
Harrier Application Specific
Integrated Circuit (ASIC)

Programmer’s Reference
Guide

Parts 1 and 2

ASICHRA1/PG1 and ASICHRA2/PG1

May 2001 Edition

© Copyright 2001 Motorola, Inc.

All Rights Reserved.

Printed in the United States of America.

PowerPC and the PowerPC logo are registered trademarks of International Business
Machines Corporation and are used by Motorola, Inc. under license from International
Business Machines Corporation.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.

All other products mentioned in this document are trademarks or registered trademarks of
their respective holders.

Safety Summary
The following general safety precautions must be observed during all phases of operation, service, and repair of this
equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result
in personal injury or damage to the equipment.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the
user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of
the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. If the
equipment is supplied with a three-conductor AC power cable, the power cable must be plugged into an approved
three-contact electrical outlet, with the grounding wire (green/yellow) reliably connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating plug of the power cable meet International
Electrotechnical Commission (IEC) safety standards and local electrical regulatory codes.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in any explosive atmosphere such as in the presence of flammable gases or fumes.
Operation of any electrical equipment in such an environment could result in an explosion and cause injury or damage.

Keep Away From Live Circuits Inside the Equipment.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other
qualified service personnel may remove equipment covers for internal subassembly or component replacement or any
internal adjustment. Service personnel should not replace components with power cable connected. Under certain
conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, such personnel
should always disconnect power and discharge circuits before touching components.

Use Caution When Exposing or Handling a CRT.
Breakage of a Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent
CRT implosion, do not handle the CRT and avoid rough handling or jarring of the equipment. Handling of a CRT
should be done only by qualified service personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local
Motorola representative for service and repair to ensure that all safety features are maintained.

Observe Warnings in Manual.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed. You should also employ all other safety precautions which you deem
necessary for the operation of the equipment in your operating environment.

Warning

To prevent serious injury or death from dangerous voltages, use extreme
caution when handling, testing, and adjusting this equipment and its
components.

.

Flammability

All Motorola PWBs (printed wiring boards) are manufactured with a flammability rating
of 94V-0 by UL-recognized manufacturers.

EMI Caution

!
Caution

This equipment generates, uses and can radiate electromagnetic energy. It
may cause or be susceptible to electromagnetic interference (EMI) if not
installed and used with adequate EMI protection.

Lithium Battery Caution

This product contains a lithium battery to power the clock and calendar circuitry.

!
Caution

Danger of explosion if battery is replaced incorrectly. Replace battery only
with the same or equivalent type recommended by the equipment
manufacturer. Dispose of used batteries according to the manufacturer’s
instructions.

Attention
!

Il y a danger d’explosion s’il y a remplacement incorrect de la batterie.
Remplacer uniquement avec une batterie du même type ou d’un type
équivalent recommandé par le constructeur. Mettre au rebut les batteries
usagées conformément aux instructions du fabricant.

Vorsicht
!

Explosionsgefahr bei unsachgemäßem Austausch der Batterie. Ersatz nur
durch denselben oder einen vom Hersteller empfohlenen Typ. Entsorgung
gebrauchter Batterien nach Angaben des Herstellers.

CE Notice (European Community)

!
Warning

This is a Class A product. In a domestic environment, this product may
cause radio interference, in which case the user may be required to take
adequate measures.

Motorola Computer Group products with the CE marking comply with the EMC Directive
(89/336/EEC). Compliance with this directive implies conformity to the following
European Norms:

EN55022 “Limits and Methods of Measurement of Radio Interference Characteristics
of Information Technology Equipment”; this product tested to Equipment Class A

EN55024 “Information Technology Equipment-Immunity characteristics-Limits and
methods of measurement”

Board products are tested in a representative system to show compliance with the above
mentioned requirements. A proper installation in a CE-marked system will maintain the
required EMC/safety performance.

In accordance with European Community directives, a “Declaration of Conformity” has
been made and is available on request. Please contact your sales representative.

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document, or from
the use of the information obtained therein. Motorola reserves the right to revise this
document and to make changes from time to time in the content hereof without obligation
of Motorola to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or
referenced in another document as a URL to the Motorola Computer Group website. The
text itself may not be published commercially in print or electronic form, edited, translated,
or otherwise altered without the permission of Motorola, Inc.

It is possible that this publication may contain reference to or information about Motorola
products (machines and programs), programming, or services that are not available in your
country. Such references or information must not be construed to mean that Motorola
intends to announce such Motorola products, programming, or services in your country.

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in writing by
Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov.
1995) and of the Rights in Noncommercial Computer Software and Documentation clause
at DFARS 252.227-7014 (Jun. 1995).

Motorola, Inc.
Computer Group
2900 South Diablo Way
Tempe, Arizona 85282

vii

Contents

About This Manual

Summary of Changes ...xxi
Overview of Contents ..xxi
Manual Terminology...xxii
Comments and Suggestions ...xxiii
Conventions Used in This Manual...xxiv

Bus Naming ..xxiv
Bit Ordering ... xxv
Register and Bit Naming.. xxv

Register Descriptions...xxvi

CHAPTER 1 Introduction

Overview..1-1
Features...1-1
Functional Blocks of Harrier ..1-4

CHAPTER 2 Functional Descriptions

Clocking ...2-1
SDRAM Interface ..2-4

PowerPC Bus Slave ..2-5
Responding to Address Transfers..2-5
Completing Data Transfers..2-5
Cache Coherency...2-5

SDRAM Controller...2-6
SDRAM Organization ...2-6
SDRAM Accesses ...2-6
SDRAM ECC ..2-7
Refresh...2-10
Scrub..2-10

PowerPC to PCI Bridge ...2-11
Data Flow Terminology ..2-11
Block Diagram..2-12
Outbound Functions..2-14

PPC Decode...2-14

viii

PPC Slave.. 2-16
Outbound FIFO ... 2-19
PCI Master .. 2-19
Store Gathering ... 2-20
Read Ahead ... 2-22
Passive Slave ... 2-23
Error Handling .. 2-24

Inbound Functions .. 2-25
PCI Decode ... 2-25
PCI Slave... 2-30
Inbound FIFO.. 2-32
PPC Master.. 2-33
Write Posting... 2-34
Read Ahead ... 2-35
Copyback Snarfing.. 2-35
Bus Hog... 2-36
Error Handling .. 2-36

Generating PCI Cycles ... 2-36
FIFO Tuning ... 2-41

Write-Posting .. 2-41
Read-Ahead... 2-41

Transaction Ordering.. 2-44
Endian Conversion ... 2-45

DMA Controller .. 2-48
Architecture .. 2-49
Operating Modes .. 2-50
Direction of Data Movement.. 2-52
Addressing and Transfer Sizes ... 2-53
Data Patterns... 2-54
Linked-List Descriptors.. 2-56
Transfer Termination .. 2-57
Interrupts .. 2-58
Transfer Throttling ... 2-59

Message Passing .. 2-60
I2O Message Passing.. 2-60

IOP Message Unit ... 2-61
IMU Queue Structure .. 2-63
IMU Enable ... 2-64
IMU Interrupts .. 2-65
IOP Agent Identification ... 2-65

Generic Message Passing ... 2-66
Doorbell Registers... 2-66

ix

Message Passing Registers ..2-67
Multiprocessor Interrupt Controller (MPIC) ...2-68

MPIC Features ..2-68
Architecture ..2-68
CSR’s Readability...2-69
Interrupt Source Priority ...2-69
Processor’s Current Task Priority ...2-69
Nesting of Interrupt Events...2-70
Spurious Vector Generation ..2-70
Interprocessor Interrupts (IPI) ..2-70
8259 Compatibility ...2-71
Harrier Internal Functional Interrupt ..2-71
Harrier Internal Error Interrupt ...2-71
Timers ...2-72
Interrupt Delivery Modes..2-72
Block Diagram Description ..2-73

Program Visible Registers ...2-75
Interrupt Pending Register (IPR)...2-75
Interrupt Selector (IS) ..2-75
Interrupt Request Register (IRR)...2-76
In-Service Register (ISR) ..2-76
Interrupt Router ...2-76

Programming Notes ..2-78
External Interrupt Service..2-78
Reset State ...2-79

Operation ..2-80
Interprocessor Interrupts..2-80
Dynamically Changing I/O Interrupt Configuration2-80
EOI Register ..2-81
Interrupt Acknowledge Register..2-81
8259 Mode...2-81
Current Task Priority Level ...2-81

I2C Interface ..2-82
Byte Write ...2-82
Random Read..2-85
Current Address Read...2-87
Page Write...2-89
Sequential Read ..2-91

UART Interface..2-94
XPORT...2-94

PowerPC Slave ...2-96

x

Xport Bus Master ... 2-96
Xport Bus Transaction Examples.. 2-97

Xport Bus Address Mapping .. 2-106
Xport Bus XAD Mapping .. 2-108
Hawk Compatibility Mode... 2-109
Xport Bus Byte Mapping ... 2-110

Arbiters .. 2-113
PCI Arbiter ... 2-115

Watchdog Timers ... 2-120
Exceptions ... 2-122
Error Diagnostics ... 2-127
PowerPC Address Bus Timer .. 2-129
PowerPC Parity.. 2-130
Reset Signals.. 2-131
PPMC Features .. 2-132
Hardware Configuration .. 2-133

CHAPTER 3 Programming Model

Architectural Overview ... 3-1
Register Group Summary .. 3-3

PowerPC Control and Status (XCSR) Register Group 3-3
PowerPC Multi-Processor Interrupt Controller (XMPI) Register Group 3-14
PowerPC to PCI Configuration Space (XCFS) Register Group 3-19
PCI Configuration Space (PCFS) Register Group ... 3-21
PCI Message Passing (PMEP) Register Group.. 3-23

SDRAM Interface.. 3-25
SDRAM General Control Register... 3-25
SDRAM Timing Control Register.. 3-27
SDRAM Bank (A,B,C,D,E,F,G, and H) Addressing Registers........................ 3-30
SDRAM Scrub Control Register .. 3-32
SDRAM Scrub Address Counter ... 3-33
SDRAM Single-bit Error Status... 3-33
SDRAM Single-bit Error Address Register ... 3-36
SDRAM Multi-bit Error Status .. 3-36
SDRAM Multi-bit Error Address Register .. 3-37

PowerPC to PCI Bridge... 3-38
XCSR Register Group .. 3-38

Bridge PCI Control and Status Register.. 3-38
Bridge PowerPC Control and Status Register... 3-41
PCI Interrupt Acknowledge Register .. 3-43

xi

Outbound Translation Address (0, 1 and 2) Registers...............................3-44
Outbound Translation Offset/Translation Attribute (0, 1 and 2) Registers3-45
Outbound Translation Address (3) Register ..3-47
Outbound Translation Offset/Translation Attribute (3) Registers.............3-48
Passive Slave Address Registers ...3-49
Passive Slave Offset/Translation Attribute Registers................................3-50

XCFS Register Group...3-52
CONFIG_ADDRESS Register..3-52
CONFIG_DATA Register ...3-54

PCFS Register Group..3-55
Vendor ID/Device ID Registers ..3-55
Command/Status Registers..3-56
Revision ID/Class Code Registers...3-58
Cache Line Size/Master Latency Timer/Header Type Register3-59
Message Passing Register Group Base Address Register3-61
Inbound Translation Base Address (0, 1, 2 and 3) Registers3-62
Subsystem Vendor ID/Subsystem ID Registers ..3-65
Interrupt Line/Interrupt Pin/Minimum Grant/Maximum Latency Registers3-66
Message Passing Attribute Register ..3-68
Inbound Translation Size/Offset (0, 1, 2 and 3) Registers3-69
Inbound Translation Attribute (0, 1, 2 and 3) Registers............................3-71
PCI Status Register..3-75
PCI General Purpose Register ...3-76

DMA Controller...3-78
DMA Control Register..3-78
DMA Status Register ..3-81
DMA Source Address Register...3-83
DMA Source Attribute Register ...3-84
DMA Destination Address Register ...3-86
DMA Destination Attribute Register ..3-87
DMA Next Link Address Register ...3-89
DMA Count Register ..3-90
DMA Current Source Address Register ...3-90
DMA Current Destination Address Register ..3-91
DMA Current Link Address Register ...3-92

Message Passing ..3-93
XCSR Register Group ..3-93

MP Generic Outbound Message (0 and 1) Registers3-93
MP Generic Outbound Doorbell Register ...3-94
MP Generic Inbound (0 and 1) Message Registers3-94
MP Generic Inbound Doorbell Register ..3-95

xii

MP Generic Inbound Doorbell Mask Register.. 3-96
MP I20 Outbound Free_list Head Register... 3-96
MP I20 Outbound Free_list Tail Register ... 3-97
MP I20 Outbound Post_list Head Register ... 3-98
MP I20 Outbound Post_list Tail Register ... 3-98
MP I20 Inbound Free_list Head Register.. 3-99
MP I20 Inbound Free_list Tail Register.. 3-100
MP I20 Inbound Post_list Head Register.. 3-100
MP I20 Inbound Post_list Tail Register.. 3-101
MP I20 Control Register ... 3-102
MP I20 Queue Base Register .. 3-103

PMEP Register Group .. 3-103
MP I20 Interrupt Status Register... 3-103
MP I20 Interrupt Mask Register ... 3-104
MP I20 Inbound Queue Register... 3-104
MP I20 Outbound Queue Register .. 3-105
MP Generic Outbound Message (0 and 1) Registers 3-106
MP Generic Outbound Doorbell Register... 3-106
MP Generic Inbound Message (0 and 1) Registers................................. 3-107
MP Generic Inbound Doorbell Register ... 3-108
MP Generic Interrupt Status Register ... 3-109
MP Generic Interrupt Mask Register .. 3-110
MP Generic Outbound Doorbell Mask Register 3-111

Multi-Processor Interrupt Controller ... 3-112
XCSR Register Group .. 3-112

MPIC Base Address Register.. 3-112
MPIC Control and Status/Interrupt Request Sample Registers 3-113

XMPI Register Group .. 3-113
Feature Reporting Register ... 3-114
Global Configuration Register .. 3-115
Vendor Identification Register .. 3-116
Processor Init Register .. 3-117
IPI Vector/Priority (0, 1, 2, and 3) Registers .. 3-118
Spurious Vector Register .. 3-119
Timer Frequency Register... 3-119
Timer Current Count (0, 1, 2, and 3) Registers....................................... 3-120
Timer Base Count (0, 1, 2, and 3) Registers ... 3-121
Timer Vector/Priority (0, 1, 2, and 3) Registers 3-122
Timer Destination (0, 1, 2, and 3) Registers ... 3-123
External Source Vector/Priority (0 through 15) Registers 3-124
External Source Destination (0 through 15) Registers............................ 3-125
Harrier Internal Functional/Error Interrupt Vector/Priority Register...... 3-126

xiii

Harrier Internal Functional/Error Interrupt Destination Register............3-127
Processor 0/Processor 1 IPI Dispatch (0, 1, 2, and 3) Registers..............3-128
Processor 0/Processor 1 Current Task Priority Registers3-129
Processor 0/Processor 1 Interrupt Acknowledge Registers3-129
Processor 0/Processor 1 End-Of-Interrupt Registers...............................3-130

I2C Controller ..3-131
I2C Clock Prescaler Register..3-131
I2C Control Register...3-132
I2C Transmitter Data Register ..3-133
I2C Status Register ...3-134
I2C Receiver Data Register ..3-135

UART Controller..3-136
UART Core Registers ...3-136
UART General Registers ..3-147

Xport ..3-15 0
Xport Address Range (0, 1, 2, 3) Registers ..3-150
Xport Attributes (0, 1, 2, 3) Registers...3-151
Xport General Control Register..3-155

Arbiters ..3-156
PCI Arbiter Register ...3-156
PowerPC Arbiter Register ..3-159

Watchdog Timers ...3-161
Watchdog Timer Control Registers...3-161
Watchdog Timer Status Registers ...3-163

Exceptions..3-164
Functional Exception Enable Register..3-164
Functional Exception Status Register ...3-166
Functional Exception Mask Register ..3-168
Functional Exception Clear Register ..3-169
Error Exception Enable Register ..3-170
Error Exception Status Register..3-173
Error Exception Clear Register...3-178
Error Exception Interrupt Enable Register ...3-180
Error Exception Machine Check 0 Enable Register3-183
Error Exception Machine Check 1 Enable Register3-185

Error Diagnostics ...3-187
Error Diagnostics Error Injection Register ...3-188
Error Diagnostics PowerPC Address Register..3-189
Error Diagnostics PowerPC Attribute Register ..3-190
Error Diagnostics PCI Address Register ..3-191
Error Diagnostics PCI Attribute Register ...3-192

xiv

Miscellaneous Functions ... 3-193
Vendor ID/Device ID Registers.. 3-193
Revision ID Register .. 3-193
Global Control and Status Register .. 3-194
PowerPC Clock Frequency Register .. 3-197
Count 32-bit Register ... 3-198
Miscellaneous Control and Status Register.. 3-199
General Purpose Registers.. 3-200
General Purpose Memory... 3-201

CHAPTER 4 Performance

SDRAM Interface.. 4-1
Xport Bus Interface ... 4-4

Latency of Xport-bound Reads (Xport read bursting disabled) 4-5
Background Information ... 4-6

PowerPC to PCI Bridge... 4-8
Inbound Performance ... 4-9

CHAPTER 5 Programming Considerations

Programming SDRAM Related Control Registers.. 5-1
Initializing SDRAM Related Control Registers ... 5-1

SDRAM Speed Attributes... 5-1
SDRAM Refresh Period.. 5-1
SDRAM Size... 5-2
I2C EEPROMs .. 5-2
SDRAM Base Address and Enable... 5-2
SDRAM Control Registers Initialization Example..................................... 5-3
Optional Method for Sizing SDRAM ... 5-9

Operation without Firmware ... 5-13

APPENDIX A Related Documentation

Motorola Computer Group Documents .. A-1
Manufacturers’ Documents .. A-2
Related Specifications .. A-4

xv

List of Figures

Figure 1-1. Typical Harrier System Implementation ...1-4
Figure 1-2. Harrier Block Diagram..1-7
Figure 2-1. Block Diagram of PLL Implementation ...2-1
Figure 2-2. PowerPC and PCI Clock Relationships ..2-3
Figure 2-3. SDRAM Interface Block Diagram..2-4
Figure 2-4. Harrier PowerPC/PCI Data Flow Naming Convention2-11
Figure 2-5. PowerPC to PCI Bridge Block Diagram ...2-13
Figure 2-6. Outbound Address Decoding ..2-15
Figure 2-7. Outbound Address Translation..2-16
Figure 2-8. Inbound Address Decoding...2-27
Figure 2-9. Inbound Address Translation ..2-29
Figure 2-10. Spread I/O Address Translation ..2-38
Figure 2-11. Big Endian/ Little Endian Data Swap ...2-46
Figure 2-12. DMA Controller Block DIagram ..2-49
Figure 2-13. DMA Controller Operating Modes ...2-51
Figure 2-14. Examples of Pattern Writes...2-55
Figure 2-15. IOP Message Unit ...2-62
Figure 2-16. IMU Queue Structure ..2-64
Figure 2-17. MPIC Block Diagram ..2-74
Figure 2-18. Programming Sequence for I2C Byte Write2-84
Figure 2-19. Programming Sequence for I2C Random Read2-86
Figure 2-20. Programming Sequence for I2C Current Address Read2-88
Figure 2-21. Programming Sequence for I2C Page Write2-90
Figure 2-22. Programming Sequence for I2C Sequential Read...............................2-93
Figure 2-23. Xport Block Diagram..2-95
Figure 2-24. Xport Bus One-Beat Read Transaction ...2-98
Figure 2-25. Xport Bus Two One-beat Write Transactions2-99
Figure 2-26. Xport Bus Two-Beat Read Transaction (No Bursting)2-100
Figure 2-27. Xport Bus 4-beat Read Transaction with Burst Size of 42-101
Figure 2-28. Xport Bus 3-beat Write Transaction with Burst Size of 4.................2-102
Figure 2-29. Xport Bus, 8-beat Read Transaction with Burst Size of 42-103
Figure 2-30. Xport Bus One-Beat Read Transaction in Basic Mode.....................2-104
Figure 2-31. Xport Bus One-Beat Write Transaction in Basic Mode....................2-104

xvi

Figure 2-32. Xport Bus One-Beat Read Transaction in Hawk
Compatibility Mode... 2-105
Figure 2-33. Xport Bus One-Beat Write Transaction in Hawk
Compatibility Mode... 2-106
Figure 2-34. Power Up Reset Timing - Timing Group 1....................................... 2-137
Figure 4-1. Timing Definitions for Table 4-1 .. 4-3

xvii

List of Tables

Table 2-1. PowerPC/PCI Clocking Options...2-2
Table 2-2. SDRAM Single and Multi-Bit Error Reporting..2-9
Table 2-3. Map Decoder Priority ...2-29
Table 2-4. PPC Master Transaction Profiles and Starting Offsets2-34
Table 2-5. Memory and I/O Attributes...2-37
Table 2-6. Configuration Device Decode ..2-40
Table 2-7. Harrier Read-Ahead Options ..2-42
Table 2-8. DMA Controller Linked-List Descriptors ..2-56
Table 2-9. Xport Bus Address Mapping ..2-107
Table 2-10. Xport Bus XAD Mapping...2-108
Table 2-11. Hawk Compatible Address Mapping..2-109
Table 2-12. 8-bit Device Byte Lane Mapping..2-111
Table 2-13. 16-bit Device Byte Lane Mapping.. 2-111
Table 2-14. Hawk Data Compatibility Byte Lane Mapping2-111
Table 2-15. 32-bit Device Byte Lane Mapping..2-112
Table 2-16. PPC Arbiter Pin Assignments...2-113
Table 2-17. PCI Arbiter Pin Description..2-115
Table 2-18. HEIR Encoding for Fixed Mode Priority ...2-117
Table 2-19. HEIR Encoding for Mixed Mode Priority ..2-117
Table 2-20. PRK Encoding ..2-118
Table 2-21. WTxC Programming...2-121
Table 2-22. Exception Summary...2-123
Table 2-23. Error Exceptions and Address/Attribute Capture2-128
Table 2-24. Harrier Hardware Configuration...2-133
Table 3-1. Harrier PowerPC and PCI Resources ...3-1
Table 3-2. PowerPC Control and Status (XCSR)
Register Group ...3-4
Table 3-3. PowerPC Multi-Processor Interrupt Controller (XMPI)
Register Group ...3-15
Table 3-4. PowerPC to PCI Configuration Space (XCFS) Register Group.............3-20
Table 3-5. PCI Configuration Space (PCFS) Register Group..................................3-22
Table 3-6. PCI Message Passing (PMEP) Register Group3-24
Table 3-7. MXRR Control of Refresh Rate ...3-25
Table 3-8. SDTC RWCB Example ..3-26
Table 3-9. SDTC TRC Encoding ...3-28

xviii

Table 3-10. SDTC TRAS Encoding .. 3-28
Table 3-11. SDTC TDPL Encoding... 3-29
Table 3-12. SDTC TRP Encoding ... 3-29
Table 3-13. SDTC TRCD Encodiing... 3-29
Table 3-14. SDBA SIZE Encoding.. 3-31
Table 3-15. SDSES.ESB Encoding ... 3-34
Table 3-16. Syndrome Code Ordered by Bit in Error.. 3-35
Table 3-17. BPCS PIM Encoding.. 3-40
Table 3-18. BXCS RBT Encoding .. 3-42
Table 3-19. BXCS SBT Encoding ... 3-42
Table 3-20. OTATx RXS Encoding ... 3-46
Table 3-21. BASE Encoding and Resource Size ... 3-49
Table 3-22. PSSZ Encoding... 3-51
Table 3-23. CLAS Encoding ... 3-59
Table 3-24. BASE Encoding and Resource Size ... 3-64
Table 3-25. INTP INT Encoding ... 3-67
Table 3-26. ITSZx Encoding ... 3-70
Table 3-27. ITATx RXS/RMS Encoding ... 3-73
Table 3-28. Harrier Generated Transfer Types .. 3-75
Table 3-29. DCTL XTH Encoding .. 3-79
Table 3-30. DCTL PBT Encoding ... 3-80
Table 3-31. DSAT TYP Encoding ... 3-85
Table 3-32. DSAT PRC Encoding ... 3-86
Table 3-33. DDAT TYP Encoding .. 3-88
Table 3-34. DDAT PWC Encoding ... 3-88
Table 3-35. MICT QSZ Encoding ... 3-102
Table 3-36. Cascade Mode Encoding .. 3-115
Table 3-37. Tie Mode Encoding .. 3-116
Table 3-38. FENS1-0 Status .. 3-138
Table 3-39. UART Interrupt Control Functions .. 3-138
Table 3-40. Receiver FIFO Trigger Level ... 3-140
Table 3-41. WLS1-0 Encoding .. 3-142
Table 3-42. UART Clock Selection ... 3-148
Table 3-43. Baud Rates and Divisors .. 3-148
Table 3-44. XPATx RVENx Encoding... 3-152
Table 3-45. XPATx DW Encoding .. 3-152
Table 3-46. XPATx AD Encoding ... 3-153
Table 3-47. XPATx BLE Encoding.. 3-153
Table 3-48. XPATx BRD Encoding... 3-154

xix

Table 3-49. XPATx BWD Encoding ..3-154
Table 3-50. PARB PRI Encoding...3-156
Table 3-51. PARB PRK Encoding ...3-157
Table 3-52. PARB HIE (Fixed Mode) Encoding ...3-157
Table 3-53. PARB HIE (Mixed Mode) Encoding ..3-158
Table 3-54. XARB FBR/FSR/FBW/FSW Encoding ...3-160
Table 3-55. XARB PRK Encoding ..3-160
Table 3-56. WTxC RES Encoding ...3-162
Table 3-57. GCSR XBS Encoding...3-195
Table 3-58. GCSR BTO Encoding...3-196
Table 3-59. GCSR MID Encoding ...3-196
Table 3-60. GCSR RAT Encoding ...3-197
Table 4-1. PowerPC (60x) Bus to SDRAM Estimated Access Timing at 100 MHz with
PC100 SDRAM’s...4-1
Table 4-2. PowerPC (60x) Bus Performance for Xport Bus Bound Cycles4-5
Table 4-3. Number of Xport Data Beats for Different PowerPC (60x)
Transfer Sizes...4-7
Table 4-4. Outbound Performance Matrix ...4-8
Table 5-1. Deriving TRAS, TRP, TRCD and TRC Control Bit Values
from SPD ...5-5
Table 5-2. Programming the SDRAM SIZ Bits...5-7
Table 5-3. Programming the SDRAM Refresh Period ..5-8
Table 5-4. Address Lists for Different Bank Size Checks5-10
Table A-1. Motorola Computer Group Documents ...A-1
Table A-2. Manufacturers’ Documents ...A-2
Table A-3. Related Specifications ...A-4

xx

xxi

About This Manual
The Harrier ASIC Programmer’s Reference Guide provides chip level
information, including register bit descriptions for the Harrier ASIC. It
describes the architecture of the Harrier ASIC by providing the functional
description, programming model/register descriptions, block diagrams,
performance data, and programming issues. Most of the information for
programming the Harrier chip within a PowerPC PMC or CompactPCI
board level system are contained in this manual. This manual is intended
to be used in conjunction with other Motorola Programming Guides,
whose product incorporates the Harrier ASIC as PowerPC/PCI bus bridge,
SDRAM interface, PCI interface, DMA controller, Message Passing
device, UART and I2C interface, interrupt controller, arbiter, and Xport
device, or portions of the aforementioned functions.

This manual is intended for anyone who wants to program SBC boards
with one or more Harrier ASICs in order to design OEM systems, supply
additional capability to an existing compatible system, or work in a lab
environment for experimental purposes. A basic knowledge of computers
and digital logic is assumed.

The printed version of this document is bound in two parts:

Part 1 (ASICHRA1/PG1) contains Chapter 1 and 2, plus a Table of
Contents, List of Figures and List of Tables for those chapters only. It also
contains an Index for both parts.

Part 2 (ASICHRA2/PG1) contains Chapter 3, 4, and 5, and Appendix A,
plus a Table of Contents, List of Figures and List of Tables for those
chapters and appendix only. It also contains an Index for both parts.

The pdf version of this document is formatted in one book, so that all cross
reference and other hyperlink text work correctly.

Summary of Changes
This is the initial publication of this document; consequently, there are no
changes at this time.

xxii

Overview of Contents
Chapter 1, Introduction, provides an overview of the Harrier, its basic
features, and a description of its functional blocks.

Chapter 2, Functional Descriptions, describes the operational
characteristics of all functional components within the Harrier.

Chapter 3, Programming Model, provides an architectural overview, a
register group summary, and a detailed description of all registers.

Chapter 4, Performance, provides details of several interfaces including
the SDRAM interface, the Xport Bus interface, and the PowerPC to PCI
Bridge.

Chapter 5, Programming Considerations, provides explanations for
programming certain registers, as well as what the implications of those
programming changes might have.

Appendix A, Related Documentation, provides a listing of other Motorola
documents, third party documents, and industry specifications related to
this product.

Manual Terminology
Throughout this manual, special character symbols are used to identify the
numeric format of data and address parameters. These symbols precede the
parameters and identify their numeric format as follows:

For example: “12” is the decimal number twelve, and “$12” is the decimal
number eighteen.

Unless otherwise specified, all address references are in hexadecimal.

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal is low.

$

%

&

dollar

percent

ampersand

specifies a hexadecimal character

specifies a binary number

specifies a decimal number

xxiii

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur on high to
low transition.

Note In some instances, an underscore character (_) following the
signal name is used to indicate an active low signal.

In this manual, assertion and negation are used to specify forcing a signal
to a particular state. In particular, assertion and assert refer to a signal that
is active or true; negation and negate indicate a signal that is inactive or
false. These terms are used independently of the voltage level (high or low)
that they represent.

Data and address sizes for MPC60x chips are defined as follows:

❏ A byte (BYTE) is eight bits, numbered 0 through 7, with bit 0 being
the least significant.

❏ A half-word (HWORD) is 16 bits, numbered 0 through 15, with bit
0 being the least significant.

❏ A word or single word (WORD) is 32 bits, numbered 0 through 31,
with bit 0 being the least significant.

❏ A double word (DWORD) is 64 bits, numbered 0 through 63, with
bit 0 being the least significant.

The terms control bit and status bit are used extensively in this document.
The term control bit is used to describe a bit in a register that can be set and
cleared under software control. The term true is used to indicate that a bit
is in the state that enables the function it controls. The term false is used to
indicate that the bit is in the state that disables the function it controls. In
all tables, the terms 0 and 1 are used to describe the actual value that should
be written to the bit, or the value that it yields when read. The term status
bit is used to describe a bit in a register that reflects a specific condition.
The status bit can be read by software to determine operational or
exception conditions.

xxiv

Comments and Suggestions
Motorola welcomes and appreciates your comments on its documentation.
We want to know what you think about our manuals and how we can make
them better. Mail comments to:

Motorola Computer Group
Reader Comments DW164
2900 S. Diablo Way
Tempe, Arizona 85282

You can also submit comments to the following e-mail address:
reader-comments@mcg.mot.com

In all your correspondence, please list your name, position, and company.
Be sure to include the title and part number of the manual and tell how you
used it. Then tell us your feelings about its strengths and weaknesses and
any recommendations for improvements.

Conventions Used in This Manual
The following typographical conventions are used in this document:

bold

is used for user input that you type just as it appears; it is also used for
commands, options and arguments to commands, and names of
programs, directories and files.

italic

is used for names of variables to which you assign values. Italic is also
used for comments in screen displays and examples, and to introduce
new terms.

courier

is used for system output (for example, screen displays, reports),
examples, and system prompts.

<Enter>, <Return> or <CR>

xxv

<CR> represents the carriage return or Enter key.

CTRL

represents the Control key. Execute control characters by pressing the
Ctrl key and the letter simultaneously, for example, Ctrl-d.

Bus Naming

The names "PowerPC" and "60x" are used interchangeably throughout this
document.

Note All references to PowerPC bus support via the Harrier ASIC are
specifically related to the 60x bus mode, and is not intended to
imply support of any other PowerPC bus mode.

Bit Ordering

The bit ordering convention for Harrier depends on which bus group a
signal belongs. All busses or bit fields relating to the PowerPC bus use
Big-Endian bit ordering (0=MSB). All remaining busses and bit fields use
Little-Endian bit ordering (0=LSB).

Register and Bit Naming

A register consists of a collection of 8, 16, 24, or 32-bits. Some or all of the
bits within a register are specifically defined, while the remaining bits are
undefined.

A register name is designated with bold and capital lettering as follows:

RGST

A group of registers is called a Register Group. A Register Group is
designated by a four letter descriptor. The first letter of the descriptor
designates the addressing space that the Register Group resides in. A

xxvi

Register Group residing within PowerPC address space begins with the
letter "X". A Register Group that resides within PCI address space begins
with the letter "P".

A Register Group is designated with italic lettering as follows:

XGRP

There are cases where a register from one Register Group may be
referenced while discussing another Register Group. A register can be
referenced hierarchically as follows:

XGRP.RGST

There may be some cases where it is desirable to associate a bit name to a
register name. In these cases, the bit name may be appended to the register
name and/or register hierarchy as follows:

RGST.BIT
XGRP.RGST.BIT

Register Descriptions

All register descriptions follow a fixed convention. The possible
operations for each bit within a register are as follows:

R - The bit is a read only status bit.

R/W - The bit is a readable and writable.

R/C - The bit is cleared by writing a one to itself.

The possible states of the bits after local and power-up reset are as defined
below.

P - The bit is affected by power-up reset (PURST_)

L - The bit is affected by local reset (RST_)

X - The bit is not affected by reset.

V - The effect of reset on the bit is variable.

xxvii

Most registers can be read from or written to as 1, 2, 4, or 8 byte entities.
Some registers may have special restrictions, in which case these will be
discussed on an individual basis.

All blank bit fields are considered reserved and read as 0’s.

xxviii

1-1

11Introduction

This chapter provides a brief description of the Harrier ASIC, a list of
features, block diagrams from a system level implementation and from a
functional chip level, as well as a description of each functional block
within the Harrier.

Overview
The Harrier is a multi-function ASIC that offers a single chip solution for
PowerPC based processor systems. A complete system may be created
using a single Harrier ASIC; however, multiple Harrier ASICs may reside
on the same PowerPC bus to provide additional I/O and peripheral support
capabilities. Harrier supports a maximum of four PowerPC bus masters.
Figure 1-1 on page 1-4 shows a typical single Harrier, dual processor
system implementation.

Features

❏ PowerPC 60x Bus Interface

– Optimized for 100 MHz operation

– Address and data bus parity

– Supports PowerPC bus pipelining

❏ SDRAM Interface

– X-1-1-1 cycle time for all burst accesses to SDRAM

– Double-Bit-Error detect, Single-Bit-Error correct across 72 bits

– 8 banks with up to 256MB

– Uses -8, -10, or PC100 SDRAMs

– Built-in Refresh/Scrub

– Error Notification

Software Programmable Interrupt on Single/Double-Bit Error

1-2 Computer Group Literature Center Web Site

Introduction
1

Error address and Syndrome Log Registers for Error Logging

❏ PCI Interface

– Fully compliant with PCI Local Bus Specification Revision 2.1

– 32-bit addressing, 32-bit or 64-bit data

– 33 MHz and 66 MHz operation

– Supports Memory, I/O, and Configuration addressing space

– Multi-level write posting buffers for writes to either PowerPC or
PCI bus

– Read-ahead buffer for reads from either PowerPC or PCI bus

– Eight independent software programmable address translation
map decoders

– Store-Gathering

– Copy-Back Snarfing

❏ DMA Controller

– Single Channel

– Direct or Linked-List

– PowerPC to PCI, PCI to PowerPC, PowerPC to PowerPC, and
PCI to PCI

– Fixed or incrementing pattern to PowerPC or PCI

❏ Message Passing

– Fully compliant with Intelligent I/O (I2O) Architecture Specification
Version 1.5

– IOP Message Unit

– Generic functions

❏ 2 UART interfaces

❏ 2 I2C bus master interfaces

❏ Interrupt Controller

– MPIC compliant

Overview

http://www.motorola.com/computer/literature 1-3

1

– All control registers are directly accessible from the PowerPC
bus

– Supports 16 external interrupt sources and two processors

– Multiprocessor interrupt control allows any interrupt source to
be directed to either processor

– Multilevel cross processor interrupt control for multiprocessor
synchronization

– Four 31-bit tick timers

❏ Arbitration

– Internal or external PowerPC and PCI bus arbitration

❏ Xport

– "Static RAM" style control, address and data signals

– 4 individually programmable channels

– Programmable access time

– Programmable data widths of 8, 16 or 32 bits

– Intended devices include Flash, ROM, External Control
Registers and FIFO’s.

❏ Supports synchronous PowerPC/PCI clock ratios of 5:2, 3:2, 3:1,
2:1, and 1:1

❏ Voltage

– 2.5V power supply for I/O’s and internal core

– 3.3V power supply for I/O’s

❏ 720-pin flip-chip package

1-4 Computer Group Literature Center Web Site

Introduction
1

Figure 1-1. Typical Harrier System Implementation

Functional Blocks of Harrier

The following paragraphs describe the major functional blocks contained
in the Harrier ASIC. Figure 1-2 is a block diagram of these major elements.

SDRAM Interface: This functional block is a high performance PowerPC
to SDRAM memory interface. It provides PowerPC masters with
exceptional bandwidth and low latency connections to system memory.

PowerPC to PCI Bridge: This functional block provides an interface
between the PowerPC bus and a 33 MHz/66 MHz PCI bus. It supports
either 32-bit or 64-bit data widths. It has deep write-posting buffers and
advanced read-ahead algorithms to ensure a very high bandwidth interface
between the PowerPC bus and the PCI bus.

SDRAM

Harrier
ASIC

Flash ROM,
Peripherals,

etc.

Xport

Memory
Interface

PowerPC
Processor

PowerPC
Processor

Master
and/or
Slave
Device

Master
and/or
Slave

Device

Master
and/or
Slave

Device

Master
and/or
Slave

Device

PowerPC Bus

PCI Bus

Auxiliary
PowerPC

Master

Overview

http://www.motorola.com/computer/literature 1-5

1

DMA Controller: A highly flexible DMA controller allows fast and
efficient block data transfers between any domain, including PCI to PCI,
PCI to PowerPC, PowerPC to PCI and PowerPC to PowerPC. An option
exists that allows complex patterns to be written to PCI or PowerPC
spaces.

I2O and Generic Message Passing: This functional block offers a fully
I2O compliant Message Passing Unit, allowing the Harrier to participate in
I2O Message Passing as either a Host or an I/O Processor (IOP).
Additional hardware is provided that allow the use of more generic forms
of message passing.

Multi-Processor Interrupt Controller: This functional block is a dual
processor version of the OPIC interrupt controller that supports 16 external
interrupts, 4 internal timer interrupts (with timers), and one internal source
interrupt. The control and status resources for this function are offered
directly to the PowerPC bus.

I2C Controller: This functional block offers two standard master-only I2C
interfaces providing flexibility in chip to chip communication.

UART: This functional block offers two full duplex Universal
Asynchronous Receiver/Transmitter (UART) interfaces that support
communication with modems or other serial peripheral devices.

Xport: A multi-purpose four channel expansion port that can be used to
connect Flash, ROM or various peripheral devices to the Harrier ASIC.

Arbiters: This functional block contains a PowerPC and a PCI arbiter.
Each arbiter offers a wide range of programmable options, allowing the
system designer to fine-tune system configurations for the maximum level
of performance. If desired, external arbitration can be selected for either,
or both, arbiters.

Watchdog Timers: This functional block offers two completely
independent watchdog timers. The use of these timers is optional. These
timers are designed to increase the integrity of software execution. An
output pin is associated with each timer, allowing the timer to create
virtually any system exception such as interrupt, reset, machine check, etc.

1-6 Computer Group Literature Center Web Site

Introduction
1

Error Diagnostics: This functional block contains support logic that helps
capture information related to various system errors. Programmable
options exist that enable the system error to assert various forms of
interrupt exceptions.

PowerPC Address Bus Timer: This is a timer function that makes it
possible for software to recover after an erroneous PowerPC access. It
contains PowerPC bus tracking logic that detects non-responsive address
tenures. Once detected, the address and data tenures are automatically
closed and an exception is generated.

PowerPC Parity: This functional block can generate address and data
parity on the PowerPC bus. Upon detection of either an address or data
parity error, the Harrier can optionally generate an exception. Additional
hardware allows for the intention injection of address and/or data parity
errors, allowing further testing of the party error exception path.

O
verview

http://w
w

w
.m

otorola.com
/com

puter/literature
1-7

1

F
ig

u
re 1-2. H

arrier B
lo

ck D
iag

ram

PowerPC Bus

PCI Bus

SDRAM
Interrupts

Harrier

PowerPC I2C Bus

Bus

Xport Bus PowerPC PowerPC

I2O
PowerPC DMA

Watchdog Error

Multi-

I2C

PCI

SDRAM
Interface

to
PCI

Bridge

and
Generic
Message
Passing

Controller Processor
Interrupt

Controller

Xport
Timers

Address
Bus

Timer
Arbiter Parity Diagnostics

Controller

Arbiter

&
UART UART Bus

1-8 Computer Group Literature Center Web Site

Introduction
1

2-1

22Functional Descriptions

This chapter describes in detail the functions of the Harrier ASIC as listed
in Chapter 1.

Clocking
The Harrier uses a fully integrated (internal loop filter) version of the PLL
macrocell with an operating frequency between 400 MHz and 800 MHz.
The ratio of the PLL’s operating frequency to its reference signal
frequency is 8:1 and allows the Harrier to support synchronous PowerPC-
to-PCI clock ratios of 1:1, 2:1, 3:1, 3:2, and 5:2. Figure 2-1 shows the block
diagram of the Harrier’s PLL implementation. A sample of clocking
options and their associated PowerPC and PCI frequencies is shown in
Table 2-1.

Figure 2-1. Block Diagram of PLL Implementation

REF

CKOUT

FB

PLL

Div-by-4

Div-by-N

0

1
S

0

1
S

Test
Muxes

Root
Buffers XCLK Tree

PCLK Tree

XP

Phase
Clock

PowerPC
Clock

PCI
Clock

Clock RatioXport
XAD
Lines

(PowerPC)

(PCI)

1X 1X4X

Harrier ASIC

Selects
Clock

(CLK)

(PCLK)

VCO /2
8X

2-2 Computer Group Literature Center Web Site

Functional Descriptions

2

Harrier’s PLL will phase lock the external PowerPC clock to the internal
XCLK tree. This phase locking creates a zero clock insertion delay on the
XCLK tree. The clock insertion delay of the PCLK tree is balanced to that
of the XCLK tree, which effectively makes the internal PCLK phase
locked to the external PowerPC clock. The system is responsible for
maintaining a fully synchronous and minimum skew relationship between
the external PowerPC and PCI clocks.

The PLL ensures a synchronous relationship exists between the four clock
domains, however there must be additional logic to make sure the phase
cycle of the internal PCLK tree tracks that of the external PCI clock.
Shortly after the PowerPC clock starts running, Harrier’s internal PCLK
tree starts running in a completely random (but synchronous) fashion with
respect to the external PCI clock. The Harrier then periodically samples the
external PCI clock and adjusts the phase cycle of the internal PCLK tree
until a match is met between the phase cycles of the external PCI clock and
the internal PCLK tree. In order to properly lock to the external PCI clock
phase cycle, the system must hold reset asserted and the PCI clock must be
running while the PLL is attempting to lock to the PowerPC clock. The

Table 2-1. PowerPC/PCI Clocking Options

PowerPC Clock
Frequency

(MHz)
Ratio

(PowerPC:PCI)

PCI
Clock

Divisor
(N)

PCI Clock
Frequency

(MHz)

66.67 1:1 4 66.67

2:1 8 33.33

3:2 6 44.44

75.00 3:2 6 50.00

5:2 10 30.00

83.33 3:2 6 55.55

5:2 10 33.33

100.00 3:1 12 33.33

3:2 6 66.67

Clocking

http://www.motorola.com/computer/literature 2-3

2PLL takes up to 100 µs to lock to the PowerPC clock. If reset is asserted
some time after the PLL has locked to the PowerPC clock then the system
must hold reset active for a minimum of 500 PowerPC clock periods.

The following figure shows the synchronous relationships that must exist
between the PowerPC and PCI clocks.

Figure 2-2. PowerPC and PCI Clock Relationships

-- 5:2 Ratio --

PCI Clock

Phase Cycle

-- 3:2 Ratio --

-- 3:1 Ratio --

-- 2:1 Ratio --

-- 1:1 Ratio --

Phase Cycle

Phase Cycle

Phase Cycle

Phase Cycle

PowerPC Clock

PCI Clock

PowerPC Clock

PCI Clock

PowerPC Clock

PCI Clock

PowerPC Clock

PCI Clock

PowerPC Clock

2-4 Computer Group Literature Center Web Site

Functional Descriptions

2 The Harrier must be told what system clock ratio is being used so that the
internal clock phasing logic knows how to lock the internal PCLK to the
external PCI clock. This information is given to the Harrier in the form of
a state placed on three XAD lines at the release of power-up reset. Please
consult the section titled Hardware Configuration on page 2-133 for more
information.

SDRAM Interface
The SDRAM interface provides PowerPC bus masters with high
performance access to 8 banks of ECC SDRAM. The interface’s major
blocks consist of a PowerPC (60x) slave and an SDRAM controller. The
following figure shows a simplified block diagram.

Figure 2-3. SDRAM Interface Block Diagram

SDRAM

PowerPC Data

MEM Data

MEM AddrPowerPC Addr

PowerPC Ctrl MEM Ctrl

SDRAM
Address Out

PowerPC
Address In

PowerPC
Slave Controller

PowerPC
Data In

(Reg & Mux)

SDRAM
Data Out

(Mux, Reg,
& CKBGen)

(Dec & Latch)

PowerPC
Data Out

(Reg)

SDRAM
Data In
(Reg &
EDAC)

SDRAM Interface

http://www.motorola.com/computer/literature 2-5

2Many of the SDRAM interface’s functions are software programmable.
For a description of the related control and status registers see the section
titled SDRAM Interface on page 3-25.

The following sections describe the SDRAM interface’s major blocks and
functions.

PowerPC Bus Slave

The PowerPC bus slave works closely with the SDRAM controller to
provide low latency and high throughput access to SDRAM. The slave
responds to all transfer sizes and responds to most transfer types.

Responding to Address Transfers

When the PowerPC slave responds to an address transfer, it asserts
AACK_ immediately if no previous data tenure is in process. If a data
transfer is in process, the slave waits and asserts AACK_ when the transfer
completes.

Completing Data Transfers

If an address transfer has an associated data transfer, the SDRAM
controller starts an access to SDRAM as soon as it completes all previous
SDRAM activity. If the data transfer is a read, the PowerPC slave starts
transfering data to the PowerPC bus as soon as the SDRAM controller has
data ready and the PowerPC data bus is available. If the data transfer is a
write, the PowerPC slave starts latching data from the PowerPC bus as
soon as any previously latched data is no longer needed and the PowerPC
data bus is available.

Cache Coherency

The PowerPC slave supports cache coherency to SDRAM by monitoring
and responding to the ARTRY_ signal. When ARTRY_ asserts, if the
access is an SDRAM read, the PowerPC slave does not source the data for
that access. If the access is an SDRAM write, SDRAM controller does not
write the data for that access. Depending upon when the retry occurs, the
controller may cycle the SDRAM but it will not transfer data.

2-6 Computer Group Literature Center Web Site

Functional Descriptions

2 SDRAM Controller

SDRAM Organization

SDRAM is organized as 1, 2, 3, 4, 5, 6, 7 or 8 banks, 72 bits wide with 64
of the bits being normal data and the other 8 being checkbits. The 72 bits
of SDRAM for each bank can be made up of x4, x8, or x16 components or
of 72-bit DIMMs that are made up of x4 or x8 components. 72-bit,
unbuffered DIMMs can be used as long as AC timing is met and they use
the components listed. All components must be organized with 4 internal
banks.

SDRAM Accesses

Four-beat Reads/Writes

Because of the burst nature of SDRAM, the SDRAM interface performs
best when responding to PowerPC burst (four-beat) accesses.

When a PowerPC master begins a burst read to SDRAM, the SDRAM
controller begins an access. When the access time is reached, the SDRAM
provides all four beats of data, one on each clock. Consequently, the
PowerPC slave can provide the four beats of data with zero idle clocks
between each beat.

When a PowerPC master begins a burst write to SDRAM, as soon as the
PowerPC data transfer begins, the PowerPC slave latches and
acknowledges the PowerPC data so that the PowerPC master is freed to
continue with new accesses. The SDRAM controller then performs an
SDRAM access to write the latched data.

Single-beat Reads/Writes

Because of start-up, addressing, and completion overhead, single-beat
accesses to and from the PowerPC bus do not achieve data rates as high as
do four-beat accesses. Single-beat writes are the slowest because they
require that the controller perform a read followed by a write to the
SDRAM in order to complete. Single-beat accesses can be held to a
minimum by using the data cache in copyback mode.

SDRAM Interface

http://www.motorola.com/computer/literature 2-7

2Address Pipelining

The SDRAM interface takes advantage of the fact that PowerPC
processors can do address pipelining. Many times while a data transfer is
finishing, the PowerPC master begins a new address transfer. The SDRAM
controller can begin the next SDRAM access earlier when this happens,
thus increasing throughput.

Holding Open Pages

Further savings come when the new address is close enough to a previous
one that it falls within an open page in the SDRAM array. When this
happens, the controller can transfer the data for the next cycle without
having to wait to activate a new page in SDRAM.

SDRAM Speeds and PowerPC Access Times

The SDRAM that the Harrier controls uses the PowerPC clock. The
SDRAM interface accommodates operation at several different PowerPC
clock frequencies using SDRAMs that have various speed characteristics.
Refer to the section titled SDRAM Timing Control Register on page 3-27
for related programming information.

Performance related information may be found within the section titled
SDRAM Interface on page 4-1.

SDRAM ECC

The SDRAM controller uses single-bit error correction and double-bit
error detection across 64 bits of data using 8 check bits.

Cycle Types

To support ECC, the controller always deals with SDRAM using full width
(72-bit) accesses. When the PowerPC bus master requests any-size read of
SDRAM, the controller reads the full width at least once. When the
PowerPC bus master requests a four-beat write to SDRAM, the controller
writes all 72 bits 4 times. When the PowerPC bus master requests a single-
beat write to SDRAM, the SDRAM controller performs a full width read
cycle to SDRAM, merges in the appropriate PowerPC bus write data, and
writes the full width back to SDRAM.

2-8 Computer Group Literature Center Web Site

Functional Descriptions

2 Error Reporting

The Harrier checks data from SDRAM during PowerPC single- and four-
beat reads, during single-beat writes, and during scrubs. There is no data
from SDRAM to check during burst writes. The following table shows the
actions Harrier takes for the different errors that can occur during a
PowerPC access.

SDRAM Interface

http://www.motorola.com/computer/literature 2-9

2Table 2-2. SDRAM Single and Multi-Bit Error Reporting

Error Type Single-
Beat/Four-Beat

Read

Single-Beat
Write

Four-Beat
Write

Scrub

Single-Bit
Error

Terminate the
PowerPC bus

cycle normally.

Provide corrected
data to the

PowerPC bus
master.

Assert Interrupt or
Machine Check if

so enabled.

Terminate the
PowerPC bus

cycle normally.

Correct the data
read from

SDRAM, merge
with the write

data, and write the
corrected, merged
data to SDRAM

Assert Interrupt or
Machine Check if

so enabled.

N/A

This cycle is not
seen on the

PowerPC bus.

Write corrected
data back to

SDRAM if so
enabled.

Assert Interrupt or
Machine if so

enabled.

Double-Bit
Error

Terminate the
PowerPC bus

cycle normally.

Provide miss-
corrected, raw

SDRAM data to
the PowerPC bus

master.

Assert Interrupt or
Machine Check if

so enabled.

Terminate the
PowerPC bus

cycle normally.

Do not perform
the write portion

of the read-
modify-write

cycle to SDRAM.

Assert Interrupt or
Machine Check if

so enabled.

N/A

This cycle is not
seen on the

PowerPC bus.

Do not perform
the write portion

of the read-
modify-write

cycle to SDRAM.

Assert Interrupt or
machine check if

so enabled.

Triple- (or
greater)

Bit Error

Some of these errors are detected correctly and are treated the same as double-
bit errors. The rest could show up as “no error” or “single-bit error”, both of
which are incorrect.

2-10 Computer Group Literature Center Web Site

Functional Descriptions

2 Error Logging

Harrier logs single and double-bit SDRAM errors. When an error occurs,
Harrier records the address and syndrome bits associated with the data in
error. The section titled SDRAM Single-bit Error Status on page 3-33
describes how the error logging control and status bits operate.

Harrier can be programmed to generate interrupts/machine checks when it
logs SDRAM errors. See the section titled Exceptions on page 3-164 for
more details.

Refresh

The Harrier performs refresh by doing a burst of 4 CBR refresh cycles to
all SDRAM banks once every “4-Row Refresh Interval” (Refer to the
section titled SDRAM General Control Register on page 3-25 for more
information).

Scrub

Once every so many refresh bursts, Harrier replaces the refresh burst with
a scrub cycle. The scrub cycle involves an 8-byte read followed
conditionally by an 8-byte write. The 8-byte write occurs only if the read
detects a single-bit error and GCSR.SDSC.SCWE is set. Otherwise, the 8-
byte write does not occur.

GCSR.SDSC.SCPA controls the frequency with which refresh bursts are
replaced with scrubs. Refer to the section titled SDRAM Scrub Control
Register on page 3-32 for additional information.

If so enabled, Harrier logs single and/or double-bit errors. Logged scrub
errors can be enabled as error exceptions. Refer to the section titled Error
Exception Enable Register on page 3-170 for more information.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-11

2PowerPC to PCI Bridge
The PowerPC to PCI Bridge contains the data paths and control logic that
allows multiple PowerPC processors to interface with a 32/64-bit PCI
Local Bus.

Data Flow Terminology

The following figure is a high level view that demonstrates the difference
between the naming conventions of Outbound and Inbound traffic on a
board using the Harrier ASIC. Review the figure in conjunction with the
text in the following paragraph.

Figure 2-4. Harrier PowerPC/PCI Data Flow Naming Convention

The Outbound and Inbound naming convention relates to the direction of
command information with respect to the PowerPC bus. A transaction that
originates from the PowerPC bus and is bound for the PCI bus is
considered Outbound traffic. Conversely, a transaction that originates
from the PCI bus and is bound for the PowerPC bus is considered Inbound
traffic.

PowerPC Bus Domain

Master

Target

PCI Bus Domain

Target

Master

Harrier

Outbound Traffic

Inbound Traffic

Command

Command

Data

Data

2-12 Computer Group Literature Center Web Site

Functional Descriptions

2 Block Diagram

A functional block diagram of Harrier’s PowerPC to PCI Bridge is shown
in Figure 2-5 on page 2-13.

The control logic is subdivided into the following functions: PPC Master,
PPC Slave, PCI Master, and PCI Slave. The data path logic is subdivided
into the following functions: Outbound FIFO, Inbound FIFO, PPC Input,
PCI Input, PPC Output, and PCI Output. Address decoding is handled in
the PPC Decode and PCI Decode blocks. The control register logic is
contained in the PPC Registers and PCI Registers blocks. The clock
phasing and reset control logic is contained within the PPC/PCI Clock
block

The FIFO structure has been designed to allow independent data transfer
operations to occur between inbound and outbound transactions. The
Outbound FIFO is used to support outbound transactions, while the
Inbound FIFO is used to support inbound transactions. Both the Outbound
FIFO and the Inbound FIFO support a command path, a read data path and
a write data path. The split between read and write data paths allow Harrier
to accept posted write transactions while servicing delayed read
transactions. The data paths also include logic to handle the PowerPC/PCI
Endian function.

All outbound transactions use the PPC Slave and PCI Master functions for
maintaining bus tracking and control. During both write and read
transactions, the PPC Slave places command information into the
Outbound FIFO. The PCI Master draws this command information from
the Outbound FIFO when it is ready to process the transaction. During
write transactions, write data is captured from the PowerPC bus within the
PPC Input block. This data is fed into the write data path of the Outbound
FIFO.The PCI Output block removes the data from the FIFO and presents
it to the PCI bus. During read transactions, read data is captured from the
PCI bus within the PCI Input block. From there, the data is fed into the read
data path of the Outbound FIFO. The PPC Output block removes the data
from the FIFO and presents it to the PowerPC bus.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-13

2

Figure 2-5. PowerPC to PCI Bridge Block Diagram

All inbound transactions use the PCI Slave and PPC Master functions for
maintaining bus tracking and control. During both write and read
transactions, the PCI Slave places command information into the Inbound
FIFO. The PPC Master draws this command information from the Inbound
FIFO when it is ready to process the transaction. During write transactions,
write data is captured from the PCI bus within the PCI Input block. This
data is fed into the write data path of the Inbound FIFO. The PPC Output

Inbound FIFO

Reg

PPC Input

Reg

PCI Input

PPC Registers

Mux
Reg

PPC Output

Mux
Reg

PCI Output

PCI

PowerPC to PCI Bridge

PowerPC Bus

PCI Bus

PCI
Parity

Master

PPC
Lock PPC

Master

PCI Registers

PPC
Slave

PPC
Decode

PCI
Decode

PCI
Slave

Other Outputs

Clock PhasingPPC/PCI
Clock

Read Data

Write Data

Command

Write Data

Read Data

Command

Outbound FIFO

2-14 Computer Group Literature Center Web Site

Functional Descriptions

2 block removes the data from the FIFO and presents it to the PowerPC bus.
During read transactions, read data is captured from the PowerPC bus
within the PPC Input block. From there, the data is fed into the read data
path of the Inbound FIFO. The PCI Output block removes the data from
the FIFO and presents it to the PCI bus.

Cache line locking (via PCI Lock) is handled by the PPC Lock and PCI
Slave blocks. The PCI Slave accommodates the PCI bus portion of lock,
and the PPC Lock accommodates the PowerPC bus portion of lock.

Parity checking and generation for the PCI bus is handled by the PCI Parity
block. Parity checking and generation for the PowerPC bus is handled
outside of the PowerPC to PCI Bridge.

Outbound Functions

An outbound transaction is originated from the PowerPC bus and is
targeted to the PCI bus. The key functional elements are the PPC Slave, the
Outbound FIFO, and the PCI Master. This section describes in detail the
elements of the Harrier that are associated with outbound transactions.

PPC Decode

Harrier maps either PCI Memory space or PCI I/O space into PowerPC
address space using four programmable map decoders. Each map decoder
is accompanied by some address translation logic, and is collectively
referred to as an Outbound Translation Function.

The most significant 16 bits of the PowerPC address are compared with the
address range of each Outbound Translation Function, and if the address
falls within the specified range, the access is passed on to PCI. An example
of this is shown in the following figure.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-15

2
.

Figure 2-6. Outbound Address Decoding

There are no limits imposed by the Harrier on how large of an address
space an Outbound Translation Function can represent. There is a lower
limit of a minimum of 64 KBytes due to the resolution of the address
compare logic.

Each Outbound Translation Function has an associated set of attributes.
These attributes are used to enable the map decoder, write-posting, store-
gather and read-ahead, and to define the PCI transfer characteristics.

Each Outbound Translation Function also includes a programmable 16-bit
address offset. The offset is added to the 16 most significant bits of the
PowerPC address, and the result is used as the PCI address. This offset
provides a high degree of decoupling between PCI address space and
PowerPC address space. An example of this is shown in the following
figure.

PowerPC Bus Address 8 0 8 0 1 2 3 4
3116150

OTADx Register 7 0 8 0 9 0 0 0
3116150

>= <=andDecode is

2-16 Computer Group Literature Center Web Site

Functional Descriptions

2
.

Figure 2-7. Outbound Address Translation

Care should be taken to assure that all functions decode unique address
ranges since overlapping address ranges will lead to undefined operation.

PPC Slave

The PPC Slave provides the interface between the PowerPC bus and the
Outbound FIFO. The PPC Slave is responsible for tracking and
maintaining coherency to the PowerPC bus protocol.

The PPC Slave accepts three basic types of transactions:

1. Posted Write: Can either be in the form of a single beat or a burst
transaction. May optionally be part of Store Gathering.

2. Compelled Write: Can only be single beat transaction without Store
Gathering. Always performed as a delayed transaction.

3. Compelled Read: Can either be in the form of a single beat or a burst
transaction. May optionally be part of Read Ahead. Always
performed as a delayed transaction.

PowerPC Bus Address 8 0 8 0 1 2 3 4
3116150

OTOFx Register 9 0 0 0
150

+

PCI Bus Address 1 0 8 0 1 2 3 4
0151631

=

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-17

2The PPC Slave supports a single level delayed transaction protocol. A
delayed transaction is a sequence of events used to process large latency
transactions that would otherwise consume a large amount of PowerPC
bus bandwidth. In general, all compelled transactions will be handled by
the Harrier as a delayed transaction. A delayed transaction is processed in
the following manner:

1. A PowerPC master issues a bus cycle with the intention of accessing
a compelled resource hosted by the Harrier. The Harrier will either
accept or reject the transaction, and in either case the PowerPC bus
cycle will be terminated with ARTRY_ asserted.

2. The Harrier only accepts a new transaction if the Outbound FIFO is
in a ‘favorable state’. A ‘favorable state’ is when:

a. There are no entries for a compelled transaction within the
Command FIFO, and

b. There is enough room in the Command FIFO (and the Write
Data FIFO if servicing a write) to accept the current transaction.

Note that if the Harrier is in the process of serving a previously
accepted delayed transaction, the associated entry within the
Command FIFO will violate rule (a) above and the Outbound
FIFO will not be in a ‘favorable state’.

If conditions are favorable, the Harrier accepts the transaction and
a new entry is posted within the Command FIFO. If the transaction
is a write, then write data is accepted from the data bus and posted
in the Write Data FIFO. The PPC Slave records which PowerPC
master originated the transaction and retains a copy of the address
and attributes of the transaction for future reference. The PowerPC
bus cycle is terminated with ARTRY_.

If conditions are not favorable, then the Harrier does not accept the
transaction, a new entry is not posted, and data will not be
accepted.

3. The Harrier continues to service the delayed transaction to
completion. While doing so, the PowerPC master continuously re-

2-18 Computer Group Literature Center Web Site

Functional Descriptions

2 attempts the transaction, and the Harrier continuously terminates the
PowerPC bus cycles with ARTRY_ asserted.

4. The PCI Master is primarily responsible for completing the delayed
transaction. If the transaction is a compelled write, then the PCI
Master attempts to empty the contents of the Outbound FIFO to the
PCI bus. If the transaction is a read, then the Outbound FIFO is
filled from the PCI bus.

5. The PPC Slave is notified by the PCI Master upon completion of the
transaction, at which time the PPC Slave is ready to close out the
delayed transaction. The PPC Slave waits for the PowerPC master
to once again retry the transaction. The PPC Slave validates the
address, attributes, and ownership of the current PowerPC bus cycle
with those of previously accepted delayed transaction bus cycle. If
there is a match, then the PPC Slave will complete both the address
tenure and the data tenure. At this point, a delayed transaction is
considered complete.

The PPC Slave cannot perform compelled burst write transactions. The
PowerPC bus protocol mandates that the qualified retry window must
occur no later than the assertion of the first TA_ of a burst transaction. If
the Harrier were to attempt a compelled linkage for all beats within a burst
write, there is a possibility that the transaction could be interrupted. The
interruption would occur at a time past the latest qualified retry window
and the PPC Slave would be unable to retry the transaction. Therefore, all
burst write transactions are posted regardless of the write-posting attribute
within the associated map decoder register.

The PPC Slave can accept posted writes to PCI when there is a delayed
transaction within the Command FIFO. The PPC Slave mandates that the
delayed transaction within the Command FIFO must be a compelled read
cycle and there is enough room in the Command FIFO and Write Data
FIFO to accept the current write.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-19

2Outbound FIFO

The Outbound FIFO is used to hold data between the PPC Slave and the
PCI Master to ensure that optimum data throughput is maintained. The
Outbound FIFO consists of three major components; the command path,
the read data path, and the write data path.

The command path incorporates a 50-bit by 8 entry FIFO that is used to
hold command information being passed between the PPC Slave and the
PCI Master. If write-posting has been enabled, then up to eight single beat,
burst, or store-gathered transactions may be posted. If this limit is
exceeded then any pending PowerPC transactions are retried until the PCI
Master has completed a portion of the previously posted transactions and
created some room within the command FIFO.

Each data path uses a 256 byte (32 entries/8 cache lines by 64-bit) FIFO.
The operation of the write data path is completely independent of the read
data path. This allows the Harrier to accept write-posted transactions while
servicing a delayed read transaction. If a read data path FIFO limit is
reached, then the PCI Master stops prefetching until the PPC Slave has
emptied the FIFO beyond a certain programmable threshold. If a write data
path FIFO limit is reached, then the PPC Slave continually issues retries
until the PCI Master has managed to empty some portion of the FIFO.

The Harrier does not support byte merging or byte collapsing. Each and
every single beat byte transaction presented to the PPC Slave will be
presented to the PCI bus as a unique single beat transfer. Store-Gathering
is supported for word operand transfers. See Store Gathering on page 2-20
for more information.

The Harrier does not snoop the command FIFO. Use caution when using
Store-Gathering, write-posting or read-ahead within coherent address
space.

PCI Master

The PCI Master, in conjunction with the capabilities of the PPC Slave,
generally attempts to move data in either single beat or four beat
transactions. If Store-Gathering is not enabled, the PCI Master supports
32-bit and 64-bit transactions in the following manner:

2-20 Computer Group Literature Center Web Site

Functional Descriptions

2 ❏ All PowerPC single beat transactions, regardless of the byte count,
are subdivided into one or two 32-bit transfers, depending on the
alignment and size of the transaction. This includes single beat 8-
byte transactions.

❏ All PowerPC burst transactions are transferred in 64-bit mode if the
PCI bus has 64-bit mode enabled. If at any time during the
transaction the PCI target indicates it can not support 64-bit mode,
the PCI Master continues to transfer the remaining data within that
transaction in 32-bit mode.

If Store-Gathering is enabled, the PCI Master supports 32-bit and 64-bit
transactions in the following manner:

❏ Once a Store-Gather collection is to be transferred, the PCI Master
attempts to transfer the entire collection as a single contiguous burst
in 64-bit mode if the PCI bus has 64-bit mode enabled. If at any time
during the transaction the PCI target indicates it can not support 64-
bit mode, the PCI Master continues to transfer the remaining data
within the collection in 32-bit mode.

The PCI Master can support Critical Word First (CWF) burst transfers.
The PCI Master divides this transaction into two parts. The first part starts
on the address presented with the CWF transfer request and continues up
to the end of the current cache line. The second transfer starts at the
beginning of the associated cache line and works its way up to (but not
including) the dword addressed by the CWF request.

Even though the PCI Master can support burst transactions, a majority of
the transaction types handled are single beat transfers. Typically PCI space
is not configured as cache-able, therefore burst transactions to PCI space
would not naturally occur. It must be supported since it is conceivable that
bursting could happen. For example, nothing prevents the processor from
loading up a cache line with PCI write data and manually flushing the
cache line.

Store Gathering

The data transfer rate of outbound traffic is inherently slow due to the
inability of the processor to perform anything but single beat bus cycles
when moving data. The Harrier has an optional Store-Gathering mode that

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-21

2condenses multiple contiguous single beat outbound transactions into
large PCI burst transactions. This option may be individually enabled for
each Outbound Translation Function from within the OTATx register.

The PPC Slave only attempts to perform store-gathering on word (32-bit),
dword (64-bit) and cache line operands. The PPC Slave continues to
collect words indefinitely until either a forced flush condition occurs or the
Outbound FIFO approaches the full state. If forced to flush or unload the
FIFO, the PPC Slave closes the current store-gathering collection. The PCI
Master then immediately attempts to move the remainder of the collection
to the PCI bus.

There are two groups of events that can force a collection flush; Mandatory
Flush Events and Optional Flush Events. A Mandatory Flush is caused by
normal address or data flow events.The following events are considered
Mandatory Flush Events:

❏ An outbound write transfer size other than an aligned 32-bit word.

❏ An outbound write to a non-contiguous address, including byte
misalignment, of an existing collection.

❏ An outbound read cycle.

❏ An outbound write of any size or address from a processor other
than the one responsible for the current collection.

There are two Optional Flush Events; the Store-Gather Backup Timer and
the Store-Gather Sync Flush. The Store-gather Backup Timer is a
programmable timer that watches for large gaps of time between
contributions to a collection. The timer is reset anytime a contribution is
made to a collection. If another contribution is not made before the timer
times-out, the current collection will be flushed. The timer may be disabled
if so desired. The characteristics of the Store-Gather Timer apply globally
to all applicable outbound traffic and is determined by the SBT field within
the BXCS register.

2-22 Computer Group Literature Center Web Site

Functional Descriptions

2 The Store-Gather Sync Flush is an option that causes a collection to be
flushed whenever the PPC Slave detects a Sync bus cycle from the
processor responsible for the current collection. This is also a globally
programmable option and is controlled by the SSF field within the BXCS
register.

Read Ahead

The Harrier has an optional Read Ahead mode that enables the PCI Master
to prefetch data whenever a read transaction occurs on the PowerPC bus.
The prefetched data would be readily available from the Outbound FIFO
if multiple contiguous address read transactions occur on the PowerPC
bus.This option may be individually enabled for each Outbound
Translation Function from within the OTATx register.

The PPC Slave only attempts to perform read ahead actions on word (32-
bit), dword (64-bit) and cache line operands. The PPC Slave keeps the read
ahead command open until a forced flush condition occurs. If forced to
flush, the PPC Slave closes the current read ahead command and clears the
Outbound FIFO. Once the PCI Master sees that the read ahead command
is closed, it discontinues with the read and close the command.

There are two groups of events that can force a collection flush; Mandatory
Flush Events and Optional Flush Events. A Mandatory Flush is caused by
normal address or data flow events.The following events are considered
Mandatory Flush Events:

❏ An outbound read transfer size other than an aligned 32-bit word.

❏ An outbound read from a non-contiguous address, including byte
misalignment, of an existing collection.

❏ An outbound write cycle.

❏ An outbound read of any size or address from a processor other than
the one responsible for the current collection.

There are two Optional Flush Events; the Read Ahead Backup Timer and
the Read Ahead Sync Flush. The Read Ahead Backup Timer is a
programmable timer that watches for large gaps of time between
contiguous address reads. The timer is reset anytime a read is performed

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-23

2on read ahead enabled mapped region. If the next address read is not made
before the timer times-out, the current read ahead command is closed and
the Outbound FIFO is cleared. The timer may be disabled if so desired. The
characteristics of the Read Ahead Timer apply globally to all applicable
outbound traffic and is determined by the RBT field within the BXCS
register.

The Read Ahead Sync Flush is an option that will close the read ahead
command and clear the Outbound FIFO whenever the PPC Slave detects a
Sync bus cycle from the processor responsible for the current read ahead.
This is also a globally programmable option and is controlled by the RSF
field within the BXCS register.

Passive Slave

The PPC Slave supports a special function called Passive Slave which
allows a user defined block of PowerPC memory space to be mapped to
PCI memory space. Any writes to this block of PowerPC memory space
by any PowerPC bus master is copied to PCI memory space. Any reads
from this block of PowerPC memory space is ignored.

The PPC Slave does not actively respond to cycles that are mapped to the
Passive Slave function. The PPC Slave passively tracks PowerPC bus
cycles, and if a cycle qualifies as a Passive Slave transaction the PPC Slave
posts the write command and write data as they are being acknowledge by
the PowerPC slave.

Since the Passive Slave function uses the outbound path, it is also
restricted by the Outbound FIFO limitations. If the Command FIFO or
Write Data FIFO does not have enough room to service the current write
or if the Command FIFO contains a previously posted delayed write
transaction, the PPC Slave will assert ARTRY_ at the earliest possible
retry window to prevent the PowerPC slave from acknowledging the cycle.
The PPC Slave will continue to retry the cycle until the Outbound FIFO is
in a ‘favorable state’.

The Passive Slave function has an associated set of registers. The PSAD
register defines the PowerPC memory space base address. The PSOF
register defines the offset to be added to the upper 16 bits of the PowerPC
address bus to determine the PCI bus address. The PSSZ register defines

2-24 Computer Group Literature Center Web Site

Functional Descriptions

2 the resource size starting from the base address in the PSAD register. The
resource size is programmable from 4kbytes to 2Gbytes. The PSAT
register is used to enable the Passive Slave function and enable store-
gathering.

Error Handling

There is only one distinct type of error associated with the Outbound
Function.

❏ PCI Bus Errors

PCI Bus Errors:

While processing a transaction, the PCI Master can encounter either a
Master Abort or a Target Abort. Both types of errors will terminate a
transaction and cause an Error Exception to be generated. There is no
visibility of either type of error to the PPC Slave, therefore it is the sole
responsibility of the PCI Master to maintain the Outbound FIFO in the
event that an error occurs.

The PCI Master takes the same action regardless of which error type is
encountered. There are four basic actions taken:

❏ If the transaction was a write and Store-Gathering was not used,
then the PCI Master will invalidate the remaining portion of the
aborted transaction by discarding the contents of the Outbound
FIFO. A transaction of this type will always be either a single beat
or a burst transaction, and the exact number of words to be discarded
is known by the PCI Master.

❏ If the transaction was a write and Store-Gathering was used, then the
PCI Master will continually discard the contents of the Outbound
FIFO until the transaction is closed by the PPC Slave. Once closed,
The PCI Master will remove the remaining un-transferred portion of
the transaction from the Outbound FIFO.

Since the PPC Slave cannot detect the occurrence of a PCI error, a
Store-Gather collection is not affected by the error and continues
without interruption until a forced flush event occurs.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-25

2❏ If the transaction was a read and read-ahead was not used, then the
PCI Master invalidates the remaining portion of the aborted
transaction by filling the Outbound FIFO with all ones. A
transaction of this type will always be either a single beat or a burst
transaction, and the exact number of words to be filled is known by
the PCI Master.

❏ If the transaction was a read and read-ahead was used, then the PCI
Master will continually fill the Outbound FIFO with all ones until
the transaction is closed by the PPC Slave.

Since the PPC Slave cannot detect the occurrence of a PCI error, a
read-ahead collection will not be affected by the error and will
continue without interruption until a forced flush event occurs.

Inbound Functions

An inbound transaction is originated from the PCI bus and is targeted to
the PowerPC bus. The key functional elements are the PCI Slave, the
Inbound FIFO, and the PPC Master. This section describes in detail the
elements of the Harrier that are associated with inbound transactions.

PCI Decode

The Harrier provides three resources to PCI:

❏ PCFS Register Group mapped into PCI Configuration space

❏ PowerPC bus address space mapped into PCI Memory or I/O space

❏ PMEP Register Group into PCI Memory space

PCFS Register Group:

The PCFS Register Group is mapped within PCI configuration space
according to how the system connects the Harrier’s DEVSEL_ pin. The
Harrier provides a configuration space that is fully compliant with PCI
Local Bus Specification 2.1. There are five base registers within the
standard 64 byte header. One register is dedicated to mapping the PMEP
Register Group into PCI Memory space. The remaining four base registers
are associated with Inbound Translation Functions that map PowerPC

2-26 Computer Group Literature Center Web Site

Functional Descriptions

2 address space into PCI address space. Additional control associated with
each Inbound Translation Function is contained within device specific
registers mapped above the 64 byte header.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-27

2PowerPC Bus Address Space:

The Harrier maps PowerPC address space into PCI Memory or I/O space
using four programmable map decoders. Each map decoder is
accompanied by some address translation logic, and is collectively referred
to as an Inbound Translation Function.

An Inbound Translation Function is mapped into PCI Memory or I/O
space using its own PCI compliant Base Address Register (BAR). A BAR
is used by a PCI master to determine a resource size, and is ultimately
written with a value indicating where in PCI Memory or I/O space the
resource is to reside.

The upper portion of the PCI address is compared with the upper
programmable portion of each BAR, and if the address falls within the
specified range, the access is passed on to the PowerPC bus. An example
of this is shown in the figure below.

Figure 2-8. Inbound Address Decoding

PCI Bus Address

ITBARx Register 4 0 4 0 0 0 0 0
0151631

=Decode is

Programmable Fixed

ITSZx Register
07

80

4 0 4 1 2 3 4 5
0151631

4 0 4 0 4 0 0 0
0151631

=Decode is

Programmable Fixed

07

00

4 0 4 0 4 1 2 3
0151631

2-28 Computer Group Literature Center Web Site

Functional Descriptions

2 The size of each Inbound Translation Function is independent of each
other, and may be programmed to offer as small as 4KBytes or as large as
2 GBytes. The read-write characteristics of a BAR will change to reflect
the size of the resource. The BAR limits the placement of an Inbound
Translation Function to binary boundaries according to resource size. For
example, a 4KByte resource can be located on any 4KByte boundary.

Each Inbound Translation Function has an independent set of attributes.
These attributes are used to enable read and write accesses, select either
Memory or I/O space, enable read-ahead and write-posting, and define the
PowerPC bus transfer characteristics.

Each Inbound Translation Function also includes a programmable 16-bit
address offset that is added to the PCI address in a two step process. The
first step is to subtract the base address from the PCI address. This
essentially zero’s out all bit positions of the PCI address that correspond to
programmable bit positions within the BAR. The second step is to add the
programmable offset to the 16 most significant bits of the results of the first
step, and the result is used as the PowerPC address. This offset provides a
high degree of decoupling between PowerPC address space and PCI
address space. An example of this is show in the figure below.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-29

2

Figure 2-9. Inbound Address Translation

All address decoding is prioritized so that programming multiple functions
to respond to the same address is not a problem. When the PCI address falls
into the range of more than one function, only the highest priority one will
respond. The functions are prioritized as shown in the table below.

Table 2-3. Map Decoder Priority

Decoder Priority

Inbound Translation Function 0 highest

Inbound Translation Function 1 |

VInbound Translation Function 2

Inbound Translation Function 3 lowest

+

PCI Bus Address

ITOFx Register

Zero Out

PowerPC Bus Address

4 0 4 1 2 3 4 5
0151631

0 0 0 1 2 3 4 5
0151631PCI Base Address

6 0 6 0
1631

=

6 0 6 1 2 3 4 5
3116150

+

4 0 4 0 4 1 2 3
0151631

0 0 0 0 0 1 2 3
0151631

6 0 6 0
1631

=

6 0 6 0 0 1 2 3
3116150

2-30 Computer Group Literature Center Web Site

Functional Descriptions

2 PCI Message Passing Register Group:

The Harrier offers a 4K byte block of register space that supports I2O and
Generic Message Passing. This block can be located anywhere within PCI
Memory space using a traditional PCI defined base register within the 64-
byte configuration header. Refer to the section titled PCI Message Passing
(PMEP) Register Group on page 3-23 for more information.

PCI Slave

The PCI Slave provides the control logic needed to interface the PCI bus
to the Inbound FIFO. The PCI Slave can accept either 32-bit or 64-bit
transactions, however it can only accept 32-bit addressing. There is no
limit to the length of the transfer that the PCI Slave can handle.

The PCI Slave accepts four basic types of transactions:

❏ Posted Write: Is accepted either in the form of a single beat or a
burst transaction. It generally accepts data with zero target wait
states, and inserts wait states whenever either the data or command
FIFOs reach saturation. It initiates a disconnect in accordance with
PCI initial and subsequent latency requirements.

❏ Compelled Write: Is accepted either in the form of a single beat or
a burst transaction, however it is always terminated after the transfer
of one data beat. It inserts wait states until the beat of data has been
transferred on the PowerPC bus. It initiates a disconnect in
accordance with PCI initial and subsequent latency requirements.

❏ Posted Read (read-ahead enabled): Is accepted either in the form of
a single beat or a burst transaction. It initiates a sequence of
contiguous cache-line reads on the PowerPC bus. It generally
returns read data to the PCI Slave before issuing an initial latency
disconnect. It incorporates a delayed transaction protocol to be
compliant with the PCI Slave’s initial and subsequent latency
requirements.

❏ Compelled Read (read-ahead disabled): Is accepted either in the
form of a single beat or a burst transaction, however it is always
terminated after the transfer of one data beat. It initiates a single beat
read on the PowerPC bus. It generally returns read data to the PCI

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-31

2Slave before issuing an initial latency disconnect. It incorporates a
delayed transaction protocol to be compliant with the PCI Slave’s
initial and subsequent latency requirements.

The Harrier is designed to always comply with the PCI Slave’s initial and
subsequent latency requirements. It supports a programmable initial
latency, providing either a 16 clock target latency or a 32 clock host bridge
cache hit latency. During posted writes that cannot be serviced
immediately (i.e. a full FIFO), the Harrier always waits as long as the
initial latency allows before issuing a disconnect. When performing a read,
the Harrier also waits for the maximum allowable initial latency period
before converting the read to a delayed transaction.

The PCI Slave supports a single level delayed transaction protocol. A
delayed transaction is a sequence of events used to process large latency
transactions that would otherwise consume a large amount of PCI bus
bandwidth. In general, all read transactions are handled by the Harrier as a
delayed transaction. A delayed transaction is processed in the following
manner:

❏ A PCI master issues a bus cycle with the intention of accessing a
resource hosted by the Harrier. The Harrier attempts to service the
transaction before the initial latency period expires. If unable to
provide service, the Harrier terminates the PCI bus cycle with a
disconnect-retry.

❏ The Harrier only accepts a new transaction if the Inbound FIFO is
in a ‘favorable state’. A ‘favorable state’ is when:

– There are no entries for a previously issued but uncompleted
delayed transaction within the Command FIFO, and

– There is enough room in the Command FIFO to accept the
current transaction.

If conditions are favorable, the Harrier accepts the transaction, posts
the new entry in the Command FIFO, and the PCI Slave retains a
copy of the address and attributes of the transaction for future
reference.

If conditions are not favorable, the Harrier does not accept the
transaction and a new entry is not posted.

2-32 Computer Group Literature Center Web Site

Functional Descriptions

2 ❏ The Harrier proceeds to service the delayed transaction to
completion. While doing so, the PCI master is continuously re-
attempting the transaction. Each time the transaction is re-
attempted, the Harrier waits for the expiration of the initial latency
period before issuing a disconnect-retry.

❏ If another PCI master attempts a read from the Harrier, while the
Harrier is currently processing a delayed read transaction, the
Harrier does not wait for the expiration of the initial latency period
but immediately issues a disconnect-retry.

❏ The PPC Master is primarily responsible for completing the delayed
transaction by filling the Inbound FIFO from the PowerPC bus.

❏ The PCI Slave is notified by the PPC Master upon completion of the
transaction, at which time the PCI Slave is ready to close out the
delayed transaction. The PCI Slave will wait for the PCI master to
once again retry the transaction. The PCI Slave will validate the
address and attributes of the current PCI bus cycle with those of
previously accepted delayed transaction bus cycle. If there is a
match, then the PCI Slave will complete both the address tenure and
the data tenure. At this point, a delayed transaction is considered
complete.

The Harrier’s delayed read mechanism only guarantees the completion of
the first data beat of a read cycle. When a delayed read completion is
finally established between the Harrier and the PCI master, the Harrier
continues to provide burst read data as needed. If a disconnect is issued any
time after the first beat of data has been transferred, the PCI master re-
attempts the transaction and the Harrier considers this to be an entirely new
transaction.

Inbound FIFO

The Inbound FIFO is used to hold data between the PCI Slave and the PPC
Master to ensure that optimum data throughput is maintained. The Inbound
FIFO consists of three major components; the command path, the read data
path, and the write data path.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-33

2The command path incorporates a 52-bit by 8 entry FIFO which is used to
hold command information being passed between the PCI Slave and the
PPC Master. If write-posting is enabled, up to eight single beat or burst
transactions may be posted. If this limit is exceeded, any pending PCI
transactions are retried until the PPC Master completes a portion of the
previously posted transactions and creates some room in the command
FIFO.

Each data path uses a 256 byte (32 entries/8 cache lines by 64-bit) FIFO.
The operation of the write data path is completely independent of the read
data path. This allows the Harrier to accept write-posted transactions while
servicing a delayed read transaction. If a read data path FIFO limit is
reached, then the PPC Master stops prefetching until the PCI Slave
manages to empty the FIFO beyond a certain programmable threshold. If
a write data path FIFO limit is reached, then the PCI Slave continually
issues retries until the PPC Master manages to empty some portion of the
FIFO.

The Harrier does not support byte merging or byte collapsing. Each and
every single beat byte transaction presented to the PCI Slave is presented
to the PowerPC bus as a unique single beat transfer.

The Harrier does not support PowerPC or PCI bus snooping. Care should
be exercised when using write-posting or read-ahead within coherent
address space.

PPC Master

The PPC Master can transfer data either in 1-to-8 byte single beat
transactions or 32 byte four beat burst transactions. This limitation is
strictly imposed by the PowerPC bus protocol. The PPC Master attempts
to move data using burst transfers whenever possible. If a transaction starts
on a non-cache line address, the PPC Master performs as many single beat
transactions as needed until the next highest cache line boundary is
reached. If a write transaction ends on a non-cache line boundary, then the
PPC Master finishes the transaction with as many single beat transactions

2-34 Computer Group Literature Center Web Site

Functional Descriptions

2 as needed to complete the transaction. The table below shows the
relationship between starting addresses and PowerPC bus transaction
types when write-posting and read-ahead are enabled.

Write Posting

The Harrier has an optional write-posting mode that may be enabled by the
WPE field within the ITATx registers. While the PCI Slave is filling the
Inbound FIFO with write data, the PPC Master can be moving previously
posted write data onto the PowerPC bus. In general, the PowerPC bus is
running at a higher clock rate than the PCI bus, which means the PCI bus
can transfer data in a continuous uninterrupted burst, while the PowerPC
bus transfers data in distributed multiple bursts.

The Harrier write-posting function does not incorporate any
programmable tuning options. Please refer to the section titled FIFO
Tuning on page 2-41 for more information.

Table 2-4. PPC Master Transaction Profiles and Starting Offsets

Start Offset
(i.e. from 0x00,0x20,0x40,

etc.)

Write Profile Read Profile Notes

0x...00 -> 0x....07 Burst @ 0x00

Burst @ 0x20

....

Burst @ 0x00

Burst @ 0x20

....

Most efficient

0x....08 -> 0x....0f Single @ 0x08

Single @ 0x10

Single @ 0x18

Burst @ 0x20

....

Burst @ 0x00

Burst @ 0x20

....

Discard read beat 0x00

0x....10 -> 0x....17 Single @ 0x10

Single @ 0x18

Burst @ 0x20

....

Burst @ 0x00

Burst @ 0x20

....

Discard read beat 0x00

and 0x08

0x....18 -> 0x....1f Single @ 0x18

Burst @ 0x20

....

Single @ 0x18

Burst @ 0x20

....

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-35

2Read Ahead

The Harrier has an optional read-ahead mode controlled by the RAE bit in
the ITATx registers that allows the PPC Master to prefetch data in bursts
and store it in the Inbound FIFO. The contents of the Inbound FIFO is then
used to satisfy the data requirements for the remainder of the PCI read
transaction.

Upon completion of a prefetched read transaction, any residual read data
left within the Inbound FIFO is invalidated (discarded). When servicing a
delayed read transaction, the contents of the Inbound FIFO is invalidated
upon disconnect if at least one data beat of the delayed transaction has been
transferred.

The PPC Master never performs prefetch reads beyond the address range
mapped within the Inbound Translation Function map decoders. As an
example, assume the Harrier has been programmed to respond to PCI
address range $10000000 through $1001FFFF with an offset of $2000.
The PPC Master performs its last read on the PowerPC bus at cache line
address $3001FFFC or dword address $3001FFF8.

Copyback Snarfing

Many times an inbound read takes place in coherent memory space that is
held within the processor’s cache. When this happens, the processor
detects a snoop hit on the Harrier’s bus cycle. The processor then performs
a copy-back write cycle to return the modified cache-line to local memory.
The Harrier has an optional Copy-back Snarfing mode that enables the
PPC Master to “snarf” the processor’s copy-back write cycle. Snarfing
means that the PPC Master listens to the processor write cycle and grabs a
copy of the data for its own use. A successful snarf of a cache-line means
a savings of PowerPC bus bandwidth since the PPC Master does not have
to initiate its own read cycle from local memory.

The PPC Master pays close attention to the copy-back write cycle. It must
make sure that the cycle following a snoop hit is an associated copy-back
cycle. If the cycle does not meet the criteria of a valid copy-back cycle,
then the PPC Master simply performs a read of the needed cache-line.

The Copy-back Snarfing mode can be controlled by the CSE field within
the BXCS register. The default state for this option is enabled.

2-36 Computer Group Literature Center Web Site

Functional Descriptions

2 Bus Hog

The Harrier has an optional mode called Bus Hog. When Bus Hog is
enabled, the PPC Master continually requests the PowerPC bus for the
entire duration of each PCI transfer. When Bus Hog is not enabled, the
PPC Master structures its bus request actions around its desire to satisfy
FIFO thresholds. The Bus Hog mode was primarily designed to assist with
system level debugging and is not intended for normal modes of operation.
It is brute force method of guaranteeing that all inbound transactions are
performed without any intervention by host CPU transactions. The Bus
Hog mode can be controlled by the BHG field within the BXCS register.
The default state for BHG is disabled.

Error Handling

There is only one distinct type of error associated with the Inbound
Function: Delayed Transaction Time-out.

Delayed Transaction Time-out:

The Harrier expects all delayed transactions to be continuously retried by
a PCI master until the transaction has completed. Besides being in
violation of the PCI specification, it is considered a serious error if a PCI
master aborts (i.e. stops retrying the transaction) a delayed transaction
before the Harrier finishes the transaction. In the event that this happens,
the Harrier has special logic that facilitates recovery from this type of
error. An 8 microsecond timer starts counting once the PCI Slave is ready
to close out a delayed transaction. If a PCI master does not come back to
complete the transaction before the timer expires, then an Error Exception
is generated. The delayed transaction is invalidated, and the contents of the
Inbound FIFO are discarded. Unless the transaction was targeted to read
sensitive PowerPC address space, the effects of an invalidated read
transaction are minimal.

Generating PCI Cycles

There are four basic types of bus cycles that can be generated on the PCI
bus:

❏ Memory and I/O

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-37

2❏ Configuration

❏ Special Cycle

❏ Interrupt Acknowledge

Memory and I/O Cycles:

Each Outbound Translation Function may be configured to generate PCI
I/O or Memory accesses according to the MEM and IOM fields within the
OTATx registers as shown in the following table.

If the MEM bit is set, the Harrier performs Memory addressing on PCI.
The Harrier takes the PowerPC address, applies the offset specified in the
OTOFx register, and maps the result directly to the PCI bus.

The IBM CHRP specification describes two approaches for handling PCI
I/O addressing: contiguous or spread address modes. When the MEM bit
is cleared, the IOM bit is used to select between these two modes whenever
a PCI I/O cycle is performed.

The Harrier performs contiguous I/O addressing when the MEM bit is
clear and the IOM bit is clear. The Harrier takes the PowerPC address,
applies the offset specified in the OTOFx register, and maps the result
directly to the PCI bus.

Table 2-5. Memory and I/O Attributes

MEM IOM PCI Cycle Type

1 x Memory

0 0 Contiguous I/O

0 1 Spread I/O

2-38 Computer Group Literature Center Web Site

Functional Descriptions

2 The Harrier performs spread I/O addressing when the MEM bit is clear and
the IOM bit is set. It takes the PowerPC address, applies the offset
specified in the OTOFx register, and maps the result to the PCI bus as
shown in the figure below.

Figure 2-10. Spread I/O Address Translation

Spread I/O addressing allows each PCI device’s I/O registers to reside on
a different PowerPC memory page so device drivers can be protected from
each other using memory page protection.

All I/O accesses must be performed within natural word boundaries. Any
I/O access that is not contained within a natural word boundary causes an
unpredictable operation. For example, an I/O transfer of 4 bytes starting at
address $80000010 is considered a valid transfer. An I/O transfer of 4
bytes starting at address $80000011 is considered an invalid transfer since
it crosses the natural word boundary at address $80000013/$80000014.

Configuration Cycles:

The Harrier uses Configuration Mechanism #1 as defined in PCI Local
Bus Specification 2.1 to generate configuration cycles. Please refer to this
specification for a complete description of this function.

Configuration Mechanism #1 uses an address register/data register format.
Performing a configuration access is a two step process. The first step is to
place the address of the configuration cycle within the
CONFIG_ADDRESS register. Note that this action does not generate any

031
0000000

PowerPC Address + Offset

PCI Address

11 031 4512

452425

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-39

2cycles on the PCI bus. The second step is to either read or write
configuration data into the CONFIG_DATA register. If the
CONFIG_ADDRESS register has been set up correctly, the Harrier passes
this access on to the PCI bus as a configuration cycle.

The addresses of the CONFIG_ADDRESS and CONFIG_DATA registers
are actually embedded within PCI I/O space. If the CONFIG_ADDRESS
register has been set incorrectly or the access to either the
CONFIG_ADDRESS or CONFIG_DATA register is not 1,2, or 4 bytes
wide, the Harrier passes the access on to PCI as a normal I/O Space
transfer.

The CONFIG_ADDRESS register is located at offset $0CF8 from the
bottom of PCI I/O space. The CONFIG_DATA register is located at offset
$0CFC from the bottom of PCI I/O space. Outbound Translation Function
3 is designed so OTAD3,OTOF3, and OTAT3 must be used for mapping
PCI Configuration (consequently I/O) space. This register group is
initialized at reset to allow PCI I/O accesses starting at address $80000000.
The power up location (i.e. Little Endian disabled) of the
CONFIG_ADDRESS register is $80000CF8, and the CONFIG_DATA
register is located at $80000CFC.

The CONFIG_ADDRESS register must be prefilled with four fields; the
Register Number, the Function Number, the Device Number, and the Bus
Number.

The Register Number and the Function Number are passed along to the
PCI bus as part of the lower address bits.

When performing a configuration cycle, the Harrier uses the upper 20
address bits to drive IDSEL lines. During the address phase of a
configuration cycle, only one of the upper address bits is set. The device
that has its IDSEL connected to the address bit being asserted is selected

2-40 Computer Group Literature Center Web Site

Functional Descriptions

2 for a configuration cycle. The Harrier decodes the Device Number to
determine which of the upper address lines to assert. The decoding of the
5 bit Device Number is show in the table below.

The Bus Number determines which bus is the target for the configuration
read cycle. The Harrier always hosts PCI bus #0. Any access that is
performed on the PCI bus connected to the Harrier must have zero
programmed into the Bus Number. If the configuration access is targeted
for another PCI bus, then that bus number should be programmed into the
Bus Number field. The Harrier detects a non zero field and converts the
transaction to a Type 1 Configuration cycle.

Special Cycles:

The Harrier supports the method stated in PCI Local Bus Specification 2.1
using Configuration Mechanism #1 to generate Special Cycles. To prime
the Harrier for a Special Cycle, the host processor must write a 32 bit value
to the CONFIG_ADDRESS register. The contents of the write are defined
in the section titled "CONFIG_ADDRESS Register" in Chapter 3. After
the write to CONFIG_ADDRESS has been accomplished, the next write
to the CONFIG_DATA register causes the Harrier to generate a Special
Cycle on the PCI bus. The write data is driven onto AD[31:0] during the
Special Cycle data phase.

Table 2-6. Configuration Device Decode

Device Number Address Bit

00000 AD31

00001 - 01010 All Zeros

01011 AD11

01100 AD12

(etc.) (etc.)

11101 AD29

11110 AD30

11111 All Zeros

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-41

2Interrupt Acknowledge Cycles:

Performing a read from the PIAC register initiates a single PCI Interrupt
Acknowledge cycle. Any single byte or combination of bytes may be read
from, and the actual byte enable pattern used during the read is passed on
to the PCI bus. Upon completion of the PCI interrupt acknowledge cycle,
the Harrier presents the resulting vector information obtained from the PCI
bus as read data.

FIFO Tuning

The selection of a FIFO size and threshold levels used in conjunction with
write-posting and read-ahead determines the performance characteristics
of a bridge device. The Harrier is designed to work with an average
transfer size of 128 bytes or more, however there are mechanisms in place
to improve performance for smaller transfer sizes.

The tuning of write transactions is much easier than the tuning of read
transactions. Write transactions always have a finite transaction size. Read
transactions involve a bit of speculation. An incorrect speculation usually
results in a certain level of system performance degradation.

Write-Posting

The characteristics of the inbound data write FIFO are identical to those of
the outbound data write FIFO. The Harrier does not provide programmable
options associated with these FIFOs. Both FIFO sizes are fixed at 256
bytes (8 cache lines). The start threshold is fixed at the half way mark (i.e.
4 cache lines), and the stop threshold is fixed at the almost empty mark (i.e.
<= 1 cache line).

Read-Ahead

The characteristics of the inbound data read FIFO are identical to those of
the outbound data read FIFO. Both FIFOs offer virtual sizing and a
variable threshold to control the effects of read-ahead. Each Outbound
Translation Function offers a unique set of parameters. Each Inbound
Translation Function offers a distinct set of parameters for PCI Read/Read
Line commands and for PCI Read Multiple commands.

2-42 Computer Group Literature Center Web Site

Functional Descriptions

2 The table below summarizes the options provided by the Harrier.

Selecting an optimal set of parameters is related to the expected average
transfer size. The ideal solution is to match the prefetch size to the transfer
size. The next level of success is to minimize the amount of unnecessary
prefetching. A example of a poorly optimized solution would be to select
a very large virtual FIFO size for very small transfers. This solution results
in a large portion of the prefetched bandwidth being wasted.

Some general guidelines and characteristics associated with the outbound
path are as follows:

❏ Select the smallest FIFO size that is still greater than the expected
outbound transaction size.

❏ A continuous burst with a small FIFO size creates multiple smaller
burst transfers on PCI. The increase amount of transfers on PCI
makes the overall transaction more susceptible to bandwidth
degradation due to initial latencies on PCI.

Table 2-7. Harrier Read-Ahead Options

Virtual
FIFO
Size

FIFO
Threshold

Initial
Read Size

Subsequent
Resume

Subsequent
Stop

64 Bytes Half 2 cache lines FIFO <= 1
cache line

FIFO = 2
cache lines

Empty FIFO = 0
cache lines

128 Bytes Half 4 cache lines FIFO <= 2
cache lines

FIFO = 4
cache lines

Empty FIFO = 0
cache lines

256 Bytes Half 8 cache lines FIFO <= 4
cache lines

FIFO = 8
cache lines

Empty FIFO = 0
cache lines

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-43

2❏ A continuous burst with a large FIFO size creates fewer but longer
burst transfers on PCI, and is less susceptible to initial latency
bandwidth degradation.

❏ Selection of an empty threshold works well if the transactions are
almost always smaller than the virtual FIFO size. If the transaction
size exceeds the FIFO size, then the transaction bandwidth will be
severely degraded since wait states will be incurred between when
the FIFO goes empty and when the PCI Master can start filling the
FIFO again.

❏ Boundary cases may not work as expected. The PPC Slave is not
very efficient at determining when a read-ahead collection has
completed. For example, if the processor reads 64 bytes and stops,
the PPC Slave will still consider the collection open until told
otherwise by the processor. If configured for an empty threshold
with a 64 byte FIFO, the completion of the transaction will more
than likely result in another prefetch by the PCI Master.

Note that a transaction size that is slightly smaller than the FIFO
size with an empty threshold will behave as expected. In this case,
the processor/PPC Slave has no problems closing a collection
before the PCI Master starts the next prefetch read.

Some general guidelines and characteristics associated with the inbound
path are as follows:

❏ Select the smallest FIFO size that is still greater than the expected
inbound transaction size.

❏ A continuous burst with a small FIFO size creates smaller groups of
burst transfers on PowerPC. The increase number of groups on
PowerPC makes the overall transaction more susceptible to
bandwidth degradation due to initial latencies on PowerPC and
within the SDRAM Memory Controller.

❏ A continuous burst with a large FIFO size creates larger groups of
burst transfers on PowerPC, and is less susceptible to initial latency
bandwidth degradation.

2-44 Computer Group Literature Center Web Site

Functional Descriptions

2 ❏ Selection of an empty threshold works well if the transactions are
almost always smaller than the virtual FIFO size. If the transaction
size exceeds the FIFO size, then the transaction bandwidth will be
severely degraded since wait states will be incurred between when
the FIFO goes empty and when the PPC Master can start filling the
FIFO again.

❏ Boundary cases work exactly as expected. The PCI bus explicitly
indicates the completion of a burst read transaction. This indication
can propagate fast enough to the PPC Master to inhibit any
additional prefetch reads.

Transaction Ordering

All transactions will be completed on the destination bus in the same order
that they are issued on the originating bus. A read or a compelled write
transaction will force all previously issued write posted transactions to be
flushed from the FIFO. All write posted transfers will be completed before
a read or compelled write is begun to assure that all transfers are completed
in the order issued.

The Harrier can accept posted-write transactions while servicing a delayed
read, however the ordering on the destination bus always allows the read
transaction to complete before the write transactions.

The Harrier’s design eliminates any adverse affects that can occur when
control register bits are changed during transaction processing. In some
special cases, a register access may be delayed while Harrier performs the
necessary change, but in general the register access time is unaffected.

The PCI Local Bus Specification 2.1 states that posted write buffers in both
directions must be flushed before completing a read in either direction.
Harrier supports this by providing two optional FIFO flushing options. The
FBR (Flush Before Read) bit within the BXCS register controls the
flushing of inbound write-posted data when performing outbound read
transactions. The FBR (Flush Before Read) bit within the BPCS register
controls the flushing of outbound write-posted data when performing
inbound read transactions. Both FBR functions are completely
independent of each other, however both functions must be enabled to
guarantee full compliance with PCI Local Bus Specification 2.1.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-45

2When the FBR bit within the BXCS register is set, the Harrier handles
outbound read transactions in the following manner:

❏ Outbound write-posted transactions are flushed by the nature of the
FIFO architecture. The Harrier holds the processor with wait states
until the outbound FIFO (Outbound FIFO) is empty.

❏ Inbound write-posted transactions are flushed as a result of a
decision by the PPC Slave to accept or reject a read transaction.
When the PPC Slave is asked to service an outbound read
transaction, the read is only accepted if there is no inbound write-
posted activity. A non-zero value on the inbound FIFO (Inbound
FIFO) count is considered write-posted activity. If the read may not
be accepted, the PPC Slave issues a retry to the processor.

When the FBR bit within the BPCS register is set, the Harrier processes
inbound read transactions in the following manner:

❏ Inbound write-posted transactions are flushed by the nature of the
FIFO architecture. The Harrier holds the PCI Master with wait
states until the inbound FIFO (Inbound FIFO) is empty.

❏ Outbound write-posted transactions are flushed as a result of a
decision by the PCI Slave to accept or reject a read transaction.
When the PCI Slave is asked to service an inbound read transaction,
the read will only be accepted if there is no outbound write-posted
activity. A non-zero value on the outbound FIFO (Outbound FIFO)
count is considered write-posted activity. If the read may not be
accepted, the PCI Slave will issue a disconnect-retry to the PCI bus.

Endian Conversion

The Harrier supports the natural Endian mode for each bus. The PCI bus is
inherently Little-Endian and the PowerPC bus is inherently Big-Endian.
All inbound and outbound data must be swapped such that all PCI
resources appear as Big-Endian from the perspective of the PowerPC bus.

2-46 Computer Group Literature Center Web Site

Functional Descriptions

2 Conversely, all PowerPC resources appear as Little-Endian from the
perspective of the PCI bus. The figure below demonstrates this data
swapping function.

Figure 2-11. Big Endian/ Little Endian Data Swap

D
H

31
-2

4

D
H

23
-1

6

D
H

15
-0

8

D
H

07
-0

0

D
L

31
-2

4

D
L

23
-1

6

D
L

15
-0

8

D
L

07
-0

0

A
D

63
-5

6

A
D

55
-4

8

A
D

47
-4

0

A
D

39
-3

2

A
D

31
-2

4

A
D

23
-1

6

A
D

15
-0

8

A
D

07
-0

0

PowerPC Bus

64-bit PCI

D
H

31
-2

4

D
H

23
-1

6

D
H

15
-0

8

D
H

07
-0

0

D
L

31
-2

4

D
L

23
-1

6

D
L

15
-0

8

D
L

07
-0

0

A
D

31
-2

4

A
D

23
-1

6

A
D

15
-0

8

A
D

07
-0

0

PowerPC Bus

32-bit PCI

D0 D1 D2 D3 D4 D5 D6 D7

D7 D6 D5 D4 D3 D2 D1 D0

D0 D1 D2 D3 D4 D5 D6 D7

D7 D6 D5 D4

D3 D2 D1 D0

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 2-47

2The Register Groups are generally represented in the Endian mode
associated with the bus that may access the registers. The XCSR and
XMPI PowerPC Register Groups are represented as a Big-Endian
resource. The PCFS and PMEP PCI Register Groups are represented as a
Little-Endian resource.

The XCFS Register Group, and specifically the CONFIG_ADDRESS and
CONFIG_DATA registers are actually represented as PCI space to the
processor and are subject to data swapping.

The PIAC register within the XCSR Register Group also represents PCI
space to the processor and is subject to data swapping.

2-48 Computer Group Literature Center Web Site

Functional Descriptions

2 DMA Controller
The Harrier has a single channel DMA Controller that facilitates the
transfer of large blocks of data without processor intervention. The DMA
Controller is programmed by a simple set of registers that reside within the
PowerPC accessible XCSR Register Group. If so desired, an Inbound
Translation Function may be set up to allow access to the control registers
from PCI space. Particular emphasis has been placed on the ability of the
DMA Controller to provide a very high data throughput rate and a very
simple programming interface.

Please refer to the section titled PowerPC Control and Status (XCSR)
Register Group on page 3-3 for a summary of the DMA Controller register
set.

A block diagram of the DMA Controller is shown in the following figure.

DMA Controller

http://www.motorola.com/computer/literature 2-49

2

Figure 2-12. DMA Controller Block DIagram

Architecture

The DMA Controller is a stand-alone function that does not infringe on
other Harrier resources. The core of the DMA Controller is the DMA
FIFO. This FIFO is a 64-bit by 64 entry (512 byte) FIFO. The FIFO is used
for all transfers regardless of the direction of the transfer. All interactions
with the PowerPC bus are handled by the DMA PPC Master. This module
is optimized to transfer data over the PowerPC bus in multiple cache-line
bursts. All interactions with the PCI bus are handled by the DMA PCI
Master. This module strives to transfer data in continuous 64-bit burst

Reg

PPC Input

Reg

PCI Input

Mux
Reg

PPC Output

Mux Reg

PCI Output

DMA Controller

PowerPC Bus

PCI Bus

Clock Phasing

Mux FIFO

DMA FIFO

DMA
PCI

Master

DMA
PPC

Master

PPC/PCI
Clock

DMA
Scheduler

Other Outputs

DMA Registers

Pattern
Generator

Byte
Steering

2-50 Computer Group Literature Center Web Site

Functional Descriptions

2 transfers, although 32-bit burst transfers are supported if used within a 32-
bit PCI environment. The DMA Scheduler is a module that oversees the
entire DMA operation.

The cache-coherency rules for the inbound and outbound FIFOs apply to
the DMA FIFO. The Harrier does not snoop the PowerPC bus for data held
within the DMA FIFO, therefore caution should be exercised when using
the DMA Controller to move data within coherent memory space.

The DMA Controller does not need to participate in any contention
handling protocol. There will never be a time when the completion of a
transaction on either the PCI bus or the PowerPC bus is depending on an
action from the opposing bus. The DMA Controller works in a read-ahead
and write-posted manner, and there will be no compelled options available
for DMA transfers.

Normal Endian rules apply for all DMA data movement. Please refer to the
section titled Endian Conversion on page 2-45 earlier in this chapter for
more information.

Operating Modes

The following figure demonstrates the operating modes of the DMA
Controller.

DMA Controller

http://www.motorola.com/computer/literature 2-51

2

Figure 2-13. DMA Controller Operating Modes

The DMA Controller considers all DMA activity to consist of transfers and
transactions. A transfer is a coordinated movement of data from one place
to another. The amount of data moved during a transfer is only limited by
32-bit PCI and PowerPC addressing, and the direction of data movement
during a transfer remains fixed. A transaction always consists of one or
more transfers. Each transfer within a transaction is completely
independent of any other. The amount of data moved and the direction of
data movement may change between transfers within a transaction. There
are no limits on the number of transfers that may take place during a
transaction.

Data
Write

Data
Write

Pattern
Write

Transfer

Direct Mode, Same Start/End DomainDirect Mode, Different Start/End Domain

Direct Mode, Pattern Write

Processor

Data
Read

Data
Write

Transfer

Program
DGO
(Start)

Processor

Done

Transfer

Program
DGO
(Start)

Processor

Done

Transfer

Processor

Done
Pattern
Write

Desc
Fetch

Desc
Fetch Done

Transfer Transfer

Linked-List Mode, Various Transfers

Transaction

Program
Registers

Program
Registers

Data
Read

Data
Write

Program
Registers

Program
DGO
(Start)

Build
Desc
Table

Program
DGO
(Start)

Desc
Fetch

Data
Read

Data
Read

2-52 Computer Group Literature Center Web Site

Functional Descriptions

2 There are two operating modes for the DMA Controller; Direct Mode and
Linked-List Mode. Direct Mode performs one transfer according to a
programmed set of values within the DMA control registers. Once the
transfer has completed, an indication will be given to the DMA control
registers and an optional interrupt will be given to the processor.

Linked-List Mode performs numerous transfers within a transaction.
Information about each transfer is obtained from descriptors placed
somewhere in PowerPC bus address space. The Harrier fetches these
descriptors as needed during the transaction. Once all the descriptors are
fetched and the associated transfers are complete, an indication of the
completed transaction is given to the DMA control registers and an
optional interrupt is given to the processor.

Direction of Data Movement

There are six possible directions for data movement within a transfer. Each
is explained below:

1. PowerPC to PCI: Data is read from the PowerPC bus and written to
the PCI bus. The DMA PPC Master will attempt to fill the DMA
FIFO at the same time that the DMA PCI Master will attempt to
empty the DMA FIFO.

2. PCI to PowerPC: Data is read from the PCI bus and written to the
PowerPC bus. The DMA PCI Master will attempt to fill the DMA
FIFO at the same time that the DMA PPC Master will attempt to
empty the DMA FIFO.

3. PowerPC to PowerPC: Data is read from the PowerPC bus and
written back sometime later to the PowerPC bus. The DMA PPC
Master will fill the DMA FIFO to a certain point, after which the
DMA PPC Master will empty the DMA FIFO.

4. PCI to PCI: Data is read from the PCI bus and written back
sometime later to the PCI bus. The DMA PCI Master will fill the
DMA FIFO to a certain point, after which the DMA PCI Master will
empty the DMA FIFO.

DMA Controller

http://www.motorola.com/computer/literature 2-53

25. Data Pattern to PowerPC: A data pattern is written into the DMA
FIFO and then written to the PowerPC bus. The Pattern Generator
will attempt to fill the DMA FIFO at the same time that the DMA
PPC Master will attempt to empty the DMA FIFO The data pattern
may either be a fixed pattern or an incrementing pattern.

6. Data Pattern to PCI: A data pattern is written into the DMA FIFO
and then written to the PCI bus. The Pattern Generator will attempt
to fill the DMA FIFO at the same time that the DMA PCI Master
will attempt to empty the DMA FIFO. The data pattern may either
be a fixed pattern or an incrementing pattern.

Accesses to the PowerPC bus share some of the same attribute options that
are offered by the Inbound Translation Functions. For example, the CRI
(Cache-line Read Invalidate) option may be used for PowerPC bus reads,
and the CWF (Cache-line Write Flush) option may be used for PowerPC
bus writes.

Accesses to the PCI bus are under complete user control. The user can
specify the actual PCI command to be used during both read and write
cycles. This means that a DMA transfer can take place in either Memory,
IO, or Configuration space. The DMA PCI Master has been optimized for
accesses to PCI Memory space. Transfers to either IO or Configuration
space may result in a protocol violation (i.e. bursting into IO space is
discouraged, and in some cases IO addressing during single beat transfers
may be incorrect) It is the user’s responsibility to select the appropriate
command type for each transfer.

When accessing the PCI bus, it is possible to fix the source and/or
destination address. This option exists to support fixed address FIFO type
devices. The fixed address option has some limitations on transfer
addresses and sizes.

Addressing and Transfer Sizes

There are no restrictions on either addressing or transfer sizes. There are
no dependencies between the source address and the destination address.
The source address can be at any byte, and the destination address can be
at any other byte. The transfer size can be as small as 1 byte and as large
as 4GBytes.

2-54 Computer Group Literature Center Web Site

Functional Descriptions

2 Data Patterns

The DMA Controller has the option of writing data patterns to either
PowerPC or PCI space. Any size transfer may be used, and there are no
restrictions on the starting address. A starting data pattern is supplied by
software. The DMA Controller can be programmed to work in terms of 8-
bit patterns or 32-bit patterns. Software may also specify whether the
pattern should be static or incrementing. The figure below shows some
examples of pattern writes.

DMA Controller

http://www.motorola.com/computer/literature 2-55

2

Figure 2-14. Examples of Pattern Writes

xx xx xx 20

.. 02

00 00 00 1B

20 20 20 20xx xx 20 20

20 20 20 2020 20 20 20

20 20 20 2020 20 20 20

20 xx xx xx20 20 20 20

...00

...08

...10

...18

0 63

21 20 xx xx25 24 23 22

29 28 27 262D 2C 2B 2A

31 30 2F 2E35 34 33 32

39 38 37 36xx xx xx 3A

...00

...08

...10

...18

63 0

DMA Control Registers

Static Pattern to PowerPC Space...

Incrementing Pattern to PCI Space...

Start Pattern = $20

Destination Address = $...02

Transfer Count = 27

DSAD

DDAD

DCTL

Writing 8-Bit Patterns

F1 11 11 20

.. 02

00 00 00 1B

DMA Control Registers

Start Pattern = $F1111120

Destination Address = $...02

Transfer Count = 27

DSAD

DDAD

DCTL

Writing 32-Bit Patterns

22 23 24 25xx xx 20 21

2A 2B 2C 2D26 27 28 29

32 33 34 352E 2F 30 31

3A xx xx xx36 37 38 39

...00

...08

...10

...18

0 63

20 20 xx xx20 20 20 20

20 20 20 2020 20 20 20

20 20 20 2020 20 20 20

20 20 20 20xx xx xx 20

...00

...08

...10

...18

63 0

Incrementing Pattern to PowerPC Space...

Static Pattern to PCI Space...

11 20 F1 11xx xx F1 11

11 20 F1 1111 20 F1 11

11 20 F1 1111 20 F1 11

11 xx xx xx11 20 F1 11

...00

...08

...10

...18

0 63

11 20 xx xx11 21 F1 11

11 22 F1 1111 23 F1 11

11 24 F1 1111 25 F1 11

11 26 F1 11xx xx xx 11

...00

...08

...10

...18

63 0

Static Pattern to PowerPC Space...

Incrementing Pattern to PCI Space...

11 20 F1 11xx xx F1 11

11 22 F1 1111 21 F1 11

11 24 F1 1111 23 F1 11

11 xx xx xx11 25 F1 11

...00

...08

...10

...18

0 63

11 20 xx xx11 20 F1 11

11 20 F1 1111 20 F1 11

11 20 F1 1111 20 F1 11

11 20 F1 11xx xx xx 11

...00

...08

...10

...18

63 0

Incrementing Pattern to PowerPC Space...

Static Pattern to PCI Space...

2-56 Computer Group Literature Center Web Site

Functional Descriptions

2 There are two issues associated with writing 32-bit patterns. When writing
to PCI space, the pattern will not be subjected to Endian byte swapping. In
addition, a transfer count that is not an even multiple of four will result in
the rounding off of the last data pattern written to either PowerPC space or
PCI space. The rounding off will occur on the pattern according to the
address space being written to. A pattern written to PCI space will be
rounded off starting from the left (or MSB) side of the pattern. A pattern
written to PowerPC space will be rounded off starting from the right (or
LSB) side of the pattern.

Linked-List Descriptors

The DMA PPC Master is responsible for fetching descriptors from
PowerPC address space when using the Linked-List Mode. Each
descriptor consumes 32 bytes and must be cache-line aligned. This cache-
line structure helps minimize PowerPC bus bandwidth used when fetching
descriptors.

The table below shows the format of a descriptor.

Each field in the descriptor corresponds to a DMA control register. When
a descriptor is loaded by the DMA Controller, each field is placed into it’s
corresponding DMA control register. A complete description of each
control register may be found in the section titled Bridge PowerPC
Control and Status Register on page 3-41.

Table 2-8. DMA Controller Linked-List Descriptors

Offset Bits

0 31 32 63

$00 DSAD DSAT

$08 DDAD DDAT

$10 DNLA DCNT

$18

DMA Controller

http://www.motorola.com/computer/literature 2-57

2The descriptors are linked together by the DNLA register (i.e. the DNLA
field within a descriptor). This field contains the address within PowerPC
address space where the next descriptor may be found. The LLA field
(Last Link-descriptor Address) within the DNLA indicates that this is the
last descriptor.

Descriptors will not be prefetched by the DMA PPC Master. A Linked-List
Mode transaction will be started by the DMA PPC Master reading one
descriptor. The DMA Controller will then perform the transfer associated
with that descriptor. If there are more descriptors to be executed, then the
fetching of the next descriptor will not occur until the current transfer has
completed.

Transfer Termination

There are four ways that DMA activity may be terminated:

1. Transfer or Transaction Completion: In most cases a Direct Mode
transfer or a Linked-List Mode transaction will simply finish
without intervention or error. When in Direct Mode, the end of the
transfer is considered completion. When in Linked-List Mode, the
end of the last transfer of a transaction is considered completion.
Upon completion, the DMA Controller will return a “done” status
to the DSTA register and optionally interrupt the processor.

2. Commanded Stop: This is an option available during Linked-List
Mode transactions. Software may set the DCTL.PAU bit at any time
during a transaction. When the DMA Controller reaches a transfer
boundary (i.e. ready to fetch the next descriptor), it will stop all
DMA activity. If there are more Linked-List transfers to be
performed, then the DMA Controller will return a “paused” status
to the DSTA register and optionally interrupt the processor. If the
last transfer of a transaction has completed, then the DMA
Controller will return a “done” status to the DSTA register.

Once stopped, a transaction may started again at any time. The
DMA Controller will simply pick up where it left off. The first
descriptor fetch will occur from the address that was placed within
the DNLA register during the previously completed transfer.

2-58 Computer Group Literature Center Web Site

Functional Descriptions

2 3. Commanded Abort: This option exists for either Direct Mode or
Linked-List Mode. Software may set the DCTL.ABT bit at any
time. When set, the DMA Controller will abort all DMA activity.
This is considered a non-recoverable termination, and it will take
affect almost immediately after the bit has been set. If the
commanded abort took affect before the completion of a DMA
transaction, then the DMA Controller will return an “abort” status
to the DSTA register and will optionally interrupt the processor. If
the transaction completed before the commanded abort took affect,
then the DMA Controller will return a “done” status to the DSTA
register.

4. Detected Error Abort: The DMA Controller is sensitive to the
following system errors:

– DMA PCI Master received a master abort

– DMA PCI Master received a target abort

– DMA PCI Master exceeds maximum retry count

– DMA PPC Master obtained an address bus time-out

If any of these conditions are encountered, the DMA controller will abort
all DMA activity. This is considered a non-recoverable termination, and it
will take affect almost immediately after the condition has been detected.
Once all DMA activity has ceased, the DMA Controller will return the
appropriate error status to the DSTA register and will optionally interrupt
the processor.

The DSTA register only indicates that an error has been detected and the
DMA transaction was aborted. Further details associated with the error
may be found within the Error Diagnostics function. Refer to the section
titled Error Diagnostics on page 2-127 for more details.

Interrupts

There is only one interrupt generated by the DMA Controller. Status on
this interrupt may be obtained from within the Functional Exception Status
(FEST) register, and masking is supported within the Functional
Exception Mask (FEMA) register. The DMA interrupt may be cleared

DMA Controller

http://www.motorola.com/computer/literature 2-59

2from within the Functional Exception Clear (FECL) register. An interrupt
will be generated anytime the DMA Controller changes from a busy state
to a done, paused, or aborted state.

Transfer Throttling

It is possible that the PCI or PowerPC bandwidth consumed by the DMA
Controller could swamp the system with DMA activity. This is particularly
a problem if PCI or PowerPC arbitration is in favor of the Harrier.

The PCI bus has a built-in system check on excessive bandwidth
consumption. The Master Latency Timer will be a driving factor for how
much PCI bandwidth a DMA transfer may take. In addition, the PCI Back-
off Timer may be used to further control bandwidth consumption. The PCI
Back-off Timer determines how long the DMA PCI Master will wait
between starting burst transfers when a transfer is interrupted by the PCI
Master Latency Timer. This timer is controlled by the PBT field within the
DCTL register. Note that if the Master Latency Timer does not expire, then
the DMA PCI Master will attempt to complete a DMA transfer as one
continuous PCI burst in accordance with the abilities of the DMA FIFO.

Bandwidth consumption on the PowerPC bus is controlled by the transfer
characteristics of the DMA PPC Master. The DMA PPC Master will
attempt to transfer data in user programmable block sizes of 256 bytes, 512
bytes, 1024 bytes, or continuous. The DMA PPC Master relies on the
Harrier latching request arbitration protocol. A transfer will proceed with
the PowerPC bus request asserted until the programmable transfer limit is
reached. Once this limit is reached, the DMA PPC Master will remove its
request and wait for two clock periods after the completion of the last
address tenure. This short back-off time will allow other pending PowerPC
masters a chance at obtaining the bus. After the two clock period expires,
the DMA PPC Master will reassert its request if there is more data to be
transferred.

2-60 Computer Group Literature Center Web Site

Functional Descriptions

2 Message Passing
The Harrier incorporates hardware dedicated to supporting message
passing. There are two levels of support offered; I2O Message Passing and
Generic Message Passing.

I2O Message Passing

The Intelligent I/O (I2O) Architecture Specification Version 1.5 describes
a comprehensive hardware and software solution to managing the
development of platform independent device drivers. The specification
advocates the use of distributed embedded I/O processing and uses a
system of message passing to move information between processes.

An I2O system consists of a Host and at least one I/O Platform (IOP).
Predefined messages may be passed from the Host to an IOP, from an IOP
to the Host, and from an IOP to an IOP. These messages, called Message
Frames, are a minimum of 64 bytes long and reside within shared memory
structures. A Message Frame is identified by a Message Frame Address
(MFA). The MFA points to the beginning address of a Message Frame
within shared memory.

The MFA exists in one of two states. A Free MFA is a pointer to an
allocated Message Frame that is “empty”. A Post MFA is a pointer to an
allocated Message Frame that is “full”.

An IOP will allocate a set of free Inbound Message Frames and
corresponding MFAs within it’s shared local memory. These are used to
receive messages from the Host or other IOPs. The IOP will also allocate
a set of free Outbound Message Frames and corresponding MFAs within
it’ s shared local memory. These are used to send messages to the Host or
other IOPs.

A message is passed from one agent to another by sending the recipient a
post MFA. The sequence for sending a post MFA is as follows:

❏ The sending agent retrieves a free MFA from the receiving agent.
This MFA points to an “empty” Message Frame in the receiving
agents local memory.

Message Passing

http://www.motorola.com/computer/literature 2-61

2❏ The sending agent writes the Message Frame into the receiving
agents local memory pointed to by the MFA.

❏ The MFA now represents a Message Frame that is “full”. The
sending agent sends the post MFA back to the receiving agent. This
will generate an interrupt to the receiving agent.

❏ The receiving agent recognizes the post MFA and processes the new
Message Frame. Once complete, the receiving agent allocates the
MFA as free.

IOP Message Unit

The Harrier can participate in the I2O protocol as either a Host or an IOP.
Participation as a Host requires no additional hardware. Participation as an
IOP requires an IOP Message Unit (IMU). The Harrier provides an IMU
that is fully compatible with the I2O specification. The Harrier shows the
key elements of the IMU from the system perspective.

The FIFOs for the inbound and outbound queues and the Message Frames
physically reside within local memory. The Harrier implements all of the
pointer registers, the inbound and outbound queue ports, and the interrupt
structure in hardware.

The inbound queue is accessed from PCI through the Message Passing I2O
Inbound Queue (MIIQ) register. The outbound queue is accessed from PCI
through the Message Passing I2O Outbound Queue (MIOQ) register. The
MIIQ and MIOQ registers reside within a relocatable 4K byte block of PCI
Memory space called the PMEP (PCI Message Passing) Register Group.
This block is located into PCI memory space using the MPBAR register
within the PCFS (PCI Configuration Space) Register Group. All of these
components are fully compliant with the I2O specification. Please refer to
the section titled PowerPC to PCI Bridge on page 3-38 for more
information.

2-62
C

om
puter G

roup L
iterature C

enter W
eb S

ite

Functional D
escriptions

2

F
ig

u
re 2-15. IO

P
 M

essag
e U

n
it

MIOPH
MIOPT

Outbound Queue
Post_list Pointers

MIOFH
MIOFT

Outbound Queue
Free_list Pointers

MIIPH
MIIPT

Inbound Queue
Post_list Pointers

MIIFH
MIIFT

Inbound Queue
Free_list Pointers

MIOQ

Outbound Queue
Port

MIIQ

Inbound Queue
Port MFA

MFA

Head

Tail

Post_list FIFO

MFA
MFA

Head

Tail

Free_list FIFO

Outbound Queue

MFA
MFA

Head

Tail

Post_list FIFO

MFA
MFA

Head

Tail

Free_list FIFO

Inbound Queue

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Local MemoryHarrier

IOPHost

(+) MIOQ Read Tail

(+) MIOQ Write

(+) MIIQ Write

(+) MIIQ Read

Head

Delta = PCI Interrupt

Delta = CPU Interrupt

PCI Bus
Bridge

Tail
Head

Tail
Head

Tail
Head

Read
Write

Read
Write

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message Passing

http://www.motorola.com/computer/literature 2-63

2All of the pointer registers are located within the XCSR Register Group.
These registers represent the head and tail pointers into PowerPC address
space for the inbound and outbound Free_list and Post_list FIFOs. Some
of these registers are automatically updated by certain actions taken to the
inbound and outbound ports. For example, a write by a PCI master to the
MIIQ register will automatically increment the Inbound Post_list Head
(MIIPH) register. The automatic actions taken for each pointer register are
designated by a (+) symbol in the previous figure. Those registers that do
not have the (+) symbol next to it must be manually maintained by the
processor.

IMU Queue Structure

In order for hardware to correctly maintain the pointers, the FIFO sizes and
locations must be known. The Message Passing I2O Queue Base Address
(MIQB) register within the XCSR Register Group is used to specify the
base address within PowerPC address space of the entire inbound and
outbound queue structure. This is a 1MB structure locatable only on 1MB
boundaries. Within this structure is four FIFOs. The base address of each
FIFO is on one of four 256 KByte boundaries as shown in the following
figure.

2-64 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-16. IMU Queue Structure

Each FIFO is the same size. The size of the FIFOs is programmable
through the QSZ field within the Message Passing I2O Control (MICT)
register.

IMU Enable

The I2O specification states that an IMU must be optionally enabled or
disabled. By default, the IMU comes up out of reset in the disabled state.
The processor must first setup all the queue sizes and interrupt logic. Then
the processor must allocate some Message Frames and MFAs. The

Inbound
Free_list

FIFO
Allocation

Queue Base Address (QBA)

Queue Size (QSZ)

Inbound
Post_list

FIFO
Allocation

QBA + 256 KBytes

QSZ

Outbound
Free_list

FIFO
Allocation

QBA + 512 KBytes

QSZ

Outbound
Post_list

FIFO
Allocation

QBA + 768 KBytes

QSZ

FIFO

FIFO

FIFO

FIFO

Message Passing

http://www.motorola.com/computer/literature 2-65

2Inbound Free_list FIFO must be filled with these MFAs. Once the
processor is ready, the IMU is enabled. This is done by setting the ENA bit
within the MICT register.

While the IMU is disabled, the I2O specification states that any accesses to
the Queue ports (MIIQ and MIOQ) must not affect the IMU. Writes to
these ports will be discarded. Reads from these ports will return all
FFFF_FFFF. The head and tail pointers will not be affected.

IMU Interrupts

I2O is an interrupt driven protocol. As a Host, the Harrier must be able to
recognize and respond to PCI interrupts. This is typically handled by
routing the PCI interrupts through the MPIC. As an IOP, the Harrier must
be able to generate a PCI interrupt. A PCI interrupt will be generated
whenever there is a difference between the Outbound Post_list Queue head
and tail pointers. This is an indication to the Host that there is a “full” MFA
that needs servicing within the IOP’s outbound queue. The interrupt will
remain asserted until the Host reads all of the outbound MFA entries.

A Host may obtain interrupt status by reading the Message Passing I2O
Interrupt Status (MIST) register. The Host may also control the masking
of this interrupt through the Message Passing I2O Mask (MIMS) register.
Both of these registers reside within the PMEP Register Group.

The IMU can also generate a processor interrupt. This interrupt is routed
to the MPIC and is asserted whenever there is a difference between the
head and tail pointers for the Inbound Post_list Queue. This interrupt is an
indication that the Host has placed a “full” MFA within the IOP’s inbound
queue. The interrupt will remain asserted until the processor adjusts the
head and tail pointers to match. The processor may obtain interrupt status
by reading the Functional Exception Status (FEST) register within the
XCSR Register Group. The processor can mask this interrupt through the
Functional Exception Mask (FEMA) register.

IOP Agent Identification

The I2O specification has identified a special PCI class code for I2O IOP
Agents. The class code is represented with the read-only CLAS register
within the PCFS Register Group. The Harrier must present different class

2-66 Computer Group Literature Center Web Site

Functional Descriptions

2 codes depending on the level of I2O participation. The Harrier must
present itself as a “Bridge Device” if not participating in I2O, or if it is
participating as a I2O Host. If acting as an IOP, then the Harrier must
present itself as a “I2O Controller”. Please refer to the section titled
Revision ID/Class Code Registers on page 3-58 for more information on
class codes.

The selection of a class code depends on the absence or existence of an
external resistor during the release of reset. Please refer to the section titled
Hardware Configuration on page 2-133 in this section for more
information.

Generic Message Passing

The Harrier provides hardware that supports a more generic form of
message passing. This hardware is not related to the I2O Message Passing
hardware. The support offered is in the form of Doorbell registers and
Message Passing registers.

Doorbell Registers

The Harrier has two Doorbell registers. One register is for inbound traffic
and one is for outbound traffic. A Doorbell register consists of an array of
bits that may be individually set by a sending agent. The receiving agent
receives an interrupt anytime a single doorbell bit is set. The receiving
agent may scan the Doorbell register to determine which “doorbell” was
set, and will write a one to the corresponding doorbell bit to clear the
associated interrupt.

Inbound traffic uses the Message Passing Generic Inbound Doorbell
(MGID) register. This register is used when a PCI master wishes to assert
a doorbell interrupt to the processor. There are a total of twenty-eight
interrupt doorbells. A PCI master may access this register from within the
PMEP Register Group, and the processor may access this register from
within the XCSR Register Group.

The processor may obtain status pertaining to an interrupt by reading the
FEST register, and may mask the interrupt within the FEMA register.

Message Passing

http://www.motorola.com/computer/literature 2-67

2Outbound traffic will use the Message Passing Generic Outbound
Doorbell (MGOD) register. This register is used when the processor
wishes to assert a doorbell interrupt to a PCI master. There are a total of
twenty-eight interrupt doorbells. The processor may access this register
from within the XCSR Register Group, and a PCI master may access this
register from within the PMEP Register Group.

A PCI master may obtain status pertaining to an interrupt by reading the
MGOD register. The masking of the interrupt is through the Message
Passing Generic Interrupt Mask (MGMS) register

Message Passing Registers

The Harrier has four Message Passing registers. Two of the registers are
used for inbound traffic and two are used for outbound traffic. A Message
Passing register is a 32-bit location that may be written with a unique 32-
bit message by a sending agent. The receiving agent will receive an
interrupt whenever a new message has been written, and will read the
Message Passing register to obtain the message.

Inbound traffic will use the Message Passing Generic Inbound Message
(MGIM0 and MGIM1) registers. These registers are used when a PCI
master wishes to send a message to the processor. A PCI master may
access this register from within the PMEP Register Group, and the
processor may access this register from within the XCSR Register Group.

The processor may obtain status pertaining to either interrupt by reading
the FEST register, and may individually mask each interrupt from within
the FEMA register.

Outbound traffic will use the Message Passing Generic Outbound Message
(MGOM0 and MGOM1) registers. These registers are used when the
processor wishes to send a message to a PCI master. The processor may
access this register from within the XCSR Register Group, and a PCI
master may access this register from within the PMEP Register Group.

A PCI master may obtain status pertaining to an interrupt by reading the
Message Passing Generic Interrupt Status (MGST) register. The interrupts
may be individually masked within the Message Passing Generic Interrupt
Mask (MGMS) register.

2-68 Computer Group Literature Center Web Site

Functional Descriptions

2 Multiprocessor Interrupt Controller (MPIC)
The MPIC is a multi-processor structured intelligent interrupt controller.
Its functions are explained in the following subsections.

MPIC Features

❏ MPIC programming model

❏ Supports two processors

❏ Supports 16 external interrupts

❏ Supports 15 programmable Interrupt & Processor Task priority
levels

❏ Supports the connection of an external 8259 for ISA/AT
compatibility

❏ Distributed interrupt delivery for external I/O interrupts

❏ Direct/Multicast interrupt delivery for Interprocessor and timer
interrupts

❏ Four Interprocessor Interrupt sources

❏ Four timers

❏ Processor initialization control

Architecture

The Harrier implements an address decoder for placing the MPIC registers
in PowerPC address space. Access to these registers require PowerPC bus
mastership. These accesses include interrupt and timer initialization and
interrupt vector reads. The MPIC is run from PowerPC clock.

The MPIC receives interrupt inputs from 16 external sources, four
interprocessor sources, four timer sources, and two Harrier internal source
interrupts (the Harrier internal functional exception and the Harrier
internal error exception). The externally sourced interrupts 1 through 15

Multiprocessor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-69

2have two modes of activation; low level or active high positive edge.
External interrupt 0 can be either level or edge activated with either
polarity. The Harrier internal interrupt requests are active low level
sensitive interrupts. The Interprocessor and timer interrupts are event
activated.

When the MPIC is in the 8259 pass-through mode and if the
XCSR.MCSR.OPI bit is set, interrupts from external source number 0 are
inverted and passed directly to processor 0 interrupt pin (IRQ0_).

When the MPIC is out of 8259 pass-through mode and if the
XCSR.MCSR.OPI bit is set, the Harrier internal interrupts are passed on
to the MPIC. If the MCSR.OPI bit is cleared the Harrier internal interrupts
are passed directly to the processor 0 interrupt pin (IRQ0_).

CSR’s Readability

Unless explicitly specified, all registers are readable and return the last
value written. The exceptions are the IPI dispatch registers and the EOI
registers which return zeros on reads, the interrupt source ACT bit which
returns current interrupt source status, the interrupt acknowledge register
which returns the vector of the highest priority interrupt which is currently
pending, and reserved bits which returns zeros. The interrupt acknowledge
register is also the only register which exhibits any read side-effects.

Interrupt Source Priority

Each interrupt source is assigned a priority value in the range from 0 to 15
where 15 is the highest. In order for delivery of an interrupt to take place
the priority of the source must be greater than that of the destination
processor. Therefore setting a source priority to zero inhibits that interrupt.

Processor’s Current Task Priority

Each processor has a current task priority register which is set by system
software to indicate the relative importance of the task running on that
processor. The processor will not receive interrupts with a priority level

2-70 Computer Group Literature Center Web Site

Functional Descriptions

2 equal to or lower than its current task priority. Therefore setting the current
task priority to 15 prohibits the delivery of all interrupts to the associated
processor.

Nesting of Interrupt Events

A processor is guaranteed never to have an in service interrupt preempted
by an equal or lower priority source. An interrupt is considered to be in
service from the time its vector is returned during an interrupt
acknowledge cycle until an End of Interrupt (EOI) is received for that
interrupt. The EOI cycle indicates the end of processing for the highest
priority in service interrupt.

Spurious Vector Generation

Under certain circumstances the MPIC will not have a valid vector to
return to the processor during an interrupt acknowledge cycle. In these
cases the spurious vector from the spurious vector register is returned. The
following cases cause a spurious vector fetch.

❏ IRQ_ is asserted in response to an externally sourced interrupt
which is activated with level sensitive logic and the asserted level is
negated before the interrupt is acknowledged.

❏ IRQ_ is asserted for an interrupt source which is masked using the
mask bit in the Vector-Priority register before the interrupt is
acknowledged.

Interprocessor Interrupts (IPI)

Processor 0 and 1 can generate interrupts which are targeted for the other
processor or both processors. There are four Interprocessor Interrupts (IPI)
channels. The interrupts are initiated by writing a bit in the IPI dispatch
registers. If subsequent IPI’s are initiated before the first is acknowledged,
only one IPI will be generated. The IPI channels deliver interrupts in the
Direct Mode and can be directed to more than one processor.

Multiprocessor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-71

28259 Compatibility

The MPIC provides a mechanism to support PC-AT compatible chip sets
using the 8259 interrupt controller architecture. After power on reset, the
MPIC defaults to 8259 pass-through mode. In this mode, if the MCSR.OPI
bit is set, interrupts from external source number 0 (the interrupt signal
from the 8259 is connected to this external interrupt source on the MPIC)
are inverted and passed directly to processor 0 (IRQ0_). If the pass-
through mode is disabled and the MCSR.OPI bit is set, the 8259 interrupts
are delivered using the priority and distribution mechanisms of the MPIC.

MPIC does not interact with the vector fetch from the 8259 interrupt
controller.

Harrier Internal Functional Interrupt

Functional exceptions generated by the Harrier internal modules (DMA,
message unit, abort switch and UARTs) are grouped together and sent to
the MPIC interrupt logic as a singular interrupt source (the Harrier Internal
Functional Interrupt). Please see the section titled Exceptions on page
2-122 for more information about the Harrier’s functional exceptions. This
Harrier internal functional interrupt request is an active low level sensitive
interrupt. The interrupt delivery mode for this interrupt is distributed.

Harrier Internal Error Interrupt

The Harrier detected error exceptions are grouped together and sent to the
MPIC interrupt logic as a singular interrupt source (Harrier Internal Error
Interrupt). This Harrier internal error interrupt request is an active low
level sensitive interrupt. The interrupt delivery mode for this interrupt is
distributed.

When the MCSR.OPI bit is cleared the Harrier internal functional interrupt
and the Harrier internal error interrupt are combined and directly passed on
to IRQ0_ pin.

For system implementations where the MPIC controller is not used, the
combined Harrier Internal Interrupt is made available by a signal that is
external to Harrier. Presumably this signal would be connected to an

2-72 Computer Group Literature Center Web Site

Functional Descriptions

2 externally sourced interrupt input of an MPIC controller in a different
device. Since the MPIC specification defines external I/O interrupts to
operate in the distributed mode, the delivery mode of this interrupt should
be consistent.

Timers

A divide-by-eight pre-scaler is synchronized to the PowerPC bus clock.
The output of the prescaler enables the decrement of the four timers. The
timers may be used for system timing or to generate periodic interrupts.
Each timer has four registers which are used for configuration and control.
They are:

❏ Current Count Register

❏ Base Count Register

❏ Vector-Priority Register

❏ Destination Register

Interrupt Delivery Modes

The direct and distributed interrupt delivery modes are supported. Note
that the direct deliver mode has sub modes of multicast or non-multicast.
The Inter Processor interrupts and Timer interrupts operate in the direct
delivery mode. The externally sourced or I/O interrupts operate in the
distributed mode.

In the direct delivery mode, the interrupt is directed to one or both
processors. If it is directed to two processors (i.e. multicast), it will be
delivered to two processors. The interrupt is delivered to the processor
when the priority of the interrupt is greater than the priority contained in
the task register for that processor, and when the priority of the interrupt is
greater than any interrupt which is in-service for that processor. An
interrupt is considered to be in service from the time its vector is returned
during an interrupt acknowledge cycle until an EOI is received for that
interrupt. The EOI cycle indicates the end of processing for the highest
priority in service interrupt.

Multiprocessor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-73

2In the distributed delivery mode, the interrupt is pointed to one or more
processors but it will be delivered to only one processor. Therefore, for
externally sourced or I/O interrupts, multicast delivery is not supported.
The interrupt is delivered to a processor when the priority of the interrupt
is greater than the priority contained in the task register for that processor,
and when the priority of the interrupt is greater than any interrupt which is
in-service for that processor, and when the priority of that interrupt is the
highest of all interrupts pending for that processor, and when that interrupt
is not in-service for the other processor. If both destination bits are set for
each processor, the interrupt will be delivered to the processor that has a
lower task register priority. Note, due to a deadlock condition that can
occur when the task register priorities for each processor are the same and
both processors are targeted for interrupt delivery, the interrupt will be
delivered to processor 0 or processor 1 as determined by the TIE mode.
Additionally, If priorities are set the same for competing interrupts,
external int. 0 is given the highest priority in hardware followed by
external int.1 through 15 and then followed by timer 0 through timer 3 and
followed by IPI 0 and 1. For example, if both ext0 and ext1 interrupts are
pending with the same assigned priority; during the following interrupt
acknowledge cycles, the first vector returned shall be that of ext0 and then
ext1. This is an arbitrary choice.

Block Diagram Description

The description of the block diagram shown in Figure 2-17 on page 2-74
focuses on the theory of operation for the interrupt delivery logic. If the
preceding section is a satisfactory description of the interrupt delivery
modes and the reader is not interested the logic implementation, this
section can be skipped.

2-74 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-17. MPIC Block Diagram

Program
Visible IPR

Int.
signals

IRR_0

ISR_0

Interrupt
Selector_0

IRR_1

ISR_1

Interrupt
Selector_1

Interrupt
Router

INT 0INT 1

Multiprocessor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-75

2Program Visible Registers

These are the registers that software can access. They are described in
detail in the MPIC Register section.

Interrupt Pending Register (IPR)

The interrupt signals to MPIC are qualified and synchronized to the clock
by the IPR. If the interrupt source is internal to the Harrier or external with
their Sense bit = 0 (edge sensitive), a bit is set in the IPR. That bit is cleared
when the interrupt associated with that bit is acknowledged. If the interrupt
source is external and level activated, the output from the IPR is not
negated until the level into the IPR is negated.

Externally sourced interrupts are qualified based upon their Sense and/or
Poll bits in the Vector-Priority register. IPI and Timer Interrupts are
generated internally to the Harrier and are qualified by their Destination
bit. Since the internally generated interrupts use direct delivery mode with
multicast capability, there are two bits in the IPR, one for each processor,
associated with each IPI and Timer interrupt source.

The MASK bits from the Vector-Priority registers is used to qualify the
output of the IPR. Therefore, if an interrupt condition is detected when the
MASK bit is set, that interrupt will be requested when the MASK bit is
lowered.

Interrupt Selector (IS)

There is a Interrupt Selector (IS) for each processor. The IS receives
interrupt requests from the IPR. If the interrupt requests are from an
external source, they are qualified by the destination bit for that interrupt
and processor. If they are from an internal source, they have been qualified.
The output of the IS will be the highest priority interrupt that has been
qualified. This output is the priority of the selected interrupt and its source
identification. The IS will resolve an interrupt request in two PowerPC
clock ticks.

The IS also receives a second set of inputs from the ISR. During the End
Of Interrupt cycle, these inputs are used to select which bits are to be
cleared in the ISR.

2-76 Computer Group Literature Center Web Site

Functional Descriptions

2 Interrupt Request Register (IRR)

There is a Interrupt Request Register (IRR) for each processor. The IRR
always passes the output of the IS except during Interrupt Acknowledge
cycles. This guarantees that the vector which is read from the Interrupt
Acknowledge Register is not changing due to the arrival of a higher
priority interrupt. The IRR also serves as a pipeline register for the two tick
propagation time through the IS.

In-Service Register (ISR)

There is a In-Service Register (ISR) for each processor. The contents of the
ISR is the priority and source of all interrupts which are in-service. The
ISR receives a bit-set command during Interrupt Acknowledge cycles and
a bit-clear command during End Of Interrupt cycles.

The ISR is implemented as a 41 bit register with individual bit set and clear
functions. Fifteen bits are used to store the priority level of each interrupt
which is in-service. Twenty-six bits are used to store the source
identification of each interrupt which is in service. Therefore there is one
bit for each possible interrupt priority and one bit for each possible
interrupt source.

Interrupt Router

The Interrupt Router monitors the outputs from the ISR’s, Current Task
Priority Registers, Destination Registers, and the IRR’s to determine when
to assert a processor’s IRQ_ pin.

When considering the following rule sets, it is important to remember that
there are two types of inputs to the Interrupt Selectors. If the interrupt is a
distributed class interrupt, there is a single bit in the IPR associated with
this interrupt and it is delivered to both Interrupt Selectors. This IPR bit is
qualified by the destination register contents for that interrupt before the
Interrupt Selector compares its priority to the priority of all other
requesting interrupts for that processor. If the interrupt is programmed to
be edge sensitive, the IPR bit is cleared when the vector for that interrupt
is returned when the Interrupt Acknowledge register is examined. On the
other hand, if the interrupt is a direct/multicast class interrupt, there are two
bits in the IPR associated with this interrupt. One bit for each processor.

Multiprocessor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-77

2Then one of these bits are delivered to each Interrupt Selector. Since this
interrupt source can be multicast, each of these IPR bits must be cleared
separately when the vector is returned for that interrupt to a particular
processor.

If one of the following sets of conditions are true, the interrupt pin for
processor 0 (IRQ0_) is driven active.

❏ Set1

– The source ID in IRR_0 is from an external source.

– The destination bit for processor 1 is a 0 for this interrupt.

– The priority from IRR_0 is greater than the highest priority in
ISR_0.

– The priority from IRR_0 is greater than the contents of task
register_0.

❏ Set2

– The source ID in IRR_0 is from an external source.

– The destination bit for processor 1 is a 1 for this interrupt.

– The source ID in IRR_0 is not present is ISR_1.

– The priority from IRR_0 is greater than the highest priority in
ISR_0.

– The priority from IRR_0 is greater than the Task Register_0
contents.

– The contents of Task Register_0 is less than the contents of Task
Register_1.

❏ Set3

– The source ID in IRR_0 is from an internal source.

– The priority from IRR_0 is greater than the highest priority in
ISR_0.

– The priority from IRR_0 is greater than the Task Register_0
contents.

2-78 Computer Group Literature Center Web Site

Functional Descriptions

2 There is a possibility for a priority tie between the two processors when
resolving external interrupts. In that case, the interrupt will be delivered to
processor 0 or processor 1 as determined by the TIE mode bit. This case is
not defined in the above rule set.

Programming Notes

The following subsections discuss Programming Notes that are specific to
the MPIC portion of the Harrier.

External Interrupt Service

The following summarizes how an external interrupt is serviced:

❏ An external interrupt occurs.

❏ The processor state is saved in the machine status save/restore
registers. A new value is loaded into the Machine State
Register(MSR). The External Interrupt Enable bit in the new MSR
(MSRee) is set to zero. Control is transferred to the O/S external
interrupt handler.

❏ The external interrupt handler calculates the address of the Interrupt
Acknowledge register for this processor (MPIC Base Address +
0x200A0 + (processor ID shifted left 12 bits)).

❏ The external interrupt handler issues an Interrupt Acknowledge
request to read the interrupt vector from the MPIC. If the interrupt
vector indicates the interrupt source is the 8259, the interrupt
handler issues a second Interrupt Acknowledge request to read the
interrupt vector from the 8259. The MPIC does not interact with the
vector fetch from the 8259.

❏ The interrupt handler saves the processor state and other interrupt-
specific information in system memory and re-enables for external
interrupts (the MSRee bit is set to 1). The MPIC blocks interrupts
from sources with equal or lower priority until an End-of-Interrupt
is received for that interrupt source. Interrupts from higher priority
interrupt sources continue to be enabled. If the interrupt source was
the 8259, the interrupt handler issues an EOI request to the MPIC.

Multiprocessor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-79

2This resets the In-Service bit for the 8259 with in the MPIC and
allows it to recognize higher priority interrupt requests, if any, from
the 8259. If none of the nested interrupt modes of the 8259 are
enabled, the interrupt handler issues an EOI request to the 8259.

– The device driver interrupt service routine associated with this
interrupt vector is invoked.

– If the interrupt source was not the 8259, the interrupt handler
issues an EOI request for this interrupt vector to the MPIC. If the
interrupt source was the 8259 and any of the nested interrupt
modes of the 8259 are enabled, the interrupt handler issues an
EOI request to the 8259.

Normally, interrupts from ISA devices are connected to the 8259 interrupt
controller. ISA devices typically rely on the 8259 Interrupt Acknowledge
to flush buffers between the ISA device and system memory. If interrupts
from ISA devices are directly connected to the MPIC (bypassing the
8259), the device driver interrupt service routine must read status from the
ISA device to ensure buffers between the device and system memory are
flushed.

Reset State

After power on reset the MPIC state is:

❏ Current task priority for all CPU’s set to 15.

❏ All interrupt source priorities set to zero.

❏ All interrupt source mask bits set to a one.

❏ All interrupt source activity bits cleared.

❏ Processor Init Register is cleared.

❏ All counters stopped and interrupts disabled.

❏ Controller mode set to 8259 pass-through.

2-80 Computer Group Literature Center Web Site

Functional Descriptions

2 Operation

The following subsections describe the operational characteristics of the
MPIC.

Interprocessor Interrupts

Four interprocessor interrupt (IPI) channels are provided for use by all
processors. During system initialization the IPI vector/priority registers for
each channel should be programmed to set the priority and vector returned
for each IPI event. During system operation a processor may generate an
IPI by writing a destination mask to one of the IPI dispatch registers. Note
that each IPI dispatch register is shared by both processors. Each IPI
dispatch register has two addresses but they are shared by both processors.
That is there is a total of four IPI dispatch registers in the MPIC.

The IPI mechanism may be used for self interrupts by programming the
dispatch register with the bit mask for the originating processor.

Dynamically Changing I/O Interrupt Configuration

The interrupt controller provides a mechanism for safely changing the
vector, priority, or destination of I/O interrupt sources. This is provided to
support systems which allow dynamic configuration of I/O devices. In
order to change the vector, priority, or destination of an active interrupt
source, the following sequence should be performed:

❏ Mask the source using the MASK bit in the vector/priority register.

❏ Wait for the activity bit (ACT) for that source to be cleared.

❏ Make the desired changes.

❏ Unmask the source.

This sequence ensures that the vector, priority, destination, and mask
information remain valid until all processing of pending interrupts is
complete.

Multiprocessor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-81

2EOI Register

Each processor has a private EOI register which is used to signal the end
of processing for a particular interrupt event. If multiple nested interrupts
are in service, the EOI command terminates the interrupt service of the
highest priority source. Once an interrupt is acknowledged, only sources
of higher priority will be allowed to interrupt the processor until the EOI
command is received. This register should always be written with a value
of zero which is the nonspecific EOI command.

Interrupt Acknowledge Register

Upon receipt of an interrupt signal, the processor may read this register to
retrieve the vector of the interrupt source which caused the interrupt.

8259 Mode

The 8259 mode bits control the use of an external 8259 pair for PC--AT
compatibility. Following reset this mode is set for pass through which
essentially disables the advanced controller and passes an 8259 input on
external interrupt source 0 directly through to processor zero interrupt pin
(IRQ0_). During interrupt controller initialization this channel should be
programmed for mixed mode in order to take advantage of the interrupt
delivery modes.

Current Task Priority Level

Each processor has a separate Current Task Priority Level register. The
system software uses this register to indicate the relative priority of the task
running on the corresponding processor. The interrupt controller will not
deliver an interrupt to a processor unless it has a priority level which is
greater than the current task priority level of that processor. This value is
also used in determining the destination for interrupts which are delivered
using the distributed delivery mode.

2-82 Computer Group Literature Center Web Site

Functional Descriptions

2 I2C Interface
The Inter-Integrated Circuit (I2C) interface provides 2 two-wire master-
only serial ports to support communication with slave I2C devices such as
serial EEPROMs. The I2C interface is compatible with these devices, and
the inclusion of a serial EEPROM in the memory subsystem may be
desirable. The EEPROM could maintain the configuration information
related to the memory subsystem even when the power is removed from
the system. Each slave device connected to the I2C bus is software
addressable by a unique address. The number of interfaces connected to
the I2C bus is solely dependent on the bus capacitance limit of 400pF.

For I2C bus programming, the Harrier is the only master on the bus and the
serial EEPROM devices are all slaves. The I2C bus supports 7-bit
addressing mode and transmits data one byte at a time in a serial fashion
with the most significant bit (MSB) being sent out first. Five registers are
required to perform the I2C bus data transfer operations. These are the I2C
Clock Prescaler (I2PSx) Register, I2C Control (I2COx) Register, I2C
Status (I2STx) Register, I2C Transmitter Data (I2TDx) Register, and I2C
Receiver Data (I2RDx) Register.

The I2C serial data (SDAx) is an open-drain bidirectional line on which
data can be transferred at a rate up to 100 Kbits/s in the standard mode, or
up to 400 kbits/s in the fast mode. The I2C serial clock (SCLx) is
programmable via the I2PSx Register. The I2C clock frequency is
determined by the following formula:

I2C CLOCK = SYSTEM CLOCK / (I2PSx+1) / 2

The I2C bus has the ability to perform byte write, page write, current
address read, random read, and sequential read operations.

Byte Write

The I2STx Register contains the CMP bit which is used to indicate if the
I2C master controller is ready to perform an operation. Therefore, the first
step in the programming sequence should be to test the CMP bit for the
operation-complete status. The next step is to initiate a start sequence by
first setting the STA and ENA bits in the I2COx Register and then writing

I2C Interface

http://www.motorola.com/computer/literature 2-83

2the device address (bits 24-30) and write bit (bit 31=0) to the I2TDx
Register. The CMP bit will be automatically clear with the write cycle to
the I2TDx Register. The I2STx Register must now be polled to test the
CMP and ACKI bits. The CMP bit becomes set when the device address
and write bit have been transmitted, and the ACKI bit provides status as to
whether or not a slave device acknowledged the device address. With the
successful transmission of the device address, the word address will be
loaded into the I2TDx Register to be transmitted to the slave device.
Again, CMP and ACKI bits must be tested for proper response. After the
word address is successfully transmitted, the next data loaded into the
I2TDx Register will be transferred to the address location selected
previously within the slave device. After CMP and ACKI bits have been
tested for proper response, a stop sequence must be transmitted to the slave
device by first setting the STP and ENA bits in the I2COx Register and
then writing a dummy data (data=don’t care) to the I2TDx Register. The
I2STx Register must now be polled to test CMP bit for the operation-
complete status. The stop sequence will initiate a programming cycle for
the serial EEPROM and also relinquish the Harrier master’s possession of
the I2C bus. The following figure shows the suggested software flow
diagram for programming the I2C byte write operation.

2-84 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-18. Programming Sequence for I2C Byte Write

READ I2C STATUS REG

CMP=1? N

Y

LOAD “WORD ADDR” TO
I2C TRANSMITTER DATA REG

LOAD “DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=1? N

Y

START STOPSDA S
B

M
DEVICE ADDR

W
R

A
C
K

WORD ADDR
A
C
K

DATA
A
C
K

ACK from Slave Device

END

BEGIN

*

*

*

I2C Interface

http://www.motorola.com/computer/literature 2-85

2Random Read

The I2C random read begins in the same manner as the I2C byte write. The
first step in the programming sequence should be to test the CMP bit for
the operation-complete status. The next step is to initiate a start sequence
by first setting the STA and ENA bits in the I2COx Register and then
writing the device address (bits 24-30) and write bit (bit 31=0) to the
I2TDx Register. The CMP bit will be automatically clear with the write
cycle to the I2TDx Register. The I2STx Register must now be polled to test
the CMP and ACKI bits. The CMP bit becomes set when the device
address and write bit have been transmitted, and the ACKI bit provides
status as to whether or not a slave device acknowledged the device address.
With the successful transmission of the device address, the word address
will be loaded into the I2TDx Register to be transmitted to the slave
device. Again, CMP and ACKI bits must be tested for proper response. At
this point, the slave device is still in a write mode. Therefore, another start
sequence must be sent to the slave to change the mode to read by first
setting the STA and ENA bits in the I2COx Register and then writing the
device address (bits 24-30) and read bit (bit 31=1) to the I2TDx Register.
After CMP and ACKI bits have been tested for proper response, the I2C
master controller writes a dummy value (data=don’t care) to the I2TDx
Register.This causes the I2C master controller to initiate a read
transmission from the slave device. Again, CMP bit must be tested for
proper response. After the I2C master controller has received a byte of data
(indicated by DIN=1 in the I2STx Register), the system software may then
read the data by polling the I2RDx Register. The I2C master controller
does not acknowledge the read data for a single byte transmission on the
I2C bus, but must complete the transmission by sending a stop sequence to
the slave device. This can be accomplished by first setting the STP and
ENA bits in the I2COx Register and then writing a dummy data
(data=don’t care) to the I2TDx Register. The I2STx Register must now be
polled to test CMP bit for the operation-complete status. The stop sequence
will relinquish the Harrier’s master possession of the I2C bus. The
following figure shows the suggested software flow diagram for
programming the I2C random read operation.

2-86 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-19. Programming Sequence for I2C Random Read

READ I2C STATUS REG

CMP=1? N

Y

LOAD “WORD ADDR” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=1? N

Y

END

LOAD “$09” (REPEATED START
CONDITION) TO I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=DIN=1? N

Y

BEGIN

READ I2C RECEIVER DATA REG

START
M
S
B

SDA

DEVICE ADDR

W
R

A
C
K

WORD ADDR
A
C
K

START
M
S
B

DEVICE ADDR

R
D

A
C
K

DATA
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

*

*

*): Stop condition should be generated to abort the transfer after a software wait loop (~100µs @100KHz SCL) has been expired

I2C Interface

http://www.motorola.com/computer/literature 2-87

2Current Address Read

The I2C slave device should maintain the last address accessed during the
last I2C read or write operation, incremented by one. The first step in the
programming sequence should be to test the CMP bit for the operation-
complete status. The next step is to initiate a start sequence by first setting
the STA and ENA bits in the I2COx Register and then writing the device
address (bits 24-30) and read bit (bit 31=1) to the I2TDx Register. The
CMP bit will be automatically clear with the write cycle to the I2TDx
Register. The I2STx Register must now be polled to test the CMP and
ACKI bits. The CMP bit becomes set when the device address and read bit
have been transmitted, and the ACKI bit provides status as to whether or
not a slave device acknowledged the device address. With the successful
transmission of the device address, the I2C master controller writes a
dummy value (data=don’t care) to the I2TDx Register.This causes the I2C
master controller to initiate a read transmission from the slave device.
Again, CMP bit must be tested for proper response. After the I2C master
controller has received a byte of data (indicated by DIN=1 in the I2STx
Register), the system software may then read the data by polling the I2RDx
Register. The I2C master controller does not acknowledge the read data for
a single byte transmission on the I2C bus, but must complete the
transmission by sending a stop sequence to the slave device. This can be
accomplished by first setting the STP and ENA bits in the I2COx Register
and then writing a dummy data (data=don’t care) to the I2TDx Register.
The I2STx Register must now be polled to test CMP bit for the operation-
complete status. The stop sequence will relinquish the Harrier master’s
possession of the I2C bus. The following figure shows the suggested
software flow diagram for programming the I2C current address read
operation.

2-88 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-20. Programming Sequence for I2C Current Address Read

READ I2C STATUS REG

CMP=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=DIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=1? N

Y

END

BEGIN

START
M
S
B

SDA

DEVICE ADDR

R
D

A
C
K

DATA of (last ADDR+1)
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~100µs @100KHz SCL) has been expired

READ I2C RECEIVER DATA REG

I2C Interface

http://www.motorola.com/computer/literature 2-89

2Page Write

The I2C page write is initiated the same as the I2C byte write, but instead
of sending a stop sequence after the first data word, the I2C master
controller will transmit more data words before a stop sequence is
generated. The first step in the programming sequence should be to test the
CMP bit for the operation-complete status. The next step is to initiate a
start sequence by first setting the STA and ENA bits in the I2COx Register
and then writing the device address (bits 24-30) and write bit (bit 31=0) to
the I2TDx Register. The CMP bit is automatically cleard with the write
cycle to the I2TDx Register. The I2STx Register must now be polled to test
the CMP and ACKI bits. The CMP bit becomes set when the device
address and write bit have been transmitted, and the ACKI bit provides
status as to whether or not a slave device acknowledged the device address.
With the successful transmission of the device address, the initial word
address will be loaded into the I2TDx Register to be transmitted to the
slave device. Again, CMP and ACKI bits must be tested for proper
response. After the initial word address is successfully transmitted, the first
data word loaded into the I2TDx Register will be transferred to the initial
address location of the slave device. After CMP and ACKI bits have been
tested for proper response, the next data word loaded into the I2TDx
Register will be transferred to the next address location of the slave device,
and so on, until the block transfer is complete. A stop sequence then must
be transmitted to the slave device by first setting the STP and ENA bits in
the I2COx Register and then writing a dummy data (data=don’t care) to the
I2TDx Register. The I2STx Register must now be polled to test CMP bit
for the operation-complete status. The stop sequence will initiate a
programming cycle for the serial EEPROM and also relinquish the Harrier
master’s possession of the I2C bus. The following figure shows the
suggested software flow diagram for programming the I2C page write
operation.

2-90 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-21. Programming Sequence for I2C Page Write

READ I2C STATUS REG

CMP=1? N

Y

LOAD “WORD ADDR” TO
I2C TRANSMITTER DATA REG

LOAD “DATA1 ... DATA n” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=1? N

Y

START STOPS
B

M

DEVICE ADDR

W
R

A
C
K

WORD ADDR
A
C
K

DATA 1

A
C
K

ACK from Slave Device

END

BEGIN

*

*
*

 (*): Stop condition should be generated to abort the transfer after a software wait loop (~100µs @100KHz SCL) has been expired

DATA n

A
C
K

LAST BYTE? N

Y

I2C Interface

http://www.motorola.com/computer/literature 2-91

2Sequential Read

Note that the I2C sequential read can be initiated by either an I2C random
read (described here) or an I2C current address read. With an I2C random
read initiation, the first step in the programming sequence should be to test
the CMP bit for the operation-complete status. The next step is to initiate
a start sequence by first setting the STA and ENA bits in the I2COx
Register and then writing the device address (bits 24-30) and write bit (bit
31=0) to the I2TDx Register. The CMP bit will be automatically clear with
the write cycle to the I2TDx Register. The I2STx Register must now be
polled to test the CMP and ACKI bits. The CMP bit becomes set when the
device address and write bit have been transmitted, and the ACKI bit
provides status as to whether or not a slave device acknowledged the
device address. With the successful transmission of the device address, the
initial word address will be loaded into the I2TDx Register to be
transmitted to the slave device. Again, CMP and ACKI bits must be tested
for proper response. At this point, the slave device is still in a write mode.
Therefore, another start sequence must be sent to the slave to change the
mode to read by first setting the STA, ACKO, and ENA bits in the I2COx
Register and then writing the device address (bits 24-30) and read bit (bit
31=1) to the I2TDx Register. After CMP and ACKI bits have been tested
for proper response, the I2C master controller writes a dummy value
(data=don’t care) to the I2TDx Register.This causes the I2C master
controller to initiate a read transmission from the slave device. After the
I2C master controller has received a byte of data (indicated by DIN=1 in
the I2STx Register) and the CMP bit has also been tested for proper status,
the I2C master controller will respond with an acknowledge and the system
software may then read the data by polling the I2RDx Register. As long as
the slave device receives an acknowledge, it will continue to increment the
word address and serially clock out sequential data words. The I2C
sequential read operation is terminated when the I2C master controller
does not respond with an acknowledge. This can be accomplished by
setting only the ENA bit in the I2COx Register before receiving the last
data word. A stop sequence then must be transmitted to the slave device by
first setting the STP and ENA bits in the I2COx Register and then writing
a dummy data (data=don’t care) to the I2TDx Register. The I2STx
Register must now be polled to test CMP bit for the operation-complete

2-92 Computer Group Literature Center Web Site

Functional Descriptions

2 status. The stop sequence will relinquish the Harrier’s master’s possession
of the I2C bus. The following figure shows the suggested software flow
diagram for programming the I2C sequential read operation.

I2C Interface

http://www.motorola.com/computer/literature 2-93

2

Figure 2-22. Programming Sequence for I2C Sequential Read

READ I2C STATUS REG

CMP=1? N

Y

LOAD “WORD ADDR” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=1? N

Y

END

LOAD “$0B” (REPEATED START
CONDITION) TO I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=ACKI=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMP=DIN=1? N

Y

BEGIN

READ I2C RECEIVER DATA REG

START
M
S
B

SDA

DEVICE ADDR

W
R

A
C
K

WORD ADDR
A
C
K

START
M
S
B

DEVICE ADDR

R
D

DATA n
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

*

*

* p p ~ µ p

A
C
K

DATA 1
A
C
K

LAST BYTE? N

Y

LAST BYTE - 1? Y

N

LOAD “$01” TO I2C CONTROL REG

2-94 Computer Group Literature Center Web Site

Functional Descriptions

2 UART Interface
The Universal Asynchronous Receiver/Transmitter (UART) interface
provides two full duplex serial ports to support communication with
modems or other serial peripheral devices. This interface is compatible
with the standard National Semiconductor 16550 UART. For detailed
information on the functionality and programming model, refer to the IBM
Universal Asynchronous Receiver/Transmitter with FIFOs For
5S/5SE/SA-12E and National Semiconductor PC16550D Universal
Asynchronous Receiver/Transmitter with FIFOs documents.

The UART control and status registers are described in the section titled
UART Controller on page 3-136.

XPORT
The Xport is a bridge that interfaces the PowerPC bus to an expansion bus
named Xport Bus. Xport Bus is the set of signals the Harrier uses to control
devices that have a simple, “static RAM” style interface. Such devices
might include flash, ROM, control registers, and FIFO’s.

A PowerPC bus slave and an Xport Bus master constitute the most
significant blocks that make up Xport. The following figure shows a
simplified block diagram.

XPORT

http://www.motorola.com/computer/literature 2-95

2

Figure 2-23. Xport Block Diagram

The PowerPC bus slave has four address response ranges. The Xport Bus
master has four corresponding chip selects. An address range with its
corresponding chip select is referred to as a channel. Each channel
employs a combination of control registers and input signal pins to
configure its address range and attributes. The section titled Xport on page
3-150 details the control registers. The section titled Hardware
Configuration on page 2-133 explains the use of input signals.

The following two sections detail the PowerPC slave and Xport Bus
master.

Xport Bus

PowerPC Data

Xport Bus

Xport Bus
PowerPC Addr

PowerPC Ctrl
Xport Bus

Xport Bus
Address Out

PowerPC
Address In

PowerPC
Slave Master

PowerPC
Data In

(Reg & Mux)

Xport Bus
Address &
Data Out

(Dec & Latch)

PowerPC
Data Out

(Reg)

Xport Bus
Data In
(Reg)

(Mux, Reg)

Data/Addr

Addr

Ctrl

2-96 Computer Group Literature Center Web Site

Functional Descriptions

2 PowerPC Slave

The PowerPC slave provides an interface between the PowerPC bus and
the Xport Bus master. Each of the Xport’s four channels is programmable
with its own PowerPC bus address range and attributes.

The PowerPC slave uses a “delayed transaction” protocol for its response
to PowerPC accesses. For reads, the PowerPC slave issues retry’s until
data is available. For writes, the PowerPC slave latches and acknowledges
data immediately but issues retry’s until the data is written. The following
paragraph gives more details about Xport Bus-bound reads.

When an Xport Bus-bound read begins, the PowerPC slave responds with
AACK_ and ARTRY_ and requests that the Xport Bus master obtain the
data. The slave continues to “ARTRY_” Xport Bus-bound accesses until
data is obtained and the original PowerPC master comes back to get it.
Some CPU PowerPC masters do not always come back to get the original
data. If it appears that a CPU has abandoned an Xport bus read, the
PowerPC slave and Xport bus master also abandon the read and begin
accepting new PowerPC accesses. The PowerPC slave assumes that a CPU
has abandoned a read if it begins a non-matching, Xport-bound PowerPC
access before completion of the original data tenure, or if the CPU does not
begin or request a new PowerPC access within 31 CLK periods of Xport’s
capturing data from the Xport bus.

Xport Bus Master

The Harrier Xport Bus master furnishes the interface between the
PowerPC slave and the Xport Bus. It performs one Xport Bus transaction
for each corresponding PowerPC transaction. Xport Bus transactions
contain one address phase and one data phase made up of one or more data
beats. The number of data beats depends on the amount of data to move,
and the active Xport channel’s data width configuration.

When performing an Xport Bus transaction, the Xport Bus master adopts
the active channel’s Xport Bus attributes. Refer to the section titled Xport
on page 3-150. These attributes include basic mode enable, data port
width, burst enable, burst length, access delay, and burst access delay. The
following paragraphs describe these attributes.

XPORT

http://www.motorola.com/computer/literature 2-97

2The Harrier uses data port width to determine which data to use and how
many data beats to issue. If the port width is 8 bits, the Harrier uses data
signals D31-D24 and issues one beat per data byte. If the port width is 16
bits, the Harrier uses data signals D31-D16 and issues one beat per 2
aligned data bytes. Finally, if the port width is 32 bits, the Harrier uses
D31-D0 and issues one beat per 4 aligned data bytes.

The Harrier uses the other attributes to determine which access time to use
for each data beat. When bursting is disabled the Harrier uses the access
delay (XCSR.XPAT.AD) for every data beat within a transaction. When
bursting is enabled the Harrier uses XCSR.XPAT.AD as the access delay
for only the first beat of each burst. The Harrier uses the burst access delay
(XCSR.XPAT.BRD/XCSR.XPAT.BWD) for the remaining beats of each
burst. In all cases, the access time can be extended beyond the programmed
time by using the XWAIT_ input signal.

If the XCSR.XPAT.BAM bit is set, the Harrier accesses the Xport Bus in
the “basic timing mode”. In the basic timing mode, the Harrier uses only
non-burst accesses and lengthens signal timings for compatibility with less
flexible Xport Bus devices.

Xport Bus Transaction Examples

Xport Bus accesses begin with the address phase, in which the master
presents address and attributes. The accesses continue with the data phase,
in which the master transfers 1 to 32 beats of data. Depending on
programmed configuration, the beats of data may involve bursting.

The following discussion shows different examples. Note that the signals
named XA represent all XADR signals and any XAD signals that are
configured as address signals only.

The first few examples are for the simplest case in which the Xport Bus
master requires only one beat to transfer the requested data. The following
figure shows a one-beat read with XCSR.XPAT.BAM cleared.

2-98 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-24. Xport Bus One-Beat Read Transaction

The following figure shows two back-to-back one-beat write transactions
with XCSR.XPAT.BAM cleared.

CLK

XCSx_

XAD

XOE_

XALE

XWAIT_

XA

Data latching edge

AD inserts 0-15 CLK’s here.

address

address

data

XPORT

http://www.motorola.com/computer/literature 2-99

2

Figure 2-25. Xport Bus Two One-beat Write Transactions

When multiple data beats need to transfer during a single transaction, the
Xport Bus master increments the address after each beat. If writing, the
master also regenerates WE_ for each beat. If bursting is off, the master
uses XCSR.XPAT.AD as the access time for all data beats, If bursting is
on, the master uses XCSR.XPAT.BRD/XCSR.XPAT.BWD for each beat
after the first in the burst.

The following figure shows a two-beat read transaction with no bursting
and XCSR.XPAT.BAM.

CLK

XCSx_

XAD

XWExx_

XALE

XWAIT_

XA address

AD inserts 0-15 CLK’s here.

address

address data address data

2-100 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-26. Xport Bus Two-Beat Read Transaction (No Bursting)

The following figure shows a multi-beat read transaction with bursting on
and XCSR.XPAT.BAM cleared. The burst size matches the number of
beats to transfer. Note the use of XWAIT_ to extend the last data beat.

CLK

XCSx_

XAD

XOE_

XALE

XWAIT_

XA

Data latching edges

AD inserts 0-15 CLK’s here.

address

address address

data data

XPORT

http://www.motorola.com/computer/literature 2-101

2

Figure 2-27. Xport Bus 4-beat Read Transaction with Burst Size of 4

The following figure shows a multi-beat write transaction with bursting
turned on and XCSR.XPAT.BAM cleared. The burst size is greater than
the number of beats to transfer. XWAIT_ delays one data.

CLK

XCSx_

XAD

XOE_

XALE

XWAIT_

XA

Data latching edges

address address address address

address data data data data

AD inserts 0-15 CLK’s here. BRD inserts 0-7 CLK’s here.

2-102 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-28. Xport Bus 3-beat Write Transaction with Burst Size of 4

The following figure shows a multi-beat read with bursting turned on and
XCSR.XPAT.BAM cleared. Multiple bursts are employed because the
number of beats to transfer exceeds the burst size.

CLK

XCSx_

XAD

XWExx_

XALE

XWAIT_

XA

address data data data

AD inserts 0-15 CLK’s here. BRD inserts 0-7 CLK’s here.

address address address

XPORT

http://www.motorola.com/computer/literature 2-103

2

Figure 2-29. Xport Bus, 8-beat Read Transaction with Burst Size of 4

In all the preceding timing diagrams, the XCSR.XPAT.BAM (Basic
Mode) control bit is cleared. In the next two, it is set. When
XCSR.XPAT.BAM is set, all Xport transactions are broken into single-
beats on the Xport Bus and cycle timing slows to allow longer setup and
hold times.

The following figure shows an Xport Bus read when XCSR.XPAT.BAM
is set.

CLK

XCSx_

XAD

XOE_

XALE

addr

XWAIT_

XA

AD inserts 0-15 CLK’s here.

BRD inserts 0-7 CLK’s here.

2-104 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-30. Xport Bus One-Beat Read Transaction in Basic Mode

The following figure shows an Xport Bus write when XCSR.XPAT.BAM
is set.

Figure 2-31. Xport Bus One-Beat Write Transaction in Basic Mode

CLK

XCSx_

XAD

XOE_

XALE

XWAIT_

XA

Data latching edge

AD inserts 0-15 CLK’s here.

address data

address

CLK

XCSx_

XAD

XWExx_

XALE

XA

AD inserts 0-15 CLK’s here.

address data

address

XWAIT_

XPORT

http://www.motorola.com/computer/literature 2-105

2Xport’s Xport Bus master has a special Hawk compatibility mode that is
enabled when the XCSR.XPAT.DW bits are set to 1,1. When in this mode,
the channel width is fixed at 16 bits, XALE’s polarity reverses, and the
XCSR.XPAT.BAM control bit has the same effect on timing whether in
Hawk compatibility mode or not.

The following figure shows an Xport Bus single read transaction in a
Hawk compatibility mode.

Figure 2-32. Xport Bus One-Beat Read Transaction in Hawk Compatibility Mode

The following figure shows an Xport Bus single write transaction in a
Hawk compatibility mode.

CLK

XCSx_

XAD[31:16]

XOE_

XALE

XWAIT_

XAD[6:0],XADR[7:1]

Data latching edge

AD inserts 0-15 CLK’s here.

hi-addr

data

low-addr

2-106 Computer Group Literature Center Web Site

Functional Descriptions

2

Figure 2-33. Xport Bus One-Beat Write Transaction in Hawk Compatibility
Mode

Xport Bus Address Mapping

Xport Bus has a 10-bit dedicated address bus (XADR 25, 24 and 7-0) and
a 32-bit multiplexed address and data bus (XAD31:0). The highest bit
number is the most significant bit and bit zero is the least significant bit.
The number of address lines available depends on the width of the device
and whether an external latch is used. The following table shows how 8,
16 and 32-bit wide devices are connected to Xport Bus. These tables
assume the Xport Bus width is configured to match the device width. A
latch is not required for 8-bit devices. A latch is not required for 16-bit
devices unless more than 128MB of address space is required. A latch is
required for 32-bit devices if more than 256-bytes of address space is
required. Address lines prefixed by an L (for example, LXADR0) indicate
a latched version of the address line. A 373 type transparent latch should
be used to latch the address lines. If a latch is used, 8 and 16-bit devices
may be connected to either the latched or unlatched version of the address
line.

CLK

XCSx_

XAD[31:16]

XWExx_

XALE

XWAIT_

XAD[6:0],XADR[7:1]

AD inserts 0-15 CLK’s here.

data

hi-addr low-addr

XPORT

http://www.motorola.com/computer/literature 2-107

2
.

Table 2-9. Xport Bus Address Mapping
MPU

Address
8-bit Devices 16-bit Devices 32-bit Devices

Device
Address

Xport Bus
Address
(4GB)

Device
Address

Xport Bus
Address
(128MB)

Xport Bus
Address
16-bit
Latch
(4GB)

Device
Address

Xport Bus
Address
16-bit
Latch

(256MB)

Xport Bus
Address
24-bit
Latch
(4GB)

A31 A0 XADR0

A30 A1 XADR1 A0 XADR1 XADR1

A29 A2 XADR2 A1 XADR2 XADR2 A0 XADR2 XADR2

A28 A3 XADR3 A2 XADR3 XADR3 A1 XADR3 XADR3

A27 A4 XADR4 A3 XADR4 XADR4 A2 XADR4 XADR4

A26 A5 XADR5 A4 XADR5 XADR5 A3 XADR5 XADR5

A25 A6 XADR6 A5 XADR6 XADR6 A4 XADR6 XADR6

A24 A7 XADR7 A6 XADR7 XADR7 A5 XADR7 XADR7

A23 A8 XAD0 A7 XAD0 XAD0 A6 LXAD0 LXAD0

A22 A9 XAD1 A8 XAD1 XAD1 A7 LXAD1 LXAD1

A21 A10 XAD2 A9 XAD2 XAD2 A8 LXAD2 LXAD2

A20 A11 XAD3 A10 XAD3 XAD3 A9 LXAD3 LXAD3

A19 A12 XAD4 A11 XAD4 XAD4 A10 LXAD4 LXAD4

A18 A13 XAD5 A12 XAD5 XAD5 A11 LXAD5 LXAD5

A17 A14 XAD6 A13 XAD6 XAD6 A12 LXAD6 LXAD6

A16 A15 XAD7 A14 XAD7 XAD7 A13 LXAD7 LXAD7

A15 A16 XAD8 A15 XAD8 XAD8 A14 LXAD8 LXAD8

A14 A17 XAD9 A16 XAD9 XAD9 A15 LXAD9 LXAD9

A13 A18 XAD10 A17 XAD10 XAD10 A16 LXAD10 LXAD10

A12 A19 XAD11 A18 XAD11 XAD11 A17 LXAD11 LXAD11

A11 A20 XAD12 A19 XAD12 XAD12 A18 LXAD12 LXAD12

A10 A21 XAD13 A20 XAD13 XAD13 A19 LXAD13 LXAD13

A9 A22 XAD14 A21 XAD14 XAD14 A20 LXAD14 LXAD14

A8 A23 XAD15 A22 XAD15 XAD15 A21 LXAD15 LXAD15

A7 A24 XAD16 A23 XADR24 LXAD16 A22 XADR24 LXAD16

A6 A25 XAD17 A24 XADR25 LXAD17 A23 XADR25 LXAD17

2-108 Computer Group Literature Center Web Site

Functional Descriptions

2

Xport Bus XAD Mapping

The table below shows the function of the XAD lines during the address
phase and data phase. During the address phase, XAD(23-0) are address
lines. During the data phase, the width of the device determines which
XAD signals are address lines and which are data lines. The data lines of
8-bit devices are connected to XAD(31-24). The data lines of 16-bit
devices are connected to XAD(31-16). The data lines of 32-bit devices are
connected to XAD(31-0).

A5 A26 XAD18 A25 XADR0 LXAD18 A24 XADR0 LXAD18

A4 A27 XAD19 A26 LXAD19 A25 XADR1 LXAD19

A3 A28 XAD20 A27 LXAD20 A26 LXAD20

A2 A29 XAD21 A28 LXAD21 A27 LXAD21

A1 A30 XAD22 A29 LXAD22 A28 LXAD22

A0 A31 XAD23 A30 LXAD23 A29 LXAD23

Table 2-10. Xport Bus XAD Mapping

XAD Address
Phase

Data Phase
8-bit

Data Phase
16-bit

Data Phase
32-bit

XAD7-XAD0 60x A24-A31 60x A24-A31 60x A24-A31 Device D7-D0

XAD15-XAD8 60x A16-A23 60x A16-A23 60x A16-A23 Device D15-D8

XAD23-XAD16 60x A8-A15 60x A8-A15 Device D7-D0 Device D23-D16

XAD29-XAD24 Byte Count Device D5-D0 Device D13-D8 Device D29-D24

XAD30 Reserved Device D6 Device D14 Device D30

XAD31 Read/Write Device D7 Device D15 Device D31

Table 2-9. Xport Bus Address Mapping (Continued)
MPU

Address
8-bit Devices 16-bit Devices 32-bit Devices

Device
Address

Xport Bus
Address
(4GB)

Device
Address

Xport Bus
Address
(128MB)

Xport Bus
Address
16-bit
Latch
(4GB)

Device
Address

Xport Bus
Address
16-bit
Latch

(256MB)

Xport Bus
Address
24-bit
Latch
(4GB)

XPORT

http://www.motorola.com/computer/literature 2-109

2Hawk Compatibility Mode

In a previous design, Hawk’s Flash interface was routed through a
connector to Flash devices located on another board. To allow the Harrier
to provide the same interface, a Hawk compatibility mode was added. This
mode should only be used to provide backward compatibility with
hardware developed for the Hawk ASIC. The following table shows the
address mapping when operating in the Hawk compatibility mode. A 374
type edge triggered latch should be used to latch the address lines

Table 2-11. Hawk Compatible Address Mapping

MPU
Address

16-bit Device
Hawk Compatibility Mode

Device
Address

Xport Bus
Address

14-bit Latch
(512MB)

Hawk
Address

A31

A30 A0 XADR1 RA0

A29 A1 XADR2 RA1

A28 A2 XADR3 RA2

A27 A3 XADR4 RA3

A26 A4 XADR5 RA4

A25 A5 XADR6 RA5

A24 A6 XADR7 RA6

A23 A7 XAD0 RA7

A22 A8 XAD1 RA8

A21 A9 XAD2 RA9

A20 A10 XAD3 RA10

A19 A11 XAD4 RA11

A18 A12 XAD5 BA0

A17 A13 XAD6 BA1

A16 A14 LXADR1 LRA0

A15 A15 LXADR2 LRA1

2-110 Computer Group Literature Center Web Site

Functional Descriptions

2

Xport Bus Byte Mapping

The following tables describe how the data bytes are mapped to 8, 16 and
32-bit devices. When the Hawk compatibility mode is used, there are two
data mapping options. When the Hawk data compatibility mode is not used
the data is mapped as shown in the second table in this section. When the
Hawk data compatibility mode is used, the data is mapped as shown in the
third table in this section. Refer to the section titled Hardware
Configuration on page 2-133 for information on configuring the Xport
modes.

A14 A16 LXADR3 LRA2

A13 A17 LXADR4 LRA3

A12 A18 LXADR5 LRA4

A11 A19 LXADR6 LRA5

A10 A20 LXADR7 LRA6

A9 A21 LXAD0 LRA7

A8 A22 LXAD1 LRA8

A7 A23 LXAD2 LRA9

A6 A24 LXAD3 LRA10

A5 A25 LXAD4 LRA11

A4 A26 LXAD5 LBA0

A3 A27 LXAD6 LBA1

Table 2-11. Hawk Compatible Address Mapping (Continued)

MPU
Address

16-bit Device
Hawk Compatibility Mode

Device
Address

Xport Bus
Address

14-bit Latch
(512MB)

Hawk
Address

XPORT

http://www.motorola.com/computer/literature 2-111

2
Table 2-12. 8-bit Device Byte Lane Mapping

PowerPC Bus
Address

8-bit Device
Address

Byte
XAD(31-24)

$00000000 $00000000 0

$00000001 $00000001 1

$00000002 $00000002 2

$00000003 $00000003 3

Table 2-13. 16-bit Device Byte Lane Mapping

PowerPC Bus
Address

16-bit Device
Address

Byte
XAD(31-24)

Byte
XAD(23-16)

$00000000 $00000000 0 1

$00000002 $00000002 2 3

$00000004 $00000004 4 5

$00000006 $00000006 6 7

Table 2-14. Hawk Data Compatibility Byte Lane Mapping

PowerPC Bus
Address

16-bit Device
Address

Byte
XAD(31-24)

Byte
XAD(23-16)

$00000000 $00000000 0

$00000001 $00000001 1

$00000002 $00000002 2

$00000003 $00000003 3

$00000004 $00000004 4

$00000005 $00000005 5

$00000006 $00000006 6

$00000007 $00000007 7

2-112 Computer Group Literature Center Web Site

Functional Descriptions

2

$00000008 $00000008 8

$00000009 $00000009 9

$0000000A $0000000A A

$0000000B $0000000B B

$0000000C $0000000C C

$0000000D $0000000D D

$0000000E $0000000E E

$0000000F $0000000F F

Table 2-15. 32-bit Device Byte Lane Mapping

PowerPC
Bus

Address

32-bit
Device

Address

Byte
XAD(31-24)

Byte
XAD(23-16)

Byte
XAD(15-8)

Byte
XAD(7-0)

$00000000 $00000000 0 1 2 3

$00000004 $00000004 4 5 6 7

$00000008 $00000008 8 9 A B

$0000000C $0000000C C D E F

Table 2-14. Hawk Data Compatibility Byte Lane Mapping (Continued)

PowerPC Bus
Address

16-bit Device
Address

Byte
XAD(31-24)

Byte
XAD(23-16)

Arbiters

http://www.motorola.com/computer/literature 2-113

2Arbiters
The Harrier has an internal PowerPC bus arbiter. The use of this arbiter is
optional. If the internal arbiter is disabled, the Harrier must be allowed to
participate in an externally implemented PowerPC arbitration mechanism.
The selection of either internal or external PowerPC arbitration mode is
made by sampling an XAD line at the release of reset. Please see the
section titled Hardware Configuration on page 2-133 for more
information.

The Harrier is designed to accommodate up to four PowerPC bus masters,
including itself (HARR), two processors (CPU0/CPU1) and an external
PowerPC master (EXTL). EXTL can be a second bridge chip, etc. The
PPC Arbiter can optionally support a three bridge system, in which case
the third bridge device would be connected to the CPU1 request/grant pair.

When the PPC Arbiter is disabled, the Harrier generates an external
request and listens for an external grant for itself. It also listens to the other
external grants to determine the PowerPC master identification field
(MID) within the GCSR register. When the PPC Arbiter is enabled, the
Harrier will receive requests and issue grants for itself and for the other
three bus masters. The MID field is determined by the PPC Arbiter.

The PowerPC arbitration signals and their functions are summarized in the
table below.

.

Table 2-16. PPC Arbiter Pin Assignments

Pin Name Pin
Type

Reset Internal Arbiter External Arbiter

Direction Function Direction Function

XARB0 BiDir Tristate Output CPU0 Grant_ Input CPU0
Grant_

XARB1 BiDir Tristate Output CPU1 Grant_ Input CPU1
Grant_

XARB2 Output - - Output EXTL Grant_ Output HARR
Request_

2-114 Computer Group Literature Center Web Site

Functional Descriptions

2

While RST_ is asserted, XARB0 and XARB1 are held in tri-state. If the
internal arbiter mode is selected, then XARB0 and XARB1 are driven to
an active state no more than ten clock periods after the Harrier has detected
a rising edge on RST_.

The PPC Arbiter implements a fully rotational prioritization scheme. Each
master is guaranteed at least one access on the PowerPC bus. The timing
of a priority switch is controlled by a bus master. Once a master obtains
ownership of the bus, the priority remains in the favor of that master until
the master momentarily releases it’s request. This release is a signal to the
PPC Arbiter to switch to the next rotated priority. The end effect is that
each master has complete control of how much PowerPC bandwidth it
consumes. It is the responsibility of each PowerPC master to control it’s
bandwidth consumption according to system level requirements. The
GCSR.XBS field controls how much bandwidth the Harrier consumes.

The relationship between the retention of priority and leaving request
asserted is called Latching Request. This function is intended to give
bridge devices a way to guarantee a portion of the PowerPC bandwidth. It
is not intended to be used by processor devices. The PPC Arbiter always
implements the latching request function for the HARR and EXTL bus
masters. Latching Request is optionally implemented for the CPU1 bus
master, and is never implemented for the CPU0 bus master.

The PPC Arbiter supports four parking modes. Parking is implemented
only on the CPUs and is not implemented on either HARR or EXTL. The
parking options include parking on CPU0, parking on CPU1, parking on
the last CPU, or parking disabled.

XARB3 Input - - Input CPU0 Request_ Input CPU0
Request_

XARB4 Input - - Input CPU1 Request_ Input CPU1
Request_

XARB5 Input - - Input EXTL Request_ Input HARR
Grant_

Table 2-16. PPC Arbiter Pin Assignments (Continued)

Pin Name Pin
Type

Reset Internal Arbiter External Arbiter

Direction Function Direction Function

Arbiters

http://www.motorola.com/computer/literature 2-115

2There are various system level debug functions provided by the PPC
Arbiter. The PPC Arbiter has the optional ability to flatten the PowerPC
bus pipeline. Flattening can be imposed uniquely on single beat reads,
single beat writes, burst reads, and burst writes. It is possible to further
qualify the ability to flatten based on whether there is a switch in masters
or whether to flatten unconditionally for each transfer type. This is a debug
function only and is not intended for normal operation.

PCI Arbiter

The Harrier has an optional internal PCI Arbiter. The arbiter can support
up to 8 PCI masters, including the Harrier and 7 other external PCI
masters. The arbiter can be configured to be enabled or disabled at reset
time by strapping the XAD[18] bit either high for enabled or low for
disabled. The table below describes the pins and its function for both
modes

Table 2-17. PCI Arbiter Pin Description

Pin
Name

Pin
Type

Reset
Internal Arbiter External Arbiter

Direction Function Direction Function

PARBI0 Input - - Input ext req0_ input HARR gnt_

PARBI1 Input - - Input ext req1_ Input NA

PARBI2 Input - - Input ext req2_ Input NA

PARBI3 Input - - Input ext_req3_ Input NA

PARBI4 Input - - Input ext_req4_ Input NA

PARBI5 Input - - Input ext req5_ Input NA

PARBI6 Input - - Input ext req6_ Input NA

PARBO0 Output Tristate Output ext gnt0_ Output HARR req_

PARBO1 Output Tristate Output ext gnt1_ Output NA

PARBO2 Output Tristate Output ext gnt2_ Output NA

PARBO3 Output Tristate Output ext gnt3_ Output NA

PARBO4 Output Tristate Output ext gnt4_ Output NA

PARBO5 Output Tristate Output ext gnt5_ Output NA

PARBO6 Output Tristate Output ext gnt6_ Output NA

2-116 Computer Group Literature Center Web Site

Functional Descriptions

2 The PCI Arbiter is controlled by the PARB register within the XCSR
Register Group.

The PCI Arbiter supports three different priority schemes: fixed, round
robin and mixed mode. It also provides different prioritization options
within either the fixed and mixed mode. Parking can be disabled, given to
any one requester, or given to the last requester. A special bit is added to
hold grant asserted for an agent that initiates a lock cycle. Once a lock
cycle is detected, the grant is held asserted until the PCI LOCK_ pin is
released. This feature works only when the POL feature is enabled.

The priority scheme can be programmed by writing the PRI field in the
PARB register. The Fixed mode holds each requestor at a fixed level in its
hierarchy. The levels of priority for each requestor are programmable by
writing the HEIR field in the PARB register. Table 2-18 on page 2-117
describes all available settings for the HEIR field in fixed mode.

When the PCI Arbiter is programmed for round robin priority mode, the
arbiter maintains fairness and provides equal opportunity to the requestors
by rotating its grants. The contents of HEIR are “don’t cares” when
operated in this mode. Round Robin mode is the default priority scheme
on power up.

When the PCI Arbiter is programmed for mixed mode, the 8 requestors are
separated into 4 groups. Each group has 2 requestors. PARB6 and PARB5
are defined in group 1; PARB4 and PARB3 are defined in group 2; PARB2
and PARB1 are defined in group 3; PARB0 and HARR are defined in
group 4. Arbitration is set for round robin mode between the 2 requestors
within each group and set for fixed mode between the 4 groups. The levels
of priority for each group is programmable by writing the HEIR field in the
PARB register. Table 2-19 on page 2-117 describes all available settings
for the HEIR field in mixed mode.

Arbiters

http://www.motorola.com/computer/literature 2-117

2

Notes

1. "000" is the default setting in fixed mode.

2. HEIR only covers a small subset of all possible combinations. It is
the responsibility of the system designer to connect the
request/grant pair in a manner most beneficial

.

Table 2-18. HEIR Encoding for Fixed Mode Priority

HEIR Priority Levels

Highest Lowest

000 PARB6 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0 HARR

001 HARR PARB6 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0

010 PARB0 HARR PARB6 PARB5 PARB4 PARB3 PARB2 PARB1

011 PARB1 PARB0 HARR PARB6 PARB5 PARB4 PARB3 PARB2

100 PARB2 PARB1 PARB0 HARR PARB6 PARB5 PARB4 PARB3

101 PARB3 PARB2 PARB1 PARB0 HARR PARB6 PARB5 PARB4

110 PARB4 PARB3 PARB2 PARB1 PARB0 HARR PARB6 PARB5

111 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0 HARR PARB6

Table 2-19. HEIR Encoding for Mixed Mode Priority

HEIR PRIORITY Levels

Highest Lowest

000 group 1 group 2 group 3 group 4

PARB 6 & 5 PARB 4 & 3 PARB 2 & 1 PARB 0 &
HARR

001 group 4 group 1 group 2 group 3

PARB 0 &
HARR

PARB 6 & 5 PARB 4 & 3 PARB 2 & 1

2-118 Computer Group Literature Center Web Site

Functional Descriptions

2

Notes

1. "000" is the default setting in mixed mode.

2. HEIR only covers a small subset of all possible combinations and
the requestors within each group is fixed and cannot be interchanged
with other groups. It is the responsibility of the system designer to
connect the request/grant pair in a manner that is most beneficial to
his or her design goals.

3. All combinations of HEIR not specified in the table are invalid and
should not be used.

Arbitration parking is programmable by writing to the PRK field of the
PARB register. Parking can be programmed for any of the requestors, last
requestor or none. The default setting for parking is “park on the Harrier”.
The following table describes all available settings for the PRK field.

010 group 3 group 4 group 1 group 2

PARB 2 & 1 PARB 0 &
HARR

PARB 6 & 5 PARB 4 & 3

011 group 2 group 3 group 4 group 1

PARB 4 & 3 PARB 2 & 1 PARB 0 &
HARR

PARB 6 & 5

Table 2-20. PRK Encoding

PRK Function

0000 Park on last requestor

0001 Park on PARB6

0010 Park on PARB5

0011 Park on PARB4

0100 Park on PARB3

Table 2-19. HEIR Encoding for Mixed Mode Priority (Continued)

HEIR PRIORITY Levels

Highest Lowest

Arbiters

http://www.motorola.com/computer/literature 2-119

2

Notes

1. "1000" is the default setting.

2. Parking disabled is a testmode only and should not be used, since
nothing will drive the PCI bus when it is in the idle state.

3. All combinations of PRK not specified in the table are invalid and
should not be used.

A special function is added to the PCI Arbiter to hold the grant asserted
through a lock cycle. When the POL field in the PARB register is set, the
grant associated with the agent initiating the lock cycle is held asserted
until the lock cycle is complete. If this field is clear, the PCI Arbiter does
not distinguish between lock and non-lock cycle.

0101 Park on PARB2

0110 Park on PARB1

0111 Park on PARB0

1000 Park on HARR

1111 Parking disabled

Table 2-20. PRK Encoding (Continued)

PRK Function

2-120 Computer Group Literature Center Web Site

Functional Descriptions

2 Watchdog Timers
The Harrier features two watchdog timers called Watchdog Timer 0
(WT0) and Watchdog Timer 1 (WT1). Although both timers are
functionally equivalent, each timer operates completely independent of
each other. WT0 and WT1 are initialized at reset to a count value of 8
seconds and 16 seconds respectively. The timers are designed to be
reloaded by software at any time. When not being loaded, the timer
continuously decrements itself until either reloaded by software or a count
of zero is reached. If a timer reaches a count of zero, an output signal will
be asserted and the count will remain at zero until reloaded by software or
the Harrier’s reset is asserted. External logic can use the output signals of
the timers to generate interrupts, machine checks, etc.

Each timer is composed of a prescaler and a counter. The prescaler
determines the resolution of the timer, and is programmable to any binary
value between 1 µs and 32,768 µs. The counter counts in the units provided
by the prescaler. For example, the watchdog timer would reach a count of
zero within 24 µs if the prescaler was programmed to 2 µs and the counter
was programmed to 12.

The watchdog timers are controlled by registers mapped within the XCSR
Register Group. Each timer has a WTxC register and a WTxS register.
The WTxC register can be used to start or stop the timer, write a new
reload value into the timer, or cause the timer to initialize itself to a
previously written reload value. The WTxS register is used to read the
instantaneous count value of the watchdog timer.

Programming the Watchdog Timers is a two step process:

1. First, ‘arm’ the WTxC register by writing PATTERN_1 into the
KEY field. Only the KEY byte lane may be selected during this
process. The WTxC register will not arm itself if any of the other
byte lanes are selected or the KEY field is written with any other
value than PATTERN_1. The operation of the timer itself remains
unaffected by this write.

2. Next, write the new programming information to the WTxC
register. The KEY field byte lane must be selected and must be
written with PATTERN_2 for the write to take affect. The effects on

Watchdog Timers

http://www.motorola.com/computer/literature 2-121

2the WTxC register depend on the byte lanes that are written to
during step 2 and are shown in the following table..

The WTxC register will always become unarmed after the second write
regardless of byte lane selection. Reads may be performed at any time
from the WTxC register and will not affect the write arming sequence.

Table 2-21. WTxC Programming

Byte Lane Selection Results

KEY ENAB
/RES

RELOAD WTx WTxC Register

0:7 8:15 16:23 24:31 Prescaler/
Enable

Counter RES/ENAB RELOAD

No x x x No Change No Change No Change No Change

Yes No No x Update
from

RES/ENAB

Update
from

RELOAD

No Change No Change

Yes No x No Update
from

RES/ENAB

Update
from

RELOAD

No Change No Change

Yes Yes No x Update
from data

bus

Update
from

RELOAD

Update
from data

bus

No Change

Yes Yes x No Update
from data

bus

Update
from

RELOAD

Update
from data

bus

No Change

Yes Yes Yes Yes Update
from data

bus

Update
from data

bus

Update
from data

bus

Update
from

data bus

2-122 Computer Group Literature Center Web Site

Functional Descriptions

2 Exceptions
There are two categories of exceptions that may be generated internal to
the Harrier. One category of exceptions is called Error Exceptions, and the
other is called Functional Exceptions. The Error Exceptions are associated
with critical events that represent a possible compromise in the integrity of
the system. The Functional Exceptions are associated with non-critical
events pertaining to the normal flow of information within the system.

The Harrier’s internal error exceptions are grouped together and routed as
a singular interrupt to a dedicated channel within the MPIC. Similarly, the
Harrier’s internal functional exceptions are grouped together and routed to
another dedicated channel within the MPIC. Please refer to the section
titled "Multiprocessor Interrupt Controller" in this chapter for more
information on how the two interrupts are handled within the MPIC. Error
Exceptions may also be programmed to generate a machine check to
processor 0, processor 1 or both.

Each error exception has an enable bit, a status bit, a clear bit, an interrupt
enable bit, a machine check 0 enable bit and a machine check 1 enable bit.
When the enable bit is set, the exception is enabled and the status bit
reflects the status of the error exception. When the enable bit is cleared, the
exception is disabled and the status bit will always read zero. If the
interrupt enable bit is set, an interrupt will be generated whenever the
corresponding status bit is set. If the machine check 0 enable bit is set, a
machine check will be generated to processor 0 and if the machine check
1 enable bit is set, a machine check will be generated to processor 1
whenever the corresponding status bit is set. If the status bit is set, writing
a one to clear bit will clear the status bit and the associated exception.

Each functional exception has an enable bit, a status bit and a mask bit.
When the enable bit is set, the exception is enabled and the status bit
reflects the status of the functional exception. When the enable bit is
cleared, the exception is disabled and the status bit will always read zero.
If the mask bit cleared, an interrupt will be generated whenever the
corresponding status bit is set. If the mask bit is set, an interrupt will not be
generated. In the case of DMA, MDB, MM0, MM1 and ABT functional
exceptions if the status bit is set, writing a one to clear bit will clear the
status bit and the associated exception. Note that the clear bits are in FECL

Exceptions

http://www.motorola.com/computer/literature 2-123

2register and MGID register. In the case of MIP functional exception the
status bit and the exception will be cleared when the processor adjusts the
inbound post list head and tail pointers to match. For the UA0 and UA1
functional exceptions UART service routines will clear the status bit and
the exception.

The following table summarizes the Harrier generated exceptions..

Table 2-22. Exception Summary

Category Exception Description Primary
Status

Additional
Status

Clear Edge/
Level

Error PowerPC
Address
Bus Time-
out

Any unclaimed
PowerPC address
tenure originating
from any PowerPC
bus master.

EEST.XBT EXAD/EXAT EECL.XBT
(XCSR)

Edge

Error PowerPC
Address
Parity Error

Detection of an
address parity error
during any address
tenure involving any
PowerPC bus
master.

EEST.XAP EXAD/EXAT EECL.XAP
(XCSR)

Edge

Error PowerPC
Data
Parity Error

Detection of a data
parity error during
any data tenure
involving any
PowerPC bus master
and any PowerPC
bus slave.

EEST.XDP EXAD/EXAT EECL.XDP
(XCSR)

Edge

Error PowerPC
Delayed
Transaction
Time-out

Any unclaimed
PowerPC delayed
transaction
originating from any
PowerPC bus
master.

EEST.XDT EXAD/EXAT EECL.XDT
(XCSR)

Edge

Error SDRAM
Memory
Interface
Single BIt
Error

Detection and
correction of a
single bit error.

EEST.SSE SDSES/
SDSEA

EECL.SSE
(XCSR)

Edge

2-124 Computer Group Literature Center Web Site

Functional Descriptions

2

Error SDRAM
Memory
Interface
Single Bit
Error
Overflow

Detection of a single
bit error count
overflow

EEST.SSC SDSES EECL.SSC
(XCSR)

Edge

Error SDRAM
Memory
Interface
Multi Bit
Error on
PowerPC
Access

Detection of a multi
bit error during any
PowerPC access.

EEST.SMX SDMES/
SDMEA

EECL.SMX
(XCSR)

Edge

Error SDRAM
Memory
Interface
Multi Bit
Error on
Scrub

Detection of a multi
bit error on a scrub.

EEST.SMS SDMES/
SDMEA

EECL.SMS
(XCSR)

Edge

Error PCI Master
Abort

Detection of a
Master Abort with
the Harrier as a PCI
Bus Master. Can be
either a bridge or a
DMA transaction.

EEST.PMA EPAD/EPAT EECL.PMA
(XCSR)

Edge

Error PCI Target
Abort

Detection of a
Target Abort with
the Harrier as a PCI
Bus Master. Can be
either a bridge or a
DMA transaction.

EEST.PTA EPAD/EPAT EECL.PTA
(XCSR)

Edge

Error PCI
Address
Parity Error

Detection of a parity
error during the
address phase of any
PCI transfer
involving any PCI
bus master and
target.

EEST.PAP EPAD/EPAT EECL.PAP
(XCSR)

Edge

Table 2-22. Exception Summary (Continued)

Category Exception Description Primary
Status

Additional
Status

Clear Edge/
Level

Exceptions

http://www.motorola.com/computer/literature 2-125

2

Error PCI Data
Parity Error

Detection of a parity
error during the data
phase of any PCI
transfer involving
any PCI bus master
and target.

EEST.PDP EPAD/EPAT EECL.PDP
(XCSR)

Edge

Error PCI SERR Assertion of SERR.
Note that this may
or may not be as a
result of the Harrier
detecting an address
parity error.

EEST.PSE None EECL.PSE
(XCSR)

Edge

Error PCI PERR Assertion of PERR.
Note that this may
or may not be as a
result of the Harrier
detecting a data
parity error.

EEST.PPE None EECL.PPE
(XCSR)

Edge

Error PCI
Delayed
Trans-
action
Time-out

Any unclaimed PCI
delayed transaction
originating from any
PCI bus master.

EEST.PDT EXAD/EXAT EECL.PDT
(XCSR)

Edge

Error PCI Master
Retry Error

Bridge or DMA as a
PCI master has
exceeded the
maximum number
of sequential retries.

EEST.PMR EPAD/EPAT EECL.PMR
(XCSR)

Edge

Functional DMA
Controller

Completion of a
Direct Mode
transfer or a Linked-
List Mode
transaction. May be
accompanied by an
error condition.

FEST.DMA DSTA FECL.DMA
(XCSR)

Edge

Functional MP
Generic
Doorbell

Assertion of any
Inbound Doorbell
bit.

FEST.MDB MGID MGID.DBIx
(XCSR)

Edge

Table 2-22. Exception Summary (Continued)

Category Exception Description Primary
Status

Additional
Status

Clear Edge/
Level

2-126 Computer Group Literature Center Web Site

Functional Descriptions

2

Functional MP
Generic
Message #0

New message
written to Message
Passing Register 0.

FEST.MM0 MGIM0 FECL.MM0
(XCSR)

Edge

Functional MP
Generic
Message #1

New message
written to Message
Passing Register 1.

FEST.MM1 MGIM1 FECL.MM1
(XCSR)

Edge

Functional MP I2O
Inbound
post_list

New entry written
into Inbound
Post_List queue.
(MIIPH != MIIPT)

FEST.MIP MIIPH/
MIIPT

MIIPH =
MIIPT

Level

Functional UART #0 UART0 Received
data available
interrupt, time-out
interrupt in the
FIFO mode,
Transmitter holding
register empty
interrupt, Receiver
line status interrupt
or MODEM status
interrupt.

FEST.UA0 IDFC0 UART0
service
routine

Level

Functional UART #1 UART1 Received
data available
interrupt, time-out
interrupt in the
FIFO mode,
Transmitter holding
register empty
interrupt, Receiver
line status interrupt
or MODEM status
interrupt.

FEST.UA1 IDFC1 UART1
service
routine

Level

Functional Abort Assertion of
ABTSW_ pin for a
short period.

FEST.ABT None FECL.ABT
(XCSR)

Edge

Table 2-22. Exception Summary (Continued)

Category Exception Description Primary
Status

Additional
Status

Clear Edge/
Level

Error Diagnostics

http://www.motorola.com/computer/literature 2-127

2Error Diagnostics
The Harrier provides a set of registers to efficiently diagnose error
exceptions whenever a transaction terminates abnormally. These registers
are contained within the XCSR Register Group.

In the event of a PowerPC bus time-out, PowerPC delayed transaction
time-out, PowerPC address parity error or PowerPC data parity error, the
corresponding PowerPC error status bit will be set in the EEST register if
the corresponding error is enabled (EEEN register) any other PowerPC
error status bit is not set. In addition, the Harrier will capture the address
and attributes corresponding to the erroneous transaction in the EXAD
register and EXAT register respectively. If any PowerPC error is detected
while any other PowerPC error status bit is already set, the PowerPC
overflow (EEST.XOF) bit will be set in the EEST register and further
logging of PowerPC errors is suspended until software clears the first error
and the PowerPC overflow bit. The PowerPC overflow bit (in the EEST
register) is set to prevent the Harrier from updating EXAD and EXAT
registers in the event of additional errors. Thus, the information related to
the first erroneous transaction is latched until the error status bit is cleared
by writing to EECL register.

Similarly, in the event of a PCI master abort, PCI target abort, PCI address
parity error, PCI data parity error or PCI delayed transaction time-out the
corresponding PCI error status bit will be set in the EEST register if the
corresponding error is enabled (EEEN register) any other PCI error status
bit is not set. In addition, the Harrier will capture the PCI address and
attributes corresponding to the erroneous transaction in the EPAD register
and EPAT register respectively. If any PCI error is detected while any
other PCI error status bit is already set, the PCI overflow (EEST.POF) bit
will be set in the EEST register and further logging of PCI errors is
suspended until software clears the first error and the PCI overflow bit.
The PCI overflow bit (in the EEST register) is set to prevent the Harrier
from updating EPAD and EPAT registers in the event of additional errors.
Thus, the information related to the first erroneous transaction is latched
until the error status bit is cleared by writing to EECL register.

2-128 Computer Group Literature Center Web Site

Functional Descriptions

2 The Harrier memory controller supports ECC for correcting single bit
errors and detecting double bit errors. In the event of a memory controller
single bit error or single bit error count overflow, the corresponding
SDRAM error status bit will be set in the EEST register if the
corresponding error is enabled (EEEN register) any other SDRAM single
bit error status bit is not set. In addition, the Harrier will update SDSES and
SDSEA registers in the case of an SDRAM single bit error. In the case any
SDRAM single bit error detected while any other SDRAM single bit error
status bit is already set, the SDRAM single bit overflow (EEST.SSOF) bit
will be set in the EEST register and further logging of SDRAM single bit
errors is suspended until software clears the first error and the EEST.SSOF
bit. In the event of a memory controller multi bit error on PowerPC access
or multi bit error on a scrub, the corresponding SDRAM error status bit
will be set in the EEST register if the corresponding error is enabled
(EEEN register) any other SDRAM multi bit error status bit is not set. In
addition, the Harrier will update SDMES and SDMEA registers in the
case of an SDRAM multi bit scrub error and SDMEA register in the case
of an SDRAM multi bit error due to a PowerPC access. In the case any
SDRAM multi bit error detected while any other SDRAM multi bit error
status bit is already set, the SDRAM multi bit overflow (EEST.SMOF) bit
will be set in the EEST register and further logging of SDRAM multi bit
errors is suspended until software clears the first error and the
EEST.SMOF bit.

The following table shows how the Harrier captures address and attribute
information for various error exceptions.

Table 2-23. Error Exceptions and Address/Attribute Capture

Error Status Error Address and Attributes

XBT From PowerPC bus

XAP From PowerPC bus

XDP From PowerPC bus

XDT From PowerPC bus

PMA From PCI bus

PTA From PCI bus

PAP From PCI bus

PDP From PCI bus

PowerPC Address Bus Timer

http://www.motorola.com/computer/literature 2-129

2

PowerPC Address Bus Timer
The PPC Timer allows the current bus master to recover from a potential
lock-up condition caused when there is no response to a transfer request.
The time-out length of the bus timer is determined by the BTO field within
the GCSR register.

The PPC Timer is designed to handle the case where an address tenure is
not closed out by the assertion of AACK_. The PPC Timer will not handle
the case where a data tenure is not closed out by the appropriate number of
TA_ assertions. The PPC Timer will start timing at the exact moment when
the PowerPC bus pipeline has gone flat. In other words, the current address
tenure is pending closure, all previous data tenures have completed, and
the current pending data tenure awaiting closer is logically associated with
the current address tenure.

The time-out function is aborted if AACK_ is asserted anytime before the
time-out period has passed. If the time-out period reaches expiration, then
the PPC Timer will assert AACK_ to close the faulty address tenure. If the
transaction was an address only cycle, then no further action will be taken.
If the faulty transaction was a data transfer cycle, then the PPC Timer will
assert the appropriate number of TA_’s to close the pending data tenure.
Error information related to the faulty transaction will be latched within
the EXAD and EXAT registers, and an interrupt or machine check will be
generated depending on the programming of the EEMA, EEDE and
EEMS registers.

There is one exception that will dynamically disable the PPC Timer. If the
transaction is outbound, then the burden of closing out a transaction is left
to the PCI bus. Note that a transaction to the PowerPC Control Register

PMR From PCI bus

PDT From PCI bus

PSE Invalid

PPE Invalid

Table 2-23. Error Exceptions and Address/Attribute Capture (Continued)

Error Status Error Address and Attributes

2-130 Computer Group Literature Center Web Site

Functional Descriptions

2 Group is considered to be outbound since the completion of these types of
accesses depends on the ability of the PCI bus to empty outbound write-
posted data.

The ERRAT signal is an open collector (wired OR) bi-directional signal
that is used to notify other PowerPC devices of an address bus timeout
exception. As an output, ERRAT is asserted when the PPC Timer expires.
As an input, Harrier uses ERRAT as an indication to the DMA controller
that a DMA transaction must be aborted.

PowerPC Parity
The Harrier generates data parity whenever it is sourcing PowerPC data.
This happens when performing a write as a bus master, and when servicing
a read as a bus slave. Valid data parity will be presented when DBB_ is
asserted for write cycles, and when TA_ is asserted for read cycles.

The Harrier checks data parity whenever it is sinking PowerPC data. This
happens when performing a read as a bus master, and when servicing a
write as a bus slave. Data parity is considered valid anytime TA_ is
asserted. If a data parity error is detected, then address and attribute
information will be latched within the EXAD and EXAT registers, and an
interrupt or machine check will be generated depending on the
programming of the EEMA, EEDE and EEMS registers.

The Harrier has a mechanism to purposely induce data parity errors for
testability. The DPE field within the EPEI register can be used to
purposely inject data parity errors on specific data parity lines. Data parity
errors can only be injected during cycles that the Harrier is sourcing
PowerPC data.

The Harrier generates address parity whenever it is sourcing a PowerPC
address.This happens for all transactions where the Harrier is a bus master.
Valid address parity is presented when ABB_ is asserted.

Reset Signals

http://www.motorola.com/computer/literature 2-131

2The Harrier checks address parity for all PowerPC bus transactions. If an
address parity error is detected, then address and attribute information will
be latched within the EXAD and EXAT registers, and an interrupt or
machine check will be generated depending on the programming of the
EEMA, EEDE and EEMS registers.

The Harrier has a mechanism to purposely inject address parity errors for
testability. The APE field within the EPEI register can be used to
purposely inject address parity errors on specific address parity lines.
Address parity errors can only be injected when the Harrier is sourcing a
PowerPC address.

Reset Signals
The Harrier has two reset signals: PURST_ and RST_. The PURST_ signal
should be asserted at power up and resets all of the Harrier’s internal logic.
The PURST_ signal must be asserted for 50 µs after the VDD2V5 and
VDD3V3 power supplies are stable, the CLK and PCLK signals are stable
and the XAD signals used for configuration are stable. During this time,
the Harrier synchronizes its internal clock generation logic. When the
PURST_ signal is removed, the Harrier latches the hardware configuration
as described in the section titled "Hardware Configuration" further on in
this chapter. Whenever the PURST_ signal is asserted, it must be asserted
for at least 50 µs.

The RST_ signal resets most of the Harrier’s internal logic. The SDRAM
refresh logic is not reset by the RST_ signal. This allows the contents of
the SDRAM to be preserved when RST_ is asserted. The RST_ signal
must be asserted for at least 100 cycles of the CLK signal. The PURST_
and RST_ signals may be asserted or negated in any sequence, however,
the Harrier is not functional or does not respond to any PCI or PowerPC
bus cycles until both PURST_ and RST_ are negated. The hardware
configuration is not changed when RST_ is asserted.

The Harrier also has a reset out signal (RSTO_). The RSTO_ signal is
asserted whenever the PURST_ signal is asserted, the RSTSW_ signal is
asserted and enabled, AUXRST_ signal is asserted or the reset out bit
(XCSR.MCSR.RSTOUT) is set. The RSTO_ signal does not reset any of

2-132 Computer Group Literature Center Web Site

Functional Descriptions

2 Harrier’s internal logic. The RSTO_ signal is normally combined with
other on board reset signals to generate the RST_ signal, which is
connected to the Harrier. The on board reset logic must not generate any
reset loops. When the Harrier is used on a Processor PCI Mezzanine Card
(PPMC), the RSTO_ signal may be connected to the RESET_OUT# signal
on the PPMC connector. The Harrier always keeps the RSTO_ signal
asserted for 100 µs after the reset inputs are negated.

The Harrier provides support for an external reset switch that can be
connected to the RSTSW_ input. The RSTSW_ input is debounced and has
a three second delay. The RSTSW_ signal must be asserted for three
seconds before the RSTO_ signal is generated. The three second delay is
included to allow the RSTSW_ and the ABTSW_ (abort switch) signals to
be connected together. This allows a single switch to be used for the abort
and reset functions. When the switch is pressed, an abort interrupt is
generated and if the switch is held for three seconds, the RSTO_ signal is
asserted.

The Harrier provides an auxiliary reset input signal AUXRST_. The
AUXRST_ input allows other reset sources on the board to be combined
with the Harrier’s internal reset sources. For example, a watchdog timer
output from the Harrier can be connected to the AUXRST_ input.

Software can initiate a reset out signal by setting the reset out bit
(XCSR.MCSR.RSTOUT). The reset out bit will remain asserted until it is
reset by the RST_ signal.

When the Harrier receives a reset in signal (RST_), it saves the state of
reset out bit, reset switch and auxiliary reset input. Software can determine
the source of the reset by reading the bits in the XCSR.GCSR register.

PPMC Features
The Harrier includes several signals for use in the PPMC environment.
These are the SCON_, EREADY, INT[A:D]_ and BRDFL_ signals. The
SCON_ signal is an input signal that can be connected to the MONARCH#
signal on the PPMC connector. This allows software to read the state of the
MONARCH# signal.

Hardware Configuration

http://www.motorola.com/computer/literature 2-133

2The EREADY signal is an open drain bi-directional signal that can be
connected to the EREADY signal on the PPMC connector. When PURST_
or RST_ is asserted, the EREADY bit is cleared and the EREADY signal
is driven low. This indicates that the board is not ready. After the software
has initialized the board, the EREADY bit can be set. When all the boards
are ready, the EREADY signal is pulled high. The software can check the
status of the EREADY signal by reading the EREADYS bit.

Hardware Configuration
Harrier has the ability to perform custom hardware configuration to
accommodate different system requirements. It has several functions that
may be optionally enabled or disabled using passive hardware external to
the Harrier itself. Normally, pullup and pulldown resistors are used to
configure the state of the XAD bus while PURST_ is asserted. The
selection process occurs when PURST_ is asserted and the configuration
values are latched when PURST_ is negated. All of the sampled pins are
cascaded with several layers of registers to eliminate problems with hold
time. The following table summarizes the Harrier’s hardware
configuration options. The power up reset timing requirements are shown
in the figure following this table.

Table 2-24. Harrier Hardware Configuration

Function Sample
Pin(s)

Sampled
State

Description Timing
Group

PCI 64-bit Enable REQ64_ 0 64-bit PCI Bus PCI
Spec1 32-bit PCI Bus

Xport Hawk Data
Compatibility Mode,
XCSR.XPGC.HDM

XAD[30] 0 Disabled 1

1 Enabled

UART Clock Select XAD[29] 0 External 1

1 Internal

PCI Slave Configuration
Holdoff, XCSR.BPCS.CSH

XAD[28] 0 Normal access 1

1 No access, disconnect
with retry

2-134 Computer Group Literature Center Web Site

Functional Descriptions

2

PCI Slave Configuration
Mask, XCSR.BPCS.CSM

XAD[27] 0 Unlimited access 1

1 Access limited to 64 byte
header

PowerPC Processor
Holdoff, XCSR.BXCS.P1H
and XCSR.BXCS.P0H

XAD[26] 0 Processors 0 and 1 not
held off

1

1 Processors 0 and 1 held
off

SDRAM External Register,
XCSR.SDTC.SDER

XAD[25] 0 No external registers in
series for

BAx, RAx, RAS_,
CAS_, WE_

1

1 External registers in
series for

BAx, RAx, RAS_,
CAS_, WE_

Response to Unmapped
Address-Only Cycles See
XCSR.GCSR.AOAO (See
"Global Control and Status
Register" in next Chapter 3)

XAD[24] 0 No Response from
Harrier

1

1 Response from Harrier

Generic Power Up Status
XCSR.GCSR.PUST3

XAD[23] 0 Cleared 1

1 Set

Generic Power Up Status
XCSR.GCSR.PUST2

XAD[22] 0 Cleared 1

1 Set

Generic Power Up Status
XCSR.GCSR.PUST1

XAD[21] 0 Cleared 1

1 Set

Generic Power Up Status
XCSR.GCSR.PUST0 See
"Global Control and Status
Register" in next Chapter 3.

XAD[20] 0 Cleared 1

1 Set

I2O IOP Agent XAD[19] 0 False 1

1 True

Table 2-24. Harrier Hardware Configuration (Continued)

Function Sample
Pin(s)

Sampled
State

Description Timing
Group

Hardware Configuration

http://www.motorola.com/computer/literature 2-135

2

Internal PCI Arbiter XAD[18] 0 Disabled 1

1 Enabled

Internal PowerPC Arbiter XAD[17] 0 Disabled 1

1 Enabled

XCSR Register Group Base
Address

XAD[16:1
5]

00 Base Address =
$FEFF0000

1

01 Base Address =
$FEFF1000

10 Base Address =
$FEFF2000

11 Base Address =
$FEFF3000

PowerPC:PCI Clock Ratio XAD[14:1
2]

000 Reserved 1

100 1:1

010 2:1

110 3:1

001 3:2

101 Reserved

011 5:2

111 Reserved

Xport Channel 0 Data
Width, XCSR.XPAT0.DW

XAD[11:1
0]

00 8-Bit Width 1

01 16-Bit Width

10 32-Bit Width

11 16-Bit Width, Hawk
compatibility

mode

Xport Channel 0 as Reset
Vector Source

XAD[9] 0 Disabled 1

1 Enabled (Only if
Channels 1-3 are

Disabled)

Table 2-24. Harrier Hardware Configuration (Continued)

Function Sample
Pin(s)

Sampled
State

Description Timing
Group

2-136 Computer Group Literature Center Web Site

Functional Descriptions

2

Xport Channel 1 Data
Width, XCSR.XPAT1.DW

XAD[8:7] 00 8-Bit Width 1

01 16-Bit Width

10 32-Bit Width

11 16-Bit Width, Hawk
compatibility

mode

Xport Channel 1 as Reset
Vector Source

XAD[6] 0 Disabled 1

1 Enabled (Only if
Channels 2-3 are

Disabled)

Xport Channel 2 Data
Width, XCSR.XPAT2.DW

XAD[5:4] 00 8-Bit Width 1

01 16-Bit Width

10 32-Bit Width

11 16-Bit Width, Hawk
compatibility

mode

Xport Channel 2 as Reset
Vector Source

XAD[3] 0 Disabled 1

1 Enabled (Only if Channel
3 is

Disabled)

Xport Channel 3 Data
Width, XCSR.XPAT3.DW

XAD[2:1] 00 8-Bit Width 1

01 16-Bit Width

10 32-Bit Width

11 16-Bit Width, Hawk
compatibility

mode

Xport Channel 3 as Reset
Vector Source

XAD[0] 0 Disabled 1

1 Enabled

Table 2-24. Harrier Hardware Configuration (Continued)

Function Sample
Pin(s)

Sampled
State

Description Timing
Group

Hardware Configuration

http://www.motorola.com/computer/literature 2-137

2

Figure 2-34. Power Up Reset Timing - Timing Group 1

XAD[30:0]

PURST_

100 µs min.
0 ns min.

Valid

2-138 Computer Group Literature Center Web Site

Functional Descriptions

2

3-1

33Programming Model

Architectural Overview
The Harrier ASIC offers a variety of resources to the PowerPC and PCI
address spaces. The placement and sizing of these resources is highly
flexible, allowing the Harrier to support an unlimited number of possible
resource mapping schemes. The figure below summarizes all of the
resources offered by the Harrier.

Table 3-1. Harrier PowerPC and PCI Resources

Address
Space

Resource Size Relocation Page

Options Mechanism

PowerPC Control and
Status Registers

(XCSR)

1 KBytes One of four
selectable base
addresses:

$FEFF0000

$FEFF1000

$FEFF2000

$FEFF3000

Determined at
power-up reset by
sampling RD[x:y]
pins

3-3

SDRAM Banks
A thru H

Variable from
32MB to

2GB

Any integer
multiple of the
corresponding
bank size.

SDRAM Bank
Addressing
registers(SDBAx)
within SDRAM
Interface function
of XCSR

3-30

PCI Memory or
IO Space, Ports

0 thru 3

Variable in
multiples of
64K Byte

Any 64K Byte
boundary in
PowerPC space,
translated to any
64K Byte
boundary in PCI
space

Outbound
Translation
registers (OTADx
and OTOFx)
within PowerPC
to PCI Bridge
function of XCSR

3-19

3-2 Computer Group Literature Center Web Site

Programming Model

3
PCI

Configuration
Space

(XCFS)

Entire
Configuration

Space

Fixed
CONFIG_ADDR
and
CONFIG_DATA
registers within
port 3 to PCI IO
space

None 3-19

MPIC

(XMPI)

256 KBytes Any 256K Byte
boundary

MBAR register
within MPIC
function of XCSR

3-14

Xport

Channels

0 thru 3

Variable in
multiples of
64KBytes

Any integer
multiple of the
corresponding
device size (down
to 64KBytes

XPARx, XPATx
registers within
Xport function of
XCSR

3-150

PCI Configuration
Space

(PCFS)

256 Bytes Any Device
Number

IDSEL pin 3-21

PowerPC
Memory Space,
Ports 0 thru 3

Variable
binary

progression
from 4K

Bytes to 2G
Bytes

Any
corresponding
block size
boundary in PCI
space, translated
to any 64K Byte
boundary in
PowerPC space

Inbound
Translation
registers (ITBAx,
ITOFx, and
ITSZx) within
PCFS

3-21

Message
Passing Group

(PMEP)

4K Bytes Any 4K Byte
boundary

MPBAR register
within PCFS

3-21

Table 3-1. Harrier PowerPC and PCI Resources (Continued)

Address
Space

Resource Size Relocation Page

Options Mechanism

Register Group Summary

http://www.motorola.com/computer/literature 3-3

3

Register Group Summary
The following subsections describe the Harrier register groups in detail.

PowerPC Control and Status (XCSR) Register Group

The PowerPC Control and Status Register Group consumes a 1K byte
block and contains control and status registers specific to the Harrier. This
group resides within PowerPC address space and is byte, halfword, word,
and doubleword accessible.

It is possible to place the base address of the XCSR Register Group at either
$FEFF0000, $FEFF1000, $FEFF2000, or $FEFF3000. Having multiple
choices for a base address allows the system designer to connect multiple
Harrier ASICs in one system, and thus multiple PCI busses to one
PowerPC bus. Please refer to the section titled Hardware Configuration on
page 2-133 for more information.

Generally the processor is responsible for maintaining this group of
registers. It is possible however to setup an Inbound Translation Function
that would place this register group as a PCI memory mapped resource
thereby allowing access by external PCI masters.

This Register Group contains a reflection of the Harrier’s PCI
Configuration Space. A detailed description of each reflected
configuration space register within the XCSR Register Group may be
found within the description of the PCFS Register Group.

The Harrier’s PowerPC Control and Status Register Group is shown in the
following table.

3-4 Computer Group Literature Center Web Site

Programming Model

3

Table 3-2. PowerPC Control and Status (XCSR)
Register Group

Function Offset Bits

0 7 8 15 16 23 24 31

Misc IDs $000 VENI DEVI

$004 REVI

$008

$00C

Control
and

Status

$010 GCSR

$014 XCFR

$018 CT32

$01C MCSR

General

Purpose
Registers

$020 GPRG0

$024 GPRG1

$028 GPRG2

$02C GPRG3

$030 GPRG4

$034 GPRG5

$038

$03C

Exceptions $040 FEEN

$044 FEST

$048 FEMA

$04C FECL

$050 EEEN

$054 EEST

$058 EECL

$05C EEINT

$060 EEMCK0

$064 EEMCK1

Register Group Summary

http://www.motorola.com/computer/literature 3-5

3
Error

Diagnostics

$068

$06C EDEI

$070 EXAD

$074 EXAT

$078 EPAD

$07C EPAT

Watchdog

Timers

$080 WT0C

$084 WT0S

$088 WT1C

$08C WT1S

Arbiters $090 PARB

$094 XARB

$098

...etc...

$0BC

UARTs $0C0 RTDL0 IEDH0 IDFC0 LCTL0

$0C4 MCTL0 LSTA0 MSTA0 SCRT0

$0C8 RTDL1 IEDH1 IDFC1 LCTL1

$0CC MCTL1 LSTA1 MSTA1 SCRT1

$0D0 UCTL UPS

$0D4

$0D8

$0DC

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

3-6 Computer Group Literature Center Web Site

Programming Model

3
MPIC $0E0 MBAR

$0E4 MCSR MIRS

$0E8

...etc...

$0FC

SDRAM
Interface

Control $100 SDGC

$104 SDTC

$108

$10C

Address $110 SDBAA

$114 SDBAB

$118 SDBAC

$11C SDBAD

$120 SDBAE

$124 SDBAF

$128 SDBAG

$12C SDBAH

Scrub $130 SDSC

$134 SDSA

$138

$13C

 Error
Log

$140 SDSES

$144 SDSEA

$148 SDMES

$14C SDMEA

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

Register Group Summary

http://www.motorola.com/computer/literature 3-7

3
Xport Address

&
Attribute

s

$150 XPAR0

$154 XPAT0

$158 XPAR1

$15C XPAT1

$160 XPAR2

$164 XPAT2

$168 XPAR3

$16C XPAT3

General
Control

$170 XPGC

$174

$178

$17C

I2C0 $180 I2PS0

$184 I2CO0

$188

$18C I2TD0

$190

$194 I2ST0

$198

$19C I2RD0

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

3-8 Computer Group Literature Center Web Site

Programming Model

3
I2C1 $1A0 I2PS1

$1A4 I2CO1

$1A8

$1AC I2TD1

$1B0

$1B4 I2ST1

$1B8

$1BC I2RD1

Reserved $1C0

...etc...

$1FC

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

Register Group Summary

http://www.motorola.com/computer/literature 3-9

3
PowerPC

to PCI
Bridge

Control
and

Status

$200 BPCS

$204 BXCS

$208

$20C

Interrupt
Ack

$210 PIAC

$214

$218

$21C

Address

Translati
on

$220 OTAD0

$224 OTOF0 OTAT0

$228 OTAD1

$22C OTOF1 OTAT1

$230 OTAD2

$234 OTOF2 OTAT2

$238 OTAD3

$23C OTOF3 OTAT3

$240

$244

$248 PSAD

$24C PSOF PSSZ PSAT

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

3-10 Computer Group Literature Center Web Site

Programming Model

3
DMA $250 DCTL

$254 DSTA

$258

$25C

$260 DSAD

$264 DSAT

$268 DDAD

$26C DDAT

$270 DNLA

$274 DCNT

$278

$27C

$280 DCSA

$284 DCDA

$288 DCLA

$28C

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

Register Group Summary

http://www.motorola.com/computer/literature 3-11

3
Message
Passing

Generic $290 MGOM0

$294 MGOM1

$298 MGOD

$29C

$2A0 MGIM0

$2A4 MGIM1

$2A8 MGID

$2AC

$2B0 MGIDM

$2B4

$2B8

$2BC

I2O $2C0 MIOFH

$2C4 MIOFT

$2C8 MIOPH

$2CC MIOPT

$2D0 MIIFH

$2D4 MIIFT

$2D8 MIIPH

$2DC MIIPT

$2E0 MICT

$2E4 MIQB

$2E8

$2EC

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

3-12 Computer Group Literature Center Web Site

Programming Model

3
Reserved $2F0

$2F4

$2F8

$2FC

PowerPC
to PCI
Bridge

Reflected
PCI

Config
Space

$300 VENI DEVI

$304 CMMD STAT

$308 REVI CLC

$30C CLS MLT HDT

$310 MPBAR

$314 ITBAR0

$318 ITBAR1

$31C ITBAR2

$320 ITBAR3

$324

$328

$32C SUBI SUBV

$330

$334

$338

$33C INTL INTP MNGN MXLA

$340

$344 MPAT

$348 ITSZ0 ITOF0

$34C ITAT0

$350 ITSZ1 ITOF1

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

Register Group Summary

http://www.motorola.com/computer/literature 3-13

3
PowerPC

to PCI
Bridge

Reflected
PCI

Config
Space

$354 ITAT1

$358 ITSZ2 ITOF2

$35C ITAT2

$360 ITSZ3 ITOF3

$364 ITAT3

...etc...

$380 PSTA

$384 PGPR

...etc...

$3FC

$380 PSTA

$384 PGPR

...etc...

$3FC

General Purpose
Memory

$400

$404

...etc...

$BFC

Table 3-2. PowerPC Control and Status (XCSR)
Register Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

3-14 Computer Group Literature Center Web Site

Programming Model

3

PowerPC Multi-Processor Interrupt Controller (XMPI)
Register Group

The PowerPC Multi-Processor Interrupt Controller (XMPI) Register
Group is a relocatable 256K Byte block of registers pertaining to the
MPIC function. The base address of this group is programmable using the
MBAR register within the XCSR Register Group.

The registers in the Harrier PowerPC Multi-Processor Interrupt Controller
Register Group are listed in the following table, along with each register’s
bit span and offset location.

Register Group Summary

http://www.motorola.com/computer/literature 3-15

3

Table 3-3. PowerPC Multi-Processor Interrupt Controller (XMPI) Register
Group

Function Offset Bits

0 7 8 15 16 23 24 31

MPIC Misc. $01000 FREP

$01010

$01020 GLBC

$01030

...etc...

$01070

$01080 VENI

$01090 PINT

IPI $010A0 IPVP0

$010B0 IPVP1

$010C0 IPVP2

$010D0 IPVP3

Spur $010E0 SPVE

Timers $010F0 TIFR

$01100 TICC0

$01110 TIBC0

$01120 TIVP0

$01130 TIDE0

$01140 TICC1

$01150 TIBC1

$01160 TIVP1

$01170 TIDE1

$01180 TICC2

$01190 TIBC2

$011A0 TIVP2

$011B0 TIDE2

3-16 Computer Group Literature Center Web Site

Programming Model

3
MPIC Timers $011C0 TICC3

$011D0 TIBC3

$011E0 TIVP3

$011F0 TIDE3

External $10000 EXVP0

$10010 EXDE0

$10020 EXVP1

$10030 EXDE1

$10040 EXVP2

$10050 EXDE2

$10060 EXVP3

$10070 EXDE3

$10080 EXVP4

$10090 EXDE4

$100A0 EXVP5

$100B0 EXDE5

$100C0 EXVP6

$100D0 EXDE6

$100E0 EXVP7

$100F0 EXDE7

$10100 EXVP8

$10110 EXDE8

$10120 EXVP9

$10130 EXDE9

$10140 EXVP10

$10150 EXDE10

Table 3-3. PowerPC Multi-Processor Interrupt Controller (XMPI) Register
Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

Register Group Summary

http://www.motorola.com/computer/literature 3-17

3
MPIC External $10160 EXVP11

$10170 EXDE11

$10180 EXVP12

$10190 EXDE12

$101A0 EXVP13

$101B0 EXDE13

$101C0 EXVP14

$101D0 EXDE14

$101E0 EXVP15

$101F0 EXDE15

Internal $10200 IFEVP

$10210 IFEDE

$10220 IEEVP

$10230 IEEDE

Reserved $10240

...etc...

$20020

CPU 0 $20040 P0IPD0

$20050 P0IPD1

$20060 P0IPD2

$20070 P0IPD3

$20080 P0CTP

$20090

$200A0 P0IAC

$200B0 P0EOI

Table 3-3. PowerPC Multi-Processor Interrupt Controller (XMPI) Register
Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

3-18 Computer Group Literature Center Web Site

Programming Model

3
MPIC Reserved $200C0

...etc...

$21020

CPU 1 $21040 P1IPD0

$21050 P1IPD1

$21060 P1IPD2

$21070 P1IPD3

$21080 P1CTP

$21090

$210A0 P1IAC

$210B0 P1EOI

Reserved $210C0

...etc...

$3FFFF

Table 3-3. PowerPC Multi-Processor Interrupt Controller (XMPI) Register
Group (Continued)

Function Offset Bits

0 7 8 15 16 23 24 31

Register Group Summary

http://www.motorola.com/computer/literature 3-19

3

PowerPC to PCI Configuration Space (XCFS) Register Group

The generation of PCI configuration cycles is supported by the Harrier
using Configuration Mechanism #1 as specified in PCI Local Bus
Specification 2.1. This mechanism is tied to the Outbound Translation
Function 3. This translation function only offers PCI I/O space to PowerPC
address space mapping. The CONFIG_ADDRESS and
CONFIG_DATA registers are located within this translation space at the
first occurrence (i.e. closest to the base address) of the $0CF8 and $0CFC
offsets.

The following table shows the location of the CONFIG_ADDRESS and
CONFIG_DATA registers with respect to the PowerPC bus. Note that
since these registers are considered PCI resources, Endian conversion rules
are applicable. This table represents these registers in Big Endian mode.

3-20 Computer Group Literature Center Web Site

Programming Model

3

Table 3-4. PowerPC to PCI Configuration Space (XCFS) Register Group

Function Offset Bits

0 7 8 1
5

1
6

2
3

2
4

3
1

PowerPC
to PCI
Bridge

PCI I/O
Space

$0000

...etc...

$0CF4

Config

Mechanis
m

$0CF8 CONFIG_ADDRESS

$0CFC CONFIG_DATA

PCI I/O
Space

$0D00

...etc...

$FFFF

Register Group Summary

http://www.motorola.com/computer/literature 3-21

3

PCI Configuration Space (PCFS) Register Group

The PCI Configuration Space (PCFS) Register Group is a PCI compliant
single function configuration register group. This 256 byte block contains
various control and status registers specific to the Harrier, including base
address registers for the Inbound Translation Functions and for the PMEP
Register Group. The external connection of IDSEL to an AD line
establishes the connection between Harrier’s device number and it’s
configuration space.

The PCI Configuration Register Group is compliant with the configuration
register set described in the PCI Local Bus Specification, Revision 2.1. The
Harrier is a single function device, and consequently offers a Single
Function Header Type 00 for Function 0.

All write operations to reserved registers are treated as no-ops. That is, the
access is completed normally on the bus and the data is discarded. Read
accesses to reserved or un-implemented registers are completed normally
and a data value of 0 is returned.

A reflection of this Register Group is contained within the XCSR Register
Group. The description of each register within the PCFS Register Group
will be accompanied by the appropriate register from the reflected
configuration space within the XCSR Register Group.

The Harrier PCI Configuration Space Register Group is shown in the
following table.

3-22 Computer Group Literature Center Web Site

Programming Model

3

Table 3-5. PCI Configuration Space (PCFS) Register Group

Function Bits Offset

31 24 23 16 15 8 7 0

PowerPC
to PCI
Bridge

Header DEVI VENI $00

STAT CMMD $04

CLAS REVI $08

HEAD MLAT CLSZ $0C

MPBAR $10

ITBAR0 $14

ITBAR1 $18

ITBAR2 $1C

ITBAR3 $20

$24

$28

SUBI SUBV $2C

$30

$34

$38

MXLA MNGN INTP INTL $3C

Address
Translation

$40

MPAT $44

ITOF0 ITSZ0 $48

ITAT0 $4C

ITOF1 ITSZ1 $50

Register Group Summary

http://www.motorola.com/computer/literature 3-23

3

PCI Message Passing (PMEP) Register Group

The Harrier provides a group of PCI Memory mapped resources for
Message Passing. This group is a 4K Byte block that contains both I2O and
generic message passing functions. The I2O components consists of
inbound and outbound circular queue ports and interrupt status/control
registers. These components are fully compliant with the Intelligent I/O
(I2O) Architecture Specification. The generic components are the PCI bus
mapped complimentary equivalents to the Message Passing functions
found within the XCSR Register Group.

The mapping of this group is controlled by the MPBAR register within the
PCFS Register Group.

The Harrier PCI Message Passing Register Group is shown in the
following table.

ITAT1 $54

ITOF2 ITSZ2 $58

ITAT2 $5C

ITOF3 ITSZ3 $60

ITAT3 $64

Reserved ...etc...

Status PSTA $80

GP Reg PGPR $84

Reserved ...etc...

$FF

Table 3-5. PCI Configuration Space (PCFS) Register Group (Continued)

Function Bits Offset

31 24 23 16 15 8 7 0

3-24 Computer Group Literature Center Web Site

Programming Model

3

Table 3-6. PCI Message Passing (PMEP) Register Group

Function Bits Offset

31 24 23 16 15 8 7 0

Message

Passing

I2O $000

...etc...

$02C

MIST $030

MIMS $034

$038

$03C

MIIQ $040

MIOQ $044

$048

...etc...

$0FC

Generic MGOM0 $100

MGOM1 $104

MGOD $108

$10C

MGIM0 $110

MGIM1 $114

MGID $118

$11C

MGST $120

MGMS $124

MGODM $128

$12C

Reserved $130

...etc...

$FFF

SDRAM Interface

http://www.motorola.com/computer/literature 3-25

3

SDRAM Interface
All of the registers for this function are located within PowerPC address
space as a part of the XCSR Register Group.

For a functional description, refer to the section titled SDRAM Interface on
page 2-4.

SDRAM General Control Register

The SDRAM General Control Register (SDGC) affects functions that
apply to all banks of SDRAM. The fields in the SDGC register are defined
as follows:

MXRR: Multiply the Refresh Rate. When set, the Harrier increases
the effective refresh rate as shown in the table below. For an example
of programming these bits, see the section titled Optional Method for
Sizing SDRAM on page 5-9.

Offset XCSR + $100

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDGC SDRAM
Interface

M
X

R
R

D
R

E
F

D
E

R
C

R
W

C
B

E
N

R
V

S
W

V
T

Operation

R R
R

/W
R

/W R
R

/W
R

/W
R

/W
R

/W R R R
R

/W R R R

R R

Reset

0 0 0-
P

1-
P 0 0 1 0 0 0 0 0 0 0 0 0

$00 $00

Table 3-7. MXRR Control of Refresh Rate

MXRR 4-Row Refresh
Interval

Effective
Refresh Rate

00 62us 1 Row/15.5us

01 31us (default) 1 Row/7.75us

10 15us 1 Row/3.75us

11 7us 1 Row/1.75us

3-26 Computer Group Literature Center Web Site

Programming Model

3

DREF: Disable Refresh. When set, the Harrier stops refreshing
SDRAM. When cleared, the Harrier resumes refreshing SDRAM.
This bit should not be set during normal SDRAM operation.

DERC: Disable Error Correction. When set, the Harrier does not
correct SDRAM single-bit errors. When cleared, the Harrier does
correct single-bit errors.

RWCB: Read/Write Checkbits. When set, the Harrier alters
SDRAM accesses so that they read/write checkbit data rather than
normal data. When cleared, the Harrier does not alter SDRAM
accesses. The following table gives an example.

ENRV: Enable Reset Vector. When set, the Harrier redirects PowerPC
accesses in the reset vector address range so that they go to whichever
SDRAM bank is mapped at $00000000. When cleared, the Harrier
does not redirect accesses in the reset vector address range.

SWVT: Swap Vector table. When set, the Harrier selectively swaps
the first and second 16KBytes of whichever bank of SDRAM is
mapped at $00000000. When cleared, the Harrier does not swap
SDRAM. The selection for swapping is that the Harrier swaps when

Table 3-8. SDTC RWCB Example

PowerPC
Address

Unaltered view of
Data

(RWCB cleared)

Altered view of Data
(RWCB set)

Bits 0-63 Bits 0-7 Bits 8-63

$00000000 $00000000 Checkbits for
$0000000

Undefined

$00000008 $01234567 Checkbits for
$01234567

Undefined

$00000010 $AAAAAAAA Checkbits for
$AAAAAAAA

Undefined

$00000018 $BBBBBBBB Checkbits for
$BBBBBBBB

Undefined

...

SDRAM Interface

http://www.motorola.com/computer/literature 3-27

3

this bit is set and when the current PowerPC master is identified by the
Harrier as CPU 1. See XCSR.GCSR.MID in the section titled Global
Control and Status Register on page 3-194.

SDRAM Timing Control Register

The SDRAM Timing Control Register (SDTC) affects the timing for all
banks of SDRAM. The fields within the SDTC register are defined as
follows:

CL3: Cas Latency 3. When set, the Harrier accesses SDRAM
assuming a cas latency of 3. When cleared, the Harrier accesses
SDRAM assuming a cas latency of 2. Note that the Harrier performs a
“register set” command to SDRAM anytime software changes CL3.
Also note that power-up reset is the only kind of reset that affects this
bit.

TRC: SDRAM timing parameter tRC. TRC determines the
minimum number of CLK cycles the Harrier uses to satisfy the
SDRAM’s tRC parameter. The following table shows the encoding.

Offset XCSR + $104

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDTC SDRAM
Control

C
L

3

T
R

C

T
R

A
S

W
D

P
L

T
D

P

T
R

P

T
R

C
D

S
D

E
R

Operation

R R R
R

/W R
R

/W
R

/W
R

/W R R
R

/W
R

/W R R
R

/W
R

/W R R R
R

/W R R R
R

/W R R R R R R R
R

/W

Reset

0 0 0 1-
P 0 0-
P

1-
P

1-
P 0 0 1-
P

1-
P 0 0 1-
P

1-
P 0 0 0 1-
P 0 0 0 1-
P 0 0 0 0 0 0 0 V

-P

3-28 Computer Group Literature Center Web Site

Programming Model

3

.

Note Power-up reset is the only type of reset that affects this field.

TRAS: SDRAM timing parameter tRAS. This field determines the
minimum number of CLK cycles the Harrier uses to satisfy the
SDRAM’s tRAS parameter. The table below shows the encoding. Note
that power-up reset is the only kind of reset that affects this field.

WDPL: Wait on tDPL. When set, the Harrier always waits at least 4
CLK’s after the write command portion of a single-beat write before
precharging SDRAM. When cleared, the Harrier does not impose the
wait. Software should always set WDPL to 1. Note that power-up reset
is the only kind of reset that affect this bit.

Table 3-9. SDTC TRC Encoding

TRC Time for tRC

000 8 CLK’s

001 9 CLK’s

010 10 CLK’s

011 11 CLK’s

100 reserved

101 reserved

110 6 CLK’s

111 7 CLK’s

Table 3-10. SDTC TRAS Encoding

TRAS Time for tRAS

00 4 CLK’s

01 5 CLK’s

10 6 CLK’s

11 7 CLK’s

SDRAM Interface

http://www.motorola.com/computer/literature 3-29

3

TDPL: SDRAM timing parameter tDPL. TDPL determines the
minimum number of CLK cycles the Harrier uses to satisfy the
SDRAM’s tDPL parameter. The following table shows the bit
encoding. Note that power-up reset is the only kind of reset that affects
this bit.

TRP: SDRAM timing parameter tRP. TRP determines the
minimum number of CLK cycles the Harrier uses to satisfy the
SDRAM’s tRP parameter. The table below shows the bit encoding.
Note that power-up reset is the only kind of reset that affects this bit.

TRCD: SDRAM timing parameter tRCD. TRCD determines the
minimum number of CLK cycles the Harrier uses to satisfy the
SDRAM’s tRCD parameter. The table below shows the bit encoding.
Note that power-up reset is the only kind of reset that affects this bit.

SDER: SDRAM External Registers or Buffers. When SDER is set,
the Harrier increases the setup time for SDRAM command/address to
CS by one CLK period. Note that SDER initializes at power-up reset
to match the values on a certain signal pin. Refer to the section titled
Hardware Configuration on page 2-133 for more information.

Table 3-11. SDTC TDPL Encoding

TDPL Time for tDPL

0 1 CLK’s

1 2 CLK’s

Table 3-12. SDTC TRP Encoding

TRP Time for tRP

0 2 CLK’s

1 3 CLK’s

Table 3-13. SDTC TRCD Encodiing

TRCD Time for tRCD

0 2 CLK’s

1 3 CLK’s

3-30 Computer Group Literature Center Web Site

Programming Model

3

SDRAM Bank (A,B,C,D,E,F,G, and H) Addressing Registers

The SDRAM Bank Addressing Registers (SDBAA, SDBAB, SDBAC...)
provide base address, size, and enable for each corresponding SDRAM
bank (A,B,C...). The fields within the SDBAx registers are defined as
follows:

BASE: Bank Base Address. This field determines the bank’s base
address. The Harrier uses only those bits in BASE that correspond to
integer multiples of the bank’s size. Consequently, larger sized banks
do not use BASE’s lower significant bits.

SIZE: Bank Size. SIZE tells the Harrier the bank’s component
configuration and size. The table below shows SIZE’s encoding. Note
that power-up reset is the only kind of reset that affects this field.

Offset SDBA: XCSR + $110
SDBB: XCSR + $114
SDBC: XCSR + $118
SDBD: XCSR + $11C
SDBE: XCSR + $120
SDBF: XCSR + $124
SDBG: XCSR + $128
SDBH: XCSR + $12C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDBA’s SDRAM
AddressBASE SIZE

E
N

B

Operation R/W

R R R R

R/W

R R R R R R R
R

/W

R

Reset $00 0 0 0 0 $0-P 0 0 0 0 0 0 0 0 $00

SDRAM Interface

http://www.motorola.com/computer/literature 3-31

3

ENB: Bank Enable. When set, the Harrier allows PowerPC accesses to
the bank. When cleared, the Harrier disallows PowerPC accesses to the
bank. Note that ENB does not affect scrub accesses to the bank.

Table 3-14. SDBA SIZE Encoding

SIZE Component
configuration

Bank Size Components per
Bank

 Technology

0000 - 0MBytes - -

0001 4Mx16 32MBytes 5 64Mbit

0010 8Mx8 64MBytes 9 64Mbit

0011 8Mx16 64MBytes 5 128Mbit

0100 16Mx4 128MBytes 18 64Mbit

0101 16Mx8 128MBytes 9 128Mbit

0110 16Mx16 128MBytes 5 256Mbit

0111 32Mx4 256MBytes 18 128Mbit

1000 32Mx8 256MBytes 9 256Mbit

1001 32Mx16 256MBytes 5 512Mbit

1010 64Mx4 512MBytes 18 256Mbit

1011 64Mx8 512MBytes 9 512Mbit

1100 64Mx16 512MBytes 5 1Gbit

1101 128Mx4 1024MBytes 18 512Mbit

1110 128Mx8 1024MBytes 9 1Gbit

1111 256Mx4 2048MBytes 18 1Gbit

3-32 Computer Group Literature Center Web Site

Programming Model

3

SDRAM Scrub Control Register

The SDRAM Scrub Control Register (SDSC) controls the scrubber. The
fields within the SDSC register are defined as follows:

SCWE: Scrub Write Enable. When set, the Harrier writes corrected
data during scrubs that detect single-bit errors. When cleared, the
Harrier does not write during scrubs. Note that power-up reset is the
only kind of reset that affects this bit.

SCCNT: Scrub Counter. SCCNT increments each time the Harrier
completes a scrub of the entire SDRAM array. When SCCNT reaches
$3, it rolls over to $0 and continues. Note that power-up reset is the
only kind of reset that affects this field.

SCPA: Scrub Prescaler Adjust. SCPA determines the Harrier’s scrub
rate by setting the roll-over count for the scrub prescale counter. Each
time the Harrier performs a refresh burst, the scrub prescale counter
increments by one. When the scrub prescale counter reaches the value
stored in SCPA, it clears and resumes counting from 0. Note that when
SCPA is all 0’s, the scrub Prescale counter does not increment, which
disables scrubs from occurring. Since SCPA clears to 0’s at power-up
reset, scrubbing comes up disabled until software programs a non-zero
value into SCPA. Power-up reset is the only kind of reset that affects
this field.

Offset XCSR + $130

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDSC SDRAM
Scrubbing

S
C

W
E

S
C

C
N

T SCPA

Operation

R
/W R R R R R R R

R/W R R

Reset

0-
P 0 0 0 0 0 0-
P

0-
P $00-P $00 $00

SDRAM Interface

http://www.motorola.com/computer/literature 3-33

3

SDRAM Scrub Address Counter

The SDRAM Scrub Address Counter (SDSA) provides the scrub address
for all banks of SDRAM. SDSA’s one and only field is defined as follows:

SDSA: SDRAM Scrub Address. This field is the scrub address
counter. SDSA increments by eight each time the Harrier completes
one scrub to all banks. Bits 0, and 29-31 are always 0’s. When SDSA
reaches all $7fff fff8, it rolls over to 0 and continues counting. SDSA’s
most significant bits are meaningful only for those banks whose
SDRAM devices are large enough to require them. Note that power-up
reset is the only kind of reset that affects SDSA.

SDRAM Single-bit Error Status

Offset XCSR + $134

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDSA SDRAM
ScrubbingOperation R R/W R R R

Reset 0 $00000000-P 0 0 0

Offset XCSR + $140

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDSES SDRAM
Error

Logging
ESYN

E
O

S ESB SECNT

Operation R R R R R R R R R R/W R

Reset $00-P

0 0 0 0 0-
P

0-
P

0-
P

0-
P $00-P $00

3-34 Computer Group Literature Center Web Site

Programming Model

3

The SDRAM Single-bit Error Status Register (SDSES) provides status for
logged SDRAM single-bit errors. It also provides a single-bit-error
counter. The fields within the SDSES register are defined as follows:

ESYN: Error Syndrome. ESYN reflects the syndrome value at the
last logging of a single-bit error (refer to the "Error Exception Enable
Register" section further on in this chapter). Software can use ESYN
together with syndrome codes as listed in the "Data" section of the
following chapter to determine which bit was in error. Note that
power-up reset is the only kind of reset that affects this field.

EOS: Error On Scrub. EOS set indicates that the Harrier was
scrubbing at the last single-bit error logging. EOS cleared indicated
that the Harrier was not scrubbing.

ESB: Error Scrub Bank. ESB indicates which bank the scrubber was
accessing when/if the Harrier logged a scrub single-bit error. The
following table shows the encoding. Note that power-up reset is the
only kind of reset that affects this field.

SECNT: Single-bit Error Count. This field is the single-bit error
counter. Each time the Harrier detects a single-bit error SECNT
increments by one. SECNt always increments on detected single-bit
errors regardless of whether or not error logging is enabled. SECNT’s
rolling over from $FF to $00 generates a single-bit error counter

Table 3-15. SDSES.ESB Encoding

ESB Bank

000 A

001 B

010 C

011 D

100 E

101 F

110 G

111 H

SDRAM Interface

http://www.motorola.com/computer/literature 3-35

3

exception if so enabled (Refer to the section titled Error Exception
Enable Register on page 3-170). Note that power-up reset is the only
kind of reset that affects this field.

Note: When the Harrier reports a single bit error, software can use the
syndrome that was logged by Harrier to determine which bit was in
error. The following table shows the syndrome for each possible single
bit error.

Table 3-16. Syndrome Code Ordered by Bit in Error

Bit Syndrome Bit Syndrome Bit Syndrome Bit Syndrome Bit Syndrome

rd0 $4A rd16 $92 rd32 $A4 rd48 $29 ckd0 $01

rd1 $4C rd17 $13 rd33 $C4 rd49 $31 ckd1 $02

rd2 $2C rd18 $0B rd34 $C2 rd50 $B0 ckd2 $04

rd3 $2A rd19 $8A rd35 $A2 rd51 $A8 ckd3 $08

rd4 $E9 rd20 $7A rd36 $9E rd52 $A7 ckd4 $10

rd5 $1C rd21 $07 rd37 $C1 rd53 $70 ckd5 $20

rd6 $1A rd22 $86 rd38 $A1 rd54 $68 ckd6 $40

rd7 $19 rd23 $46 rd39 $91 rd55 $64 ckd7 $80

rd8 $25 rd24 $49 rd40 $52 rd56 $94

rd9 $26 rd25 $89 rd41 $62 rd57 $98

rd10 $16 rd26 $85 rd42 $61 rd58 $58

rd11 $15 rd27 $45 rd43 $51 rd59 $54

rd12 $F4 rd28 $3D rd44 $4F rd60 $D3

rd13 $0E rd29 $83 rd45 $E0 rd61 $38

rd14 $0D rd30 $43 rd46 $D0 rd62 $34

rd15 $8C rd31 $23 rd47 $C8 rd63 $32

3-36 Computer Group Literature Center Web Site

Programming Model

3

SDRAM Single-bit Error Address Register

The SDRAM Single-bit Error Status Register (SDSEA) reflects the
address present when the Harrier last logged a single-bit error. The
SDSEA’s one and only field is defined as follows:

SDSEA: SDRAM Single-bit Error Address. This field contains the
address of the last single-bit error logged by the Harrier (refer to the
section titled Error Exception Enable Register on page 3-170 for more
information). If the error was due to a PowerPC access, SDSEA
matches the value that was on PowerPC address signals 0-28. If the
error was due to a scrub, SDSEA matches the value that was in the
scrub address counter. Bits 29-31 are always 0’s. Note that power-up
reset is the only kind of reset that affects SDSEA.

SDRAM Multi-bit Error Status

The SDRAM Multi-bit Error Status Register (SDMES) provides status for
logged SDRAM multi-bit errors. SDMES’s one and only field is defined
as follows:

Offset XCSR + $144

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDSEA SDRAM
Error

Logging
Operation R R R R

Reset $00000000 P 0 0 0

Offset XCSR + $148

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDMES SDRAM
Error

Logging
ESB

Operation R R R R R R R R R R R

Reset $00

0 0 0 0 0 0-
P

0-
P

0-
P $00 $00

SDRAM Interface

http://www.motorola.com/computer/literature 3-37

3

ESB: Error Scrub Bank. ESB indicates which bank the scrubber was
accessing when/if the Harrier logged a scrub multi-bit error (refer to
the section titled Error Exception Enable Register on page 3-170). The
table on the previous page (SDSES.ESB Encoding) shows the
encoding. Note that power-up reset is the only kind of reset that affects
this field.

SDRAM Multi-bit Error Address Register

The SDRAM Multi-bit Error Address Register (SDMEA) reflects the
address present when the Harrier last logged a multi-bit error. SDMEA’s
one and only field is defined as follows:

SDMEA: SDRAM Multi-bit Error Address. This field contains the
address of the last multi-bit error logged by the Harrier (refer to the
section titled Error Exception Enable Register on page 3-170). If the
error was due to a PowerPC access, SDMEA matches the value that
was on PowerPC address signals 0-28. If the error was due to a scrub,
SDMEA matches the value that was in the scrub address counter. Bits
29-31 are always 0’s. Note that power-up reset is the only kind of reset
that affects SDMEA.

Offset XCSR + $14C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SDMEA SDRAM
Error

Logging
Operation R R R R

Reset $00000000 P 0 0 0

3-38 Computer Group Literature Center Web Site

Programming Model

3

PowerPC to PCI Bridge
The PowerPC to PCI Bridge has registers located within three register
groups. Most of the control and status is contained within the PowerPC
mapped XCSR Register Group. Processor access to PCI Configuration
Space is supported using PowerPC mapped registers within the XCFS
Register Group. Finally, a standard PCI Configuration Space interface is
provided within the PCFS Register Group.

XCSR Register Group

This section does not cover the reflected PCI Configuration Space
registers. Please refer to the section titled PCI Configuration Space
(PCFS) Register Group on page 3-21 for a detailed description of all XCSR
Register Group registers applicable to the reflected PCI Configuration
Space.

Bridge PCI Control and Status Register

The Bridge PCI Control and Status Register (BPCS) provides control and
status information associated with PCI functions. The fields within the
BPCS are defined as follows:

OFBR: Outbound Flush Before Read. If set, the Harrier guarantees
that all outbound write-posted transactions are completed before any
inbound read transactions are allowed to complete. If cleared, there is

Offset XCSR + $200

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name BPCS Control
and

Status

O
F

B
R

D
L

R
H

IL
M

R
C

D
R

Q

P
IM

C
S

M
C

S
H

P
64

Operation

R
/W

R
/W

R
/W

R
/W

R
/W R

R
/W

R
/W R R

R
/W

R
/W R R R R

R R

Reset 0 0 0 0 0 0 0 0 0 0 x x 0 0 0 x $00 $00

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-39

3

no correlation between these transaction types and their order of
completion. Please refer to the section titled "Transaction Ordering" in
the previous chapter for more information.

DLR: Disregard Latency Requirements. If set, the Harrier does not
honor PCI initial and subsequent latency requirements. If an access
exceeds these requirements, the Harrier does not initiate a disconnect
and inserts wait states as needed to complete a transaction. If cleared,
the Harrier complies with PCI latency requirements. Users are
strongly encouraged to leave the DLR field cleared. Please refer to the
section titled "PCI Slave" in the previous chapter for more
information.

HIL: Host Bridge Initial Latency. This field is only applicable if the
DLR field is cleared. If set, the Harrier implements a 32 clock (i.e.
cache hit) host bridge initial latency. If cleared, the Harrier implements
a 16 clock non-host bridge initial latency.

MRC: Maximum Retry Count. This field enables a 224 counter in
both the DMA and Bridge PCI masters that keep track of the number
of sequential retry attempts. If this field is enabled and the maximum
number of sequential retries is exceeded, then an error exception is
generated and the transaction is aborted. If this field is cleared, then
there is no limit to the number of retry attempts. Note that this field
must remain cleared to be fully PCI Local Bus compliant.

DRQ: Disregard REQ64_ Qualification. This field is used to modify
the qualifications that the PCI slave makes when determining whether
or not a transaction is considered part of a previously disconnected
delayed transaction. If this field is set, the PCI slave does not consider
the latched state of REQ64_ as part of the qualification. If the field is
cleared, then the state of REQ64_ must be matched exactly in order to
be qualified as the continuation of a delayed transaction. Note that this
field must remain cleared to be fully PCI Local Bus compliant.

3-40 Computer Group Literature Center Web Site

Programming Model

3

PIM: PCI Interrupt Mapping. These bits indicate which PCI
interrupt signal line a Harrier generated PCI interrupt is routed to. The
options available are shown in follwing table.

CSM: Configuration Space Mask. This field controls the visibility
of the Harrier’s PCI configuration space located above the predefined
64 byte header. Specifically, visibility is affected from offset $40 to
offset $FF within the PCFS Register Group. Access to these offsets
from within the XCSR Register Group are not affected by this field.

If set, writes to this range has no effect, and reads return all zeros. If
cleared, writes to and reads from this range occur in a normal fashion.

The default state of this bit is determined at the release of reset. Please
refer to the section titled Hardware Configuration on page 2-133 for
more information.

CSH: Configuration Space Holdoff. This field controls the visibility
of the Harrier’s PCI configuration space. The processor can use this
field to hold off accesses to the Harrier’s configuration space until after
the inbound address and attribute fields have been established.

If set, all attempts to access the Harrier’s configuration space results in
a disconnect-retry. The retry is always correct at the 16 clock
maximum initial latency for a non-host bridge device that has expired.
If cleared, writes to and reads from the Harrier’s configuration space
are completed as normal.

The default state of this bit is determined at the release of reset. Please
refer to the section titled Hardware Configuration on page 2-133 for
more information.

Table 3-17. BPCS PIM Encoding

PIM PCI Interrupt

00 INTA_

01 INTB_

10 INTC_

11 INTD_

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-41

3

P64: PCI 64-bit. If set, the Harrier is connected to a 64-bit PCI bus.
Please refer to the section titled Hardware Configuration on page
2-133 for more information on how this field gets set.

Bridge PowerPC Control and Status Register

The Bridge PowerPC Control and Status Register (BXCS) provides
control and status information associated with PowerPC functions. The
fields within the BXCS are defined as follows:

IFBR: Inbound Flush Before Read. If set, the Harrier guarantees
that all inbound write-posted transactions are completed before any
outbound read transactions are allowed to complete. If cleared, there
is no correlation between these transaction types and their order of
completion. Please refer to the section titled "Transaction Ordering" in
the previous chapter for more information.

BHG: Bus Hog. If set, the Harrier operates in Bus Hog mode. Bus
Hog mode means the Harrier continually requests the PowerPC bus for
the entire duration of each transfer. If cleared, the Harrier requests the
bus in a normal manner. Please refer to the section titled "PPC Master"
in the previous chapter for more information.

RSF: Read-Ahead Sync Flush. If set, a read-ahead session is closed
and the FIFO cleared if the Harrier detects a Sync cycle from the
processor responsible for originating the read-ahead. If cleared, the
read-ahead session remains open when a Sync is detected.

Offset XCSR + $204

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name BXCS Control
and

Status

IF
B

R
B

H
G

R
S

F
S

S
F

R
B

T

S
B

T

P
1H

P
0H

C
S

E

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R

R
/W

R
/W

R
/W R R R

R R

Reset

0 0 1 1 0 0 0 0 0 0 V
-L

V
-L 1 0 0 0

$00 $00

3-42 Computer Group Literature Center Web Site

Programming Model

3

SSF: Store-Gather Sync Flush. If set, a Store-Gather collection is
flushed if the Harrier detects a Sync cycle originating from the
processor responsible for a collection. If cleared, a collection is not
flushed when a Sync is detected.

RBT: Read-Ahead Backup Timer. This field specifies the maximum
time in processor clock cycles that may take place between qualified
reads when using read-ahead. Please refer to the section titled "Read
Ahead" in the previous chapter for more information. The options
available are shown in .the following table.

SBT: Store-Gather Backup Timer. This field specifies the maximum
time in processor clock cycles that may take place between collectable
writes when using Store-Gather. Please refer to the section titled PPC
Master on page 2-33 for more information. The options available are
shown in .the following table.

P1H: Processor 1 Holdoff. This field is used to hold processor 1 in a
reset state (HRST1_ asserted) following a local bus reset (RST_
asserted). This field may be used to allow a PCI master to program the
Harrier (using a wrapped back Inbound Translation Function) before
allowing the processor to start code execution.

Table 3-18. BXCS RBT Encoding

RBT Time Out Length

00 32 clocks

01 64 clocks

10 256 clocks

11 disabled

Table 3-19. BXCS SBT Encoding

SBT Time Out Length

00 32 clocks

01 64 clocks

10 256 clocks

11 disabled

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-43

3

If set, the HRST1_ signal is held in the asserted state. If cleared, the
state of the HRST1_ signal is determined RST_.

The default state of this bit is determined at the release of reset. Please
refer to the section titled Hardware Configuration on page 2-133 for
more information.

P0H: Processor 0 Holdoff. This field is used to hold processor 0 in a
reset state (HRST0_ asserted) following a local bus reset (RST_
asserted). This field may be used to allow a PCI master to program the
Harrier (using a wrapped back Inbound Translation Function) before
allowing the processor to start code execution.

If set, the HRST0_ signal will be held in the asserted state. If cleared,
the state of the SRST0_ signal is determined by RST_.

The default state of this bit is determined at the release of reset. Please
refer to the section titled Hardware Configuration on page 2-133 for
more information.

CSE: Copy-back Snarfing Enable. This field is used to enable snarfing
on a processor’s copy-back cycle. See the section titled Copyback
Snarfing on page 2-35 for more information. If set, copy-back snarfing
will be attempted for inbound read cycles. If cleared, snarfing will not
be attempted

PCI Interrupt Acknowledge Register

The PCI Interrupt Acknowledge Register (PIAC) is a read only register
that is used to initiate a single PCI Interrupt Acknowledge cycle. Any
single byte or combination of bytes may be read from, and the actual byte
enable pattern used during the read will be passed on to the PCI bus. Upon
completion of the PCI interrupt acknowledge cycle, the Harrier presents

Offset XCSR + $210

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name PIAC Interrupt
AcknowledgeOperation R

Reset $00000000

3-44 Computer Group Literature Center Web Site

Programming Model

3

the resulting vector information obtained from the PCI bus as read data.
The data from the PCI bus is swapped as described in the section titled
Endian Conversion on page 2-45.

Outbound Translation Address (0, 1 and 2) Registers

The Outbound Translation Address Registers (OTAD0, OTAD1, and
OTAD2) contain address information associated with the mapping of PCI
Memory or I/O space to PowerPC memory space. The fields within the
OTADx registers are defined as follows:

STA: Start. This field determines the start address of a particular
memory area on the PowerPC bus which will be used to access PCI
bus resources. The value of this field will be compared with the upper
16 bits of the incoming PowerPC address.

END: End. This field determines the end address of a particular
memory area on the PowerPC bus which will be used to access PCI
bus resources. The value of this field will be compared with the upper
16 bits of the incoming PowerPC address.

Offset OTAD0: XCSR + $220
OTAD1: XCSR + $228
OTAD2: XCSR + $230

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name OTADx Address
TranslationSTA END

Operation R/W R/W

Reset $0000 $0000

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-45

3

Outbound Translation Offset/Translation Attribute (0, 1 and 2) Registers

The Outbound Translation Offset Registers (OTOF0, OTOF1, and
OTOF2) contain offset information associated with the mapping of PCI
Memory or I/O space to PowerPC memory space. The OTOFx field
represents a 16-bit offset that is added to the upper 16 bits of the PowerPC
address to determine the PCI address used for outbound transfers. This
offset allows PCI resources to reside at addresses that would not normally
be visible from the PowerPC bus.

The Outbound Translation Attribute Registers (OTAT0, OTAT1, and
OTAT2) contain attribute information associated with the mapping of PCI
Memory or I/O space to PowerPC memory space. The fields within the
OTATx registers are defined as follows:

RXT: Read Any Threshold. This field sets a threshold for when read-
ahead prefetching will be resumed. If set, prefetching will resume once
the FIFO is half empty. If cleared, prefetching will resume once the
FIFO is completely empty. Please refer to the section titled FIFO
Tuning on page 2-41 for more information.

RXS: Read Any Size. This field is used by the Harrier to determine a
virtual FIFO size for outbound prefetch reads. The selection of a
virtual FIFO size affects the number of the initial prefetch read cycles
and the duration of the subsequent prefetch read cycles. Please refer to
the section titled FIFO Tuning on page 2-41 for more information.

Offset OTOF0/OTAT0: XCSR + $224
OTOF1/OTAT1: XCSR + $22C
OTOF2/OTAT2: XCSR + $234

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name OTOFx OTATx Address
Translation

R
X

T
R

X
S

E
N

A

W
P

E
S

G
E

R
A

E
M

E
M

IO
M

Operation R/W

R R R R R
R

/W
R

/W
R

/W
R

/W R R
R

/W
R

/W
R

/W
R

/W
R

/W

Reset $0000 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

3-46 Computer Group Literature Center Web Site

Programming Model

3

The encoding of this field is shown in the following table.

ENA: Enable. If set, the corresponding Outbound Translation
Function is enabled for read and write transactions.

WPE: Write Post Enable. If set, write posting is enabled for the
corresponding Outbound Translation Function.

SGE: Store-Gather Enable. If set, the corresponding Outbound
Translation Function will participate in Store-Gathering. If cleared, the
corresponding Outbound Translation Function will not participate in
Store-Gathering. This bit only has meaning if write posting is enabled.

RAE: Read-Ahead Enable. If set, the corresponding Outbound
Translation Function will participate in read-ahead. If cleared, the
corresponding Outbound Translation Function will not participate in
read-ahead.

MEM: Memory/IO. If set, the corresponding Outbound Translation
Function will generate transfers to or from PCI Memory space. If
cleared, the corresponding Outbound Translation Function will
generate transfers to or from PCI I/O space using the addressing mode
defined by the IOM field.

IOM: I/O Mode. If set, the corresponding Outbound Translation
Function will generate PCI I/O cycles using spread addressing as
defined in the section titled "Generating PCI Cycles" in the previous
chapter. If cleared, the corresponding Outbound Translation Function
will generate PCI I/O cycles using contiguous addressing. This field
only has meaning when the MEM bit is clear.

Table 3-20. OTATx RXS Encoding

RXS Virtual FIFO Size

Bytes Cache Lines

00 64 2

01 128 4

1x 256 8

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-47

3

Outbound Translation Address (3) Register

The Outbound Translation Address Register 3 (OTAD3) contains address
information associated with the mapping of PCI I/O space to PowerPC
memory space. OTAD3 (in conjunction with OTOF3 and OTAT3) is the
only register set that can be used to initiate an access to the PCI
CONFIG_ADDRESS ($80000CF8) and CONFIG_DATA
($80000CFC) registers. The power up value of OTAD3, OTOF3 and
OTAT3 are set to allow access to these special register spaces without
initializing the PowerPC Control Register Group. The fields within the
OTAD3 register are defined as follows:

STA: Start Address. This field determines the start address of a
particular memory area on the PowerPC bus which will be used to
access PCI bus resources. The value of this field will be compared with
the upper 16 bits of the incoming PowerPC address.

END: End Address. This field determines the end address of a
particular memory area on the PowerPC bus which will be used to
access PCI bus resources. The value of this field will be compared with
the upper 16 bits of the incoming PowerPC address.

Offset XCSR + $238

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name OTAD3 Address
TranslationSTA END

Operation R/W R/W

Reset XCSR = $FEFF0000 => $8000
XCSR = $FEFF1000 => $8080
XCSR = $FEFF2000 => $8100
XCSR = $FEFF3000 => $8180

XCSR = $FEFF0000 => $807F
XCSR = $FEFF1000 => $80FF
XCSR = $FEFF2000 => $817F
XCSR = $FEFF3000 => $81FF

3-48 Computer Group Literature Center Web Site

Programming Model

3

Outbound Translation Offset/Translation Attribute (3) Registers

The Outbound Translation Offset Register 3 (OTOF3) contains offset
information associated with the mapping of PCI I/O space to PowerPC
memory space. The OTOF3 field represents a 16-bit offset that is added to
the upper 16 bits of the PowerPC address to determine the PCI address
used for outbound transfers. This offset allows PCI resources to reside at
addresses that would not normally be visible from the PowerPC bus.

The Outbound Translation Attribute Register 3 (OTAT3) contains
attribute information associated with the mapping of PCI I/O space to
PowerPC memory space. The fields within the OTAT3 register are
defined as follows:

ENA: Enable. If set, the corresponding Outbound Translation
Function is enabled for read and write transactions.

WPE: Write Post Enable. If set, write posting is enabled for the
corresponding Outbound Translation Function.

IOM: I/O Mode. If set, the corresponding Outbound Translation
Function will generate PCI I/O cycles using spread addressing as
defined in the section titled Generating PCI Cycles on page 2-36. If
cleared, the corresponding Outbound Translation Function will
generate PCI I/O cycles using contiguous addressing.

Offset XCSR + $23C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name OTOF3 OTAT3 Address
Translation

E
N

A

W
P

E

IO
M

Operation R/W

R R R R R R R R
R

/W R R
R

/W R R R
R

/W

Reset XCSR = $FEFF0000 => $8000
XCSR = $FEFF1000 => $7F80
XCSR = $FEFF2000 => $7F00
XCSR = $FEFF3000 => $7E80

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-49

3

Passive Slave Address Registers

The Passive Slave Address Register (PSAD) control the mapping of the
passive slave function within the PowerPC memory space:

BASE: Base Address.These bits define the memory space base
address of the Passive slave translation function. Note that the actual
number of writable bits positions depends on the size of the resource
being offered. The size of a resource can be changed using the PSSZ
register. The previous table in this chapter titled PCI Message Passing
(PMEP) Register Group on page 3-23 shows the relationship between
resource size and the BASE field.

The PSAD decoder is disabled when BASE is all zeros.

Offset PSAD: XCSR + $248

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name PSAD Address
TranslationBASE

Operation R/W R R

Reset $00000 $0 $00

Table 3-21. BASE Encoding and Resource Size

Resource
Size

PSSZ Effects on BASE Field (XCSR Register Group)
“W” => Writable Bit Position
“0” => Fixed Zero Bit Position

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

4KB $00 W

8KB $01 W W W W W W W W W W W W W W W W W W W 0

16KB $02 W W W W W W W W W W W W W W W W W W 0 0

32KB $03 W W W W W W W W W W W W W W W W W 0 0 0

64KB $04 W W W W W W W W W W W W W W W W 0 0 0 0

128KB $05 W W W W W W W W W W W W W W W 0 0 0 0 0

256KB $06 W W W W W W W W W W W W W W 0 0 0 0 0 0

512KB $07 W W W W W W W W W W W W W 0 0 0 0 0 0 0

1MB $08 W W W W W W W W W W W W 0 0 0 0 0 0 0 0

2MB $09 W W W W W W W W W W W 0 0 0 0 0 0 0 0 0

3-50 Computer Group Literature Center Web Site

Programming Model

3

Passive Slave Offset/Translation Attribute Registers

The Passive Slave Offset Registers (PSOF) contain offset information
associated with the mapping of PowerPC Memory space to PCI memory
space. The PSOF field represents a 16-bit offset that is added to the upper
16 bits of the PowerPC address to determine the PCI address used for
outbound transfers. This offset allows PCI resources to reside at addresses
that would not normally be visible from the PowerPC bus.

4MB $0A W W W W W W W W W W 0 0 0 0 0 0 0 0 0 0

8MB $0B W W W W W W W W W 0 0 0 0 0 0 0 0 0 0 0

16MB $0C W W W W W W W W 0 0 0 0 0 0 0 0 0 0 0 0

32MB $0D W W W W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0

64MB $0E W W W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0

128MB $0F W W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

256MB $10 W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

512MB $11 W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1GB $12 W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2GB $13 W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Offset PSOF/PSAT: XCSR + $24c

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name PSOF PSSZ PSAT Address
Translation

E
N

A

S
G

E

Operation R/W R/W

R
/W R R R

R
/W R R R

Reset $0000 $00 0 0 0 0 0 0 0 0

Table 3-21. BASE Encoding and Resource Size (Continued)

Resource
Size

PSSZ Effects on BASE Field (XCSR Register Group)
“W” => Writable Bit Position
“0” => Fixed Zero Bit Position

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-51

3

The Passive Slave Size Registers (PSSZ) establish the size of a resource
offered by the Passive slave translation function. The value selected within
this register determines the characteristics of the PSAD registers. Valid
selections for a resource size are shown in the table below:

The Passive Slave Attribute Registers (PSAT) contain attribute
information associated with the mapping of PowerPC Memory space to
PCI memory space. The fields within the PSAT registers are defined as
follows:

ENA: Enable. If set, the corresponding Passive Slave Translation
Function is enabled for read and write transactions.

SGE: Store Gathering Enable. If set, the corresponding Passive
Slave Translation Function participates in Store-Gathering. If cleared
the corresponding Passive Slave Translation Function does not
participate in Store-Gathering.

Table 3-22. PSSZ Encoding

PSSZ Resource
Size

PSSZx Resource
Size

$00 4KB $0B 8MB

$01 8KB $0C 16MB

$02 16KB $0D 32MB

$03 32KB $0E 64MB

$04 64KB $0F 128MB

$05 128KB $10 256MB

$06 256KB $11 512MB

$07 512KB $12 1 GB

$08 1MB $13 2 GB

$09 2MB $14 - $FF Reserved

$0A 4MB

3-52 Computer Group Literature Center Web Site

Programming Model

3

XCFS Register Group

The following subsections describe the registers in the XCFS Register
Group.

CONFIG_ADDRESS Register

The description of the CONFIG_ADDRESS register is presented in two
perspectives: from the PCI bus (Little Endian bit ordering), and from the
PowerPC bus (Big Endian bit ordering). Note that the view from the PCI
bus is purely conceptual since there is no way to access the
CONFIG_ADDRESS register from the PCI bus.

Conceptual perspective from the PCI bus:

Perspective from the PowerPC bus:

Offset $CFB $CFA $CF9 $CF8

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name CONFIG_ADDRESS CONFIG
ADDRESS

E
N BUS DEV FUN REG

Operation

R
/W R R R R R R R

R/W R/W R/W R/W

R R
Reset 1 0 0 0 0 0 0 0 $00 $00 $0 $00 0 0

Offset $CF8 $CF9 $CFA $CFB

Bit (DH) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name CONFIG_ADDRESS CONFIG
ADDRESSREG DEV FUN BUS

E
N

Operation R/W

R R

R/W R/W R/W

R
/W R R R R R R R

Reset $00 0 0 $00 $0 $00 1 0 0 0 0 0 0 0

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-53

3

The register fields are defined as follows:

REG: Register Number.

Configuration Cycles: Identifies a target word within a target’s
configuration space. This field is copied to the PCI AD bus during the
address phase of a Configuration cycle.

Special Cycles: This field must be written with all zeros.

FUN: Function Number.

Configuration Cycles: Identifies a function number within a target’s
configuration space. This field is copied to the PCI AD bus during the
address phase of a Configuration cycle.

Special Cycles: This field must be written with all ones.

DEV: Device Number.

Configuration Cycles: Identifies a target’s physical PCI device
number. Refer to the section titled Generating PCI Cycles on page
2-36 for a description of how this field is encoded.

Special Cycles: This field must be written with all ones.

BUS: Bus Number.

Configuration Cycles: Identifies a targeted bus number. If written with
all zeros, a Type 0 Configuration Cycle will be generated. If written
with any value other than all zeros, then a Type 1 Configuration Cycle
will be generated.

Special Cycles: Identifies a targeted bus number. If written with all
zeros, a Special Cycle will be generated. If written with any value
other than all zeros, then a Special Cycle translated into a Type 1
Configuration Cycle will be generated.

EN: Enable.

Configuration Cycles: Writing a one to this bit enables
CONFIG_DATA to Configuration Cycle translation. If this bit is a
zero, subsequent accesses to CONFIG_DATA will be passed though
as I/O Cycles.

3-54 Computer Group Literature Center Web Site

Programming Model

3

Special Cycles: Writing a one to this bit enables CONFIG_DATA to
Special Cycle translation. If this bit is a zero, subsequent accesses to
CONFIG_DATA will be passed though as I/O Cycles.

CONFIG_DATA Register

The description of the CONFIG_DATA register is also presented in two
perspectives: from the PCI bus (Little Endian it ordering), and from the
PowerPC bus (Big Endian bit ordering). Note that the view from the PCI
bus is purely conceptual since there is no way to access the
CONFIG_DATA register from the PCI bus.

Conceptual perspective from the PCI bus:

Perspective from the PowerPC bus:

Offset $CFF $CFE $CFD $CFC

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name CONFIG_DATA CONFIG
DATAData ‘D’ Data ‘C’ Data ‘B’ Data ‘A’

Operation R/W R/W R/W R/W

Reset n/a n/a n/a n/a

Offset $CFC $CFD $CFE $CFF

Bit (DL) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name CONFIG_DATA CONFIG
DATAData ‘A’ Data ‘B’ Data ‘C’ Data ‘D’

Operation R/W R/W R/W R/W

Reset n/a n/a n/a n/a

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-55

3

PCFS Register Group

This register group represents the Harrier’s PCI Configuration Space. A
reflection of this Configuration Space is represented within the XCSR
Register Group. Note that in many cases a register represented within the
PCFS Register Group will have different read/write characteristics than
the same register represented within the XCSR Register Group. In general,
the read/write characteristics of the registers within the XCSR Register
Group are quite liberal while those of the PCFS Register Group are strictly
limited to the abilities defined by the PCI Local Bus Specification.

The reflected configuration space in the XCSR Register Group is byte-
swapped as described in the section titled "Endian Conversation" in the
previous chapter. Except where noted, all bit definitions are discussed with
respect to the register within the PCFS Register Group.

Vendor ID/Device ID Registers

Perspective from the PCI Bus:

Perspective from the PowerPC Bus:

Offset PCFS + $00

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name DEVI VENI Header

Operation R R

Reset $480B $1057

Offset XCSR + $300

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name VENI DEVI Reflected
PCI

Configurati
on

Space

Operation R R

Reset $5710 $0B48

3-56 Computer Group Literature Center Web Site

Programming Model

3

The Vendor ID Register (VENI) is a read-only register that identifies the
manufacturer of the device. This identifier is allocated by the PCI SIG to
ensure uniqueness. $1057 has been assigned to Motorola and is hardwired
as a read-only value.

The Device ID Register (DEVI) is a read-only register that uniquely
identifies this particular device. The Harrier always returns $480B.

Command/Status Registers

Perspective from the PCI Bus:

Perspective from the PowerPC Bus:

Offset PCFS + $04

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name STAT CMMD Header

R
C

V
P

E
S

IG
S

E
R

C
V

M
A

R
C

V
TA

S
IG

TA
SE

LT
IM

1
SE

LT
IM

0
D

PA
R

FA
S

T

P
66

M

S
E

R
R

P
E

R
R

M
S

T
R

M
E

M
S

P
IO

S
P

Operation

R
/C

R
/C

R
/C

R
/C

R
/C R R R
/C R R R R R R R R R R R R R R R

R
/W R

R
/W R R R

R
/W

R
/W

R
/W

Reset 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Offset XCSR + $304

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name CMMD STAT Reflected
PCI

Configur-
ation Space

P
E

R
R

M
S

T
R

M
E

M
S

P
IO

S
P

S
E

R
R

FA
S

T

P
66

M

R
C

V
P

E
S

IG
S

E
R

C
V

M
A

R
C

V
TA

S
IG

TA
SE

LT
IM

1
SE

LT
IM

0
D

PA
R

Operation

R
R

/W R R R
R

/W
R

/W
R

/W R R R R R R R
R

/W R R R R R R R R R
/C

R
/C

R
/C

R
/C

R
/C R R R
/C

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-57

3

The Command Register (CMMD) provides course control over the
Harrier’s ability to generate and respond to PCI cycles. The fields within
the CMMD register are defined as follows:

IOSP: I/O Space Enable. If set, the Harrier responds to PCI I/O space
accesses when appropriate. If cleared, the Harrier does not respond to
PCI I/O space accesses.

MEMSP: Memory Space Enable. If set, the Harrier responds to PCI
memory space accesses when appropriate. If cleared, the Harrier does
not respond to PCI memory space accesses.

MSTR: Bus Master Enable. If set, the Harrier may act as a master on
PCI. If cleared, the Harrier may not act as a master.

PERR: Parity Error Response. This bit enables the PERR_ output
pin. If cleared, the Harrier will never drive PERR_. If set, the Harrier
will drive PERR_ active when a data parity error is detected.

SERR: System Error Enable. This bit enables the SERR_ output pin.
If cleared, the Harrier never drives SERR_. If set, the Harrier drives
SERR_ active when a system error is detected.

The Status Register (STAT) is used to record information for PCI bus
related events. The fields within the STAT register are defined as follows:

P66M: PCI 66 MHz. This bit indicates the Harrier is capable of
supporting a 66.67 MHz PCI bus.

FAST: Fast Back-to-Back Capable. This bit indicates that the
Harrier is capable of accepting fast back-to-back transactions with
different targets.

DPAR: Data Parity Detected. This bit is set when three conditions
are met: 1) the Harrier asserted PERR_ itself or observed PERR_
asserted; 2) Harrier was the PCI master for the transfer in which the
error occurred; 3) the PERR bit in the CMMD register is set. This bit
is cleared by writing it to 1; writing a 0 has no effect.

SELTIM: DEVSEL Timing. This field indicates that the Harrier
always asserts DEVSEL_ as a ‘medium’ responder.

3-58 Computer Group Literature Center Web Site

Programming Model

3

SIGTA: Signalled Target Abort. This bit is set by the Harrier
whenever it terminates a slave transaction with a target-abort. It is
cleared by writing it to 1; writing a 0 has no effect.

RCVTA: Received Target Abort. This bit is set by the Harrier
whenever it detects a master transaction is terminated by a target-
abort. It is cleared by writing it to 1; writing a 0 has no effect.

RCVMA: Received Master Abort. This bit is set by the Harrier
whenever it detects a master transaction (except for Special Cycles) is
terminated by a master-abort. It is cleared by writing it to 1; writing a
0 has no effect.

SIGSE: Signaled System Error. This bit is set whenever the Harrier
asserts SERR_. It is cleared by writing it to 1; writing a 0 has no effect.

RCVPE: Detected Parity Error. This bit is set whenever the Harrier
detects a parity error, even if parity error response is disabled (see bit
PERR in the CMMD register). It is cleared by writing it to 1; writing
a 0 has no effect.

Revision ID/Class Code Registers

Perspective from the PCI Bus:

Perspective from the PowerPC Bus:

Offset PCFS + $08

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name CLAS REVI Header

Operation R R

Reset $060000 or $0E0001 $02

Offset XCSR + $308

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name REVI CLAS Reflected
PCI

Configur-
ation
Space

Operation R R/W

Reset $02 $000006 or $01000E

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-59

3

The Revision ID Register (REVI) is a read-only register that identifies the
Harrier revision level.

The Class Code Register (CLAS) is a read-only register from within the
PCFS Register Group, and may be written at any time from within the
XCSR Register Group. The CLAS register identifies the class code of the
Harrier. The initial contents of this register is established with external
resistors placed on signals sampled at the release of reset. Please refer to
section titled "Hardware Configuration" in the previous chapter for more
information.

The initial class code of the Harrier depends on the level of participation
in the I2O Message Passing protocol. The table below shows the
dependency between class codes and I2O participation.

Cache Line Size/Master Latency Timer/Header Type Register

Perspective from the PCI Bus:

Table 3-23. CLAS Encoding

I2O
Participation

CLAS (PCFS Register Group)

Base Sub Program

None $06 Bridge Device $00 Host
Bridge

$00 Not Used

I2O Host
Bridge

$06 Bridge Device $00 Host
Bridge

$00 Not Used

I2O IOP Agent $0E I2O Controller $00 Not Used $01 Includes Interrupt
Capability

Offset PCFS + $0C

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name HEAD MLAT CLSZ Header

LAT CLS

Operation R R R/W R R R R R R R R/W

Reset $00 $00 $00 0 0 0 0 0 0 0 $00

3-60 Computer Group Literature Center Web Site

Programming Model

3

Perspective from the PowerPC Bus:

The Header Type Register (HEAD) is a read-only register that identifies
the Harrier as the following:

Header Type: $00 Single Function Configuration Header

The Master Latency Timer Register (MLAT) represents the value used for
the Master Latency Timer. The Master Latency Timer specifies the
amount of PCI clock periods that the Harrier may remain on the PCI bus
during burst cycles after GNT_ is taken away. The MLAT register
provides a minimum granularity of the 8 PCI clock periods.

The PCI specification states that this register must power up to all zeros.
Severe performance degradation may result if this register is not adjusted
from the reset value.

The Cache Line Size Register (CLSZ) represents the number of 32-bit
words that define a Harrier cache-line. A Harrier cache line is defined as
32-bytes, which is eight 32-bit words. If a value of $08 is written to this
register, the value will be retained. If any other value is written to this
register, a value of $00 will be retained.

The PCI specification states that this register must power up to all zeros.
The Harrier is not able to generate the Memory Write and Invalidate
command, therefore this register is only used to inform other PCI masters
of the Harrier supported cache-line size for Read, Read Line, and Read
Multiple commands.

Offset XCSR + $30C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name CLSZ MLAT HEAD Reflected
PCI

Configur-
ation
Space

CLS LAT

Operation R R R R R/W R/W R R R R R

Reset 0 0 0 0 $00 $00 0 0 0 $00 $00

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-61

3

Message Passing Register Group Base Address Register

Perspective from the PCI Bus:

Perspective from the PowerPC Bus:

The Message Passing Register Group Base Address Register (MPBAR)
controls the mapping of the PMEP Register Group within PCI Memory
space.

IO/MEM: I/O Space Indicator. This bit is hard-wired to a logic zero
to indicate PCI memory space.

MTYPx: Memory Type. These bits are hard-wired to zero to indicate
that the PMEP Register Group can be located anywhere in the 32-bit
address space

PRE: Prefetch. This bit is hard-wired to zero to indicate that the
PMEP Register Group is not prefetchable.

Offset PCFS + $10

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MPBAR Header

BASE

P
R

E
M

T
Y

P
1

M
T

Y
P

0
IO

/M
E

M

Operation R/W R R R R R R

Reset $00000 $0 $0 0 0 0 0

Offset XCSR + $310

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MPBAR Reflected
PCI

Configur-
ation
Space

P
R

E
M

T
Y

P
1

M
T

Y
P

0
IO

/M
E

M BASE BASE

Operation R R R R R R/W R R/W

Reset $0 0 0 0 0 $0 $0 $00000

3-62 Computer Group Literature Center Web Site

Programming Model

3

BASE: Base Address. These bits define the memory space base
address of PMEP Register Group. The group may be placed at any 4K
Byte boundary. This field is only accessible when the ENA bit field is
set in the MPAT register.

Note that the BASE field is byte swapped when accessing from the
XCSR Register Group. For example, programming a base address of
$12345 within the PCFS Register Group would be the same as
programming $53412 within the XCSR Register Group.

Inbound Translation Base Address (0, 1, 2 and 3) Registers

Perspective from the PCI Bus:

Offset ITBAR0: PCFS + $14
ITBAR1: PCFS + $18
ITBAR2: PCFS + $1C
ITBAR3: PCFS + $20

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name ITBARx Header

BASE

P
R

E
M

T
Y

P
1

M
T

Y
P

0
IO

/M
E

M
Operation R/W R R R R R R

Reset $00000 $0 $0 1 0 0 0

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-63

3

Perspective from the PowerPC Bus:

The Inbound Translation Base Address Registers (ITBAR0, ITBAR1,
ITBAR2 and ITBAR3) control the mapping of the Inbound Translation
function within PCI Memory space.

IO/ME: I/O Space Indicator. This is a read-only inverted copy of the
MEM bit defined in the ITATx register. The IO/MEM field reflects the
ability of the Inbound Translation Function to support either memory
space or I/O space accesses. This field is accessible only when the
ENA bit is set in the ITATx register. Upon reset, this bit is set to a zero
indicating this resource is a memory space resource.

MTYP: Memory Type. These bits are hard-wired to zero to indicate
that the Inbound Translation Function can be located anywhere in the
32-bit address space

PRE: Prefetch. This is a read-only copy of the PRE bit defined in the
ITATx register. The PRE field reflects the ability of the Inbound
Translation Function to support prefetching. This field is accessible
only when the ENA bit is set in the ITATx register. Upon reset, this bit
is set to a one indicating this resource is prefetchable.

BASE: Base Address. These bits define the memory space base
address of the Inbound Translation Function. Note that the actual
number of writable bit positions depends on the size of the resource

Offset ITBAR0: XCSR + $314
ITBAR1: XCSR + $318
ITBAR2: XCSR + $31C
ITBAR3: XCSR + $320

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name ITBAR Reflected
PCI

Configur-
ation
Space

P
R

E
M

T
Y

P
1

M
T

Y
P

0
IO

/M
E

M BASE BASE

Operation R R R R R R/W R R/W

Reset $0 1 0 0 0 $0 $0 $0000

3-64 Computer Group Literature Center Web Site

Programming Model

3

being offered. The size of a resource can be changed using the ITSZx
register. Table 3-24 shows the relationship between resource size and
the BASE field.

This field is accessible only when the ENA bit is set in the ITATx
register.

The relationship of a writable and non-writable bit is maintained
regardless of whether an access is from within the PCFS or XCSR
Register Groups.

Note that the BASE field is byte swapped when accessing from the
XCSR Register Group. For example, programming a base address of
$12345 within the PCFS Register Group is the same as programming
$53412 within the XCSR Register Group.

Table 3-24. BASE Encoding and Resource Size

Resource
Size

ITSZx Effects on BASE Field (PCFS Register Group)
“W” => Writable Bit Position
“0” => Fixed Zero Bit Position

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

4KB $00 W

8KB $01 W W W W W W W W W W W W W W W W W W W 0

16KB $02 W W W W W W W W W W W W W W W W W W 0 0

32KB $03 W W W W W W W W W W W W W W W W W 0 0 0

64KB $04 W W W W W W W W W W W W W W W W 0 0 0 0

128KB $05 W W W W W W W W W W W W W W W 0 0 0 0 0

256KB $06 W W W W W W W W W W W W W W 0 0 0 0 0 0

512KB $07 W W W W W W W W W W W W W 0 0 0 0 0 0 0

1MB $08 W W W W W W W W W W W W 0 0 0 0 0 0 0 0

2MB $09 W W W W W W W W W W W 0 0 0 0 0 0 0 0 0

4MB $0A W W W W W W W W W W 0 0 0 0 0 0 0 0 0 0

8MB $0B W W W W W W W W W 0 0 0 0 0 0 0 0 0 0 0

16MB $0C W W W W W W W W 0 0 0 0 0 0 0 0 0 0 0 0

32MB $0D W W W W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0

64MB $0E W W W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0

128MB $0F W W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

256MB $10 W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-65

3

Subsystem Vendor ID/Subsystem ID Registers

Perspective from the PCI Bus:

Perspective from the PowerPC Bus:

The Subsystem Vendor ID Register (SUBV) is a read-only register from
within the PCFS Register Group, and may be written at any time from
within the XCSR Register Group. The SUBV register provides a second
level of identification for the manufacturer of this particular device. This
identifier is allocated by the PCI SIG to ensure uniqueness. This register is
configured to the Motorola value of $1057 upon release of reset.

512MB $11 W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1GB $12 W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2GB $13 W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Offset PCFS + $2C

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name SUBI SUBV Header

Operation R R

Reset $1057 $0000

Offset XCSR + $32C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SUBV SUBI Reflected
PCI

Configur-
ation
Space

Operation R/W R/W

Reset $0000 $5710

Table 3-24. BASE Encoding and Resource Size (Continued)

Resource
Size

ITSZx Effects on BASE Field (PCFS Register Group)
“W” => Writable Bit Position
“0” => Fixed Zero Bit Position

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

3-66 Computer Group Literature Center Web Site

Programming Model

3

The Subsystem ID Register (SUBI) is a read-only register from within the
PCFS Register Group, and may be written at any time from within the
XCSR Register Group. The SUBI register provides a second level of
identification for this particular device. This register will be configured to
$0000 upon the release of reset.

Interrupt Line/Interrupt Pin/Minimum Grant/Maximum Latency Registers

Perspective from the PCI Bus:

Perspective from the PowerPC Bus:

The Interrupt Line Register (INTL) contains interrupt routing information.
The Harrier does not have any hardware associated with this register, and
is not affected in any way by the contents of this register. Initialization
software may write interrupt routing information into this register during
system configuration.

The Interrupt Pin Register (INTP) contains information pertaining to the
PCI interrupt pin the Harrier is driving. This register is read-only from the
PCFS Register Group, and may be written at any time from within the
XCSR Register Group. The Harrier is a single function device and
therefore is limited by the PCI Local Bus Specification to only driving

Offset PCFS + $3C

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MXLA MNGN INTP INTL Header

Operation R R R R/W

Reset $00 $00 $01 $00

Offset XCSR + $33C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name INTL INTP MNGN MXLA Reflected
PCI

Configur-
ation
Space

INT

Operation R/W

R R R R R
R

/W
R

/W
R

/W

R/W R/W

Reset $00 0 0 0 0 0 0 0 1 $00 $00

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-67

3

INTA. In special cases, the Harrier may be programmed to drive any one
of the four PCI interrupts. This register may be modified to show which of
the four interrupt lines the Harrier is driving. The recommended encoding
of this field is show in the table below:

Note that the selection of a particular INTx line is handled by the
XCSR.BPCS register. The INTP register is for reference only and does
not control any hardware

The Minimum Grant Register (MNGN) is a read-only register from within
the PCFS Register Group, and may be written at any time from within the
XCSR Register Group. The MNGN register specifies how long of a burst
period the Harrier requires. The value is presented is in units of 0.25 us.
This register will be configured to $00 following the release of reset which
indicates the Harrier has no particular grant requirements.

The Maximum Latency Register (MXLA) is a read-only register from
within the PCFS Register Group, and may be written at any time from
within the XCSR Register Group. The MXLA register specifies how often
the Harrier needs to gain access to the PCI bus. The value is presented is
in units of 0.25 us. This register will be configured to $00 following the
release of reset which indicates the Harrier has no particular latency
requirements.

Table 3-25. INTP INT Encoding

INT PCI Interrupt

000 Undefined

001 INTA

010 INTB

011 INTC

100 INTD

101 - 111 Undefined

3-68 Computer Group Literature Center Web Site

Programming Model

3

Message Passing Attribute Register

Perspective from the PCI Bus:

Perspective from the PowerPC Bus:

RAE: Read-Ahead Enable. The PMEP Register Group does not
support read-ahead, however there is a corner case where this field
affects the actions of the PPC Master during a cache-line aligned
(referenced to the physical address in memory of the queue element)
PCI burst read from the MIIQ/MIOQ registers. If this field is set, the
PPC Master performs a cache-line read. If this field is cleared, the PPC
Master performs a single beat read.

This field has little (if any) practical value, since a majority of the
MIIQ/MIOQ reads from PPC memory are translated into single beat
reads.

Offset PCFS + $44

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MPAT Address
Translation

G
B

L

E
N

A
M

E
M

W
P

E
R

A
E

Operation R

R R R R R R R
R

/W R R R R R R R R
R

/W R
R

/W
R

/W R R R R

Reset $00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Offset XCSR + $344

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MPAT Reflected
PCI

Configur-
ation
Space

E
N

A
M

E
M

W
P

E
R

A
E

G
B

L

Operation

R
/W R

R
/W

R
/W R R R R R R R R R R R R R R R R R R R

R
/W

R

Reset 0 1 0 $00

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-69

3

WPE: Write-Post Enable. If set, write-posting is enabled on the PCI
bus. The Harrier will acknowledge a data transfer, collect data from the
PCI bus and forward that data on to local memory. If cleared, each
write transaction is fully compelled. The Harrier will write each PCI
32-bit or 64-bit beat as a single beat transaction on the PowerPC bus.
After each transaction a single acknowledge will be given to the PCI
bus.

MEM: Memory. This read-only field is hardwired to a one to indicate
the PMEP Register Group may only be located within PCI memory
space.

ENA: Enable. If set, the Message Passing Function is enabled for read
and write transactions. Writes to the PCFS.MPBAR register will be
accepted and reads will return valid data. If cleared, the Message
Passing Function is not enabled. Writes to the PCFS.MPBAR register
will be discarded and reads will return all zeros. The visibility of the
XCSR.MPBAR register is unaffected by the ENA field.

GBL: Global. If set, the GBL_ pin will be asserted for each PowerPC
transaction indicating the transaction may be snooped by the
processor. If cleared, the GBL_ pin is not asserted and the transaction
is not snooped.

Inbound Translation Size/Offset (0, 1, 2 and 3) Registers

Perspective from the PCI Bus:

Offset ITSZ0/ITOF0: PCFS + $48
ITSZ1/ITOF1: PCFS + $50
ITSZ2/ITOF2: PCFS + $58
ITSZ3/ITOF3: PCFS + $60

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name ITOFx ITSZx Address
Transla-

tion
Operation R/W R R/W

Reset $0000 $00 $00

3-70 Computer Group Literature Center Web Site

Programming Model

3

Perspective from the PowerPC Bus:

The Inbound Translation Size Registers (ITSZ0, ITSZ1, ITSZ2 and
ITSZ3) establish the size of a resource offered by an Inbound Translation
Function. The value selected within this register determines the
characteristics of the ITBARx registers. Valid selections for a resource
size are shown in the table below:

The Inbound Translation Offset Registers (ITOF0, ITOF1, ITOF2, and
ITOF3) contain offset information associated with the mapping of
PowerPC address space to PCI memory space. The ITOFx field represents

Offset ITSZ0/ITOF0: XCSR + $348
ITSZ1/ITOF1: XCSR + $350
ITSZ2/ITOF2: XCSR + $358
ITSZ3/ITOF3: XCSR + $360

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name ITSZx ITOFx Reflected
PCI

Configur-
ation
Space

Operation R/W R R/W

Reset $00 $00 $0000

Table 3-26. ITSZx Encoding

ITSZx Resource
Size

ITSZx Resource
Size

$00 4KB $0B 8MB

$01 8KB $0C 16MB

$02 16KB $0D 32MB

$03 32KB $0E 64MB

$04 64KB $0F 128MB

$05 128KB $10 256MB

$06 256KB $11 512MB

$07 512KB $12 1GB

$08 1MB $13 2GB

$09 2MB $14 - $FF Reserved

$0A 4MB

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-71

3

a 16-bit offset that is added to the upper 16 bits of the PCI address to
determine the PowerPC address used for inbound transfers. This offset
allows PowerPC resources to reside at addresses that would not normally
be visible from the PCI bus.

Note that the ITOFx register is byte swapped when accessing from the
XCSR Register Group. For example, programming an offset of $1234
within the PCFS Register Group would be the same as programming
$3412 within the XCSR Register Group.

Inbound Translation Attribute (0, 1, 2 and 3) Registers

Perspective from the PCI Bus:

Offset ITAT0: PCFS + $4C
ITAT1: PCFS + $54
ITAT2: PCFS + $5C
ITAT3: PCFS + $64

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name ITATx Address
Transla--

tion

A
W

L
C

R
I

C
W

F
G

B
L

R
M

T
R

M
S

R
X

T
R

X
S

E
N

A
M

E
M

W
P

E
R

A
E

P
R

E

Operation R

R R R R
R

/W
R

/W
R

/W
R

/W R
R

/W
R

/W
R

/W R
R

/W
R

/W
R

/W
R

/W
R

/W
R

/W
R

/W
R

/W R R R

Reset $00 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0

3-72 Computer Group Literature Center Web Site

Programming Model

3

Perspective from the PowerPC Bus:

The Inbound Translation Attribute Registers (ITAT0, ITAT1, ITAT2 and
ITAT3) contain attribute information associated with the mapping of
PowerPC address space to PCI memory space. The fields within the
ITATx registers are defined as follows:

PRE: Prefetch Enable. This field represents a control point for the
ITBARx.PRE field, enabling software to establish the prefetchable
status of an Inbound Translation Function. This field does not affect
any hardware. If set, the ITBARx.PRE field will be set to a logic 1. If
cleared, the ITBARx.PRE field will be set to a logic 0.

RAE: Read-Ahead Enable. If set, read-ahead is enabled on the
PowerPC bus. This forces the Harrier to perform a predefined number
of cache line reads during the first fetch. The number of lines initially
read and the subsequent resume characteristics are controlled by the
setting of the RMT/RMS and RXT/RXS fields. If cleared, the Harrier
performs one single beat read and does not start a new read until a
previously read beat has been transferred across PCI. Each subsequent
read is always be a single beat read.

WPE: Write-Post Enable. If set, write-posting is enabled on the PCI
bus. The Harrier continues to collect data from the PCI bus. Once a
certain threshold is met, the Harrier presents the collected data as

Offset ITAT0: XCSR + $34C
ITAT1: XCSR + $354
ITAT2: XCSR + $35C
ITAT3: XCSR + $364

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name ITATx Reflected
PCI

Configur-
ation
Space

E
N

A
M

E
M

W
P

E
R

A
E

P
R

E

R
M

T
R

M
S

R
X

T
R

X
S

A
W

L
C

R
I

C
W

F
G

B
L

Operation

R
/W

R
/W

R
/W

R
/W

R
/W R R R R

R
/W

R
/W

R
/W R

R
/W

R
/W

R
/W R R R R

R
/W

R
/W

R
/W

R
/W

R

Reset 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 $00

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-73

3

cache-line writes to the PowerPC bus. If cleared, each write
transaction is fully compelled. The Harrier writes each PCI 32-bit or
64-bit beat as a single beat transaction on the PowerPC bus.

MEM: Memory. If set, the Harrier maps the corresponding Inbound
Translation Function to PCI memory space. If cleared, the resource is
mapped to PCI I/O space. The state of this field is reflected within the
ITBARx.IOMEM field. If the ENA field is set, then the IOMEM field
is the inversion of the MEM field.

ENA: Enable. If set, the corresponding Inbound Translation Function
is enabled for read and write transactions.

RXS: Read Any Size. This field is used by the Harrier to determine a
virtual FIFO size for inbound prefetch reads. This field is applicable
only to PCI Read or Read Line command types. The selection of a
virtual FIFO size will affect the number of the initial prefetch read
cycles and the duration of subsequent prefetch read cycles. Please refer
to the section titled "FIFO Tuning" in the previous chapter for more
information.

The encoding of this field is shown in the following table.

RXT: Read Any Threshold. This field sets a threshold for when read-
ahead prefetching will be resumed. This field is applicable only to PCI
Read or Read Line transaction types. If set, prefetching will resume
once the FIFO is half empty. If cleared, a prefetching will resume once
the FIFO is completely empty. Please refer to the section titled FIFO
Tuning on page 2-41 for more information.

Table 3-27. ITATx RXS/RMS Encoding

RXS/RMS Virtual FIFO Size

Bytes Cache Lines

00 64 2

01 128 4

1x 256 8

3-74 Computer Group Literature Center Web Site

Programming Model

3

RMS: Read Multiple Size. Functionally this field is the same as the
RXS field except that this is the virtual fifo size that is applied during
PCI Read Multiple command types. Please refer to the section titled
FIFO Tuning on page 2-41 for more information.

RMT: Read Multiple Threshold. Functionally this field is the same
as the RXT field except that this is the threshold that is applied during
PCI Read Multiple command types. Please refer to the section titled
FIFO Tuning on page 2-41 for more information.

GBL: Global. If set, the GBL_ pin will be asserted for each PowerPC
transaction indicating the transaction may be snooped by the
processor. If cleared, the GBL_ pin is not asserted and the transaction
is not snooped.

CWF: Cache-line Write Flush. When set forces the use of Write-
with-Flush transfer types during cache-line writes. Forces the
processor to perform copyback writes during snoop hits. When cleared
forces Write-with-kill transfer type during cache-line writes. Forces
the processor to simply invalidate cache-lines during snoop hits. Used
as a work-around for processors that can not handle Write-with-kill
correctly. Please refer to the following table for the transfer codes
associated with this bit.

CRI: Cache-line Read Invalidate. When set forces the use of Read-
with-intent-to-modify commands. This forces processor cached data
in the E and S states to be invalidated during snoop hits. When cleared
uses non RWITM commands which allows the processor to retain
cached data in the E and S states. Please refer to the following table for
the transfer codes associated with this bit.

AWL: Atomic With Lock. When set will force the use of atomic
transfer types whenever possible during PCI lock cycles. When
cleared non-atomic transfer types are used. Please refer to the
following table for the transfer codes associated with this bit.

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-75

3

PCI Status Register

Perspective from the PCI Bus:

Table 3-28. Harrier Generated Transfer Types

 Origin CRI CWF AWL Transfer Size TT[0:4] Transfer Type

PCI Read or
DMA Read

0 x x Single Beat or
Burst

01010 Read

1 x x Single Beat or
Burst

01110 Read-with-intent-to-modify

PCI Read
Lock

0 x 0 Single Beat or
Burst

01010 Read

0 x 1 Single Beat or
Burst

11010 Read-atomic

1 x 0 Single Beat or
Burst

01110 Read-with-intent-to-modify

1 x 1 Single Beat or
Burst

11110 Read-with-intent-to-modify-atomic

PCI Write or
DMA Write

x x x Single Beat 00010 Write-with-flush

x 0 x Burst 00110 Write-with-kill

x 1 x Burst 00010 Write-with-flush

PCI Write
Lock

x x 0 Single Beat 00010 Write-with-flush

x 0 0 Burst 00110 Write-with-kill

x 1 0 Burst 00010 Write-with-flush

x x 1 Single Beat 10010 Write-with-flush-atomic

x 0 1 Burst 00110 Write-with-kill

x 1 1 Burst 10010 Write-with-flush-atomic

Offset PCFS + $80

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name PSTA Status

L
B

A

Operation R R R R R R R R R R R

Reset

n/
a 0 0 0 0 0 0 0 $00 $00 $00

3-76 Computer Group Literature Center Web Site

Programming Model

3

Perspective from the PowerPC Bus:

The PCI Status Register contains the Loop Back Access bit. The LBA bit
allows software to determine if the configuration space access is looping
back to the PCI configuration space in the Harrier. In other words, if the
Harrier is reading its own configuration space. The LBA bit is defined as
follows:

LBA: Loop Back Access. The LBA bit is read as a one when read by
the PCI bus master in the Harrier. The LBA bit is read as a zero when
read by another PCI bus master. The LBA bit always reads zero from
the PowerPC bus.

PCI General Purpose Register

Perspective from the PCI Bus:

Offset XCSR + $380

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name PSTA Reflected
PCI

Configur-
ation
Space

L
B

A

Operation R R R R R R R R R R R

Reset $00 $00 $00 0 0 0 0 0 0 0 0

Offset PCFS + $84

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name PCIGP General
Purpose
Register

Operation R/W

Reset $00000000

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 3-77

3

Perspective from the PowerPC Bus:

The PCI General Purpose Register is provided for inter-process message
passing or general purpose storage. It is accessible from the PCI bus and
the PowerPC bus. It does not control any hardware.

Note that the PCIGP register is byte swapped when accessing from the
XCSR Register Group. For example, programming a value of $01234567
within the PCFS Register Group would be the same as programming
$67452301 within the XCSR Register Group.

Offset XCSR + $384

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name PCIGP Reflected
PCI

Configur-
ation
Space

Operation R/W

Reset $00000000

3-78 Computer Group Literature Center Web Site

Programming Model

3

DMA Controller
All of the registers for this function are located in the PowerPC address
space as a part of the XCSR Register Group.

DMA Control Register

The DMA Control Register (DCTL) provides the control fields for the
Harrier DMA function. The fields within the DCTL register are defined as
follows:

ABT: Abort. Writing a one to this field will abort a DMA transaction.
An abort is considered an unrecoverable operation to a DMA
transaction, meaning that an aborted transaction may not be restarted.
When issuing an abort, both the PowerPC and/or PCI masters are
immediately stopped and all FIFO contents are invalidated. If the abort
took affect before the completion of a transaction, then the
DSTA.ABT field will be set once the DMA Controller reaches the
aborted state. Reading this field will always return a zero.

PAU: Pause. Writing a one to this field will pause a DMA transaction.
This bit is only applicable to Linked-List-Mode transactions. When
pausing a DMA transaction, the DMA controller will stop at the
completion of the current linked-list transfer. If the pause took affect
before the completion of a transaction, then the DTSA.PAU field will
be set once the DMA Controller reaches the paused state. A paused
transaction may be restarted by writing a one to the DGO field.
Reading this field will always return a zero.

Offset XCSR + $250

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Function

Name DCTL DMA

A
B

T
P

A
U

D
G

O

M
O

D

X
T

H

P
B

T

C
S

E
C

R
I

G
B

L

Operat
ion

R R R R R
/S

R
/S

R
/S R

R
/W R

R
/W

R
/W R

R
/W

R
/W

R
/W R R R R

R
/W

R
/W R

R
/W R R R R R R R R

Reset 0

DMA Controller

http://www.motorola.com/computer/literature 3-79

3

Abort has overriding authority over pause. If a commanded pause is
followed by an commanded abort, then the DMA controller will honor
the commanded abort.

DGO: DMA Go. Writing a one to this field will start a DMA
transaction. Setting the DGO field will cause the DSTA.BSY field to
be set and will clear all DSTA completion status bits (i.e. SMA, RTA,
etc.). Reading this field will always return a zero.

MOD: Mode. This field establishes the type of DMA transaction to be
performed. If set, a Direct-Mode transaction will be performed. A
Direct-Mode transaction performs one transfer according to the
contents of the DSAD, DSAT, DDAD, DDAT, and DCNT registers. If
cleared, a Linked-List-Mode transaction will be performed. A Linked-
List-Mode transaction will perform multiple transfers that are driven
by a list of descriptors stored in PowerPC memory. A Linked-List-
Mode transaction will obtain the first descriptor from the starting
address placed within the DNLA register.

XTH: PowerPC Throttle. This field is used to control the attempted
transfer size on the PowerPC bus. The Harrier associates a transfer size
with the assertion of the PowerPC bus request. The Harrier will
remove the bus request only after completing the desired transfer size.
If there are more PowerPC transactions pending, the Harrier will re-
assert the bus request after two clocks. The encoding of this field is
shown in the table below.

PBT: PCI Back-off Timer. This field establishes a maximum PCI bus
bandwidth that the DMA function may use when performing transfers
to or from PCI space. The Harrier will attempt to complete an entire

Table 3-29. DCTL XTH Encoding

XTH Transfer Size

Bytes Cache Lines

00 256 8

01 512 16

10 1024 32

11 Continuous Continuous

3-80 Computer Group Literature Center Web Site

Programming Model

3

transfer in one burst unless interrupted by the PCI Master Latency
Timer. Once the Latency Timer expires and the current burst
completes, the PCI Back-off Timer will start to count. The Harrier will
not attempt to restart the transfer until after the PCI Back-off Timer has
expired. The back off time is specified in units of PCI clock periods.
The table below shows the encoding for this field.

CSE: Copy-back Snarfing Enable. This field is used to enable snarfing
on a processor’s copy-back cycle. Refer to the section titled Copyback
Snarfing on page 2-35 for more information. If set, copy-back snarfing
is attempted for PowerPC DMA cycles. If cleared, snarfing will not be
attempted.

CRI: Cache-line Read Invalidate. If set, the DMA will use the
“Read-with-intent-to-modify” transfer type during PowerPC
descriptor fetch read cycles. This will force processor cached data in
the E and S states to be invalidated during snoop hits. If cleared, the
DMA will use the “Read” transfer type. This will allow the processor
to retain cached data in the E and S states.

GBL: Global. If set, the DMA will assert the GBL_ pin during
PowerPC descriptor fetch read cycles. This allows the processor to
snoop the DMA transfer. If cleared, the GBL_ pin is not asserted and
the processor will not be able to snoop the DMA transaction.

Table 3-30. DCTL PBT Encoding

PBT Back-off Value

PCI Clock
Counts

Approx Time
@ 33 MHz

Approx Time
@ 66 MHz

000 0 0.000 µs 0.000 µs

001 32 0.960 µs 0.480 µs

010 64 1.920 µs 0.960 µs

011 128 3.840 µs 1.920 µs

100 256 7.680 µs 3.840 µs

101 512 15.360 µs 7.680 µs

110 1024 30.720 µs 15.360 µs

111 2048 61.440 µs 30.720 µs

DMA Controller

http://www.motorola.com/computer/literature 3-81

3

DMA Status Register

The DMA Status Register (DSTA) provides the status fields for the
Harrier DMA function. The BSY field represents the current state of the
DMA controller, and the remaining fields indicate completion status. Note
that there will always be only one field set within the DSTA register at all
times. When the DMA controller is starting a transaction (i.e. the
DCTL.DGO field is set) the BSY field will be asserted and all of the
completion status fields will be cleared. The BSY field will remain
asserted and the completion status fields will remain cleared throughout
the entire DMA transaction. Once the DMA Controller is finished, then the
BSY field will be cleared and only one of the completion status fields will
be asserted. A functional interrupt will be sent to the Exception module
whenever the BSY field transitions to the deasserted state.

The completion status fields are prioritized from left to right, with the left
most status field holding the highest priority. For example, if the DMA
Controller incurs a simultaneous SMA error and an XBT error, then the
DSTA register will only reflect the SMA completion status. In a similar
fashion, if the DMA Controller incurs an XBT error while attempting a
commanded abort, then the DSTA register will only reflect the XBT
completion status.

If the DMA Controller incurs multiple errors that are NOT simultaneously
detected, then the DSTA register will only reflect status pertaining to the
first occurring error. This is of particular importance to the PAU and ABT
fields. If an error is detected before the pause or abort takes affect, then the
DSTA register will only reflect status pertaining to the error.

The fields within the DSTA register are defined as follows:

Offset XCSR + $254

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DSTA DMA

S
M

A
R

TA
M

R
C

X
B

T
A

B
T

P
A

U
D

O
N

B
S

Y

Operation R R R R R R R R R R R R R R R R R R

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 $00 $00

3-82 Computer Group Literature Center Web Site

Programming Model

3

SMA: Signalled Master Abort. This read-only field will be set if the
PCI master has signalled a master-abort. An error of this type will
cause the DMA Controller to abort the current transaction.

RTA: Received Target Abort. This read-only field will be set if the
PCI master has received a target-abort. An error of this type will cause
the DMA Controller to abort the current transaction.

MRC: Maximum Retry Count. This read-only field will be set if the
PCI master has exceeded the maximum 224 attempts to a target that is
continually issuing disconnect-retries. An error of this type will cause
the DMA Controller to abort the current transaction.

XBT: PowerPC Bus Time-out. This read-only field will be set if the
PowerPC master has received an acknowledge due to a PowerPC bus
time-out. An error of this type will cause the DMA Controller to abort
the current transaction.

ABT: Abort. This read-only field will be set if the DMA Controller
has successfully completed a commanded abort. A successful
command abort must meet the following criteria:

– A write of a logic ‘1’ to the DCTL.ABT field.

– The DMA Controller has not received any other errors (SMA,
RTA, MRC or XBT) between the time the transaction was
started and the time that the DMA Controller goes to the idle
state.

– The commanded abort took place before the DMA Controller
was able to complete a transaction.

PAU: Pause. This read-only field will be set if the DMA Controller
has successfully completed a commanded pause. A successful
command pause must meet the following criteria:

– A write of a logic ‘1’ to the DCTL.PAU field.

– The DMA Controller has not received any other errors (SMA,
RTA, MRC or XBT) between the time the transaction was
started and the time that the DMA Controller goes to the idle
state.

– The DMA Controller has not been issued a commanded abort.

DMA Controller

http://www.motorola.com/computer/literature 3-83

3

– The commanded pause took place before the DMA Controller
was able to complete a transaction.

DON: Done. This read-only field will be set of the DMA Controller
has successfully completed a DMA transaction. A successful
transaction must meet the following criteria:

– The DMA Controller has not received any other errors (SMA,
RTA, MRC or XBT) between the time the transaction was
started and the time that the DMA Controller goes to the idle
state.

– If a commanded abort was issued, then it did not take affect
before the transaction was completed.

– If a commanded pause was issued, then it did not take affect
before the transaction was completed.

BSY: Busy. This read-only field reflects the status of the DMA
Controller. If set, the DMA Controller is currently processing a DMA
transaction. If cleared, the DMA Controller has completed a previous
transaction and is now idle.

DMA Source Address Register

The DMA Source Address Register (DSAD) contains the source address
for a DMA transfer. If the source is PCI space then this field will represent
a PCI address. If the source is PowerPC space then this field will represent
a PowerPC address.

If the source is a data pattern then this field will represent the beginning
pattern. This register is interpreted differently depending on if the data
pattern transfer is represented in bytes or words. When the pattern size is

Offset XCSR + $260

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DSAD DMA

Operation R/W

Reset $00000000

3-84 Computer Group Literature Center Web Site

Programming Model

3

bytes, then the starting pattern is represented by bit positions 24 thru 31 of
this register. If the pattern size is words, then the starting pattern is
represented by the entire 32-bits of this register.

User software must program this register when performing Direct-Mode
transactions. When performing Linked-List-Mode transactions, this
register is automatically loaded from the source address field of the current
descriptor.

DMA Source Attribute Register

The DMA Source Attribute Register (DSAT) contains the source
attributes for a DMA transfer. Not all fields are used for all transfer types.
Fields that do not pertain to a particular transfer type are ignored.

User software must program this register when performing Direct-Mode
transactions. When performing Linked-List-Mode transactions, this
register is automatically loaded from the source attribute field of the
current descriptor.

The fields within the DSAT register are defined as followed:

Offset XCSR + $264

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DSAT DMA

T
Y

P

N
IN

P
S

Z

P
R

C

C
R

I

G
B

L

Operation

R R
R

/W
R

/W R R R
R

/W R R R R R R R
R

/W R R R R
R

/W
R

/W
R

/W R R R R R R
R

/W R
R

/W

Reset 0 1 1 0 0 0 0 0 0 0 0 0

DMA Controller

http://www.motorola.com/computer/literature 3-85

3

TYP: Type. This field indicates the type of source to be used for a
DMA transfer. Different fields within the DSAT register are used
depending on the type of source selected. The table below shows the
different source types and the associated fields within the DSAT
register that apply.

NIN: No Increment. If set, source increment will be disabled during
a DMA transfer. If a PCI bus source is selected then the source address
will not be incremented. If the source is a data pattern, then the data
pattern will not be incremented. If cleared, the source will be
incremented.

PSZ: Pattern Size. If set, the data size used during Data Pattern
transfers will be bytes. If cleared, the data size will be words. This field
only applies to the generation of the data patterns used for a transfer. It
does not specify how the patterns are actually placed into the
destination space. (i.e. selecting a byte pattern size does not result in a
stream of single-beat PowerPC or PCI bus cycles)

PRC: PCI Read Command. This field represents the command used
during PCI read cycles. Note that this field is only applicable if the
TYP field represents a PCI bus DMA source. The encoding of this
field matches that described within the section titled “Command
Definition” in the PCI Local Bus Specification. The following table
shows the recommended values for PRC.

Table 3-31. DSAT TYP Encoding

TYP DMA
Source

Applicable Fields

NIN PSZ CRI GBL

00 PowerPC bus X X

01 PCI Bus X

1x Data Pattern X X

3-86 Computer Group Literature Center Web Site

Programming Model

3

Using an encoding other than the recommended value will result in
unpredictable DMA operation.

CRI: Cache-line Read Invalidate. If set, the DMA will use the
“Read-with-intent-to-modify” transfer type during PowerPC read
cycles. This will force processor cached data in the E and S states to
be invalidated during snoop hits. If cleared, the DMA will use the
“Read” transfer type. This will allow the processor to retain cached
data in the E and S states.

GBL: Global. If set, the DMA will assert the GBL_ pin during
PowerPC read cycles. This will allow the processor to snoop the DMA
transfer. If cleared, the GBL_ pin will not be asserted and the processor
will not be able to snoop the DMA transaction.

DMA Destination Address Register

The DMA Destination Address Register (DDAD) contains the destination
address for a DMA transfer. If the destination is PCI space then this field
will represent a PCI address. If the destination is PowerPC space then this
field will represent a PowerPC address.

Table 3-32. DSAT PRC Encoding

PRC PCI Command

0010 IO Read

0110 Memory Read

1100 Memory Read Multiple

1110 Memory Read Line

Offset XCSR + $268

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DDAD DMA

Operation R/W

Reset $00000000

DMA Controller

http://www.motorola.com/computer/literature 3-87

3

User software must program this register when performing Direct-Mode
transactions. When performing Linked-List-Mode transactions, this
register is automatically loaded from the destination address field of the
current descriptor.

DMA Destination Attribute Register

The DMA Destination Attribute Register (DDAT) contains the destination
attributes for a DMA transfer. Not all fields are used for all transfer types.
Fields that do not pertain to a particular transfer type are ignored.

User software must program this register when performing Direct-Mode
transactions. When performing Linked-List-Mode transactions, this
register is automatically loaded from the destination attribute field of the
current descriptor.

The fields within the DDAT register are defined as followed:

Offset XCSR + $26C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DDAT DMA

T
Y

P

N
IN

P
W

C

C
W

F
G

B
L

Operation

R R R
R

/W R R R
R

/W R R R R R R R R R R R R
R

/W
R

/W
R

/W R R R R R R R
R

/W
R

/W

Reset 0 1 1 1 0 0 0 0 0 0 0 0

3-88 Computer Group Literature Center Web Site

Programming Model

3

TYP: Type. This field indicates the type of destination to be used for
a DMA transfer. Different fields within the DDAT register are used
depending on the type of destination selected. The table below shows
the different destination types and the associated fields within the
DDAT register that apply.

NIN: No Increment. If set, destination increment will be disabled
during a DMA transfer. If a PCI bus destination is selected then the
destination address will not be incremented. If cleared, the destination
will be incremented.

PWC: PCI Write Command. This field represents the command
used during PCI write cycles. Note that this field is only applicable if
the TYP field represents a PCI bus DMA destination. The encoding of
this field matches that described within “Section 3.1.1 Command
Definition” of the PCI Local Bus Specification. The table below shows
the recommended values for PWC.

Using an encoding other than the recommended value will result in
unpredictable DMA operation.

CWF: Cache-line Write Flush. If set, the DMA will use the “Write-
with-flush” transfer type during PowerPC burst write cycles. This will
force the processor to perform copyback writes during snoop hits. If
cleared, the DMA will use the “Write-with-kill” transfer type. This

Table 3-33. DDAT TYP Encoding

TYP DMA
Destination

Applicable Fields

NIN CWF GBL

0 PowerPC bus X X

1 PCI Bus X

Table 3-34. DDAT PWC Encoding

PRC PCI Command

0011 IO Write

0111 Memory Write

1111 Memory Write and Invalidate

DMA Controller

http://www.motorola.com/computer/literature 3-89

3

will force the processor to invalidate it’s associated cache entry during
snoop hits. This bit provides a work-around solution for processors
that cannot support “Write-with-kill” correctly. This bit only applies to
burst write cycles since all single beat cycles will use the “Write-with-
flush” transfer type.

GBL: Global. If set, the DMA will assert the GBL_ pin during
PowerPC write cycles. This will allow the processor to snoop the
DMA transfer. If cleared, the GBL_ pin will not be asserted and the
processor will not be able to snoop the DMA transaction.

DMA Next Link Address Register

The DMA Next Link Address Register (DNLA) contains information
pertaining to the next Linked-List-Mode descriptor.

This register is not used when performing Direct-Mode transactions. When
starting a Linked-List-Mode transaction, software will program this
register with the address of the first Linked-List-Mode descriptor. When
continuing a Linked-List-Mode transaction, the register is automatically
loaded from the next link address field of the current descriptor.

The fields within the DNLA register are defined as follows:

NLA: Next Link Address. This is the address of the next descriptor
when using Linked-List-Mode. This is a PowerPC address and is
presented in 32-byte cache-line resolution.

Offset XCSR + $270

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DNLA DMA

NLA

L
L

A

Operation R/W

R R R R
R

/W
Reset $00000000 0 0 0 0 0

3-90 Computer Group Literature Center Web Site

Programming Model

3

LLA: Last Link Address. If set, the current descriptor will be the last
descriptor of a Linked-List transaction. If cleared, the current
descriptor will not be the last descriptor.

DMA Count Register

The DMA Count Register (DCNT) contains the byte count for a DMA
transfer. Note that a count of all zeros represents the maximum count of 4
GBytes.

User software must program this register when performing Direct-Mode
transactions. When performing Linked-List-Mode transactions, this
register is automatically loaded from the count field of the current
descriptor.

DMA Current Source Address Register

The DMA Current Source Address Register (DCSA) is a read-only
register that contains the current source address for a DMA transfer. If the
source is PCI space then this field will represent a PCI address. If the
source is PowerPC space then this field will represent a PowerPC address.
Software can read this register after a DMA error to determine how far
along a DMA transfer went before the error occurred.

Offset XCSR + $274

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DCNT DMA

Operation R/W

Reset $00000000

Offset XCSR + $280

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DCSA DMA

Operation R

Reset $00000000

DMA Controller

http://www.motorola.com/computer/literature 3-91

3

During a FIFO fill SMA, RTA, or MRC error with the PCI bus as the
transfer source, this register will represent the PCI address at which a read
error occurred. During a FIFO fill XBT error with the PowerPC bus as the
transfer source, this register will represent the PowerPC address at which
a read error occurred.

DMA Current Destination Address Register

The DMA Current Destination Address Register (DCDA) is a read-only
register that contains the current destination address for a DMA transfer.
The current destination address is the next address that the DMA
Controller is about to attempt. If the destination is PCI space then this field
will represent a PCI address. If the destination is PowerPC space then this
field will represent a PowerPC address. Software can read this register
after a DMA error to determine how far along a DMA transfer went before
the error occurred.

During a FIFO empty SMA, RTA, or MRC error with the PCI bus as the
transfer destination, this register will represent the PCI address at which a
write error occurred. During a FIFO empty XBT error with the PowerPC
bus as the transfer destination, this register will represent the PowerPC
address at which a write error occurred.

Offset XCSR + $284

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DCDA DMA

Operation R

Reset $00000000

3-92 Computer Group Literature Center Web Site

Programming Model

3

DMA Current Link Address Register

The DMA Current Link Address Register (DCLA) is a read-only register
that contains the current Linked-List-Mode descriptor address for a DMA
transfer. This will always represent a PowerPC address and is presented in
32-byte cache-line resolution. Software can read this register after a DMA
error to determine how far along a DMA transfer went before the error
occurred.

At the beginning of and up to the first descriptor fetch of a Linked-List
transaction, this register will hold the address of the ‘to-be fetched’
descriptor. Once the descriptor has been fetched, this register will hold the
address of the next descriptor. If an XBT error occurs during a descriptor
fetch, this register will hold the address that incurred the error.

Offset XCSR + $288

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name DCLA DMA

Operation R R R R R R

Reset $00000000 0 0 0 0 0

Message Passing

http://www.motorola.com/computer/literature 3-93

3

Message Passing
The Message Passing function has registers located within two register
groups. The processor may gain access to a majority of the control and
status registers located within PowerPC address space as a part of the
XCSR Register Group. A standard PCI Memory Space interface for I2O
and Generic Message Passing is provided within the PMEP Register
Group.

XCSR Register Group

The message passing registers associated with the XCSR register group are
described in the following subsections.

MP Generic Outbound Message (0 and 1) Registers

The MP Generic Outbound Message Registers (MGOM0 and MGOM1)
are used for generating outbound messages from the processor to PCI.
Writing to either MGOM0 or MGOM1 will cause the generation of a PCI
interrupt if the MGMS register permits. These registers are visible from
within the PMEP Register Group, allowing a PCI master to receive the
outbound message being passed from the processor.

Offset MGOM0: XCSR + $290
MGOM1: XCSR + $294

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MGOMx Generic

BYTE0 BYTE1 BYTE2 BYTE3

Operation R/W R/W R/W R/W

Reset $00 $00 $00 $00

3-94 Computer Group Literature Center Web Site

Programming Model

3

MP Generic Outbound Doorbell Register

The MP Generic Outbound Doorbell Register (MGOD) is used for
generating outbound doorbell interrupts from the processor to PCI.
Writing a one to any bit position will cause the generation of a PCI
interrupt if the MGODM register permits. This register is visible from
within the PMEP Register Group, allowing a PCI master to determine
which doorbell bit was used to generate the outbound doorbell interrupt.

The fields within the MGOD register are defined as follows:

ODBIx: Outbound Doorbell Interrupt. Writing a one to a particular
bit position will set the bit and cause the generation of a PCI interrupt.

MP Generic Inbound (0 and 1) Message Registers

The MP Generic Inbound Message Registers (MGIM0 and MGIM1) are
used for receiving inbound messages from PCI to the processor. The
processor reads the MGIM0 or MGIM1 register to obtain the inbound
message. These registers are visible from within the PMEP Register

Offset XCSR + $298

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MGOD Generic

O
D

B
I0

O
D

B
I1

O
D

B
I2

O
D

B
I3

O
D

B
I4

O
D

B
I5

O
D

B
I6

O
D

B
I7

O
D

B
I8

O
D

B
I9

O
D

B
I1

0
O

D
B

I1
1

O
D

B
I1

2
O

D
B

I1
3

O
D

B
I1

4
O

D
B

I1
5

O
D

B
I1

6
O

D
B

I1
7

O
D

B
I1

8
O

D
B

I1
9

O
D

B
I2

0
O

D
B

I2
1

O
D

B
I2

2
O

D
B

I2
3

O
D

B
I2

4
O

D
B

I2
5

O
D

B
I2

6
O

D
B

I2
7

O
D

B
I2

8
O

D
B

I2
9

O
D

B
I3

0
O

D
B

I3
1

Operation

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

Reset 0

Offset MGIM0: XCSR + $2A0
MGIM1: XCSR + $2A4

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MGIMx Generic

BYTE0 BYTE1 BYTE2 BYTE3

Operation R/W R/W R/W R/W

Reset $00 $00 $00 $00

Message Passing

http://www.motorola.com/computer/literature 3-95

3

Group, allowing a PCI master to write a message to either MGIM0 or
MGIM1 which will then generate a processor interrupt. The interrupts
generated by these registers may be cleared from within the FECL
register.

MP Generic Inbound Doorbell Register

The MP Generic Inbound Doorbell Register (MGID) is used for receiving
inbound doorbell interrupts from PCI to the processor. The processor reads
this register to determine which doorbell bit was used to generate an
inbound doorbell interrupt. This register is visible from within the PMEP
Register Group, allowing a PCI master to write any doorbell bit which will
then generate an interrupt to the processor. The interrupts generated by this
register may be cleared by writing to the appropriate fields within this
register.

The fields within the MGID register are defined as follows:

IDBIx: Inbound Doorbell Interrupt. If any one of these bits are set
from the PMEP Register Group, a processor interrupt will be
generated. Writing a one to a particular bit position will clear the bit
and remove the interrupt associated with the bit.

Offset XCSR + $2A8

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MGID Generic

ID
B

I7
ID

B
I6

ID
B

I5
ID

B
I4

ID
B

I3
ID

B
I2

ID
B

I1
ID

B
I0

ID
B

I1
5

ID
B

I1
4

ID
B

I1
3

ID
B

I1
2

ID
B

I1
1

ID
B

I1
0

ID
B

I9
ID

B
I8

ID
B

I2
3

ID
B

I2
2

ID
B

I2
1

ID
B

I2
0

ID
B

I1
9

ID
B

I1
8

ID
B

I1
7

ID
B

I1
6

ID
B

I3
1

ID
B

I3
0

ID
B

I2
9

ID
B

I2
8

ID
B

I2
7

ID
B

I2
6

ID
B

I2
5

ID
B

I2
4

Operation

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

Reset 0

3-96 Computer Group Literature Center Web Site

Programming Model

3

MP Generic Inbound Doorbell Mask Register

The MP Generic Inbound Doorbell Mask Register (MGIDM) is used for
individually masking inbound doorbell interrupts from PCI to the
processor. This is the first level of a two level masking scheme. The second
level of masking is provided by the FEMA.MIDB bit, which provides a
global masking of all inbound doorbell interrupts independent of the state
of the MGIDM register.

The fields within the MGIDM register are defined as follows:

IDBMx: Inbound Doorbell Mask. Writing a zero to a particular bit
position will enable the generation of the associated inbound doorbell
interrupt. Writing a one will mask the interrupt.

MP I20 Outbound Free_list Head Register

The MP I2O Outbound Free_list Head Register (MIOFH) is a word
aligned pointer into PowerPC address space that represents the head
location of the Outbound Free_list FIFO. This pointer is automatically

Offset XCSR + $2B0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MGIDM Generic

ID
B

M
7

ID
B

M
6

ID
B

M
5

ID
B

M
4

ID
B

M
3

ID
B

M
2

ID
B

M
1

ID
B

M
0

ID
B

M
15

ID
B

M
14

ID
B

M
13

ID
B

M
12

ID
B

M
11

ID
B

M
10

ID
B

M
9

ID
B

M
8

ID
B

M
23

ID
B

M
22

ID
B

M
21

ID
B

M
20

ID
B

M
19

ID
B

M
18

ID
B

M
17

ID
B

M
16

ID
B

M
31

ID
B

M
30

ID
B

M
29

ID
B

M
28

ID
B

M
27

ID
B

M
26

ID
B

M
25

ID
B

M
24

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

Reset 1

Offset XCSR + $2C0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIOFH I2O

QBA PTR

Operation R R R R/W R R

Reset $000 1 0 $00000 0 0

Message Passing

http://www.motorola.com/computer/literature 3-97

3

incremented whenever a PCI master performs a write to the Outbound
Free_list FIFO. The processor may also modify this register as needed.
The fields within the MIOFH register are defined as follows:

QBA: Queue Base Address. This read-only field is a copy of the
QBA field within the MIQB register.

PTR: Pointer. This is an offset from the QBA where the FIFO
component resides.

MP I20 Outbound Free_list Tail Register

The MP I2O Outbound Free_list Tail Register (MIOFT) is a word aligned
pointer into PowerPC address space that represents the tail location of the
Outbound Free_list FIFO. This pointer is manually maintained by the
processor. The fields within the MIOFT register are defined as follows:

QBA: Queue Base Address. This read-only field is a copy of the
QBA field within the MIQB register.

PTR: Pointer. This is an offset from the QBA where the FIFO
component resides.

Offset XCSR + $2C4

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIOFT I2O

QBA PTR

Operation R R R R/W R R

Reset $000 1 0 $00000 0 0

3-98 Computer Group Literature Center Web Site

Programming Model

3

MP I20 Outbound Post_list Head Register

The MP I2O Outbound Post_list Head Register (MIOPH) is a word
aligned pointer into PowerPC address space that represents the head
location of the Outbound Post_list FIFO. This pointer is manually
maintained by the processor. The fields within the MIOPH register are
defined as follows:

QBA: Queue Base Address. This read-only field is a copy of the
QBA field within the MIQB register.

PTR: Pointer. This is an offset from the QBA where the FIFO
component resides.

MP I20 Outbound Post_list Tail Register

The MP I2O Outbound Post_list Tail Register (MIOPT) is a word aligned
pointer into PowerPC address space that represents the tail location of the
Outbound Post_list FIFO. This pointer is automatically incremented
whenever a PCI master performs a read from the Outbound Post_list FIFO.
The processor may also modify this register as needed. The fields within
the MIOPT register are defined as follows:

Offset XCSR + $2C8

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIOPH I2O

QBA PTR

Operation R R R R/W R R

Reset $000 1 1 $00000 0 0

Offset XCSR + $2CC

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIOPT I2O

QBA PTR

Operation R R R R/W R R

Reset $000 1 1 $00000 0 0

Message Passing

http://www.motorola.com/computer/literature 3-99

3

QBA: Queue Base Address. This read-only field is a copy of the
QBA field within the MIQB register.

PTR: Pointer. This is an offset from the QBA where the FIFO
component resides.

MP I20 Inbound Free_list Head Register

The MP I2O Inbound Free_list Head Register (MIIFH) is a word aligned
pointer into PowerPC address space that represents the head location of the
Inbound Free_list FIFO. This pointer is manually maintained by the
processor. The fields within the MIIFH register are defined as follows:

QBA: Queue Base Address. This read-only field is a copy of the
QBA field within the MIQB register.

PTR: Pointer. This is an offset from the QBA where the FIFO
component resides.

Offset XCSR + $2D0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIIFH I2O

QBA PTR

Operation R R R R/W R R

Reset $000 0 0 $00000 0 0

3-100 Computer Group Literature Center Web Site

Programming Model

3

MP I20 Inbound Free_list Tail Register

The MP I2O Inbound Free_list Tail Register (MIIFT) is a word aligned
pointer into PowerPC address space that represents the tail location of the
Inbound Free_list FIFO. This pointer is automatically incremented
whenever a PCI master performs a read from the Inbound Free_list FIFO.
The processor may also modify this register as needed. The fields within
the MIIFT register are defined as follows:

QBA: Queue Base Address. This read-only field is a copy of the
QBA field within the MIQB register.

PTR: Pointer. This is an offset from the QBA where the FIFO
component resides.

MP I20 Inbound Post_list Head Register

The MP I2O Inbound Post_list Head Register (MIIPH) is a word aligned
pointer into PowerPC address space that represents the head location of the
Inbound Post_list FIFO. This pointer is automatically incremented

Offset XCSR + $2D4

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIIFT I2O

QBA PTR

Operation R R R R/W R R

Reset $000 0 0 $00000 0 0

Offset XCSR + $2D8

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIOPH I2O

QBA PTR

Operation R R R R/W R R

Reset $000 1 1 $00000 0 0

Message Passing

http://www.motorola.com/computer/literature 3-101

3

whenever a PCI master performs a write to the Inbound Post_list FIFO.
The processor may also modify this register as needed. The fields within
the MIIPH register are defined as followss:

QBA: Queue Base Address. This read-only field is a copy of the
QBA field within the MIQB register.

PTR: Pointer. This is an offset from the QBA where the FIFO
component resides.

MP I20 Inbound Post_list Tail Register

The MP I2O Outbound Post_list Tail Register (MIIPT) is a word aligned
pointer into PowerPC address space that represents the tail location of the
Inbound Post_list FIFO. This pointer is manually maintained by the
processor. The fields within the MIIPT register are defined as follows:

QBA: Queue Base Address. This read-only field is a copy of the
QBA field within the MIQB register.

PTR: Pointer. This is an offset from the QBA where the FIFO
component resides.

Offset XCSR + $2DC

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIIPT I2O

QBA PTR

Operation R R R R/W R R

Reset $000 0 1 $00000 0 0

3-102 Computer Group Literature Center Web Site

Programming Model

3

MP I20 Control Register

The MP I2O Control Register (MICT) is used for controlling the I2O
Message Passing function. The fields within the MICT register are
defined as follows:

ENA: Enable. If this bit is set, the I2O Message Passing function will
be enabled. When enabled, the I2O FIFOs will be accessible to PCI. If
cleared, the I2O Message Passing function is disabled.

QSZ: Queue Size. This field represents the size of the I2O quad-FIFO
circular queues. Each of the four FIFOs are sized the same, with the
QSZ field indicating the size of each FIFO. The following table shows
the encoding of the QSZ field.

Offset XCSR + $2E0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MICT I2O
E

N
A

Q
S

Z

Operation

R R R R R R R
R

/W R R R R R
R

/W
R

/W
R

/W

R R

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 $00 $00

Table 3-35. MICT QSZ Encoding

QSZ FIFO Size

000 2 KBytes

001 4 KBytes

010 8 KBytes

011 16 KBytes

100 32 KBytes

101 64 KBytes

110 128 KBytes

111 256 KBytes

Message Passing

http://www.motorola.com/computer/literature 3-103

3

MP I20 Queue Base Register

The MP I2O Queue Base Register (MIQB) represents the base address of
the I2O Quad-FIFO circular queues.The circular queues may be placed
anywhere within PowerPC address space on 1MB boundaries. The field
within the MIQB register is defined as follows:

QBA: Queue Base Address. Base address of circular queue structure.

PMEP Register Group

The following subsections identify and describe the registers within the
PMEP Register Group.

MP I20 Interrupt Status Register

The MP I2O Interrupt Status Register (MIST) contains status information
for interrupts associated with the Outbound Post_list circular queue. The
field within the MIST register is defined as follows:

Offset XCSR + $2E4

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MIQB I2O

QBA

Operation R/W R R R

Reset $000 $0 $00 $00

Offset PMEP + $030

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MIST I2O

O
P

I

Operation R R R R R R R R R R R

Reset $00 $00 $00 0 0 0 0 0 0 0 0

3-104 Computer Group Literature Center Web Site

Programming Model

3

OPI: Outbound Post_list Interrupt. This is a read-only bit
indicating a new entry resides within the Outbound Post_list FIFO. If
the MIMS register permits, the setting of this bit will also generate a
PCI interrupt. This bit and the interrupt associated with this bit may be
cleared by a PCI master by reading the MIOQ register until there are
no more new entries within the Outbound Post_list FIFO.

MP I20 Interrupt Mask Register

The MP I2O Interrupt Mask Register (MIMS) controls the masking of
interrupts associated with the Outbound Post_list circular queue. The field
within the MIMS register is defined as follows:

OPIM: Outbound Post_list Interrupt Mask. If set, the OPI bit
within the MIST register will not generate a PCI interrupt. If cleared,
a PCI interrupt will be generated whenever the OPI bit is set.

MP I20 Inbound Queue Register

The MP I2O Inbound Queue Register (MIIQ) is an access port to the
Inbound Free_list and Post_list FIFOs.

Offset PMEP + $034

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MIMS I2O

O
P

IM

Operation R R R

R R R R
R

/W R R R

Reset $00 $00 $00 0 0 0 0 1 0 0 0

Offset PMEP + $040

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MIIQ I2O

Operation R/W

Reset $FFFFFFFF

Message Passing

http://www.motorola.com/computer/literature 3-105

3

Reading this register will return the oldest MFA entry from the Inbound
Free_list FIFO. If there are no entries in the FIFO or the I2O Message
Passing function is disabled then this register will return 0xFFFF_FFFF.

Writing this register will place the newest MFA entry into the Inbound
Post_list FIFO. If the I2O Message Passing function is disabled then the
write will be discarded.

MP I20 Outbound Queue Register

The MP I2O Outbound Queue Register (MIOQ) is an access port to the
Outbound Free_list and Post_list FIFOs.

Reading this register will return the oldest MFA entry from the Outbound
Post_list FIFO. If there are no entries in the FIFO or the I2O Message
Passing function is disabled then this register will return 0xFFFF_FFFF.

Writing this register will place the newest MFA entry into the Outbound
Free_list FIFO. If the I2O Message Passing function is disabled then the
write will be discarded.

Offset PMEP + $044

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MIOQ I2O

Operation R/W

Reset $FFFFFFFF

3-106 Computer Group Literature Center Web Site

Programming Model

3

MP Generic Outbound Message (0 and 1) Registers

The MP Generic Outbound Message Registers (MGOM0 and MGOM1)
are used for receiving outbound messages from the processor to PCI. A
PCI master reads the MGOM0 or MGOM1 register to obtain the
outbound message. These registers are visible from within the XCSR
Register Group, allowing the processor to write a message to either
MGOM0 or MGOM1 which will then generate a PCI interrupt if the
MGMS register permits. The interrupt associated with this register may be
cleared from within the MGST register.

MP Generic Outbound Doorbell Register

The MP Generic Outbound Doorbell Register (MGOD) is used for
receiving outbound doorbell interrupts from the processor to PCI. A PCI
master reads this register to determine which doorbell bit was used to
generate the outbound doorbell interrupt. This register is visible from
within the XCSR Register Group, allowing the processor to write any

Offset MGOM0: PMEP + $100
MGOM1: PMEP + $104

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MGOMx Generic

BYTE3 BYTE2 BYTE1 BYTE0

Operation R/W R/W R/W R/W

Reset $00 $00 $00 $00

Offset PMEP + $108

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MGOD Generic

O
D

B
I2

4
O

D
B

I2
5

O
D

B
I2

6
O

D
B

I2
7

O
D

B
I2

8
O

D
B

I2
9

O
D

B
I3

0
O

D
B

I3
1

O
D

B
I1

6
O

D
B

I1
7

O
D

B
I1

8
O

D
B

I1
9

O
D

B
I2

0
O

D
B

I2
1

O
D

B
I2

2
O

D
B

I2
3

O
D

B
I8

O
D

B
I9

O
D

B
I1

0
O

D
B

I1
1

O
D

B
I1

2
O

D
B

I1
3

O
D

B
I1

4
O

D
B

I1
5

O
D

B
I0

O
D

B
I1

O
D

B
I2

O
D

B
I3

O
D

B
I4

O
D

B
I5

O
D

B
I6

O
D

B
I7

Operation

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

Reset 0

Message Passing

http://www.motorola.com/computer/literature 3-107

3

doorbell bit which will then generate a PCI interrupt, if the MGODM
register permits. The interrupts generated by this register may be cleared
by writing to the appropriate fields within this register.

The fields within the MGOD register are defined as follows:

ODBIx: Outbound Doorbell Interrupt. If any one of these bits are
set from the XCSR Register Group, a PCI interrupt will be generated.
Writing a one to a particular bit position will clear the bit and remove
the interrupt associated with the bit.

MP Generic Inbound Message (0 and 1) Registers

The MP Generic Inbound Message Registers (MGIM0 and MGIM1) are
used for generating inbound messages from PCI to the processor. Writing
to either MGIM0 or MGIM1 will cause the generation of a processor
interrupt if the XCSR.FEMA register permits. These registers are visible
from within the XCSR Register Group, allowing the processor to receive
the inbound message being passed from PCI.

Offset MGIM0: PMEP + $110
MGIM1: PMEP + $114

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MGIMx Generic

BYTE3 BYTE2 BYTE1 BYTE0

Operation R/W R/W R/W R/W

Reset $00 $00 $00 $00

3-108 Computer Group Literature Center Web Site

Programming Model

3

MP Generic Inbound Doorbell Register

The MP Generic Inbound Doorbell Register (MGID) is used for
generating inbound doorbell interrupts from PCI to the processor. Writing
a one to any bit position will cause the generation of a processor interrupt
if the XCSR.FEMA register permits. This register is visible from within
the XCSR Register Group, allowing the processor to determine which
doorbell bit was used to generate the inbound doorbell interrupt.

The fields within the MGID register are defined as follows:

IDBIx: Inbound Doorbell Interrupt. Writing a one to a particular bit
position will set the bit and cause the generation of a processor
interrupt.

Offset PMEP + $118

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MGID Generic

ID
B

I3
1

ID
B

I3
0

ID
B

I2
9

ID
B

I2
8

ID
B

I2
7

ID
B

I2
6

ID
B

I2
5

ID
B

I2
4

ID
B

I2
3

ID
B

I2
2

ID
B

I2
1

ID
B

I2
0

ID
B

I1
9

ID
B

I1
8

ID
B

I1
7

ID
B

I1
6

ID
B

I1
5

ID
B

I1
4

ID
B

I1
3

ID
B

I1
2

ID
B

I1
1

ID
B

I1
0

ID
B

I9
ID

B
I8

ID
B

I7
ID

B
I6

ID
B

I5
ID

B
I4

ID
B

I3
ID

B
I2

ID
B

I1
ID

B
I0

Operation

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

R
/S

Reset 0

Message Passing

http://www.motorola.com/computer/literature 3-109

3

MP Generic Interrupt Status Register

The MP Generic Interrupt Status Register (MGST) is used for handling
interrupt status associated with outbound message passing registers
MGOM0 and MGOM1. The fields within the MGST register are defined
as follows:

OMI1: Outbound Message Interrupt 1. If set, an outbound message
has been written by the processor into the MGOM1 register. If the
MGMS register allowed it, a PCI interrupt was also generated. This bit
and the associated interrupt may be cleared by writing a one to this
field.

OMI0: Outbound Message Interrupt 0. If set, an outbound message
has been written by the processor into the MGOM0 register. If the
MGMS register allowed it, a PCI interrupt was also generated. This bit
and the associated interrupt may be cleared by writing a one to this
field.

Offset PMEP + $120

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MGST Generic

O
M

I1
O

M
I0

Operation R R R

R R R
/C

R
/C R R R R

Reset $00 $00 $00 0 0 0 0 0 0 0 0

3-110 Computer Group Literature Center Web Site

Programming Model

3

MP Generic Interrupt Mask Register

The MP Generic Interrupt Mask Register (MGMS) is used for controlling
the assertion of exceptions associated with outbound message passing
registers MGOM0 and MGOM1. The fields within the MGMS register
are defined as follows:

OMIM1: Outbound Message Interrupt Mask 1. This bit controls
the masking of the MGOM1 register interrupt. If this bit is cleared, a
write to the XCSR.MGOM1 register by the processor will generate a
PCI interrupt. If set, no interrupt will be generated.

OMIM0: Outbound Message Interrupt Mask 0. This bit controls
the masking of the MGOM0 register interrupt. If this bit is cleared, a
write to the XCSR.MGOM0 register by the processor will generate a
PCI interrupt. If set, no interrupt will be generated.

Offset PMEP + $124

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MGMS Generic

O
M

IM
1

O
M

IM
0

Operation R R R

R R
R

/W
R

/W R R R R

Reset $00 $00 $00 0 0 1 1 0 0 0 0

Message Passing

http://www.motorola.com/computer/literature 3-111

3

MP Generic Outbound Doorbell Mask Register

The MP Generic Outbound Doorbell Mask Register (MGODM) is used
for individually masking outbound doorbell interrupts from the processor
to PCI. The fields within the MGODM register are defined as follows:

ODBMx: Outbound Doorbell Mask. Writing a zero to a particular
bit position will enable the generation of the associated outbound
doorbell interrupt. Writing a one will mask the interrupt.

Offset PMEP + $128

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Name MGODM Generic

O
D

B
M

24
O

D
B

M
25

O
D

B
M

26
O

D
B

M
27

O
D

B
M

28
O

D
B

M
29

O
D

B
M

30
O

D
B

M
31

O
D

B
M

16
O

D
B

M
17

O
D

B
M

18
O

D
B

M
19

O
D

B
M

20
O

D
B

M
21

O
D

B
M

22
O

D
B

M
23

O
D

B
M

8
O

D
B

M
9

O
D

B
M

10
O

D
B

M
11

O
D

B
M

12
O

D
B

M
13

O
D

B
M

14
O

D
B

M
15

O
D

B
M

0
O

D
B

M
1

O
D

B
M

2
O

D
B

M
3

O
D

B
M

4
O

D
B

M
5

O
D

B
M

6
O

D
B

M
7

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

Reset 1

3-112 Computer Group Literature Center Web Site

Programming Model

3

Multi-Processor Interrupt Controller
The Multi-Processor Interrupt Controller has registers located within two
register groups. A majority of the control and status registers are located
within PowerPC address space as a part of the XMPI Register Group.
Some additional control and status, including the relocation of the XMPI
Register group, is located within PowerPC address space as part of the
XCSR Register Group.

XCSR Register Group

The following subsections describe the registers in the XCSR Register
Group.

MPIC Base Address Register

The MPIC Base Address Register (MBAR) is used to control the mapping
of the XMPI Register Group within PowerPC address space. The fields
within the MBAR register are defined as follows:

MBAR: MPIC Base Address Register. This field holds the base
address of the XMPI Register Group. This group may be located
anywhere in PowerPC address space on any 256KByte boundary.

ENA: Enable. This field controls the visibility of the XMPI Register
Group. Setting this field to a one will enable the XMPI Register Group
to be seen starting at the base address specified by the MBAR field.

Offset XCSR + $0E0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MBAR

E
N

A MPIC

Operation R/W

R
R

/W

R R

Reset $0000 0 0 $00 $00

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-113

3

Clearing this bit makes the XMPI Register Group inaccessible. This
field powers up cleared, meaning the XMPI Register Group is not
visible until programmed by the processor.

MPIC Control and Status/Interrupt Request Sample Registers

The MPIC Control and Status Register (MCSR) provides various control
and status of the MPIC function. The field within the MCSR register is
defined as follows:

OPI: OpenPIC Interrupt. If set, the Harrier generated interrupts will
be passed on to the MPIC. If cleared, the Harrier generated interrupts
will be passed on to the IRQ0_ pin. Note that the MPIC can only drive
the IRQx_ lines, therefore if this bit is cleared then MPIC is essentially
disabled.

The MPIC Interrupt Request Sample Register (MIRS) is used to determine
the actual state of the EXTI pins. Bit position 16 reflects the state of the
EXTI15 pin, and bit position 31 reflects the state of the EXTI0 pin. Note
that this register samples the same EXTI lines that are routed to the MPIC,
therefore the effects of MPIC interrupt conditioning (i.e. edge detection,
signal polarity, etc.) will not be reflected in this register.

XMPI Register Group

The following subsections describe the registers within the XMPI Register
Group.

Offset XCSR + $0E4

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MCSR MIRS MPIC

O
P

I

Operation

R
R

/W R R R R R R

R R

Reset 0 0 0 0 0 0 0 0 $00 $FFFF

3-114 Computer Group Literature Center Web Site

Programming Model

3

Feature Reporting Register

The Feature Reporting Register (FREP) is a read-only register that
contains MPIC sizing and version information. The fields within the
FREP register are defined as follows:

NIRQ: Number of IRQ’s. The number of the highest external IRQ
source supported. The IPI, Timer, and Harrier Detected Error
interrupts are excluded from this count.

NCPU: Number of CPU’s. The number of the highest physical CPU
supported. There are two CPU’s supported by this design. CPU #0 and
CPU #1.

VID: Version ID. Version ID for this Interrupt Controller. This value
reports what level of the MPIC specification is supported by this
implementation. Version level of 02 is used for the initial release of the
MPIC specification.

Offset XMPI + $01000

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name FREP Misc.

NIRQ NCPU VID

Operation R R R R R R R

Reset $0 $00F 0 0 0 $01 $03

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-115

3

Global Configuration Register

The Global Configuration Register (GLBC) contains global MPIC control
information. The fields within the GLBC register are defined as follows:

RESET: Reset Controller. Writing a one to this bit forces the
controller logic to be reset. This bit is cleared automatically when the
reset sequence is complete. While this bit is set, the values of all other
register are undefined.

M: Cascade Mode. Allows cascading of an external 8259 pair
connected to the first interrupt source input pin (0). In the pass through
mode, interrupt source 0 is passed directly through to the processor 0
INT pin. The MPIC is essentially disabled. In the mixed mode, 8259
interrupts are delivered using the priority and distribution mechanism
of the MPIC. The Vector/Priority and Destination registers for
interrupt source 0 are used to control the delivery mode for all 8259
generated interrupt sources.

TIE: Tie Mode. Writing a one to this register bit will cause a tie in
external interrupt processing to, swap back and forth between
processor 0 and 1. The first tie in external interrupt processing always

Offset XMPI + $01020

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name GLBC Misc.

R
E

S
E

T

M T
IE

Operation

C R
R

/W
R

/W R R R R

R R R

Reset 0 0 0 0 0 0 0 0 $00 $00 $00

Table 3-36. Cascade Mode Encoding

M MODE

0 Pass Through

1 Mixed

3-116 Computer Group Literature Center Web Site

Programming Model

3

goes to Processor 0 after a reset. When this register bit is set to 0, a tie
in external interrupt processing will always go to processor 0 (Mode
used on Version $02 of the MPIC).

Vendor Identification Register

The Vendor Identification Register (VENI) is a read-only register that
returns vendor identification. There are two fields in the VENI which are
not defined for the MPIC implementation but are defined in the MPIC
specification. They are the vendor identification and device ID fields. The
field within the VENI register is defined as follows:

STP: Stepping. The stepping or silicon revision number of the MPIC.

Table 3-37. Tie Mode Encoding

T MODE

0 Processor 0 always selected

1 Swap between Processor’s

Offset XMPI + $01080

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name VENI Misc.

STP

Operation R R R R

Reset $00 $00 $00 $00

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-117

3

Processor Init Register

The Processor Init Register (PINT) is used to assert a soft reset to the
processors. The fields within the PINT register are defined as follows:

P1: Processor 1. Writing a one to P1 will assert the Soft Reset input
of processor 1 (SRST1_). Writing a zero to P1 will negate the SRST1_
signal.

P0: Processor 0. Writing a one to P0 will assert the Soft Reset input
of processor 0 (SRST0_). Writing a zero to P0 will negate the SRST0_
signal.

The Soft Reset input to the PowerPC processor is negative edge-
sensitive.

Offset XMPI + $01090

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name PINT Misc.

P
1

P
0

Operation R R R

R R R R R R
R

/W
R

/W

Reset $00 $00 $00 0 0 0 0 0 0 0 0

3-118 Computer Group Literature Center Web Site

Programming Model

3

IPI Vector/Priority (0, 1, 2, and 3) Registers

The IPI Vector/Priority Registers (IPVP0, IPVP1, IPVP2, and IPVP3)
establish vectoring and priority information for IPI interrupts. The fields
within the IPVPx registers are defined as follows:

MASK: Mask. Setting this bit disables any further interrupts from this
source. If the mask bit is cleared while the bit associated with this
interrupt is set in the IPR, the interrupt request will be generated.

ACT: Activity. The activity bit indicates that an interrupt has been
requested or that it is in-service. The ACT bit is set to a one when its
associated bit in the Interrupt Pending Register or In-Service Register
is set.

PRIOR: Priority. Interrupt priority 0 is the lowest and 15 is the
highest. Note that a priority level of 0 will not enable interrupts.

VECTOR: Vector. This vector is returned when the Interrupt
Acknowledge register is examined when the interrupt associated with
this vector is requested.

Offset IPVP0: XMPI + $010A0
IPVP1: XMPI + $010B0
IPVP2: XMPI + $010C0
IPVP3: XMPI + $010D0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name IPVPx IPI

M
A

S
K

A
C

T

PRIOR VECTOR

Operation

R
/W R R R R R R R

R R/W R R/W

Reset 1 0 0 0 0 0 0 0 $0 $0 $00 $00

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-119

3

Spurious Vector Register

The Spurious Vector Register (SPVE) contains vector information for
spurious interrupts. The field within the SPVE register is defined as
follows:

VECTOR: Vector. This vector is returned when the Interrupt
Acknowledge register is read during a spurious vector fetch.

Timer Frequency Register

The Timer Frequency Register (TIFR) is used to report the frequency (in
Hz) of the clock source for the global timers. Following reset, this register
contains zero. System initialization code must initialize this register to
one-eighth the MPIC clock frequency (PowerPC (60x) bus clock
frequency). For the MPIC implementation of the Harrier, a typical value
would be $BEBC20 which is 100/8 MHz or 12.5 MHz.

Offset XMPI + $010E0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name SPVE Spur

VECTOR

Operation R R R R/W

Reset $00 $00 $00 $FF

Offset XMPI + $010F0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name TIFR Timers

Operation R/W

Reset $00000000

3-120 Computer Group Literature Center Web Site

Programming Model

3

Timer Current Count (0, 1, 2, and 3) Registers

The Timer Current Count Registers (TICC0, TICC1, TICC2, and
TICC3) are read-only registers that return the current count value of the
MPIC timers. The fields within the TICCx registers are defined as
follows:

T: Toggle. This bit toggles when ever the current count decrements to
zero. This bit is cleared when a value is written into the corresponding
Timer Base Count Register (TIBC) and the Count Inhibit (CI) bit in the
corresponding TIBC register transitions from a 1 to a 0.

CC: Current Count. The Current Count field decrements while the
Count Inhibit bit in the Base Count register is zero. When the Current
Count register counts down to zero, the Current Count register is
reloaded from the Base Count register and the timer’s interrupt
becomes pending in MPIC processing.

Offset TICC0: XMPI + $01100
TICC1: XMPI + $01140
TICC2: XMPI + $01180
TICC3: XMPI + $011C0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name TICCx Timers

T CC

Operation R R

Reset 0 $00000000

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-121

3

Timer Base Count (0, 1, 2, and 3) Registers

The Timer Base Count Registers (TIBC0, TIBC1, TIBC2, and TIBC3)
are programmed with the base count value of the MPIC timers. The fields
within the TIBCx registers are defined as follows:

CI: Count Inhibit. Setting this bit to one inhibits counting for this
timer. Setting this bit to zero allows counting to proceed.

BC: Base Count. This field contains the 31bit count for this timer.
When a value is written into this register and the CI bit transitions from
a 1 to a 0, it is copied into the corresponding Current Count register
and the toggle bit in the Current Count register is cleared. When the
Current Count register counts down to zero, the Current Count register
is reloaded from the Base Count register and the timer’s interrupt
becomes pending in MPIC processing.

Offset TIBC0: XMPI + $01110
TIBC1: XMPI + $01150
TIBC2: XMPI + $01190
TIBC3: XMPI + $011D0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name TIBCx Timers

C
I BC

Operation

R
/W

R/W

Reset 1 $00000000

3-122 Computer Group Literature Center Web Site

Programming Model

3

Timer Vector/Priority (0, 1, 2, and 3) Registers

The Timer Vector/Priority Registers (TIVP0, TIVP1, TIVP2, and
TIVP3) establish vectoring and priority information for timer interrupts.
The fields within the TIVPx registers are defined as follows:

MASK: Mask. Setting this bit disables any further interrupts from this
source. If the mask bit is cleared while the bit associated with this
interrupt is set in the IPR, the interrupt request will be generated.

ACT: Activity. The activity bit indicates that an interrupt has been
requested or that it is in-service. The ACT bit is set to a one when its
associated bit in the Interrupt Pending Register or In-Service Register
is set.

PRIOR: Priority. Interrupt priority 0 is the lowest and 15 is the
highest. Note that a priority level of 0 will not enable interrupts.

VECTOR: Vector. This vector is returned when the Interrupt
Acknowledge register is examined when the interrupt associated with
this vector is acknowledged.

Offset TIVP0: XMPI + $01120
TIVP1: XMPI + $01160
TIVP2: XMPI + $011A0
TIVP3: XMPI + $011E0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name TIVPx Timers

M
A

S
K

A
C

T

PRIOR VECTOR

Operation

R
/W R R R R R R R

R R/W R R/W

Reset 1 0 0 0 0 0 0 0 $0 $0 $00 $00

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-123

3

Timer Destination (0, 1, 2, and 3) Registers

The Timer Destination Registers (TIDE0, TIDE1, TIDE2, and TIDE3)
indicate the destination for timer interrupts. Timer interrupts operate in the
Directed delivery interrupt mode. This register may specify multiple
destinations (multicast delivery). The fields within the TIDEx registers are
defined as follows:

P1: Processor 1. The interrupt is directed to processor 1.

P0: Processor 0. The interrupt is directed to processor 0.

Offset TIDE0: XMPI + $01130
TIDE1: XMPI + $01170
TIDE2: XMPI + $011B0
TIDE3: XMPI + $011F0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name TIDEx Timers

P
1

P
0

Operation R R R

R R R R R R
R

/W
R

/W

Reset $00 $00 $00 0 0 0 0 0 0 0 0

3-124 Computer Group Literature Center Web Site

Programming Model

3

External Source Vector/Priority (0 through 15) Registers

The External Source Vector/Priority Registers (EXVP0 through
EXVP15) establish vectoring and priority information for external
interrupts. The fields within the EXVPx registers are defined as follows:

MASK: Mask. Setting this bit disables any further interrupts from this
source. If the mask bit is cleared while the bit associated with this
interrupt is set in the IPR, the interrupt request will be generated.

ACT: Activity. The activity bit indicates that an interrupt has been
requested or that it is in-service. The ACT bit is set to a one when its
associated bit in the Interrupt Pending Register or In-Service Register
is set.

POL: Polarity. This bit sets the polarity for external interrupts.
Setting this bit to a zero enables active low or negative edge. Setting
this bit to a one enables active high or positive edge. Only External
Interrupt Source 0 uses this bit in this register. For external interrupt
sources 1 through 15, this bit is hard-wired to 0.

SENSE: Sense. This bit sets the sense for external interrupts. Setting
this bit to a zero enables edge sensitive interrupts. Setting this bit to a
one enables level sensitive interrupts. For external interrupt sources 1

Offset EXVP0: XMPI + $10000
EXVP1: XMPI + $10020

...etc...
EXVP14: XMPI + $101C0
EXVP15: XMPI + $101E0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EXVPx External

M
A

S
K

A
C

T

P
O

L
S

E
N

S
E PRIOR VECTOR

Operation

R
/W R R R R R R R

R
/W

R
/W R R

R/W R R/W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 $0 $00 $00

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-125

3

through 15, setting this bit to a zero enables positive edge triggered
interrupts. Setting this bit to a one enables active low level triggered
interrupts.

PRIOR: Priority. Interrupt priority 0 is the lowest and 15 is the
highest. Note that a priority level of 0 will not enable interrupts.

VECTOR: Vector. This vector is returned when the Interrupt
Acknowledge register is examined when the interrupt associated with
this vector is acknowledged.

External Source Destination (0 through 15) Registers

The External Source Destination Registers (EXDE0 through EXDE15)
indicate the destination of external interrupts. These interrupts operate in
the Distributed interrupt delivery mode. The fields of the EXDEx registers
are defined as follows:

P1: Processor 1. The interrupt is pointed to processor 1.

P0: Processor 0. The interrupt is pointed to processor 0.

Offset EXDE0: XMPI + $10010
EXDE1: XMPI + $10030

...etc...
EXDE14: XMPI + $101D0
EXDE15: XMPI + $101F0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EXDEx External

P
1

P
0

Operation R R R

R R R R R R
R

/W
R

/W
Reset $00 $00 $00 0 0 0 0 0 0 0 0

3-126 Computer Group Literature Center Web Site

Programming Model

3

Harrier Internal Functional/Error Interrupt Vector/Priority Register

The Harrier Internal Functional/Error Interrupt Vector/Priority Register
(IFEVP/IEEVP) establishes vectoring and priority information for the
Harrier internal functional/error interrupts. An internal interrupt is an
interrupt that is generated within the Harrier. The fields within the
IFEVP/IEEVP registers are defined as follows:

MASK: Mask. Setting this bit disables any further interrupts from this
source. If the mask bit is cleared while the bit associated with this
interrupt is set in the IPR, the interrupt request will be generated.

ACT: Activity. The activity bit indicates that an interrupt has been
requested or that it is in-service. The ACT bit is set to a one when its
associated bit in the Interrupt Pending Register or In-Service Register
is set

SENSE: Sense. This bit sets the sense for the Harrier internal
interrupts/errors. This bit is hard-wired to 1 to enable active-low level
sensitive interrupts/errors.

PRIOR: Priority Interrupt priority 0 is the lowest and 15 is the
highest. Note that a priority level of 0 will not enable interrupts.

VECTOR: Vector. This vector is returned when the Interrupt
Acknowledge register is examined when the interrupt associated with
this vector is acknowledged.

Offset IFEVP: XMPI + $10200
IEEVP: XMPI + $10220

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name IFEVP/IEEVP Internal

M
A

S
K

A
C

T

S
E

N
S

E PRIOR VECTOR

Operation

R
/W R R R R R R R R R R R

R/W R R/W

Reset 1 0 0 0 0 0 0 0 0 1 0 0 $0 $00 $00

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-127

3

Harrier Internal Functional/Error Interrupt Destination Register

The Harrier Internal Functional/Error Interrupt Destination Register
(IFEDE/IEEDE) indicates the destination of internal interrupts. These
interrupts operate in the Distributed interrupt delivery mode. The fields of
the IFEDE/IEEDE register are defined as follows:

P1: Processor 1. The interrupt is pointed to processor 1.

P0: Processor 0. The interrupt is pointed to processor 0.

Offset XMPI + $10210
XMPI + $10230

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name IFEDE/IEEDE Internal

P
1

P
0

Operation R R R

R R R R R R
R

/W
R

/W

Reset $00 $00 $00 0 0 0 0 0 0 0 0

3-128 Computer Group Literature Center Web Site

Programming Model

3

Processor 0/Processor 1 IPI Dispatch (0, 1, 2, and 3) Registers

The Processor 0/Processor 1 IPI Dispatch Registers (P0IPD0, P0IPD1,
P0IPD2, P0IPD3, P1IPD0, P1IPD1, P1IPD2, and P1IPD3) are used to
send interrupts to one or more processors. Writing to an IPI Dispatch
Register causes an interprocessor interrupt request to be sent to one or
more processors. A processor is interrupted if the bit in the IPI Dispatch
Register corresponding to that processor is set during the write. Two
processors are supported, with each processor owning four dispatch
registers. Reading these registers returns zeros. The fields within the
P0IPDx/P1IPDx registers are defined as follows:

P1: Processor 1. The interrupt is directed to processor 1.

P0: Processor 0. The interrupt is directed to processor 0.

Offset P0IPD0: XMPI + $20040
P0IPD1: XMPI + $20050
P0IPD2: XMPI + $20060
P0IPD3: XMPI + $20070
P1IPD0: XMPI + $21040
P1IPD1: XMPI + $21050
P1IPD2: XMPI + $21060
P1IPD3: XMPI + $21070

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name P0IPDx/P1IPDx CPU 0
or

CPU 1P
1

P
0

Operation R R R R R R R R R W W

Reset $00 $00 $00 0 0 0 0 0 0 0 0

Multi-Processor Interrupt Controller

http://www.motorola.com/computer/literature 3-129

3

Processor 0/Processor 1 Current Task Priority Registers

The Processor 0/Processor 1 Current Task Priority Registers (P0CTP and
P1CTP) establish a task priority level for a processor. Two processors are
supported, with each processor owning a task priority register. Priority
levels from 0 (lowest) to 15 (highest) are supported. Setting the current
task priority register to 15 masks all interrupts to this processor. Hardware
will set the current task register to $F when it is reset or when the Init bit
associated with this processor (P0 or P1 in PINT register) is written to a
one. The fields within the P0CTP/P1CTP registers are defined as follows:

TP: Task Priority of processor.

Processor 0/Processor 1 Interrupt Acknowledge Registers

The Processor 0/Processor 1 Interrupt Acknowledge Registers (P0IAC
and P1IAC) are used to declare an interrupt acknowledge. Two processors
are supported, with each processor owning an interrupt acknowledge
register. On PowerPC-based systems, Interrupt Acknowledge is
implemented as a read request to a memory-mapped Interrupt
Acknowledge register. Reading the Interrupt Acknowledge register

Offset P0CTP: XMPI + $20080
P1CTP: XMPI + $21080

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name P0CTP/P1CTP CPU 0
or

CPU 1
TP

Operation R R R R R/W

Reset $00 $00 $00 $0 $F

Offset P0IAC: XMPI + $200A0
P1IAC: XMPI + $210A0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name P0IAC/P1IAC CPU 0
or

CPU 1
VECTOR

Operation R R R R

Reset $00 $00 $00 $FF

3-130 Computer Group Literature Center Web Site

Programming Model

3

returns the interrupt vector corresponding to the highest priority pending
interrupt. Reading this register without a pending interrupt will return a
value of $FF hex. Reading this register also has the following side affects.

❏ The associated bit in the Interrupt Pending Register is cleared.

❏ The In-Service register is updated.

The fields within the P0IAC/P1IAC registers are defined as follows:

VECTOR: Vector. This vector is returned when the Interrupt
Acknowledge register is read.

Processor 0/Processor 1 End-Of-Interrupt Registers

The Processor 0/Processor 1 End-Of-Interrupt Registers (P0EOI and
P1EOI) are used to declare the end of an interrupt. Two processors are
supported, with each processor owning an End-Of-Interrupt register. The
field within the P0EOI/P1EOI registers is defined as follows:

EOI: End of Interrupt. EOI Code values other than 0 are currently
undefined. Data values written to this register are ignored, zero is
assumed. Writing to this register signals the end of processing for the
highest priority interrupt currently in service by the associated
processor. The write operation will update the In-Service register by
retiring the highest priority interrupt. Reading this register returns
zeros.

Offset P0EOI: XMPI + $200B0
P1EOI: XMPI + $210B0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name P0EOI/P1EOI CPU 0
or

CPU 1
EOI

Operation R R R R W

Reset $00 $00 $00 $0 $0

I2C Controller

http://www.motorola.com/computer/literature 3-131

3

I2C Controller
All of the registers for this function are located within PowerPC address
space as a part of the XCSR Register Group.

I2C Clock Prescaler Register

The I2C Clock Prescaler Register (I2PSx) is used to specify a frequency of
the I2C gated clock signal. The formula for calculating a value is shown
below:

I2C CLOCK = SYSTEM CLOCK / (I2PSx+1) / 2

After power-up, I2PSx is initialized to $01F3 which produces a 100KHz
I2C gated clock signal based on a 100.0 MHz system clock. Due to the
SDAx hold time requirement, the value written to I2PSx must be greater
than $0020. Writes to this register will be restricted to 2, 4, or 8-byte
only and must be aligned.

Offset XCSR + $180
XCSR + $1A0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name I2PS0
I2PS1

I2C

Operation R R R/W

Reset $00 $00 $01F3

3-132 Computer Group Literature Center Web Site

Programming Model

3

I2C Control Register

The I2C Control Register (I2COx) provides control for the Harrier’s I2C
function. Please refer to the section titled "I2C Interface" in the previous
chapter for more information. Writes to this register are restricted to 4-
bytes only and must be aligned. The fields within the I2COx register are
defined as follows:

STA: Start. When set, the I2C master controller generates a start
sequence on the I2C bus on the next write to the I2TDx Register and
clears the CMP bit in the I2STx register. After the start sequence and
the I2TDx Register contents have been transmitted, the I2C master
controller will automatically clear the STA bit and then set the CMP
bit in the I2STx Register.

STP: Stop. When set, the I2C master controller generates a stop
sequence on the I2C bus on the next dummy write (data=don’t care) to
the I2TDx Register and clears the CMP bit in the I2STx Register. After
the stop sequence has been transmitted, the I2C master controller will
automatically clear the STP bit and then set the CMP bit in the I2STx
Register.

ACKO: Acknowledge Out. When set, the I2C master controller
generates an acknowledge on the I2C bus during read cycles. This bit
should be used only in the I2C sequential read operation and must

Offset XCSR + $184
XCSR + $1A4

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name I2CO0
I2CO1

I2C

S
TA S
T

P
A

C
K

O
E

N
A

Operation R R R

R R R R
R

/W
R

/W
R

/W
R

/W

Reset $00 $00 $00 0 0 0 0 0 0 0 0

I2C Controller

http://www.motorola.com/computer/literature 3-133

3

remain cleared for all other I2C operations. For I2C sequential read
operation, this bit should be set for every single byte received except
on the last byte in which case it should be cleared.

ENA: Enable. When set, the I2C master interface will be enable for I2C
operations. If clear, reads and writes to all I2C registers are still
allowed but no I2C bus operations will be performed.

I2C Transmitter Data Register

The I2C Transmitter Data Register (I2TDx) contains the transmit byte for
I2C data transfers. If a value is written to I2TDx when the STA and ENA
bits in the I2COx Register are set, a start sequence is generated
immediately followed by the transmission of the contents of the I2TDx to
the responding slave device. The I2TDx[24:30] is the device address, and
the I2TDx[31] is the WR/RD bit (0=WRite, 1=ReaD). After a start
sequence with I2TDx[31]=0, subsequent writes to the I2TDx Register will
cause the contents of I2TDx to be transmitted to the responding slave
device. After a start sequence with I2TDx[31]=1, subsequent writes to the
I2TDx Register (data=don’t care) will cause the responding slave device
to transmit data to the I2RDx Register. If a value is written to I2TDx
(data=don’t care) when the STP and ENA bits in the I2COx Register are
set, a stop sequence is generated.

Offset XCSR + $18C
XCSR + $1AC

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name I2TD0
I2TD1

I2C

Operation R R R R/W

Reset $00 $00 $00 $00

3-134 Computer Group Literature Center Web Site

Programming Model

3

I2C Status Register

The I2C Status Register (I2STx) provides status for the Harrier’s I2C
function. Please refer to the section titled "I2C Interface" in the previous
chapter for more information. The fields within the I2STx register are
defined as follows:

DIN: Data In. This bit is set whenever the I2C master controller has
successfully received a byte of read data from an I2C bus slave device.
This bit is cleared after the I2RDx Register is read.

ERR: Error. This bit is set when both STA and STP bits in the I2COx
Register are set at the same time. The I2C master controller will then
clear the contents of the I2COx Register, and further writes to the
I2COx Register will not be allowed until after the I2STx Register is
read. A read from the I2STx Register will clear this bit.

ACKI: Acknowledge In. This bit is set if the addressed slave device
is acknowledged to either start sequence or data writes from the I2C
master controller and cleared otherwise. The I2C master controller will
automatically clear this bit at the beginning of the next valid I2C
operation.

CMP: Complete. This bit is set after the I2C master controller has
successfully completed the requested I2C operation and cleared at the
beginning of every valid I2C operation. This bit is also set after power-
up.

Offset XCSR + $194
XCSR + $1B4

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name I2ST0
I2ST1

I2C

D
IN

E
R

R
A

C
K

I
C

M
P

Operation R R R R R R R R R R R

Reset $00 $00 $00 0 0 0 0 0 0 0 1

I2C Controller

http://www.motorola.com/computer/literature 3-135

3

I2C Receiver Data Register

The I2C Receiver Data Register (I2RDx) contains the receive byte for I2C
data transfers. During I2C sequential read operation, the current receive
byte must be read before any new one can be brought in. A read of this
register will automatically clear the DIN bit in the I2STx Register.

Offset XCSR + $19C
XCSR + $1BC

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name I2RD0
I2RD1

I2C

Operation R R R R

Reset $00 $00 $00 $00

3-136 Computer Group Literature Center Web Site

Programming Model

3

UART Controller
All of the registers for this function are located within PowerPC address
space as a part of the XCSR Register Group, and only aligned read/write
accesses are allowed.

UART Core Registers

The Receiver Buffer/Transmitter Holding/Divisor Latch Low Register
(RTDLx) consists of three separate registers whose accessibility is based
on the state of the DLAB bit in the Line Control Register.

When DLAB = 0:

RTDLx: RTDLx is the read-only Receiver Buffer Register that
contains the data byte transmitted to the serial port. The data in this
register is valid only if the DR bit in the Line Status Register (LSTAx)
is set. In the non-FIFO mode (FIFOEN = 0 in the FIFO Control
Register), the data in this register must be read before the next data
arrives, otherwise it will be overwritten. In the FIFO mode (FIFOEN
= 1 in the FIFO Control Register), this register accesses the top of the
receiver FIFO. If the receiver FIFO is full, the data already in the FIFO
will be preserved, but any new incoming data will be lost.

Offset XCSR + $0C0
XCSR + $0C8

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name RTDL0
RTDL1

IEDH0
IEDH1

IDFC0
IDFC1

LCTL0
LCTL1

UART

E
D

S
S

I
E

L
S

I
E

T
B

E
I

E
R

B
FI

F
E

N
S

1/
R

FT
L

1
F

E
N

S
0/

R
FT

L
0

II
D

2/
D

M
A

S
II

D
1/

T
F

R
II

D
0/

R
F

R
IP

E
N

/F
IF

O
E

N
D

L
A

B
S

B S
P

E
P

S
P

E
N

S
T

B
W

L
S

1
W

L
S

0

Operation R/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

Reset $00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

UART Controller

http://www.motorola.com/computer/literature 3-137

3

RTDLx: RTDLx is the write-only Transmitter Holding Register that
contains the data to be transmitted from the serial port. In the non-
FIFO mode (FIFOEN = 0 in the FIFO Control Register), a byte
written to this register will be preserved if the THRE bit in the Line
Status Register (LSTAx) is set. If the THRE bit is cleared, a write to
this register causes the existing data in the register to be overwritten.
In the FIFO mode (FIFOEN = 1 in the FIFO Control Register), up to
16 bytes of data may be written to this register before the FIFO is full,
after which any new data written to this register will be lost.

When DLAB = 1:

RTDLx: RTDLx is the Divisor Latch Low (least significant byte)
Register that contains the lower 8 bits of the baud rate divisor for the
UART. This register in conjunction with the Divisor Latch High
Register form a 16-bit baud rate divisor. The output baud rate is
calculated as follows:

BAUD RATE = OSCILLATOR FREQUENCY / (16 * BAUD RATE
DIVISOR)

The Interrupt Enable/Divisor Latch High Register (IEDHx) consists of
two separate registers whose accessibility is based on the state of the
DLAB bit in the Line Control Register.

When DLAB = 0:

IEDHx: IEDHx is the Interrupt Enable Register which contains four
bits that control the generation of UART interrupts. Each interrupt can
be indicated as active in the Interrupt Identification Register (IDFCx)
and can individually activate the interrupt output signal. The fields
within this register are defined as follows:

EDSSI: Enable MODEM Status Interrupt. This bit, when set,
enables the MODEM Status Interrupt.

ELSI: Enable Receiver Line Status Interrupt. This bit, when set,
enables the Receiver Line Status Interrupt.

ETBEI: Enable Transmitter Holding Register Empty Interrupt.
This bit, when set, enables the Transmitter Holding Register Empty
Interrupt.

3-138 Computer Group Literature Center Web Site

Programming Model

3

ERBFI: Enable Received Data Available Interrupt. This bit, when
set, enables the Received Data Available Interrupt.

When DLAB = 1:

IEDHx: IEDHx is the Divisor Latch High (most significant byte)
Register that contains the upper 8 bits of the baud rate divisor for the
UART. This register in conjunction with the Divisor Latch Low
Register form a 16-bit baud rate divisor.

The Interrupt Identification/FIFO Control Register (IDFCx) consists of
two separate registers whose accessibility is based on the mode of
operation (either read or write).

IDFCx: IDFCx is the read-only Interrupt Identification Register that
identifies the source of an interrupt. The fields within this register are
defined as follows:

FENS1-0: FIFOs Enabled Status. These bits are the FIFO status bits
that are shown in the table below.

IID2-0,IPEN: Interrupt ID, Interrupt Pending. These bits identify
the interrupt control functions that are shown in the table below.

Table 3-38. FENS1-0 Status

FIFOEN FENS1-0 Status

0 00 FIFOs Disabled

1 11 FIFOs Enabled

Table 3-39. UART Interrupt Control Functions

IID2 IID1 IID0 IPEN Priority
Level

Interrupt
Type

Interrupt Source Interrupt Reset
Control

0 0 0 1 --- No Interrupt
Pending

--- ---

0 1 1 0 Highest Receiver Line
Status

Overrun Error or Parity
Error or Framing Error
or Break Interrupt

Reading the Line
Status Register

UART Controller

http://www.motorola.com/computer/literature 3-139

3

IDFCx: IDFCx is the write-only FIFO Control Register that is used to
enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level,
and select the type of DMA signalling. The fields within this register
are defined as follows:

0 1 0 0 Second Received Data
Available

Receiver Data
Available or Trigger
Level reached

Reading the Receiver
Buffer Register or
the FIFO drops
below the Trigger
Level

1 1 0 0 Second Character
Time-out
Indication

No characters have
been removed from or
input to the RCVR
FIFO during the last 4
Char. Times and there
is at least 1 Char. in it
during this time

Reading the Receiver
Buffer Register

0 0 1 0 Third Transmitter
Holding
Register
Empty

Transmitter Holding
Register Empty

Reading the Interrupt
Identification
Register (if source of
interrupt) or Writing
into the Transmitter
Holding Register

0 0 0 0 Fourth MODEM
Status

Clear To Send or Data
Set Ready or Ring
Indicator or Data
Carrier Detect

Reading the
MODEM Status
Register

Table 3-39. UART Interrupt Control Functions (Continued)

IID2 IID1 IID0 IPEN Priority
Level

Interrupt
Type

Interrupt Source Interrupt Reset
Control

3-140 Computer Group Literature Center Web Site

Programming Model

3

RFTL1-0: Receiver Trigger Level. These bits are used to set the
trigger level (as shown in the following table) for the Received Data
Available interrupt (ERBFI).

DMAS: DMA Mode Select. This bit determines the DMA mode in
which the TXRDYx_ and RXRDYx_ pins support. When this bit is
cleared, the device operates in DMA Mode 0. When this bit is set, the
device operates in DMA mode 1. This bit has no effect unless the
FIFOEN bit is set as well.

TFR: Transmitter FIFO Reset. Writing a 1 to this bit clears all the
bytes in the Transmitter FIFO and resets its counter logic to 0. This bit
is self-clearing.

RFR: Receiver FIFO Reset. Writing a 1 to this bit clears all the bytes
in the Receiver FIFO and resets its counter logic to 0. This bit is self-
clearing.

FIFOEN: FIFO Enable. Writing a 1 to this bit enables both the
Transmitter and Receiver FIFOs. This bit must be a 1 when other bits
in this register are written to or they will not be programmed.

The Line Control Register (LCTLx) controls the format of the data that is
transmitted and received by the UART. It also contains a bit that controls
the data loaded into the Divisor Latch High/Low Registers. The fields
within the LCTLx register are defined as follows:

Table 3-40. Receiver FIFO Trigger Level

RFTL1 RFTL0 Receiver
FIFO

Trigger Level

0 0 1 byte

0 1 4 bytes

1 0 8 bytes

1 1 16 bytes

UART Controller

http://www.motorola.com/computer/literature 3-141

3

DLAB: Divisor Latch Access Bit. This bit must be set to logic 1 to
access the Divisor Latches of the baud rate generator during a read or
write operation. It must be set to logic 0 to access the Receiver Buffer,
the Transmitter Holding, or the Interrupt Enable Register.

SB: Set Break. This bit causes a break condition to be transmitted to
the receiving UART. When it is set to a logic 1, the serial output
(SOUTx) is forced to the logic 0 state. The break is disabled by setting
this bit to a logic 0.

SP: Stick Parity. When this bit is set to a logic 1, the parity bit is
forced into a defined state as follows:

If EPS = 1 and PEN = 1, the parity bit is transmitted and checked
as a logic 0.

If EPS = 0 and PEN =1, the parity bit is transmitted and checked
as a logic 1.

EPS: Even Parity Select. When EPS = 0 and PEN = 1, an odd
number of ones is transmitted or checked. When EPS = 1 and PEN =
1, an even number of ones is transmitted or checked.

PEN: Parity Enable. When this bit is set to logic 1, a parity bit is
generated (transmit data) or checked (receive data) between the last
data word bit and stop bit of the serial data.

STB: Number Of Stop Bits. When this bit is set to logic 1, two stop
bits are added after each transmitted character, unless the character
length is 5 then only one and a half stop bits are added. When this bit
is set to logic 0, one stop bit is always added. Note that only
transmitted stop bits are programmable. The receiver checks only the
first stop bit, so this bit has no effect when the UART receives the data.

3-142 Computer Group Literature Center Web Site

Programming Model

3

WLS1-0: Word Length Select. These two bits specify the number of
bits per character that are transmitted or received. The encoding of the
WLS1-0 bits is shown in the following table.

The MODEM Control Register (MCTLx) controls the interface with the
MODEM or a peripheral device emulating a MODEM. The fields within
the MCTLx register are defined as follows:

LOOP: Loopback Mode. This bit provides a local loopback feature
for diagnostic testing of the UART. In the loopback mode, the receiver
and transmitter interrupts are fully operational. When this bit is set to
logic 1, the following conditions occur:

a. SOUTx is set to logic 1 state.

b. SINx is disconnected.

Table 3-41. WLS1-0 Encoding

WLS1 WLS0 Character
Length

0 0 5 bits

0 1 6 bits

1 0 7 bits

1 1 8 bits

Offset XCSR + $0C4
XCSR + $0CC

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MCTL0
MCTL1

LSTA0
LSTA1

MSTA0
MSTA1

SCRT0
SCRT1

UART

LO
O

P
O

U
T

2
O

U
T

1
R

T
S

D
T

R
F

E
R

R
T

E
M

T
T

H
R

E
B

I
F

E
P

E
O

E
D

R
D

C
D

R
I

D
S

R
C

T
S

D
D

C
D

T
E

R
I

D
D

S
R

D
C

T
S

Operation

R R R
R

/W
R

/W
R

/W
R

/W
R

/W R R R R R R R R R R R R R R R R R/W

Reset 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 $XX

UART Controller

http://www.motorola.com/computer/literature 3-143

3

c. The output of the Transmitter Shift Register is looped back into
the Receiver Shift Register input.

d. The four MODEM control inputs (DSRx_, CTSx_, RIx_, and
DCDx_) are disconnected.

e. The four MODEM control outputs (DTRx_, RTSx_, OUT1Ux_,
and OUT2Ux_) are internally connected to the four MODEM
control inputs.

OUT2: Output 2 signal. This bit controls the Output 2 (OUT2Ux_)
signal which is an auxiliary user-designated output. When this bit is set
to logic 0, the OUT2Ux_ output is forced to a logic 1. When this bit is
set to logic 1, the OUT2Ux_ output is forced to a logic 0.

OUT1: Output 1 signal. This bit controls the Output 1 (OUT1Ux_)
signal which is an auxiliary user-designated output. When this bit is set
to logic 0, the OUT1Ux_ output is forced to a logic 1. When this bit is
set to logic 1, the OUT1Ux_ output is forced to a logic 0.

RTS: Request To Send output. This bit controls the Request To Send
(RTSx_) output. When this bit is set to logic 0, the RTSx_ output is
forced to a logic 1. When this bit is set to logic 1, the RTSx_ output is
forced to a logic 0.

DTR: Data Terminal Ready output. This bit controls the Data
Terminal Ready (DTRx_) output. When this bit is set to logic 0, the
DTRx_ output is forced to a logic 1. When this bit is set to logic 1, the
DTRx_ output is forced to a logic 0.

The Line Status Register (LSTAx) contains the status of the data transfer.
The fields within the LSTAx register are defined as follows:

FERR: Error in Receiver FIFO. This bit is set to 1 when there is at
least one PE, FE or BI in the Receiver FIFO. It is cleared by a read
from the LSTAx register provided there are no subsequent errors in the
receiver FIFO.

TEMT: Transmitter Empty. In the non-FIFO mode, this bit is set to
a logic 1 whenever the Transmitter Holding Register and the
Transmitter Shift Register are both empty. In the FIFO mode, this bit

3-144 Computer Group Literature Center Web Site

Programming Model

3

is set to a logic 1 whenever the transmitter FIFO and the Transmitter
Shift Register are both empty. In both cases, this bit is cleared when a
byte is written to the transmitter data channel.

THRE: Transmitter Holding Register Empty. In the non-FIFO
mode, this bit is set to a logic 1 whenever a character is transferred
from the Transmitter Holding Register into the Transmitter Shift
Register, and it is reset to logic 0 concurrently with the write to the
Transmitter Holding Register. In the FIFO mode, this bit is set to a
logic 1 whenever the transmitter FIFO is empty, and it is cleared when
at least one byte is written to the transmitter FIFO. In both cases, this
bit when set also causes the UART to issue an interrupt when the
Transmitter Holding Register Empty Interrupt enable (ETBEI) is set
high.

BI: Break Interrupt. In the non-FIFO mode, this bit is set to a logic
1 whenever the SINx line is held in the logic 0 state for more than a
full word transmission time (start bit + data bits + parity + stop bits).
It is cleared by a read from the LSTAx register. In the FIFO mode, this
error is associated with the particular character in the FIFO it applies
to and is revealed when its associated character is at the top of the
FIFO. When a break occurs, only one zero character is loaded into the
FIFO. The next character transfer is enabled after the SIN line goes to
the marking state and receives the next valid start bit.

FE: Framing Error. In the non-FIFO mode, this bit is set to a logic 1
whenever the stop bit following the last data bit or parity bit is detected
as a logic 0 bit. It is cleared by a read from the LSTAx register. In the
FIFO mode, this error is associated with the particular character in the
FIFO it applies to and is revealed when its associated character is at the
top of the FIFO. The UART will try to re-synchronize after a framing
error by assuming that the framing error was due to the next start bit,
so it samples this start bit twice and then takes in the data.

PE: Parity Error. In the non-FIFO mode, this bit is set to a logic 1
upon detection of a parity error if the PEN bit in the LCTLx Register
is set. It is cleared by a read from the LSTAx register. In the FIFO
mode, this error is associated with the particular character in the FIFO
it applies to and is revealed when its associated character is at the top
of the FIFO.

UART Controller

http://www.motorola.com/computer/literature 3-145

3

OE: Overrun Error. In the non-FIFO mode, this bit is set to a logic 1
upon detection of an overrun condition in the receiver. This means that
the data in the Receiver Buffer Register was not read before the next
character was transferred into the Receiver Buffer Register, thereby
destroying the previous character. It is cleared by a read from the
LSTAx register. In the FIFO mode, an overrun error will occur only
after the receiver FIFO is full and the next character has been
completely received in the Receiver Shift Register. The OE bit is set
as soon as this happens. The character in the Receiver Shift Register is
then overwritten, but it is not transferred to the receiver FIFO.

DR: Data Ready. This bit is set to a logic 1 whenever a complete
incoming character has been received and transferred into the Receiver
Buffer Register or the receiver FIFO. It is reset to a logic 0 by reading
the Receiver Buffer Register or by reading all of the data in the
receiver FIFO.

The MODEM Status Register (MSTAx) provides the current state of the
MODEM control lines. In addition, four bits of the MSTAx Register
provide change information. These bits are set to a logic 1 whenever a
control input from the MODEM changes state and are reset to a logic 0
whenever the MSTAx is read. The fields within the MSTAx register are
defined as follows:

DCD: Data Carrier Detect. When LOOP = 0, this bit is the
complement of the Data Carrier Detect (DCDx_) input. When LOOP
= 1, this bit is equivalent to OUT2 in the MCTLx Register.

RI: Ring Indicator. When LOOP = 0, this bit is the complement of
the Ring Indicator (RIx_) input. When LOOP = 1, this bit is
equivalent to OUT1 in the MCTLx Register.

DSR: Data Set Ready. When LOOP = 0, this bit is the complement
of the Data Set Ready (DSRx_) input. When LOOP = 1, this bit is
equivalent to DTR in the MCTLx Register.

CTS: Clear To Send. When LOOP = 0, this bit is the complement of
the Clear To Send (CTSx_) input. When LOOP = 1, this bit is
equivalent to RTS in the MCTLx Register.

3-146 Computer Group Literature Center Web Site

Programming Model

3

DDCD: Delta Data Carrier Detect. This bit is set to logic 1 if the
DCDx_ input to the UART has changed state since the last time it was
read.

TERI: Trailing Edge Ring Indicator. This bit is set to logic 1 if the
RIx_ input to the UART has changed from logic 0 to logic 1 state since
the last time it was read.

DDSR: Delta Data Set Ready. This bit is set to logic 1 if the DSRx_
input to the UART has changed state since the last time it was read.

DCTS: Delta Clear To Send. This bit is set to logic 1 if the CTSx_
input to the UART has changed state since the last time it was read.

The Scratch Register (SCRTx) is an 8-bit general-purpose read/write
register for programmer to use as a temporary storage space. It has no
defined purpose in the UART.

UART Controller

http://www.motorola.com/computer/literature 3-147

3

UART General Registers

The UART Control Register (UCTL) contains the Hardware Flow Control
bits, the state of the prescaled UART crystal clock, and the UART clock
selection. The fields within the UCTL register are defined as follows:

U0GRT: UART 0 Gated Request To Send. This bit, when high,
indicates RTS0_ is active (low) and the UART 0 receiver FIFO
contains less than 14 characters. Used as Hardware Flow Control
Request To Send signal.

U1GRTS: UART 1 Gated Request To Send. This bit, when high,
indicates RTS1_ is active (low) and the UART 1 receiver FIFO
contains less than 14 characters. Used as Hardware Flow Control
Request To Send signal.

U0TXP: UART 0 Transmitter Pause. When set, the UART 0 will
hold subsequent transmissions after the current character is completely
transmitted. Used as Hardware Flow Control signal from receiving
device.

U1TXP: UART 1 Transmitter Pause. When set, the UART 1 will
hold subsequent transmissions after the current character is completely
transmitted. Used as Hardware Flow Control signal from receiving
device.

XTAL64: Prescaled UART Crystal Oscillator Output. This bit
represents the logic state of the external/internal UART crystal clock
divided by 64.

Offset XCSR + $0D0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name UCTL

UPS

UART

U
0G

R
T

S
U

1G
R

T
S

U
0T

X
P

U
1T

X
P

X
TA

I6
4

U
C

O
S

Operation

R R
R

/W
R

/W R R R
R

/W R R R/W

Reset 0 0 0 0 0 0 0 0 $00 $00 $1B

3-148 Computer Group Literature Center Web Site

Programming Model

3

UCOS: UART Clock Select. This bit is used to select the clock source
for both UARTs as shown in the following table .

The UART Clock Prescaler Register (UPS) is used to specify a frequency
of the UART internal clock. The formula for calculating a value is shown
below:

UART INTERNAL CLOCK = SYSTEM CLOCK / UPS/ 2

After power-up, UPS is initialized to $1B which produces a 1.8519 MHz
(approximate) UART clock signal based on a 100.0 MHz system clock.
Due to the IBM AC requirements on the UART oscillator clock input, the
value written to UPS must be greater than $02. The following table
provides the decimal divisors (IEDHx & RTDLx when DLAB = 1) to use
with clock frequencies of 1.8432 MHz and 1.8519 MHz.

Table 3-42. UART Clock Selection

XAD[29] UCOS UART Clock

0 0 (default) external

0 1 internal

1 1 (always) internal

Table 3-43. Baud Rates and Divisors

Baud Rate Decimal
Divisor

Percent Error

1.8432 MHz 1.8519 MHz

50 2304 0 0.469

75 1536 0 0.469

110 1047 0.026 0.496

134.5 857 0.058 0.411

150 768 0 0.469

300 384 0 0.469

600 192 0 0.469

1200 96 0 0.469

1800 64 0 0.469

2000 58 0.69 0.224

UART Controller

http://www.motorola.com/computer/literature 3-149

3
2400 48 0 0.469

3600 32 0 0.469

4800 24 0 0.469

7200 16 0 0.469

9600 12 0 0.469

19200 6 0 0.469

38400 3 0 0.469

56000 2 2.86 3.34

128000 (No suitable
divisor)

- -

256000 (No suitable
divisor)

- -

Table 3-43. Baud Rates and Divisors (Continued)

Baud Rate Decimal
Divisor

Percent Error

1.8432 MHz 1.8519 MHz

3-150 Computer Group Literature Center Web Site

Programming Model

3

Xport
All of the registers for this function are located within PowerPC address
space as a part of the XCSR Register Group.

For a functional description refer to the earlier section on Xport in this
manual.

Xport Address Range (0, 1, 2, 3) Registers

The Xport Address Range Registers (XPAR0, XPAR1, XPAR2 and
XPAR3) define the PowerPC address ranges to which each of Xport
channels 0, 1, 2, and 3 will respond. The fields within the XPARx registers
are defined as follows:

STA: Starting Address. This field defines the beginning of the
address range. The Harrier compares STA to the 16 upper PowerPC
address signals.

END: Ending Address. This field defines the ending of the address
range. The Harrier compares END to the 16 upper PowerPC address
signals.

Note that each channel’s Address Range Register should be programmed
so that its Xport Bus devices appear at an integer multiple of the size of the
largest device on the channel. This mapping is required because the Harrier
performs no address translation between the PowerPC and Xport buses.

Offset XPAR0: XCSR + $150
XPAR1: XCSR + $158
XPAR2: XCSR + $160
XPAR3: XCSR + $168

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name XPAR Xport

STA END

Operation R/W R/W

Reset $0000 $0000

Xport

http://www.motorola.com/computer/literature 3-151

3

Xport Attributes (0, 1, 2, 3) Registers

The Xport Attributes Registers (XPAT0, XPAT1, XPAT2, and XPAT3)
define the attributes for each of Xport channels 0, 1, 2, and 3. The fields
within the XPATx registers are defined as follows:

REN: Read Enable. When set, the channel responds to PowerPC reads.
When cleared, it does not respond unless the access is to the
$FFF00000-$FFFFFFFF address range and RVEN0, RVEN1, RVEN2
or RVEN3 is set..

WEN: Write Enable. When set, the channel responds to PowerPC
writes. When cleared, it does not respond unless the access is to the
$FFF00000-$FFFFFFFF address range and RVEN0, RVEN1, RVEN2
or RVEN3 is set.

BAM: Basic Mode. When set, the channel uses basic conservative
timing as shown in the section titled "Xport Bus Transaction
Examples".

RVEN: Reset Vector Enable. Together with RVEN from the other
three channels, RVEN determines which if any of Xport channels 0, 1,
2, or 3 is the source for reset vector fetches or for any other accesses
in the range $FFF00000-$FFFFFFFF. The following table shows the
encoding. Note that RVEN enables $FFF00000-$FFFFFFFF accesses
regardless of the state of the REN and WEN control bits. RVEN0,

Offset XPAT0: XCSR + $154
XPAT1: XCSR + $15C
XPAT2: XCSR + $164
XPAT3: XCSR + $16C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name XPAT Xport

R
E

N
W

E
N

B
A

M

R
V

E
N

D
W AD

B
LE

B
R

E
N BR

D

B
W

E
N BW

D

Operation

R
/W

R
/W

R
/W R

R
/W R

R
/W

R
/W R/W R R

R
/W

R
/W R R R

R
/W R R/W R R R

R
/W R R/W

Reset

0 0 1-
P 0 V

-P 0 V
-P

V
-P $F 0 0 0 0 0 0 0 0 0 $0 0 0 0 0 0 $0

3-152 Computer Group Literature Center Web Site

Programming Model

3

RVEN1, RVEN2, and RVEN3 initialize at power-up reset to match the
values on 4 certain signal pins. Refer to the section titled Hardware
Configuration on page 2-133.

DW: Data Width. This field indicates the Xport Bus’s data width. The
following table shows the encoding. Note that the DW bits initialize at
power-up reset to match the values on two certain input signal pins.
Refer to the section titled Hardware Configuration on page 2-133 for
more details..

Table 3-44. XPATx RVENx Encoding

RVEN3 RVEN2 RVEN1 RVEN0 Source of Reset Vectors

0 0 0 0 None of Xport Channels 0-3

X X X 1 Xport Channel 0

X X 1 0 Xport Channel 1

X 1 0 0 Xport Channel 2

1 0 0 0 Xport Channel 3

Table 3-45. XPATx DW Encoding

DW Data Width

00 8 bits

01 16 bits

10 32 bits

11 16 bits (Hawk
compatibility

mode)

Xport

http://www.motorola.com/computer/literature 3-153

3

AD: Access Delay. This field determines the number of CLK periods
the Harrier will add to the Xport Bus access time. The following table
shows the encoding.

BLE: Burst Length. This field determines the maximum number of
bytes Harrier will transfer per burst during burst reads or writes to the
Xport Bus. Note that burst length refers to the number of bytes
transferred per burst not to the number of data beats per burst. The
following table shows the encoding.

BREN: Burst Read Enable. When set, the Harrier performs burst
reads for the corresponding channel if appropriate. When cleared, it
does not.

Table 3-46. XPATx AD Encoding

AD Added Delay Device Access
Time

0000 0 CLK’s 1ons

0001 1 CLK’s 20ns

...

1110 14 CLK’s 150ns

1111 15 CLK’s 160ns

Table 3-47. XPATx BLE Encoding

BLE Bytes (not beats)
per Burst

00 4

01 8

10 16

11 32

3-154 Computer Group Literature Center Web Site

Programming Model

3

BRD: Burst Read Delay. This field determines the number of CLK
periods the Harrier will add for burst reads to the Xport Bus. The
following table shows the encoding.

BWEN: Burst Write Enable. When set, the Harrier performs burst
writes for the corresponding channel if appropriate. When cleared, it
does not.

BWD: Burst Write Delay. This field determines the number of CLK
periods the Harrier will add for burst writes to the Xport Bus. The
following table shows the encoding.

Table 3-48. XPATx BRD Encoding

BRD Added Delay Device Burst (Page) Read Access
Time

000 0 CLK’s 1 CLK (10ns @ 100 MHz)

001 1 CLK’s 2 CLK’s (20ns @ 100 MHz)

010 2 CLK’s 3 CLK’s (30ns @ 100 MHz)

011 3 CLK’s 4 CLK’s (40ns @ 100 MHz)

100 4 CLK’s 5 CLK’s (50ns @ 100 MHz)

101 5 CLK’s 6 CLK’s (60ns @ 100 MHz)

110 6 CLK’s 7 CLK’s(70ns @ 100 MHz)

111 7 CLK’s 8 CLK’s (80ns @ 100 MHz)

Table 3-49. XPATx BWD Encoding

BWD Added Delay

000 0 CLK’s

001 1 CLK’s

010 2 CLK’s

011 3 CLK’s

100 4 CLK’s

101 5 CLK’s

110 6 CLK’s

111 7 CLK’s

Xport

http://www.motorola.com/computer/literature 3-155

3

Xport General Control Register

The Xport General Control Register (XPGC) defines the attributes that
apply globally, i.e. to all of Xport channels 0, 1, 2, and 3. The fields within
the XPGC register are defined as follows:

HDM: Hawk Data Compatibility Mode. When set, any channel that
is configured for the Hawk compatibility mode also uses Hawk 16-bit
data ordering. When cleared, no channel uses Hawk 16-bit data
ordering. Note that HDM initializes at power-up reset to match the
value on a certain signal pin at power-up reset. Refer to the previous
section titled "Hardware Configuration" for more information.

Offset XCSR + $170

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name XPGC Xport
H

D
M

Operation

R R R R R R R
R

/W R R R

Reset

0 0 0 0 0 0 0 V
-P $00 $00 $00

3-156 Computer Group Literature Center Web Site

Programming Model

3

Arbiters
All of the registers for this function are located within PowerPC address
space as a part of the XCSR Register Group.

PCI Arbiter Register

The PCI Arbiter Register (PARB) provides control and status for the PCI
Arbiter. Please refer to the previous section titled "PCI Arbiter" for more
information. The fields within the PARB register are defined as follows:

PRI: Priority. This field is used by the PCI Arbiter to establish a
particular bus priority scheme. The encoding of this field is show in the
following table.

Offset XCSR + $090

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name PARB Arbiters

P
R

I

P
R

K

H
IE

P
O

L

E
N

A

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R R R R R R R

Reset

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 V
-P $00 $00

Table 3-50. PARB PRI Encoding

PRI Priority Scheme

00 Fixed

01 Round Robin

10 Mixed

11 Reserved

Arbiters

http://www.motorola.com/computer/literature 3-157

3

PRK: Parking. This field is used by the PCI Arbiter to establish a
particular bus parking scheme. The encoding of this field is shown in
the following table.

HIE: Hierarchy. This field is used by the PCI Arbiter to establish a
particular priority ordering when using a fixed or mixed mode priority
scheme.

When using the fixed priority scheme, the encoding of this field is
show in the following table.

Table 3-51. PARB PRK Encoding

PRK Parking Scheme

0000 Park on last master

0001 Park always on PARB6

0010 Park always on PARB5

0011 Park always on PARB4

0100 Park always on PARB3

0101 Park always on PARB2

0110 Park always on PARB1

0111 Park always on PARB0

1000 Park always on HARR

1111 None

Table 3-52. PARB HIE (Fixed Mode) Encoding

HIE Priority ordering, highest to lowest

000 PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HARR

001 HARR -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0

010 PARB0 -> HARR -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1

011 PARB1 -> PARB0 -> HARR -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2

100 PARB2 -> PARB1 -> PARB0 -> HARR -> PARB6 -> PARB5 -> PARB4 -> PARB3

101 PARB3 -> PARB2 -> PARB1 -> PARB0 -> HARR -> PARB6 -> PARB5 -> PARB4

110 PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HARR -> PARB6 -> PARB5

111 PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HARR -> PARB6

3-158 Computer Group Literature Center Web Site

Programming Model

3

When using the mixed priority scheme, the encoding of this field is show
in the following table.

POL: Park on Lock. If set, the PCI Arbiter will park the bus on the
master who successfully obtains a PCI bus lock. The PCI Arbiter will
keep the locking master parked and will not allow any non-locked
masters to obtain access of the PCI bus until the locking master
releases the lock. If cleared, the PCI Arbiter does not distinguish
between locked and non-locked cycles.

ENA: Enable. This read only bit indicates the enabled state of the PCI
Arbiter. If set, the PCI Arbiter is enabled and is acting as the system
arbiter. If cleared, the PCI Arbiter is disabled and external logic is
implementing the system arbiter. Please refer to the previous section
titled "Hardware Configuration" for more information on how this bit
is set.

Table 3-53. PARB HIE (Mixed Mode) Encoding

HIE Priority ordering, highest to lowest

000 Group 1 -> Group 2 -> Group 3 -> Group 4

001 Group 4 -> Group 1 -> Group 2 -» Group 3

010 Group 3 -> Group 4 -> Group 1 -> Group 2

011 Group 2 -> Group 3 -> Group 4 -> Group 1

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Arbiters

http://www.motorola.com/computer/literature 3-159

3

PowerPC Arbiter Register

The PowerPC Arbiter Register (XARB) provides control and status for the
PowerPC Arbiter. Please refer to the previous section titled "PPC Arbiter"

for more information. The fields within the XARB register are defined as
follows:

FBR: Flatten Burst Read. This field is used by the PowerPC Arbiter
to control how bus pipelining will be affected after all burst read
cycles. The encoding of this field is shown in the following table.

FSR: Flatten Single Read. This field is used by the PowerPC Arbiter
to control how bus pipelining will be affected after all single beat read
cycles. The encoding of this field is shown in the following table.

FBW: Flatten Burst Write. This field is used by the PowerPC Arbiter
to control how bus pipelining will be affected after all burst write
cycles. The encoding of this field is shown in the following table.

FSW: Flatten Single Write. This field is used by the PowerPC
Arbiter to control how bus pipelining will be affected after all single
beat write cycles. The encoding of this field is shown in the following
table.

Offset XCSR + $094

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name XARB Arbiters

F
B

R

F
S

R

F
B

W

F
S

W

T
B

S

P
R

K

E
N

A

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R

R
/W

R
/W R R R R R R

Reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V
-P $00 $00

3-160 Computer Group Literature Center Web Site

Programming Model

3

TBS: Three Bridge System. If set, the PowerPC Arbiter will enable
the latching request protocol on the CPU1 request/grant pair. This
protocol is normally reserved for bridge devices, and is not intended to
be used with processor devices. If cleared, the latching request
protocol will not be enabled for the CPU1 request/grant pair.

PRK: Parking. This field determines how the PowerPC Arbiter will
implement CPU parking. The encoding of this field is shown in the
following table.

ENA: Enable. This read only bit indicates the enabled state of the
PowerPC Arbiter. If set, the PowerPC Arbiter is enabled and is acting
as the system arbiter. If cleared, the PowerPC Arbiter is disabled and
external logic is implementing the system arbiter. Please refer to the
section titled Hardware Configuration on page 2-133 for more
information on how this bit gets set.

Table 3-54. XARB FBR/FSR/FBW/FSW Encoding

FBR/FSR/FBW/FSW Effects on Bus Pipelining

00 None

01 None

10 Flatten always

11 Flatten if switching masters

Table 3-55. XARB PRK Encoding

PRK CPU Parking

00 None

01 Park on last CPU

10 Park always on CPU0

11 Park always on CPU1

Watchdog Timers

http://www.motorola.com/computer/literature 3-161

3

Watchdog Timers
All of the registers for this function are located within PowerPC address
space as a part of the XCSR Register Group.

Watchdog Timer Control Registers

The Watchdog Timer Control Registers (WT0C and WT1C) are used to
provide control information to the watchdog timer functions within the
Harrier. The fields within WTxC registers are defined as follows:

KEY: Key. This field is used during the two step arming process of the
Control register. This field is sensitive to the following data patterns:

PATTERN_1 = $55

PATTERN_2 = $AA

The Control register will be in the armed state if PATTERN_1 is
written to the KEY field. The Control register will be changed if in the
armed state and PATTERN_2 is written to the KEY field. An incorrect
sequence of patterns will cause the Control register to be in the
unarmed state.

A value of all zeros will always be returned within the KEY field
during read cycles.

Offset WT0C: XCSR + $080
WT1C: XCSR + $088

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name
WTxC Watchdog

Timers

KEY E
N

A
A

R
M

RES RLD

Operation
W

R
/W R R R R/W R/W

Reset
$00 1 0 0 0

$7 or
$8

$FFFF

3-162 Computer Group Literature Center Web Site

Programming Model

3

ENA: Enable. This field determines whether or not the WDT is
enabled. If a one is written to this bit, the timer will be enabled. A zero
written to this bit will disable the timer. The ENA bit may only be
modified on the second step of a successful two step arming process.

ARM: Armed. This read-only bit indicates the armed state of the
register. If this bit is a zero, the register is unarmed. If this bit is a one,
the register is armed for a write.

RES: Resolution. This field determines the resolution of the timer.
The RES field may only be modified on the second step of a successful
two step arming process. The following table shows the different
options associated with this bit.

Table 3-56. WTxC RES Encoding

RES Timer Resolution Approximate Max
Time

0000 1 µs 64 msec

0001 2 µs 128 msec

0010 4 µs 256 msec

0011 8 µs 512 msec

0100 16 µs 1 sec

0101 32 µs 2 sec

0110 64 µs 4 sec

0111 128 µs 8 sec

1000 256 µs 16 sec

1001 512 µs 32 sec

1010 1024 µs 1 min

1011 2048 µs 2 min

1100 4096 µs 4 min

1101 8192 µs 8 min

1110 16,384 µs 16 min

1111 32,768 µs 32 min

Watchdog Timers

http://www.motorola.com/computer/literature 3-163

3

RLD: Reload. This field is written with a value that will be used to
reload the timer. The RLD field may only be modified on the second
step of a successful two step arming process.

Watchdog Timer Status Registers

The Watchdog Timer Status Registers (WT0S and WT1S) are used to
provide status information from the watchdog timer functions within the
Harrier. The field within WTxS registers is defined as follows:

CNT: Count. This read-only field reflects the instantaneous counter
value of the WTx.

Offset WT0S: XCSR + $084
WT1S: XCSR + $08C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

WTxS Watchdog
TimersName CNT

Operation R R R

Reset $FFFF $00 $00

3-164 Computer Group Literature Center Web Site

Programming Model

3

Exceptions
All of the registers for this function are located within PowerPC address
space as a part of the XCSR Register Group.

Functional Exception Enable Register

The Functional Exception Enable Register (FEEN) provides an array of
enable bits pertaining to the various Functional Exceptions that the Harrier

can generate. The fields within the FEEN register are defined as follows:

DMA: DMA. If set, the DMA Controller exception is enabled. When
the exception is enabled, the status bit (FEST.DMA) will indicate the
state of the DMA Controller exception. The interrupt can be polled by
setting the enable bit and setting the mask bit (FEMA.DMA). When
the enable bit is cleared, the exception is disabled and the status bit will
always read zero.

MIDB: Message Passing Inbound Doorbell. If set, the Message
Passing Inbound Doorbell exception is enabled. When the exception is
enabled, the status bit (FEST.MIDB) will indicate the state of the
Message Passing Inbound Doorbell exception. The interrupt can be
polled by setting the enable bit and setting the mask bit
(FEMA.MIDB). When the enable bit is cleared, the exception is
disabled and the status bit will always read zero.

Offset XCSR + $040

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name FEEN Exceptions

D
M

A
M

ID
B

M
IM

0
M

IM
1

M
IP

U
A

0
U

A
1

A
B

T

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R

Reset 0

Exceptions

http://www.motorola.com/computer/literature 3-165

3

MIM0: Message Passing Inbound Message Register 0. If set, the
Message Passing Inbound Message 0 exception is enabled. When the
Message Passing Inbound Message 0 exception is enabled, the status
bit (FEST.MIM0) will indicate the state of the exception. The
interrupt can be polled by setting the enable bit and setting the mask
bit (FEMA.MIM0). When the enable bit is cleared, the exception is
disabled and the status bit will always read zero.

MIM1: Message Passing Inbound Message Register 1. If set, the
Message Passing Inbound Message 1 exception is enabled. When the
exception is enabled, the status bit (FEST.MIM1) will indicate the
state of the Message Passing Inbound Message 1 exception. The
interrupt can be polled by setting the enable bit and setting the mask
bit (FEMA.MIM1). When the enable bit is cleared, the exception is
disabled and the status bit will always read zero.

MIP: Message Passing Inbound Post_list. If set, the Message
Passing Inbound Post_list exception is enabled. When the exception is
enabled, the status bit (FEST.MIP) will indicate the state of the
Message Passing Inbound Post_list exception. The interrupt can be
polled by setting the enable bit and setting the mask bit (FEMA.MIP).
When the enable bit is cleared, the exception is disabled and the status
bit will always read zero.

UA0: UART 0. If set, the UART 0 exception is enabled. When the
exception is enabled, the status bit (FEST.UA0) will indicate the state
of the UART 0 exception. The interrupt can be polled by setting the
enable bit and setting the mask bit (FEMA.UA0). When the enable bit
is cleared, the exception is disabled and the status bit will always read
zero.

UA1: UART 1. If set, the UART 1 exception is enabled. When the
exception is enabled, the status bit (FEST.UA1) will indicate the state
of the UART 1 exception. The interrupt can be polled by setting the
enable bit and setting the mask bit (FEMA.UA1). When the enable bit
is cleared, the exception is disabled and the status bit will always read
zero.

3-166 Computer Group Literature Center Web Site

Programming Model

3

ABT: Abort. If set, the Abort exception is enabled. When the
exception is enabled, the status bit (FEST.ABT) will indicate the state
of the Abort exception. The interrupt can be polled by setting the
enable bit and setting the mask bit (FEMA.ABT). When the enable bit
is cleared, the exception is disabled and the status bit will always read
zero.

Functional Exception Status Register

The Functional Exception Status Register (FEST) is a read-only register
that provides an array of status bits pertaining to the various Functional
Exceptions that the Harrier can generate. The fields within the FEST
register are defined as follows:

DMA: DMA. If set, the DMA Controller has completed a DMA
transaction. If the FEMA register permits, a processor interrupt will be
generated. The processor may clear this field and the associated
interrupt by writing a one to the FECL.DMA bit.

MIDB: Message Passing Inbound Doorbell. If set, a doorbell bit
within the PMEP:MGID register has been written by a PCI master. If
the FEMA register permits, a processor interrupt will be generated.
The processor may clear this field and the associated interrupt by
writing a one to the applicable doorbell bits within the XCSR.MGID
register.

Offset XCSR + $044

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name FEST Exceptions

D
M

A
M

ID
B

M
IM

0
M

IM
1

M
IP

U
A

0
U

A
1

A
B

T

Operation R

Reset 0

Exceptions

http://www.motorola.com/computer/literature 3-167

3

MIM0: Message Passing Inbound Message Register 0. If set, an
inbound message has been written to the PMEP:MGIM0 register by
a PCI master. If the FEMA register permits, a processor interrupt will
be generated. The processor may clear this field and the associated
interrupt by writing a one to the FECL.MIM0 bit.

MIM1: Message Passing Inbound Message Register 1. If set, an
inbound message has been written to the PMEP:MGIM1 register by
a PCI master. If the FEMA register permits, a processor interrupt will
be generated. The processor may clear this field and the associated
interrupt by writing a one to the FECL.MIM1 bit.

MIP: Message Passing Inbound Post_list. This read-only field
indicates a message has been written by a PCI master to the Inbound
Post_list fifo. If the FEMA register permits, a processor interrupt will
be generated. The processor may clear this field and the associated
interrupt by continuously reading the Post_list fifo (i.e. look at the fifo
contents and maintain the fifo pointers) until all entries have been read.

UA0: UART 0. This field will be set whenever UART 0 is requesting
service. If the FEMA register permits, a processor interrupt will be
generated.

UA1: UART 1. This field will be set whenever UART 1 is requesting
service. If the FEMA register permits, a processor interrupt will be
generated.

ABT: Abort. This field will be set whenever the Harrier’s ABTSW_
pin has been asserted for a short period (at least 30 ms). If the FEMA
register permits, a processor interrupt will be generated. The processor
may clear this field and the associated interrupt by writing a one to the
FECL.ABT.

3-168 Computer Group Literature Center Web Site

Programming Model

3

Functional Exception Mask Register

The Functional Exception Mask Register (FEMA) provides an array of
bits pertaining to the masking of Functional Exceptions. All mask bits will
power up with the mask enabled. The fields within the FEMA register are
defined as follows:

DMA: DMA. If cleared, an interrupt is generated whenever the
FEST.DMA bit is set. If set, an interrupt is not generated.

MIDB: Message Passing Inbound Doorbell. If cleared, an interrupt
is generated whenever the FEST.MIDB bit is set. If set, an interrupt is
not generated.

MIM0: Message Passing Inbound Message Register 0. If cleared,
an interrupt is generated whenever the FEST.MIM0 bit is set. If set, an
interrupt is not generated.

MIM1: Message Passing Inbound Message Register 1. If cleared,
an interrupt is generated whenever the FEST.MIM1 bit is set. If set, an
interrupt is not generated.

MIP: Message Passing Inbound Post_list. If cleared, an interrupt is
generated whenever the FEST.MIP bit is set. If set, an interrupt is not
generated.

UA0: UART 0. If cleared, an interrupt is generated whenever the
FEST.UA0 bit is set. If set, an interrupt is not generated.

Offset XCSR + $048

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name FEMA Exceptions

D
M

A
M

ID
B

M
IM

0
M

IM
1

M
IP

U
A

0
U

A
1

A
B

T

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R

Reset 1 1 1 1 1 1 1 1 0

Exceptions

http://www.motorola.com/computer/literature 3-169

3

UA1: UART 1. If cleared, an interrupt is generated whenever the
FEST.UA1 bit is set. If set, an interrupt is not generated.

ABT: Abort. If cleared, an interrupt is generated whenever the
FEST.ABT bit is set. If set, an interrupt is not generated.

Functional Exception Clear Register

The Functional Exception Clear Register (FECL) provides a way to clear
a previously asserted Functional Exception. Note that not all Functional
Exceptions are represented within this register. Please refer to the previous
section titled "Exceptions" for more information. The fields within the
FECL register are defined as follows:

DMA: DMA. If the FEST.DMA status bit is set, writing a one to this
field will clear the status bit and the associated interrupt.

MM0: Message Passing Message Register 0. If the FEST.MM0
status bit is set, writing a one to this field will clear the status bit and
the associated interrupt.

MM1: Message Passing Message Register 1. If the FEST.MM1
status bit is set, writing a one to this field will clear the status bit and
the associated interrupt.

ABT: Abort. If the FEST.ABT status bit is set, writing a one to this
field will clear the status bit and the associated interrupt.

Offset XCSR + $04C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name FECL Exceptions

D
M

A

M
M

0
M

M
1

A
B

T

Operation

R
/C R R
/C

R
/C R R R R
/C R

Reset 0

3-170 Computer Group Literature Center Web Site

Programming Model

3

Error Exception Enable Register

The Error Exception Enable Register (EEEN) provides an array of enable
bits pertaining to the various Error Exceptions that the Harrier can
generate. The fields within the EEEN register are defined as follows:

PMA: PCI Master Abort. If set, the PCI Master Abort exception is
enabled. When the exception is enabled, the status bit (EEST.PMA)
will indicate the state of the PCI Master Abort exception. When the
enable bit is cleared, the exception is disabled and the status bit will
always read zero.

PTA: PCI Target Abort. If set, the PCI Target Abort exception is
enabled. When the exception is enabled, the status bit (EEST.PTA)
will indicate the state of the PCI Target Abort exception. When the
enable bit is cleared, the exception is disabled and the status bit will
always read zero.

PAP: PCI Address Parity Error. If set, the PCI Address Parity Error
exception is enabled. When the exception is enabled, the status bit
(EEST.PAP) will indicate the state of the PCI Address Parity Error
exception. When the enable bit is cleared, the exception is disabled and
the status bit will always read zero.

PDP: PCI Data Parity Error. If set, the PCI Data Parity Error
exception is enabled. When the exception is enabled, the status bit
(EEST.PDP) will indicate the state of the PCI Data Parity Error
exception. When the enable bit is cleared, the exception is disabled and
the status bit will always read zero.

Offset XCSR + $050

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EEEN Exceptions

P
M

A
P

TA
P

A
P

P
D

P
P

D
T

P
S

E
P

P
E

P
M

R
S

S
E

S
S

C
S

M
X

S
M

S

X
B

T
X

A
P

X
D

P
X

D
T

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R R R

R
/W

R
/W

R
/W

R
/W R R R R R R R R R R R R

Reset 0

Exceptions

http://www.motorola.com/computer/literature 3-171

3

PDT: PCI Bus Delayed Transaction Time-out. If set, the PCI
Delayed Transaction Time-out exception is enabled. When the
exception is enabled, the status bit (EEST.PDT) will indicate the state
of the PCI Delayed Transaction Time-out exception. When the enable
bit is cleared, the exception is disabled and the status bit will always
read zero.

PSE: PCI SERR. If set, the PCI SERR exception is enabled. When
the exception is enabled, the status bit (EEST.PSE) will indicate the
state of the PCI SERR exception. When the enable bit is cleared, the
exception is disabled and the status bit will always read zero.

PPE: PCI PERR. If set, the PCI PERR exception is enabled. When
the exception is enabled, the status bit (EEST.PPE) will indicate the
state of the PCI PERR exception. When the enable bit is cleared, the
exception is disabled and the status bit will always read zero.

PMR: PCI Master Retry. If set, the PCI Master Retry exception is
enabled. When the exception is enabled, the status bit (EEST.PMR)
will indicate the state of the PCI Master Retry

SSE: SDRAM Memory Controller Single Bit Error. If set, the
SDRAM Memory Controller Single Bit Error exception is enabled.
When the exception is enabled, the status bit (EEST.SSE) will indicate
the state of the SDRAM Memory Controller Single Bit Error
exception. When the enable bit is cleared, the exception is disabled and
the status bit will always read zero.

SSC: SDRAM Memory Controller Single Bit Error Count
Overflow. If set, the SDRAM Memory Controller Single Bit Count
Overflow exception is enabled. When the exception is enabled, the
status bit (EEST.SSC) will indicate the state of the SDRAM Memory
Controller Single Bit Count Overflow exception. When the enable bit
is cleared, the exception is disabled and the status bit will always read
zero.

SMX: SDRAM Memory Controller Multi Bit Error on PowerPC
Access. If set, the SDRAM Memory Controller Multi Bit Error on
PowerPc Access exception is enabled. When the exception is enabled,
the status bit (EEST.SMX) will indicate the state of the SDRAM

3-172 Computer Group Literature Center Web Site

Programming Model

3

Memory Controller Multi Bit Error on PowerPC Access exception.
When the enable bit is cleared, the exception is disabled and the status
bit will always read zero.

SMS: SDRAM Memory Controller Multi Bit Error on Scrub. If
set, the SDRAM Memory Controller Multi Bit Error on Scrub
exception is enabled. When the exception is enabled, the status bit
(EEST.SMS) will indicate the state of the SDRAM Memory
Controller Multi Bit Error on Scrub exception. When the enable bit is
cleared, the exception is disabled and the status bit will always read
zero.

XBT: PowerPC Bus Time-out. If set, the PowerPC Bus Time-out
exception is enabled. When the exception is enabled, the status bit
(EEST.XBT) will indicate the state of the PowerPC Bus Time-out
exception. When the enable bit is cleared, the exception is disabled and
the status bit will always read zero.

XAP: PowerPC Bus Address Parity Error. If set, the PowerPC Bus
Address Parity Error exception is enabled. When the exception is
enabled, the status bit (EEST.XAP) will indicate the state of the
PowerPC Address Parity Error exception. When the enable bit is
cleared, the exception is disabled and the status bit will always read
zero.

XDP: PowerPC Bus Data Parity Error. If set, the PowerPC Bus
Data Parity Error exception is enabled. When the exception is enabled,
the status bit (EEST.XDP) will indicate the state of the PowerPC Bus
Data Parity Error exception. When the enable bit is cleared, the
exception is disabled and the status bit will always read zero.

XDT: PowerPC Bus Delayed Transaction Time-out. If set, the
PowerPC Delayed Transaction Time-out exception is enabled. When
the exception is enabled, the status bit (EEST.XDT) will indicate the
state of the PowerPC Delayed Transaction Time-out exception. When
the enable bit is cleared, the exception is disabled and the status bit will
always read zero.

Note: PowerPC Bus delayed transaction time-outs can occur during
normal operation. The XDT bit should NOT be set.

Exceptions

http://www.motorola.com/computer/literature 3-173

3

Error Exception Status Register

The Error Exception Status Register (EEST) is a read-only register that
provides an array of status bits pertaining to the various Error Exceptions
that the Harrier can generate. The fields within the EEST register are
defined as follows:

PMA: PCI Master Abort. This bit is set when the PowerPC to PCI
Bridge or the DMA Controller performs a master abort when the
EEEN.PMA is enabled and all other PCI error status bits are cleared.
If the EEINT.PMA is set, a processor interrupt will be generated. If
the EEMCK0.PMA is set a machine check to processor 0 will be
generated and if the EEMCK1.PMA is set a machine check to
processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.PMA bit.

PTA: PCI Target Abort. This bit is set when the PowerPC to PCI
Bridge or the DMA Controller receives a target abort when the
EEEN.PTA is enabled and all other PCI error status bits are cleared. If
the EEINT.PTA is set, a processor interrupt will be generated. If the
EEMCK0.PTA is set a machine check to processor 0 will be generated
and if the EEMCK1.PTA is set a machine check to processor 1 will be
generated. This bit and the interrupt or machine check associated with
it may be cleared by writing a one to the EECL.PTA bit.

PAP: PCI Address Parity Error. This bit is set when an address
parity error is detected by the Harrier on the PCI bus when the
EEEN.PAP is enabled and all other PCI error status bits are cleared. If

Offset XCSR + $054

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EEST Exceptions

P
M

A
P

TA
P

A
P

P
D

P
P

D
T

P
S

E
P

P
E

P
M

R
S

S
E

S
S

C
S

M
X

S
M

S

X
B

T
X

A
P

X
D

P
X

D
T

P
O

F
S

S
O

F
S

M
O

F
X

O
F

Operation R

Reset 0

3-174 Computer Group Literature Center Web Site

Programming Model

3

the EEINT.PAP is set, a processor interrupt will be generated. If the
EEMCK0.PAP is set a machine check to processor 0 will be generated
and if the EEMCK1.PAP is set a machine check to processor 1 will be
generated. This bit and the interrupt or machine check associated with
it may be cleared by writing a one to the EECL.PAP bit.

PDP: PCI Data Parity Error. This bit is set when a data parity error
is detected by the Harrier on the PCI bus when the EEEN.PDP is
enabled and all other PCI error status bits are cleared. If the
EEINT.PDP is set, a processor interrupt will be generated. If the
EEMCK0.PDP is set a machine check to processor 0 will be
generated and if the EEMCK1.PDP is set a machine check to
processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.PDP bit.

PDT: PCI Bus Delayed Transaction Time-out. This bit is set when
a delayed transaction time-out is detected on the PowerPC bus when
the EEEN.PDT is enabled and all other PCI error status bits are
cleared. If the EEINT.PDT is set, a processor interrupt will be
generated. If the EEMCK0.PDT is set a machine check to processor
0 will be generated and if the EEMCK1.PDT is set a machine check
to processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.PDT bit.

PSE: PCI SERR. This bit is set anytime the PCI bus SERR signal is
asserted when the EEEN.PSE is enabled and all other PCI error status
bits are cleared. If the EEINT.PSE is set, a processor interrupt will be
generated. If the EEMCK0.PSE is set a machine check to processor 0
will be generated and if the EEMCK1.PSE is set a machine check to
processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.PSE bit.

PPE: PCI PERR. This bit is set anytime the PCI bus PERR signal is
asserted when the EEEN.PPE is enabled and all other PCI error status
bits are cleared. If the EEINT.PPE is set, a processor interrupt will be
generated. If the EEMCK0.PPE is set a machine check to processor 0
will be generated and if the EEMCK1.PPE is set a machine check to

Exceptions

http://www.motorola.com/computer/literature 3-175

3

processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.PPE bit.

PMR: PCI Master Retry. This bit is set when the PowerPC to PCI
Bridge or the DMA Controller as a PCI master has exceeded the
maximum number of unsuccessful attempts to transfer data due to
retries when the EEEN.PMR is enabled and all other PCI error status
bits are cleared. If the EEINT.PMR is set, a processor interrupt will be
generated. If the EEMCK0.PMR is set a machine check to processor
0 will be generated and if the EEMCK1.PMR is set a machine check
to processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.PMR bit.

SSE: SDRAM Memory Controller Single Bit Error. This bit is set
when the SDRAM Memory Controller detects and corrects a single bit
error when the EEEN.SSE is enabled. If the EEINT.SSE is set, a
processor interrupt will be generated. If the EEMCK0.SSE is set a
machine check to processor 0 will be generated and if the
EEMCK1.SSE is set a machine check to processor 1 will be
generated. This bit and the interrupt or machine check associated with
it may be cleared by writing a one to the EECL.SSE bit.

SSC: SDRAM Memory Controller Single Bit Error Count
Overflow. This bit is set when the SDRAM Memory Controller
detects a single bit error count overflow when the EEEN.SSC is
enabled. If the EEINT.SSC is set, a processor interrupt will be
generated. If the EEMCK0.SSC is set a machine check to processor 0
will be generated and if the EEMCK1.SSC is set a machine check to
processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.SSC bit.

SMX: SDRAM Memory Controller Multi Bit Error on PowerPC
Access. This bit is set when the SDRAM Memory Controller detects a
multi bit error on any PowerPC access when the EEEN.SMX is
enabled. If the EEINT.SMX is set, a processor interrupt will be
generated. If the EEMCK0.SMX is set a machine check to processor
0 will be generated and if the EEMCK1.SMX is set a machine check

3-176 Computer Group Literature Center Web Site

Programming Model

3

to processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.SMX bit.

SMS: SDRAM Memory Controller Multi Bit Error on Scrub. This
bit is set when the SDRAM Memory Controller detects a multi bit
error on a scrub when the EEEN.SMS is enabled. If the EEINT.SMS
is set, a processor interrupt will be generated. If the EEMCK0.SMS is
set a machine check to processor 0 will be generated and if the
EEMCK1.SMS is set a machine check to processor 1 will be
generated. This bit and the interrupt or machine check associated with
it may be cleared by writing a one to the EECL.SMS bit.

XBT: PowerPC Bus Time-out. This bit is set when the PowerPC
Address Bus Timer times out if the EEEN.XBT is enabled and all
other PowerPC error status bits are cleared. If the EEINT.XBT is set,
a processor interrupt will be generated. If the EEMCK0.XBT is set a
machine check to processor 0 will be generated and if the
EEMCK1.XBT is set a machine check to processor 1 will be
generated. This bit and the interrupt or machine check associated with
it may be cleared by writing a one to the EECL.XBT bit.

XAP: PowerPC Bus Address Parity Error. This bit is set when an
address parity error is detected on the PowerPC bus if the EEEN.XAP
is enabled and all other PowerPC error status bits are cleared. If the
EEINT.XAP is set, a processor interrupt will be generated. If the
EEMCK0.XAP is set a machine check to processor 0 will be
generated and if the EEMCK1.XAP is set a machine check to
processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.XAP bit.

XDP: PowerPC Bus Data Parity Error. This bit is set when an data
parity error is detected on the PowerPC bus if the EEEN.XDP is
enabled and all other PowerPC error status bits are cleared. If the
EEINT.XDP is set, a processor interrupt will be generated. If the
EEMCK0.XDP is set a machine check to processor 0 will be
generated and if the EEMCK1.XDP is set a machine check to

Exceptions

http://www.motorola.com/computer/literature 3-177

3

processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.XDP bit.

XDT: PowerPC Bus Delayed Transaction Time-out. This bit is set
when a delayed transaction time-out is detected on the PowerPC bus if
the EEEN.XDT is enabled and all other PowerPC error status bits are
cleared. If the EEINT.XDT is set, a processor interrupt will be
generated. If the EEMCK0.XDT is set a machine check to processor
0 will be generated and if the EEMCK1.XDT is set a machine check
to processor 1 will be generated. This bit and the interrupt or machine
check associated with it may be cleared by writing a one to the
EECL.XDT bit.

POF: PCI Error Overflow. This bit is set when any PCI error is
detected and any of the PCI error status bits is already set.

SSOF: SDRAM Memory Controller Single Bit Error Overflow.
This bit is set when any SDRAM Memory Controller single bit error
is detected and any of the SDRAM Memory Controller single bit error
status bits is already set.

SMOF: SDRAM Memory Controller Multi Bit Error Overflow.
This bit is set when any SDRAM Memory Controller multi bit error is
detected and any of the SDRAM Memory Controller multi bit error
status bits is already set.

XOF: PowerPC Error Overflow. This bit is set when any PowerPC
error is detected and any of the PowerPC error status bits is already set.

3-178 Computer Group Literature Center Web Site

Programming Model

3

Error Exception Clear Register

The Error Exception Clear Register (EECL) provides a way to clear a
previously asserted Error Exception. The fields within the EECL register
are defined as follows:

PMA: PCI Master Abort. If the EEST.PMA status bit is set, writing
a one to this field will clear the status bit and the associated interrupt
or machine check.

PTA: PCI Target Abort. If the EEST.PTA status bit is set, writing a
one to this field will clear the status bit and the associated interrupt or
machine check.

PAP: PCI Address Parity Error. If the EEST.PAP status bit is set,
writing a one to this field will clear the status bit and the associated
interrupt or machine check.

PDP: PCI Address Parity Error. If the EEST.PDP status bit is set,
writing a one to this field will clear the status bit and the associated
interrupt or machine check.

PDT: PCI Bus Delayed Transaction Time-out. If the EEST.PDT
status bit is set, writing a one to this field will clear the status bit and
the associated interrupt or machine check.

PSE: PCI SERR. If the EEST.PSE status bit is set, writing a one to
this field will clear the status bit and the associated interrupt or
machine check.

Offset XCSR + $058

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EECL Exceptions

P
M

A
P

TA
P

A
P

P
D

P
P

D
T

P
S

E
P

P
E

P
M

R
S

S
E

S
S

C
S

M
X

S
M

S

X
B

T
X

A
P

X
D

P
X

D
T

P
O

F
S

S
O

F
S

M
O

F
X

O
F

Operation

R
/C

R
/C

R
/C

R
/C

R
./C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C

R
/C R R R R R
/C

R
/C

R
/C

R
/C R R R R R R R R R
/C

R
/C

R
/C

R
/C

Reset 0

Exceptions

http://www.motorola.com/computer/literature 3-179

3

PMR: PCI Master Retry. If the EEST.PMR status bit is set, writing
a one to this field will clear the status bit and the associated interrupt
or machine check.

PPE: PCI PERR. If the EEST.PPE status bit is set, writing a one to
this field will clear the status bit and the associated interrupt or
machine check.

SSE: SDRAM Memory Controller Single Bit Error. If the
EEST.SSE status bit is set, writing a one to this field will clear the
status bit and the associated interrupt or machine check.

SSC: SDRAM Memory Controller Single Bit Error Count
Overflow. If the EEST.SSC status bit is set, writing a one to this field
will clear the status bit and the associated interrupt or machine check.

SMX: SDRAM Memory Controller Multi Bit Error on PowerPC
Access. If the EEST.SMX status bit is set, writing a one to this field
will clear the status bit and the associated interrupt or machine check.

SMS: SDRAM Memory Controller Multi Bit Error on Scrub. If
the EEST.SMS status bit is set, writing a one to this field will clear the
status bit and the associated interrupt or machine check.

XBT: PowerPC Bus Time-out. If the EEST.XBT status bit is set,
writing a one to this field will clear the status bit and the associated
interrupt or machine check.

XAP: PowerPC Bus Address Parity Error. If the EEST.XAP status
bit is set, writing a one to this field will clear the status bit and the
associated interrupt or machine check.

XDP: PowerPC Bus Data Parity Error. If the EEST.XDP status bit
is set, writing a one to this field will clear the status bit and the
associated interrupt or machine check.

XDT: PowerPC Bus Delayed Transaction Time-out. If the
EEST.XDT status bit is set, writing a one to this field will clear the
status bit and the associated interrupt or machine check.

3-180 Computer Group Literature Center Web Site

Programming Model

3

POF: PCI Error Overflow. If the EEST.POF bit is set, writing a one
to this field will clear the EEST.POF bit and the associated interrupt
or machine check.

SSOF: SDRAM Memory Controller Single Bit Error Overflow. If
the EEST.SSOF bit is set, writing a one to this field will clear the
EEST.SSOF bit and the associated interrupt or machine check.

SMOF: SDRAM Memory Controller Multi Bit Error Overflow. If
the EEST.SMOF bit is set, writing a one to this field will clear the
EEST.SMOF bit and the associated interrupt or machine check.

XOF: PowerPC Bus Error Overflow. If the EEST.XOF bit is set,
writing a one to this field will clear the EEST.XOF bit and the
associated interrupt or machine check.

Error Exception Interrupt Enable Register

The Error Exception Interrupt Enable Register (EEINT) provides an array
of interrupt enable bits pertaining to the various Error Exceptions that the
Harrier can generate. The fields within the EEINT register are defined as
follows:

PMA: PCI Master Abort. If set, an interrupt will be generated
through the Harrier’s MPIC whenever the EEST.PMA bit is set. If
cleared, an interrupt will not be generated.

Offset XCSR + $05c

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EEINT Exceptions

P
M

A
P

TA
P

A
P

P
D

P
P

D
T

P
S

E
P

P
E

P
M

R
S

S
E

S
S

C
S

M
X

S
M

S

X
B

T
X

A
P

X
D

P
X

D
T

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R R R

R
/W

R
/W

R
/W

R
/W R R R R R R R R R R R R

Reset 0

Exceptions

http://www.motorola.com/computer/literature 3-181

3

PTA: PCI Target Abort. If set, an interrupt will be generated through
the Harrier’s MPIC whenever the EEST.PTA bit is set. If cleared, an
interrupt will not be generated.

PAP: PCI Address Parity Error. If set, an interrupt will be generated
through the Harrier’s MPIC whenever the EEST.PAP bit is set. If
cleared, an interrupt will not be generated.

PDP: PCI Data Parity Error. If set, an interrupt will be generated
through the Harrier’s MPIC whenever the EEST.PDP bit is set. If
cleared, an interrupt will not be generated.

PDT: PCI Bus Delayed Transaction Time-out. If set, an interrupt
will be generated through the Harrier MPIC whenever the EEST.PDT
bit is set. If cleared, an interrupt will not be generated.

PSE: PCI SERR. If set, an interrupt will be generated through the
Harrier’s MPIC whenever the EEST.PSE bit is set. If cleared, an
interrupt will not be generated.

PPE: PCI PERR. If set, an interrupt will be generated through the
Harrier’s MPIC whenever the EEST.PPE bit is set. If cleared, an
interrupt will not be generated.

PMR: PCI Master Retry. If set, an interrupt will be generated
through the Harrier’s MPIC whenever the EEST.PMR bit is set. If
cleared, an interrupt will not be generated.

SSE: SDRAM Memory Controller Single Bit Error. If set, an
interrupt will be generated through the Harrier’s MPIC whenever the
EEST.SSE bit is set. If cleared, an interrupt will not be generated.

SSC: SDRAM Memory Controller Single Bit Error Count
Overflow. If set, an interrupt will be generated through the Harrier’s
MPIC whenever the EEST.SSC bit is set. If cleared, an interrupt will
not be generated.

SMX: SDRAM Memory Controller Multi Bit Error on PowerPC
Access. If set, an interrupt will be generated through the Harrier’s
MPIC whenever the EEST.SMX bit is set. If cleared, an interrupt will
not be generated.

3-182 Computer Group Literature Center Web Site

Programming Model

3

SMS: SDRAM Memory Controller Multi Bit Error on Scrub. If
set, an interrupt will be generated through the Harrier’s MPIC
whenever the EEST.SMS bit is set. If cleared, an interrupt will not be
generated.

XBT: PowerPC Bus Time-out. If set, an interrupt will be generated
through the Harrier’s MPIC whenever the EEST.XBT bit is set. If
cleared, an interrupt will not be generated.

XAP: PowerPC Bus Address Parity Error. If set, an interrupt will
be generated through the Harrier’s MPIC whenever the EEST.XAP bit
is set. If cleared, an interrupt will not be generated.

XDP: PowerPC Bus Data Parity Error. If set, an interrupt will be
generated through the Harrier’s MPIC whenever the EEST.XDP bit is
set. If cleared, an interrupt will not be generated.

XDT: PowerPC Bus Delayed Transaction Time-out. If set, an
interrupt will be generated through the Harrier’s MPIC whenever the
EEST.XDT bit is set. If cleared, an interrupt will not be generated.

Note: PowerPC Bus delayed transaction time-outs can occur during
normal operation. The XDT bit should NOT be set.

Exceptions

http://www.motorola.com/computer/literature 3-183

3

Error Exception Machine Check 0 Enable Register

The Error Exception Machine Check 0 Enable Register (EEMCK0)
provides an array of machine check 0 enable bits pertaining to the various
Error Exceptions. The fields within the EEMCK0 register are defined as
follows:

PMA: PCI Master Abort. If set, a machine check to processor 0 will
be generated whenever the EEST.PMA bit is asserted. If cleared, a
machine check to processor 0 will not be generated.

PTA: PCI Target Abort. If set, a machine check to processor 0 will
be generated whenever the EEST.PTA bit is asserted. If cleared, a
machine check to processor 0 will not be generated.

PAP: PCI Address Parity Error. If set, a machine check to processor
0 will be generated whenever the EEST.PAP bit is asserted. If cleared,
a machine check to processor 0 will not be generated.

PDP: PCI Data Parity Error. If set, a machine check to processor 0
will be generated whenever the EEST.PDP bit is asserted. If cleared,
a machine check to processor 0 will not be generated.

PDT: PCI Bus Delayed Transaction Time-out. If set, a machine
check to processor 0 will be generated whenever the EEST.PDT bit is
asserted. If cleared, a machine check to processor 0 will not be
generated.

Offset XCSR + $060

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EEMCK0 Exceptions

P
M

A
P

TA
P

A
P

P
D

P
P

D
T

P
S

E
P

P
E

P
M

R
S

S
E

S
S

C
S

M
X

S
M

S

X
B

T
X

A
P

X
D

P
X

D
T

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R R R

R
/W

R
/W

R
/W

R
/W R R R R R R R R R R R R

Reset 0

3-184 Computer Group Literature Center Web Site

Programming Model

3

PSE: PCI SERR. If set, a machine check to processor 0 will be
generated whenever the EEST.PSE bit is asserted. If cleared, a
machine check to processor 0 will not be generated.

PPE: PCI PERR. If set, a machine check to processor 0 will be
generated whenever the EEST.PPE bit is asserted. If cleared, a
machine check to processor 0 will not be generated.

PMR: PCI Master Retry. If set, a machine check to processor 0 will
be generated whenever the EEST.PMR bit is asserted. If cleared, a
machine check to processor 0 will not be generated.

SSE: SDRAM Memory Controller Single Bit Error. If set, a
machine check to processor 0 will be generated whenever the
EEST.SSE bit is asserted. If cleared, a machine check to processor 0
will not be generated.

SSC: SDRAM Memory Controller Single Bit Error Count
Overflow. If set, a machine check to processor 0 will be generated
whenever the EEST.SSE bit is asserted. If cleared, a machine check to
processor 0 will not be generated.

SMX: SDRAM Memory Controller Multi Bit Error on PowerPC
Access. If set, a machine check to processor 0 will be generated
whenever the EEST.SMX bit is asserted. If cleared, a machine check
to processor 0 will not be generated.

SMS: SDRAM Memory Controller Multi Bit Error on Scrub. If
set, a machine check to processor 0 will be generated whenever the
EEST.SMS bit is asserted. If cleared, a machine check to processor 0
will not be generated.

XBT: PowerPC Bus Time-out. If set, a machine check to processor 0
will be generated whenever the EEST.XBT bit is asserted. If cleared,
a machine check to processor 0 will not be generated.

XAP: PowerPC Bus Address Parity Error. If set, a machine check
to processor 0 will be generated whenever the EEST.XAP bit is
asserted. If cleared, a machine check to processor 0 will not be
generated.

Exceptions

http://www.motorola.com/computer/literature 3-185

3

XDP: PowerPC Bus Data Parity Error. If set, a machine check to
processor 0 will be generated whenever the EEST.XDP bit is asserted.
If cleared, a machine check to processor 0 will not be generated.

XDT: PowerPC Bus Delayed Transaction Time-out. If set, a
machine check to processor 0 will be generated whenever the
EEST.XDT bit is asserted. If cleared, a machine check to processor 0
will not be generated.

Note: PowerPC Bus delayed transaction time-outs can occur during
normal operation. The XDT bit should NOT be set.

Error Exception Machine Check 1 Enable Register

The Error Exception Machine Check 1 Enable Register (EEMCK1)
provides an array of machine check 1 enable bits pertaining to the various
error exceptions. The fields within the EEMCK1 register are defined as
follows:

PMA: PCI Master Abort. If set, a machine check will be generated
to processor 1 whenever the EEST.PMA bit is asserted. If cleared, a
machine check will not be generated to processor 1.

PTA: PCI Target Abort. If set, a machine check will be generated to
processor 1 whenever the EEST.PTA bit is asserted. If cleared, a
machine check will not be generated to processor 1.

Offset XCSR + $064

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Function

Name EEMCK1

Exceptions

P
M

A
P

TA
P

A
P

P
D

P
P

D
T

P
S

E
P

P
E

P
M

R
S

S
E

S
S

C
S

M
X

S
M

S

X
B

T
X

A
P

X
D

P
X

D
T

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R R R

R
/W

R
/W

R
/W

R
/W R R R R R R R R R R R R

Reset 0

3-186 Computer Group Literature Center Web Site

Programming Model

3

PAP: PCI Address Parity Error. If set, a machine check will be
generated to processor 1 whenever the EEST.PAP bit is asserted. If
cleared, a machine check will not be generated to processor 1.

PDP: PCI Data Parity Error. If set, a machine check will be
generated to processor 1 whenever the EEST.PDP bit is asserted. If
cleared, a machine check will not be generated to processor 1.

PDT: PCI Bus Delayed Transaction Time-out. If set, a machine
check will be generated to processor 1 whenever the EEST.PDT bit is
asserted. If cleared, a machine check will not be generated to processor 1.

PSE: PCI SERR. If set, a machine check will be generated to
processor 1 whenever the EEST.PSE bit is asserted. If cleared, a
machine check will not be generated to processor 1.

PPE: PCI PERR. If set, a machine check will be generated to
processor 1 whenever the EEST.PPE bit is asserted. If cleared, a
machine check will not be generated to processor 1.

PMR: PCI Master Retry. If set, a machine check will be generated
to processor 1 whenever the EEST.PMR bit is asserted. If cleared, a
machine check will not be generated to processor 1.

SSE: SDRAM Memory Controller Single Bit Error. If set, a
machine check will be generated to processor 1whenever the
EEST.SSE bit is asserted. If cleared, a machine check will not be
generated to processor 1.

SSC: SDRAM Memory Controller Single Bit Error Count
Overflow. If set, a machine check will be generated to processor 1
whenever the EEST.SSC bit is asserted. If cleared, a machine check
will not be generated to processor 1.

SMX: SDRAM Memory Controller Multi Bit Error on PowerPC
Access. If set, a machine check will be generated to processor 1
whenever the EEST.SMX bit is asserted. If cleared, a machine check
will not be generated to processor 1.

Error Diagnostics

http://www.motorola.com/computer/literature 3-187

3

SMS: SDRAM Memory Controller Multi Bit Error on Scrub. If
set, a machine check will be generated to processor 1 whenever the
EEST.SMS bit is asserted. If cleared, a machine check will not be
generated to processor 1.

XBT: PowerPC Bus Time-out. If set, a machine check will be
generated to processor 1 whenever the EEST.XBT bit is asserted. If
cleared, a machine check will not be generated to processor 1.

XAP: PowerPC Bus Address Parity Error. If set, a machine check
will be generated to processor 1 whenever the EEST.XAP bit is
asserted. If cleared, a machine check will not be generated to processor 1.

XDP: PowerPC Bus Data Parity Error. If set, a machine check will
be generated to processor 1whenever the EEST.XDP bit is asserted. If
cleared, a machine check will not be generated to processor 1.

XDT: PowerPC Bus Delayed Transaction Time-out. If set, a
machine check will be generated to processor 1whenever the
EEST.XDT bit is asserted. If cleared, a machine check will not be
generated to processor 1.

Note: PowerPC Bus delayed transaction time-outs can occur during
normal operation. The XDT bit should NOT be set.

Error Diagnostics
All of the registers for this function are located within PowerPC address
space as a part of the XCSR Register Group.

3-188 Computer Group Literature Center Web Site

Programming Model

3

Error Diagnostics Error Injection Register

The Error Diagnostics Error Injection Register (EDEI) provides a way to
inject certain types of errors to test the Harrier error capture and status
circuitry. The fields within the EDEI register are defined as follows:

DPEx: Data Parity Error Enable. These bits are used for test reasons
to purposely inject data parity errors whenever the Harrier is sourcing
PowerPC data. A data parity error will be created on the corresponding
PowerPC data parity bus if a bit is set. For example, setting DPE0 will
cause DP0 to be generated incorrectly. If the bit is cleared, the Harrier
will generate correct data parity.

APEx: Address Parity Error Enable. These bits are used for test
reasons to purposely inject address parity errors whenever the Harrier
is acting as a PowerPC bus master. An address parity error will be
created on the corresponding PowerPC address parity bus if a bit is set.
For example, setting APE0 will cause AP0 to be generated incorrectly.
If the bit is cleared, the Harrier will generate correct address parity.

XDTT: PPC Slave Retry Test Bit. This bit is used for test reasons to
impose a short PPC delayed transaction time-out. A short PPC delayed
transaction time-out will occur when this bit is set.

Note: This bit is not used in Harrier 2.

Offset XCSR + $06c

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EDEI Error
Diagnostics

D
P

E
0

D
P

E
1

D
P

E
2

D
P

E
3

D
P

E
4

D
P

E
5

D
P

E
6

D
P

E
7

A
P

E
0

A
P

E
1

A
P

E
2

A
P

E
3

X
D

T
T

T
M

R
T

1
T

M
R

T
2

T
M

R
T

3
P

M
R

T
P

D
T

T

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R R R

R
/W

R
/W

R
/W

R
/W R R

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R

Reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-
P

0-
P

0-
P

0-
P

0-
P

0-
P $00

Error Diagnostics

http://www.motorola.com/computer/literature 3-189

3

TMRT1: Timer Test Bit 1. This bit is used for testing purposes only.
When set, the sampling rate of the switch debouncers will change from
1ms to 1µs.

TMRT2: Timer Test Bit 2. This bit is used for testing purposes only.
When set, the RSTO_ pulse extender will change from 100µs to 1µs.

TMRT3: Timer Test Bit 3. This bit is used for testing purposes only.
When set, the valid hold time for the push button RSTSW_ signal will
be 3µs instead of 3s, and the RSTO_ signal will be generated upon the
completion of that valid hold time.

PMRT: PCI Master Retry Test Bit. This bit is used for test reasons
to reduce the amount of PCI master retries needed before generating
the PCI Master Retry exception. Setting this bit puts the PCI master in
test mode.

PDTT: PCI Delayed Transaction Test Bit. This bit is used for test
reasons to impose a short PCI delayed transaction time-out. A short
PCI delayed transaction time-out will occur when this bit is set.

Error Diagnostics PowerPC Address Register

The Error Diagnostics PowerPC Address Register (EXAD) captures
addressing information from the PowerPC bus whenever an applicable
Error Exception has been detected. The register contents will only be
updated when there are no status bits set within the EEST register. During
a string of successive errors, this register will retain information pertaining
to the first error.

Offset XCSR + $070

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EXAD Error
DiagnosticsOperation R

Reset $00000000

3-190 Computer Group Literature Center Web Site

Programming Model

3

Error Diagnostics PowerPC Attribute Register

The Error Diagnostics PowerPC Attribute Register (EXAT) captures
attribute information from the PowerPC bus whenever an applicable Error
Exception has been detected. The register contents will only be updated
when there are no status bits set within the EEST register. During a string
of successive errors, this register will retain information pertaining to the
first error. The fields within the EXAT register are defined as follows:

MID: Master ID. This field contains the ID of the PowerPC master
which originated the transfer in which the Error Exception occurred.
The encoding scheme is identical to that used in the GCSR register.

DMA: DMA Error. This read only bit will be set to a “1” when the
current transaction is DMA originated and will be set to a “0” when the
current transaction is PowerPC to PCI bridge originated. Additionally
this bit may only be set to a “1” if the error being captured is a
PowerPC bus time-out and the MID field of the error indicates the
Harrier is the bus master. If the error being captured is not a PowerPC
bus time-out or the MID field of the error indicates the Harrier is not
the bus master then this bit will read as a “0”.

DDF: DMA Descriptor Fetch. This read only bit will be set to a “1”
when the DMA error occurred during descriptor fetch and will be set
to a “0” when the DMA error occurred during data movement.
Additionally this bit may only be set to a “1” if the error being captured
is a PowerPC bus time-out and the MID field of the error indicates the
Harrier is the bus master and the error being captured is DMA. If the

Offset XCSR + $074

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EXAT Error
Diagnostics

M
ID

D
M

A
D

D
F

D
D

I
T

B
S

T
T

S
IZ

0
T

S
IZ

1
T

S
IZ

2
T

T
0

T
T

1
T

T
2

T
T

3
T

T
4

Operation R

Reset 0

Error Diagnostics

http://www.motorola.com/computer/literature 3-191

3

error being captured is not a PowerPC bus time-out or the MID field
of the error indicates the Harrier is not the bus master or the error being
captured is not DMA then this bit will read as a “0”.

DDI: DMA Direction. This read only bit will be set to a “1” when the
DMA error occurred during fifo fill and will be set to a “0” when the
DMA error occurred during fifo empty. Additionally this bit may only
be set to a “1” if the error being captured is a PowerPC bus time-out
and the MID field of the error indicates the Harrier is the bus master
and the error being captured is DMA. If the error being captured is not
a PowerPC bus time-out or the MID field of the error indicates the
Harrier is not the bus master or the error being captured is not DMA
then this bit will read as a “0”.

TBST: Transfer Burst. This bit is cleared when the transfer in which
the Error Exception occurred was a burst transfer. This bit is set during
single beat transfers.

TSIZx: Transfer Size. This field contains the transfer size of the
PowerPC transfer in which the Error Exception occurred.

TTx: Transfer Type. This field contains the transfer type of the
PowerPC transfer in which the Error Exception occurred.

Error Diagnostics PCI Address Register

The Error Diagnostics PCI Address Register (EPAD) captures addressing
information from the PCI bus whenever an applicable Error Exception has
been detected. The register contents will only be updated when there are
no status bits set within the EEST register. During a string of successive
errors, this register will retain information pertaining to the first error.

Offset XCSR + $078

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EPAD Error
DiagnosticsOperation R

Reset $00000000

3-192 Computer Group Literature Center Web Site

Programming Model

3

Error Diagnostics PCI Attribute Register

The Error Diagnostics PCI Attribute Register (EPAT) captures attribute
information from the PCI bus whenever an applicable Error Exception has
been detected. The register contents will only be updated when there are
no status bits set within the EEST register. During a string of successive
errors, this register will retain information pertaining to the first error. The
fields within the EPAT register are defined as follows:

DMA: DMA Error. This read only bit will be set to a “1” when the
current transaction is DMA originated and will be set to a “0” when the
current transaction is PowerPC to PCI bridge originated. Additionally
this bit may only be set to a “1” if the error being captured is a PMA,
PTA or PMR. Otherwise this bit will read as a “0”.

DDI: DMA Direction. This read only bit will be set to a “1” when the
DMA error occurred during fifo fill and will be set to a “0” when the
DMA error occurred during fifo empty. Additionally this bit may only
be set to a “1” if the error being captured is a PMA, PTA or PMR and
the error being captured is DMA. Otherwise this bit will read as a “0”.

COMMx: PCI Command. This field contains the PCI command of
the PCI transfer in which the Error Exception occurred.

Offset XCSR + $07C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name EPAT Error
Diagnostics

D
M

A
D

D
I

C
O

M
M

3
C

O
M

M
2

C
O

M
M

1
C

O
M

M
0

Operation R

Reset 0

Miscellaneous Functions

http://www.motorola.com/computer/literature 3-193

3

Miscellaneous Functions
All of the remaining miscellaneous registers described in this section are
located within PowerPC address space as a part of the XCSR Register
Group.

Vendor ID/Device ID Registers

The Vendor ID Register (VENI) identifies the manufacturer of the device.
This identifier is allocated by the PCI SIG to ensure uniqueness. $1057 has
been assigned to Motorola and is hardwired as a read-only value.

The Device ID Register (DEVI) uniquely identifies this particular device.
The Harrier will always return $480B.

Revision ID Register

The Revision ID Register (REVI) identifies the Harrier revision level.

Offset XCSR + $000

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name VENI DEVI ID

Operation R R

Reset $1057 $480B

Offset XCSR + $004

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Function

Name REVI

IDOperation R R R R

Reset $00 $01 $00 $00

3-194 Computer Group Literature Center Web Site

Programming Model

3

Global Control and Status Register

The Global Control-Status Register (GCSR) provides miscellaneous
control and status information for the Harrier. The fields within the GCSR
are defined as follows:

PUR: Power-up Reset. This bit tells software when a power-up has
occurred. Only power-up reset sets PUR. Only user software writing a
one to PUR alone clears it.

SRST: Push Button Reset. This bit tells software that the push button
reset signal was asserted when the Harrier received an RST_ signal.
This bit is cleared by power-up reset.

ARST: Auxiliary Reset. This bit tells software that the auxiliary reset
signal was asserted when the Harrier received an RST_ signal. This bit
is cleared by power-up reset.

PRST: Program Reset. This bit tells software that the software reset
out bit was asserted when the Harrier received an RST_ signal. This
bit is cleared by power-up reset.

PUSTx: Power-up Status. PUSTx indicates the levels that were on
four certain input signal pins during power-up reset. This field
provides a means to pass information to software using pull-up/pull-
down resistors on the four inputs. Refer to Table 2-24 on page 2-133
for more information.

Offset XCSR + $010

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name GCSR Control
and Status

P
U

R
S

R
S

T
A

R
S

T
P

R
S

T
P

U
S

T
3

P
U

S
T

2
P

U
S

T
1

P
U

S
T

0

A
O

A
O

X
B

S

B
T

O

M
ID

R
A

T

Operation

R
/C R R R R R R R

R
/W

R
/W

R
/W

R
/W

R
/W R R R R R R R R R R R R R R R R

Reset

1-
P

L_
V

L-
V

l-V V-P 0 0 0 V
-P 0 1 0 0 0 0 0 0 0 x x x 0 0 0 0 0 0 0 0

Miscellaneous Functions

http://www.motorola.com/computer/literature 3-195

3

AOAO: Address-Only Acknowledge Other. When cleared, the
Harrier responds to PowerPC address-only transactions only if they
address one of its own resources. When set, the Harrier also responds
to address-only transactions to non-Harrier addresses, provided no
other slave responds within 8 CLK periods. AOAO reflects the value
on a certain input signal at power-up reset. Refer to Table 2-24 on page
2-133 for more information.

XBS: PowerPC Burst Size. This field specifies the latching request
burst size that is used by all the Harrier PowerPC bus masters. When
performing multiple burst transfers, a master will leave its request
asserted for the number of transfers indicated within this field. Once
the specified number of transfers has happened, the master will
momentarily remove its request. If there are other masters requesting
the PowerPC bus, then the PowerPC Arbiter will grant the bus to the
next highest priority master. If there are no other requests pending,
then the original transaction continues on until the next burst
boundary.

The Harrier is tuned to work with a burst size of 128 bytes, however
the actual average transfer size for each system varies and this field
may be changed accordingly.

The burst size is encoded as shown in the following table.

Table 3-57. GCSR XBS Encoding

XBS Burst Size

00 64 bytes

01 128 bytes

10 256 bytes

11 continuous

3-196 Computer Group Literature Center Web Site

Programming Model

3

BTO: Bus Time-out. This field specifies the enabling and time-out
length to be used by the PowerPC Address Bus Timer. The time-out
length is encoded as shown in the following table.

MID: Master ID. This field is encoded as shown in the following
table to indicate who is currently PowerPC bus master. This
information is obtained by sampling the XARB0 thru XARB3 pins
when in external PowerPC arbitration mode. When in internal
PowerPC arbitration mode this information is generated by the
PowerPC Arbiter. In a multiprocessor environment, these bits allow
software to determine on which processor it is currently running.

Table 3-58. GCSR BTO Encoding

BTO Time Out
Length

00 256 µsec

01 64 µsec

10 8 µsec

11 disabled

Table 3-59. GCSR MID Encoding

MID PowerPC Data Bus
Master

00 CPU0

01 CPU1

10 EXTL

11 Harrier

Miscellaneous Functions

http://www.motorola.com/computer/literature 3-197

3

RAT: Ratio. This is a read only field that is used to indicate the
PowerPC to PCI clock ratio that has been established by the Harrier at
the release of reset. The encoding of this field is show in the following
table.

PowerPC Clock Frequency Register

The PowerPC Clock Frequency Register (XCFR) should be programmed
with the hexadecimal value of the operating clock frequency in MHz (e.g.
$64 for 100 MHz). When these bits are programmed this way, the chip’s
prescale counter produces a 1 MHz (approximate) output. The output of
the chip prescale counter is used by the refresher/scrubber and the 32-bit
counter. After power-up, this register is initialized to $64 (for 100 MHz).
The formula is:

Counter_Output_Frequency = (Clock Frequency)/XCFR

Table 3-60. GCSR RAT Encoding

RAT PowerPC/PCI clock ratio

000 Undefined

001 1:1

010 2:1

011 3:1

100 3:2

101 Undefined

110 5:2

111 Undefined

Offset XCSR + $014

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Function

Name XCFR Control
and StatusOperation R/W R R R

Reset $64 $00 $00 $00

3-198 Computer Group Literature Center Web Site

Programming Model

3

For example, if the Clock Frequency is 100 MHz and XCFR is $64, then
the counter output frequency is 100 MHz/100 = 1 MHz.

When the CLK pin is operating slower than 100 MHz, software should
program XCFR to be at least as slow as the CLK pin’s frequency as soon
as possible after power-up reset so that SDRAM refresh does not get
behind. It is okay for the software then to take some time to “up” XCFR
to the correct value. Refresh will get behind only when the actual CLK
pin’s frequency is lower than the value programmed into XCFR.

Count 32-bit Register

The Count 32-bit Register (CT32) is a 32-bit, free-running counter that
increments once per microsecond if the XCFR register has been
programmed properly. CT32 is cleared by power-up and local reset.

Note that when the system clock is a fractional frequency
(e.g. 66.67 MHz), CTR32 will count at a fractional amount faster or
slower than 1 MHz, depending on the programming of the XCFR register.

Offset XCSR + $018

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name CT32 Control
and StatusOperation R/W

Reset $00000000

Miscellaneous Functions

http://www.motorola.com/computer/literature 3-199

3

Miscellaneous Control and Status Register

The Miscellaneous Control-Status Register (MCSR) provides
miscellaneous control and status information for the Harrier. The fields
within the MCSR are defined as follows:

BRDFLS: Board Fail Status. This bit is the board fail status bit. It is
high when the Harrier’s board fail (BRDFL_) pin is asserted. The
board fail pin is open drain and may be driven low by the Harrier or
external logic.

BRDFL: Board Fail. This bit is the board fail bit. When the board fail
bit is asserted, the Harrier will assert its board fail (BRDFL_) pin.

ERDYS: PCI Bus Enumeration Ready Status. This bit is the
EREADY status bit. It is high when the Harrier EREADY pin is high
and low when the Harrier EREADY pin is low. The EREADY pin is
open drain and may be driven low by the Harrier or external logic.

EREADY: PCI Bus Enumeration Ready. This bit is the EREADY
bit. When the EREADY bit is low, the Harrier will drive its EREADY
pin low with an open drain driver. When the EREADY bit is high, the
Harrier will not drive the EREADY pin.

SCON: System Controller. This bit is high when the Harrier SCON_
pin is asserted. When this bit is high, the Harrier is the system
controller.

Offset XCSR + $01c

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name MCSR Control
and Status

B
R

D
F

LS
B

R
D

F
L

E
R

D
Y

S
E

R
E

A
D

Y
S

C
O

N
T

B
E

N
0

T
B

E
N

1
R

S
T

O
U

T
A

S
W

S

R
S

T
IN

H
Operation

R
R

/W R
R

/W R
R

/W
R

/W S R R R R R R R
R

/W R R

Reset 1 1 0 0 X 1 1 0 0 0 0 0 0 0 0 0 $00 $00

3-200 Computer Group Literature Center Web Site

Programming Model

3

TBEN0: Time Base Enable 0. When set the Harrier will assert its
TBEN0 pin.

TBEN1: Time Base Enable 1. When set the Harrier will assert its
TBEN1 pin.

RSTOUT: RESET OUT. When a one is written to this bit, the Harrier
will assert its reset out (RSTO_) pin.

ASWS: Abort Switch Status. This bit reflects the state of the
ABTSW_ pin. This bit is a one when the Abort Switch is pressed.

RSTINH: Reset Inhibit. When this bit is set, the Harrier will inhibit
asserting its reset out (RSTO_) pin when RSTSW_ pin is asserted.

General Purpose Registers

The General Purpose Registers (GPRG0, GPRG1, GPRG2, GPRG3,
GPRG4, and GPRG5) are provided for inter-process message passing or
general purpose storage. They do not control any hardware. Register
groups GPRG0/GPRG1, GPRG2/GPRG3, and GPRG4/GPRG5 and
may be combined as single 64-bit registers.

GPRG0 thru GPRG3 will always be reset to all zeros following a power
up reset or a local reset. GPRG4 and GPRG5 are only affected by power
up reset. A local reset will not change the contents of these registers,
therefore these registers may be used for storing critical information when
performing commanded reset cycles.

Offset GPRG0: XCSR + $020
GPRG1: XCSR + $024
GPRG2: XCSR + $028
GPRG3: XCSR + $02C
GPRG4: XCSR + $030
GPRG5: XCSR + $034

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name GPRGx General
Purpose
Registers

Operation R/W

Reset GPRG0 -> GPRG3: $00000000
GPRG4 -> GPRG5: $00000000-P

Miscellaneous Functions

http://www.motorola.com/computer/literature 3-201

3

General Purpose Memory

The General Purpose Memory (GPM) is a 2Kilobyte RAM. It is provided
for inter-process message passing or general purpose storage. It does not
control any hardware. The GPM group is the only group within the XCSR
that supports all transfer sizes supported by the PowerPC and all
alignments within the 8 byte boundary.

On power up reset, the contents of the GPM are unknown. Software is
required to initialize the GPM. Local reset does not change the contents of
the GPM, therefore the GPM may be used for storing critical information
when performing commanded reset cycles.

Offset XCSR + $400 -> $BFC

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Function

Name GPM General
Purpose
Memory

Operation R/W

Reset $XXXXXXXX

3-202 Computer Group Literature Center Web Site

Programming Model

3

4-1

44Performance

SDRAM Interface
The following table shows the performance summary for SDRAM when
operating at 100 MHz using PC100 SDRAM with a CAS_latency of 2. The
figure on the following page defines the times that are specified in the
table.

Table 4-1. PowerPC (60x) Bus to SDRAM Estimated Access Timing at 100
MHz with PC100 SDRAM’s

ACCESS TYPE Access Time
(tB1-tB2-tB3-tB4)

Comments

4-Beat Read after idle,

SDRAM Internal-Bank Inactive

10-1-1-1

4-Beat Read after idle,

SDRAM Internal-Bank Active -Page
Miss

12-1-1-1

4-Beat Read after idle,

SDRAM Internal-Bank Active -Page Hit

7-1-1-1

4-Beat Read after 4-Beat Read,

SDRAM Internal-Bank Active -Page
Miss

5-1-1-1

4-Beat Read after 4-Beat Read,

SDRAM Internal-Bank Active -Page Hit

2.5-1-1-1 2.5-1-1-1 is an average of 2-
1-1-1 half of the time and 3-

1-1-1 the other half.

4-Beat Write after idle,

SDRAM Internal-Bank Active or
Inactive

4-1-1-1

4-Beat Write after 4-Beat Write,

SDRAM Internal-Bank Active -Page
Miss

6-1-1-1

4-2 Computer Group Literature Center Web Site

Performance

4

Notes

1. SDRAM speed attributes are programmed for the following:
CAS_latency = 2, tRCD = 2 CLK Periods, tRP = 2 CLK Periods,
tRAS = 5 CLK Periods, tRC = 7 CLK Periods, tDPL = 2 CLK

4-Beat Write after 4-Beat Write,

SDRAM Internal-Bank Active -Page Hit

3-1-1-1 3-1-1-1 for the second burst
write after idle.

2-1-1-1 for subsequent burst
writes.

1-Beat Read after idle,

SDRAM Internal-Bank Inactive
10

1-Beat Read after idle,

SDRAM Internal-Bank Active -Page
Miss

12

1-Beat Read after idle,

SDRAM Internal-Bank Active -Page Hit
7

1-Beat Read after 1-Beat Read,

SDRAM Internal-Bank Active -Page
Miss

8

1-Beat Read after 1-Beat Read,

SDRAM Internal-Bank Active -Page Hit
5

1-Beat Write after idle,

SDRAM Internal-Bank Active or
Inactive

5

1-Beat Write after 1-Beat Write,

SDRAM Internal-Bank Active -Page
Miss

13

1-Beat Write after 1-Beat Write,

SDRAM Internal-Bank Active -Page Hit
8

Table 4-1. PowerPC (60x) Bus to SDRAM Estimated Access Timing at 100
MHz with PC100 SDRAM’s (Continued)

ACCESS TYPE Access Time
(tB1-tB2-tB3-tB4)

Comments

SDRAM Interface

http://www.motorola.com/computer/literature 4-3

4

Periods, and the WDPL bit is set in the Synchronous DRAM
Control register.

2. The Harrier is configured for “no external registers” on the
SDRAM control signals. Refer to the section titled Hardware
Configuration on page 2-133 for more information.

3. tB1, tB2, tB3, and tB4 are specified in the following figure.

Figure 4-1. Timing Definitions for Table 4-1

CLK

DBB_

TS_

TA_

tB1(From Idle) tB1(Back-to-Back)

tB2

tB3

tB4

4-4 Computer Group Literature Center Web Site

Performance

4

Notes When the bus starts out idle, tB1 is the number of CLK periods
from the rising edge of the CLK that drives TS_low, to the rising
edge of CLK that samples the first TA_low.

When the bus is busy and TS_ is being asserted as soon as
possible after Harrier asserts aack_ the back-to-back condition
occurs. For back-to-back cycles, tB1 is the number of CLK
periods from the rising edge of CLK that samples the last TA_
low of a data tenure to the rising edge of CLK that samples the
first TA_ low of the next data tenure.

tB2 is the number of CLK periods from the rising edge of the
CLK that samples the first TA_ low in a burst data tenure to the
rising edge of CLK that samples the second TA_ low in that data
tenure.

tB3 is the number of CLK periods from the rising edge of CLK
that samples the second TA_ low in a burst data tenure to the
rising edge of CLK that samples the third TA_ low in that data
tenure.

tB4 is the number of CLK periods from the rising edge of CLK
that samples the third TA_ low in a burst data tenure to the rising
edge of CLK that samples the last TA_ low in that data tenure.

Xport Bus Interface
The following subsections describe the latency periods of Xport bound
reads and provides background information.

Xport Bus Interface

http://www.motorola.com/computer/literature 4-5

4

Latency of Xport-bound Reads (Xport read bursting
disabled)

Table 4-2. PowerPC (60x) Bus Performance for Xport Bus Bound Cycles

60x
Transfer

Size

Xport
Channel
Width

(In bits)

Number
of data

beats on
Xport
Bus

Number of CLK periods required for 60x data Beat 1 when
Device access time is:

50ns 60ns 70ns 80ns 90ns 100ns 120ns 150ns

1 byte 8,16, or
32

1 19 20 21 22 23 24 26 29

2 bytes 16 or 32

3 bytes 32

4 bytes 32

2 bytes 8 2 25 27 29 31 33 35 39 45

3 bytes 16

4 bytes 16

5 bytes 32

6 bytes 32

8 bytes 32

7 bytes 32

3 bytes 8 3 31 34 37 40 43 46 52 61

5 bytes 16

6 bytes 16

4 bytes 8 4 37 41 45 49 53 57 65 77

7 bytes 16

8 bytes 16

5 bytes 8 5 43 48 53 58 63 68 78 93

6 bytes 8 6 49 55 61 67 73 79 91 109

7 bytes 8 7 55 62 69 76 83 90 104 125

8 bytes 8 8 61 69 77 85 93 101 117 141

4-6 Computer Group Literature Center Web Site

Performance

4

Background Information

CLK frequency is 100 MHz. For 32-byte transfers, data beats 2,3,4 require
1,1,1 CLKs. The numbers for data beat 1 come from the formula:

tDB1 = OVH + ((DAT +1) x NXB)

Where:

tDB1 is the number of CLK periods from TS_ to the first TA_.

OVH is the overhead (expressed in CLK periods) associated with any
read cycle. OVH is 13 if the PowerPC master comes back to get the
data just as it becomes ready. OVH increases by one for each CLK
period that the PowerPC master is late.

DAT is the device access time (expressed in CLK periods). And,

NXB is the number of data beats required on the Xport bus for the
transaction.

32 bytes 32

32 bytes 16 16 109 125 141 157 173 189 221 269

32 bytes 8 32 205 237 269 301 333 365 429 525

Table 4-2. PowerPC (60x) Bus Performance for Xport Bus Bound Cycles

60x
Transfer

Size

Xport
Channel
Width

(In bits)

Number
of data

beats on
Xport
Bus

Number of CLK periods required for 60x data Beat 1 when
Device access time is:

50ns 60ns 70ns 80ns 90ns 100ns 120ns 150ns

Xport Bus Interface

http://www.motorola.com/computer/literature 4-7

4

The following table shows NXB for the different port widths and PowerPC
transfer sizes. Note that the table is for accesses that are aligned to the port
size. Some accesses that are not aligned to port size add 1 beat to the
number shown in the table

Table 4-3. Number of Xport Data Beats for Different PowerPC (60x)
Transfer Sizes

60x
Transfer

Size

8-Bit Xport Channel
Width

16-Bit
Xport

Channel
Width

32-Bit
Xport

Channel
Width

1 Byte 1 Beat 1 Beat 1 Beat

2 Bytes 2 Beats 1 Beat 1 Beat

3 Bytes 3 Beats 2 Beats 1 Beat

4 Bytes 4 Beats 2 Beats 1 Beat

5 Bytes 5 Beats 3 Beats 2 Beats

6 Bytes 6 Beats 3 Beats 2 Beats

7 Bytes 7 Beats 4 Beats 2 Beats

8 Bytes 8 Beats 4 Beats 2 Beats

32 Bytes 32 Beats 16 Beats 8 Beats

4-8 Computer Group Literature Center Web Site

Performance

4

PowerPC to PCI Bridge
This section describes the differences between 32-bit and 64-bit outbound
and inbound performance.

❏ Bus Idle represents a PowerPC master continually retrying a
transaction until the transaction is ready. In some cases, the timing
of transaction ready may not line up with the timing of repetitive
retry cycles.

Table 4-4. Outbound Performance Matrix

Transaction 32-bit PCI 64-bit PCI Clock
RatioLatency (PPC Clocks) Continuous

Bandwidth
(MBytes/sec)

Latency (PPC Clocks) Continuous
Bandwidth
(MBytes/sec)

Best Case Bus Idle Best Case Bus Idle

Burst Write 5-1-1-1 5-1-1-1 133 5-1-1-1 5-1-1-1 267 5:2

Burst Read 42-1-1-1 42-1-1-1 133 32-1-1-1 33-1-1-1 267

Single Write 5 5 - 5 5 -

Single Read 26 33 - 23 24 -

Burst Write 5-1-1-1 5-1-1-1 267 5-1-1-1 5-1-1-1 533 3:2

Burst Read 28-1-1-1 33-1-1-1 267 22-1-1-1 24-1-1-1 533

Single Write 5 5 - 5 5 -

Single Read 19 24 - 18 24 -

Burst Write 5-1-1-1 5-1-1-1 133 5-1-1-1 5-1-1-1 267 3:1

Burst Read 48-1-1-1 51-1-1-1 133 35-1-1-1 42-1-1-1 267

Single Write 5 5 - 5 5 -

Single Read 30 33 - 27 33 -

Burst Write 5-1-1-1 5-1-1-1 133 5-1-1-1 5-1-1-1 267 2:1

Burst Read 35-1-1-1 42-1-1-1 133 27-1-1-1 33-1-1-1 267

Single Write 5 5 - 5 5 -

Single Read 23 24 - 22 24 -

Burst Write 5-1-1-1 5-1-1-1 267 5-1-1-1 5-1-1-1 355 1:1

Burst Read 22-1-1-1 24-1-1-1 267 18-1-1-1 24-1-1-1 304

Single Write 5 5 - 5 5 -

Single Read 16 24 - 15 15 -

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 4-9

4

❏ Best Case represents a mixture of transactions allowing the most
effective alignment between a retried transaction and transaction
ready.

❏ Assumes write posting enabled and write posting FIFO is initially
empty.

❏ Assumes read ahead enabled and read ahead FIFO is initially empty.

❏ Does not include time taken to obtain grant for PowerPC bus. The
count starts on the same clock period that TS_ is asserted.

❏ PowerPC bus is idle at the time of the start of the transaction. (i.e.
no pipeline effects).

❏ All transactions are cache word aligned.

❏ PCI medium responder with zero wait states.

❏ One clock request/one clock grant PCI arbitration.

❏ Default FIFO threshold settings.

❏ Clock counts represent best case alignment between PCI and
PowerPC clock domains. An exception to this is continuous
bandwidth which reflects the average affects of clock alignment.

Inbound Performance

Transaction 32-bit PCI 64-bit PCI Clock
RatioLatency

(PCI Clocks)
Continuous
Bandwidth

(MBytes/sec)

Latency
(PCI Clocks)

Continuous
Bandwidth

(MBytes/sec)

Burst Write 3-1-1-1... 133 3-1-1-1... 267 5:2

Burst Read 9-1-1-1... 133 9-1-1-1... 267

Single Write 3 - 3 -

Single Read 9 - 9 -

4-10 Computer Group Literature Center Web Site

Performance

4

❏ Assumes write posting enabled and write posting FIFO is initially
empty.

❏ Assumes read ahead enabled and read ahead FIFO is initially empty.

❏ All transactions targeted to PowerPC memory space hosted by the
Harrier SDRAM interface.

❏ Does not include time taken to obtain grant for PCI Bus. The count
starts on the same clock period that FRAME_ is asserted.

❏ One clock request/one clock grant PowerPC bus arbitration.

❏ All transactions are cache word aligned.

❏ Default FIFO threshold settings.

Burst Write 3-1-1-1... 267 3-1-1-1... 533 3:2

Burst Read 13-1-1-1... 267 13-1-1-1... 533

Single Write 3 - 3 -

Single Read 13 - 13 -

Burst Write 3-1-1-1... 133 3-1-1-1... 267 3:1

Burst Read 9-1-1-1... 133 9-1-1-1... 267

Single Write 3 - 3 -

Single Read 9 - 9 -

Burst Write 3-1-1-1... 133 3-1-1-1... 267 2:1

Burst Read 11-1-1-1... 133 11-1-1-1... 267

Single Write 3 - 3 -

Single Read 11 - 11 -

Burst Write 3-1-1-1... 267 3-1-1-1... 426 1:1

Burst Read 16-1-1-1... 267 16-1-1-1... 388

Single Write 3 - 3 -

Single Read 16 - 16 -

Transaction 32-bit PCI 64-bit PCI Clock
RatioLatency

(PCI Clocks)
Continuous
Bandwidth

(MBytes/sec)

Latency
(PCI Clocks)

Continuous
Bandwidth

(MBytes/sec)

PowerPC to PCI Bridge

http://www.motorola.com/computer/literature 4-11

4

❏ Clock counts represent best case alignment between PCI and
PowerPC clock domains. An exception to this is continuous
bandwidth which reflects the average affects of clock alignment.

4-12 Computer Group Literature Center Web Site

Performance

4

5-1

55Programming Considerations

Programming SDRAM Related Control
Registers

The following subsections contain information that is helpful in
programming a system that uses the Harrier ASIC.

Initializing SDRAM Related Control Registers

In order to establish proper SDRAM operation, software must configure
control register bits that affect each SDRAM bank’s speed, refresh period,
size, base address, and enable. The SDRAM speed attributes are the same
for all banks and are controlled by one register. The same is true for the
refresh period. On the other hand, the size, base address and enable can be
different for each bank and are controlled in bank specific registers.

SDRAM Speed Attributes

The SDRAM speed attributes come up from power-up reset initialized to
the slowest settings capable by Harrier. This allows SDRAM accesses to
be performed before the SDRAM speed attributes are known. An example
of a need for this is when software requires some working memory that it
can use while gathering and evaluating SDRAM device data from serial
EEPROMs.

SDRAM Refresh Period

The SDRAM per row refresh period comes up from power-up reset
initialized to 7.75us. For performance reasons, software should set the
refresh period to the longest value that still meets the device
manufacturer’s requirements.

5-2 Computer Group Literature Center Web Site

Programming Considerations

5

SDRAM Size

The SDRAM size control bits come up from power-up reset cleared to
zero. Once software has determined the correct size for an SDRAM bank,
it should set the bank’s size bits to match. The value programmed into the
size bits tells the Harrier how big the bank is (for map decoding), and how
to translate that bank’s PowerPC addresses to SDRAM addresses.
Programming a bank’s size to non-zero also allows it to participate in
scrubbing if scrubbing is enabled.

I2C EEPROMs

Most of the information needed to program the SDRAM speed attributes,
refresh period, and size is provided by EEPROM devices that are
connected to the Harrier’s I2C bus. The EEPROM’s devices contain data
in a specific format called Serial Presence Detect (SPD).

Board designers can implement one EEPROM for each of the Harrier’s
SDRAM banks or they can implement one EEPROM for several such
banks. When using DIMMs, the board designer can use the EEPROM that
is provided on the DIMM.

I2C EEPROMs that are used for SPD can be wired to appear at one of 8
different device locations. Board designers should establish an I2C
EEPROM addressing scheme that allows software to know which I2C
address to use to find information for each SDRAM bank. For example,
hardware could always place the I2C EEPROM for SDRAM bank A at the
first address, bank B at the second, etc. Whatever addressing scheme is
used should also deal with cases where multiple banks are described by
one I2C EEPROM.

SDRAM Base Address and Enable

Each bank needs to be programmed for a unique base address that is an
even multiple of its size. Once a bank’s speed attributes, size, and base
address is programmed, it can be enabled.

Programming SDRAM Related Control Registers

http://www.motorola.com/computer/literature 5-3

5

SDRAM Control Registers Initialization Example

The following is a possible sequence for initializing SDRAM control
registers:

1. Get a small piece of SDRAM for software to use for this routine.
(Optional)

This routine assumes that SDRAM related control bits are still at the
power-up-reset default settings. We will use a small enough piece of
SDRAM that the address signals that are affected by SDRAM size
will not matter.

For each SDRAM bank:

a. Set the bank’s base address to some even multiple of 32Mbytes.
(Refer to the previous section titled "SDRAM Bank (A, B, C, D,
E, F, G, and H) Addressing Registers".)

b. Set the bank’s size to 4Mx16 and enable it. (Refer to the previous
section titled "SDRAM Bank (A, B, C, D, E, F, G, and H)
Addressing Registers".)

c. Test the first 1Mbyte of the bank.

d. If the test fails, disable the bank, clear its size to 0Mbytes, disable
it and then repeat steps a-d with the next bank. If the test passes,
go ahead and use the 1st 1M of the bank.

2. Using the I2C bus, determine which memory banks are present.

Using the addressing scheme established by the board designer,
probe for SPDs to determine which banks of SDRAM are present.
SPD byte 0 could be used to determine SPD presence. SPD Byte 5
indicates the number of SDRAM banks that belong to an SPD.

3. Obtain the CAS_ latency information for all banks that are present
to determine whether to set or to clear the XCSR.SDTC.CL3 bit.

For each SDRAM bank that is present:

a. Check SPD byte 18 to determine which CAS latencies are
supported.

5-4 Computer Group Literature Center Web Site

Programming Considerations

5

b. If a CAS_ latency of 2 is supported, then go to step 3. Otherwise
a CAS_ latency of 3 is all that is supported for this bank.

c. If a CAS_ latency of 2 is supported, check SPD byte 23 to
determine the CAS_latency_2 cycle time. If the CAS_latency_2
cycle time is less than or equal to the period of the system clock
then this bank can operate with a CAS_ latency of 2. Otherwise
a CAS_ latency of 3 is all that is supported for this bank.

If any bank does not support a CAS_ latency of 2, then
XCSR.SDTC.CL3 is to be set. If all of the banks do support a
CAS_ latency of 2, then the XCSR.SDTC.CL3 bit is to be
cleared.

Do not update the XCSR.SDTC.CL3 bit at this point. You will
use the information from this step later.

4. Determine the values to use for TRAS,TRP,TRCD, and TRC.

The values to use for XCSR.SDTC.TRAS, XCSR.SDTC.TRP,
XCSR.SDTC.TRCD, and XCSR.SDTC.TRC can be obtained from
the SPD. XCSR.SDTC.TRAS determines the minimum tRAS time
produced by the Harrier. XCSR.SDTC.TRP determines the
minimum tRP time produced by the Harrier, etc. Each set of bits
should accommodate the slowest bank of SDRAM. The SPD
parameters are specified in nanoseconds and have to be converted to
PowerPC clock periods for the Harrier.

Use the table on the following page to convert SPD bytes 27, 29, and
30 to correct values for TRAS,TRP,TRCD, and TRC.

Programming SDRAM Related Control Registers

http://www.motorola.com/computer/literature 5-5

5

Do not actually update these bits in Harrier at this time. You will use
the information from this step later.

Notes

Table 5-1. Deriving TRAS, TRP, TRCD and TRC Control Bit Values
from SPD

Control Bits Parameter Parameter
Expressed

in CLK Periods

Possible Control Bit Values

XCSR.SDTC.TRAS tRAS
(SPD Byte

30)

tRAS_CLK = tRAS/T
(T = CLK Period
in nanoseconds)

See Notes 1, 2 and 9

0.0 < tRAS_CLK <=
4.0

TRAS =%00

4.0 < tRAS_CLK <=5.0 TRAS =%01

5.0 < tRAS_CLK <=
6.0

TRAS =%10

6.0 < tRAS_CLK <=
7.0

TRAS =%11

7.0 < tRAS_CLK Illegal

XCSR.SDTC.TRP tRP
(SPD Byte

27)

tRP_CLK = tRP/T
(T = CLK Period
in nanoseconds)

See Notes 3, 4 and 9

0.0 < tRP_CLK <= 2 TRP =%0

2.0 < tRP_CLK <= 3 TRP =%1

3 < tRP_CLK Illegal

XCSR.SDTC.TRC
D

tRCD
(SPD Byte

29)

tRCD_CLK = tRCD/T
(T = CLK Period
in nanoseconds)

See Notes 5, 6 and 9

0.0 < tRCD_CLK <= 2 TRCD =%0

2.0 < tRCD_CLK <= 3 TRCD =%1

3 < tRCD_CLK Illegal

XCSR.SDTC.TRC tRC
(SPD Bytes
30 and 27)

tRC_CLK = (tRAS +
tRP)/T

(T = CLK Period
in nanoseconds)

See Notes 7, 8 and 9

0.0 < tRC_CLK <= 6.0 TRC =%110

6.0 < tRC_CLK <= 7.0 TRC =%111

7.0 < tRC_CLK <= 8.0 TRC =%000

8.0 < tRC_CLK <= 9.0 TRC =%001

9.0 < tRC_CLK <= 10.0 TRC =%010

10.0 < tRC_CLK <=
11.0

TRC =%011

11.0 < tRC_CLK illegal

5-6 Computer Group Literature Center Web Site

Programming Considerations

5

1. Use tRAS from the SDRAM bank that has the slowest tRAS.

2. tRAS_CLK is tRAS expressed in CLK periods.

3. Use tRP from the SDRAM bank that has the slowest tRP.

4. tRP_CLK is tRP expressed in CLK periods.

5. Use tRCD from the SDRAM bank that has the slowest tRCD.

6. tRCD_CLK is tRCD expressed in CLK periods.

7. Use tRC from the SDRAM bank that has the slowest tRC.

8. tRC_CLK is tRC expressed in CLK periods.

9. Remember that CLK is Harrier’s PowerPC clock input pin.

5. Determine the size for each bank that is present.

(Do not actually program the Harrier’s size bits at this point. You
use this information to program them later).

Each bank’s size can be determined using the following algoritm:

a. Calculate the number of rows in each device using SPD byte 3.
If the number of rows is ROWS and the value in SPD byte 3 is R,
then

ROWS = 2R

b. Calculate the number of columns in each device using SPD byte
4. If the number of columns is COLUMNS and the value in SPD
byte 4 is C, then

COLUMNS = 2C

c. Calculate the total number of addresses within each device. If the
total number of addresses in a device is A, then

A = ROWS x COLUMNS

d. Calculate the total number of locations in the bank using the
results of step c and SPD byte 17. If the total number of locations
in the bank is L, and the value in byte 17 is 4, then

L = A x 4

Programming SDRAM Related Control Registers

http://www.motorola.com/computer/literature 5-7

5

or

L = 2R x 2C x 4

(Note that Harrier only works if byte 17 is 4.)

e. Obtain the primary device width from SPD byte 13.

f. Determine the size bits based on the results of steps d and e using
the following table:

Notes

Table 5-2. Programming the SDRAM SIZ Bits

Total Number
of Locations
within the
Bank (L) 1

Primary
Device Width 2

Bank Size 3 Value to be
programmed

into the
Bank’s SIZE

bits 4

4M 16 32Mbytes %0001

8M 8 64Mbytes %0010

8M 16 64Mbytes %0011

16M 4 128Mbytes %0100

16M 8 128Mbytes %0101

16M 16 128Mbytes %0110

32M 4 256Mbytes %0111

32M 8 256Mbytes %1000

32M 16 256Mbytes %1001

64M 4 512Mbytes %1010

64M 8 512Mbytes %1011

64M 16 512Mbytes %1100

128M 4 1024Mbytes %1101

128M 8 1024Mbytes %1110

256M 4 2048Mbytes %1111

5-8 Computer Group Literature Center Web Site

Programming Considerations

5

1. Total Number of bank Locations(L) is 2R x 2C x 4 where R is
the value in SPD byte 3 and C is the value in SPD byte 4.

2. Primary Device Width is from SPD byte 13.

3. Bank Size is the total number of bank locations (L) x 8 bytes.

4. Refer to the section titled "SDRAM Bank (A, B, C, D, E, F, G,
and H) Addressing Registers for more information.

6. Determine the refresh rate from SPD byte 12 using the following
table:

7. Make sure software is no longer using SDRAM, and disable the
bank that was being used.

8. Write to the SDRAM control registers.

a. Program the SDRAM Timing Control Register using the
information obtained in steps 3 and 4 and the fact that the
XCSR.SDTC.WDPL bit should be set to 1. Be careful not to
alter XCSR.SDTC.SDER.

b. Program the XCSR.SDGC.MXRR bits in the SDRAM General
Control Register using the information obtained in step 6. Note
that XCSR.SDGC.DREF and XCSR.SDGC.RWCB should be
cleared, XCSR.SDGC.ENRV and XCSR.SDGC.SWVT should

Table 5-3. Programming the SDRAM Refresh Period

SPD
Byte 12
Value

Device
Minimum

Refresh Rate

Example Data
Sheet Values

Value to be
programmed into

XCSR.SDGC.MXRR

Resulting
Refresh Rate

$00 1 row per 15.6us 4096 rows, 64ms %00 1 row per 15.5us

$01 1 row per 3.9us 16384 rows, 64ms %10 1 row per 3.75us

$02 1 row per 7.8us 8192 rows, 64ms %01 1 row per 7.75us

$03 1 row per 31.3us - %00 1 row per 15.5us

$04 1 row per 62.5us - %00 1 row per 15.5us

$05 1 row per 125us - %00 1 row per 15.5us

$06-$FF N/A N/A N/A N/A

Programming SDRAM Related Control Registers

http://www.motorola.com/computer/literature 5-9

5

be programmed as desired, and XCSR.SDGC.DERC should be
left set until software has initialized all of SDRAM.

c. Program the SDRAM Bank (A, B, C, D, E, F, G and H)
Addressing Registers. Each bank’s base address should be
programmed so that it is an even multiple of its size. Only those
banks that exist should be enabled. Also, only those that exist
should be programmed with a non-zero size. (The size
information was obtained in step 5.)

9. SDRAM is now ready to be initialized for use.

Optional Method for Sizing SDRAM

Generally SDRAM bank sizes can be determined by using SPD
information. (Refer to the section titled "SDRAM Control Register
Initialization Example".) Another method for accomplishing this is as
follows:

1. Initialize the SDRAM interface control register bits to a known
state.

a. Make sure the PowerPC Clock Frequency Register matches the
operating frequency.

b. Make sure that the SDRAM Timing Control Register contains its
power-up reset values. If not, make sure that the values match the
actual characteristics of the SDRAM being used.

c. Make sure that the Error Exception Enable Register does not
enable SDRAM error exceptions.

d. Make sure the following bits are initialized as follows:

XCSR.SDGC.MXRR = 0,1,

XCSR.SDGC.DREF = 0,

XCSR.SDGC.RWCB = 0,

XCSR.SDGC.DERC = 1,

XCSR.SDGC.ENRV = 0,

XCSR.SDGC.SWVT = 0,

5-10 Computer Group Literature Center Web Site

Programming Considerations

5

XCSR.SDSC.SCPA = $00.

(Refer to the sections titled "SDRAM General Control Register"
and "SDRAM Scrub Control Register" for more information).

e. Make sure that no other resources (internal or external to
Harrier) are set up to respond in the range $00000000 -
$4000001F.

2. For each of Banks A - H:

a. Set the bank’s base address to $00000000. (Refer to the section
titled "SDRAM Bank (A, B, C, D, E, F, G and H) Addressing
Registers.)

b. Enable the bank and make sure that the other seven banks are
disabled. (Refer to the section titled "SDRAM Bank (A, B, C, D,
E, F, G and H) Addressing Registers.)

c. Set the bank’s size control bits. Start with the largest possible
(2048Mbytes). (Refer to the section titled "SDRAM Bank (A, B,
C, D, E, F, G and H) Addressing Registers.)

d. Write a unique 64-bit data pattern to each one of a specified list
of addresses. The list of addresses to be written varies depending
on the size that is currently being checked. The address lists are
shown below.

Table 5-4. Address Lists for Different Bank Size Checks

Size Addresses to Check Notes

2048MB (256Mx4) $00000000, $00010000,$40000000

1024MB (128Mx8) $00000000, $00008000,$20000000

1024MB (128Mx4) $00000000, $00010000

512MB (64Mx16) $00000000, $10000000

512MB (64Mx8) $00000000, $00008000,$10000000 1

512MB (64Mx4) $00000000, $00008000,$10000000 1

256MB (32Mx16) $00000000, $00004000,$08000000 2

256MB (32Mx8) $00000000, $00004000,$08000000 2

256MB (32Mx4) $00000000, $00008000

Programming SDRAM Related Control Registers

http://www.motorola.com/computer/literature 5-11

5

Notes

1. 64Mx8 and 64Mx4 are the same. If the real size is either one of
these, this algorithm will program for 64Mx8 regardless of
whether the SDRAM size is 64Mx8 or 64Mx4. This is not a
problem because the Harrier behaves identically when
programmed for either size.

2. 32Mx16 and 32Mx8 are the same. The same idea that applies to
64Mx8 and 64Mx4 applies to them.

3. 16Mx8 and 16Mx4 are the same. The same idea that applies to
64Mx8 and 64Mx4 applies to them.

4. 8Mx16 and 8Mx8 are the same. The same idea that applies to
64Mx8 and 64Mx4 applies to them.

5. This is needed only to check for non-zero size.

e. Read back all of the addresses that have been written.

If all of the addresses still contain exactly what was written, then
the bank’s size has been found. It is the size for which it is
currently programmed.

If any of the addresses do not contain exactly what was written,
then the bank’s memory size is less than that for which it is
programmed. Sizing needs to continue for this bank by
programming its control bits to the next smaller size and
repeating steps d and e.

128MB (16Mx16) $00000000, $04000000

128MB (16Mx8) $00000000, $00004000 3

128MB (16Mx4) $00000000, $00004000 3

64MB (8Mx16) $00000000, $00002000 4

64MB (8Mx8) $00000000, $00002000 4

32MB (4Mx16) $00000000, $00001000 5

Table 5-4. Address Lists for Different Bank Size Checks

Size Addresses to Check Notes

5-12 Computer Group Literature Center Web Site

Programming Considerations

5

f. If no match is found for any size then the bank is unpopulated
and has a size of 0MB. Its size should be programmed to 0.

Operation without Firmware

http://www.motorola.com/computer/literature 5-13

5

Operation without Firmware
The Harrier includes features that allow a host processor on the PCI bus to
initialize it, load the operating code into SDRAM and start the local
processor without on board firmware. For example, a Processor PCI
Mezzanine Card (PPMC) can be designed to operate without on board
firmware when it is used in an application where their is a host processor
on the PCI bus. In this application, the PPMC would be installed on a host
board and the processor on the host board would initialize the PPMC,
download the operating code and start the local processor.

When this mode is used, the processor is held in reset (HRESET_ is
asserted) after the board reset signal is negated (Harrier’s RST_ signal).
This is accomplished by pulling up the XAD[26] signal. The host
processor on the PCI bus must have access to the Harrier’s PCI registers.
This is accomplished by pulling down XAD[27] and XAD[28]. Refer to
the section titled Hardware Configuration on page 2-133 for more
information.

The host processor on the PCI bus programs Harrier’s PCI base address
registers to allow access to Harrier’s PowerPC (60x) bus control registers
and the SDRAM. The host processor on the PCI bus then initializes the
SDRAM controller and the SDRAM. The SDRAM needs to be initialized
with the correct CRCs before the ECC logic can be enabled. Also the
XCSR.SDGC.ENRV bit must be set. Refer to the section titled SDRAM
General Control Register on page 3-25 for more information. When this
bit is set, the reset vector address range ($FFF0000- $FFFFFFFF) is
mapped to the SDRAM bank at $00000000. The host processor on the PCI
bus can then load the operation code into the SDRAM. The local processor
is released by negating the XCSR.BXCS.P0H bit. Refer to the section
titled Bridge PowerPC Control and Status Register on page 3-41 for more
information. When the local processor starts executing code at
$FFF00100, the hardware will translate the address to location $00000100
in the SDRAM.

The processor on the PCI bus can completely initialize the Harrier and the
SDRAM, or it can initialize only the minimum required features to allow
the local processor to start and then the local processor can complete the
initialization.

5-14 Computer Group Literature Center Web Site

Programming Considerations

5

A

A-1

ARelated Documentation

Motorola Computer Group Documents
The Motorola publications listed below are referenced in this manual. You
can obtain paper or electronic copies of Motorola Computer Group
publications by:

❏ Contacting your local Motorola sales office

❏ Visiting Motorola Computer Group’s World Wide Web literature
site, http://www.motorola.com/computer/literature.

To obtain the most up-to-date product information in pdf or html format,
visit our web site at http://www.motorola.com/computer/literature.

Table A-1. Motorola Computer Group Documents

Document Title
Publication

Number

PrPMC800 Processor PMC Installation and Use PRPMC800A/IH

PrPMC800 Programmer’s Reference Guide PRPMC800A/PG

PPCBug Firmware Package User’s Manual (Parts 1 and 2) PPCBUGA1/UM
PPCBUGA2/UM

PPCBug Diagnostics Manual PPCDIAA/UM

Manufacturers’ Documents

A-2 Computer Group Literature Center Web Site

A

Manufacturers’ Documents
For additional information, refer to the following table for manufacturers’
data sheets or user’s manuals. As an additional help, a source for the listed
document is provided. Please note that, while these sources have been
verified, the information is subject to change without notice.

Table A-2. Manufacturers’ Documents

Document Title and Source
Publication

Number

PowerPC750TM RISC Microprocessor Technical Summary

Motorola Literature Distribution Center
Telephone: (800) 441-2447 or (303) 675-2140

 FAX: (602) 994-6430 or (303) 675-2150
WebSite: http://e-www.motorola.com/webapp/DesignCenter/
E-mail: ldcformotorola@hibbertco.com

MPC750/D

PowerPC750TM RISC Microprocessor User’s Manual

MPC7410TM RISC Microprocessor User’s Manual

Literature Distribution Center for Motorola Semiconductor Products
Telephone: (800) 441-2447

 FAX: (602) 994-6430 or (303) 675-2150
WebSite:
http://e-www.motorola.com/webapp/DesignCenter/
E-mail: ldcformotorola@hibbertco.com
OR

IBM Microelectronics
Programming Evnironment Manual

 Web Site:
 http://www.chips.ibm.com/techlib/products/powerpc/manuals

MPC750UM/AD

MPC7400UM/AD

G522-0290-01

Related Documentation

http://www.mcg.mot.com/literature A-3

A

PowerPCTM Microprocessor Family: The Programming Environments

Literature Distribution Center for Motorola
Telephone: 1-800- 441-2447
FAX: (602) 994-6430 or (303) 675-2150

http://e-www.motorola.com/webapp/DesignCenter/

E-mail: ldcformotorola@hibbertco.com
OR

IBM Microelectronics
Programming Evnironment Manual

 Web Site:
 http://www.chips.ibm.com/techlib/products/powerpc/manuals

MPCFPE/AD

G522-0290-01

Intel 82559ER Fast Ethernet PCI Bus Controller with Integrated PHY —
External Design Specification; Intel Corporation;
http://developer.intel.com/design/network/datashts/738259.htm

73825902.pdf

3 Volt Intel Strata FLASH Memory, 28F128J3A

 Web Site:
http://developer.intel.com/design/flcomp/prodbref/298044.htm

TL 16C550C UART

Texas Instruments

P.O. Box 655303

Dallas, Texas 75265
 Web Site:
http://www.ti.com

SLLS177C

ATMEL Nonvolitile Memory Data Book

Must request documentation at:

http://www.atmel.com/atmel/support/

AT24Cxx
AT93CV6

3 Volt Intel StrataFlash Memory, 28F128J3A

Web Site:
http://developer.intel.com/design/flcomp/prodbref/298044.htm

290667-005

Table A-2. Manufacturers’ Documents (Continued)

Document Title and Source
Publication

Number

Related Specifications

A-4 Computer Group Literature Center Web Site

A

Related Specifications
Table A-3 lists the product’s related specifications. The appropriate source
for the listed document is also provided. Please note that in many cases, the
information is preliminary and the revision levels of the documents are
subject to change without notice.

Table A-3. Related Specifications

Document Title and Source
Publication

Number
IEEE - Common Mezzanine Card Specification (CMC)

Institute of Electrical and Electronics Engineers, Inc.

http://standards.ieee.org/catalog/

P1386, Draft 2.1

IEEE - PCI Mezzanine Card Specification (PMC)

Institute of Electrical and Electronics Engineers, Inc.

http://standards.ieee.org/catalog/

P1386.1, Draft 2.1

IEEE Standard for Local Area Networks: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications

Institute of Electrical and Electronics Engineers, Inc.

http://standards.ieee.org/catalog/

IEEE 802.3

Peripheral Component Interconnect (PCI) Local Bus Specification,
Revision 2.1

PCI Special Interest Group
http://www.pcisig.com/

PCI Local Bus
Specification

Interface Between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary Data Interchange (EIA-232-D)

Electronic Industries Alliance

http://www.eia.org/

TIA/EIA-232 Standard

PowerPC Reference Platform (PRP) Specification,
Third Edition, Version 1.0, Volumes I and II

International Business Machines Corporation
http://www.ibm.com

MPR-PPC-RPU-02

Related Documentation

http://www.mcg.mot.com/literature A-5

A

PowerPC Microprocessor Common Hardware Reference Platform: A
System Architecture (CHRP), Version 1.0

Literature Distribution Center for Motorola
Telephone: 1-800- 441-2447
FAX: (602) 994-6430 or (303) 675-2150

http://e-www.motorola.com/webapp/DesignCenter/
E-mail: ldcformotorola@hibbertco.com

OR

Morgan Kaufmann Publishers, Inc.

Telephone: (415) 392-2665
Telephone: 1-800-745-7323
http://www.mkp.com/books_catalog/

ISBN 1-55860-394-8

VITA-32-199x Processor PMC Standard for Processor PMC Mezzanine Cards

VITA Standards Organization

http://www.vita.com/

VITA32 Draft 0.2

Table A-3. Related Specifications (Continued)

Document Title and Source
Publication

Number

Related Specifications

A-6 Computer Group Literature Center Web Site

A

IN-1

Index

Symbols
_ 2-132

Numerics
60x bus

relation of address ranges to Xport chip
select 2-95

60x slave
relation to Xport bus master 2-96

8259 compatibility 2-71
8259 mode 2-81

A
INT 2-132
Access Timing (DRAM) 4-1
address offset

Inbound Translation Function 2-28
Address Pipelining 2-7
address transfers

responses to 2-5
Arbiers

function described 1-5
arbiter

PCI bus 2-115
arbiters

internal PowerPC bus 2-113
ARTRY_ 2-5
assertion, definition xxii
asterisk (*) xxii

B
BAR

read-write characteristics 2-28

BASE (Bank Base Address)
SDRAM Addressing Registers 3-30

base address
XCSR Register Group 3-3

Base Address Register (BAR)
role in inbound translation function 2-27

binary number xxii
BRDFL_ 2-132
bridge

control logic subdivisions 2-12
inbound transactions 2-13
outbound transactions 2-12

bus cycles
types 2-36

Bus Hog 2-36
bus number 2-40
BXCS register

role in copyback snarfing 2-35
role with Bus Hog 2-36

byte write
I2C 2-82

byte, definition xxiii

C
cache coherency 2-5
channel

Xport plus 60x bus 2-95
CL3 (Cas Latency 3)

SDRAM Timing Control Register
(SDTC) 3-27

clock ratios
supported 2-1

clock synchronization 2-2

Index

IN-2 Computer Group Literature Center Web Site

I
N
D
E
X

clocking 2-1
CMP bit 2-82
compelled burst write transactions

PPC Slave 2-18
CONFIG_ADDRESS 2-38
CONFIG_DATA 2-38
configuration cycles 2-38
Configuration Mechanism #1 2-38, 3-19
control bit, definition xxiii
conventions, manual xxii
Copy-back Snarfing

controlling register (BXCS) 2-35
copyback snarfing 2-35
copy-back write cycles 2-35
counter

as part of watchdog timer 2-120
Critical Word First (CWF) transfers 2-20
CSR’s Readability 2-69
Current Address Read

I2C 2-87
current task priority

processor 2-69
Current Task Priority Level 2-81
cycle types

SDRAM ECC 2-7

D
data

types within Xport transactions 2-97
data parity

PowerPC data 2-130
data transfers

how done 2-5
decimal number xxii
decoding

configuration devices 2-40
delayed transaction protocol

PPC Slave 2-17
DERC (Disable Error Correction)

SDRAM General Control Register
(SDGC) 3-26

DEVSEL_ pin

for mapping PCGS Register Group 2-25
direct delivery mode 2-72
distributed delivery mode 2-73
DMA Controller

function described 1-5
Doorbell registers 2-66
double word, definition xxiii
DREF (Disable Refresh)

SDRAM General Control Register
(SDGC) 3-26

E
EEPROM

use with SDRAM configuration 5-2
ENB (Bank Enable)

SDRAM Addressing Registers 3-31
ENRV (Enable Reset Vector)

SDRAM General Control Register
(SDGC) 3-26

EOI register
MPIC 2-81

EOS (Error On Scrub)
SDRAM Single-bit Error Status Register

(SDSES) 3-34
EREADY 2-132
Error Diagnostics

function described 1-6
error diagnostics

Harrier registers used 2-127
error exceptions

how reported 2-71
error handling

Inbound Function 2-36
error logging

SDRAM errors 2-10
error reporting

SDRAM data 2-8
errors

outbound 2-24
ESB (Error Scrub Bank

SDRAM Single-bit Error Status Register
(SDSES) 3-34

http://www.motorola.com/computer/literature IN-3

I
N
D
E
X

ESB (Error Scrub Bank)
SDRAM Multi-bit Error Status

(SDMES) 3-37
ESYN (Error Syndrome)

SDRAM Single-bit Error Status (SD-
SES) 3-34

exceptions
error and functional 2-122

F
false, definition xxiii
features

of Harrier ASIC 1-1
Flash

compatibility to Hawk mode 2-109
four-beat Reads/Writes

SDRAM accesses 2-6
functional exceptions

how reported 2-71

H
half-word, definition xxiii
hardware configuration 2-133
Harrier

description 1-1
device number/configuration space con-

nection 3-21
features 1-1
operation without firmware 5-13
resource table 3-1

Hawk Compatibility Mode 2-109
hexadecimal character xxii
host/slave

Harrier to EEPROMs 2-82

I
I2C

bus data transfer 2-82
Current Address Read 2-87
data transfer registers 2-82
Page Write 2-89
Sequential Read

Sequential Read
I2C 2-91

I2C Clock Prescaler (I2PSx) Register 2-82
I2C Control (I2COx) Register 2-82
I2C Controller

function described 1-5
I2C interface 2-82
I2C Receiver Data (I2RDx) Register 2-82
I2C serial data (SDAx) 2-82
I2C Status (I2STx) Register 2-82
I2C Transmitter Data (I2COx) Register 2-82
I2C Transmitter Data (I2TDx) Register 2-82
I2COx Register 2-83

Current Address Read 2-87
Page Write 2-89
Random Read 2-85
Sequential Read 2-91

I2O Message Passing 2-60
I2O/Generic Message Passing

function described 1-5
I2RDx Register

Current Address Read 2-87
Random Read 2-85
Sequential Read 2-91

I2STx Register 2-83
Current Address Read 2-87
Page Write 2-89
Random Read 2-85
Sequential Read 2-91

I2TDx Register 2-83
Current Address Read 2-87
Page Write 2-89
Random Read 2-85
Sequential Read 2-91

IDSEL lines
in configuration lines 2-39
role in configuration cycles 2-39

IMU Enable 2-64
IMU Interrupts 2-65
IMU Queue Structure 2-63
Inbound FIFO

Index

IN-4 Computer Group Literature Center Web Site

I
N
D
E
X

role, components 2-32
inbound tansaction

key elements 2-25
inbound transaction

defined 2-25
Inbound Translation Function

address offset 2-28
initializing

SDRAM control registers 5-3
In-Service Register (ISR) 2-76
Interprocessor Interrupts (IPI) 2-70
Interrupt Acknowledge Cycles 2-41
interrupt acknowledge register

MPIC 2-81
interrupt delivery modes 2-72
interrupt events

nesting 2-70
Interrupt Pending Register (IPR) 2-75
Interrupt Request Register (IRR) 2-76
Interrupt Router 2-76
Interrupt Selector (IS) 2-75
interrupt source priority 2-69
interrupts

for DMA Controller 2-58
IOP Agent ID 2-65
IOP Message Unit 2-61
IRQ0_

active state 2-77
ITATx registers

role in read-ahead mode 2-35
role in write-posting mode 2-34

L
latency requirements 2-31

M
manual terminology xxii
manufacturers’ documents A-2
map decode

PPC 2-14
masters

PowerPC bus 2-113

Memory and I/O Cycles 2-37
message passing 2-60
Message Passing Registers 2-67
Motorola Computer Group documents A-1
MPIC

block diagram 2-73
changing I/O interrupt configuration

2-80
EOI register 2-81
external interrupt service 2-78
features, architecture 2-68
function described 1-5
interprocessor interrupts 2-80
interrupt acknowledge register 2-81
operational characteristics 2-80
programming notes 2-78
reset state 2-79

MXRR (Multiply the Refresh Rate)
SDRAM General Control Register 3-25

N
naming conventions

PowerPC/PCI 2-11
negation, definition xxii

O
OTATx registers

role in memory and I/O cycles 2-37
OTOFx register

role in I/O address translation 2-37
role in memory and I/O handling 2-37

Outbound FIFO 2-19
outbound functions

PowerPC-to-PCI bus 2-14
Outbound Translation Function

attributes 2-15
Outbound Translation Function 3 3-19

P
Page Write

I2C 2-89
Passive Slave

http://www.motorola.com/computer/literature IN-5

I
N
D
E
X

role 2-23
PCFS Register Group

role in inbound transactions 2-25
PCI Arbiter 2-115
PCI bus #0 2-40
PCI bus cycles

types 2-36
PCI Bus Errors

as outbound error type 2-24
PCI Configuration Space (PCFS) Register

Group 3-21
PCI Master

role 2-19
PCI Message Passing (PMEP) Register

Group 3-23
PCI Message Passing Register Group

role in inbound transactions 2-30
PCI Slave

types of transactions accepted 2-30
PCLK

relation to XCLK 2-2
PIAC register

role in interrupt acknowledge cycles
2-41

PLL
as part of clocking mechanism 2-1
operational characteristics 2-2

PMEP
contents 3-23

PowerPC Address Bus Timer
function described 1-6

PowerPC address bus timer 2-129
PowerPC Address Space

role in inbound transactions 2-27
PowerPC bus

internal arbiters 2-113
PowerPC bus masters 2-113
PowerPC Bus Slave

relationship to SDRAM 2-5
PowerPC clock

relation to PCI clock 2-2

PowerPC Control and Status Register Group
3-3

PowerPC Multi-Processor Interrupt Control-
ler Register Group 3-14

PowerPC Parity
function described 1-6

PowerPC to PCI Bridge 3-38, 4-8
function described 1-4
inbound performance 4-9
operating characteristics 2-11

PowerPC to PCI Configuration Space
(XCFS) Register Group 3-19

PPC Decode 2-14
PPC Master

transfer modes, role 2-33
PPC Slave

as passive slave 2-23
delayed transaction protocol 2-17
role 2-16

PPMC signals 2-132
pre-scaler

use with timers 2-72
prescaler

as part of watchdog timer 2-120
priority

current task (processor) 2-69
priority scheme

for PowerPC bus masters 2-114
PRK Encoding

PCI bus 2-119
program visible registers 2-75
programming

watchdog timers 2-120
programming considerations 5-1

R
Random Read

I2C 2-85
I2COx Register 2-85

read-ahead mode 2-35
related documentation A-1
related specifications A-4

Index

IN-6 Computer Group Literature Center Web Site

I
N
D
E
X

reset signals 2-131
reset state

MPIC 2-79
resources

Harrier 3-1
rule sets

Interrupt Router 2-76
RWCB (Read/Write Checkbits)

SDRAM General Control Register
(SDGC) 3-26

S
SCCNT (Scrub Counter)

SDRAM Scrub Control Register (SDSC)
3-32

SCON_ 2-132
SCPA (Scrub Prescaler Adjust)

SDRAM Scrub Control Register (SDSC)
3-32

scrub cycles
SDRAM Scrub Control 2-10

SCWE (Scrub Write Enable)
SDRAM Scrub Control Register (SDSC)

3-32
SDER (SDRAM External Registers or Buff-

ers)
SDRAM Timing Control Register

(SDTC) 3-29
SDMEA (SDRAM Multi-bit Error Address)

SDRAM Multi-bit Error Address Regis-
ter (SDMEA) 3-37

SDRAM
control registers 5-1
initializing 5-1
interface characteristics 2-4
performance summary 4-1
refresh period 5-1
setting base address 5-2
size configuration 5-2
speed attributes 5-1

SDRAM accesses
four-beat Reads/Writes 2-6

single-beat Reads/Writes 2-6
SDRAM Bank Addressing Registers 3-30
SDRAM control registers

initializing 5-3
SDRAM Controller

operating characteristics 2-6
SDRAM ECC 2-7
SDRAM General Control Register (SDGC)

3-25
SDRAM interface

function described 1-4
SDRAM Multi-bit Error Address Register

(SDMEA) 3-37
SDRAM Multi-bit Error Status Register

(SDMES) 3-36
SDRAM Scrub Address Counter (SDSA)

3-33
SDRAM Scrub Control Register (SDSC)

3-32
SDRAM Single-bit Error Status Register

(SDSEA) 3-36
SDRAM Single-bit Error Status Register

(SDSES) 3-34
SDRAM sizing

optional method 5-3, 5-9
SDRAM Timing Control Register 3-27
SDSA (SDRAM Scrub Address

SDRAM Scrub Address Counter (SD-
SA) 3-33

SDSEA (SDRAM Single-bit Error Address)
SDRAM Single-bit Error Address Reg-

ister (SDSEA) 3-36
SDTC Register 3-27
SECNT (Single-bit Error Count)

SDRAM Single-bit Error Status Register
(SDSES) 3-34

serial port
interface device 2-94

Serial Presence Detect (SPD)
used to configure SDRAM 5-2

single word, definition xxiii
single-beat Reads/Writes

http://www.motorola.com/computer/literature IN-7

I
N
D
E
X

SDRAM accesses 2-6
SIZE (Bank Size)

SDRAM Addressing Registers 3-30
sizing SDRAM

optional method 5-3, 5-9
snarfing

defined 2-35
special cycles 2-40
spread I/O address translation 2-38
spurioous vector generation 2-70
status bit, definition xxiii
store gathering mode 2-20
SWVT (Swap Vector table)

SDRAM General Control Register
(SDGC) 3-26

T
TDPL (SDRAM timing paramter tDPL)

SDRAM Timing Control Register
(SDTC) 3-29

terminations
types of (DMA transfers) 2-57

time-out function
PPC bus 2-129

timers 2-72
Timing (DRAM Access) 4-1
transfer throttling

DMA activity 2-59
transfers

address 2-5
data 2-5

TRAS (SDRAM timing parameter tRAS)
SDRAM Timing Control Register

(SDTC) 3-28
TRC (SDRAM timing parameter tRC)

SDRAM Timing Control Register
(SDTC) 3-27

TRCD (SDRAM timing parameter tRCD)
SDRAM Timing Control Register

(SDTC) 3-29
TRP (SDRAM timing parameter tRP)

SDRAM Timing Control Register
(SDTC) 3-29

true, definition xxiii

U
UART

as serial port device 2-94
function described 1-5

W
Watchdog Timers

function described 1-5
watchdog timers

control of 2-120
described 2-120
programming 2-120

WDPL (Wait on tDPL)
SDRAM Timing Control Register

(SDTC) 3-28
word boundaries

in I/O address translations 2-38
word, definition xxiii
write-posting mode 2-34

X
XCLK

relation to PCLK 2-2
XCSR 3-3
XCSR Register Group 3-3
Xport

function described 1-5
interface to expansion bus 2-94
multiple data beats 2-99

Xport Block Diagram 2-95
Xport Bus

transaction examples 2-97
Xport bus

address mapping 2-106
byte mapping 2-110
XAD mapping 2-108

Xport bus interface 4-4
Xport Bus Master

Index

IN-8 Computer Group Literature Center Web Site

I
N
D
E
X

60x bus slave 2-95
Xport Bus master 2-96

attributes 2-96
Xport Bus transactions

phases 2-96
Xport chip select

relation to 60s address ranges 2-95

