The KEOFF 68HC711 PGMR Interface
By Joseph Haas, KEJFF
12/20/2013 joch-at-rollanct-det-org

The Motorola (now Freescale) 68HC11 processor was a workhorse in my regertoieny years. It
features a robust peripheral compliment, along with on-board EEPROM and EPROMymém af
this writing, it appears that only the 711E20 parts are still available on tke mwaiket, but are in “Not
Recommended For New Design” status. The HC11 was a powerful and versatieomiroller for its
time, but it has been supplanted by faster processors using FLASH memoryéhah lejual or better
compliment of peripherals, and much larger memory arrays. Still, | haveabkpreatucts using E9 and
D3 versions of this family, and | have a modest number of them to work with.

The HCL11 features a couple of special bootstrap modes that allow the part to dowatbtess
programs via the on-board asynchronous serial peripheral. Motorola provided freeesaftd/éow-

cost hardware solutions to allow for small-scale programming of the EPROBEPROM memories.
Unfortunately, the software solutions were written in the 80’s and maintained into sh&®0not

much beyond that. These DOS-era tools eventually succumbed to migration death aspbea)
systems evolved beyond DOS compatibility. If you have an old computer, you couidrstiie
programs (PROG11 and PROG11D3), but keeping an old computer around and keeping it in good
working order becomes a great chore especially considering that iyigs@d infrequently for a single
purpose.

This project is targeted at bridging the gap between the old programmeariddise newer computer
platforms so that | can continue to support my old 68HC11 designs without depending de, asigg
old computer. Since the application is relatively straightforward, it would setkee to simply write a
new PC application. However, | chose a microcontroller solution for two reasdhs What | know —
| have very little experience with PC application development and no developmenbtdbkbs f
purpose. 2) While most of the programming control takes place over a serial gdrelful to have
some digital control lines to drive power supply controls and the target Device UsstdDUT) reset
input. Parallel ports are an option for these signals, but they are becomingmgtyedifficult to find
as standard equipment on PCs, and USB alternatives are also rather rare andtlmogdg sense to
have an intermediate microcontroller that could provide these digital controls.

The Hardware

Since SiLabs is my latest processor of choice, | looked to their offering tblsmuld find a suitable
candidate. Two serial ports and provision for expanded RAM were first on the listwhekLASH
capacity. From the outset, this application was intended to be a Command Lireeén(&itl) via a
terminal program running on the PC, so it was going to be very plain-text-irgemsich helps eat up
processor memory. The F34x series has several parts with dual UARTs. Sbhesegfdrts also
support an external memory interface which allows for the addition of the RAM neeleld the
programming data. They are in a small (48TQFP) package and were well under $10sedibid dn
the C8051F34C since it had the fewest peripherals (meaning lower cost).

| managed to layout a small circuit board, but tabled that process just as dm@sted due to budget
constraints. Luckily, | had an evaluation board for the F340 processor which wagsuftcithe task

© Joseph M. Haas, 12/20/2013, all rights reserved 1

at hand. It has more analog peripherals than the F34C, but that didn’t impact this desigrable to
re-purpose an existing daughter board and attach the 32K RAM, reset driver, drevatricnslators.
This choice was bittersweet: on the one hand, there was very little cost invohedhsisicof the parts
were in-hand. However, the circuit board layout was segmented with an eye tothardsrototype
projects. Having a few copies on hand would mean that future projects would have the oggortunit
be quickly and neatly deployed.

| decided to run the target serial data as TTL level signals since the 7812rateauskd by the HC11
is fairly low and the wire length is very short. The F340 inputs are 5V tolerant, betidleositput had
to be passed through a 74HCT device to bring it to the 5V levels needed by the HC11 D&JT. Thi
allowed the serial connection to the DUT to be accomplished without the need for an RSR32 lev
translator.

| considered making a new programming socket interface, but the offeriBgRCC low-force

sockets has become quite limited, with the only ones | could find priced at over $200. So, for the
moment at least, | am relegated to using my old 68HC711E9PGMR and D3PGMR boards. €£ach wa
modified to bring the serial TTL connections to unused DB-25 pins, along with 5V power arebset

DUT power control signals.

See Figure Al for a schematic of the interface circuits. Targetised@en by a simple NPN switch
while the Vdd_sw and Vpp_sw signals are driven by a modified push-pull FET switchswitals
arrangement provides a low-resistance path between the regulators andrthd&uon, and a
medium-resistance path to GND when off. This allows the circuit to quicklijatige any bulk
capacitance on the PGMR board when in the off state, but not present an unnecessarynlaathehe
on state.

Figure 1 illustrates the typical assembly. Power is applied to the EQPGMiR @BPGMR, not

pictured) and the serial connection on the F340-DK evaluation board goes to the PC CQNI52r
kbaud, N81, XON/XOFF handshaking enabled). My PGMR cards have been modified to provide on-
card Vdd and Vpp voltage regulators. These voltages are provided to the F340 evaluatioralibard vi
(modified) DSUB-25 connector. A single jumper on the F340-DK board brings the PGMIRoviaf

from the mezzanine board the F340-DK +3.3V regulator input via an unused F340-DK header pin. This
allows the system to be powered from a single power connection to the PGMR TBbaré340-DK
features a 3-position jumper for the Vin source which is removed to disable the F340-BK pow
connector. This protects the 5V logic circuits and regulator from damagses@aeone inadvertently
connects a power source to the F340-DK coaxial power jack. Because of the Mafregu
requirements, the input voltage must be at least 14.5V.

The re-purposed daughter card was embellished with a scrap of a 100TQFP protaidarsed to

mount the 28TSSOP RAM chip. The pitch was a bit off, and there was a small gap on on¢h&ide of
RAM, but | was able to align the RAM pins without too much difficulty and apply somgurapers to

the other side of the 28TSSOP part to complete the connections. This provided a handy totén&ac
point to point wiring that | used to connect the RAM to the processor. Another scrap of pibtoboar
holds the target PGMR connector (a 10 pin dual row connector) and SMD interface components. The
20 pin small-pitch ribbon connector is from a previous project and was abandoned in place.

© Joseph M. Haas, 12/20/2013, all rights reserved 2

Figure 1. F340 evaluation board and EQPGMR.

The Software

The CLlI is intended to be driven from a PC running a terminal emulator program sugegsiiny.

I’'m not a fan of hyperterm, but it generally works to the point that | havenh tifleetime to find a
replacement. There are several out thetp{/realterm.sourceforge.nédbks promising, but | haven’t
used it). | like putty.exe, but it doesn’t seem to have ASCII or Xmodem transfergisotatcleast, the
free version doesn’t seem to). I'm open to hyperterm alternatives, bunthecijuired to investigate
the different options is not often available.

The software effort started with a command line interface that | wrote giogvious test equipment
project. While this served as a good starting framework, it was only a drop in ket. bueanted

© Joseph M. Haas, 12/20/2013, all rights reserved 3

Xmodem transfer capability, so | re-invested some time re-learningrieeworkings of Xmodem so
that | could write a set of C driver-like routines for handling Xmodem tresistésze performed this
task several times before, but not on a regular basis, so the details have teayeedeach time |
deploy Xmodem anew.

So, why Xmodem? The short answer: packet size and simplicity. Ymodem, 1K XmodempzZmode
etc... all feature a 1K (or larger) packet size. This alone generallpuaptransfer efficiency, but with
MCU applications, memory can be scarce. For this application, scarcityoemhuch of an issue, but |
didn’t know that going in (I have kept the 32K SRAM off-limits for system functionauseit is
dedicated for device data storage). The other side of the coin is that Xmodeativislyetimple. This
has its drawbacks (hence the plethora of follow on protocols) but for a relativetyfree channel
(such as a direct PC-MCU connection over a short run cable), these drawbackgareraily an
issue. Two aspects of Xmodem that | really like are that the receyaliates the data flow (within the
limits of the timeout timers) and the system can detect transfer err@séddver from them (within
the limits of the checksum/crc and retry counters). These two subtleties<imakiem very attractive
for device data transfers.

Once the Xmodem transfers were worked out, | started on the S-record tedgafighms. | limited the
code to S19 transfers, since none of my assemblers can generate S28 or S37 reebkisX records
are also supported if only because it was easy to do (the support is seamlesy] &t data and the
software figures out what it is receiving). | also included support for SO reop@i$ding a feature that
I’'m pretty pleased with. SO records were originally intended to provideerefe information, such as
file name, date, revision, etc... | have used them in the past to communicate banktiofofona
systems which utilized bank-switched program memory, which is a moredimglative of the feature
that | am building up to. The SO feature | implemented here is a batch commametiaterBatch
commands (bcmds) can be placed into the data field of an SO record, and those commands can be
processed by the programmer interface during upload. This allows the deg@prong to be
largely automated, which greatly streamlines the process.

The supported bcmds are: PGM DUT, Verify DUT, Config register program, Black,dBglk erase,
Fill pgmr memory, pgmr CHecksum, address Offset, and DEvice select. Epessent all of the
salient commands that might be employed to program a device (although, not ajlaexlje This
would allow one to construct a single object file that would set the device, blank cheakyn
program the CONFIG register, upload object data for EPROM and/or EEPROMatalandl store
checksums (as many as are required), program EEPROM and/or EPROM memdriksnaverify the
programmed data. The batch commands produce a cryptic but very low characterspmnserset
that is buffered and displayed at the end of the transfer (thus, allowing for¢hddsttre to be used in
Xmodem transfers).

But first, | had a lot of other coding work to do. After the transfer protocols weedand mostly
working, | turned my attention to the target processor. As mentioned earlier, #iew#S designed to
be programmed via small test programs loaded via the serial port. There @easwtocol for loading
the programs, but that still took several attempts to get working (even sinmgle tiain be complicated
when you don’t consider all of the subtleties involved).

© Joseph M. Haas, 12/20/2013, all rights reserved 4

The actual test programs also needed to be developed. | needed one for each flzRRR@MBuUlk
erase, CONFIG program, blank check, upload memory, program EEPROM, and progréii EPR
also ended up coding a device query function that would read the contents of the bootroyn identit
memory locations. This task was complicated by the fact that there aral sewmnts of the 68HC711
(and one of the 68HC811) that | wanted to support AND | wanted one set of functions to waak with
processor variants.

All of the HC11 variants are similar, but each one has subtle differencesithedmplicate the
communication process. For example, most variants support a variable test peogthnsuch that
you only transfer the program data, and then the DUT will execute the pra§gamore than 5 serial
byte times have expired. Other variants feature a fixed program traizsfe The following is a list of
the HC11 microcontroller variants (and whether the download is fixed or variable) sapppthis
project:

MC68HCS811E?2 (fixed) MC68HC711E20 (var)
MC68HC711D3 (var) MC68HC711E32 (var)
MC68HC711E9 (var)

Additionally, there are several other devices that are also supported und@rdéeéde, such as the EO,
E1l, and E2. However, these devices generally have limited or no internal memory.

Some of the devices (such as the HC811E?2) have a fixed program size which ishangkee tshortest
maximum program size allowed by variants such as the HC711D3. Also, most devicdsehave
peripheral registers located at address $1000 except for the HC711D3, which hasties legated at
address $0000. This particular difference further complicates matteet thetstart of RAM, which is
normally at address $0000, is at address $0040 for the 711D3. All of these differenedsmuatk
difficult to produce a single set of HC11 target functions to operate on all ofglmedlelC11 variants.

| was determined to keep the target functions the same for all of the HCadtsarThis would save
FLASH memory on the F34x processor and simplify the management of theftaig&ins. | was able
to get around the D3 variant issues by making the object code run-time relblease- that the start,
end, and register address values that are transferred as part of the HCbh fiouican be accessed
by the HC11 function. These values are “tacked” on to the end of the test code dulbag fh@cess
which means that their addresses can be predicted only if the start addihestio€tion is known. |
employed a novel technique for determining the start of code address, and then usiidbssto self-
modify the code to point to the desired memory locations. Generally, this is aalengeactice, but in
this case, the application scope is very narrow and there are no other comgetingeie(such as
interrupts or other applications), so it was deemed an acceptable risk.

This took care of most of the issues, except for the device query code. This code neededbioallork
of the variants without knowing which one beforehand, since it was intended to verifyite that the
operator had selected (which could be wrong). The solution here was to assign a @jstedfleb6
bytes (the length of the only fixed program-size device supported hehe) device interrogate function
transfer. This didn’t impact the devices that had a variable length at tergresn the 256 byte size.
For the shorter variable-length parts, the code was written such that it woultuedwotireceive (and
return) data values until they stopped, after which, the code sends back the RQigstedtiese

© Joseph M. Haas, 12/20/2013, all rights reserved 5

exceptions allowed a single set of HC11 test functions to be created that wouldrmessal
supported HC11 devices.

Most of the code development followed the very informal specs | had neatly tuckgdhaida my
head, but there was some feature creep (as always). For example, thel@migihehtch commands
that were to be supported was much shorter. It was expanded after | stimedie batch commands
and began seriously considering how | would be using them in practice. Next, a couikeesf td
allow the SO batch commands to be generated and read (after embedding into aie)lgestrhplify
the process of creating the embedded batch commands, and maintaining them down(the dadal
field of an S-record is not generally human-readable). | added a meradmnoalify command to
allow direct editing of the programmer memory — This was included to aidiemnsytest during
development, but also provides limited object code edit access to support on-the fly cadevoeales,
so | left the command in place.

Another creep was to add XON/XOFF handshaking. Originally, this was notaredssince the

UART driver was interrupt driven and buffered. This along with the fact that the &3dmriing at

48MHz meant that it should be able to keep up even at 115.2 kbaud. However, the bcmds that involve
programming and HC11 command operations introduce a considerable delay. The HC1IVEEPRO
takes 10 ms to program a byte. HC11 EPROM is faster at around 3 ms, but even this aswery sl
compared to the data that can be transferred at 115.2 kbaud. Also, HC11 commands aredransfe
7812.5 baud, which means that it takes about 64ms to send a 50-byte command function to the target
(plus another 100ms to toggle the target reset signal). All of these variousrdekyisthat

handshaking was required to keep the host from over-running the programmingenterfac

During Xmodem transfers, the system is able to hold off the host by simplyndelhg end of packet
AKN response. However, during ASCII transfers, one must use handshaking. Sincertpbashs of
the interface operation did not require handshaking, the F34x software only usesO&MNdXring
upload procedures when the host is sending S-record data. An XOFF is sent at the endexfdite S
line and an XON is sent when the S-line processing has finished. For S1 data Bnagoihices

about 95us of delay (@115.2 kbaud) to each S-line transferred. For a typical transtengrive!

entire EPROM of an E9 part (12,288 object bytes) this would add a total of only about 72nestof tim
the transfer (well beyond the ability of a human operator to perceive, espeviilithe several seconds
that it takes to complete a transfer). XON/XOFF is disabled during Xmodesfédrs.

Finally, | added an auto-baud-rate detection feature to allow other baud ratesasiypsupported. The
feature depends on a specific user interaction that is only availableeaftenf the SiLabs processor.
Upon reset, the SiLabs processor initializes to 115.2 kb and sends the software versige.niléss
carriage return (ASCII 0x0D) is issued from the host terminal at one of the segpaud rates (115.2,
57.6, 38.4, 19.2, or 9.6 kbaud), the processor will adjust to the new baud rate and lock-out further
changes (in the case of 115.2 kb, there is no adjustment, just lock-out). Once clalud®drout,

the baud rate cannot be changed until the SiLabs processor is reset. This feates previexibility
to support systems that do not have, or cannot reliably support, the faster baud rates.

© Joseph M. Haas, 12/20/2013, all rights reserved 6

Software Design Data

The project design including source code is contained within a zip archive availabl
www.rollanet.org/~joeh/projects/archives/pgmrll.zighe archive contains several folders, one of
which holds the Keil C project for the SiLabs C8051F340-DK evaluation board with mentbiCa
added. Another folder holds the assembly files for the HC11 target functionsHE&g&hassembly file
is stand-alone and does not require any include files. They were assembled hirigfAsen
ASPISYS (vww.aspisys.com/asm11.hfmA pair of batch files were employed to simplify the DOS
command line formatting and, additionally, a set of PERL scripts were witimmnvert the S-record
object code output to C-formatted arrays that could be included in the C code. The combiretioh of
and PERL files allowed turnkey processing of ASM source files to C sourceTites greatly
simplified the development process and makes it easy to maintain the system shonges be
implemented later. There is a perl_readme.txt file that describes how to ahdaise the PERL
interpreter. I've installed it twice and it is a relatively quick and pagkndeavor.

Keil now offers a free license for the SiLabs 8 bit MCUSs. It is unlimited incoljee but works only
for the SiLabs 8-bit processors. Consuliw.silabs.comandwww.keil.comfor more information
regarding their development tools.

The software is modularized into the following components/files:

main.c power-on reset initialization, main polling loop, application timer unpérr
initdevice.c holds output from SiLabs ConfigWizard for processor initialization

serial.c serial 1/0O drivers and Xmodem drivers

srec.c S19 record I/O drivers

cmd_fn.c command-line-interface command functions and low-level subroutines
version.c SW version and date

typedef.h holds #define type definitions that are bit-size-centric. i.e., &fBussigned byte

(unsigned char), S16 is a 16 bit signed type (int), etc... If you are trying toleompi
this design on another processor, especially one that is 16-bit or larger, ybawveay
to spend some time in this header file to optimize the type defines.

In addition, there are several files titled “hcll xxx.c” where “xxx” is the HQh&tion name. These
files hold the object code for the corresponding HC11 function and also a C-function to retize thfe
the function-code array. The length is important because the function code carmmatsoter-
terminated since all character values are valid object bytes. “hcll_fppliesato all of the HC11
object includes. “hcll fns_blank.h” is used by the PERL scripts as the kernel togéreerat

“hcll fns.h” file. Thus, this file is not directly compiled, but is needed by the RERits as the basis
for the finished header file.

| have used the Raisonance compiler a few times and this has taught me¢hatethie fact,
differences from one compiler suite to the next. The Keil standard libtemge’char” types for many of
the STDIO function return values. “int” is more typical and the Raisonance corgigplains about
this when trying to port Keil source to Raisonance. Additionally, the Rasionangeler offers up
complaints about the interrupts and some functions requiring the deployment of a fragrsare that
the registers are properly handled during interrupt processing. | haseanable understanding of the

© Joseph M. Haas, 12/20/2013, all rights reserved 7

issue, but am unclear as to why the Keil tool doesn’t offer this complaint (and se@mrk without
issue). I've not seen any configuration item that seems to correlate egister handling for interrupts
and functions in the Keil tool and have not yet had the bandwidth to try to find out and answehyas to
the two tools might be different in this regard.

The F34x source is relatively free with XDATA memory — | made some e@ffavnstrain RAM needs,
but didn't fret over it too much. After all is said and done, there is plenty to spare.3464-B40 has
4K of internal XDATA and this application uses about half that. Ports of this code to othesgmsc
should be relatively painless beyond the 1/O drivers, as long as there is enougavaikdlle for the
functions.

Hardware Design Data

As mentioned earlier, the application-specific hardware was constructechenzanine daughter card
(The schematic of which is in Appendix A). Another schematic is present in the desigve which
represents the PCB layout that is also contained in the archive. This schiechadies connectors,
power supplies for Vdd and Vpp, and the switching circuits for each. Wire jumpeexjaned for
many of the signals. This was done intentionally to simplify the design witheatowards overall size
reduction, and to allow the sub-sections of the PWB to be “severable” — allowing them teelotedis
and deployed in other, as yet to be determined, projects. The jumper count is around ardezen wi
which is rather modest considering the total number of component interconnects irrdiedesegn.
Finally, there is a bill of materials (BOM) in “.xIs” format that $isll of the soldered components on
the PCB design.

The mezzanine card featured pad-per-hole, 0.1” centers, double sided, plated-thru halaalwiw
connectors placed at the corresponding dual row port headers on the F340-DK board. A @6 pin eur
DIN connector (right-angle, male) and a piece of protoboard could also be empl@gpadt effect.

The key hardware pieces are the 32K SRAM, the 74HCT1GO08 level translator for@rieolifout (the

“T" in “HCT” is important since this gate is operated at 5V and the “T” speifiTL voltage levels for
the input — these levels provide more margin for 3.3V logic inputs than does a standagicHC lo
device), and the NPN open-collector reset driver. The Vdd_sw and Vpp_sw circpissreamline the
programming interface by placing the DUT socket in a swap-safe conditionevdovihese features
could also be provided by switches (such as are present on the ESPGMR boaraugiraoatrol.

The more difficult task in replicating this design lies in the Motorola PGMRdbdéryou have one that

is in good working order, you are home free. Otherwise, you are going to haveecal®@2®PLCC low

or zero insertion force socket. These are likely available on the surplug imatrkeu may need to
scrounge a bit to find one. A regular 52PLCC socket could be employed, but this option will have a
more limited useful life span due to the high volume of insert-remove cycles. A naidimgdhe
Motorola PGMR boards: These boards were designed to be daisy-chained to allowoggagHming

of up to 8 DUTs at a time. While the hardware as presented could accommodate thisatanfig

did not consider supporting this in the software. One would either have to reversertigitROG11
software to see how this was originally accomplished, or devise a multaprogr serial protocol

from scratch. | have neither needed nor wanted this, so it wasn’t even considered.

© Joseph M. Haas, 12/20/2013, all rights reserved 8

The PGMR board is little more than a socket and crystal. The factory-bdiRR€atures an RS-232
transceiver (which is bypassed for this application), a reset monitondGame bypass capacitance.
Additionally, it is important to tie all of the unused HC11 inputs to ground or Vdd. | added Vpp and
+5V regulators to simplify the connection process. In truth, these regulsttesadded many years
ago. If | were to have built this project upon un-modified PGMR boards, it is likaty tiould have
placed the voltage regulators on the mezzanine board which would limit the modificegentes] to the
PGMR board. In fact, the PCB layout included in the design file contains the Vdd and Vpp powe
supplies.

Conclusion

This project took about 2 linear months to complete — mostly evenings and weekendschArfeiof
time was devoted to the PCB layout. The early musings went back at least 12 montiadtipough
there wasn't any real design effort during this time. Overall, | amplegsed with the result. | would
like to add some verification capability to the DEvice status data so that thamrogr could signal a

flag if the bootrom ID bytes don’t match the expected values. Other than thagnlthzeen able to
cook-up any new features to add (and | usually have no difficulty thinking up new features)

References

AN1060, M68HC11 Bootstrap Mode (appnote), Jim Sibigtroth (et. al), Freescale Semiocondeet
1.1, July, 2005

EB422, Enhanced M68HC11 Bootstrap Mode (engineering bulletin), Steven McAslanalgeesc
Semiconductor, 2000

M68HC711E9PGMR Programmer Board User’s Manual, Motorola Semiconductor, May 1991
M68HC11E Family Data Sheet, Freescale Semiconductor, Rev 5.1, July, 2005

M68HC11 Reference Manual (M68BHC11RM/D), Freescale Semiconductor, Rev 6.1, July, 2005
C8051F34x Family Data Sheet, Silicon Laboratories, Rev 1.4, September, 2009

C8051F34X Development Kit User's Guide, Silicon Laboratories, Rev 0.2, 2006

© Joseph M. Haas, 12/20/2013, all rights reserved 9

Appendix A: Reference Data

Command Line Interface help message:

FF-PGMR11 Protocol Converter
Vers: 1.0, Date: 15-Dec-2013

FF-PGMR11 CMD List:
DEvice (dut) select dut Config reg
Upload/vfy host->pgmr Download pgmr->host
CHecksum object COpy dut->pgmr

Blank chk dut srec rx Offset

BUIk erase EEPROM TEST1 run dut test
PGM dut TEST2 run pgmr test
Verify dut S0 bemd parse

Fillivfy pgmr ram pgmr software VERSI

Syntax: <cmd> <argl> <arg2> ... args are optional d
<arg> order is critical except for floaters

"?" as first <arg> gives cmd help, "? ?" lists all

selectively entering <args>, use "-" for <args> tha

"="must precede decimal values w/o spaces. Floatin

<args> can appear anywhere in <arg> list: "X" = xmo

operator, "EPROM" = eprom opr (EEPROM opr is defaul

Note: XON/XOFF handshake required if ascii uploads

Supports baud rates of 115.2, 57.6, 38.4, 19.2, and

as first character after reset at the desired baud

DEVice sel: ?/devid
Turns on DUT power (except NO DEVICE = power off
68HC(7)11 devid: E2 (811), D3, E9, LE20, E20, E3
E20 accesses 12K segment, LE20 accesses 8K segme
Note: E9 selection will access E1, E2, and E9 pa
COpy DUT->pgmr: ?/EPROM/start_addr/end_addr
Upload host->pgmr: ?/Xmodem/Verify/Response
Response: re-disp last bcmd responses.
Processes SO bcmds as they are encountered durin
A fail of the Blank bcmd disables bcmds remainin
CHecksum: ?/S/C/start_addr/end_addr/stor_addr/initi
defaults: DUTstart DUTend <no store> 0
S = checksum (16b, uses init), C = crc (16b, use
Config: ?/reg_bits
BUIk erase DUT EEPROM: ?/
Blank check DUT: ?/start/end/EPROM
PGM pgmr->DUT: ?/EPROM/start_addr/end_addr
Download pgmr->host: ?/X/W/EPROM
TEST1 (DUT test): ?/Ram/X (loads user RAM pgm from
TEST2 (PGMR test): ?/ (pgmr ram test)
S0 cmd parse util: ?/U/"<bcmd> <args> .. <args>" (4
Valid bemds = Fill, Pgm, Vfy, Dev, Blank, BUIk,
This command parses batch cmds (bcmds) without a
"U" un-parse: do file upload (ascii only, data i
Offset: ?/offset value
Signed <offset value> added to Srecord address d
range is $0000 to $FFFF (or +$7FFF to -$8000 if

Fillivfy pgmr ram: ?/data/start_addr/end_addr/V
'V' <arg> to verify pgmr memory data instead of

pgmr Mem write: ?/addr/data

Verify DUT->pgmr: ?/EPROM/start_addr/end_addr

© Joseph M. Haas, 12/20/2013, all rights reserved

on
epending on cmd.

cmd help lines. When

t keep default value.

g <args>: these non-number
dem, "W" = wait for

t), "V" = verify modifier.

are employed with bcmds.
9.6 kb. Press <Enter>

rate.

) & Clears error LED.
2, N (no dev).

nt.

rts.

g upload.
g in upload.

al/poly/EPROM

$1021
s init & poly).

host)

5 chrs max, quoted)
CHks, Config, or Offs.
ny error checking.
gnored), displays bcmds.

uring upload.
signed numbers).

fill.

10

Example Programming Script:

$018000052454D005330005445535400534352495054000A006 1
S00A000044004539000A0029

S007000042000A00AC

S00D000042004550524F4D000A0023

S00A000043003039000A003F

S007000046000A00A8

S013000046003000423630300042374646000A008F
S123FA608D0018381809180918ECA818ED7B18ECAA18ED8A18AGACS5F8F18CE000020021882
S123B600188F1F2E80FCA72F1F2ES80FCE72F20FE188F1F2E80F CA72F1F2E80FCE72F20FEAQO
S013000043480053002D002D0042374645000A00A6
S017000050004550524F4D00464136300046413746000A001A

S007000050000A009E

S9030000FC

The plain text of bcmds in example script (comments shown are not part of thdilsgript

bcmds Comments

REM SO TEST SCRIPT Any non-bcmd will be ignored and can be treated asmment
DE9 Set device = 711E9

B Blank check EEPROM

B EPROM Blank check EPROM

C 09 Set DUT CONFIG register = $09 (this also does & leohse of EEPROM)
F Fill all programmer interface RAM with $FF bytes

F 0 B600 B7FF Fill programmer interface EEPROM space with $00

CHS --B7FE Calculate checksum on EEPROM, store to EEPROM $BdFE
P EPROM FA60 FATF Program EPROM from address $FA60 to $FA7F

P Program EEPROM

The plain text output is observed by issuing an “S0 U” command to the programnfacentarmmand
line and then uploading the desired script file as an ASCII transfer (assumningggminal emulator
allows you to view responses during the upload process, hyperterm does). Slregres#dst data
uploaded to programmer interface. Note that the plain-text utility doestany S1 records, only SO
records are extracted and displayed.

Note: since the Config command does a bulk EEPROM erase, it should precede a®MEEPR
programming commands.

S-record downloads are set to a maximum of 32 bytes per line. Upload lengthstadetinthe S-

record buffer length (currently set to 110 bytes, which translates to 5@8gata bytes). SO lines can
hold up to 45 data bytes (longer lines result in an error).

© Joseph M. Haas, 12/20/2013, all rights reserved 11

Figure A1l. FF-PGMR Daughter Interface schematic

© Joseph M. Haas, 12/20/2013, all rights reserved 12

Figure A2. FF-PGMR Daughter Interface card

© Joseph M. Haas, 12/20/2013, all rights reserved 13

