
Left-leaning Red-Black Trees

Robert Sedgewick
Department of Computer Science

Princeton University
Princeton, NJ 08544

Abstract 
The red-black tree model for implementing balanced search trees, introduced by Guibas and Sedge-
wick thirty years ago, is now found throughout our computational infrastructure. Red-black trees
are described in standard textbooks and are the underlying data structure for symbol-table imple-
mentations within C++, Java, Python, BSD Unix, and many other modern systems. However, many
of these implementations have sacrificed some of the original design goals (primarily in order to
develop an effective implementation of the delete operation, which was incompletely specified in
the original paper), so a new look is worthwhile. In this paper, we describe a new variant of red-
black trees that meets many of the original design goals and leads to substantially simpler code for
insert/delete, less than one-fourth as much code as in implementations in common use.

All red-black trees are based on implementing 2-3 or 2-3-4 trees within a binary tree, using
red links to bind together internal nodes into 3-nodes or 4-nodes. The new code is based on com-
bining three ideas:

Use a recursive implementation.•	
Require that all 3-nodes lean left.•	
Perform rotations on the way up the tree (after the recursive calls).•	

Not only do these ideas lead to simple code, but they also unify the algorithms: for example, the left-
leaning versions of 2-3 trees and top-down 2-3-4 trees differ in the position of one line of code.

All of the red-black tree algorithms that have been proposed are characterized by a worst-case
search time bounded by a small constant multiple of lg N in a tree of N keys, and the behavior ob-
served in practice is typically that same multiple faster than the worst-case bound, close the to op-
timal lg N nodes examined that would be observed in a perfectly balanced tree. This performance
is also conjectured (but not yet proved) for trees built from random keys, for all the major variants
of red-black trees. Can we analyze average-case performance with random keys for this new, sim-
pler version? This paper describes experimental results that shed light on the fascinating dynamic
behavior of the growth of these trees. Specifically, in a left-leaning red-black 2-3 tree built from N
random keys:

A random successful search examines lg •	 N – 0.5 nodes.
The average tree height is about 2 ln •	 N (!)
The average size of left subtree exhibits log-oscillating behavior.•	

The development of a mathematical model explaining this behavior for random keys remains one
of the outstanding problems in the analysis of algorithms.

From a practical standpoint, left-leaning red-black trees (LLRB trees) have a number of at-
tractive characteristics:

Experimental studies have not been able to distinguish these algorithms from optimal.•	
They can be implemented by adding just a few lines of code to standard BST algorithms.•	
Unlike hashing, they support ordered operations such as •	 select, rank, and range search.

Thus, LLRB trees are useful for a broad variety of symbol-table applications and are prime candi-
dates to serve as the basis for symbol tables in software libraries in the future.

Introduction
We focus in this paper on the goal of providing efficient implementations of the following opera-
tions on in a symbol table containing generic keys and associated values.

Search•	 for the value associated with a given key.
Insert•	 a key-value pair into the symbol table.
Delete•	 the key-value pair with a given key from the symbol table.

When an insert operation involves a key that is already in the table, we associate that key with the
new value, as specified. Thus we do not have duplicate keys in the table and are implementing
the associative array abstraction. We further assume that keys are comparable : we have available a
compare operation that can determine whether one given key is less than, equal to, or greater than
another given key, so that we preserve the potential to implement the ordered associative array ab-
straction, where we can support rank, select, range search, and similar operations that are of critical
importance in many applications.

 Developing data structures and efficient algorithms for these operations is an old and well-
studied problem. The starting point for this paper is the balanced tree data structures that were
developed in the 1960s and 1970s, which provide a guaranteed worst-case running time that is pro-
portional to log N for both operations. These algorithms are based on modifying the elementary
binary search tree (BST) data structure to guarantee that the length of every path to an external
node is proportional to log N. Examples of such algorithms are 2-3 trees, 2-3-4 trees, AVL trees,
and B trees. This paper is largely self-contained for people familiar with balanced-tree algorithms;
others can find basic definitions and examples in a standard textbook such as [6], [9], or [13].

In [7], Guibas and Sedgewick showed that all of these
algorithms can be implemented with red-black trees, where
each link in a BST is assigned a color (red or black) that
can be used to control the balance, and that this frame-
work can simplify the implementation of the various algo-
rithms. In particular, the paper describes a way to maintain
a correspondence between red-black trees and 2-3-4 trees,
by interpreting red links as internal links in 3-nodes and
4-nodes. Since red links can lean either way in 3-nodes
(and, for some implementations in 4-nodes), the corre-
spondence is not necessarily 1-1. For clarity in our code,
we use a boolean variable (a single bit) to encode the color
of a link in the node it points to, though Brown [5] has pointed out that we can mark nodes as red
by switching their pointers, so that we can implement red-black trees without any extra space.

One of the most important feature of red-black trees is that they add no overhead for search,
the most commonly used operation. Accordingly, red-black trees are the underlying data structure
for symbol-table implementations within C++, Java, Python, BSD Unix, and many other systems.

Why revisit such a successful data structure? The actual code found in many implementations
is difficult to maintain and to reuse in new systems because it is lengthy, running 100-200 lines of
code in typical implementations. Full implementations are rarely found in textbooks, with numer-
ous “symmetric” cases left for the student to implement. In this paper, we present an approach that
can dramatically reduce the amount of code required. To prove the point, we present a full Java
implementation, comprising three short utility methods, adding 3 lines of code to standard BST
code for insert, a 5-line method for delete the maximum, and 30 additional lines of code for delete.

X

S ZH

P

J R

E

C

M

A
L

E J

H L

M

R

P S X ZA C

Red-black representation of a 2-3-4 tree

Rotations and color flips
One way to view red-black BST algorithms is as maintaining the following invariant properties
under insertion and deletion:

No path from the root to the bottom contains two consecutive red links.•	
The number of black links on every such path is the same.•	

These invariants imply that the length of every path in a red-black tree with N nodes is no longer
than 2 lg N . This worst case is realized, for example, in a tree whose nodes are all black except for

those along a single path of alter-
nating red and black nodes.

The basic operations that bal-
anced-tree algorithms use to main-
tain balance under insertion and
deletion are known as rotations. In
the context of red-black trees, these
operations are easily understood
as the transformations needed to
transform a 3-node whose red link
leans to the left to a 3-node whose
red link leans to the right and vice-
versa. The Java code for these op-
erations (for a Node type that we
will consider late that contains a left
link, a right link, and a color field
that can be set to the value RED to
represent the color of the incoming
link) is given to the left and to the
right on this page. Rotations obvi-
ously preserve the two invariants
stated above.

In red-black trees, we also use
a simple operation known as a color
flip (shown at the bottom of this

page). In terms of 2-3-4 trees, a color flip is the essential operation: it corresponds to splitting a
4-node and passing the middle node up to the parent. A color flip obviously does not change the
number of black links on any path from the root to the bottom, but it may introduce two consecu-
tive red links higher in the tree, which must be corrected.

Red-black BST algorithms differ on whether and when they do rotations and color flips, in
order to maintain the global invariants stated at the top of this page.

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
}

h

x

x

h

a

b

between
a and b

less
than a

greater
than b

a

b

between
a and b

could be right or left,
red or black

less
than a

greater
than b

Right rotate (left link of h)

Node rotateRight(Node h)
{
 x = h.left;
 h.left= x.right;
 x.right= h;
 x.color = h.color;
 h.color = RED;
 return x;
}

x

h

h

x

a

b

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

h could be left
or right link

red link
attaches

middle node
to parent

black links split
to 2-nodes

Flipping colors to split a 4-node

void flipColors(Node h)
{
 h.color = !h.color;
 h.left.color = !h.left.color;
 h.right.color = !h.right.color;
}

Left-leaning red-black trees
Our starting point is the Java implementation of standard BSTs shown in the gray code on the next
page. Java aficionados will see that the code uses generics to support, in a type-safe manner, arbi-
trary types for client keys and values. Otherwise, the code is standard and easily translated to other
languages or adapted to specific applications where generic types may not be needed.

In the present context, an important feature of the implementation is that the implementation
of insert() is recursive : each recursive call takes a link as argument and returns a link, which is
used to reset the field from which the link was taken. For standard BSTs, the argument and return
value are the same except at the bottom of the tree, where this code serves to insert the new node.
For red-black trees, this recursive implementation helps simplify the code, as we will see. We could
also use a recursive implementation for search() but we do not do so because this operation falls
within the inner loop in typical applications.

The basis of algorithms for implementing red-black trees is to add rotate and color flip opera-
tions to this code, in order to maintain the invariants that dictate balance in the tree. Most pub-
lished implementations involve code laden with cases that are nearly identical for right and left. In
the code in this paper, we show that the number of cases can be substantially reduced by:

requiring that 3-nodes always lean to the left (and that 4-nodes are balanced)•	
doing rotations after the recursive calls, on the way up the tree.•	

The lean-to-the-left requirement gives a 1-1 correspondence between red-black and 2-3-4 trees and
reduces the number of cases to consider. The rotate-on-the-way up strategy simplifies the code (and
our understanding of it) by combining various cases in a natural way. Neither idea is new (the first
was used by Andersson [2] and the second is used in [9]) but in combination they surprisingly ef-
fective in reducing the amount of code required for several versions of the data structure. The code
in black on the next page derives two classic algorithms by adding 3 lines of code to insert().

Top-down 2-3-4 trees  To insert a new node, we flip col-
ors to split any 4-node encountered on the way down
the tree and do rotations to balance 4-nodes (eliminate
occurrences of consecutive red links on the way up the
tree). This approach is natural because splitting 4-nodes
to ensure that the search does not terminate on a 4-node
means that a new node can be added by attaching it with
a red link, and balancing a 4-node amounts to handling
the three possible ways a red link could be attached to a
3-node, as shown in the diagram at right. If the red link
that is passed up happens to lean to the right in a 3-node,
we correct that condition when we encounter it.

2-3 trees  Remarkably, moving the color flip to the end in
the top-down 2-3-4 tree implementation just described yields an implementation for 2-3 trees. We
split any 4-node that is created by doing a color flip, passing a red link up the tree, and dealing with
the effects of doing so in precisely the same way as we move up the tree.

These ideas are also effective for simplifying other variations of red-black trees that have been
studied, which we cannot consider in this short abstract for lack of space. These include handling
equal keys, completing the insertion in a single top-down pass, and completing the insertion with
at most one rotation in 2-3-4 trees.

flip
colors

right
rotate

left
rotate

Passing a red link up in a LLRB tree

public class LLRB<Key extends Comparable<Key>, Value>
{
 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private Node root;

 private class Node
 {
 private Key key;
 private Value val;
 private Node left, right;
 private boolean color;

 Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 this.color = RED;
 }
 }

 public Value search(Key key)
 {
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp == 0) return x.val;
 else if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 }
 return null;
 }

 public void insert(Key key, Value value)
 {
 root = insert(root, key, value);
 root.color = BLACK;
 }

 private Node insert(Node h, Key key, Value value)
 {
 if (h == null) return new Node(key, value);

 if (isRed(h.left) && isRed(h.right)) colorFlip(h);

 int cmp = key.compareTo(h.key);
 if (cmp == 0) h.val = value;
 else if (cmp < 0) h.left = insert(h.left, key, value);
 else h.right = insert(h.right, key, value);

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);

 return h;
 }
}

Java code to implement LLRB trees (standard BST code in gray)

represent color with a 1-bit field

move this line
to the end

to get
2-3 trees

new nodes are always red

Deletion
Efficient implementation of the delete operation is a challenge in many symbol-table implementa-
tions, and red-black trees are no exception. Industrial-strength implementations run to over 100
lines of code, and text books generally describe the operation in terms of detailed case studies,
eschewing full implementations. Guibas and Sedgewick presented a delete implementation in [7],
but it is not fully specified and depends on a call-by-reference approach not commonly found in
modern code. The most popular method in common use is based on a parent pointers (see [6]),
which adds substantial overhead and does not reduce the number of cases to be handled.

The code on the next page is a full implementation of delete() for LLRB 2-3 trees. It is based
on the reverse of the approach used for insert in top-down 2-3-4 trees: we perform rotations and
color flips on the way down the search path to ensure that the search does not end on a 2-node, so
that we can just delete the node at the bottom. We use the method fixUp() to share the code for the
color flip and rotations following the
recursive calls in the insert() code.
With fixUp(), we can leave right-
leaning red links and unbalanced
4-nodes along the search path, secure
that these conditions will be fixed on
the way up the tree. (The approach is
also effective 2-3-4 trees, but requires
an extra rotation when the right node
off the search path is a 4-node.)

As a warmup, consider the de-
lete-the-minimum operation, where
the goal is to delete the bottom node
on the left spine while maintaining
balance. To do so, we maintain the in-
variant that the current node or its left
child is red. We can do so by moving
to the left unless the current node is
red and its left child and left grandchild are both black. In that case, we can do a color flip, which
restores the invariant but may introduce successive reds on the right. In that case, we can correct
the condition with two rotations and a color flip. These operations are implemented in the mov-
eRedLeft() method on the next page. With moveRedLeft(), the recursive implementation of dele-
teMin() above is straightforward.

For general deletion, we also need moveRedRight(), which is similar, but simpler, and we need
to rotate left-leaning red links to the right on the search path to maintain the invariant. If the node
to be deleted is an internal node, we replace its key and value fields with those in the minimum
node in its right subtree and then delete the minimum in the right subtree (or we could rearrange
pointers to use the node instead of copying fields). The full implementation of delete() that der-
vies from this discussion is given on the facing page. It uses one-third to one-quarter the amount
of code found in typical implementations. It has been demonstrated before [2, 11, 13] that main-
taining a field in each node containing its height can lead to code for delete that is similarly concise,
but that extra space is a high price to pay in a practical implementation. With LLRB trees, we can
arrange for concise code having a logarithmic performance guarantee and using no extra space.

public void deleteMin()
{
 root = deleteMin(root);
 root.color = BLACK;
}

private Node deleteMin(Node h)
{
 if (h.left == null) return null;

 if (!isRed(h.left) && !isRed(h.left.left))
 h = moveRedLeft(h);

 h.left = deleteMin(h.left);

 return fixUp(h);
}

Delete-the-minimum code for LLRB 2-3 trees

 private Node moveRedLeft(Node h)
 {
 colorFlip(h);
 if (isRed(h.right.left))
 {
 h.right = rotateRight(h.right);
 h = rotateLeft(h);
 colorFlip(h);
 }
 return h;
 }

 private Node moveRedRight(Node h)
 {
 colorFlip(h);
 if (isRed(h.left.left))
 {
 h = rotateRight(h);
 colorFlip(h);
 }
 return h;
 }

 public void delete(Key key)
 {
 root = delete(root, key);
 root.color = BLACK;
 }

 private Node delete(Node h, Key key)
 {
 if (key.compareTo(h.key) < 0)
 {
 if (!isRed(h.left) && !isRed(h.left.left))
 h = moveRedLeft(h);
 h.left = delete(h.left, key);
 }
 else
 {
 if (isRed(h.left))
 h = rotateRight(h);
 if (key.compareTo(h.key) == 0 && (h.right == null))
 return null;
 if (!isRed(h.right) && !isRed(h.right.left))
 h = moveRedRight(h);
 if (key.compareTo(h.key) == 0)
 {
 h.val = get(h.right, min(h.right).key);
 h.key = min(h.right).key;
 h.right = deleteMin(h.right);
 }
 else h.right = delete(h.right, key);
 }

 return fixUp(h);
 }

Delete code for LLRB 2-3 trees

a

b

c

a

b

c

a

c
b

b
a c

b
a c

h

colorflip(h)

moveRedLeft(h) example:

colorflip(h)

h.right = rotateRight(h.right)

h = rotateLeft(h)

Properties of LLRB trees built from random keys
By design, the worst-case cost of a search in an LLRB tree with N nodes is 2 lg N. In practical ap-
plications, however, the cost of a typical search is half that value, not perceptibly different from
the cost of a search in a perfectly balanced tree. Since searches are far more common than inserts
in typical symbol-table applications, the usual first step in studying a symbol-table algorithm is to
assume that a table is built from random keys (precisely, a random permutation of distinct keys)
and then study the cost of searchers. For standard BSTs and other methods, mathematical models
based on this assumption have been developed and validated with experimental results and practi-
cal experience. The development of a corresponding mathematical model for balanced trees is one
of the outstanding problems in the analysis of algorithms.

In this paper, we present experimental results that may help guide the development of such a
model, using a modified form of a plot format suggested by Tufte [12]. Specifically, we use

a •	 gray dot to depict the result of each experiment
a •	 red dot to depict the average value of the experiments for each tree size
black line segments•	 to depict the standard deviation  of the experiments for each tree size, of
length  and spaced  above and below the red dots

While sometimes difficult to distinguish individually, the gray dots help illustrate the extent and
the dispersion of the experimental results. The plots at right each represent the results of 50,000
experiments, each involving building a
2-3 tree from a random permutation
of distinct keys.

Average path length.  What is the cost
of a typical search? That is the question
of most interest in practice. In typical
large-scale applications, most searches
are successful and bias towards spe-
cific keys is relatively insignificant, so
the measuring the average length to a
node in a tree constructed from ran-
dom keys is a reasonable estimate. As
shown in our first plot, this measure is
extremely close to the optimal value lg
N − .5 that would be found in a fully
balanced tree. The plots for top-down
2-3-4 trees and other types of red-
black trees are indistinguishable from
this one.

Height.  What is the expected worst-
case search cost? This question is pri-
marily of academic interest, but may shed some light on the structure of the trees. Though the
dispersion is much higher than the average, our second plot shows that the height is close to 2 ln
N, the same value as the average cost of a search in a BST (!). However, this precise value is pure
conjecture: for example, experiments for standard BSTs would suggest the average height 3 lg N ,
but the actual value of the coefficient is known to be slightly less than 3.

Experimental results for LLRB trees built from random keys

average successful search cost (ipl / N)

1000

10

18
18.5

50000tree size N

co
m

pa
re

s

21.7

lg N − .5

2 ln N

worst-case search cost (tree height)

1000

10

24

50000tree size N

he
ig

ht

1000 experiments per size

1000 experiments per size

Distribution.  The first step to developing a mathematical model that explains these results is to
understand the distribution of the probability p

k
 that the root is of rank k, when a LLRB (2-3)

tree is built from random keys. We know this probability to be 0 for small k and for large k, and
we expect it to be high when k is
near N/2. The figure at left shows
the result of computing the dis-
tribution exactly for small N and
estimating its shape for interme-
diate values of N. Following the
format introduced in [10], the
curves are normalized on the x
axis and slightly separated on
the y axis, so that convergence to
a distribution can be identified.
The irregularities in the curves
are primarily (but not complete-
ly) due to expected variations in
the experimental results. (These
curves are the result of building
10000 trees for each size, and are
smoother than the curves based

on a smaller number of experiments). Ideally, we would like to see convergence at the bottom to
some distribution (whose properties we can analyze) for large N. Though it suggests the possibility
of eventual convergence to a distribution that can be suitable approximated, this figure also exhibits
an oscillation that may complicate such analysis. At right is shown a Tufte plot of the average for
this distribution for a large number of experiments. This figure clearly illustrates a log-oscillatory
behavior that is often found in the analysis of algorithms, and also shows that the dispersion is sig-
nificant and does not seem to be decreasing.

Red path length.  How many red nodes are on the search path, on the average? This question would
seem to be the key to understanding LLRB trees. The figure below shows that this varies (even

Path lengths in two random LLRB trees

red nodes

reds

blacks

2 6 20 44 90

average number of nodes per path after each insertion

Tree A Tree B

2 6 19 36

Average root rank in LLRB trees

.3

500

10

.7rank / N

200 experiments per size

tr
ee

 s
iz

e
N

LLRB tree root rank distribution
0

50

4

1k/N

10000 experiments per size

tr
ee

 s
iz

e
N

0

0.5

p k (
of

fs
et

)

though the total is relatively smooth. Close examination reveals that the average number of reds per
path increases slowly, then drops each time the root splits. One important challenge is to character-
ize the root split events. The remarkable
figure at right shows that variability in
the time of root splits creates a signifi-
cant challenge in developing a detailed
characterization of the average number
of red nodes per path. It is a modified
Tufte plot showing that this quantity os-
cillates between periods of low and high
variance and increases very slowly, if at
all. This behavior is the result of aver-
aging the sawtooth plots with different
root split times like the ones at the bot-
tom of the previous page. It is quite remarkable that the quantity of primary practical interest (the
average path length) should be so stable (as shown in our first plot and in the sum of the black
and red path lengths in the plot at the bottom of the previous), but the underlying process should
exhibit such wildly oscillatory behavior.

Acknowledgement
The author wishes to thank Kevin Wayne for many productive discussions and for rekindling inter-
est in this topic by encouraging work on the delete implementation.

References
1.	 G. M. Adelson-Velskii and E. M. Landis,  An algorithm for the organization of information,  Soviet Math.

Doklady 3 (1962), 1259 –1263.

2.	 A. Andersson,  Balanced search trees made simple,  Proceedings of the 3rd Workshop on Algorithms
and Data Structures (1993), 290 –306.

3. 	 R. Baeza-Yates,  Fringe analysis revisited,  ACM Computing Surveys 27 (1995), 109 –119.

4.	 R. Bayer,  Symmetric binary B-Trees: data structure and maintenance algorithms,  Acta Informatica 1
(1972), 290 –306.

5. 	 M. Brown,  Some observations on 2-3 trees,  Information Processing Letters 9 (1979), 57 –59.

6. 	 T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,  Introduction to Algorithms,  MIT Press.

7.	 L. Guibas and R. Sedgewick,  A dichromatic framework for balanced trees,  Proceedings of the 19th An-
nual Conference on Foundations of Computer Science, Ann Arbor, MI (1978). (Also in A Decade of
Research — Xerox Palo Alto Research Center 1970–1980, ed. G. Laverdel and E. R. Barker).

8.	 D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching,  Addison–Wesley.

9.	 R. Sedgewick, Algorithms in Java, Parts 1–4: Fundamentals, Data Structures, Sorting, and Search-
ing,  Addison–Wesley.

10.	 R. Sedgewick and P. Flajolet,  Introduction to the Analysis of Algorithms,  Addison–Wesley, 1996.

11. 	 R. Seidel,  personal communication.

12. 	 E. Tufte,  Envisioning Information,  Graphics Press, Chesire, CT, 1990.

13. 	 M. Weiss,  Data Structures and Problem Solving using Java,  Addison-Wesley, 2002.

14. 	 A. Yao,  On random 2-3 trees,  Acta Informatica 9 (1978), 159 –170.

Average number of reds per path in random LLRB trees

10

1

4

500tree size

re
ds

