
Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

200

Fb1 – an interface for single sample feedback and
feedforward in SuperCollider

Daniel Mayer
University of Music and Performing Arts Graz

Institute of Electronic Music and Acoustics (IEM)
mayer@iem.at

ABSTRACT
The class Fb1, contained in miSCellaneous_lib, an
extension of SuperCollider (SC), enables single sample
feedback and feedforward with arbitrary block sizes. This
is made possible by an iterative application of the defining
relation in the SynthDef (instrument) graph, a method
suggested by Nathaniel Virgo. While alternative
approaches exist, e.g. by setting SC server's block size to
1, Fb1 provides a clear interface: the relation, which
describes the calculation of subsequent samples from
previous samples, is passed via an SC Function (the capital
indicates the SC object) with the two arguments 'in'
(feedforward) and 'out' (feedback). Consequentially,
difference equations of linear filters can almost directly be
taken over in the syntax, in which they are described in
standard DSP literature. Because any operators can be
written in the Function, non-linear filters and totally
irregular feedback / feedforward setups can also be
explored. Further options include arbitrary look-back
depths and multichannel sizes, which allow complicated
setups with a few lines of code. In August 2019 the class
Fb1_ODE for integrating resp. audifying ordinary
(systems of) differential equations with initial values in
realtime was added to miSCellaneous_lib v0.22. It is based
on Fb1 and will be described in more detail in a separate
paper.

1. INTRODUCTION
Like many other audio engines, SC [1, 2] server processes
audio data in chunks of n samples. n is called the block size
and defaults to 64. The block size determines the minimum
delay time, which cannot be overcome with SC's standard
unit generators (UGens) for managing feedback. It equals

!"#$%	'()*
'+,-"*	.+/*

 (1)

and, depending on the system, usually defaults to

64

44100
	𝑠𝑒𝑐 = 0.00145	𝑠𝑒𝑐 (2)

This so-called control duration corresponds to the control
rate frequency of ca. 689 Hz, which can often occur as a
background tone under certain circumstances. Setting the
block size to smaller values – still it must always be a
power of 2 – raises the control rate frequency and makes
control rate operations more CPU-costly, though it enables
lower feedback delay times. Regarding the audible results
and the behaviour of changes, the differences between
block size 64 and 1 can be huge. With block size 64, for
example, slowly evolving changes can sometimes be
perceived up to the point of a blowup, whereas similar
setups with block size 1 often immediately derail, and
modulations of delay time can have equally disparate
consequences. To summarise: from the viewpoint of
practical sound synthesis, single sample feedback is not
only a special option of "default" feedback (if we regard
the latter as feedback with a minimum delay time equaling
default control duration), but a method that behaves quite
differently and therefore opens new and interesting
aesthetic possibilities. 	
 Now, as single sample feedback can, in principle, be eas-
ily achieved by setting SC server's block size to 1, why is
there a need for a dedicated single sample feedback class?
When setting block size to 1, single sample feedback is
only possible in its raw form, which means that operators
can be iteratively applied from sample to sample.
Performing tasks like operating on a certain previous – and
not only the last – sample (essential for many filters),
multichannel handling and setting initial values would
require extra implementational efforts on a per-case base.
This all is covered by Fb1, and from my experience so far,
this is its main benefit. As an extra bonus, Fb1 can do
single sample feedback with arbitrary block sizes, though
it doesn't make a difference from the viewpoint of the
interface. Instead it's a trade-off: higher block sizes lead to
higher compile times and larger SynthDefs, whereas the
efficiency option of control rate unit generators is
preserved. Which block size is practical depends on the
concrete example: for experimenting with new SynthDefs,
including Fb1, I tend to choose block sizes of 8 or 16.
Originally Fb1 was assumed to tackle single sample
feedback at audio rate. A control rate variant has been
added to miSCellaneous_lib in version 0.22 [3].

2. IMPLEMENTATION

2.1 Iteration

A generalised feedback / feedforward relation can be
written in the form

Copyright: © 2020 Daniel Mayer. This is an open-access article

distributed under the terms of the Creative Commons Attribution 3.0

Unported License, which permits unrestricted use, distribution, and

reproduction in any médium, provided the original author and source

are credited.

Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

201

out[n] = F(out[n-1], out[n-2], ... , in[n], in[n-1], ...) (3)

out[n] denotes the new output sample which is calculated
on the one hand from feedback data, the previous output
samples out[n-1], ... , out[n-j] and on the other hand from
feedforward data, the current and previous input samples
in[n], in[n-1], ... , in[n-k] by a function F. In the
multichannel case with channel sizes p and q every in[i]
and out[i] would denote a collection of p resp. q samples.
F can be an arbitrary function, not restricted to the linear
difference equations of the standard filter types.	
Implementing this relation with a block size b > 1 requires
the b-fold usage of F for blockwise calculation of the
samples out[0], out[1], ... , out[b-1] in the SynthDef graph
and storing the results in a buffer.
It's important to note that F is implemented as a control
rate operation, whose iterative b-fold application fills a
buffer of b samples. After this filling (and this refers to the
order in the SynthDef graph), an audio rate phasor reads
out the data from the buffer. Fb1 is a so-called pseudo
ugen, like a macro in other languages it establishes a
compound structure, a subgraph of iterated UGens, in
contrast to SC's basic Ugens, which are written in C++.

This conception of the procedure has been described in a
thread on the SC mailing list by Nathaniel Virgo [4]. An
open point at that time was the integration of audio rate
input signals, the feedforward component. Fb1 implements
it like this: data is stored in temporary buffers first and
written with control rate to copied buffers thereafter. That
way, the copied buffers can be used in the iteration process
which is based on the order of the SynthDef graph. The
temporary buffers cannot be taken for this purpose, as they
are overridden immediately.

2.2 Look-back Depth

In the implementation of Fb1, the relation (3) is passed as
a SC Function object, where the two arguments 'in' and
'out' denote the feedback and feedforward signals.
Indexing within the Function refers to previous samples.
E.g. SC's OnePole UGen with coefficient c is implemented
by the formula

 out[n] = (1 - abs(c)) in[n] + c out[n-1] (4)

This can directly be taken over for a re-implementation
with Fb1, only the index offset -1 has to change the sign.
An application to white noise with c = 0.95 would translate
into the SC syntax

{
 Fb1.ar({ |in, out|
 (in[0] * 0.05) + (out[1] * 0.95)
 },
 WhiteNoise.ar(0.3)
)
}.play

being equivalent to

{ OnePole.ar(WhiteNoise.ar(0.3), 0.95) }.play

Looking back to previous samples requires the setting of
appropriate inDepth / outDepth arguments in Fb1, e.g. for
a second order filter with feedforward coefficients a0, a1,
a2 and feedback coefficients b1, b2 one would have to set
inDepth and outDepth to the value 3:

{  
 var a = [-0.6, 0.5, -0.7];
 var b = [0.5, -0.1];  
 var src = Saw.ar(200, 0.1);  
 // out[0] is passed formally  
 // to allow taking over index convention  
 Fb1.ar({ |in, out|  
 (a[0] * in[0]) + (a[1] * in[1]) +
 (a[2] * in[2]) +   (b[0] * out[1]) +
 (b[1] * out[2])  
 }, src, inDepth: 3, outDepth: 3)
 }.play

When referring not to adjacent collections of previous

samples but to selected earlier samples with gaps in
between, passing specified inDepth / outDepth indices is
saving UGens. In the following example – supposed block
size 64 – the expression in[0] still refers to in[0], the
current feedforward sample, but in[1] refers to in[n-56].
The double bracketing in the inDepth argument is
necessary to distinguish from differentiation in a
multichannel situation which would be done with single
bracketing. The sound resulting from this setup and its
following variants is reminiscent of a blend of voice and
brass.

{  
 var src = SinOsc.ar(500 * LFDNoise3.ar(5));  
 Fb1.ar({ |in, out|  
 (out[1] / max(0.01, (in[1] - in[0]))).tanh  
 }, in: src, inDepth: [[0, 56]], outInit: 1
) * 0.1
 }.play

2.3 Multichannel Handling

Feedback and feedforward signals can have an arbitrary
number of channels, whereby the number of feedback
channels must be explicitly passed by the key 'outSize'.
Here a stereo source is passed to Fb1, and the recursion
depth is differentiated per channel. Within the Function the
expressions in[0], in[1] and out[1] all refer to stereo
signals.

{
 var src = SinOsc.ar(500 * LFDNoise3.ar(5!2));  
 Fb1.ar({ |in, out|  
 (out[1] / max(0.01, (in[1] - in[0]))).tanh  
 }, outSize: 2, in: src,  
 inDepth: [[0, 56], [0, 29]], outInit: 1  
) * 0.1  
}.play

Single components of a multichannel feedback /

feedforward signal can also be addressed explicitly, which
allows for easy establishing of complicated cross relations.
Note that in the following example the expression
in[1][0] means the sample in[n-56] of the first

Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

202

feedforward signal, and analogously in[1][1] refers to the
sample in[n-29] of the second.

{  

 var src = SinOsc.ar(500 * LFDNoise3.ar(5!2));  
 Fb1.ar({ |in, out| [ 
 out[1][0] / max(0.01, (in[1][0] * in[0][1])),  
 out[1][1] / max(0.01, (in[1][1] * in[0][0]))  
].tanh  
 }, outSize: 2, in: src,  
 inDepth: [[0, 56], [0, 29]], outInit: 1  
) * 0.1
 }.play

2.4 Further Fb1 Options

2.4.1 Initialisation

As arbitrary look-back depths can be passed to Fb1, there
needs to be an option for setting initialisation values resp.
sequences thereof for feedback and feedforward signals.
This can be done with the Fb1 arguments ‘inInit’ and
‘outInit’. Sequences can be differentiated per channel in a
multichannel case. See Ex. 3b of Fb1’s help file for the
details of the convention.

2.4.2 Block Size

It's the user's responsibility to pass the correct number to
Fb1 if the server’s block size differs from default 64. Other
than that, irregular values of ‘blockSize’, not equal to a
power of 2, can be used to play with artefacts.
 Look-back depths exceeding the server’s block size can
be defined as well – more likely to be desired with lower
block sizes – by setting the argument ‘blockFactor’ to a
sufficiently high value, ensuring that the maximum look-
back depth is smaller than the product of ‘blockFactor’ and
‘blockSize’.

2.4.3 Differentiating the Function per index

Besides ‘in’ and ’out’ – as formal arrays referring to
feedback and feedforward data – an index is passed as third
argument to the Fb1 Function. That way the Function can
be differentiated depending on the index within the block,
which adds another possibility for conditional feedback.

3. APPLICATIONS

3.1 Filters

Simple examples of linear filters have been shown in
chapter 2.2, in addition coefficients could be made
dynamic, e.g. by passing audio rate signals via the 'in'
argument. As there is already a source signal for the filter,
the 'in' signal would have to be appended, which is no
problem as the 'in' argument can take a multichannel signal
of arbitrary size.

Re-implementing standard filters already contained in
SC is of course not more interesting than just a proof of
concept. However, there are many linear filters not

implemented in SC, and writing them with the help of Fb1
can be useful, also as a test with the aim to write them as
UGens in C++ later on.

More exciting from an aesthetic perspective might be the
field of non-linear filters [5, 6]. An example of this kind is
the Dobson-Ffitch filter [7], which contains a quadratic
term:

out[n] = a out[n-1] + b out[n-2] + d out[n-L]^2 + in[n] – c (5)

This example with GUI (also supposed block size 64)

applies the filter to a sawtooth wave and allows changes to
a, b, c, d and L. As the system tends to be unstable, a
limitation by a sigmoid function within the feedback path
is applied. It can be chosen from the methods tanh,
softclip and distort with limitType.

SynthDef(\df, { |out, freq = 50, a = -0.4, b = 0.6,
 c = 0.2, d = 0.75, l = 32, limitType = 1,
 amp = 0.2|  
 var src, sig;  
 src = Saw.ar(freq);
  sig = Fb1.ar({ |in, out|  
 var x = (a * out[1]) + (b * out[2]) +  
 (d * Select.kr(l, out).squared) +
 in[0] - c;
 Select.kr(limitType, [
 x.tanh, x.softclip, x.distort
])  
 },   in: src, outDepth: 50  ) * amp;  
 Out.ar(0, LPF.ar(sig, 15000) ! 2)
 }, metadata: (specs: ( 
 freq: [20, 7000, \exp, 0, 50],
 a: [-1, 1, \lin, 0, -0.4],
  b: [-1, 1, \lin, 0, 0.6],
  c: [0, 1, \lin, 0, 0.2],
  d: [-1, 1, \lin, 0, 0.75],
  l: [3, 50, \lin, 1, 32],
  limitType: [0, 2, \lin, 1, 1],
  amp: [0, 0.5, \lin, 0, 0.2]  
)  )).add;

SynthDescLib.global[\df].makeGui;

3.2 Arbitrary Non-linear Operations

From the viewpoint of explorative synthesis, unary and
binary operators deserve special attention. Usually they are
applied to time-varying signals, but in the context of
feedback / feedforward, the iteration on a single-sample
base is itself the essential part of producing variations in
time. Good candidates are already simple operators and
their combinations, also with '+' and '-', e.g. '*', '/', '**'
(power), '%' (modulo), trigonometric operators etc.
Another interesting option is conditional feedback /
feedforward, which means to insert branching into the
relation. All of these options taken together open huge
vistas for research and experimentation. Several examples
are included in chapter 2 of Fb1's help file.

3.3 Integration of Ordinary Differential Equations

Fb1_ODE, added to miSCellaneous_lib version 0.22, is a
pseudo ugen for integrating / audifying ordinary (systems

Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

203

of) differential equations (ODEs) with initial values in
realtime, which is based on the Fb1 single sample feedback
class. It comes along with containers for ODEs and
numerical solution methods (Fb1_ODEdef,
Fb1_ODEintdef). Both are basically Dictionaries of
Functions and provide an interface for adding new ODE
systems or integration methods interactively. An
Fb1_ODE – or one of its wrappers – then merges the
functional composition of numeric procedure and ODE
into the SynthDef graph.

This opens the possibility for immediate audio
experiments with the sheer variety of models from physics,
electrical engineering, population dynamics etc.,
preferably those with oscillatory or quasi-oscillatory
solutions and/or chaotic features. Designing new ODEs
from scratch can also be very interesting. Wrappers are
included for well-known systems like Van der Pol,
Duffing, Hopf, Mass-Spring-Damper and Lorenz, and
others can be added interactively on the fly with
Fb1_ODEdef. Examples with driven pendulum, two body
problem, Lotka-Volterra, Hastings-Powell and extensions
of exponential decay and harmonic oscillator equations are
included in the Fb1_ODE and Fb1_ODEdef help files. The
framework could also be used to test ODEs before
considering how to write integrators as UGens in C++. The
system will be described in more detail in a future paper.

4. CONCLUSIONS
Fb1 is a class for defining single sample feedback /

feedforward relations in a syntax similar to definitions
provided in DSP literature and independent from the
chosen block size. That way linear and non-linear filters,
which are not contained as UGens in SC, can easily be
tested and used. Arbitrary non-linear mathematical
operators, in combination with multichannel options and
dynamic look-back depths open a wide vistas for audio
exploration as well as the integration resp. audification of
ordinary differential equations, which can be regarded as a
special case of non-linearity with feedback, implemented
by the class Fb1_ODE, based on Fb1.

Possible limitations and drawbacks: the convenience of
direct definition of the feedback / feedforward relation
comes with the price of a large number of UGens involved.
Experimentation with different block sizes is
recommended to find a suitable trade-off: higher block
sizes cause higher SynthDef compile times and more
UGens, though preserve the benefit of cheaper control rate
UGens. On the other hand even thousands of UGens do not
necessarily cause a high CPU load at runtime. It might
therefore be useful to choose lower block sizes for
experimentation (shorter SynthDef compile time) and
higher block sizes for running already tested SynthDefs
(less CPU usage). Chapter 4 of Fb1's help file is dedicated
to various strategies for reducing CPU load. Note that SC
running with a blockSize value unequal 64 requires above
examples to be updated (with blockSize and, if necessary,
also blockFactor arguments).

Acknowledgments

Big credit to Nathaniel Virgo for his initial idea that
triggered my implementation of Fb1 [4], see also his
Feedback quark with classes Fb and FbNode and the useful
summary of practical feedback tips [8]. Thanks also to
James Harkins for his remarks on graph order [9]. I'm very
grateful to my colleagues here at IEM Graz, where audio
feedback has often been the focus of discussion groups
which stimulated valuable intellectual feedback: special
thanks to Daniele Pozzi for mentioning the Dobson-Ffitch
filter and to David Pirrò for pointing me to the symplectic
integration methods [10], which are essential for
numerically stable audifying of ODEs, without his help
Fb1_ODE wouldn't have come into being.

5. REFERENCES
[1] S. Wilson, D. Cottle and N. Collins (Eds.). The

SuperCollider Book. The MIT Press, Cambridge,
2008.

[2] SuperCollider main page,
https://supercollider.github.io/ (accessed 2020-02-
20)

[3] D. Mayer, miSCellaneous – a library of SuperCollider
extensions.
https://github.com/dkmayer/miscellaneous_lib
(accessed 2020-02-20)

[4] Post by N. Virgo on the sc-users mailing list 
https://www.listarc.bham.ac.uk/lists/sc-users-
2011/msg01337.html (accessed 2020-02-20)

[5] R. Holopainen, “Nonlinear Filters” in Proceedings of
the 2007 International Computer Music Conference,
Vol 1, pp. 283-286. Copenhagen, Denmark.

[6] N. Collins, “Errant Sound Synthesis” in Proceedings
of the 2008 International Computer Music
Conference, pp. 575-578. Belfast.

[7] R. Dobson and J. Ffitch, “Experiments with Non-
Linear Filters” in Proceedings of the 1996
International Computer Music Conference, pp. 405-
408. Hong Kong.

[8] Post by N. Virgo on the sc-users mailing list	
https://www.listarc.bham.ac.uk/lists/sc-users-
2009/msg56802.html	(accessed 2020-02-20)

[9] Post by J. Harkins on the sc-users mailing list
https://www.listarc.bham.ac.uk/lists/sc-users-
2011/msg01363.html (accessed 2020-02-20)

[10] D. Pirrò, Composing Interactions. Dissertation,
Institute of Electronic Music and Acoustics,
University of Music and Performing Arts Graz, 2017,
pp.135-146.
https://pirro.mur.at/media/pirro_david_composing_i
nteractions_print.pdf (accessed 2020-02-20)

