maintainability Engineering Theory and Practice</li> <li>Maintainability Guide for Design</li> <li>Maintainability Guide for Design</li> <li>Maintainability Guide for Design</li> <li>Muzzle Devices</li> <li>Guns-Ceneral</li> <li>Muzzle Devices</li> /ul>	130	Design for Air Transport and Airdrop of	249	
134       Maintainability Guide for Design       251       Muzzle Devices         135       Inventions, Patents, and Related Matters       25       Guin Tubes         136       Servomechanisms, Section 1, Theory       255       Spectral Characteristics of Muzzle Flash         137       Servomechanisms, Section 3, Amplification       270       Propellant Actuated Devices         138       Servomechanisms, Section 4, Power Elements and       281 (SR0)       Weapon System Effectiveness (U)         140       Trajectories, Differential Effects, and Data       283 (SR0)       Propulants (REPLACED SY -285)         150(5)       Elements of Terminal Ballistics, Part One, Kill       Mechanisms and Vulnerability (U)       286       Structures         161(5)       Elements of Terminal Ballistics, Part One, Collection and Analysis of Data Concerning Targets (U)       291       Surface-to-Air Missiles, Part Two, Weapon Control         176(C)       Solid Propellants, Part Ow       291       Surface-to-Air Missiles, Part Twe, Computers Ammantel (U)         177       Properties of Explosives of Willtary Interest Solid Propellants, Part Two (U)       294       Surface-to-Air Missiles, Part Five, Counter- measures (U)         178       Solid Propellants, Part Two (U)       294       Surface-to-Air Missiles, Part Six, Structures         176(C)       Solid Propellants, Part Two (U)	133		250	
<ul> <li>Servomechanisms, Section 1, Theory</li> <li>Servomechanisms, Section 2, Measurement and Signal Converters</li> <li>Servomechanisms, Section 4, Power Elements and System Design</li> <li>Trajectories, Differential Effects, and Data System Design</li> <li>Trajectories, Differential Effects, and Data Collection and Analysis of Data Concerning Targets (U)</li> <li>Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)</li> <li>Elements of Terminal Ballistics, Part Two, Collecting to Explosives of Military Interest Social Propellants, Part Two (U)</li> <li>Troperties of Explosives of Military Interest Section 2 (U) (REPACED Br -177)</li> <li>Explosive Trains</li> <li>Military Pyrotechnics, Part Two, System Analysis and Cost-Effectiveness Military Pyrotechnics, Part Two, Military Pyrotechnics, Part Five, Safety, Procedures and Giossary</li> <li>Military Pyrotechnics, Part Five, Safety, Procedures and Gossary</li> <li>Military Pyrotechnics, Part Five, Safety, Procedures and Gossary</li> <li>Military Pyrotechnics, Part Five, Safety, Military Pyrotechnics, Part Five, Safety, Procedures and Gossary</li> <li>Toevelopment Guide for Reliability, Part Two, Contracting for Reliability, Part Two, Neelability Prediction Reliability Measurement</li> <li>Development Guide for Reliability, Part Two, Contracting for Reliability, Part Two, Contracting for Reliability, Part Two, Neelability Prediction Reliability Measu</li></ul>		Maintainability Guide for Design		
Signal Converters270Propellant Actuated Devices138Servomechanisms, Section 3, Amplification270Propellant Actuated Devices139Servomechanisms, Section 4, Power Elements and to Projectiles.270Propellant Actuated Devices140Trajectories, Differential Effects, and Data to Projectiles of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U)281Propellants (REPLACED BY -285)160(5)Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)271Control Concerning Unrace-to-Air Missiles, Part One, System Surface-to-Air Missiles, Part One, System Surface-to-Air Missiles, Part Two, Weapon Control162(SRD)Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U) Collection and Analysis of Data Concerning Targets (U)283175(c)Solid Propellants, Part Two, (U) Troperties of Explosive Trains292176(c)Solid Propelants, Part New, Surdex Soction 2 (U)REPLACED BY -177) Control Computing System178Explosive Trains179Explosive Trains180Military Protechnics, Part One, Theory and Amplication181Military Protechnics, Part Two, System Analysis and Coast-Frectiveness of Materials Used in Protechnic Compositions of Materials Used in				
<ul> <li>Servomechanisms, Section 3, Amplification System Design</li> <li>Servomechanisms, Section 4, Power Elements and System Design</li> <li>Trajectories, Differential Effects, and Data for Projectiles</li> <li>Trajectories, Olfferential Effects, and Data for Projectiles</li> <li>Trajectories, Olfferential Effects, and Data for Projectiles</li> <li>Trajectories, Olfferential Effects, and Data for Projectiles of Aerodynamics</li> <li>Trajectories (U)</li> <li>Trajectories, Olfferential Effects, Part Two, Collection and Analysis of Data Concerning Targets (U)</li> <li>Callection and Analysis of Data Concerning targets (U)</li> <li>Callection and Its Application (U)</li> <li>Trajectories, Part Two, Solid Propellants, Part One Amament (U)</li> <li>Solid Propellants, Part One Application</li> <li>Section 2 (U) (REPLACED B' -177)</li> <li>Explosive Trains</li> <li>Military Protechnics, Part Two, Safety, Procedures and Glossary</li> <li>Military Protechnic Effects</li> <li>Military Protechnics, Part Two, Safety, Procedures and Glossary</li> <li>Military Protechnic Effects</li> <li>Military Protechnic Effects</li> <li>Military Protechnics, Part Twe, Properties of All Protechnic Emposition</li> <li>System Analysis and Cost-Effectiveness</li> <li>Military Protechnic Effects</li> <li>Military Protechnices, Part Twe, Bibliography</li> <li>Militar</li></ul>		Servomechanisms, Section 2, Measurement and		
<ul> <li>Servomechanisms, Section 4, Power Elements and System Design</li> <li>Trajectories, Differential Effects, and Data for Projectiles</li> <li>Topynamics of a Tracking Gimbal System</li> <li>Topynamics of a Tracking Gimbal System</li> <li>Ternical Bilistics of Guns</li> <li>Elements of Terminal Ballistics, Part One, Application to Missile and Space Targets (U)</li> <li>Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)</li> <li>Collection and Analysis of Data Concerning Targets (U)</li> <li>Collection and Analysis of Data Concerning Targets (U)</li> <li>Leunid-Filled Projectile Design</li> <li>Suid Propellants, Part Two (U)</li> <li>Collection to Missile and Space Targets (U)</li> <li>Collection to Missile and Space Targets (U)</li> <li>Collection to Missile of Explosives of Military Interest Section 2 (U) (REPLACE DF -177)</li> <li>Explosive Trains</li> <li>Military Pyrotechnics, Part Two, Safety, Military Pyrotechnics, Part Three, Bilingoraphy</li> <li>Military Pyrotechnics, Part Three, Bilingoraphy</li> <li>Military Pyrotechnics, Part Two, Safety, Military Pyrotechnics, Part Two, Military</li></ul>	138			
<ul> <li>140 Trajectories, Differential Effects, and Data for Projectiles</li> <li>145 Trajectories, Differential Effects, and Data for Projectiles</li> <li>146 To Projectiles of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U)</li> <li>161(S) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)</li> <li>162(SRD) Elements of Terminal Ballistics, Part Two, Application to Missile and Space Targets (U)</li> <li>163 (SRD) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)</li> <li>164 (SRD) Elements of Terminal Ballistics, Part Three, Application (U)</li> <li>175 (C) **Armor and Its Application (U)</li> <li>176 (C) **Order texplosives of Military Interest Social Properlies of Explosives of Military Interest Social Properlies of Explosives of Military Interest of Problem (U)</li> <li>176 (C) **Properties of Explosives of Military Interest Social Properlies of Explosives of Military Interest Social Properlies of Explosive Behavior Social Properlies of Explosives Behavior Social Properlies of Explosive Behavior Social Protechnics, Part Twe, Bibliography Social Soci</li></ul>		Servomechanisms, Section 4, Power Elements and	004 ( 000 )	Rockets
<ul> <li>Tor Projectiles</li> <li>Tornaits of a Tracking Gimbal System</li> <li>The Fronces (U)</li> <li>Trajectories (U)</li> <li>Elements of Terminal Ballistics, Part One, Kill</li> <li>Mechanisms and Vulnerability (U)</li> <li>Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)</li> <li>Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)</li> <li>Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)</li> <li>Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)</li> <li>Solid Propellants, Part Two (U)</li> <li>Sufface-to-Air Missiles, Part Three, Computers</li> <li>Sufface-to-Air Missiles, Part Three, Computers</li> <li>Sufface-to-Air Missiles, Part Three, Computers</li> <li>Sufface-to-Air Missiles, Part Seven, Sample</li> <li>Properties of Explosives of Military Interest</li> <li>Sufface of Explosives of Military Interest</li> <li>Sufface of Explosive Behavior</li> <li>Military Protechnics, Part Two, Safety, Procedures and Glossary</li> <li>Military Protechnics, Part Two, Safety, Protechnics, Part Two, Design of Ammunition for Pyrotechnic Effects</li> <li>Military Protechnics, Part Two, Safety, Protechnics, Part Five, Bibliography</li> <li>*System Analysis</li> <li>*Development Guide for Reliability, Part Tone, Reliability Protechnics, Part Two, Design For Reliability, Part Tone, Reliability Measurement</li> <li>*Development Guide for Reliability, Part Three, Reliability Measurement</li> <li>*Development Guide for Reliability, Part Three, Reliability Measurement</li> <li>Development Guide for Reliability, Part Three, Reliability Measurement</li> <li>Development Guide for Reliability, Part Three, Reliability Measurem</li></ul>	140			
150       Interior Ballistics of Gums       285       Elements of Aircraft and Missile Propulsion (REPLACES -282)         160(5)       Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)       286       Structures         161(5)       Elements of Terminal Ballistics, Part Two, Collection to Missile and Space Targets (U)       291       Surface-to-Air Missiles, Part One, System Integration         162(SRD)       Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)       293       Surface-to-Air Missiles, Part Four, Computers         170(C)       **Armor and Its Application (U)       294(S       Surface-to-Air Missiles, Part Four, Missile       Part Four, Missile         176(C)       Solid Propellants, Part Wo       (U)       295(S       Surface-to-Air Missiles, Part Six, Structures and Dossary         177       Explosive Trains       297(S       Surface-to-Air Missiles, Part Seven, Sample Problem (U)         180       Military Pyrotechnics, Part Two, Safety, Procedures and Glossary       297(S       Surface-to-Air Missiles, Part Seven, Sample Problem (U)         188       "Military Pyrotechnics, Part Two, Safety, Procedures and Glossary       235(SRD)       Design Engineers' Nuclear Effects Manual, Volume I, Munitions and Weapon System Analysis and Cost-Effectisenes         196       "Development Guide for Reliability, Part Two, Background, and Planning for Areliability, Part Two, Background, and Planning		for Projectiles	283	Aerodynamics
<ul> <li>Elenieris of Terminal Ballistics, Part One, Kill Mechanisms and Vulnerability (U)</li> <li>Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)</li> <li>Elements of Terminal Ballistics, Part Two, Collection to Missible and Space Targets (U)</li> <li>Elements of Terminal Ballistics, Part Three, Application to Missible and Space Targets (U)</li> <li>Elements of Terminal Ballistics, Part Three, Application to Missible and Space Targets (U)</li> <li>Elements of Terminal Ballistics, Part Three, Application to Missible and Space Targets (U)</li> <li>Solid Propellants, Part Two (Safety, Procleures and Glossary</li> <li>Military Protechnics, Part Three, Properties of Materials Used in Protechnic Compositions</li> <li>Military Protechnics, Part Two, Safety, Introduction, Background, and Planning for Army Meapon System Analysis and Cost-Effectiveness</li> <li>Military Protechnics, Part Five, Bibliography</li> <li>Military Protechnics, Part Three, Bibliography</li> <li>Military Protechnics, Part Five, Bibliography</li> <li>Military Protechnics, Part Five, Bibliography</li> <li>Military Protechnics, Part Three, Bibliography</li> <li>Military Protechnics, Part Five, B</li></ul>				
<ul> <li>161(5) Elements of Terminal Ballistics, Part Two, Collection and Analysis of Data Concerning Targets (U)</li> <li>162(SRD) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U)</li> <li>165 Laquid-Filled Projectife Besign</li> <li>176(C) Strace-to-Air Missiles, Part Two, U)</li> <li>177 Solid Propellants, Part Two (U)</li> <li>178 Properties of Explosives of Military Interest</li> <li>178 Solid Propellants, Part Two (U)</li> <li>180 "Principles of Explosive Set Military Interest</li> <li>181 "Military Pyrotechnics, Part Twe, Properties</li> <li>182 "Military Pyrotechnics, Part Twe, Properties</li> <li>183 Military Pyrotechnics, Part Twe, Properties</li> <li>184 "Military Pyrotechnics, Part Twe, Properties</li> <li>185 Military Pyrotechnics, Part Tree, Properties</li> <li>186 Military Pyrotechnics, Part Four, Design of Ammuniton for Pyrotechnics, Part Four, Design of Ammuniton for Pyrotechnics, Part Five, Bibliography</li> <li>186 "Development Guide for Reliability, Part Twe, Proeventer Guide for Reliability, Part Twe, Provent Guide for Reliability, Part Twe, Protechnet Guide for Reliability, Part Twe, Reliability Measurement Reliability Measurement Miter Provent Guide for Reliability, Part Twe, Reliability Measurement Miter Provent Guide for Reliability, Part Twe, Reliability Measurement Miter Provent Guide for Reliability, Part Twe, Reliability Measurement Miter Provent Guide for Reliability, Part Four, Reliability Measurement Miter Provent Guide for Reliability,</li></ul>		Elenierts of Terminal Ballistics, Part One, Kill		(REPLACES -282)
Collection and Analysis of Data Concerning Targets (J)Surface-to-Air Missiles, Part One, System Integration162(SRD)Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (J)291Surface-to-Air Missiles, Part Two, Weapon Control176Solid Propellants, Part Two (U)293Surface-to-Air Missiles, Part Three, Computers Surface-to-Air Missiles, Part Three, Computers176Solid Propellants, Part Two (U)294(SSurface-to-Air Missiles, Part Four, Missile Amment (U)177Properties of Explosives of Military Interest Section 2 (U) (REPACED BY -177)295(SSurface-to-Air Missiles, Part Six, Structures and Power Sources178Solid Propellants, Part Two, Safety, Principles of Explosive and Giossary Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Effects Manual, Military Pyrotechnics, Part Tree, Properties of Materials Used in Pyrotechnic Effects Manual, Military Pyrotechnics, Part Five, Bibliography297188Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Effects Manual, Military Pyrotechnics, Part Five, Bibliography337(SRD)199"Development Guide for Reliability, Part Non, Design Engineers' Nuclear Effects Manual, volume II, Nuclear Effects Manual, volum	161(5)			
<ul> <li>162(SRD) Elements of Terminal Ballistics, Part Three, Application to Missile and Space Targets (U Liquid-Filled Projectile Design 710(C) **Armor and Its Application (U) 293</li> <li>173 Solid Propellants, Part One (U) 294(S Surface-to-Air Missiles, Part Froer, Missile 717 Properties of Explosives of Military Interest Section 2 (U) (REPLACED BY -177)</li> <li>174 Explosive Trains Section 2 (U) (REPLACED BY -177)</li> <li>185 Military Pyrotechnics, Part Two, Safety, Princeples of Explosives Balavior Application Application S, Part Three, Properties of Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Effects</li> <li>188 Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Effects</li> <li>190 *Army keapon System Analysis and Cost-Effectiveness there Guide for Reliability, Part Tow, Design Engineers' Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Volume IV, Nuc</li></ul>	101(3)	Collection and Analysis of Data Concerning		Surface-to-Air Missiles, Part One, System
165Lugid-Filled Projectile Design283Surface-to-Air Missiles, Part Three, Computers170(C)**Armor and its Application (U)294(SSurface-to-Air Missiles, Part Four, Missile175Solid Propellants, Part One294(SSurface-to-Air Missiles, Part Four, Missile176(C)Solid Propellants, Part Wo (U)295(SSurface-to-Air Missiles, Part Four, Missile177Properties of Explosives of Military InterestSection 2 (U) (REPLACED EY -177)295(SSurface-to-Air Missiles, Part Sux, Structures178Military Pyrotechnics, Part One, Theory and Application297(SSurface-to-Air Missiles, Part Sux, Structures186Military Pyrotechnics, Part Two, Safety, Procedures and Glossary297(SSurface-to-Air Missiles, Part Sux, Structures187Military Pyrotechnics, Part Two, Safety, Procedures and Glossary297(SSurface-to-Air Missiles, Part Sux, Structures188*Military Pyrotechnics, Part Two, Military Pyrotechnics, Part Two, Material Requirements293(SRD)*Design Engineers' Nuclear Effects Manual, Volume I1, Nuclear Effec	162 ( SRD)	Elements of Terminal Ballistics, Part Three,	292	Surface-to-Air Missiles, Part Two, Weapon
175Solid Propellants, Part OneArmament (U)176(C)Solid Propellants, Part Two (U)295(SSurface-to-Air Missiles, Part Six, Structures178(C)+Properties of Explosives of Military Interest296(SSurface-to-Air Missiles, Part Six, Structures179Explosive Trains297(SSurface-to-Air Missiles, Part Six, Structures180*Principles of Explosive Behavior297(SSurface-to-Air Missiles, Part Six, Structures180*Principles of Explosive Behavior297(SSurface-to-Air Missiles, Part Seven, Sample181Military Pyrotechnics, Part One, Theory and Application327Fire Control SystemsGeneral186Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions331Compensating Elements188*Military Pyrotechnics, Part Four, Design of Armay Megon System Analysis336(SRD)*Design Engineers' Nuclear Effects Manual, Volume 11, Nuclear Effects (U)196*Development Guide for Reliability, Part Two, Reliability Prediction340Carriages 341197*Development Guide for Reliability, Part Two, Reliability Prediction344Bottom Carriages 345198*Development Guide for Reliability, Part Four, Reliability Prediction346Elevating Mechanisms 347199*Development Guide for Reliability, Part Four, Reliability Prediction355The Automotive Assembly 356 <tr< td=""><td>165</td><td></td><td>293</td><td></td></tr<>	165		293	
176(C)Solid Propellants, Part Two (U)295(S)Surface-to-Air Missiles, Part Five, Counter- measures (U)177Properties of Explosives of Military Interest Section 2 (U) (REPLACED BY -177)296Surface-to-Air Missiles, Part Six, Structures and Power Sources179Explosive Trains Military Pyrotechnics, Part One, Theory and Application297(S)Surface-to-Air Missiles, Part Six, Structures and Power Sources180"Principles of Explosive Behavior Military Pyrotechnics, Part Two, Safety, Procedures and Glossary297(S)Surface-to-Air Missiles, Part Six, Structures and Power Sources181Military Pyrotechnics, Part Two, Safety, Procedures and Glossary227Fire Control Computing Systems Compensating Elements186Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Effects Military Pyrotechnics, Part Five, Bibliography335(SRD)'Design Engineers' Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Volume II, Nuclear Effects (U)188"Military Pyrotechnics, Part Five, Bibliography *Army Weapon System Analysis 195*Design Engineers' Nuclear Effects (U)196"Development Guide for Reliability, Part Two, Design for Reliability, Part Two, Reliability Prediction346198"Development Guide for Reliability, Part Five, Contracting for Reliability, Part		**Armor and its Application (U)	294 (S	
<ul> <li>178(C) +Properties of Explosives of Military Interest Section 2 (U) (REPLACED BY -177)</li> <li>179 Explosive Trains</li> <li>180 *Principles of Explosive Behavior</li> <li>185 Military Pyrotechnics, Part One, Procedures and Glossary</li> <li>186 Military Pyrotechnics, Part Two, of Materials Used in Pyrotechnic Compositions of Materials Used in Pyrotechnic Design of Ammunition for Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnics Part Five, Bibliography</li> <li>190 *Army Weapon System Analysis</li> <li>191 *System Analysis and Cost-Effectiveness</li> <li>196 *Development Guide for Reliability, Part Two, Design for Reliability, Part Three, Reliability Measurement</li> <li>198 *Development Guide for Reliability, Part Three, Reliability Measurement</li> <li>199 *Development Guide for Reliability, Part Three, Reliability Measurement</li> <li>190 *Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Reliability Measurement</li> <li>190 *Development Guide for Reliability, Part Five, Reliability Measurement</li> <li>190 *Development Guide for Reliability, Part Three, Reliability Measurement</li> <li>190 *Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Contracting for Reliability, Part Five, Contracting for Reliability, Part Six, Mathematical Appendix and Glossary</li> <li>190 *Development Guide for Reliability, Part Six, Reliability Measurement</li> <li>190 *Development Guide for Reliability, Part Six, Structures</li> <li>190 *Development Guide for Reliability, Part Six, Reliability Measurement</li> <li>190 *Developmen</li></ul>			295(S	
Section 2 (U) (REPLACED BY -177)and Power Sources179Explosive Trains297(S180Principles of Explosive Behavior297(S185Military Pyrotechnics, Part One, Theory and Application327186Military Pyrotechnics, Part Two, Safety, Procedures and Glossary327187Military Pyrotechnics, Part Two, Safety, Of Materials Used in Pyrotechnic Compositions of Materials Used in Pyrotechnic Compositions Military Pyrotechnics, Part Four, Design of Ammy Meapon System Analysis335(SRD)188*Military Pyrotechnics, Part Five, Bibliography Introduction, Background, and Planning for Amy Materiel Requirements338(SRD)196*Development Guide for Reliability, Part Two, Design for Reliability, Part Three, Reliability Measurement340198*Development Guide for Reliability, Part Three, Reliability Measurement344199*Development Guide for Reliability, Part Five, Bublicy Reliability, Part Six, Reliability Measurement345199*Development Guide for Reliability, Part Six, Reliability Measurement346199*Development Guide for Reliability, Part Six, Reliability Measurement347199*Development Guide for Reliability, Part Six, Retiability Measurement346200*Development Guide for Reliability, Part Six, Rathematical Appendix and Glossary357200*Development Guide for Reliability, Part Six, Rathematical Appendix and Glossary357200*Development Guide for Reliability, Part Six, Rathematical Appendix and Glossary357200*Developmen			208	
179Explosive Trains297(SSurface-to-Air Missiles, Part Seven, Sample Problem (U)180*Principles of Explosive Behavior297(SSurface-to-Air Missiles, Part Seven, Sample Problem (U)185Military Pyrotechnics, Part One, Application327Fire Control SystemsGeneral 329186Military Pyrotechnics, Part Two, of Materials Used in Pyrotechnic Compositions321Fire Control Computing Systems 331 Compensating Elements188*Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnics, Part Five, Bibliography 190*Army Weapon System Analysis189*Military Pyrotechnics, Part Five, Bibliography introduction, Background, and Planning for Design for Reliability, Part Two, Design for Reliability, Part Three, Reliability Measurement333(SRD)198*Development Guide for Reliability, Part Three, Reliability Measurement342199*Development Guide for Reliability, Part Five, Reliability Measurement344199*Development Guide for Reliability, Part Five, Reliability Measurement345199*Development Guide for Reliability, Part Six, Reliability Measurement346200*Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary357200*Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary357200*Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary357200 </td <td>1/8(C)</td> <td></td> <td>200</td> <td></td>	1/8(C)		200	
185Military Pyrotechnics, Part One, Theory and Application327Fire Control SystemsGeneral Systems (I)186Military Pyrotechnics, Part Two, Safety, Procedures and Glossary331Compensating Elements186Military Pyrotechnics, Part Two, of Materials Used in Pyrotechnic Compositions of Materials Used in Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnics, Part Four, Bibliography336(SRD)188*Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnics, Part Four, Bibliography333(SRD)190*Army Weapon System Analysis *Development Guide for Reliability, Part One, Introduction, Background, and Planning for Design for Reliability, Part Twe, Reliability Measurement333(SRD)198*Development Guide for Reliability, Part Twe, Reliability Measurement341Crariages Carriages199*Development Guide for Reliability, Part Four, Reliability Measurement346Elevating Mechanisms Streen Autors Streen Ade Elevating Mechanisms199*Development Guide for Reliability, Part Six, Reliability Measurement346Elevating Mechanisms Streen Automotive Assembly200*Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary357Automotive Bcdies and Hulls		Explosive Trains	297(S	
Application329Fire Control Computing Systems186Military Pyrotechnics, Part Two, Procedures and Glossary329Fire Control Computing Systems187Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Composition Ammunition for Pyrotechnics, Part Five, Bibliography336(SRD)*Design Engineers' Nuclear Effects Manual, Volume II, Electronic Systems and Logistical Systems (U)188*Military Pyrotechnics, Part Five, Bibliography33/(SRD)*Design Engineers' Nuclear Effects Manual, Volume II, Electronic Systems and Logistical Systems (U)190*Army Weapon System Analysis33/(SRD)*Design Engineers' Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Volume IV, Nuclear Effects (U)191*System Analysis and Cost-Effectiveness Thevelopment Guide for Reliability, Part Two, Design for Reliability, Part Two, Reliability Prediction340196*Development Guide for Reliability, Part Three, Reliability Measurement341198*Development Guide for Reliability, Part Three, Reliability Measurement346199*Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Contracting for Reliability, Part Six, Mathematical Appendix and Glossary346200*Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary357200*Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary357				Fire Control SystemsGeneral
<ul> <li>Procedures and Glossary</li> <li>Procedures and Glossary</li> <li>Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions</li> <li>Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects</li> <li>Military Pyrotechnics, Part Five, Bibliography</li> <li>Military Pyrotechnics, Part Five, Bibliography</li> <li>*Army Weapon System Analysis</li> <li>*Development Guide for Reliability, Part Tree, Reliability Measurement</li> <li>*Development Guide for Reliability, Part Four, Reliability Measurement</li> <li>*Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Contr</li></ul>		Application		Fire Control Computing Systems
187       Military Pyrotechnics, Part Three, Properties of Materials Used in Pyrotechnic Compositions       Volume I, Munitions and Weapon Systems (J)         188       *Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects       336(SRD)       *Design Engineers' Nuclear Effects Manual, Volume II, Electronic Systems and Logistical Systems (U)         189       Military Pyrotechnics, Part Five, Bibliography       337(SRD)       *Design Engineers' Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Volume IV, Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Poevelopment Guide for Reliability, Part Three, Reliability Prediction Reliability Measurement Volume II, Nuclear Effects Manual, Volume II, Nuclear Effects Manual, Vo	186			*Design Engineers' Nuclear Effects Manual,
<ul> <li>*Military Pyrotechnics, Part Four, Design of Ammunition for Pyrotechnic Effects</li> <li>Military Pyrotechnics, Part Five, Bibliography</li> <li>*Army Weapon System Analysis</li> <li>*System Analysis and Cost-Effectiveness</li> <li>*Development Guide for Reliability, Part One, Introduction, Background, and Planning for Army Materiel Requirements</li> <li>*Development Guide for Reliability, Part Two, Design for Reliability, Part Three, Reliability Prediction</li> <li>*Development Guide for Reliability, Part Three, Reliability Measurement</li> <li>*Development Guide for Reliability, Part Five, Reliability Measurement</li> <li>*Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Scott Reliability, Part Five, Contracting for Reliability, Part Five, Scott Reliability, Part Five, Contracting for Reliability, Part Five, Scott Reliability, Part Six, Mathematical Appendix and Glossary</li> </ul>	187	Military Pyrotechnics, Part Three, Properties		
189       Military Pyrotechnics, Part Five, Bibliography       33/(SRD)       "Design Engineers' Nuclear Effects Manual, Volume III, Nuclear Effects Manual, Volume III, Nuclear Effects Manual, Volume III, Nuclear Effects Manual, Volume IV, Nuclear Effects Manual, Manual, Top Carriages and MontsGeneral Att Cardles         196       "Development Guide for Reliability, Part Three, Reliability Prediction Att Prevelopment Guide for Reliability, Part Four, Contracting for Reliability, Part Five, Contacting for Reliability, Part Six, Attomotive Assembly         200       "Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary       357       Automotive Bcdies and Hulls	188	*Military Pyrotechnics, Part Four, Design of	550 ( SIND)	Volume II, Electronic Systems and Logistical
190       *Army Weapon System Analysis       Volume III, Nuclear Environment (U)         191       *System Analysis and Cost-Effectiveness       338(SRD)       *Design Engineers' Nuclear Effects Manual, 'Jolume IV, Nuclear Effects (U)         195       *Development Guide for Reliability, Part One, Army Materiel Requirements       340       Carriages and MountsGeneral         196       *Development Guide for Reliability, Part Two, Design for Reliability, Part Two, Reliability Prediction       342       Recoil Systems         197       *Development Guide for Reliability, Part Three, Reliability Measurement       344       Bottom Carriages         198       *Development Guide for Reliability, Part Four, Reliability Measurement       346       Elevating Mechanisms         199       *Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Contracting for Reliability, Part Six, Mathematical Appendix and Glossary       357       Automotive Suspensions	189		337 ( SRD)	*Design Engineers' Nuclear Effects Manual,
<ul> <li>*Development Guide for Reliability, Part One, Introduction, Background, and Planning for Army Materiel Requirements</li> <li>196</li> <li>*Development Guide for Reliability, Part Two, Design for Reliability, Part Two, Reliability Prediction</li> <li>198</li> <li>*Development Guide for Reliability, Part Three, Reliability Measurement</li> <li>198</li> <li>*Development Guide for Reliability, Part Four, Reliability Measurement</li> <li>199</li> <li>*Development Guide for Reliability, Part Five, Reliability Measurement</li> <li>199</li> <li>*Development Guide for Reliability, Part Five, Reliability Measurement</li> <li>190</li> <li>*Development Guide for Reliability, Part Five, Contracting for Reliability, Part Six, Mathematical Appendix and Glossary</li> <li>*Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary</li> <li>*Development Guide Six</li> <li>*Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary</li> <li>*Development Guide Six</li> <li>*De</li></ul>	190	*Army Weapon System Analysis	338/ 000	
Introduction, Background, and Planning for Army Materiel Requirements       340       Carriages and MountsGeneral Cradles         196       "Development Guide for Reliability, Part Two, Design for Reliability       342       Recoil Systems         197       "Development Guide for Reliability, Part Three, Reliability       344       Bottom Carriages         198       "Development Guide for Reliability, Part Four, Reliability Measurement       346       Elevating Mechanisms         198       "Development Guide for Reliability, Part Four, Reliability Measurement       346       Elevating Mechanisms         199       "Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Scontracting for Reliability, Part Six, Mathematical Appendix and Glossary       357       Automotive Backers and Hulls		*Development Guide for Reliability, Part One,		'Jolume IV, Nuclear Effects (U)
196       *Development Guide for Reliability, Part Two, Design for Reliability, Part Tree, Reliability Prediction       342       Recoil Systems         197       *Development Guide for Reliability, Part Three, Reliability Prediction       344       Bottom Carriages         198       *Development Guide for Reliability, Part Four, Reliability Measurement       346       Elevating Mechanisms         199       *Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Scontracting for Reliability, Part Six, Mathematical Appendix and Glossary       357       Automotive Bcdies and Hulls		Introduction, Background, and Planning for		Carriages and MountsGeneral
Design for Reliability     343     Top Carriages       197     *Development Guide for Reliability, Part Three, Reliability Prediction     344     Bottom Carriages       198     *Development Guide for Reliability, Part Four, Reliability Measurement     346     Elevating Mechanisms       199     *Development Guide for Reliability, Part Five, Contracting for Reliability, Part Five, Mathematical Appendix and Glossary     357     Automotive Bcdies and Hulls	196		342	Recoil Systems
Reliability Prediction       345       Equilibrators         198       *Development Guide for Reliability, Part Four, Reliability Measurement       346       Elevating Mechanisms         199       *Development Guide for Reliability, Part Five, Contracting for Reliability       350       Wheeled Amphibians         200       *Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary       357       Automotive Bcdies and Hulls		Design for Reliability		Top Carriages
198       *Development Guide for Reliability, Part Four, Reliability Measurement       346       Elevating Mechanisms         199       *Development Guide for Reliability, Part Five, Contracting for Reliability       350       Wheeled Amphibians         200       *Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary       356       Automotive Suspensions	197			
199       *Development Guide for Reliability, Part Five, Contracting for Reliability       350       Wheeled Amphibians         200       *Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary       356       Automotive Suspensions	198	*Development Guide for Reliability, Part Four,	346	Elevating Mechanisms
Contracting for Reliability 355 The Automotive Assembly 200 "Development Guide for Reliability, Part Six, 356 Automotive Suspensions Mathematical Appendix and Glossary 357 Automotive Bodies and Hulls	199			Wheeled Amphibians
Mathematical Appendix and Glossary 357 Automotive Bcdies and Hulls		Contracting for Reliability	355	The Automotive Assembly
	200	Development Guide for Reliability, Part Six, Mathematical Appendix and Glossary		

*UNDER PREPARATION -- not available +OBSOLETE--out of stock

**REVISION UNDER PREPARATION