
hen you examine assembly language
code that has been crafted by an expert,
you’ll usually find extensive use of func-
tion jump tables. These jump tables,
also known as an array of pointers to
functions, are used because they offer a

unique blend of compactness and execution speed, partic-
ularly on microprocessors that support indexed addressing.

When you examine typical C code, however, the function
jump table is a much rarer beast. In this article, I will exam-
ine why jump tables aren’t used more often, and make the
case for their extensive use. I’ve also included real-world
examples of their use.

Why aren’t function pointers popular?
Developers usually cite three reasons for not using function
pointers. These reasons are:

• Function pointers are dangerous
• Good optimizing compilers generate a jump table from

a switch statement, so letting the compiler do the work is
preferable

• Function pointers are too difficult to code and maintain

The perceived danger of function pointers
The “function pointers are dangerous” school of thought
comes about because code that indexes into a table and
then calls a function based on the index can end up just
about anywhere. For instance, consider the following code
fragment:

void (*pf[])(void) = {fna, fnb, fnc, ... fnz};

void test(const INT jump_index)

{

/* Call the function specified by jump_index */

pf[jump_index]();

}

This fragment declares pfto be an array of pointers to func-

46 MAY 1999 Embedded Systems Programming

N I G E L J O N E S

f
e

a
t

u
r

e
W

Arrays of Pointers to
Functions
In typical C code, the function jump table is not widely used. Here the author examines why jump tables aren’t
exploited more frequently and makes a case for their increased usage with real-world examples.

Embedded Systems Programming MAY 1999 47

tions that take no arguments and
return void. The test function simply
calls the specified function. As it
stands, this code is dangerous for the
following reasons:

• pf[]can be accessed by anyone
• No bounds checking is present in

test(), such that an erroneous
jump_indexwould spell disaster

Consider this alternative approach,
which avoids these problems:

void test(const UCHAR jump_index)

{

static void (*pf[])(void) = {fna,

fnb, fnc, ... fnz};

if (jump_index < sizeof(pf) /

sizeof(*pf))

/* Call the function

specified by jump_index */

pf[jump_index]();

}

The changes are subtle, but impor-
tant. We accomplish a number of
things with this approach:

• By declaring the array static within
the function, no one else can
access the jump table

• Forcing jump_index to be an
unsigned quantity means that we
only need to perform a one-sided
test for our bounds checking

• Setting jump_index to the smallest
data type possible that will meet the
requirements provides a little more
protection (most jump tables are
smaller than 256 entries)

• An explicit test is performed prior
to making the call, thus ensuring
that only valid function calls are
made. (For performance critical
applications, the if() statement
could be replaced by an assert())

This approach to the use of a jump
table is just as secure as an explicit
switch statement, thereby making a
good argument against the perceived
danger of function pointers.

Leave it to the optimizer
Many compilers will attempt to con-
vert a switch statement into a jump
table. Thus, rather than use a function
pointer array, many users prefer to use
a switch statement of the form:

void test(const UCHAR jump_index)

{

switch jump_index

{

case 0:

fa();

break;

case 1:

fb();

break;

...

case 26:

fz();

break;

default:

break;

}

}

Indeed, ESP columnist Jack Crenshaw
advocates this approach (“Interpre-
ters—A Recap,” September 1998, p.
23). Though I’ve never disagreed with
Dr. Crenshaw before, there’s a first
time for everything. A quick survey of
the documentation for a number of
compilers revealed some interesting
variations. They all claimed to poten-
tially perform conversion of a switch
statement into a jump table. But the
criteria for doing so varied consider-
ably. One vendor simply said their
compiler would attempt to perform
this optimization. A second claimed to
use a heuristic algorithm to decide

which was “better,” while a third per-
mitted pragmas to let users specify
what they wanted. This degree of vari-
ation doesn’t give me a warm fuzzy
feeling.

In the case where you have, say, 26
contiguous indices, each associated
with a single function call (such as the
previous example), then you can
almost guarantee that the compiler
will generate a jump table. But what
about the case in which you have 26
non-contiguous indices that vary in
value from zero to 1,000? A jump table
would have 974 null entries, or 1,948
“wasted” bytes on a typical microcon-
troller. Most compilers would deem
this too high a penalty to pay, and
would eschew the jump table for an if-
then-else-if sequence. However, if you
have EPROM to burn, implementing
this as a jump table actually costs noth-
ing and buys you consistent (and fast)
execution time. By coding this as a
jump table, you ensure that the com-
piler does what you want.

Large switch statements present
another problem. Once a switch state-
ment gets too far beyond a screen
length, seeing the big picture becomes
harder, making the code more diffi-
cult to maintain. A function pointer
array declaration, adequately com-
mented to explain the declaration, is
far more compact and allows you to
see the overall picture. Furthermore,
the function pointer array is potential-
ly more robust. Who hasn’t written a
large switch statement and forgotten
to add a break statement on one of the
cases?

Declaration and use
complexity
Declaration and use complexity are
the real reasons that jump tables
aren’t used more often. In embedded
systems, where pointers normally have

The function pointer array is potentially more robust. Who hasn’t

written a large switch statement and forgotten to add a break

statement on one of the cases?

R
U

P
E

R
T

A

D
L

E
Y

ju
m

p
ta

bl
es

mandatory memory space qualifiers,
declarations can quickly become hor-
rific. For instance, the previous exam-
ple would be highly undesirable on
most embedded systems because the
pf[] array would probably end up
being stored in RAM instead of ROM.
The way to ensure the array is stored
in ROM varies somewhat among com-
pilers. However, a first step, which is
portable to all systems, is to add const
qualifiers to the declaration. Thus, our
array declaration becomes:

static void (* const pf[])(void)

= {fna, fnb, fnc, fnz};

Like many users, I find these decla-
rations cryptic and daunting. But over
the years, I’ve built up a library of dec-
laration templates to which I simply
refer when necessary. You’ll find this
list of templates on the ESP Web site at
www.embedded.com/code.htm.

Applications of function
pointers
Most textbooks cover function point-
ers in less than one page (while devot-
ing entire chapters to simple looping
constructs). The descriptions typically
say that you can take the address of a
function—and therefore define a
pointer to a function—and the syntax
looks like so-and-so. At this point, most
users are left with a complex declara-
tion and are wondering exactly what
function pointers are good for. Small
wonder, then, that function pointers
do not figure heavily in their work.

Well then, when are jump tables
useful? Arrays of function pointers are
generally useful whenever the poten-
tial exists for a variety of input into the
program that alters the program flow.
Some typical examples from the
embedded world follow.

Keypads. The most often cited example
for uses of function pointers is with
keypads. The general idea is obvious.
A keypad is normally arranged to pro-
duce a unique keycode. Based on the
value of the key pressed, some action

is taken. As usual, this action can be
handled via a switch statement.
However, an array of function pointers
can be far more elegant, particularly

when the application has multiple
screens, and the key definition
changes from screen to screen (i.e.,
the system uses soft keys). In this case,

Embedded Systems Programming MAY 1999 49

Most textbooks cover function pointers

in less than one page (while devoting entire

chapters to simple looping constructs).

jum
p tables

a two-dimensional array of function
pointers is often used. See Listing 1 for
an example.

Note several points about this
example:

• All functions to be named in a
function table should be proto-
typed. This precaution is your best
line of defense against including a
function that expects the wrong
parameters, or returns the wrong
type

• As for earlier examples, the func-
tion table is declared static in the
function that makes use of it

• The array is made const, signifying
that we wish it to remain
unchanged

• The indices into the array are
unsigned, so that only single-sided
bounds checking needs to be done

• In this case, I’ve chosen to use the

50 MAY 1999 Embedded Systems Programming

LISTING 1 A two-dimensional array of function pointers is often used in
keypad applications.

#define N_SCREENS 16
#define N_KEYS 6
/* Function prototypes for functions that appear in the jump table */
INT fn1(void);
INT fn2(void);
...
INT fn60(void);
INT fnNull(void);

INT keypress(UCHAR key, UCHAR screen)
{
static INT (* const pf[N_SCREENS][N_KEYS])(void) = {
{fn1, fn2, fnNull, fn8},
{fn9, fnNull, fn12 fn7},
...
{fn50, fn51, fn60} };

assert (key < N_KEYS);
assert (screen < N_SCREENS);
return (*pf[screen][key])(); //Call the function and return result
}

INT fnNull(void)
{ /* Dummy function used as an array filler */
return 0;
}

ju
m

p
ta

bl
es

assert() macro to provide the
bounds checking. This approach is
an excellent compromise between
ease of debugging and run-time
efficiency

• A dummy function, fnNull(), has
been declared. This function is
used where a keypress is undefined.
Rather than explicitly testing to see
whether a key is valid, you can sim-
ply call a dummy function, which is
usually the most efficient method
of handling an array that is only
partially populated

• The functions that are called need
not be unique. Rather, a function
can appear many times in the same
array

Communication links. Although the key-
pad example is easy to appreciate, my
experience in embedded systems has
revealed that communication links

Embedded Systems Programming MAY 1999 51

LISTING 2 Code to handle a read request coming in over the serial link

const CHAR *fna(void); //Example function prototype
static void process_read(const CHAR *buf)
{
CHAR *cmdptr;
UCHAR offset;
const CHAR *replyptr;

static const CHAR read_str[] =
“0SV 0SN 0MO 0WF 0MT 0MP 0SW 1SP 1VO 1CC 1CA 1CB 1ST 1MF 1CL 1SZ 1SS 1AZ 1AS 1BZ
1BS 1VZ 1VS 1MZ 1MS 2SP 2VO 2CC 2CA 2CB 2ST 2MF 2CL 2SZ 2SS 2AZ 2AS 2BZ 2BS 2VZ 2VS
2MZ 2MS”;

static const CHAR * (*const readfns[sizeof(read_str)/4])(void) = {
fna,fnb,fnc, ... };

cmdptr = strstr(read_str,buf);

if (cmdptr != NULL) {
/* cmdptr points to the valid command, so compute offset, in order to
get entry into function jump table */
offset = (cmdptr + 1 - read_str) / 4;

/* Call function, & get pointer to reply*/
replyptr = (*readfns[offset])();
/* rest of the code goes here */
}

}

jum
p tables

occur far more often than keypads.
Communication links are applications
ripe for function tables.

Last year, I worked on the design
for an interface box to a large indus-
trial power supply. This interface box
had to accept commands and return
parameter values over an RS-232 link.
The communication used a set of sim-
ple ASCII mnemonics to specify the
action to be taken. The mnemonics
consisted of a channel number (zero,
one, or two), followed by a two-charac-
ter parameter. The code to handle a

read request coming in over the serial
link is shown in Listing 2. The func-
tion process_read() is called with a
pointer to a string fragment which
should consist of the three characters
(null-terminated) containing the
required command.

The code shown in Listing 2 is
quite simple. We define a constant
string, read_str, which contains the
list of all legal mnemonic combina-
tions. Note the use of added spaces to
aid clarity. Next, we have the array of
function pointers, one pointer for

each valid command. We determine if
we have a valid command sequence by
making use of the standard library
function, strstr(). If a match is
found, it returns a pointer to the
matching string; otherwise, it returns
NULL. We check for a valid pointer,
compute the offset into the string, and
use the offset to call the appropriate
function. Thus, in only four lines of
code, we have determined if the com-
mand is valid and called the appropri-
ate function. Although the declaration
of readfns[] is complex, the simplicity
of the run-time code is difficult to
beat.

Timed task list. A third area in which
function pointers are useful is in
timed task lists. In this case, the
“input” to the system is the passage of
time.

Many projects cannot justify the
use of an RTOS. Rather, they only
require that a number of tasks run at
predetermined intervals. We can very
simply handle this requirement, as
shown in Listing 3.

In this listing, we define our own
data type (TIMED_TASK), which consists
simply of an interval and a pointer to a
function. We then define an array of
TIMED_TASK, and initialize it with the
list of functions that are to be called
and their calling interval. In main(),
we have the startup code, which must
enable a periodic timer interrupt that
increments the volatile variable tickat
a fixed interval. We then enter the
main loop.

The main loop checks for a non-
zero tick, decrements the tick vari-
able, and computes the elapsed time
since the program started running.
The code then simply steps through
each of the tasks, to see whether it is
time for the task to be executed, and if
so, calls it via the function pointer.

If your application consists only of
two or three tasks, then this approach
is probably a bit of overkill. However, if
your project has a large number of
timed tasks, or you will likely have to
add tasks in the future, you’ll find it

52 MAY 1999 Embedded Systems Programming

LISTING 3 Handling a timed task list

typedef struct {

UCHAR interval; /* How often to call the task */

void (*proc)(void); /* pointer to function returning void */

}TIMED_TASK;

static const TIMED_TASK timed_task[] =

{

{INTERVAL_16_MSEC, fnA},

{INTERVAL_50_MSEC, fnB},

{INTERVAL_500_MSEC, fnC},

...

{0,NULL}

};

extern volatile UCHAR tick;

void main(void)

{

const TIMED_TASK *ptr;

UCHAR time;

/* Initialization code goes here. Then enter the main loop */

while(1){

if (tick) { /* Check timed task list */

tick--;

time = computeElapsedTime(tick);

for(ptr = timed_task; ptr->interval !=0; ptr++)

if (!(time % ptr->interval))

(ptr->proc)(); /* Time to call the function */

}

}

}

Although the declaration of readfns[]is complex,

the simplicity of the run-time code is difficult to beat.

jum
p tables

rather palatable. Note that adding
tasks and/or changing intervals simply
requires editing the timed_task[]
array. No code, per se, has to be
changed.

Interrupt vectors. The fourth applica-
tion of function jump tables is the
array of interrupt vectors. On most
processors, the interrupt vectors are in
contiguous locations, with each vector
representing a pointer to an interrupt
service routine function. Depending
on the compiler, the work may be
done for you implicitly, or you may be
forced to generate the function table.
In the latter case, implementing the
vectors via a switch statement will not
work!

Listing 4 shows the vector table
from the industrial power supply pro-
ject I mentioned. This project was
implemented using a Whitesmiths’
compiler and a 68HC11.

A couple of points are worth mak-
ing about Listing 4. First, the code is
insufficient to locate the table correct-
ly in memory. This would have to be
done via linker directives.

Second, note that unused inter-
rupts still have an entry in the table.
Doing so ensures that the table is cor-
rectly aligned, and that traps can be
placed on unexpected interrupts.

If any of these examples has whet
your appetite for using arrays of func-
tion pointers, but you’re still uncom-

fortable with the declaration complex-
ity, fear not. Visit the Embedded Systems
Programming Web site at www.embed-
ded.com/code.htm, where you’ll find a
variety of declarations, ranging from
the straightforward to the downright
appalling. The examples are all rea-
sonably practical in the sense that the
desired functionality isn’t outlandish
(that is, there are no declarations for
arrays of pointers to functions that
take pointers to arrays of function
pointers, and so on).

Declaration and use hints
All of the examples on the Web site
adhere to conventions I’ve found to
be useful over the years.

Function pointer arrays should
always be declared static, and the
scope of a function table should be
highly localized. I’ve never come
across a situation where it made sense
to have a function table that wasn’t
declared this way.

Function pointer arrays should be
declared const, which implies that the
array cannot be modified after its ini-
tialization. However, if you really feel
the need to modify the array of point-
ers at run time, then go ahead and
remove the constqualifier. But please
don’t try to sell me any products with
your code in them!

There are two syntactically differ-
ent ways of invoking a function via a
pointer. If we have a function pointer
with the declaration:

void (*fp)(int);/* fp is a func-

tion pointer */

Then it may be invoked using
either of these methods:

fp(3); /* Method 1 of

invoking the function */

(*fp)(3); /* Method 2 of

invoking the function */

The advantage of the first method
is an uncluttered syntax. However, it
makes it look as if fp is a function, as
opposed to being a function pointer.

54 MAY 1999 Embedded Systems Programming

LISTING 4 Vector table from the industrial power supply project

IMPORT VOID _stext(); /* startup routine 68HC11 specific*/

static VOID (* const _vectab[])() = {

SCI_Interrupt, /* SCI */

badSPI_Interrupt, /* SPI */

badPAI_Interrupt, /* Pulse acc input */

badPAO_Interrupt, /* Pulse acc overf */

badTO_Interrupt, /* Timer overf */

badOC5_Interrupt, /* Output compare 5 */

badOC4_Interrupt, /* Output compare 4 */

badOC3_Interrupt, /* Output compare 3 */

badOC2_Interrupt, /* Output compare 2 */

badOC1_Interrupt, /* Output compare 1 */

badIC3_Interrupt, /* Input capture 3 */

badIC2_Interrupt, /* Input capture 2 */

badIC1_Interrupt, /* Input capture 1 */

RTI_Interrupt, /* Real time */

Uart_Interrupt, /* IRQ */

PFI_Interrupt, /* XIRQ */

badSWI_Interrupt, /* SWI */

IlOpC_Interrupt, /* illegal */

_stext, /* cop fail */

_stext, /* cop clock fail */

_stext, /* RESET */

};

If you really feel the need to modify the array of pointers at run time,

then go ahead and remove the constqualifier. But please don’t try to

sell me any products with your code in them!

jum
p tables

Someone maintaining the code may
end up searching in vain for the func-
tion fp(). With Method 2, we are
clearly dereferencing a pointer. But
when the declarations get complex,
the added “*” can be a significant bur-
den. Throughout the examples, both
syntax varieties are shown. In practice,
the latter syntax seems to be more
popular, although I often use the for-
mer syntax.

One good way to reduce declara-
tion complexity is to use typedefs. It is
quite permissible to use a typedef to
define a complex declaration, and to
then use the new type like a simple
type. Sticking with the example above,
an alternative declaration would be:

typedef void (*PFV_I)(int);

PFV_I fp = fna; /* Declare a PFV_I

typed variable and init it */

fp(3); /* Call

fna with 3 using method 1 */

(*fp)(3); /* Call

fna with 3 using method 2 */

The typedef declares the type
PFV_I to be a pointer to a function
that returns void and is passed an inte-
ger. We then simply declare fp to be a
variable of this type, and use it.
Typedefs work well when you regularly
use a certain function pointer type
because they save you from having to
remember and type in the declaration.
The downside of using a typedef,

though, is the fact that it isn’t obvious
that the variable that has been
declared is a pointer to a function.
Thus, just as for the two invocation
methods above, you can gain syntacti-
cal simplicity by hiding the underlying
functionality.

If you prefer to use typedefs, I rec-
ommend that you use a consistent
naming convention. My preference,
which is adopted for the examples on
the Web site, is as follows: every type
starts with PF (pointer to function)
and is then followed with the return
type, followed by an underscore, the
first parameter type, underscore, sec-
ond parameter type and so on. For
void, boolean, char, int, long, float,
and double, the characters V, B, C, I, L,
S, and D are used. (Note the use of S
(single) for float, to avoid confusion
with F (function)). For a pointer to a
data type, the type is preceded with P.
Thus, PL is a pointer to a long. If a
parameter is const, then a cappears in
the appropriate place. Thus, cPL is a
const pointer to a long, whereas a PcL
is a pointer to a const long, and cPcL is
a const pointer to a const long. For
volatile qualifiers, v is used. For
unsigned types, a u precedes the base
type. For user-defined data types,
you’re on your own.

Note this extreme example:
PFcPcI_uI_PvuC. This is a pointer to a
function that returns a const pointer
to a const integer that is passed an
unsigned integer and a pointer to a
volatile unsigned char.

Got that? Now make the most of
those function pointers. esp

My thanks to Mike Stevens, not only for
reading over this manuscript and making
some excellent suggestions, but for showing
me over the years more ways to use function
pointers than I ever dreamed possible.

Nigel Jones is a consultant on all aspects of
embedded development. He particularly
enjoys working on small, distributed sys-
tems. He last wrote for ESP in November
1998, and enjoys hearing from readers at
NAJones@compuserve.com.

56 MAY 1999 Embedded Systems Programming

Typedefs work well when you regularly use a certain

function pointer type because they save you from having to

remember and type in the declaration.

	return:

