ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ

Перейти к: навигация, поиск

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи) — область электромагнитного излучения, находящаяся в диапазоне между длинноволновым участком красного видимого света (0,74 мкм) и коротковолновым радиоизлучением (2000 мкм). И. и. обычно подразделяют на ближнюю область (от 0,74 до 2,5 мкм), среднюю (2,5—50 мкм) и далекую (50—2000 мкм). В обычных условиях глаз человека не видит И. и., однако существуют приборы, превращающие И. и. в видимое излучение (так наз. приборы «ночного» видения). Этой же цели служат специальные приемы фотографирования. И. и. нашло широкое применение в мед. практике.

Источниками И. и. служат лампы накаливания, угольная электрическая дуга, излучатели из нихрома и других сплавов, различные газоразрядные лампы. Излучение ряда лазеров (см.) также находится в инфракрасном диапазоне. Солнечная радиация почти на 50% состоит из И. и. В земной атмосфере И. и. наиболее интенсивно поглощают молекулы воды, углекислого газа и озона. Загрязнение атмосферы приводит к задержке И. и. земли и развитию так наз. парникового эффекта. Некоторые животные — ямкоголовые змеи, насекомые (тараканы, кузнечики и др.) обладают высокочувствительными рецепторами, воспринимающими И.и.

И. и. впервые обнаружено англ. ученым Гершелем (F. W. Herschel) в 1800 г. Спектр И. и. в зависимости от источника может быть дискретным (состоять из отдельных линий) или непрерывным. Инфракрасные спектры излучения возбужденных атомов являются линейчатыми, соответствующими отдельным электронным переходам; промежуточные между линейчатыми и непрерывными спектрами — так наз. полосатые спектры возбужденных молекул обусловлены их колебательным и вращательным движением. Нагретые тела в твердом и жидком состоянии излучают непрерывный инфракрасный спектр.

Исследование колебательно-вращательных инфракрасных спектров проводят для качественного и количественного анализа смесей различных веществ, для определения хим. состава и структуры различных молекул, в т. ч. полимеров и таких биологически важных соединений, как аминокислоты, углеводы, гормоны, липиды и белки. Различия в поглощении и рассеивании И. и., видимого и ультрафиолетового света широко используются для выявления сходных по цвету, но различных по составу веществ и для обнаружения невидимых и плохо видимых объектов в инфракрасной фотографии, аэросъемке, дефектоскопии и т. д.

И. и. является непрерывно действующим на организм человека фактором окружающей среды. Тело человека постоянно излучает и поглощает инфракрасные лучи (радиационный теплообмен). Преобладание процессов поглощения над процессами излучения может привести к перегреванию организма (см.) и развитию теплового удара (см.). Пределы переносимости человеком И. и. составляют 1,33—1,79 кал/см2 (в зависимости от длины волны И. и.).

Термография (см.) и инфраскопия — методы, основанные на регистрации интенсивности И. и., — являются ценным диагностическим средством, применяемым в офтальмологии, дерматологии, а также для определения локализации глубоко расположенных в организме воспалительных процессов. Инфракрасная техника используется также в судебной медицине при фотографировании вещественных доказательств, выявлении следов выстрела, обнаружении карбоксигемоглобина в крови и т. д.

Инфракрасное излучение в физиотерапии. Действие И. и. на человека обусловлено его тепловым эффектом. Повышение температуры в результате поглощения И. и. тканями вызывает реакции местного (гиперемия, увеличение проницаемости сосудов) и общего характера (интенсификация обмена, терморегуляции и т. д.).

Под действием И. и. на месте облучения образуется ряд физиологически активных веществ (напр., ацетилхолин и др.), которые поступают в общий круг кровообращения, вызывают усиление обменных процессов в отдаленных от места облучения тканях и органах.

Реакция организма на действие И. и. зависит от мощности излучения, экспозиции, величины облучаемой поверхности, локализации воздействия и др. На коже под влиянием И. и. определенной интенсивности через несколько минут после облучения появляется гиперемия, сохраняющаяся после окончания облучения до 60—90 мин., реже дольше. И. и. улучшает кровообращение в тканях, что ведет к нормализации питания тканей, ускорению регенеративных процессов. Под влиянием И. и. меняется функциональное состояние рецепторов кожи: повышается порог теплового и болевого ощущения, понижается порог тактильной чувствительности. Умеренные дозы облучения оказывают болеутоляющее действие, под влиянием тепла снижается тонус мышц.

Общая реакция организма на И. и. выражается в перераспределении крови в сосудах, повышении числа эозинофилов (на фоне общего уменьшения числа лейкоцитов) в периферической крови, ускорении РОЭ, повышении процессов обмена веществ. Облучение И. и. рефлексогенных зон вызывает расширение сосудов, ускорение крово- и лимфотока не только в зоне воздействия, но и во внутренних органах (почках, желудке, кишечнике).

И. и. оказывает нормализующее действие на функции желудка, поджелудочной железы, почек, стимулирует иммуногенные свойства организма и может быть использовано в целях повышения общей сопротивляемости организма.

У животных под влиянием И. и. происходит ослабление анафилактической реакции, судорог, вызываемых действием стрихнина, а также эффекта кураризации.

Терапия И. и. сочетается с применением ультрафиолетового излучения (см.), электропроцедур нетеплового действия (постоянные и импульсные токи), лечебной физкультуры (см.) и массажа (см.) и не проводится с одновременным применением других тепловых процедур.

Рис. 1. Инфракрасный излучатель на штативе. Рис. 2. Лампа соллюкс стационарная.
Рис. 1. Инфракрасный излучатель на штативе. Рис. 2. Лампа соллюкс стационарная.
Рис. 3. Лампа Минина.
Рис. 3. Лампа Минина.
Рис. 4. Местная электросветовая ванна.
Рис. 4. Местная электросветовая ванна.

С леч. целью используются следующие источники И. и.: 1) инфракрасный излучатель на штативе (рис. 1), источником излучения в к-ром служит нить из нихрома, намотанная на керамическое основание; 2) лампа соллюкс: стационарная (рис. 2), переносная и настольная, мощностью от 200 до 1000 вт. Спектр излучения лампы соллюкс состоит из 88—90% инфракрасных лучей и 10 — 12% видимого излучения; 3) лампа Минина (рис. 3) с электрической лампой накаливания в 40— 80 вт, вмонтированной в параболический рефлектор, закрепленный на деревянной ручке; 4) местная электросветовая ванна (рис. 4), представляющая собой деревянный или металлический каркас, на внутренней поверхности к-рого размещают от 8 до 16 обычных ламп накаливания. В таких ваннах на тело больного действует несколько факторов: И. и., видимое излучение и нагретый до t° 70° воздух.

Перед процедурой на больного надевают светозащитные очки. Электросветовую ванну устанавливают над обнаженным участком тела. Процедуру проводят в положении больного лежа на кушетке (при облучении ног или туловища) или сидя (при воздействии на верхние конечности). Ванну вместе с облучаемым участком тела покрывают простыней, а затем одеялом. Расстояние от источника излучения зависит от вида и мощности лампы: при использовании стационарных аппаратов — 50 —100 см, переносных и настольных — 15—50 см. Продолжительность воздействия 15—30 мин. Облучение проводят ежедневно или через день, на курс лечения до 20—25 процедур.

По окончании процедуры рекомендуется отдых 20—30 мин., а после приема электросветовой ванны обтирание или теплый душ с последующим отдыхом.

Показания: подострые и хрон, воспалительные заболевания носоглотки и верхних дыхательных путей, кожи и подкожной клетчатки, внутренних органов (гастрит, пневмония, гломерулонефрит, нефроз и др.), суставов, позвоночника, мышц и периферических нервов, ожоги, отморожения, контрактуры, спастические параличи конечностей, облитерирующий эндартериит (легкие и среднетяжелые формы).

Противопоказания: острые и гнойные воспалительные процессы, новообразования, сердечно-сосудистая недостаточность II —III степени, кровотечение или наклонность к нему.

Применение инфракрасного излучения в судебно-медицинской экспертизе

Рис. 5. Снимок зоны входного отверстия при огнестрельном ранении, залитой кровью: слева — при дневном свете; справа — в инфракрасных лучах отчетливо виден отпечаток дульного среза и ожог, что свидетельствует о выстреле в упор.
Рис. 5. Снимок зоны входного отверстия при огнестрельном ранении, залитой кровью: слева — при дневном свете; справа — в инфракрасных лучах отчетливо виден отпечаток дульного среза и ожог, что свидетельствует о выстреле в упор.

Различия коэффициентов рассеяния, отражения и пропускания тел в видимом и И. и. обусловили возможность применения И. и. в суд.-мед. экспертизе. И. и. используется при исследовании вещественных доказательств для выявления на темных тканях одежды локализации и формы следов крови, копоти, несгоревших зерен пороха, для установления, с какой дистанции произведен выстрел, для выявления входного и выходного отверстий огнестрельного канала, а также при экспертизе трупа для обнаружения на нем следов близкого выстрела (копоти, зерен пороха, отпечатка дульного среза), залитых кровью (рис. 5), для выявления невидимой невооруженным глазом гнилостной сети, обнаружения карбоксигемоглобина в крови при отравлении окисью углерода. При обследовании живых лиц PI. и. применяют для выявления скрытых кровоподтеков, подкожной сети кровеносных сосудов.

Исследование с применением И. и. проводится путем фотографирования, фотометрии с использованием абсорбционного молекулярного анализа и электронно-оптических преобразователей. Съемка в инфракрасных лучах осуществляется обычными фотокамерами и микрофотоустановками на материалах «Инфрахром» (в диапазоне от 700 до 1200 нм) с использованием светофильтров, отсекающих видимые лучи и пропускающих И. и.

В необходимых случаях (установление пола человека по его волосам, при доказательстве факта сожжения трупа и т. д.) применяют инфракрасную спектрофотометрию (см.). Используются и другие методы и приборы инфракрасного диапазона, в частности «инфракрасный термощуп», с помощью к-рого исследование ведется в диапазоне до 3000 им и с автоматической регистрацией полученных данных на экране электронно-оптического преобразователя.

См. также Излучения, Светолечение.


Библиография: Богданов Ф. Р., Рокитянский В. Н. и Фи ног е-н о в G. Н. Физические методы лечения в травматологии и ортопедии, с. 25, Киев, 1970, библиогр.; Вайль Ю. С. и Барановский Я. М. Инфракрасные лучи в клинической диагностике и медико-биологических исследованиях, Л., 1969, библиогр.; Дехант Й. и др. Инфракрасная спектроскопия полимеров, пер. с нем., М., 1976, библиогр.; К а ч-ковский М. А. и Шпекторо-в а Р. А. К вопросу о применении сочетанного ультрафиолетового и инфракрасного облучения для лечения заболеваний кожи, Вестн, дерм, и вен., №11, с. 28, 1968; Козелкин В. В. и У с о л ь-ц e в И. Ф. Основы инфракрасной техники, М., 1967; Ливенцев H. М. и Ливенсон А. Р. Электромедицин-ская аппаратура, М., 1974; О р л о в Г. А. и Орлов Н. С. Исследование инфракрасного излучения при воспалительных заболеваниях органов брюшной полости, Клин, хир., № 9, с. 21, 1972; T а-х о-Г о д и X. М. Пособие по основам научной фотографии в судебной медицине, М., 1965, библиогр.

Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание

Рекомендуемые статьи