
LECTURES ON SHIMURA VARIETIES

A. GENESTIER AND B.C. NGÔ

Abstract. The main goal of these lectures is to explain the rep-
resentability of the moduli space of abelian varieties with polariza-
tions, endomorphisms and level structures, due to Mumford [GIT],
and the description of the set of its points over a finite field, due
to Kottwitz [JAMS]. We also try to motivate the general definition
of Shimura varieties and their canonical models as in the article
of Deligne [Corvallis]. We will leave aside important topics like
compactifications, bad reduction and the p-adic uniformization of
Shimura varieties.

This is the notes of the lectures on Shimura varieties delivered
by one of us in the Asia-French summer school organized at IHES
in July 2006. It is basically based on the notes of a course delivered
by the two of us in Université Paris-Nord in 2002.
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1. Quotients of Siegel’s upper half space

1.1. Review on complex tori and abelian varieties. Let V denote
a complex vector space of dimension n and U a lattice in V which is
by definition a discrete subgroup of V of rank 2n. The quotient X =
V/U of V by U acting on V by translation, is naturally equipped with
a structure of compact complex manifold and a structure of abelian
group.

Lemma 1.1.1. We have canonical isomorphisms from Hr(X,Z) to the
group of alternating r-forms

∧r U → Z.

Proof. Since X = V/U with V contractible, H1(X,Z) = Hom(U,Z).
The cup-product defines a homomorphism

r∧
H1(X,Z)→ Hr(X,Z)

which is an isomorphism since X is isomorphic to (S1)
2n as real mani-

folds (where S1 = R/Z is the unit circle). �

Let L be a holomorphic line bundle over the compact complex variety
X. Its Chern class c1(L) ∈ H2(X,Z) is an alternating 2-form on U
which can be made explicit as follows. By pulling back L to V by the
quotient morphism π : V → X, we get a trivial line bundle since every
holomorphic line bundle over a complex vector space is trivial. We
choose an isomorphism π∗L → OV . For every u ∈ U , the canonical
isomorphism u∗π∗L ' π∗L gives rise to an automorphism of OV which
is given by an invertible holomorphic function

eu ∈ Γ(V,O×V ).

The collection of these invertible holomorphic functions for all u ∈ U ,
satisfies the cocycle equation

eu+u′(z) = eu(z + u′)eu′(z).

If we write eu(z) = e2πifu(z) where fu(z) are holomorphic function well
defined up to a constant in Z, the above cocycle equation is equivalent
to

F (u1, u2) = fu2(z + u1) + fu1(z)− fu1+u2(z) ∈ Z.

The Chern class

c1 : H1(X,O×X)→ H2(X,Z)

sends the class of L in H1(X,O×X) on the element c1(L) ∈ H2(X,Z)

whose the corresponding 2-form E :
∧2 U → Z is given by

(u1, u2) 7→ E(u1, u2) := F (u1, u2)− F (u2, u1).
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Lemma 1.1.2. The Neron-Severi group NS(X), defined as the image
of c1 : H1(X,O×X) → H2(X,Z) consists of the alternating 2-form E :∧2 U → Z satisfying the equation

E(iu1, iu2) = E(u1, u2) ,

where E still denotes the alternating 2-form extended to U ⊗Z R = V
by R-linearity.

Proof. The short exact sequence

0→ Z→ O×X → OX → 0

induces a long exact sequence which contains

H1(X,O×X)→ H2(X,Z)→ H2(X,OX).

It follows that the Neron-Severi group is the kernel of the map

H2(X,Z)→ H2(X,OX) .

This map is the composition of the obvious maps

H2(X,Z)→ H2(X,C)→ H2(X,OX).

The Hodge decomposition

Hm(X,C) =
⊕
p+q=m

Hp(X,Ωq
X)

where Ωq
X is the sheaf of holomorphic q-forms on X, can be made

explicit [13, page 4]. For m = 1, we have

H1(X,C) = V ∗
R ⊗R C = V ∗

C ⊕ V
∗
C ,

where V ∗
C is the space of C-linear maps V → C, V ∗

C is the space of
conjugate C-linear maps and V ∗

R is the space of R-linear maps V →
R. There is a canonical isomorphism H0(X,Ω1

X) = V ∗
C defined by

evaluating a holomorphic 1-form on X on the tangent space V of X at
the origine. There is also a canonical isomorphism H1(X,OX) = V

∗
C.

By taking
∧2 on both sides, the Hodge decomposition of H2(X,C)

can also be made explicit. We have H2(X,OX) =
∧2 V

∗
C, H1(X,Ω1

X) =

V ∗
C ⊗V

∗
C and H0(X,Ω2

X) =
∧2 V ∗

C . It follows that the map H2(X,Z)→
H2(X,OX) is the obvious map

∧2 U∗
Z →

∧2 V ∗
C . Its kernel is pre-

cisely the set of integral 2-forms E on U which satisfy the relation
E(iu1, iu2) = E(u1, u2) (when they are extended to V by R-linearity).
�

Let E :
∧2 U → Z be an integral alternating 2-form on U satisfying

E(iu1, iu2) = E(u1, u2) after extension to V by R-linearity. The real
2-form E on V defines a Hermitian form λ on the C-vector space V by

λ(x, y) = E(ix, y) + iE(x, y)

which in turn determines E by the relation E = Im(λ). The Neron-
Severi group NS(X) can be described in yet another way as the group
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of the Hermitian forms λ on the C-vector space V having an imaginary
part which takes integral values on U .

Theorem 1.1.3 (Appell-Humbert). Isomorphy classes of holomorphic
line bundles on X = V/U correspond bijectively to pairs (λ, α), where

• λ ∈ NS(X) is an Hermitian form on V such that its imaginary
part takes integral values on U
• α : U → S1 is a map from U to the unit circle S1 satisfying the

equation

α(u1 + u2) = eiπIm(λ)(u1,u2)α(u1)α(u2).

For every (λ, α) as above, the line bundle L(λ, α) is given by the Appell-
Humbert cocycle

eu(z) = α(u)eπλ(z,u)+ 1
2
πλ(u,u).

Let Pic(X) be the abelian group consisting of the isomorphy classes
of line bundles on X and Pic0(X) ⊂ Pic(X) be the kernel of the Chern
class. We have an exact sequence :

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0.

Let us also write: X̂ = Pic0(X); it is the group consisting of characters
α : U → S1 from U to the unit circle S1. Let V ∗

R = HomR(V,R).

There is a homomorphism V ∗
R → X̂ sending v∗ ∈ V ∗

R to the line bundle
L(0, α), where α : U → S1 is the character

α(u) = exp(2iπ〈u, v∗〉).

This induces an isomorphism V ∗
R/U

∗ → X̂, where

U∗ = {u∗ ∈ V ∗
R such that ∀u ∈ U, 〈u, u∗〉 ∈ Z}.

Let us denote by the semi-linear dual, consisting of C-semi-linear
maps V → C. We can identify V

∗
C with the R-dual V ∗

R by the R-linear
bijection sending a semi-linear f to its imaginary part g (f can be
recovered from g: use the formula f(v) = −g(iv) + ig(v)). This gives

X̂ = V
∗
C/U

∗ a structure of complex torus; it is called the dual complex
torus of X. With respect to this complex structure, the universal line
bundle over X× X̂ given by Appell-Humbert formula is a holomorphic
line bundle.

A Hermitian form on V induces a C-linear map V → V
∗
C. If moreover

its imaginary part takes integral values in U , the linear map V → V
∗
C

takes U into U∗ and therefore induces a homomorphism λ : X → X̂
which is symmetric (i.e. such that λ̂ = λ with respect to the obvious

identification X ' ˆ̂
X). In this way, we identify the Neron-Severi group

NS(X) with the group of symmetric homomorphisms from X to X̂.
Let (λ, α) be as in the theorem and let θ ∈ H0(X,L(λ, α)) be a global

section of L(λ, α). Pulled back to V , θ becomes a holomorphic function
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on V which satisfies the equation

θ(z + u) = eu(z)θ(z) = α(u)eπλ(z,u)+ 1
2
πλ(u,u)θ(z).

Such a function is called a theta-function with respect to the hermitian
form λ and the multiplicator α. The Hermitian form λ needs to be
positive definite for L(λ, α) to have a lot of sections, see [13, §3].

Theorem 1.1.4. The line bundle L(λ, α) is ample if and only if the
Hermitian form H is positive definite. In that case,

dim H0(X,L(λ, α)) =
√

det(E).

Consider the case where H is degenerate. Let W be the kernel of H
or of E, i.e.

W = {x ∈ V |E(x, y) = 0,∀y ∈ V }.
Since E is integral on U × U , W ∩ U is a lattice of W . In particular,
W/W ∩ U is compact. For any x ∈ X, u ∈ W ∩ U , we have

|θ(x+ u)| = |θ(x)|
for all d ∈ N, θ ∈ H0(X,L(λ, α)⊗d). By the maximum principle, it
follows that θ is constant on the cosets of X modulo W and therefore
L(λ, α) is not ample. Similar argument shows that if H is not positive
definite, L(H,α) can not be ample, see [13, p.26].

If the Hermitian form H is positive definite, then the equality

dim H0(X,L(λ, α)) =
√

det(E)

holds. In [13, p.27], Mumford shows how to construct a basis, well-
defined up to a scalar, of the vector space H0(X,L(λ, α)) after choosing
a sublattice U ′ ⊂ U of rank n which is Lagrangian with respect to the
symplectic form E and such that U ′ = U ∩RU ′. Based on the equality
dim H0(X,L(λ, α)⊗d) = dn

√
det(E), one can prove L(λ, α)⊗3 gives rise

to a projective embedding of X for any positive definite Hermitian form
λ. See Theorem 2.2.3 for a more complete statement. �

Definition 1.1.5. (1) An abelian variety is a complex torus that
can be embedded into a projective space.

(2) A polarization of an abelian variety X = V/U is an alternating
form λ :

∧2 U → Z which is the Chern class of an ample line
bundle.

With a suitable choice of a basis of U , λ can be represented by a
matrix

E =

(
0 D
−D 0

)
,

whereD is a diagonal matrixD = (d1, . . . , dn) for some non-negative in-
tegers d1, . . . , dn such that d1|d2| . . . |dn. The form E is non-degenerate
if these integers are nonzero. We call D = (d1, . . . , dn) the type of the
polarization λ. A polarization is called principal if its type is (1, . . . , 1).
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Corollary 1.1.6 (Riemann). A complex torus X = V/U can be em-
bedded as a closed complex submanifold into a projective space if and
only if there exists a positive definite hermitian form λ on V such that
the restriction of its imaginary part to U is a (symplectic) 2-form with
integral values.

Let us rewrite Riemann’s theorem in term of matrices. We choose a
C-basis e1, . . . , en for V and a Z-basis u1, . . . , u2n of U . Let Π be the
n × 2n-matrix Π = (λji) with ui =

∑n
j=1 λjiej for all i = 1, . . . , 2n. Π

is called the period matrix. Since λ1, . . . , λ2n form an R-basis of V , the

2n×2n-matrix

(
Π
Π

)
is invertible. The alternating form E :

∧2 U → Z

is represented by an alternating matrix, also denoted by E, with respect
to the Z-basis u1, . . . , u2n. The form λ : V ×V → C given by λ(x, y) =
E(ix, y) + iE(x, y) is hermitian if and only if ΠE−1 tΠ = 0. When this
condition is satisfied, the Hermitian form λ is positive definite if and
only if the symmetric matrix iΠE−1 tΠ is positive definite.

Corollary 1.1.7. A complex torus X = V/U defined by a period ma-
trix Π is an abelian variety if and only if there is a nondegenerate
alternating integral 2n× 2n matrix E such that

(1) ΠE−1 tΠ = 0,
(2) iΠE−1 tΠ > 0.

1.2. Quotients of the Siegel upper half space. LetX be an abelian
variety of dimension n over C and let E be a polarization of X of type
D = (d1, . . . , dn). There exists a basis u1, . . . , un, v1, . . . , vn of H1(X,Z)
with respect to which the matrix of E is of the form

E =

(
0 D
−D 0

)
.

A datum (X,E, (u•, v•)) is called a polarized abelian variety of type D
with symplectic basis. We are going to describe the moduli of polarized
abelian varieties of type D with symplectic basis.

The Lie algebra V of X is an n-dimensional C-vector space equipped
with a lattice U = H1(X,Z). Choose a C-basis e1, . . . , en of V . The
vectors e1, . . . , en, ie1, . . . , ien form an R-basis of V . The isomorphism
ΠR : U ⊗ R→ V is given by an invertible real 2n× 2n-matrix

ΠR =

(
Π11 Π12

Π21 Π22

)
.

The complex n × 2n-matrix Π = (Π1,Π2) is related to ΠR by the
relations Π1 = Π11 + iΠ21 and Π2 = Π12 + iΠ22.

Lemma 1.2.1. The set of polarized abelian varieties of type D with
symplectic basis is canonically in bijection with the set of GLC(V ) orbits
of isomorphisms of real vector spaces ΠR : U ⊗ R → V such that for
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all x, y ∈ V , we have E(Π−1
R ix,Π−1

R iy) = E(Π−1
R x,Π−1

R y) and that the
symmetric form E(Π−1

R ix,Π−1
R y) is positive definite.

There are at least two methods to describe this quotient. The first
one is more concrete but the second one is more suitable for general-
ization.

In each GLC(V ) orbit, there exists a unique ΠR such that Π−1
R ei =

1
di
vi for i = 1, . . . , n. Thus, the matrix ΠR has the form

ΠR =

(
Π11 D
Π21 0

)
and Π has the form Π = (Z,D), with

Z = Π11 + iΠ21 ∈Mn(C)

satisfying tZ = Z and im(Z) > 0.

Proposition 1.2.2. There is a canonical bijection from the set of po-
larized abelian varieties of type D with symplectic basis to the Siegel
upper half-space

Hn = {Z ∈Mn(C)| tZ = Z, im(Z) > 0}.
On the other hand, an isomorphism ΠR : U ⊗ R → V defines a

cocharacter h : C× → GL(U ⊗ R) by transporting the complex struc-
ture of V to U ⊗ R. It follows from the relation E(Π−1

R ix,Π−1
R iy) =

E(Π−1
R x,Π−1

R y) that the restriction of h to the unit circle S1 defines a
homomorphism h1 : S1 → SpR(U,E). Moreover, the GLC(V )-orbit of
ΠR : U ⊗ R → V is well determined by the induced homomorphism
h1 : S1 → SpR(U,E).

Proposition 1.2.3. There is a canonical bijection from the set of po-
larized abelian varieties of type D with symplectic basis to the set of
homomorphisms of real algebraic groups h1 : S1 → SpR(U,E) such that
the following conditions are satisfied:

(1) the complexification h1,C : Gm → Sp(U ⊗ C) gives rise to a
decomposition into direct sum of n-dimensional vector subspaces

U ⊗ C = (U ⊗ C)+ ⊕ (U ⊗ C)−

of weights +1 and −1;
(2) the symmetric form E(h1(i)x, y) is positive definite.

This set is a homogenous space under the action of Sp(U ⊗ R) acting
by inner automorphisms.

Let SpD be the Z-algebraic group of automorphisms of the symplectic
form E of type D. The discrete group SpD(Z) acts simply transitively
on the set of symplectic bases of U .

Proposition 1.2.4. There is a canonical bijection between the set of
isomorphy classes of polarized abelian varieties of type D and the quo-
tient SpD(Z)\Hn.
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According to H. Cartan, there is a way to give an analytical structure
to this quotient and then to prove that this quotient “is” indeed a
quasi-projective normal variety over C (more precisely, that it can be
endowed with a canonical embedding into a complex projective space
with an image whose closure is a projective normal variety).

1.3. Torsion points and level structures. Let X = V/U be an
abelian variety of dimension n. For every integer N , the group of N -
torsion points X[N ] = {x ∈ X|Nx = 0} can be identified with the
finite group N−1U/U that is isomorphic to (Z/NZ)2n. Let E be a
polarization of X of type D = (d1, . . . , dn) with (dn, N) = 1. The
alternating form E :

∧2 U → Z can be extended to a non-degenerate
symplectic form on U ⊗Q. The Weil pairing

(α, β) 7→ exp(2iπNE(α, β))

defines a symplectic non-degenerate form

eN : X[N ]×X[N ]→ µN ,

where µN is the group of N -th roots of unity, provided that N is rel-
atively prime to dn. Let us choose a primitive N-th root of unity, so
that the Weil pairing takes values in Z/NZ.

Definition 1.3.1. Let N be an integer relatively prime to dn. A prin-
cipal N-level structure of an abelian variety X with a polarization E
is an isomorphism from the symplectic module X[N ] to the standard
symplectic module (Z/NZ)2n given by the matrix

J =

(
0 In
−In 0

)
,

where In is the identity n× n-matrix.

Let Γ(N) be the subgroup of SpD(Z) consisting of the automorphisms
of (U,E) which induce the trivial action on U/NU .

Proposition 1.3.2. There is a natural bijection between the set of
isomorphy classes of polarized abelian varieties of type D equipped with
principal N-level structures and the quotient A0

n,N = ΓA(N)\Hn.

For N ≥ 3, the group Γ(N) does not contain torsion elements and
acts freely on the Siegel half-space Hn. The quotient A0

n,N is therefore
a smooth complex analytic space.

2. The moduli space of polarized abelian schemes

2.1. Polarizations of abelian schemes.

Definition 2.1.1. An abelian scheme over a scheme S is a smooth
proper group scheme with connected geometric fibers. Being a group
scheme, X is equipped with the following structures:

(1) a unit section eX : S → X;
9



(2) a multiplication morphism X ×S X → X;
(3) an inverse morphism X → X,

such that the usual axioms for abstract groups hold.

Recall the following classical rigidity lemma.

Lemma 2.1.2. Let X and X ′ be two abelian schemes over S and α :
X → X ′ be a morphism that sends the unit section of X to the unit
section of X ′. Then α is a homomorphism.

Proof. We summarize the proof when S is a point. Consider the map
β : X ×X → X ′ given by

β(x1, x2) = α(x1x2)α(x1)
−1α(x2)

−1.

We have β(eX , x) = eX′ for all x ∈ X. For any affine neighborhood
U ′ of eX′ in X ′, there exists an affine neighborhood U of eX such that
β(U × X) ⊂ U ′. For every u ∈ U , β maps the proper scheme u × X
into the affine U ′. It follows that the the restriction of β to u × X is
constant. Since β(u, eX) = eX′ , β(u, x) = eX′ for any x ∈ X. It follows
that β(u, x) = eX′ for any u, x ∈ X since X is irreducible. �

Let us mention two useful consequences of the rigidity lemma. Firstly,
the abelian scheme is necessarily commutative since the inverse mor-
phism X → X is a homomorphism. Secondly, given the unit section, a
smooth proper scheme can have at most one abelian scheme structure.
It suffices to apply the rigidity lemma for the identity of X.

An isogeny α : X → X ′ is a surjective homomorphism whose kernel
ker(α) is a finite group scheme over S. Let d be a positive integer. Let S
be a scheme such that all its residue characteristics are relatively prime
to d. Let α : X → X ′ be an isogeny of degree d and let K(α) be the
kernel of α. For every geometric point s ∈ S, K(α)s̄ is a discrete group
isomorphic to Z/d1Z × · · · × Z/dnZ with d1| · · · |dn and d1 . . . dn = d.
The function defined on the underlying topological space |S| of S which
maps a point s ∈ |S| to the type of K(α)s for any geometric point s
over s is a locally constant function. So it makes sense to talk about
the type of an isogeny of degree prime to all residue characteristics.

Let X be an abelian scheme over S. Consider the functor PicX/S
from the category of S-schemes to the category of abelian groups which
assigns to every S-scheme T the group of isomorphy classes of (L, ι),
where L is an invertible sheaf on X ×S T and ι is a trivialization
e∗XL ' OT along the unit section. See [2, p.234] for the following
theorem.

Theorem 2.1.3. Let X be a projective abelian scheme over S. Then
the functor PicX/S is representable by a smooth separated S-scheme
which is locally of finite presentation over S.
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The smooth scheme PicX/S equipped with the unit section corre-
sponding to the trivial line bundle OX admits a neutral component
Pic0

X/S which is an abelian scheme over S.

Definition 2.1.4. Let X/S be a projective abelian scheme. The dual

abelian scheme X̂/S is the neutral component Pic0(X/S) of the Picard
functor PicX/S. The Poincaré sheaf P is the restriction of the universal

invertible sheaf on X ×S PicX/S to X ×S X̂.

For every abelian scheme X/S, its bidual abelian scheme (i.e. the

dual abelian scheme of X̂/S) is canonically identified toX/S. For every

homomorphism α : X → X ′, we have a homomorphism α̂ : X̂ ′ → X̂.
If α is an isogeny, the same is true for α̂. A homomorphism α : X → X̂
is called symmetric if the equality α = α̂ holds.

Lemma 2.1.5. Let α : X → Y be an isogeny and let α̂ : Ŷ → X̂ be
the dual isogeny. There is a canonical perfect pairing

ker(α)× ker(α̂)→ Gm.

Proof. Let ŷ ∈ ker(α̂) and let Lŷ be the corresponding line bundle on
Y with a trivialization along the unit section. Pulling it back to X,
we get the trivial line bundle equipped with yet another trivialization
on ker(α). The difference between the two trivializations gives rise to
a homomorphism ker(α)→ Gm which defines the desired pairing. It is
not difficult to check that this pairing is perfect, see [13, p.143]. �

Let L ∈ PicX/S be an invertible sheaf over X with trivialized neutral
fibre Le = 1. For any point x ∈ X over s ∈ S, let Tx : Xs → Xs be the
translation by x. The invertible sheaf T ∗xL⊗L−1 ⊗L−1

x has trivialized
neutral fibre

(T ∗xL⊗ L−1 ⊗ L−1
x )e = Lx ⊗ L−1

e ⊗ L−1
x = 1 ,

so, L defines a morphism λL : X → PicX/S. Since the fibres of X are

connected, λL factors through the dual abelian scheme X̂ and gives
rise to a morphism

λL : X → X̂.

Since λL sends the unit section of X on the unit section of X̂, the
morphism of schemes λL is necessarily a homomorphism of abelian
schemes. Let us denote by K(L) the kernel of λL.

Lemma 2.1.6. For every line bundle L on X with a trivialization
along the unit section, the homomorphism λL : X → X̂ is symmetric.
If moreover, L = x̂∗P for some section x̂ : S → X̂, then λL = 0.
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Proof. By construction, the homomorphism λL : X → X̂ represents
the line bundle m∗L⊗ p∗1L−1 ⊗ p∗2L−1 on X ×X, where m is the mul-
tiplication and p1, p2 are projections, equipped with the obvious trivi-
alization along the unit section. As this line bundle is symmetric, the
homomorphism λL is symmetric.

If L = OX with the obvious trivialization along the unit section, it
is immediate that λL = 0. Now for any L = x̂∗P , L can be deformed
continuously to the trivial line bundle and it follows that λL = 0. In
order to make the argument rigorous, one can consider the universal
family over X̂ and apply the rigidity lemma. �

Definition 2.1.7. A line bundle L over an abelian scheme X equipped
with a trivialization along the unit section is called non-degenerate if
λL : X → X̂ is an isogeny.

In the case where the base S is Spec(C) and X = V/U , L is non-
degenerate if and only if the associated Hermitian form on V is non-
degenerate.

Let L be a non-degenerate line bundle on X with a trivialization
along the unit section. The canonical pairing K(L) × K(L) → Gm,S

is then symplectic. Assume S is connected with residue characteristics
prime to the degree of λL. So, there exists d1| . . . |ds such that for
every geometric point s ∈ S the abelian group K(L)s is isomorphic
to (Z/d1Z × · · · × Z/dnZ)2. We call D = (d1, . . . , dn) the type of the
polarization λ

Definition 2.1.8. Let X/S be an abelian scheme. A polarization of

X/S is a symmetric isogeny λ : X → X̂ which locally for the étale
topology of S, is of the form λL for some ample line bundle L of X/S.

In order to make this definition workable, we will need to recall
basic facts about cohomology of line bundles on abelian varieties. See
corollary 2.2.4 in the next paragraph.

2.2. Cohomology of line bundles on abelian varieties. We are
going to recollect some known facts about the cohomology of line bun-
dles on abelian varieties. For the proofs, see [13, p.150]. Let X be an
abelian variety over a field k. Let

χ(L) =
∑
i∈Z

dimk Hi(X,L)

be the Euler characteristic of L.

Theorem 2.2.1 (Riemann-Roch theorem). For any line bundle L on
X, if L = OX(D) for a divisor D, we have

χ(L) =
(Dg)

g!
,

where (Dg) is the g-fold self-intersection number of D.
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Theorem 2.2.2 (Mumford’s vanishing theorem). Let L be a line bun-
dle on X such that K(L) is finite. There exists a unique integer
i = i(L) with 0 ≤ i ≤ n = dim(X) such that Hj(X,L) = 0 for j 6= i
and Hi(X,L) 6= 0. Moreover, L is ample if and only if i(L) = 0. For
every m ≥ 1, i(L⊗m) = i(L).

Assume S = Spec(C), X = V/U with V = Lie(X) and U a lattice
in V . Then the Chern class of L corresponds to a Hermitian form H
and the integer i(L) is the number of negative eigenvalues of H.

Theorem 2.2.3. For any ample line bundle L on an abelian variety
X, the line bundle L⊗m is base-point free if m ≥ 2 and it is very ample
if m ≥ 3.

Since L is ample, i(L) = 0 and consequently dimk H0(X,L) = χ(L) >
0. There exists an effective divisor D such that L ' OX(D). Since

λL : X → X̂ is a homomorphism, the divisor T ∗x (D) + T ∗−x(D) is
linearly equivalent to 2D and T ∗x (D) + T ∗y (D) + T ∗−x−y(D) is linearly
equivalent to 3D. By moving x, y ∈ X we get a lot of divisors linearly
equivalent to 2D and to 3D. The proof is based on this fact and on
the formula for the dimension of H0(X,L⊗m). For a detailed proof, see
[13, p.163]. �

Corollary 2.2.4. Let X → S be an abelian scheme over a connected
base and let L be an invertible sheaf on X such that K(L) is a finite
group scheme over S. If there exists a point s ∈ S such that Ls is
ample on Xs, then L is relatively ample for X/S.

Proof. For t varying in S, the function t 7→ dim Hi(Xt, Lt) is upper
semi-continuous. Hence Ui := {t ∈ S | Hj(X,L) = 0for all j 6= i}
is open. By Mumford’s vanishing theorem, the collection of U ′

is is a
disjoint open partition of S. Since Ls is ample, H0(Xs, Ls) 6= 0 thus
s ∈ U0. As U0 6= ∅ and S is connected, we have U0 = S. If Lt is ample
(which is the case for any t ∈ S as we have just seen), L is relatively
ample on X over a neighborhood of t in S. �

2.3. An application of G.I.T. Let us fix two positive integers n ≥ 1,
N and a type D = (d1, . . . , dn) with d1| . . . |dn, where dn is prime to N .
Let A be the functor which assigns to a Z[(Ndn)

−1]-scheme S the set
of isomorphy classes of polarized S-abelian schemes of type D: for any
such S, A(S) is the set of isomorphy classes of triples (X,λ, η), where

(1) X is an abelian scheme over S ;

(2) λ : X → X̂ is a polarization of type D ;
(3) η is a symplectic similitude (Z/NZ)2n ' X[N ] .

In the third condition, (Z/NZ)2n and X[N ] are respectively endowed
with the symplectic pairing (1.3.1) and with the Weil pairing, which
is the symplectic pairing X[N ] ×S X[N ] → µN,S obtained from the

pairing X[N ] ×S X̂[N ] → µN,S of lemma 2.1.5 (applied to the special
13



case where α is the multiplication by N) by composing it with the

morphism X[N ]→ X̂[N ] induced by λ.

Theorem 2.3.1. If N is large enough (with respect to D; in the special
case of principal polarizations, where D = (1, . . . 1), any N ≥ 3 is large
enough) the functor A defined above is representable by a smooth quasi-
projective Z[(Ndn)

−1]-scheme.

Proof. Let X be an abelian scheme over S and X̂ its dual abelian
scheme. Let P be the Poincaré line bundle over X×S X̂ equipped with
a trivialization over the neutral section eX ×S idX̂ : X̂ → X ×S X̂ of
X. Let L∆(λ) be the line bundle over X obtained by pulling back the
Poincaré line bundle P

L∆(λ) = (idX , λ)∗P

by the composite homomorphism

(idX , λ) = (idX × λ) ◦∆ : X → X ×S X → X ×S X̂ ,

where ∆ : X → X ×S X is the diagonal. The line bundle L∆(λ) gives

rise to a symmetric homomorphism λL∆(λ) : X → X̂.

Lemma 2.3.2. The equality λL∆(λ) = 2λ holds.

Proof. Locally for étale topology, we can assume λ = λL for some line
bundle over X which is relatively ample. Then

L∆(λ) = ∆∗(idX × λ)∗P = ∆∗(µ∗L⊗ pr1L
−1 ⊗ pr2L

−1).

It follows that

L∆(λ) = (2)∗L⊗ L−2

where (2) : X → X is the multiplication by 2. As for every N ∈ N,
λ(N)∗L = N2λL, and in particular λ(2)∗L = 4λL, we obtain the desired
equality λL∆(λ) = 2λ. �

Since locally over S, λ = λL for a relatively ample line bundle L,
the line bundle L∆(λ) is a relatively ample line bundle, and L∆(λ)⊗3

is very ample. It follows that its higher direct images by π : X → S
vanish

Riπ∗L
∆(λ)⊗3 = 0 for all i ≥ 1

and that M = π∗L
∆(λ) is a vector bundle of rank

m+ 1 := 6nd

over S, where d = d1 · · · dn.

Definition 2.3.3. A linear rigidification of a polarized abelian scheme
(X,λ) is an isomorphism

α : PmS → PS(M) ,
14



where M = π∗L(λ). In other words, a linear rigidification of a polar-
ized abelian scheme (X,λ) is a trivialization of the PGL(m+ 1)-torsor
associated to the vector bundle M of rank m+ 1.

Let H be the functor that assigns to every scheme S the set of iso-
morphy classes of quadruples (X,λ, η, α), where (X,λ, η) is a polarized
abelian scheme over S of type D with level structure η and α is a linear
rigidification. Forgetting α, we get a functorial morphism

H → A
which is a PGL(m+ 1)-torsor.

The line bundle L∆(λ)⊗3 provides a projective embedding

X ↪→ PS(M).

Using the linear rigidification α, we can embed X into the standard
projective space

X ↪→ PmS .
For every r ∈ N, the higher direct images vanish

Riπ∗L
∆(λ)⊗3r = 0 for all i > 0

and π∗L
∆(λ)⊗3r is a vector bundle of rank 6ndrn so that we have a

functorial morphism

f : Hn → HilbQ(t),1(Pm)

(where HilbQ(t),1(Pm) is the Hilbert scheme of 1-pointed subschemes
of Pm with Hilbert polynomial Q(t) = 6ndtn) sending (X,λ, α) to the
image of X in Pm pointed by the unit of X.

Proposition 2.3.4. The morphism f identifies H with an open sub-
functor of HilbQ(t),1(Pm) which consist of pointed smooth subschemes
of Pm.

Proof. Since a smooth projective pointed variety X has at most one
abelian variety structure, the morphism f is injective. Following the-
orem 2.4.1 of the next paragraph, any smooth projective morphisme
f : X → S over a geometrically connected base S with a section
e : S → X has an abelian scheme structure if and only if one geometric
fiber Xs does. �

Since a polarized abelian varieties with principal N -level structure
has no trivial automorphisms (see [15]), PGL(m+ 1) acts freely on H.
We take A as the quotient of H by the free action of PGL(m + 1).
The construction of this quotient as a scheme requires nevertheless a
quite technical analysis of stability. If N is large enough, then X[N ] ⊂
X ⊂ Pm is not contained in any hyperplane; furthermore, no more
than N2n/m+1 points from these N -torsion points can lie in the same
hyperplane of Pm. In that case, (A, λ, η, α) is a stable point. In the
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general case, we can increase the level structures and then perform a
quotient by a finite group. See [14, p.138] for a complete discussion. �

2.4. Spreading the abelian scheme structure. Let us now quote
a theorem of Grothendieck [14, theorem 6.14].

Theorem 2.4.1. Let S be a connected noetherian scheme. Let X →
S be a smooth projective morphism equipped with a section e : S →
X. Assume for one geometric point s = Spec(κ(s)), Xs is an abelian
variety over κ(s) with neutral point ε(s). Then X is an abelian scheme
over S with neutral section ε.

Let us consider first the infinitesimal version of this assertion.

Proposition 2.4.2. Let S = Spec(A), where A is an Artin local ring.
Let m be the maximal ideal of A and let I be an ideal of A such that
mI = 0. Let S0 = Spec(A/I). Let f : X → S be a proper smooth
scheme with a section e : S → X. Assume that X0 = X ×S S0 is an
abelian scheme with neutral section e0 = e|S0. Then X is an abelian
scheme with neutral section e.

Proof. Let k = A/m and X = X⊗A k. Let µ0 : X0×S0X0 → X0 be the
morphism µ0(x, y) = x− y and let µ : X ×k X → X be the restriction
of µ0. The obstruction to extending µ0 to a morphism X ×S X → X
is an element

β ∈ H1(X ×X,µ∗TX ⊗k I)

where TX is the tangent bundle of X which is a trivial vector bundle
of fibre Lie(X). Thus, by Kunneth formula

H1(X×X,µ∗TX⊗k I) = (Lie(X)⊗kH1(X))⊕ (H1(X)⊗k Lie(X))⊗k I.

Consider g1, g2 : X0 → X0 ×S0 X0 with g1(x) = (x, e) and g2(x) =
(x, x). The endomorphisms of X0, µ0 ◦ g1 = idX0 and µ0 ◦ g2 = (e ◦ f)
extend in an obvious way to X so that the obstruction classes β1 = g∗1β
and β2 = g∗2β must vanish. Since one can express β in terms of β1 and
β2 by the Kunneth formula, β vanishes too.

The set of all extensions µ of µ0 is a principal homogenous space
under

H0(X ×k X,µ∗TX ⊗k I).
Among these extensions, there exists a unique µ such that µ(e, e) = e
which provides a group scheme structure on X/S. �

We can extend the abelian scheme structure to an infinitesimal neigh-
borhood of s. This structure can be algebrized and then descend to a
Zariski neightborhood since the abelian scheme structure is unique if
it exists. It remains to prove the following lemma due to Koizumi.
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Lemma 2.4.3. Let S = Spec(R), where R is a discrete valuation ring
with generic point η. Let f : X → S be a proper and smooth morphism
with a section e : S → X. Assume that Xη is an abelian variety with
neutral point e(η). Then X is an abelian scheme with neutral section
e.

Proof. Suppose R is henselian. Since X → S is proper and smooth,
the inertia group I acts trivially on Hi(Xη,Q`). By Grothendieck-Ogg-
Shafarevich’s criterion, there exists an abelian scheme A over S with
Aη = Xη and A is the Néron model of Aη. By the universal property
of Néron’s model there exists a morphism π : X → A extending the
isomorphism Xη ' Aη. Let L be a relatively ample invertible sheaf
on X/S. Choose a trivialization on the unit point of Xη = Aη. Then
Lη with the trivialization on the unit section extends uniquely on A
to a line bundle L′ since Pic(A/S) satisfies the valuative criterion for
properness. It follows that, over the closed point s of S, π∗L′s and Ls
have the same Chern class. If π has a fiber of positive dimension then
the restriction to that fiber of π∗L′s is trivial. On the contrary, the
restriction of Ls to that fiber is still ample. This contradiction implies
that all fibers of π have dimension zero. The finite birational morphism
π : X → A is necessarily an isomorphism according to Zariski’s main
theorem. �

2.5. Smoothness. In order to prove that A is smooth, we will need
to review Grothendieck-Messing’s theory of deformations of abelian
schemes.

Let S = Spec(R) be a thickening of S = Spec(R/I) with I2 = 0,
or more generally, locally nilpotent and equipped with a structure of
divided power. According to Grothendieck and Messing, we can attach
to an abelian scheme A of dimension n over S a locally free OS-module
of rank 2n

H1
cris(A/S)S

such that
H1

cris(A/S)S ⊗OS
OS = H1

dR(A/S).

We can associate with every abelian scheme A/S such that A×SS = A
a sub-OS-module

ωA/S ⊂ H1
dR(A/S) = H1

cris(A/S)S

which is locally a direct factor of rank n and which satisfies

ωA/S ⊗OS
OS = ωA/S.

Theorem 2.5.1 (Grothendieck-Messing). The functor defined as above,
from the category of abelian schemes A/S with A×S S = A to the cat-
egory sub-OS-modules ω ⊂ H1(A/S)S which are locally a direct factor
such that

ω ⊗OS
OS = ωA/S
17



is an equivalence of categories.

See [10, p.151] for the proof of this theorem.
Let S = Spec(R) be a thickening of S = Spec(R/I) with I2 =

0. Let A be an abelian scheme over S and λ be a polarization of A
of type (d1, . . . , ds) with integers di relatively prime to the residual
characteristics of S. The polarization λ induces an isogeny

ψλ : A→ A
∨
,

where A
∨

is the dual abelian scheme of A/S. Since the degree of the
isogeny is relatively prime to the residual characteristics, it induces an
isomorphism

H1
cris(A

∨
/S)S → H1

cris(A/S)S

or a bilinear form ψλ on H1
cris(A/S)S which is a symplectic form. The

module of relative differentials ωA/S is locally a direct factor of

H1
cris(A/S)S which is isotropic with respect to the symplectic form ψλ.

It is known that the Lagrangian grassmannian is smooth so that one
can lift ωA/S to a locally direct factor of H1

cris(A/S)S which is isotropic.

According to Grothendieck-Messing’s theorem, we get a lifting of A to
an abelian scheme A/S with a polarization λ that lifts λ. �

2.6. Adelic description and Hecke correspondences. Let X and
X ′ be abelian varieties over a base S. A homomorphism α : X → X ′

is an isogeny if one of the following conditions is satisfied

• α is surjective and ker(α) is a finite group scheme over S ;
• there exists α′ : X ′ → X such that α′ ◦ α is the multiplication

by N in X and α ◦α′ is the multiplication by N in X ′ for some
positive integer N .

A quasi-isogeny is an equivalence class of pairs (α,N) formed by an
isogeny α : X → X ′ and a positive integer N , where (α,N) ∼ (α′, N ′)
if and only if N ′α = Nα′. Obviously, we think of the equivalence class
(α,N) as N−1α.

Fix n,N,D as in 2.3. There is another description of the category A
which is less intuitive but more convenient when we have to deal with
level structures.

Let U be a free Z-module of rank 2n and let E be an alternating
form U × U → MU with value in some rank one free Z-module MU .
Assume that the type of E is D. Let G be the group of symplectic
similitudes of (U,MU) which associates to any ring R the group G(R)
of pairs (g, c) ∈ GL(U ⊗R)×R× such that

E(gx, gy) = cE(x, y)

for every x, y ∈ U ⊗ R. Thus G is a group scheme defined over Z
which is reductive over Z[1/d]. For every prime ` 6= p, let KN,` be the
compact open subgroup of G(Q`) defined as follows:
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• if ` 6 |N , then K` = G(Z`) ;
• if `|N , then K` is the kernel of the homomorphism G(Z`) →
G(Z`/NZ`).

Fix a prime p not dividing N nor D. Let Z(p) be the localization of
Z obtained by inverting all the primes ` different from p.

For every scheme S whose residual characteristics are 0 or p, we
consider the groupoid A′(S) defined as follows:

(1) objets of A′ are triples (X,λ, η̃), where
• X is an abelian scheme over S;
• λ : X → X̂ is a Z(p) multiple of a polarization of degree

prime to p, such that for every prime ` and for every s ∈ S,
the symplectic form induced by λ on H1(Xs,Q`) is similar
to U ⊗Q`;
• for every prime ` 6= p, η̃` is a KN,`-orbit of symplectic

similitudes from H1(Xs,Q`) to U ⊗ Q` which is invariant
under π1(S, s). We assume that for almost all prime `, this
KN,`-orbit corresponds to the auto-dual lattice H1(Xs,Z`).

(2) a homomorphism α ∈ HomA′((X,λ, η), (X
′, λ′, η′)) is a quasi-

isogeny α : X → X ′ of degree prime to p such that α∗(λ′) and
λ differ by a scalar in Z×

(p) and α∗(η′) = η.

Consider the functor A → A′ which assigns to (X,λ, η) ∈ A(S) the
triple (X,λ, η̃) ∈ A′(S), where the η̃` are defined as follows. Let s be a
geometric point of S. Let ` be a prime not dividing N and D. Giving
a symplectic similitude from H1(Xs,Q`) to U ⊗Q` up to the action of
KN,` is equivalent to giving an auto-dual lattice of H1(Xs,Q`). The
KN,`-orbit is stable under π1(S, s) if and only the auto-dual lattice is
invariant under π1(S, s). We pick the obvious choice H1(Xs,Z`) as the
auto-dual lattice of H1(Xs,Q`) which is invariant under π1(S, s). If `
divides D, we want a π1(S, s)-invariant lattice such that the restriction
of the Weil symplectic pairing is of type D. Again, H1(Xs,Z`) ful-
fills this property. If ` divides N , giving a symplectic similitude from
H1(Xs,Q`) to U ⊗ Q` up to the action of KN,` is equivalent to giving
an auto-dual lattice of H1(Xs,Q`) and a rigidification of the pro-`-part
of N torsion points of Xs. But this is provided by the level structure
η` in the moduli problem A.

Proposition 2.6.1. The above functor is an equivalence of categories.

Proof. As defined, it is obviously faithful. It is full because a quasi-
isogeny α : X → X ′ which induces an isomorphism α∗ : H1(X

′,Z`) →
H1(X,Z`) is necessarily an isomorphism of abelian schemes. By as-
sumption α carries λ to a rational multiple of λ′. But both λ and λ′

are polarizations of the same type, so α must carry λ to λ′. This proves
that the functor is fully faithful.
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The essential surjectivity is derived from the fact that we can modify
an abelian scheme X equipped with a level structure η̃ by a quasi-
isogeny α : X → X ′ so that the composed isomorphism

U ⊗Qp ' H1(X,Qp) ' H1(X
′,Qp)

identifies U ⊗ Zp with H1(X
′,Zp). There is a unique way to choose a

rigidification η of X ′[N ] compatible with η̃p for p|N . Since the sym-
plectic form E on U is of type (D,D), the polarization λ on X ′ is also
of this type. �

Let us now describe the points of A′ with values in C. Consider an
objet of (X,λ, η̃) ∈ A′(C) equipped with a symplectic basis of H1(X,Z).
In this case, since λ is a Z(p)-multiple of a polarization of X, it is given
by an element of

h±n = {Z ∈Mn(C)| tZ = Z,±im(Z) > 0} .
For all ` 6= p, η̃` defines an element of G(Qp)/Kp. At p, the integral
Tate module H1(X,Zp) defines an element of G(Qp)/G(Zp). It follows
that

A′(C) = G(Q)\[h±n ×G(Af )/KN ] ,

where KN =
∏

` 6=pKN,` ×G(Zp).
One of the advantages of the prime description of the moduli problem

is that we can replace the principal compact open subgroupsKN by any
compact open subgroup K =

∏
K` ⊂ G(Af ) such that Kp = G(Zp),

thus obtaining a Z(p)-scheme AK . In the general case, the proof of the
representability is reduced to the principal case.

Using this description, it is also easy to define the Hecke operators,
as follows. Let K = K(p) × G(Zp), where K(p) is a compact open

subgroup of G(A(p)
f ), and let g ∈ G(A(p)

f ). We have a morphism

AK −→ Ag−1Kg

(X,λ, η̃K) 7→ (X,λ, η̃K ◦ g = η̃ ◦ g(g−1Kg)

(here we use the notation η̃K for the K-orbit η̃ to emphasize the fact
that it is an orbit). We then get a Hecke correspondence

AK ← AK∩gKg−1 → AgKg−1 → AK ,
where the right arrow is induced by g as above and the other ones are
obvious morphisms (when K ′ ⊂ K, the orbit η̃K ′ defines an orbit η̃K).

3. Shimura varieties of PEL type

3.1. Endomorphisms of abelian varieties. Let X be an abelian
variety of dimension n over an algebraically closed field k. Let End(X)
be the ring of endomorphisms of X and let EndQ(X) = End(X) ⊗ Q.
If k = C and X = V/U , then we have two faithful representations

ρa : End(X)→ EndC(V ) and ρr : End(X)→ EndZ(U).
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It follows that End(X) is a torsion free abelian group of finite type.
Over arbitrary field k, we need to recall the notion of Tate module.
Let ` be a prime different from the characteristic of k then for every
m, the kernel X[`m] of the multiplication by `m in X is isomorphic to
(Z/`mZ)2n.

Definition 3.1.1. The Tate module T`(X) is the limit

T`(X) = lim←−X[`n]

of the inverse system given by the multiplication by ` : X[`n+1]→ X[`n].
As an Z`-module, T`(X) ' Z2n

` (non canonically). The rational Tate
module is V` = T` ⊗Z`

Q`.

We can identify the Tate module T`(X) with the first étale homol-
ogy H1(X,Z`) which by definition is the dual of H1(X,Z`). Similarly,
V`(X) = H1(X,Q`).

Theorem 3.1.2. For any abelian varieties X,Y over k, Hom(X, Y ) is
a finitely generated abelian group, and the natural map

Hom(X, Y )⊗ Z` → HomZ`
(T`(X), T`(Y ))

is injective.

See [13, p.176] for the proof.

Definition 3.1.3. An abelian variety is called simple if it does not
admit any strict abelian subvariety.

Proposition 3.1.4. If X is a simple abelian variety, EndQ(X) is a
division algebra.

Proof. Let f : X → X be a non-zero endomorphism of X. The identity
component of its kernel is a strict abelian subvariety of X which must
be zero. Thus the whole kernel of f is a finite group and the image of
f is all X for dimensional reason. It follows that f is an isogeny and
therefore invertible in EndQ(X). Thus EndQ(X) is a division algebra.
�

Theorem 3.1.5 (Poincaré). Every abelian variety X is isogenous to a
product of simple abelian varieties.

Proof. Let Y be an abelian subvariety of X. We want to prove the
existence of a quasi-supplement of Y inX that is a subabelian variety Z
of X such that the homomorphism Y ×Z → X is an isogeny. Let X̂ be
the dual abelian variety and let π̂ : X̂ → Ŷ be the dual homomorphism
to the inclusion Y ⊂ X. Let L be an ample line bundle over X and
λL : X → X̂ the isogeny attached to L. By restriction to Y , we get a
homomorphism π̂ ◦ λL|Y : Y → Ŷ which is surjective since L|Y is still
an ample line bundle. Therefore the kernel Z of the homomorphism
π̂ ◦ λL : X → Ŷ is a quasi-complement of Y in X. �

21



Corollary 3.1.6. EndQ(X) is a semi-simple algebra of finite dimen-
sion over Q.

Proof. If X is isogenous to
∏

iX
mi
i , where the Xi are mutually non-

isogenous abelian varieties andmi ∈ N. Then EndQ(X) =
∏

iMmi
(Di),

where Mmi
(Di) is the algebra of mi ×mi-matrices over the skew-field

Di = EndQ(Xi). �

We have a function

deg : End(X)→ N
defined by the following rule : deg(f) is the degree of the isogeny f if f
is an isogeny and deg(f) = 0 if f is not an isogeny. Using the formula
deg(mf) = m2ndeg(f) for all f ∈ End(X), m ∈ Z and n = dim(X),
we can extend this function to EndQ(X)

deg : EndQ(X)→ Q+.

For every prime ` 6= char(k), we have a representation of the endo-
morphism algebra

ρ` : EndQ(X)→ End(V`).

These representations for different ` are related by the degree function.

Theorem 3.1.7. For every f ∈ EndQ(X), we have

deg(f) = det ρ`(f) and deg(n.1X − f) = P (n) ,

where P (t) = det(t − ρ`(f)) is the characteristic polynomial of ρ`(f).
In particular, tr(ρ`(f)) is a rational number which is independent of `.

Let λ : X → X̂ be a polarization of X. One attaches to λ an
involution on the semi-simple Q-algebra EndQ(X). 1

Definition 3.1.8. The Rosati involution on EndQ(X) associated with
λ is the involution defined by the following formula

f 7→ f ∗ = λ−1f̂λ

for every f ∈ EndQ(X).

The polarization λ : X → X̂ induces an alternating form X[`m] ×
X[`m] → µ`m for every m. By passing to the limit on m, we get a
symplectic form

E : V`(X)× V`(X)→ Q`(1).

By definition f ∗ is the adjoint of f for this symplectic form

E(fx, y) = E(x, f ∗y).

Theorem 3.1.9. The Rosati involution is positive. That is, for every
f ∈ EndQ(X), tr(ρλ(ff

∗)) is a positive rational number.

1Our convention is that an involution of a non-commutative ring satisfies the
relation (xy)∗ = y∗x∗.
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Proof. Let λ = λL for some ample line bundle L. One can prove the
formula

trρ`(ff
∗) =

2n(Ln−1.f ∗(L))

(Ln)
.

Since L is ample, the cup-product (Ln−1.f ∗(L)) (resp. Ln) is the num-
ber of intersection of an effective divisor f ∗(L) (resp. L) with n − 1
generic hyperplanes of |L|. Since L is ample, these intersection numbers
are positive integers. �

Let X be an abelian variety over C equipped with a polarization λ.
The semi-simple Q-algebra B = EndQ(X) is equipped with

(1) a complex representation ρa and a rational representation ρr
satisfying ρr ⊗Q C = ρa ⊕ ρa, and

(2) an involution b 7→ b∗ such that for all b ∈ B − {0}, we have
trρr(bb

∗) > 0.

Suppose that B is a simple algebra of center F . Then F is a number
field equipped with a positive involution b 7→ b∗ restricted from B.
There are three possibilities:

(1) The involution is trivial on F . Then F is a totally real num-
ber field (involution of first kind). In this case, B ⊗Q R is a
product of Mn(R) or a product of Mn(H), where H is the alge-
bra of Hamiltonian quaternions, equipped with their respective
positive involutions (case C and D).

(2) The involution is non-trivial on F . Then its fixed points form
a totally real number field F0 and F is a totally imaginary
quadratic extension of F0 (involution of second kind). In this
case, B ⊗Q R is a product of Mn(C) equipped with its positive
involution (case A).

3.2. Positive definite Hermitian forms. Let B be a semisimple
algebra of finite dimension over R with an involution. A Hermitian
form on a B-module V is a symmetric form V × V → R such that
(bv, w) = (v, b∗w). It is positively definite if (v, v) > 0 for all v ∈ V .

Lemma 3.2.1. The following assertions are equivalent

(1) There exists a faithful B-module V such that tr(xx∗, V ) > 0 for
all x ∈ B − {0}.

(2) The above is true for every faithful B-module V .
(3) trB/R(xx∗) > 0 for all nonzero x ∈ B.

3.3. Skew-Hermitian modules. Summing up what has been said
in the last two sections, the tensor product with Q of the algebra of
endomorphisms of a polarized abelian variety is a finite-dimensional
semi-simple Q-algebra equipped with a positive involution. For every
prime ` 6= char(k), this algebra has a representation on the Tate module
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V`(X) which is equipped with a symplectic form. We are now going to
look at this structure in a more axiomatic way.

Let k be a field. Let B be a finite-dimensional semisimple k-algebra
equipped with an involution ∗. Let β1, . . . , βr be a basis of B as a
k-vector space. For any finite-dimensional B-module V we can define
a polynomial detV ∈ k[x1, . . . , xr] by the formula

detV = det(x1β1 + · · ·+ xrβr, V ⊗k k[x1, . . . , xr])

Lemma 3.3.1. Two finite-dimensional B-modules V and U are iso-
morphic if and only if detV = detU .

Proof. If k is an algebraically closed field, B is a product of matrix
algebras over k. The lemma follows from the classification of modules
over a matrix algebra. Now let k be an arbitrary field and k its alge-
braic closure. The group of automorphisms of a B-module is itself the
multiplicative group of a semi-simple k-algebra, so it has trivial Galois
cohomology. This allows us to descend from the algebraic closure k to
k. �

Definition 3.3.2. A skew-Hermitian B-module is a B-module U en-
dowed with a symplectic form

U × U →MU

with values in a 1-dimensional k-vector space MU such that (bx, y) =
(x, b∗y) for any x, y ∈ V and b ∈ B.

An automorphism of a skew-Hermitian B-module U is pair (g, c),
where g ∈ GLB(U) and c ∈ Gm,k such that (gx, gy) = c(x, y) for
any x, y ∈ U . The group of automorphisms of the skew-Hermitian
B-module U is denoted by G(U).

If k is an algebraically closed field, two skew-Hermitian modules V
and U are isomorphic if and only if detV = detU . In general, the
set of skew-Hermitian modules V with detV = detU is classified by
H1(k,G(U)).

Let k = R, let B be a finite-dimensional semi-simple algebra over R
equipped with an involution and let U be a skew-Hermitian B-module.
Let h : C → EndB(UR) be such that (h(z)v, w) = (v, h(z)w) and such
that the symmetric bilinear form (v, h(i)w) is positive definite.

Lemma 3.3.3. Let h, h′ : C → EndB(UR) be two such homomor-
phisms. Suppose that the two B ⊗R C-modules U induced by h and h′

are isomorphic. Then h and h′ are conjugate by an element of G(R).

Let B be a finite-dimensional simple Q-algebra equipped with an
involution and let UQ be a skew-Hermitian module UQ × UQ → MUQ .
An integral structure is an order OB of B and a free abelian group U
equipped with multiplication by OB and an alternating form U ×U →
MU of which the generic fibre is the skew Hermitian module UQ.
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3.4. Shimura varieties of type PEL. Let us fix a prime p. We will
describe the PEL moduli problem over a discrete valuation ring with
residual characteristic p under the assumption that the PEL datum is
unramified at p.

Definition 3.4.1. A rational PE-structure (polarization and endomor-
phism) is a collection of data as follows:

(1) B is a finite-dimensional simple Q-algebra such that that BQp

is a product of matrix algebra over unramified extensions of Qp;
(2) ∗ is a positive involution of B;
(3) UQ is a skew-Hermitian B-module;
(4) h : C → EndB(UR) is a homomorphism such that (h(z)v, w) =

(v, h(z)w) and such that the symmetric bilinear form (v, h(i)w)
is positive definite.

The homomorphism h induces a decomposition UQ⊗Q C = U1⊕U2,
where h(z) acts on U1 by z and on U2 by z. Let us choose a basis
β1, . . . , βr of the Q-vector space B. Let x1, . . . , xr be indeterminates.
The determinant polynomial

detU1 = det(x1β1 + · · ·+ xrβr, U1 ⊗ C[x1, . . . , xr])

is a homogenous polynomial of degree dimC U1. The subfield of C gen-
erated by the coefficients of the polynomial detU1 is a number field
which is independent of the choice of the basis β1, . . . , βt. The above
number field E is called the reflex field of the PE-structure. Equiva-
lently, E is the definition field of the isomorphy class of the BC-module
U1.

Definition 3.4.2. An integral PE structure consists of a rational PE
structure equipped with the following extra data:

(5) OB is an order of B which is stable under ∗ and maximal at p;
(6) U is an OB-integral structure of the skew-Hermitian module UQ.

Assuming that the basis β1, . . . , βr chosen above is a Z-basis of OB,
we see that the coefficients of the determinant polynomial detU1 lie in
O = OE ⊗Z Z(p).

Fix an integer N ≥ 3. Consider the moduli problem B of abelian
schemes with a PE-structure and with principal N -level structures.
The functor B assigns to any O-scheme S the category B(S) whose
objects are

(A, λ, ι, η) ,

where

(1) A is an abelian scheme over S;

(2) λ : A→ Â is a polarization;
(3) ι : OB → End(A) is a homomorphism such that the Rosati

involution induced by λ restricts to the involution ∗ of OB,

det(β1X1 + · · · βrxr,Lie(A)) = detU1
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and for every prime ` 6= p and every geometric point s of S, the
Tate module T`(As), equipped with the action of OB and with
the alternating form induced by λ, is similar to U ⊗ Z`;

(4) η is a similitude from A[N ] equipped with the symplectic form
and the action of OB to U/NU that can be lifted to an isomor-
phism H1(As,Ap

f ) with U ⊗Z Ap
f , for every geometric point s of

S.

Theorem 3.4.3. The functor which assigns to each E-scheme S the
set of isomorphy classes B(S) is smooth and representable by a quasi-
projective scheme over OE ⊗ Z(p).

Proof. For ` 6= p, the isomorphy class of the skew-Hermitian module
Tλ(As) is locally constant with respect to s so that we can forget the
condition on this isomorphy class in the representability problem.

By forgetting endomorphisms, we have a morphism B → A. To
have ι is equivalent to having actions of β1, . . . , βr satisfying certain
conditions. Therefore, to prove that B → A is representable by a
projective morphism it is enough to prove the following lemma.

Lemma 3.4.4. Let A be a projective abelian scheme over a locally
noetherian scheme S. Then the functor that assigns to every S-scheme
T the set End(AT ) is representable by a disjoint union of projective
schemes over S.

Proof. The graph of an endomorphism b of A is a closed subscheme of
A×S A so that the functor of endomorphisms is a subfunctor of some
Hilbert scheme. Let’s check that this subfunctor is representable by a
locally closed subscheme of the Hilbert scheme.

Let Z ⊂ A ×S A be a closed subscheme flat over a connected base
S. Let’s check that the condition s ∈ S such that Zs is a graph is
an open condition. Suppose that p1 : Zs → As is an isomorphism
over a point s ∈ S. By flatness, the relative dimension of Z over S is
equal to that of A. For every s ∈ S and every a ∈ A, the intersection
Zs∩{a}×As is either of dimension bigger than 0 or consists of exactly
one point since the intersection number is constant under deformation.
This implies that the morphism p1 : Z → A is a birationnal projective
morphism. There is an open subset U of A over which p1 : Z → A is
an isomorphism. Since πA : A→ S is proper, πA(A− U) is closed. Its
complement S − πA(A − U), which is open, is the set of s ∈ S over
which p1 : Zs → As is an isomorphism.

Let Z ⊂ A×S A be the graph of a morphism f : A→ A. The mor-
phism f is a homomorphism of abelian schemes if and only if f sends
the unit to the unit, hence being a homomorphism of abelian schemes
is a closed condition. So the functor which assigns to each S-scheme
T the set EndT (AT ) is representable by a locally closed subscheme of
a Hilbert scheme.
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In order to prove that this subfunctor is represented by a closed
subscheme of the Hilbert scheme, it is enough to check the valuative
criterion of properness.

Let S = Spec(R) be the spectrum of a discrete valuation ring with
generic point η. Let A be an S-abelian scheme and let fη : Aη → Aη
be an endomorphism. Then fη can be extended in a unique way to an
endomorphism f : A → A by the following extension lemma, due to
Weil. �

Theorem 3.4.5 (Weil). Let G be a smooth group scheme over S. Let
X be smooth scheme over S and let U ⊂ X be an open subscheme whose
complement Y = X − U has codimension ≥ 2. Then a morphism
f : U → G can be extended to X. In particular, if G is an abelian
scheme, using its properness we can always extend even without the
condition on the codimension of X − U .

3.5. Adelic description. Let G be the Q-reductive group defined as
the automorphism group of the skew-Hermitian module UQ. For every
Q-algebra R, let

G(R) = {(g, c) ∈ GLB(U)(R)×R×|(gx, gy) = c(x, y)}.
For all ` 6= p we have a compact open subgroup K` ⊂ G(Q`) which
consists of g ∈ G(Q`) such that g(U ⊗ Z`) = (U ⊗ Z`) and which,
when `|N , satisfy the extra condition that the action induced by g on
(U ⊗ Z`)/N(U ⊗ Z`) is trivial.

Lemma 3.5.1. There exists a unique smooth group scheme GK`
over

Z` such that GK`
⊗Z`

Q` = G⊗Q Q` and GK`
(Z`) = K`.

Consider the functor B′ which assigns to any E-scheme S the cate-
gory B′(S) defined as follows. An object of this category is a quintuple

(A, λ, ι, η̃) ,

where

(1) A is a S-abelian schemes over S,

(2) λ : A→ Â is a Z(p)-multiple of a polarization,
(3) ι : OB → End(A) is a homomorphism such that the Rosati

involution induced by λ restricts to the involution ∗ of OB and
such that

det(β1X1 + · · · βtXt,Lie(A)) = detU1

(4) fixing a geometric point s of S, for every prime ` 6= p, η̃` is
a K`-orbit of isomorphisms from V`(As) to U ⊗ Q` compatible
with symplectic forms and action of OB and stable under the
action of π1(S, s).

A morphism from (A, λ, ι, η̃) to (A′, λ, ι, η̃) is a quasi-isogeny α : A →
A′ of degree prime to p carrying λ to a scalar (in Q×) multiple of λ′

and carrying η̃ to η̃′.
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Proposition 3.5.2. The obvious functor B → B′ is an equivalence of
categories.

The proof is the same as in the Siegel case. �

3.6. Complex points. The isomorphy class of an object (A, λ, ι, η̃) ∈
B′(C) gives rises to

(1) a skew-Hermitian B-module H1(A,Q) and
(2) for every prime `, a Q`-similitude H1(A,Q`) ' U ⊗Q` as skew-

Hermitian B ⊗Q`-modules, defined up to the action of K`.

For ` 6= p, this is required in the moduli problem. For the prime p,
for every b ∈ B, we have tr(b,H1(A,Qp)) = tr(b, U ⊗Q) because both
are equal with tr(b,H1(A,Q`)) for any ` 6= p. It follows that the skew-
Hermitian modules tr(b,H1(A,Qp)) and tr(b,Λ ⊗ Qp) are isomorphic
after base change to a finite extension of Qp and therefore the isomorphy
class of the skew-Hermitian module defines an element ξp ∈ H1(Qp, G).
Now, in the groupöıd B′(C) the arrows are given by prime to p isogenies,
so H1(A,Zp) is a well-defined self-dual lattice stable by multiplication
by OB. It follows that the class ξp ∈ H1(Qp, G) mentioned above comes
from a class in H1(Zp, GZp), where GZp is the reductive group scheme
over Zp which extends GQp . In the case where GZp has connected fibres,
this implies the vanishing of ξp. Kottwitz gave a further argument in
the case where G is not connected.

The first datum gives rise to a class

ξ ∈ H1(Q, G)

and the second datum implies that the images of ξ in each H1(Q`, G)
vanishes. We have

ξ ∈ ker1(Q, G) = ker(H1(Q, G)→
∏
`

H1(Q`, G)).

According to Borel and Serre, ker1(Q, G) is a finite set. For every
ξ ∈ ker1(Q, G), fix a skew-Hermitian B-module V (ξ) whose class in
ker1(Q, G) is ξ and fix a Q`-similitude of V (ξ) ⊗ Q` with U ⊗ Q` as
skew-Hermitian B ⊗Q`-module and also a similitude over R.

Let B(ξ)(C) be the subset of B(ξ)(C) consisting of those (A, λ, ι, η̃)
such that H1(A,Q) is isomorphic to V (ξ). Let (A, λ, ι, η̃) ∈ B(ξ)(C) and
let β be an isomorphism of skew-Hermitian B-modules from H1(A,Q)
to V (ξ). The set of quintuple (A, λ, ι, η̃, β) can be described as follows.

(1) η̃ defines an element η̃ ∈ G(Af )/K.
(2) The complex structure on Lie(A) = V ⊗Q R defines a homomor-

phism h : C→ EndB(VR) such that h(z) is the adjoint operator
of h(z) for the symplectic form on VR. Since ±λ is a polariza-
tion, (v, h(i)w) is positive or negative definite. Moreover the
isomorphisy class of the B ⊗ C-module V is specified by the
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determinant condition on the tangent space. It follows that h
lies in a G(R)-conjugacy class X∞.

Therefore the set of quintuples is X∞×G(Af )/K. Two different triv-
ializations β and β′ differs by an automorphism of the skew-Hermitian
B-module V (ξ). This group is the inner form G(ξ) of G obtained by the
image of ξ ∈ H1(Q, G) in H1(Q, Gad). In conclusion we get

B(ξ)(C) = G(ξ)(Q)\[X∞ ×G(Af )/K]

and

B(C) =
⊔

ξ∈ker1(Q,G)

B(ξ)(C).

4. Shimura varieties

4.1. Review on Hodge structures. See [Deligne, Travaux de Grif-
fiths]. Let Q be a subring of R; we think specifically about the cases
Q = Z,Q or R. A Q-Hodge structure will be called respectively an
integral, rational or real Hodge structure.

Definition 4.1.1. A Q-Hodge structure is a projective Q-module V
equipped with a bi-grading of VC = V ⊗Q C

VC =
⊕
p,q

Hp,q

such that Hp,q and Hq,p are complex conjugate, i.e. the semi-linear
automorphism σ of VC = V ⊗Q C given by v ⊗ z 7→ v ⊗ z satisfies the
relation σ(Hp,q) = Hq,p for every p, q ∈ Z.

The integers hp,q = dimC(Hp,q) are called Hodge numbers. We have
hp,q = hq,p. If there exists an integer n such that Hp,q = 0 unless
p + q = n then the Hodge structure is said to be pure of weight n.
When the Hodge structure is pure of weight n, the Hodge filtration
F pV =

⊕
r≥p V

rs determines the Hodge structure by the relation V pq =

F pV ∩ F qV .
Let S = ResC/RGm be the real algebraic torus defined as the Weil

restriction from C to R of Gm,C. We have a norm homomorphism
C× → R× whose kernel is the unit circle S1. Similarly, we have an
exact sequence of real tori

1→ S1 → S→ Gm,R → 1.

We have an inclusion R× ⊂ C× whose cokernel can be represented
by the homomorphism C× → S1 given by z 7→ z/z. We have the
corresponding exact sequence of real tori

1→ Gm,R → S→ S1 → 1.

The inclusion w : Gm,R → S is called the weight homomorphism.
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Lemma 4.1.2. Let G = GL(V ) be the linear group defined over Q. A
Hodge structure on V is equivalent to a homomorphism h : S→ GR =
G ⊗Q R. The Hodge structure is pure of weight n if the restriction
of h to Gm,R ⊂ S factors through the center Gm,R = Z(GR) and the
homomorphism Gm,R → Z(GR) is given by t 7→ tn.

Proof. A bi-grading VC =
⊕

p,q V
p,q is the same as a homomorphism

hC : G2
m,C → GC. The complex conjugation of VC exchanges the factors

V p,q and V q,p if and only if hC descends to a homomorphism of real
algebraic groups h : S→ GR. �

Definition 4.1.3. A polarization of a Hodge structure (VQ, V
p,q) of

weight n is a bilinear form ΨQ on VQ such that the induced form Ψ
on VR is invariant under h(S1) and such that the form Ψ(x, h(i)y) is
symmetric and positive definite.

It follows from the identity h(i)2 = (−1)n that the bilinear form
Ψ(x, y) is symmetric if n is even and alternating if n is odd :

Ψ(x, y) = (−1)nΨ(x, h(i)2y) = (−1)nΨ(h(i)y, h(i)x) = (−1)nΨ(y, x).

Example. An abelian variety induces a typical Hodge structure. Let
X = V/U be an abelian variety. Let G be GL(U ⊗Q) as an algebraic
group defined over Q. The complex structure V on the real vector
space U ⊗ R = V induces a homomorphism of real algebraic groups

φ : S→ GR

so that U is equipped with an integral Hodge structure of weight −1.
A polarization of X is a symplectic form E on V , taking integral values
on U such that E(ix, iy) = E(x, y) and such that E(x, iy) is a positive
definite symmetric form.

Let V be a projective Q-module of finite rank. A Hodge structure
on V induces Hodge structures on tensor products V ⊗m⊗ (V ∗)⊗n. Fix
a finite set of tensors (si)

si ∈ V ⊗mi ⊗ (V ∗)⊗ni .

Let G ⊂ GL(V ) be the stabilizer of these tensors.

Lemma 4.1.4. There is a bijection between the set of Hodge struc-
tures on V for which the tensors si are of type (0, 0) and the set of
homomorphisms S→ GR.

Proof. A homomorphism h : S → GL(V )R factors through GR if and
only if the image h(S) fixes all tensors si. This is equivalent to saying
that these tensors are of type (0, 0) for the induced Hodge structures.
�

There is a related notion of Mumford-Tate group.
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Definition 4.1.5. Let G be an algebraic group over Q. Let φ : S1 →
GR be a homomorphism of real algebraic groups. The Mumford-Tate
group of (G, φ) is the smallest algebraic subgroup H = Hg(φ) of G
defined over Q such that φ factors through HR. 2

Let Q[G] be the ring of algebraic functions over G and R[G] =
Q[G] ⊗Q R. The group S1 acts on R[G] through the homomorphism
φ. Let R[G]φ=1 be the subring of functions fixed by φ(S1) and consider
the subring

Q[G] ∩ R[G]φ=1

of Q[G]. For every v ∈ Q[G]∩R[G]φ=1, letGv be the stabilizer subgroup
of G at v. Since Gv is defined over Q and φ factors through Gv,R, we
have the inclusion H ⊂ Gv. In particular, v ∈ Q[G]H . It follows that

Q[G] ∩ R[G]φ=1 = Q[G]H .

This property does not however characterize H. In general, for any
subgroup H of G, we have an obvious inclusion

H ⊂ H ′ =
⋂

v∈Q[G]H

Gv.

which is strict in general. If the equality H = H ′ occurs, we say that
H is an observable subgroup of G. To prove that this is indeed the
case for the Mumford-Tate group of an abelian variety, we will need
the following general lemma.

Lemma 4.1.6. Let H be a reductive subgroup of a reductive group G.
Then H is observable.

Proof. Assume the base field k = C. According to Chevalley, see
[Borel], for every subgroup H of G, there exists a representation ρ :
G → GL(V ) and a vector v ∈ V such that H is the stabilizer of the
line kv. Since H is reductive, there exists a H-stable complement U of
kv in V . Let kv∗ ⊂ V ∗ be the line orthogonal to U with some generator
v∗. Then H is the stabilizer of the vector v ⊗ v∗ ∈ V ⊗ V ∗.

Let G = GL(UQ) and let φ : S1 → GR be a homomorphism such that
φ(i) induces a Cartan involution on GR. Let C be the smallest tensor
subcategory stable by subquotient of the category of Hodge structures
that contains (UQ, φ). There is the forgetful functor FibC : C → VectQ.

Lemma 4.1.7. H is the automorphism group of the functor FibC.

Proof. Let V be a representation of G defined over Q equipped with the
Hodge structure defined by φ. Let U be a subvector space of V com-
patible with the Hodge structure. Then H must stabilize U . It follows
that H acts naturally on FibC, i.e. we have a natural homomorphism
H → Aut⊗(FibC). �

2Originally, Mumford called Hg(φ) the Hodge group.
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Proposition 4.1.8. The Mumford-Tate group of a polarizable Hodge
structure is a reductive group.

Proof. Since we are working over fields of characteristic zero, H is
reductive if and only if the category of representations of H is semi-
simple. Using the Cartan involution, we can exhibit a positive definite
bilinear form on V . This implies that every subquotient of V ⊗m ⊗
(V ∗)⊗n is a subobject. �

4.2. Variations of Hodge structures. Let S be a complex analytic
variety. The letter Q denotes a ring contained in R which could be
Z,Q or R.

Definition 4.2.1. A variation of Hodge structures (VHS) on S of
weight n consists of the following data:

(1) a local system of projective Q-modules V ;
(2) a decreasing filtration F pV on the vector bundle V = V ⊗Q OS

such that the Griffiths transversality is satisfied, i.e. for every
integer p

∇(F pV) ⊂ F p−1V ⊗ Ω1
S

where ∇ : V → V ⊗ Ω1
S is the connection v ⊗ f 7→ v ⊗ df for

which V ⊗Q C is the local system of horizontal sections;
(3) for every s ∈ S, the filtration induces on Vs a pure Hodge struc-

ture of weight n.

There are obvious notions of the dual VHS and tensor product of
VHS. The Leibnitz formula ∇(v ⊗ v′) = ∇(v)⊗ v′ + v ⊗∇(v′) assures
that the Griffiths transversality is satisfied for the tensor product.

Typical examples of polarized VHS are provided by cohomology of
smooth projective morphisms. Let f : X → S be a smooth projective
morphism over a complex analytic variety S. Then Hn = Rnf∗Q is
a local system of Q-vector spaces. Since Hn ⊗Q OS is equal to the
de Rham cohomology Hn

dR = Rnf∗Ω
•
X/S, where Ω•

X/S is the relative
de Rham complex, and the Hodge spectral sequence degenerates on
E2, the abutments Hn

dR are equipped with a decreasing filtration by
subvector bundles F p(Hn

dR) with

(F p/F p+1)Hn
dR = Rqf∗Ω

p
X/S

with p+ q = n. The connexion ∇ satisfies the Griffiths transversality.
By Hodge’s decomposition, we have instead a direct sum

Hn
dR(Xs) =

⊕
pq

Hp,q

with Hp,q = Hq(Xs,Ω
p
Xs

) and Hp,q = Hq,p so that all the axioms of
VHS are satisfied.
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If we choose a projective embedding X → PdS, the line bundle OPd(1)
defines a class

c ∈ H0(S,R2f∗Q).

By the hard Lefschetz theorem, the cup product by cd−n induces an
isomorphism

Rnf∗Q→ R2d−nf∗Q defined by α 7→ cd−n ∧ α
so that by Poincaré duality we get a polarization on Rnf∗Q.

4.3. Reductive Shimura-Deligne data. The torus S = ResC/RGm

plays a particular role in the formalism of Shimura varieties shaped by
Deligne in [4], [5].

Definition 4.3.1. A Shimura-Deligne datum is a pair (G,X) consist-
ing of a reductive group G over Q and a G(R)-conjugacy class X of
homomorphisms h : S→ GR satisfying the following properties:

(SD1) For h ∈ X, only the characters z/z, 1, z/z occur in the repre-
sentation of S on Lie(G);

(SD2) adh(i) is a Cartan involution of Gad, i.e. the real Lie group
{g ∈ Gad(C) | ad(h(i))σ(g) = g} is compact (where σ denotes
the complex conjugation and Gad = G/Z(G) is the adjoint group
of G).

The action S, restricted to Gm,R is trivial on Lie(G) so that h : S→
GR sends Gm,R into the center ZR of GR. The induced homomorphism
w = h|Gm,R : Gm,R → ZR is independent of the choice of h ∈ X. We
call w the weight homomorphism.

After base change to C, we have S⊗RC = Gm×Gm, where the factors
are ordered in the way that S(R) → S(C) is the map z 7→ (z, z). Let
µ : Gm,C → SC the homomorphism defined by z → (z, 1). If h : S →
GL(V ) is a Hodge structure, then µh = hC ◦ µ : Gm(C) → GL(VC)
determines its Hodge filtration.

Siegel case. An abelian variety A = V/U is equipped with a polar-
ization E which is a non-degenerate symplectic form on UQ = U ⊗Q.
Let GSp be the group of symplectic similitudes

GSp(UQ, E) = {(g, c) ∈ GL(UQ)×Gm,Q|E(gx, gy) = cE(x, y)}.
The scalar c is called the similitude factor. Base changed to R, we
get the group of symplectic similitudes of the real symplectic space
(UR, E). The complex vector space structure on V = UR induces a
homomorphism

h : S→ GSp(UR, E).

In this case, X is the set of complex structures on UR such that
E(h(i)x, h(i)y) = E(x, y) and E(x, h(i)y) is a positive definite sym-
metric form.
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PEL case. Suppose B is a simple Q-algebra of center F equipped
with a positive involution ∗. Let F0 ⊂ F be the fixed field by ∗. Let G
be the group of symplectic similitudes of a skew-Hermitian B-module
V

G = {(g, c) ∈ GLB(V )×Gm,Q|(gx, gy) = c(x, y)}.
So, the h of definition 3.4.1 induces a morphism S→ GR.

Let G1 be the subgroup of G defined by

G1(R) = {g ∈ GLB(V )×Gm,Q|(gx, gy) = (x, y)}

for any Q-algebra R. We have an exact sequence

1→ G1 → G→ Gm → 1.

The group G1 is a scalar restriction of a group G0 defined over F0.
Since a simple R-algebra with positive involution must be Mn(C),

Mn(R) or Mn(H) with their standard involutions, there will be three
cases to be considered.

(1) Case (A) : If [F : F0] = 2, then F0 is a totally real field and F
is a totally imaginary extension. Over R, B ⊗Q R is product of
[F0 : Q] copies of Mn(C). G1 = ResF0/QG0,where G0 is an inner
form of the quasi-split unitary group attached to the quadratic
extension F/F0.

(2) Case (C) : If F = F0, then F is a totally real field. and B ⊗ R
is isomorphic to a product of [F0 : Q] copies of Mn(R) equipped
with their positive involution. In this case, G1 = ResF0/QG0,
where G0 is an inner form of a quasi-split symplectic group over
F0.

(3) Case (D) : B⊗R is isomorphic to a product of [F0 : Q] copies of
Mn(H) equipped with positive involutions. The simplest case
is B = H, V is a skew-Hermitian quaternionic vector space.
In this case, G1 = ResF0/QG0, where G0 is an even orthogonal
group.

Tori case. In the case where G = T is a torus over Q, both conditions
(SD1) and (SD2) are obvious since the adjoint representation is trivial.
The conjugacy class of h : S→ TR contains just one element since T is
commutative.

Deligne proved the following statement in [5, prop. 1.1.14] which
provides a justification for the not so natural notion of Shimura-Deligne
datum.

Proposition 4.3.2. Let (G,X) be a Shimura-Deligne datum. Then
X has a unique structure of a complex manifold such that for every
representation ρ : G → GL(V ), (V, ρ ◦ h)h∈X is a variation of Hodge
structures which is polarizable.
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Proof. Let ρ : G → GL(V ) be a faithful representation of G. Since
wh ⊂ ZG, the weight filtration of Vh is independent of h. Since the
weight filtration is fixed, the Hodge structure is determined by the
Hodge filtration. It follows that the morphism to the Grassmannian

ω : X → Gr(VC)

which sends h to the Hodge filtration attached to h is injective. We need
to prove that this morphism identifies X with a complex subvariety of
Gr(VC). It suffices to prove that

dω : ThX → Tω(h)Gr(VC)

identifies ThX with a complex vector subspace of Gr(VC).
Let g be the Lie algebra of G and ad : G → GL(g) the adjoint

representation. Let Gh be the centralizer of h, and gh its Lie algebra.
We have gh = gR ∩ g0,0 for the Hodge structure on g induced by h. It
follows that the tangent space to the real analytic variety X at h is

ThX = gR/g
0,0
C ∩ gR.

Let W be a pure Hodge structure of weight 0. Consider the R-linear
morphism

WR/WR ∩W 0,0
C → WC/F

0WC

which is injective. Since both vector spaces have the same dimension
over R, it is also surjective. It follows that WR/WR ∩W 0,0

C admits a
canonical complex structure.

Since the above isomorphism is functorial on the category of pure
Hodge structures of weight 0, we have a commutative diagram

gR/g
0,0
C ∩ gR

��

// End(VR)/End(VR) ∩ End(VC)0,0

��
gC/F

0gC // End(VC)/F 0End(VC)

which proves that the image of ThX = gR/g
0,0
C in Tω(h)Gr(VC) =

End(VC)/F 0End(VC) is a complex vector subspace.
The Griffiths transversality of V⊗OX follows from the same diagram.

There is a commutative triangle of vector bundles

TX

))TTTTTTTTTTTTTTTTTT // End(V ⊗OX)

��
End(V ⊗OX)/F 0End(V ⊗OX)

where the horizontal arrow is the derivation in V ⊗OX . The Griffiths
transversality of V ⊗ OX is satisfied if and only if the image of the
derivation is contained in F−1End(V ⊗OX). But this follows from the
fact that

gC = F−1gC
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and the map TX → End(V ⊗ OX)/F 0End(V ⊗ OX) factors through
(gC ⊗OX)/F 0(gC ⊗OX). �

4.4. The Dynkin classification. Let (G,X) be a Shimura-Deligne
datum. Over C, we have a conjugacy class of cocharacter

µad : Gm,C → Gad
C .

The complex adjoint semi-simple group Gad is isomorphic to a product
of complex adjoint simple groups Gad =

∏
iGi. The simple complex

adjoint groups are classified by their Dynkin diagrams. The axiom
SD1 implies that µad induces an action of Gm,C on gi of which the
set of weights is {−1, 0, 1}. Such cocharacters are called minuscules.
Minuscule coweights are some of the fundamental coweights and there-
fore can be specified by special nodes in the Dynkin diagram. Every
Dynkin diagram has at least one special node except the three diagrams
F4, G2, E8. We can classify Shimura-Deligne data over the complex
numbers with the help of Dynkin diagrams.

4.5. Semi-simple Shimura-Deligne data.

Definition 4.5.1. A semi-simple Shimura-Deligne datum is a pair
(G,X+) consisting of a semi-simple algebraic group G over Q and a
G(R)+-conjugacy class of homomorphisms h1 : S1 → GR satisfying the
axioms (SD1) and (SD2). Here G(R)+ denotes the neutral component
of G(R) for the real topology.

Let (G,X) be a reductive Shimura-Deligne datum. Let Gad be
the adjoint group of G. Every h ∈ X induces a homomorphism
h1 : S1 → Gad. The Gad(R)+-conjugacy class X+ of h1 is isomorphic
to the connected component of h in X.

The spaces X+ are exactly the so-called Hermitian symmetric do-
mains with the symmetry group G(R)+.

Theorem 4.5.2 (Baily-Borel). Let Γ be a torsion free arithmetic sub-
group of G(R)+. The quotient Γ\X+ has a canonical realization as a
Zariski open subset of a complex projective algebraic variety. In par-
ticular, it has a canonical structure of a complex algebraic variety.

These quotients Γ\X+, considered as complex algebraic varieties,
are called connected Shimura varieties. The terminology is a little
bit confusing, because they are not those Shimura varieties which are
connected but connected components of Shimura varieties.

4.6. Shimura varieties. Let (G,X) be a Shimura-Deligne datum.
For a compact open subgroup K of G(Af ), consider the double coset
space

ShK(G,X) = G(Q)\[X ×G(Af )/K]

in which G(Q) acts on X and G(Af ) on the left and K acts on G(Af )
on the right.
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Lemma 4.6.1. Let G(Q)+ = G(Q) ∩ G(R)+, where G(R)+ is the in-
verse image of Gad(R) under the morphism G(R) → Gad(R). Let X+

be a connected component of X. Then there is a homeomorphism

G(Q)\[X ×G(Af )/K] =
⊔
ξ∈Ξ

Γξ\X+ ,

where ξ runs over a finite set Ξ of representatives of G(Q)+\G(Af )/K
and Γξ = ξKξ−1 ∩G(Q).

Proof. The map⊔
ξ∈Ξ

Γξ\X+ → G(Q)+\[X+ ×G(Af )/K]

sending the class of x ∈ X+ to the class of (x, ξ) ∈ X+ × G(Af ) is
bijective by the very definition of the finite set Ξ and of the discrete
groups Γξ.

It follows from the theorem of real approximation that the map

G(Q)+\[X+ ×G(Af )/K]→ G(Q)\[X ×G(Af )/K]

is a bijection.

Lemma 4.6.2 (Real approximation). For any connected group G over
Q, G(Q) is dense in G(R).

See [17, p.415]. �

Remarks.

(1) The group G(Af ) acts on the inverse limit

lim←−
K

G(Q)\[X ×G(Af ]/K .

On Shimura varieties of finite level, there is an action of Hecke
algebras by correspondences.

(2) In order to be arithmeticcally significant, Shimura varieties
must have models over a number field. According to the theory
of canonical model, there exists a number field called the re-
flex field E depending only on the Shimura-Deligne datum over
which the Shimura variety has a model which can be character-
ized by certain properties.

(3) The connected components of Shimura varieties have canonical
models over abelian extensions of the reflex field E; these ex-
tensions depend not only on the Shimura-Deligne datum but
also on the level structure.

(4) Strictly speaking, the moduli of abelian varieties with PEL
structures is not a Shimura variety but a disjoint union of
Shimura varieties. The union is taken over the set ker1(Q, G).
For each class ξ ∈ ker1(Q, G), we have a Q-group G(ξ) which is
isomorphic to G over Qp and over R but which might not be
isomorphic to G over Q.
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(5) The Langlands correspondence has been proved in many partic-
ular cases by studing the commuting action of Hecke operators
and of Galois groups of the reflex field on the cohomology of
Shimura varieties.

5. CM tori and canonical models

5.1. The PEL moduli attached to a CM torus. Let F be a totally
imaginary quadratic extension of a totally real number field F0 of degree
f0 over Q. We have [F : Q] = 2f0. Such a field F is called a CM field.
Let τF denote the non-trivial element of Gal(F/F0). This involution
acts on the set HomQ(F,Q) of cardinal 2f0.

Definition 5.1.1. A CM-type of F is a subset Φ ⊂ HomQ(F,Q) of
cardinal f0 such that

Φ ∩ τ(Φ) = ∅ and Φ ∪ τ(Φ) = HomQ(F,Q).

A CM type is a pair (F,Φ) constisting of a CM field F and a CM type
Φ of F .

Let (F,Φ) be a CM type. The absolute Galois group Gal(Q/Q) acts
on HomQ(F,Q). Let E be the fixed field of the open subgroup

Gal(Q/E) = {σ ∈ Gal(Q/Q)|σ(Φ) = Φ}.

For every b ∈ F , ∑
φ∈Φ

φ(b) ∈ E

and conversely E can be characterized as the subfield of Q generated
by the sums

∑
φ∈Φ φ(b) for b ∈ F .

For any number field K, we denote by OK the maximal order of
K. Let ∆ be the finite set of primes where OF is ramified over Z.
By construction, the scheme ZF = Spec(OF [`−1]`∈∆) is finite étale over
Spec(Z)−∆. By construction the reflex field E is also unramified away
from ∆ and let ZE = Spec(OE[`−1]`∈∆). Then we have a canonical
isomorphism

ZF × ZE = (ZF0 × ZE)Φ t (ZF0 × ZE)τ(Φ) ,

where (ZF0 × ZE)Φ and (ZF0 × ZE)τ(Φ) are two copies of (ZF0 × ZE)
with ZF0 = Spec(OF0 [p

−1]p∈∆).
To complete the PE-structure, we take U to be the Q-vector space

F . The Hermitian form on U is given by

(b1, b2) = trF/Q(cb1τ(b2))

for some element c ∈ F such that τ(c) = −c. The reductive group G as-
sociated to this PE-structure is a Q-torus T equipped with a morphism
h : S→ T which can be made explicit as follows.
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Let T̃ = ResF/QGm. The CM-type Φ induces an isomorphism of
R-algebras and of tori

F ⊗Q C =
∏
φ∈Φ

C and T̃ (R) =
∏
φ∈Φ

C×.

According to this identification, h̃ : S → T̃R is the diagonal homomor-
phism

C× →
∏
φ∈Φ

C×.

The complex conjugation τ induces an involution τ on T̃ . The norm
NF/F0 given by x 7→ xτ(x) induces a homomorphism ResF/QGm →
ResF0/QGm.

The torus T is defined as the pullback of the diagonal subtorus Gm ⊂
ResF0/QGm. In particular

T (Q) = {x ∈ F×|xτ(x) ∈ Q×}.

The morphism h̃ : S → T̃R factors through T and defines a morphism
h : S→ T . As usual h defines a cocharacter

µ : Gm,C → TC

defined on points by

C× →
∏

φ∈Hom(F,Q)

C× ,

where the projection on the component φ ∈ Φ is the identity and the
projection on the component φ ∈ τ(Φ) is trivial. The reflex field E is
the field of definition of µ.

Let p /∈ ∆ be an unramified prime of OF . Choose an open compact
subgroup Kp ⊂ T (Ap

f ) and take Kp = T (Zp).
We consider the functor Sh(T, hΦ) which associates to a ZE-scheme

S the set of isomorphy classes of

(A, λ, ι, η) ,

where

• A is an abelian scheme of relative dimension f0 over S ;
• ι : OF → End(A) is an action of F on A such that for every
b ∈ F and every geometric point s of S, we have

tr(b,Lie(As)) =
∑
φ∈Φ

φ(a);

• λ is a polarization of A whose Rosati involution induces on F
the complex conjugation τ ;
• η is a level structure.

Proposition 5.1.2. Sh(T, hΦ) is a finite étale scheme over ZE.
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Proof. Since Sh(T, hΦ) is quasi-projective over ZE, it suffices to check
the valuative criterion for properness and the unique lifting property
of étale morphism.

Let S = Spec(R) be the spectrum of a discrete valuation ring with
generic point Spec(K) and with closed point Spec(k). Pick a point
xK ∈ Sh(T, hΦ)(K) with

xK = (AK , ιK , λK , ηK).

The Galois group Gal(K/K) acts on the F ⊗ Q`-module H1(A ⊗K
K,Q`). It follows that Gal(K/K) acts semisimply, and its inertia
subgroup acts through a finite quotient. Using the Ogg-Shafarevich
criterion for good reduction, we see that after replacing K by a fi-
nite extension K ′, and R by its normalization R′ in K ′, AK acquires
a good reduction, i.e. there exists an abelian scheme over R′ whose
generic fiber is AK′ . The endomorphisms extend by Weil’s extension
theorem. The polarization needs a little more care. The symmetric ho-
momorphism λK : AK → ÂK extends to a symmetric homomorphism
λ : A → Â. After finite étale base change of S, there exists an invert-
ible sheaf L on A such that λ = λL. By assumption LK is an ample
invertible sheaf over AK . λ is an isogeny, and L is non degenerate
on the generic and on the special fibre. Mumford’s vanishing theorem
implies that H0(XK , LK) 6= 0. By the upper semi-continuity property,
H0(Xs, Ls) 6= 0. But since Ls is non-degenerate, Mumford’vanishing
theorem says that Ls is ample. This proves that Sh(T, hΦ) is proper.

Let S = Spec(R), where R is a local artinianOE-algebra with residue
field k, and let S = Spec(R) with R = R/I, I2 = 0. Let s = Spec(k) be
the closed point of S and S. Let x ∈ Sh(T, hΦ)(S) with x = (A, ι, λ, η).
We have the exact sequence

0→ ωA → H1
dR(A)→ Lie(Â)→ 0

with a compatible action of OF ⊗Z OE. As OZF×ZE
-module, ωAs is

supported by (ZF0 ×ZE)Φ) and Lie(Â) is supported by (ZF0 × ZE)τ(Φ)

so that the above exact sequence splits. This extends to a canoni-
cal splitting of the cristalline cohomology H1

cris(A/S)S. According to
Grothendieck-Messing, this splitting induces a lift of the abelian scheme
A/S to an abelian scheme A/S. We are also able to lift the additional
structures λ, ι, η by the functoriality of Grothendieck-Messing’s theory.
�

5.2. Description of its special fibre. We will keep the notations
of the previous paragraph. Pick a place v of the reflex field E which
does not lie over the finite set ∆ of primes where OF is ramified. OE
is unramified ovec Z at the place v. We want to describe the set
ShK(T, hΦ)(Fp) equipped with the operator of Frobenius Frobv.
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Theorem 5.2.1. There is a natural bijection

ShK(T, hΦ)(Fp) =
⊔
α

T (Q)\Y p × Yp ,

where

(1) α runs over the set of (compatible with the action of OF )-isogeny
classes ;

(2) Y p = T (Ap
f )/K

p;
(3) Yp = T (Qp)/T (Zp);
(4) for every λ ∈ T (Ap

f ) we have λ(xp, xp) = (λxp, xp);
(5) the Frobenius Frobv acts by the formula

(xp, xp) 7→ (xp,NEv/Qp(µ(p−1))xp) .

Proof. Let x0 = (A0, λ0, ι0, η0) ∈ ShK(T, hΦ)(Fp). Let X be the set of

pairs (x, ρ), where x = (A, λ, ι, η) ∈ ShK(T, hΦ)(Fp) and

ρ : A0 → A

is a quasi-isogeny which is compatible with the action of OF and trans-
forms λ0 into a rational multiple of λ.

We will need to prove the following two assertions:

(1) X = Y p×Yp with the prescribed action of Hecke operators and
of Frobenius ;

(2) the group of quasi-isogenies of A0 compatible with ι0 and trans-
forming λ0 into a rational multiple is T (Q).

Quasi-isogenies of degrees relatively prime to p. Let Y p be the subset of
X where the degree of the quasi-isogeny is relatively prime to p. Con-
sider the prime description of the moduli problem. A point (A, λ, ι, η̃)
consists of

• an abelian variety A up to isogeny,
• a rational multiple λ of a polarization,
• the multiplication ι by OF on A, and
• a class η̃` modulo the action of an open compact subgroup K` of

isomorphisms from H1(A,Q`) to U` which are compatible with ι
and transform λ into a rational multiple of the symplectic form
on U`.

By this description, an isogeny of degree prime to p compatible with
ι and preserving the Q-line of the polarization, is given by an element
g ∈ T (Ap

f ). The isogeny corresponding to g defines an isomorphism in
the category B′ if and only if gη̃ = η̃′. Thus

Y p = T (Ap
f )/K

p

with the obvious action of Hecke operators and trivial action of Frobv.

Quasi-isogenies whose degree is a power of p. Let Yp the subset of X
where the degree of the quasi-isogeny is a power of p. We will use the
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covariant Dieudonné theory to describe the set Yp equipped with action
of Frobenius operator.

Let W (Fp) be the ring of Witt vectors with coefficients in Fp. Let L

be the field of fractions of W (Fp); we will write OL instead of W (Fp).
The Frobenius automorphism σ : x 7→ xp of Fp induces by functoriality
an automorphism σ on the Witt vectors. For every abelian variety A
over Fp, H1

cris(A/OL) is a free OL-module of rank 2n equipped with
an operator ϕ which is σ-linear. Let D(A) = Hcris

1 (A/OL) be the dual
OL-module of H1

cris(A/OL), where ϕ acts in σ−1-linearly. Furthermore,
there is a canonical isomorphism

Lie(A) = D(A)/ϕD(A).

A quasi-isogeny ρ : A0 → A induces an isomorphism D(A0)⊗OL
L '

D(A) ⊗OL
L compatible with the multiplication by OF and preserv-

ing the Q-line of the polarizations. The following proposition is an
immediate consequence of the Dieudonné theory.

Proposition 5.2.2. Let H = D(A0) ⊗OL
L. The above construction

defines a bijection between Yp and the set of lattices D ⊂ H such that

(1) pD ⊂ ϕD ⊂ D,
(2) D is stable under the action of OB and

tr(b,D/ϕD) =
∑
φ∈Φ

φ(b)

for every b ∈ OB,
(3) D is autodual up to a scalar in Q×

p .

Moreover, the Frobenius operator on Yp that transforms the quasi-isogeny
ρ : A0 → A into the quasi-isogeny ϕ ◦ ρ : A0 → A → σ∗A acts on the
above set of lattices by sending D to ϕ−1D.

Since Sh(T, hΦ) is étale, there exists a unique lifting

x̃ ∈ Sh(T, hΦ)(OL)

of x0 = (A0, λ0, ι0, η0) ∈ Sh(T, hΦ)(Fp). By assumption,

D(A0) = HdR
1 (Ã)

is a free OF ⊗OL-module of rank 1 equipped with a pairing given by an
element c ∈ (O×Fp

)τ=−1. The σ−1-linear operator ϕ onH = D(A0)⊗OL
L

is of the form
ϕ = t(1⊗ σ−1)

for an element t ∈ T (L).

Lemma 5.2.3. The element t lies in the coset µ(p)T (OL).

Proof. H is a free OF ⊗ L-module of rank 1 and

OF ⊗ L =
∏

ψ∈Hom(OF ,Fp)

L
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is a product of 2f0 copies of L. By ignoring the autoduality condition,
t can be represented by an element

t = (tψ) ∈
∏

ψ∈Hom(OF ,Fp)

L×

It follows from the assumption

pD0 ⊂ ϕD0 ⊂ D0

that for all ψ ∈ Hom(OF ,Fp) we have

0 ≤ valp(tψ) ≤ 1.

Remember the decomposition

ZF × ZE = (ZF0 × ZE)Φ t (ZF0 × ZE)τ(Φ) ,

induced by the CM type Φ. So, the embedding of the residue field of
v in Fp induces a decomposition Hom(OF ,Fp) = Ψ t τ(Ψ) such that

tr(b,D0/ϕD0) =
∑
ψ∈Ψ

ψ(b)

for all b ∈ OF . It follows that

valp(tψ) =

{
0 if ψ /∈ Ψ
1 if ψ ∈ Ψ

By the definition of µ, it follows that t ∈ µ(p)T (OL). �

Description of Yp continued. A lattice D stable under the action of OF
and autodual up to a scalar can be uniquely written in the form

D = mD0

for m ∈ T (L)/T (OL). The condition pD ⊂ ϕD ⊂ D and the trace con-
dition on the tangent space are equivalent to m−1tσ(m) ∈ µ(p)T (OL)
and thus m lies in the group of σ-fixed points in T (L)/T (O)L, that is,

m ∈ [T (L)/T (OL)]〈σ〉 .

Now there is a bijection between the cosets m ∈ T (L)/T (OL) fixed by
σ and the cosets T (Qp)/T (Zp) by considering the exact sequence

1→ T (Zp)→ T (Qp)→ [T (L)/T (OL]〈σ〉 → H1(〈σ〉, T (OL)) ,

where the last cohomology group vanishes by Lang’s theorem. It follows
that

Yp = T (Qp)/T (Zp)

and ϕ acts on it as µ(p).
On H, Frobv(1⊗ σr) acts as ϕ−r so that

Frobv(1⊗ σr) = (µ(p)(1⊗ σ−1))−r

= µ(p−1)σ(µ(p−1)) . . . σr−1(µ(p−1))(1⊗ σr).
Thus the Frobenius Frobv acts on Y p × Yp by the formula

(xp, xp) 7→ (xp,NEv/Qp(µ(p−1))xp).
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Auto-isogenies. For every prime ` 6= p, H1(A0,Q`) is a free F ⊗Q Q`-
module of rank one. So

EndQ(A0, ι0)⊗Q Q` = F ⊗Q Q`.

It follows that EndQ(A0, ι0) = F . The auto-isogenies of A0 form the
group F× and those who transport the polarization λ0 to rational mul-
tiples of λ0 form by definition the subgroup T (Q) ⊂ F×. �

5.3. Shimura-Taniyama formula. Let (F,Φ) be a CM-type. Let
OF be an order of F which is maximal almost everywhere. Let p be
a prime where OF is unramified. We can either consider the moduli
space of polarized abelian schemes edowed with a CM-multiplication of
CM-type Φ as in the previous paragraphs or consider the moduli space
of abelian schemes endowed wit a with CM-multiplication of CM-type
Φ. Everything works in the same way for properness, étaleness, and
the description of points, but we lose the obvious projective morphism
to the Siegel moduli space. But since we know a posteriori that there
is only a finite number of points, this loss is not serious.

Let (A, ι) be an abelian scheme over a number field K which is
unramified at p equipped with a sufficiently large level structure. K
must contains the reflex field E but might be bigger. Let q be a place
of K over p, and OK,q be the localization of OK at q, and let q be the
cardinal of the residue field of q. By étaleness of the moduli space,
A can be extended to an abelian scheme over Spec(OK,q) equipped
with a multiplication ιv by OF . As we have already seen, the CM
type Φ and the choice of the place q of K define a decomposition
Hom(OF ,Fp) = Ψ t τ(Ψ) such that

tr(b,Lie (Av)) =
∑
ψ∈Ψ

ψ(b)

for all b ∈ OF .
Let πq be the relative Frobenius of Av. Since EndQ(Av, ιv) = F , πq

defines an element of F .

Theorem 5.3.1 (Shimura-Taniyama formula). For all prime v of F ,
we have

valv(πq)

valv(q)
=
|Ψ ∩Hv|
|Hv|

,

where Hv ⊂ Hom(OF ,Fp) is the subset formed by the morphisms Of →
Fp which factor through v.

Proof. As in the description of the Frobenius operator in Yp, we have

πq = ϕ−r ,

where q = pr. It is an elementary exercice to relate the Shimura-
Taniyama formula to the group theoretical description of ϕ. �
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5.4. Shimura varieties of tori. Let T be a torus defined over Q and
h : S → TR a homomorphism. Let µ : Gm,C → TCC be the associated
cocharater. Let E be the number field of definition of µ. Choose an
open compact subgroup K ⊂ T (Af ). The Shimura variety attached to
these data is

T (Q)\T (Af )/K

since the conjugacy class X of h has just one element. This finite set
is the set of C-point of a finite étale scheme over Spec(E). We need to
define how the absolute Galois group Gal(E) acts on this set.

The Galois group Gal(E) will act through its maximal abelian quo-
tient Galab(E). For almost all prime v of E, we will define how the
Frobenius πv at v acts.

A prime p is said unramified if T can be extended to a torus T over
Zp and of Kp = T (Zp). Let v be a place of E over an unramified
prime p. Then p is an uniformizing element of OE,v. The cocharacter
µ : Gm → T is defined over OE,v so that µ(p−1) is well-defined element
of T (Ev). We require that the πv acts on T (Q)\T (Af )/K as the element

NEv/Qp(µ(p−1)) ∈ T (Qp).

By class field theory, this rule defines an action of Galab(E) on the
finite set T (F )\T (Af )/K.

5.5. Canonical models. Let (G, h) be a Shimura-Deligne datum. Let
µ : Gm,C → GC be the attached cocharater. Let E be the field of
definition of the conjugacy class of µ and which is called the reflex field
of (G, h).

Let (G1, h1) and (G2, h2) be two Shimura-Deligne data and let ρ :
G1 → G2 be an injective homomorphism of reductive Q-group which
sends the conjugacy class h1 to the conjugacy class h2. Let E1 and E2

be the reflex fields of (G1, h1) and (G2, h2). Since the conjugacy class
of µ2 = ρ ◦ µ1 is defined over E1, we have the inclusion E2 ⊂ E1.

Definition 5.5.1. A canonical model of Sh(G, h) is an algebraic vari-
ety defined over E such that for all Shimura-Deligne datum (G1, h1),
where G1 is a torus, and any injective homomorphism (G1, h1) →
(G, h), the morphism

Sh(G1, h1)→ Sh(G, h)

is defined over E1, where E1 is the reflex field of (G1, h1) and the E1-
structure of Sh(G1, h1) was defined in the last paragraph.

Theorem 5.5.2 (Deligne). There exists at most one canonical model
up to unique isomorphism.

Theorem 5.2.1 proves more or less that the moduli space gives rise
to a canonical model for symplectic group. It follows that PEL moduli
space also gives rise to canonical model. The same for Shimura varieties
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of Hodge type and abelian type. Some other crucial cases were obtained
by Shih afterward. The general case, the existence of the canonical
model is proved by Borovoi and Milne.

Theorem 5.5.3 (Borovoi, Milne). The canonical model exists.

5.6. Integral models. An integral model comes naturally with every
PEL moduli problem. More generally, in the case of Shimura varieties
of Hodge type, Vasiu proves the existence of a “canonical” integral
model. In this case, the integral model is nothing but the closure of
the canonical model (over the reflex field) in the Siegel moduli space
(base-changed to the maximal order of the reflex field). Vasiu proved
that this closure has good properties in particular the smoothness.
A good place to begin with integral models is the article [12] by B.
Moonen.

6. Points of Siegel varieties over a finite field

6.1. Abelian varieties over a finite field up to isogeny. Let k =
Fq be a finite field of characteristic p with q = ps elements. Let A be a
simple abelian variety defined over k and πA ∈ Endk(A) its geometric
Frobenius.

Theorem 6.1.1 (Weil). The subalgebra Q(πA) ⊂ Endk(A)Q is a finite
extension of Q such that for every inclusion φ : Q(πA) ↪→ C, we have
|φ(πA)| = q1/2.

Proof. Choose a polarization and let τ be the associated Rosati invo-
lution. We have

(πAx, πAy) = q(x, y)

so that τ(πA)πA = q. For every complex embedding φ : End(A)→ C, τ
corresponds to the complex conjugation. It follows that |φ(τA)| = q1/2.
�

Definition 6.1.2. An algebraic number satisfying the conclusion of the
above theorem is called a Weil q-number.

Theorem 6.1.3 (Tate). The homomorphism

Endk(A)→ EndπA
(V`(A))

is an isomorphism.

The fact that there is a finite number of abelian varieties over a finite
field with a given polarization type plays a crucial role in the proof of
this theorem.

Theorem 6.1.4 (Honda-Tate). (1) The category M(k) of abelian
varieties over k with HomM(k)(A,B) = Hom(A,B) ⊗ Q is a
semi-simple category.
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(2) The application A 7→ πA defines a bijection between the set of
isogeny classes of simple abelian varieties over Fq and the set
of Galois conjugacy classes of Weil q-numbers.

Corollary 6.1.5. Let A, B be abelian varieties over Fq of dimension
n. They are isogenous if and only if the characteristic polynomials of
πA on H1(A,Q`) and πB on H1(B,Q`) are the same.

6.2. Conjugacy classes in reductive groups. Let k be a field and
G be a reductive group over k. Let T be a maximal torus of G. The
finite group W = N(T )/T acts on T . Let

T/W := Spec([k[T ]W ])

where k[T ] is the ring of regular functions on T , i.e. T = Spec(k[T ])
and k[T ]W is the ring of W -invariants regular functions on T . The
following theorem is from [18].

Theorem 6.2.1 (Steinberg). There exists a G-invariant morphism

χ : G→ T/W ,

which induces a bijection between the set of semi-simple conjugacy
classes of G(k) and (T/W )(k) if k is an algebraically closed field.

If G = GL(n) , the map

[χ](k) : { semisimple conjugacy class of G(k)} → (T/W )(k)

is still a bijection for any field of characteristic zero. For arbitrary
reductive group, this map is neither injective nor surjective.

For a ∈ (T/W )(k), the obstruction to the existence of a (semi-simple)
k-point in χ−1(a) lies in some Galois cohomology group H2. In some
important cases this group vanishes.

Proposition 6.2.2 (Kottwitz). If G is a quasi-split group with Gder

simply connected, then [χ](k) is surjective.

For now, we will assume that G is quasi-split and Gder is simply
connected. In this case, the elements a ∈ (T/W )(k) are called stable
conjugacy classes. For every stable conjugacy class a ∈ (T/W )(k),
there might exist several semi-simple conjugacy classes of G(k) con-
tained in χ−1(a).

Examples. If G = GL(n), (Tn/Wn)(k) is the set of monic polynomials
of degree n

a = tn + a1t
n−1 + · · ·+ a0

with a0 ∈ k× . If G = GSp(2n), (T/W )(k) is the set of pairs (P, c),
where P is a monic polynomial of degree 2n and c ∈ k×, satisfying

a(t) = c−nt2na(c/t).
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In particular, if a = t2n + a1t
2n−1 + · · · + a2n then a2n = cn. The

homomorphism GSp(2n)→ GL(2n)×Gm induces a closed immersion

T/W ↪→ (T2n/W2n)×Gm.

Semi-simple elements of GSp(2n) are stably conjugate if and only if
they have the same characteristic polynomials and the same similitude
factors.

Let γ0, γ ∈ G(k) be semisimple elements such that χ(γ0) = χ(γ) = a.
Since γ0, γ are conjugate in G(k), there exists g ∈ G(k) such that
gγ0g

−1 = γ. It follows that for every ς ∈ Gal(k/k), ς(g)γ0ς(g)
−1 = γ

and thus

g−1ς(g) ∈ Gγ0(k).

The cocycle ς 7→ g−1ς(g) defines a class

inv(γ0, γ) ∈ H1(k,Gγ0)

with trivial image in H1(k,G). For γ0 ∈ χ−1(a) the set of semi-simple
conjugacy classes stably conjugate to γ0 is in bijection with

ker(H1(k,Gγ0)→ H1(k,G)).

It happens often that instead of an element γ ∈ G(k) stably conju-
gate to γ0, we have a G-torsor E over k with an automorphism γ such
that χ(γ) = a. We can attach to the pair (E , γ) a class in H1(k,Gγ0)
whose image in H1(k,G) is the class of E .

Consider the simplest case where γ0 is semisimple and strongly regu-
lar. For G = GSp, (g, c) is semisimple and strongly regular if and only
if the characteristic polynomial of g is a separable polynomial. In this
case, T = Gγ0 is a maximal torus of G. Let T̂ be the complex dual

torus equipped with a finite action of Γ = Gal(k/k)

Lemma 6.2.3 (Tate-Nakayama). If k is a non-archimedian local field,

then H1(k, T ) is the group of characters T̂ Γ → C× which have finite
order.

6.3. Kottwitz triples (γ0, γ, δ). Let A be the moduli space of abelian
schemes of dimension n with polarizations of type D and principal N -
level structure. Let U = Z2n be equipped with an alternating form of
type D

U × U →MU ,

where MU is a rank one free Z-module. Let G = GSp(2n) be the group
of automorphisms of the symplectic module U .

Let k = Fq be a finite field with q = pr elements. Let (A, λ, η̃) ∈
A′(Fq). Let A = A⊗Fq k and πA ∈ End(A) its relative Frobenius endo-

morphism. Let a be the characteristic polynomial of πA on H1(A,Q`).
This polynomial has rational coefficients and satisfies

a(t) = q−nt2na(q/t)
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so that (a, q) determines a stable conjugacy class a of GSp(Q). Weil’s
theorem implies that this is an elliptic class in G(R). Since GSp is
quasi-split and its derived group Sp is simply connected, there exists
γ0 ∈ G(Q) lying in the stable conjugacy class a.

The partition of A′(Fq) with respect to the stable conjugacy classe
a in G(Q) is the same as the partition by the isogeny classes of the
underlying abelian variety A (forgetting the polarization). This follows
from the fact that stable conjugacy classes in GSp are intersection of
conjugacy classes of GL with GSp. In the general PEL case, we need
a more involved description.

Now, let us partition such an isogeny class into classes of isogenies
respecting the polarization up to a multiple and let us pick such a class.
As in section 5, we choose a base point A0, λ0 in this class and define
the set Y whose elements are quadruples (A, λ, η̃, f : A → A0), where
(A, λ, η̃) ∈ A′(Fq) and f is a quasi-isogeny transforming λ to a Q×-
multiple of λ0. The isogeny class is recovered as I(Q)\Y , where I(Q)
is the group of quasi-isogenies of A0 to itself sending λ0 to a Q×-multiple
of itself.

Again, as in section 5, we can write Y = Y p × Yp, where Y p is the
subset of Y consisting of the quadruples for which the degree of the
quasi-isogey f is prime to p (i.e., is an element of Z×

(p)) and Yp is the

subset consisting of the quadruples for which the degree of f is a power
of p. We will successively describe Y p and Y p.

Description of Y p. For any prime ` 6= p, ρ`(πA) is an automorphism of
the adelic Tate module H1(A,Ap

f ) preserving the symplectic form up
to a similitude factor q

(ρ`(πA)x, ρ`(πA)y) = q(x, y).

The rational Tate module H1(A,Ap
f ) with the Weil pairing is similar to

U ⊗Ap
f so that πA defines a G(Ap

f )-conjugacy class in G(Ap
f ). We have

Y p = {η̃ ∈ G(Ap
f )/K

p|η̃−1γη̃ ∈ Kp}.
Note that for every prime ` 6= p, γ0 and γ` are stably conjugate. In the
case where γ0 is strongly regular semisimple, we have an invariant

α` : T̂ Γ` → C×

which is a character of finite order.

Description of Yp. Recall that πA : A → A is the composite of an
isomorphism u : σr(A) → A and the r-th power of the Frobenius
ϕr : A→ σr(A)

πA = u ◦ ϕr.
On the covariant Dieudonné module D = Hcris

1 (A/OL), the operator ϕ
acts σ−1-linearly and u acts σr-linearly. We can extend these actions
to H = D⊗OL

L. Let G(H) be the group of auto-similitudes of H and
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we form the semi-direct product G(H) o 〈σ〉. The elements u, ϕ and
πA can be seen as commuting elements of this semi-direct product.

Since u : σr(A)→ A is an isomorphism, u fixes the lattice u(D) = D.
This implies that

Hr = {x ∈ H | u(x) = x}
is an Lr-vector space of dimension 2n over the field of fractions Lr of
W (Fpr) and equipped with a symplectic form. Autodual lattices in H
fixed by u must come from autodual lattices in Hr.

Since ϕ◦u = u◦ϕ, ϕ stabilizes Hr and its restriction to Hr induces a
σ−1-linear operator of which the inverse will be denoted by δ ◦ σ (with
δ ∈ G(L)). We have

Yp = {g ∈ G(Lr)/G(OLr) | g−1δσ(g) ∈ Kpµ(p−1)Kp}.
There exists an isomorphism H with U ⊗ L that transports πA to γ0

and carries ϕ to an element bσ ∈ T (L)o〈σ〉. By the definition of δ, the
element Nδ = δσ(δ) · · ·σr−1(δ) is stably conjugate to γ0). Following
Kottwitz, the σ-conjugacy class of b in T (L) determines a character

αp : T̂ Γp → C×.

The set of σ-conjugacy classes in G(L) for any reductive group G is
described in [7].

Invariant at∞. Over R, T is an elliptic maximal torus. The conjugacy
class of the cocharacter µ induces a well-defined character

α∞ : T̂ Γ∞ → C×.

Let us state Kottwitz theorem in a particular case which is more or
less equivalent to theorem 5.2.1. The proof of the general case is much
more involved.

Proposition 6.3.1. Let (γ0, γ, δ) be a triple with γ0 semisimple strongly
regular such that γ and Nδ are stably conjugate to γ0. Assume that the
torus T = Gγ0 is unramified at p. There exists a pair (A, λ) ∈ A(Fq)
for the triple (γ0, γ, δ) if and only if∑

v

αv|T̂Γ = 0.

In that case there are ker1(Q, T ) isogeny classes of (A, λ) ∈ A(Fq)
which are mapped to the triple (γ0, γ, δ).

Let γ0 as in the statement and a ∈ Q[t] its characteristic polynomial
which is a monic polynomial of degree 2n satisfying the equation

a(t) = q−nt2na(q/t).

The algebra F = Q[t]/a is a product of CM-fields which are unramified
at p. The moduli space of polarized abelian varieties with multiplica-
tion by OF and with a given CM type is finite and étale at p. A point
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A ∈ A(Fq) mapped to (γ0, γ, δ) belongs to one of these Shimura vari-
eties of dimension 0 by letting t act as the Frobenius endomorphism
Frobq.

We can lift A to a point Ã with coefficients inW (Fq) by the étaleness.
By choosing a complex embedding of W (Fq), we obtain a symplectic

Q-vector space by taking the first Betti homology H1(Ã ⊗W (Fq) C,Q)
which is equipped with a non-degenerate symplectic form and multi-
plication by OF . This defines a conjugacy class in G(Q) within the
stable conjugacy class defined by the polynomial a. For every prime
` 6= p, the `-adic homology H1(A ⊗Fq Fq,Q`) is a symplectic vector
space equipped with an action of t = Frobq. This defines a conjugacy
class γ` in G(Q`). By the comparison theorem, we have a canonical
isomorphism

H1(Ã⊗W (Fq) C,Q)⊗Q Q` = H1(A⊗Fq Fq,Q`)

compatible with action of t so that the invariant α` = 0 for ` 6= p.
The cancellation between αp ans α∞ is essentially the equality ϕ =

µ(p)(1⊗ σ−1) occuring in the proof of Theorem 5.2.1. �

Kottwitz stated and proved a more general statement for all γ0 and
for all PEL Shimura varieties of type (A) and (C). In particular, he
derived a formula for the number of points on A

A(Fq) =
∑

(γ0,γ,δ)

n(γ0, γ, δ)T (γ0, γ, δ) ,

where n(γ0, γ, δ) = 0 unless Kottwitz vanishing condition is satisfied.
In that case

n(γ0, γ, δ) = ker1(Q, I)

and

T (γ0, γ, δ) = vol(I(Q\I(Af ))Oγ(1Kp)TOδ(1Kpµ(p−1)Kp
) ,

where I is an inner form of Gγ0 .
It is expected that this formula can be compared to Arthur-Selberg’s

trace formula, see [8].
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