

An Oracle White Paper

September 2010

Handling Memory Ordering in Multithreaded
Applications with Oracle Solaris Studio 12
Update 2:
Part 2, Memory Barriers and Memory Fences

Oracle White Paper—Handling Memory Ordering in Multithreaded Applications with Oracle Solaris Studio 12 Update 2: Part 2, Memory
Barriers and Memory Fences

Introduction ... 1

What Is Memory Ordering? .. 2

More About Memory Ordering ... 2

Strong and Weak Memory Ordering .. 3

SPARC and x86 Memory Ordering .. 3

Intrinsic Support for Memory Barriers .. 4

References .. 5

Conclusion .. 5

Oracle White Paper—Handling Memory Ordering in Multithreaded Applications with Oracle Solaris Studio 12 Update 2: Part 2, Memory
Barriers and Memory Fences

 1

Introduction
Oracle Solaris Studio 12 Update 2 introduces a new header file <mbarrier.h>. This

header file provides a set of memory ordering intrinsics that are useful for enforcing

memory ordering constraints in multithreaded applications.

This article is part 2 of a two-part series. Part 1 discussed how compiler barriers can be

used to stop the compiler from generating code that is incorrect due to reordered memory

accesses. This part discusses how memory barriers or memory fences can be used to

ensure that the processor does not reorder memory operations.

Oracle White Paper—Handling Memory Ordering in Multithreaded Applications with Oracle Solaris Studio 12 Update 2: Part 2, Memory
Barriers and Memory Fences

2

What Is Memory Ordering?

Memory ordering is the order in which memory operations (loads and stores) are performed.

There are two ways that memory ordering might be changed:

 The compiler might change memory ordering as a result of some compile-time optimizations.

 The processor might change memory ordering at run time.

More About Memory Ordering

Memory ordering controls the order in which memory operations in one thread become visible

to other threads running on the system. In single-threaded applications and in most

multithreaded code, the order in which operations are committed is not important. However,

there are situations where it is important that memory operations are visible to other processors

in the same order in which the original processor executed them.

An example of when this is an issue is in the acquisition and release of mutex locks. Listing 1

shows a snippet of code in which a variable is modified and then a mutex lock is released.

It is important that the store operation to the variable value is completed before the store

operation to release the lock is issued. If these two stores are interchanged by the processor at

run time, then other processors will see the lock released before they see the new value of the

variable value protected by the lock. Consequently, another processor might immediately

acquire the lock and receive the old contents of the variable value.

Listing 1. Critical Section and Mutex Release

...

 LOAD [&value], %o0 // Load value

 ADD %o0, 1, %o0 // Increment

 STORE %o0, [&value] // Store value

 STORE 0, [&lock] // Release lock

To avoid this problem, we need to ensure that there is a memory barrier between the two store

operations. This memory barrier ensures that hardware does not reorder the stores at run time.

The modified code is shown in Listing 2.

Listing 2. Critical Section with Memory Barrier and Mutex Release

...

 LOAD [&value], %o0 // Load value

 ADD %o0, 1, %o0 // Increment

 STORE %o0, [&value] // Store value

 MEMORYBARRIER // Ensure that the stores remain ordered

 STORE 0, [&lock] // Release lock

Oracle White Paper—Handling Memory Ordering in Multithreaded Applications with Oracle Solaris Studio 12 Update 2: Part 2, Memory
Barriers and Memory Fences

3

Strong and Weak Memory Ordering

Different processor types, different processor versions, and even one processor executing in

different modes might have different policies towards enforcing memory ordering. SPARC and

x86 processors implement what is known as strong memory ordering. With strong memory

ordering, there are few situations in which it is necessary to explicitly include memory barriers.

Other processors might implement weak memory ordering. For those processors, it is necessary

to include memory barriers in most situations where the order in which memory operations

become visible is critical for the correct functioning of the application.

SPARC and x86 Memory Ordering

SPARC processors implement what is known as total store ordering (TSO), which ensures that

store memory operations are visible to the rest of the system in the order in which they occurred.

x86 processors implement essentially the same memory ordering model. The UltraSPARC

Architecture 2007 manual defines the TSO behavior as follows:

"Loads are ordered with respect to earlier loads. Stores are ordered with respect to earlier loads and stores. Thus, loads can

bypass earlier stores but cannot bypass earlier loads; stores cannot bypass earlier loads or stores."

The following diagrams show these constraints. Figure 1 illustrates the situation for streams of

loads or stores. Each load operation cannot pass either earlier or later load operations, and the

stream of load operations is ordered. The same constraint is true for store operations.

Figure 1. Ordering Constraints on Streams of Loads or Store Operations to Different Addresses

Oracle White Paper—Handling Memory Ordering in Multithreaded Applications with Oracle Solaris Studio 12 Update 2: Part 2, Memory
Barriers and Memory Fences

4

Figure 2 illustrates a more complex situation with mixed streams of load and store operations. In

this situation, store operations can become visible after the execution of loads to different

addresses that follow them in the instruction stream. Equivalently, later loads can be executed

before the results of previous stores to different addresses become visible.

Figure 2. Ordering Constraints on Mixed Streams of Load and Store Operations to Different Addresses

The consequence of the implementation details on both SPARC and x86 processors is that the

memory barrier shown in Listing 2 is not necessary. Although a memory barrier is not necessary

for this particular code sequence, some other code sequences will require memory barriers to

function correctly. For example, Dekker's Algorithm for mutual exclusion requires memory

barriers to function correctly.

In some situations, it might be useful to include the memory barrier so the code will also run

when ported to processors that implement a weaker memory ordering model. Processors that do

not need the instructions ignore them.

Intrinsic Support for Memory Barriers

SPARC processors use a membar instruction to provide a memory barrier, and x86 processors

provide an mfence instruction.

The particular variant of the instruction that is required depends on the situation in which the

instruction is to be placed. Rather than expose this low level of detail to the user, the intrinsics

defined in <mbarrier.h> provide a higher level of abstraction.

Oracle White Paper—Handling Memory Ordering in Multithreaded Applications with Oracle Solaris Studio 12 Update 2: Part 2, Memory
Barriers and Memory Fences

5

The available intrinsics are summarized in Table 1.

TABLE 1. MEMORY BARRIER INTRINSICS PROVIDED BY <MBARRIER.H>

INTRINSIC DESCRIPTION

__machine_r_barrier() All previous loads must have completed before the next

memory operation commences.

__machine_w_barrier() All previous writes must have completed before the next

memory operation commences.

__machine_rw_barrier() All previous memory operations must have completed before

the next memory operation commences.

__machine_acq_barrier() With the acquire memory barrier intrinsic, all previous memory

operations must have completed before any future read

operations commence.

__machine_rel_barrier() With the release memory barrier intrinsic, all previous writes

must have completed before any future memory operations

commence.

References

 Page 8 through 14 of Intel 64 and IA-32 Architectures Software Developer’s Manual:

http://www.intel.com/Assets/PDF/manual/253668.pdf

 Page 93 of the UltraSPARC Architecture 2007 manual:

http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf

Conclusion

This article, which is part 2 of a two-part series, described how memory barriers or memory

fences can be used to ensure that a processor does not reorder memory operations.

Part 1 of the series described how to use compiler barriers to stop the compiler from generating

code that is incorrect due to reordered memory accesses.

http://www.intel.com/Assets/PDF/manual/253668.pdf
http://opensparc-t2.sunsource.net/specs/UA2007-current-draft-HP-EXT.pdf

Handling Memory Ordering in Multithreaded

Applications with Oracle Solaris Studio 12

Update 2: Part 2, Memory Barriers and Memory

Fences

September 2010

Author: Darryl Gove

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only and the contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed

orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose.

We specifically disclaim any liability with respect to this document and no contractual obligations are formed either

directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their

respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro

Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are

used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered

trademark licensed through X/Open Company, Ltd. 0310

