ERROR AND SIGNIFICANT DIGITS

Let x be the true value of some quantity and \tilde{x} be an approximation to x. The error of \tilde{x} is

$$
\operatorname{err}(\tilde{x})=x-\tilde{x},
$$

the absolute error of \tilde{x} is $|x-\tilde{x}|$, and the relative error of \tilde{x} is

$$
\operatorname{rel}(\tilde{x})=\frac{x-\tilde{x}}{x}
$$

The relative error is only defined for $x \neq 0$.
EXAMPLE If $x=5$ and $\tilde{x}=5.1$, then the error is -0.1 , the absolute error is 0.1 and the relative error is -0.02 .

The relative error is invariant under scaling,

$$
1-\frac{\tilde{x}}{x}=1-\frac{10^{3} \cdot \tilde{x}}{10^{3} \cdot x}=1-\frac{0.01 \cdot \tilde{x}}{0.01 \cdot x},
$$

whereas the regular error is not: $x-\tilde{x}$ is directly proportional to the scalar.
Let x and \tilde{x} be written in decimal form. The number of significant digits tells us to about how many positions x and \tilde{x} agree. More precisely, we say that \tilde{x} has m significant digits of x if the absolute error $|x-\tilde{x}|$ has zeros in the first m decimal places, counting from the leftmost nonzero (leading) position of x, followed by a digit from 0 to 4 . Note that the tail portion of the form $5000 \ldots=4999 \ldots$ is still allowed.

EXAMPLES 5.1 has 1 significant digit of $5:|5-5.1|=\mathbf{0 . 1}$
0.51 has 1 , not 2 , significant digits of $0.5:|0.5-0.51|=0.01$
4.995 has 3 significant digits of $5: 5-4.995=\mathbf{0 . 0 0 5}$
4.994 has 2 , not 3 , significant digits of $5: 5-4.994=\mathbf{0 . 0 0 6}$
0.5 has all significant digits of 0.5
1.4 has 0 significant digits of $2: 2-1.4=0.6$

The way that significant digits are counted is motivated by the scientific (exponential) representation of $x \neq 0$,

$$
x=\square . \square \square \ldots \square \times 10^{n},
$$

where the leading digit is nonzero. Thus \tilde{x} has m digits of x if

$$
|x-\tilde{x}| \leq 5 \times 10^{n-m}
$$

where n the leading power of 10 in the decimal expansion of x.

The number of significant digits is invariant under scaling by an integer power of 10 .

Let us suppose for definiteness that $x= \pm a . \square \square \ldots \square \ldots \times 10^{n}$, where $a=1,2, \ldots, 8$, or 9 .
Then $a \times 10^{n} \leq|x| \leq(a+1) \times 10^{n}$.
So the bound $|x-\tilde{x}| \leq 5 \times 10^{n-m}$ implies that

$$
\left|\frac{x-\tilde{x}}{x}\right| \leq \frac{5 \cdot 10^{n-m}}{a \cdot 10^{n}}=\frac{5}{a} \times 10^{-m} \leq 5 \times 10^{-m}
$$

which means that the relative error agrees with 0.0 to at least m decimal places.

Conversely, if the magnitude of the relative error is at most 5×10^{-m}, then

$$
|x-\tilde{x}| \leq 5|x| \cdot 10^{-m} \leq 5(a+1) \times 10^{n-m} .
$$

Hence \tilde{x} has at least $(m-1)$ (but not necessarily m) digits of x.
EXAMPLE 5.1 has 1 digit of 5 , but $|\operatorname{rel}(5.1)|=0.02<5 \times 10^{-2}$.

Our discussion may be summarized as follows.
PROPOSITION Let m be a nonnegative integer and β be positive.

- If $|x| \geq \beta$, then $\tilde{x}=x(1+\varepsilon)$, where $|\varepsilon|=|-\operatorname{rel}(\tilde{x})| \leq|x-\tilde{x}| / \beta$.
- If \tilde{x} has m significant digits of x, then $|\operatorname{rel}(\tilde{x})| \leq 5 \times 10^{-m}$.
- If $|\operatorname{rel}(\tilde{x})| \leq 5 \times 10^{-m}$, then \tilde{x} has at least $(m-1)$ significant digits of x.

Observe, in conclusion, that $-\log _{10}(|\operatorname{rel}(\tilde{x})|)$ gives us an approximate number of significant digits, a crude estimate of accuracy.

