
From SAT to SAT4J
Providing efficient SAT solvers for the Java platform

Daniel Le Berre

CRIL-CNRS FRE 2499, Université d’Artois, Lens, FRANCE
leberre@cril.univ-artois.fr

http://www.sat4.org/

Sophia Antipolis - December 4th, 2006

http://www.sat4.org/

Agenda

What does SAT mean ?

Why is SAT successful ?

The SAT4J project

SAT4J : what about efficiency ?

Pseudo Boolean Problems

Constraint Satisfaction Problems

MAXSAT

Conclusion and future directions

The SAT problem

Definition
Input : A set of clauses built from a propositional language with n
variables.
Output : Is there an assignment of the n variables that satisfies all
those clauses ?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

3/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

The SAT problem

Definition
Input : A set of clauses built from a propositional language with n
variables.
Output : Is there an assignment of the n variables that satisfies all
those clauses ?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

3/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Where are clauses coming from ?

Suppose :

a I like free software

b I should start a free software project

c I should use a free software language

Then C1 could represent the beliefs :

I a =⇒ b : If I like free software, then I should start a free
software project.

I b =⇒ c : If I start a free software project, then I should use
a free software language.

What happens if I like free software and I do not use a free
software language (a ∧ ¬c) ? This is inconsistent with my beliefs.
From C1 I can deduce a =⇒ c : If I like free software, then I
should use a free software language.

4/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

C2 SAT instance read by SAT4J (DIMACS)

p cn f 3 4
−1 2 0
−2 3 0
1 0
−3 0

Not really fun !

5/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

SAT can be fun !

6/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

SAT is important in theory ...

I Canonical NP-Complete problem (Cook, 1971)

I Threshold phenomenon on randomly generated k-SAT
instances (Mitchell,Selman,Levesque, 1992)

source : http ://www.isi.edu/ szekely/antsebook/ebook/modeling-tools-and-techniques.htm

7/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

... and in practice !

I Many problems can be solved using a reduction into SAT :

1996- Planning (SATPLAN,Blackbox)
1998- Software Specification (NitPick, Alloy)
1999- Bounded Model Checking, Equivalence

checking, Formal Verification, etc.
2005- Pseudo Boolean constraints
2005- Constraints Satisfaction Problems

I SAT solvers are currently being used in production
environments : Microsoft, Intel, IBM, Cadence, Synopsys,
Valiosys, etc.

I Some people have fun with SAT : SuDoKu, Crosswords, Clue,
etc.

I SAT technology is emerging in software engineering

8/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Examples of user applications

I The impact of satisfiability for Linux users

package dependencies EDOS project, Opium
bug finder e.g. SATURN

I The impact of satisfiability in software engineering

Software specification Alloy4, Kodkod
Feature modeling AHEAD
Requirements analysis OpenOME
Many more ...

I SAT solving can also be useful for solving security related
applications (e.g. cryptanalysis or access control) !

9/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

The SAT conference : www.satisfiability.org

I Workshops from Theoretical Computer Science or Artificial
Intelligence

1996 Siena, Italy (TCS)
1998 Schloß Eringerfeld, Germany (TCS)
2000 Renesse, Netherlands (TCS)
2001 Boston, United States (IA)

I Yearly conference since 2002

2002 Cincinnati, United States
2003 Portofino, Italy
2004 Vancouver, Canada
2005 St Andrews, Scotland
2006 Seattle, USA

I Approximately 100 persons attend the conference each year
I SAT’07 will take place in Lisbon, Portugal

10/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

The SAT Competition www.satcompetition.org

I The first competitions took place in the 90s :
1992 Paderborn, Germany
1993 2nd Dimacs challenge, United States
1996 Beijing, China

I Since 2002, it is a yearly event ! Numerous participants :
2002 27 solvers
2003 30 solvers
2004 55 solvers
2005 43 solvers

I In 2006, there was a SAT Race (industrial friendly), not a
SAT competition !

I Other competitions created after the SAT competition :
2003,2004 QBF

2005 QBF, PB, CSP, SMT, ...
2006 QBF, PB, CSP, SMT, MAX-SAT, ...

I The consequences are sometimes unexpected...

11/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

The case of the termination competition

I solvers have one minute to prove that a term or string
rewriting system terminates, e.g. :

INPUT: (RULES b c -> a b b , b a -> a c b)
ANSWER: NO
Input system R is not terminating since R admits a
looping reduction from bcaaca to aacabacbcaacabbb
with 10 steps.

I huge success of the open source SAT solvers MiniSat and
SatELite in the SAT 2005 competition

I Aprove, Jambox and Matchbox used them in 2006
I Results :

Aprove best for term rewriting systems (except the
relative termination subcategory) and for logic
programs

Jambox best for string rewriting systems and relative
termination of term rewriting

12/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Agenda

What does SAT mean ?

Why is SAT successful ?

The SAT4J project

SAT4J : what about efficiency ?

Pseudo Boolean Problems

Constraint Satisfaction Problems

MAXSAT

Conclusion and future directions

Why does SAT receive much attention currently ?

I Most companies doing software or hardware verification are
now using SAT solvers.

I Many SAT solvers are available from academia or the industry.

I SAT solvers can be used as a black box with a simple
input/ouput language (DIMACS).

I A new kind of SAT solver was designed in 2001 (Chaff)
I algorithmic improvements
I new complexity/efficiency tradeoff
I designed with hardware consideration/limitation in mind

14/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Typical application for SAT : reachability analysis

Definition
Given an initial state s0, a state transition relation ST , a goal state
g and a bound k.
Is there a way to reach g from s0 using ST within k steps ?
Is there a succession of states s0, s1, s2, ..., sk = g such that
∀ 0 ≤ i < k (si−1, si) ∈ ST ?

I The problems are generated for increasing k.

I For small k, the problems are usually UNSATISFIABLE

I For larger k, the problems can be either SAT or UNSAT.

I Complete SAT solvers are needed !

15/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

1992 - Planning As Satisfiability

PAS(S , I ,T ,G , k) = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

G (si)

where :

S the set of possible states si

I the initial state

T transitions between states

G goal state

k bound

If the formula is satisfiable, then there is a plan of length k.

16/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

1997 - Software Model Analysis

SMA(S , op, p) = ∃s, s ′ ∈ S op(s, s ′) ∧ p(s) ∧ ¬p(s ′)

where :

S the set of possible states

op an operation

p an invariant

If the formula is satisfiable, then there is an execution of the
operation that break the invariant.

Focus on encoding data structures so that the set of states S could
be structured

17/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

1999 - Bounded Model Checking

BMC (S , I ,T , p, k) = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

¬p(si)

where :

S the set of possible states si

I the initial state

T transitions between states

p is an invariant property

k a bound

If the formula is satisfiable, then there is a counter-example
reachable in k steps.

Focus on translating LTL formulas into SAT

18/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Consequence in 2006

I Many Chaff-like solvers available in many languages.

I They can solve problems with millions of variables and clauses.

I SAT solvers are now designed to be embedded in other apps.

I Thanks to its standard input format, it is easy to test and use
the latest SAT solvers available.

More and more applications are using SAT

19/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Agenda

What does SAT mean ?

Why is SAT successful ?

The SAT4J project

SAT4J : what about efficiency ?

Pseudo Boolean Problems

Constraint Satisfaction Problems

MAXSAT

Conclusion and future directions

The SAT4J project www.sat4j.org

I An open source library of Chaff-like solvers in Java
I Project started late 2003 as an implementation in Java of the

MiniSAT specification.
I Library updated continuously with latest SAT technologies
I Efficiency validated during the SAT competitions (2004 and

2005) and the SAT Race 2006.
I Can also handle other kind of constraints :

cardinality a + b + c + d ≥ 3
pseudo boolean 3 ∗ a + 2 ∗ b + 2 ∗ c + d ≥ 3

I Built-in Constraint Satisfaction Problem (CSP) to SAT
support (Participated to the First CSP competition in
Summer 2005).

I Built in optimization problems support.
I Target easy integration in any Java software !

21/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Some SAT4J Users

Formal verification Kodkod project and Alloy4 (Daniel Jackson @
MIT)

Software engineering
I OpenOME (Yijun Yu et al @ U. Toronto)
I AHEAD (Don Batory @ U. Texas)
I FAMA (David Benavides @ U. Seville)

Semantic web Ontology matching in S-MATCH (Fausto
Giunchiglia, Pavel Shvaiko and Mikalai Yatskevich @
U. Trento)

Constraints CONstraints ACQuisition (Christian Bessière, Rémi
Coletta et al @ U. Montpellier)

Algorithm configuration Frank Hutter @ UBC
Other

I CROSSWORDS (Andy King and Colin Pigden)
I SUDOKU (Ivor Spence, U. Belfast)
I SAT4SATIN (Ibis group @ Vrije)

22/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Use case 1 : OpenOME

http://www.cs.toronto.edu/km/openome/

OpenOME an Eclipse plugin for requirements engineering.

goal model to connect the user’s high level requirements with the
system’s low level configuration items

preferences between goals : one goal is more important than
another

expectations a goal needs to be satisfied to a certain degree

I Top-down reasoning propagates the expectations of high level
goals downward to obtain the minimal number of low level
goals that can fulfill the requirements.

I Top-down reasoning done with SAT4J

23/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

http://www.cs.toronto.edu/km/openome/

Use case 2 : AHEAD tool suite

http://www.cs.utexas.edu/users/schwartz/ATS.html

Product line family of programs differentiated by features

Constraint Not all features are compatible

Safe Composition Avoiding type errors in the composed code.

AHEAD theory of software synthesis based on feature
composition

SAT used to :

I debug feature models

I perform safe composition

24/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

http://www.cs.utexas.edu/users/schwartz/ATS.html

Use case 2 : AHEAD tool suite

http://www.cs.utexas.edu/users/schwartz/ATS.html

Product line family of programs differentiated by features

Constraint Not all features are compatible

Safe Composition Avoiding type errors in the composed code.

AHEAD theory of software synthesis based on feature
composition

“Further, the performance of using SAT solvers to prove theorems
was encouraging : non-trivial product-lines of programs of
respectable size [40+ programs each with 35K Java LOC, ...] could
be analyzed and verified in less than 30s.”
Don Batory and Sahil Thaker, Safe Composition of Product Lines

24/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

http://www.cs.utexas.edu/users/schwartz/ATS.html

Use case 3 : Alloy

http://alloy.mit.edu

I 10 years old technology (Formerly Nitpick, 96)
I Followed the evolution of SAT solvers :

I Started with WalkSAT/SATO
I Then RELSAT/SATZ
I Took the Chaff wave
I Now uses MiniSAT

I Take advantage of new features in SAT solvers (e.g. unsat
core)

I From the beginning in Java, relying on efficient C/C++
solvers (Java counterparts tried but abandoned)

I SAT4J allows a pure Java tool (still some problems with
graph layout)

25/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

http://alloy.mit.edu

Overview of SAT4J architecture : End User view

SAT4J for Java programmers : basic use

I S o l v e r s o l v e r = So l v e r F a c t o r y . newDefau l t () ;
s o l v e r . se tTimeout (3600) ; // 1 hour t imeout
Reader r e a d e r = new DimacsReader (s o l v e r) ;
t r y { // CNF f i l e n ame i s g i v e n on the command l i n e

IProb lem problem = r e ad e r . p a r s e I n s t a n c e (a r g s [0]) ;
i f (problem . i s S a t i s f i a b l e ()) {

System . out . p r i n t l n (” S a t i s f i a b l e ! ”) ;
System . out . p r i n t l n (r e a d e r . decode (problem . model ())) ;

} e l s e {
System . out . p r i n t l n (” U n s a t i s f i a b l e ! ”) ;

}
} ca tch (F i l eNotFoundExcep t i on e) {
} ca tch (Par seFormatExcept ion e) {
} ca tch (IOExcept i on e) {
} ca tch (Con t r a d i c t i o nE x c e p t i o n e) {

System . out . p r i n t l n (” U n s a t i s f i a b l e (t r i v i a l) ! ”) ;
} ca tch (TimeoutExcept ion e) {

System . out . p r i n t l n (”Timeout , s o r r y ! ”) ;
}

27/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

SAT4J for Java programmers : iterate over models

I S o l v e r s o l v e r = So l v e r F a c t o r y . newDefau l t () ;
Mod e l I t e r a t o r mi = new Mode l I t e r a t o r (s o l v e r) ;
s o l v e r . se tTimeout (3600) ; // 1 hour t imeout
Reader r e a d e r = new In s t an c eReade r (mi) ;
t r y {// f i l e n ame i s g i v e n on the command l i n e

boo l ean unsa t = t r u e ;
IProb lem problem = r e ad e r . p a r s e I n s t a n c e (a r g s [0]) ;
wh i l e (problem . i s S a t i s f i a b l e ()) {

unsa t = f a l s e ;
i n t [] model = r e ad e r . decode (problem . model ())) ;
// do someth ing wi th each model

}
i f (unsa t)

// do someth ing f o r unsa t ca s e
} ca tch (F i l eNotFoundExcep t i on e) {

[. . .]
} ca tch (Con t r a d i c t i o nE x c e p t i o n e) {

System . out . p r i n t l n (” U n s a t i s f i a b l e (t r i v i a l) ! ”) ;
} ca tch (TimeoutExcept ion e) {

System . out . p r i n t l n (”Timeout , s o r r y ! ”) ;
}

28/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Overview of SAT4J architecture : Power User view

SAT4J search visualization option

SAT4J search visualization option

Agenda

What does SAT mean ?

Why is SAT successful ?

The SAT4J project

SAT4J : what about efficiency ?

Pseudo Boolean Problems

Constraint Satisfaction Problems

MAXSAT

Conclusion and future directions

Efficient SAT solving with SAT4J

I Many possible solver configurations available (>20)

I No real benchmarking of solvers made for the previous
competitions

I SAT Race is special : qualification stage

I Testsets are provided for the race (50 benchmarks)

32/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Efficient SAT solving with SAT4J

I Many possible solver configurations available (>20)

I No real benchmarking of solvers made for the previous
competitions

I SAT Race is special : qualification stage

I Testsets are provided for the race (50 benchmarks)

Choosing best configuration for the race

32/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

First trial : test everything

Solver Solved SAT UNSAT Time Out Of Memory
MiniLearning 36 13 23 319m31.771s 1
MiniLearningHeap 33 10 23 318m25.009s 5
MiniLearningHeapEZSimp 36 12 24 283m8.689s 3
MiniLearning2 33 10 23 389m43.783s 0
MiniLearning2Heap 36 13 23 299m1.987s 0
MiniLearning23 26 12 14 437m10.415s 0
MiniLearningCB 19 8 11 482m26.646s 1
MiniLearningCBWL 27 8 19 402m44.606s 1
MiniLearning2NewOrder 33 13 20 367m30.035s 0
MiniLearningPure 30 8 22 388m40.632s 1
MiniLearningCBWLPure 27 8 19 416m51.705s 1
MiniLearningEZSimp 35 12 23 309m29.826s 1
MiniLearningNoRestarts 31 10 21 379m31.950s 3
ActiveLearning 34 11 23 318m59.267s 1
MiniSAT 33 11 22 333m8.418s 1
MiniSATNoRestarts 30 9 21 377m36.427s 3
MiniSAT2 33 10 23 377m36.427s 0
MiniSAT23 25 11 14 437m44.362s 0
MiniSATHeap 33 10 23 298m31.360s 5
MiniSAT2Heap (default) 36 13 23 297m49.641s 1
MiniSAT23Heap 24 11 13 430m59.189s 2
Relsat 22 6 16 417m22.977s 7
Backjumping 10 7 3 621m9.357s 1

33/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Some competitors

Solver Solved SAT UNSAT Time

MiniSat 1.14 38 12 26 230m56.139s
zChaff 2004.11.15 34 9 25 368m26.901s
Siege v4 45 16 29 186m36.902s
SatELite (not GTI) 32 10 22 350m3.909s

34/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Second trial : change memory management

Solver # SAT UNSAT Time OOM
MiniLearning 35 12 23 326m10.754s 1
MiniLearningHeap 34 11 23 317m48.771s 5
MiniLearningHeapEZSimp 37 12 25 277m16.920s 4
MiniLearning2 33 9 24 363m50.988s 0
MiniLearning2Heap 37 13 24 279m29.925s 2
MiniLearning2NewOrder 35 12 23 360m2.050s 0
MiniLearningHeap 35 11 24 313m51.323s 1
Activelearning 33 12 23 332m2.813 1
MiniSAT 34 11 23 331m54.472s 1
MiniSAT2 34 10 24 348m58.966s 0
MiniSAT23 33 10 23 354m26.744s 0
MiniSATHeap 35 12 23 291m13.961s 5
MiniSAT2Heap 36 12 24 294m48.496s 3
MiniSATHeapEZSimp 37 12 25 296m24.180s 3

MiniLearningHeapExpSimp 42 14 28 297m32.545s 0

Release 1.7, Java 6 RC 42 14 28 276m31.717s 0

35/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Second trial : change memory management

Solver # SAT UNSAT Time OOM
MiniLearning 35 12 23 326m10.754s 1
MiniLearningHeap 34 11 23 317m48.771s 5
MiniLearningHeapEZSimp 37 12 25 277m16.920s 4
MiniLearning2 33 9 24 363m50.988s 0
MiniLearning2Heap 37 13 24 279m29.925s 2
MiniLearning2NewOrder 35 12 23 360m2.050s 0
MiniLearningHeap 35 11 24 313m51.323s 1
Activelearning 33 12 23 332m2.813 1
MiniSAT 34 11 23 331m54.472s 1
MiniSAT2 34 10 24 348m58.966s 0
MiniSAT23 33 10 23 354m26.744s 0
MiniSATHeap 35 12 23 291m13.961s 5
MiniSAT2Heap 36 12 24 294m48.496s 3
MiniSATHeapEZSimp 37 12 25 296m24.180s 3

MiniLearningHeapExpSimp 42 14 28 297m32.545s 0

Release 1.7, Java 6 RC 42 14 28 276m31.717s 0

35/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Second trial : change memory management

Solver # SAT UNSAT Time OOM
MiniLearning 35 12 23 326m10.754s 1
MiniLearningHeap 34 11 23 317m48.771s 5
MiniLearningHeapEZSimp 37 12 25 277m16.920s 4
MiniLearning2 33 9 24 363m50.988s 0
MiniLearning2Heap 37 13 24 279m29.925s 2
MiniLearning2NewOrder 35 12 23 360m2.050s 0
MiniLearningHeap 35 11 24 313m51.323s 1
Activelearning 33 12 23 332m2.813 1
MiniSAT 34 11 23 331m54.472s 1
MiniSAT2 34 10 24 348m58.966s 0
MiniSAT23 33 10 23 354m26.744s 0
MiniSATHeap 35 12 23 291m13.961s 5
MiniSAT2Heap 36 12 24 294m48.496s 3
MiniSATHeapEZSimp 37 12 25 296m24.180s 3

MiniLearningHeapExpSimp 42 14 28 297m32.545s 0

Release 1.7, Java 6 RC 42 14 28 276m31.717s 0

35/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Lessons learnt

heap/array Heap based heuristics are definitely better for those
benchmarks

2/3 specific binary data structures are helpful in some
cases, better for solving satisfiable benchmarks.

Reason Simplification helps for solving UNSAT benchmarks.
Expensive reason simplification from MiniSAT 1.14 is
the best option for the SAT Race.

learning Filtering learnt clauses preserve efficiency.

memory management is the weakest part of SAT4J : despite a
regular cleanup of the learnt clauses, the solver runs
out of memory after a while.

36/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Are solvers in SAT4J state-of-the-art ?

+ MiniSAT is currently the best available open source SAT
solver (C++) : SAT4J started as a Java implementation of
the original MiniSAT

+ SAT4J is a mature software (almost 3 year old) : core library
has been fine tuned over the years

+ SAT4J is updated regularly with latest proven successful
techniques

+ Java VMs are more and more powerfull : Java 6 VM will
provide 20% speedup for free

- Preprocessing available in MiniSAT 2.0 is not available in
SAT4J

- SAT4J is designed for flexibility : fastest SAT solvers
reimplement everything from scratch for heavy tuning !

37/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Results of SAT4J during the SAT Race 2006

Agenda

What does SAT mean ?

Why is SAT successful ?

The SAT4J project

SAT4J : what about efficiency ?

Pseudo Boolean Problems

Constraint Satisfaction Problems

MAXSAT

Conclusion and future directions

Linear pseudo boolean constraints : definitions

I boolean variables xi , truth value ∈ {0, 1}.
I xi = 1− xi .

I General form : ∑
i

ai .xi . k

where ai and k are constants (integer or real) and
. ∈ {=, >,≥, <,≤}.

I k is called the degree of the constraint.

I Example : 3x1 − 4x2 + 7x3 − x4 ≤ 2

40/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Specific cases

Clauses and cardinality constraints can be seen as special cases of
linear pseudo boolean constraints.

I x1 ∨ x2 ∨ . . . xn translates to
x1 + x2 + . . . + xn ≥ 1

I atleast(k, {x1, x2, . . . , xn}) translates to
x1 + x2 + . . . + xn ≥ k

I atmost(k, {x1, x2, . . . , xn}) translates to
x1 + x2 + . . . + xn ≥ n − k.

41/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Resolution on clauses = cutting planes on LPBC

cutting planes:

∑
i ai .xi ≥ k∑
i a

′
i .xi ≥ k ′∑

i (α.ai + α′.a′i).xi ≥ α.k + α′.k ′

with α > 0 and α′ > 0

I we may form a combination which doesn’t eliminate any
variable.

I one single linear combination may eliminate more than one
variable.

42/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Resolution on clauses = cutting planes on LPBC

cutting planes:

∑
i ai .xi ≥ k∑
i a

′
i .xi ≥ k ′∑

i (α.ai + α′.a′i).xi ≥ α.k + α′.k ′

with α > 0 and α′ > 0

I we may form a combination which doesn’t eliminate any
variable.

I one single linear combination may eliminate more than one
variable.

cutting planes:

x1 + x2 + x3 ≥ 4 2x1 + 2x2 + x4 ≥ 3

(2x1 + 2(1− x1)) + 2 + 2x3 + x4 ≥ 8 + 3
2x3 + x4 ≥ 7

42/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

SAT4JPseudo : Replacing resolution by cutting planes ...

I Using the CDCL framework proposed by GRASP

I With some improvements coming from Chaff (VSIDS, First
UIP)

I Cutting planes are used during conflict analysis to generate an
assertive constraint.

I Proposed first in Galena (Chai&Kuehlmann 2003) and
PBChaff (Dixon 2002/2004).

I Cardinality approach preferred to Full CP
I No management of integer overflow
I Solvers no longer developed

43/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

The Pseudo Boolean evaluations

I Organized by Olivier Roussel and Vasco Manquinho in 2005
and 2006

I Uniform input format

I Independent assessment of the PB solvers

I Results freely available in details

I first comprehensive repository of benchmarks

I Various technologies used in 2006

44/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

The solvers
Summary of features

Mini-
Sat+

SAT-
4J

Pue-
blo

PBS Bsolo glpPB

Input Clauses LPBC LPBC LPBC LPBC LPBC

Inference Res. Full
C.P.

(boo-
lean)

Mixed Mixed Mixed Full
C.P.

(real)

Optimization L.S. L.S. L.S. L.S. B’n’B Sim-
plex

45/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Partial results of the PB05 evaluation

Mi-
ni-

Sat+

SAT-
4J

Pue-
blo

PBS Bsolo

Decision problems 43
(35)

52
17

61
42

61
28

36
8

UNS
SAT

Opt. Small 10
176
(120)

10
120
(226)

10
160
182

10
133

0

10
159
180

UNS
OPT
SAT

Opt. Medium 0
24

(67)

2
19

107

0
34
74

0
33
0

0
28
82

UNS
OPT
SAT

Opt. Big
103
26

(64)

85
3

(171)

- - 90
9

83

UNS
OPT
SAT

See http://www.cril.univ-artois.fr/PB05/results/ for detailed results.

46/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

http://www.cril.univ-artois.fr/PB05/results/

Partial results of the PB06 evaluation

PB06 Own

Mi-
ni-

Sat+

SAT4J
C.P.

Pue-
blo
1.4

PBS
4.1L

Bsolo SAT4J
Res.

Decision pbms 172
148

79
92

204
153

199
144

111
118

165
121

UNS
SAT

Opt. Small 43
405
250

54
357
303

37
385
323

29
352

0

40
409
280

35
367

(267)

UNS
OPT
SAT

Opt. Medium 0 3
9

0 4
9

0 4
15

0 5
0

0 6
7

0 5
(9)

UNS
OPT
SAT

Opt. Big 38
33
52

37
57
77

- - 30
14
69

40
72
96

UNS
OPT
SAT

See http://www.cril.univ-artois.fr/PB06/results/ for details.

47/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

http://www.cril.univ-artois.fr/PB06/results/

Partial detailed results of the PB06 evaluation

MSat+ SAT4J Pueblo PBS Bsolo glpPB

SAT/UNSAT

pigeon 20 2 20 13 20 2 20
queens 100 100 18 99 100 100 100
tsp 100 91 20 100 85 40 42
fpga 57 35 43 57 47 9 26
uclid 50 47 30 42 44 38 10

OPT SMALLINT

minprime 156 124 104 118 103 106 52
red.-mps 273 46 70 63 27 54 58

OPT BIGINT

factor. 100 14 52 - - 7 -

Ardal problems (one eq. constraint)

Ardal 1 12 10 2 0 3 2 0

See http://www.cril.univ-artois.fr/PB06/results/ for details.

48/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

http://www.cril.univ-artois.fr/PB06/results/

Good cases for SAT4JPseudo

pigeon hole solvers using resolution cannot solve them. A nice
way to check the inference engine of the solvers.

reduced mps Those benchmarks are composed of real LPBC, so
solvers with CP capabilities have good results on
them.

factorization SAT4J Heuristics was lucky on half of the
benchmarks, because of the way it initializes the
phase of the variables to branch on according to the
objective function.

49/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Bad cases for SAT4JPseudo

TSP and Weighted Queens problems contributed by Gayathri
Namasivayam for PB06. Much more clauses than cardinality
constraints or PB constraints.
One typical example from the Queens problem :

SAT4J C.P. timeout at 1800 seconds after only 7 restarts for
2338 conflicts at 7 decisions/second

SAT4J Resolution 35 seconds after 16 restarts, 95829 conflicts at
3320 decisions per seconds

The difference lies in the conflict analysis procedure !

50/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Bad cases for SAT4JPseudo

TSP and Weighted Queens problems contributed by Gayathri
Namasivayam for PB06. Much more clauses than cardinality
constraints or PB constraints.
One typical example from the Queens problem :

SAT4J C.P. timeout at 1800 seconds after only 7 restarts for
2338 conflicts at 7 decisions/second

SAT4J Resolution 35 seconds after 16 restarts, 95829 conflicts at
3320 decisions per seconds

The difference lies in the conflict analysis procedure !
I Bad results of SAT4JPseudo during the evaluations do not

mean Full C.P. approach is wrong : it depends of the
implementation (c.f. PB2SAT @ PB05)

I Results heavily depend on the kind of benchmarks : many
easy benchmarks make the comparison of solvers difficult.

50/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Agenda

What does SAT mean ?

Why is SAT successful ?

The SAT4J project

SAT4J : what about efficiency ?

Pseudo Boolean Problems

Constraint Satisfaction Problems

MAXSAT

Conclusion and future directions

From CSP to SAT

A CSP is a triplet (X,D,C) such that

X = {X1,X2, ...,Xn} is a set of n variables

D is the domain function that maps to each variable Xi

its domain D(Xi), i.e., the set of possible values for
Xi .

C = {C1,C2, ...Cm} is a set of constraints. Each
constraint Cj is a relation among the possible values
for its variables.

52/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

From CSP to SAT : naive version (Walsh,2000)

Variables for each variable Xi , and each value dj ∈ D(Xi), a
new propositional variablepi ,j is created.

Domains for each variable Xi , a cardinality constraint specify
that a single value can be selected from the domain :∑

x pi ,x = 1.

Forbidden Tuples (nogoods) Each forbidden tuple (x1, x2, ..., xk) is
represented by a clause of length k containing the
negated proposition variables representing the values
xi .

Authorized Tuples (supports) Compute the complementary
forbidden tuples and proceed as above.

53/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Example : 3-queens

I X = {X1,X2,X3}
I D(Xi) = {1, 2, 3}∀i
I Création des variables propositionnelles

v01, v02, v03

v10, v12, v23

v20, v12, v23

I Relation 1 (nogood) R1 :

(1, 1)(1, 2)(2, 2)(2, 1)(2, 3)(3, 3)(3, 2)

I Relation 2 (nogood) R2 :

(1, 1)(1, 3)(2, 2)(3, 3)(3, 1)

I C = {C1 = R1(X1,X2),C2 = R2(X1,X2),C3 = R1(X2,X3)}

54/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Constraints produced

I The domain definitions produce 3 cardinality constraints
v01 + v02 + v03 = 1, v11 + v12 + v13 = 1, v21 + v22 + v23 = 1.

I C1 produces 9 binary clauses :
¬v01 ∨ ¬v11,¬v01 ∨ ¬v12,¬v02 ∨ ¬v12,¬v02 ∨ ¬v11,¬v02 ∨
¬v13,¬v03 ∨ ¬v13,¬v03 ∨ ¬v12

I C2 produces 5 binary clauses :
¬v01∨¬v11,¬v01∨¬v13,¬v02∨¬v12,¬v03∨¬v13,¬v03∨¬v11

I C3 produces 9 binary clauses :
¬v11 ∨ ¬v21,¬v11 ∨ ¬v22,¬v12 ∨ ¬v22,¬v12 ∨ ¬v21,¬v12 ∨
¬v23,¬v13 ∨ ¬v23,¬v13 ∨ ¬v22

55/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Results of the first CSP competition (binary constraints)

source : http ://cpai.ucc.ie/05/CallForSolvers.html

binary/n-ary

SAT-based Dedicated
biere dleberre roussel dm6 dongen lecoutre

non binary constraints (147 benchmarks)
Solved 26 52 50 - 70 97
Time 262 2425 1952 - 2337 8031

binary constraints (922 benchmarks)
Solved 377 739 769 822 818 759
Time 19894 15859 8070 12679 13642 18460

Selection of solvers that participated to the CSP05 .
source : http ://cpai.ucc.ie/05/CallForSolvers.html

57/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

From CSP to SAT : support version (Gent,2002)

Replace the translation of authorized binary tuples by constraints
preserving arc consistency.

I For each set of authorized binary tuple like
C = {(a, b1), (a, b2), ..., (a, bn)}

I Create a clause ¬a ∨ b1 ∨ b2 ∨ ... ∨ bn

I Needed in both directions : for a, but also for bi .

I For values not appearing in the constraints, unit negative
clause !

Advantage Forbidden tuple computation no longer needed !

Drawback Produced clauses are no longer binary
Limited to binary constraints

58/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Naive/support comparison

On some benchmarks, the difference is obvious :

Näıve (s) Translation time (s) Support (s)

hanoi3 1 <1 1
hanoi4 18 1 2
hanoi5 731 33 2
hanoi6 - 1840 7
hanoi7 - - 22

qk1 benchmarks (18 instances)

näıve no instance solved with 10mn TO each

support all solved (UNSAT) in less than 2mn

59/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

January 2006 results (CRIL internal)

SAT4J Dedicated 1 Dedicated 2

non binary constraints (186 benchmarks)

UNSAT 27 - 28
SAT 61 - 125

binary constraints (2031 benchmarks)

UNSAT 842 1004 995
SAT 760 840 827

60/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

January 2006 results (CRIL internal) : non random

SAT4J Dedicated 1 Dedicated 2

non binary constraints (150 benchmarks)

UNSAT 27 - 28
SAT 48 - 108

binary constraints (1041 benchmarks)

UNSAT 400 386 396
SAT 560 536 536

61/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

September 2006 : Second CSP competition, first stage

SAT4J Abscon BProlog Buggy

non binary constraints (978 benchmarks)

UNSAT 68 77 46 -
SAT 273 429 379 -

Total 341 506 425 -

binary constraints (2673 benchmarks)

UNSAT 614 1053 598 1066
SAT 864 1290 858 1322

Total 1478 2343 1456 2388

62/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

September 2006 : Second CSP competition, first stage

SAT4J Abscon BProlog Buggy

non binary constraints (978 benchmarks)

UNSAT 68 77 46 -
SAT 273 429 379 -

Total 341 506 425 -

binary constraints (2673 benchmarks)

UNSAT 614 1053 598 1066
SAT 864 1290 858 1322

Total 1478 2343 1456 2388

I For the first competition, constraints were given in extension.
I For the second competition, they can be given in intention.
I SAT-based encoding requires extensional form : it is

sometimes impossible to generate it from the intensional form.

62/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Results of the second CSP competition (binary constraints)

Results of the second CSP competition (n-ary constraints)

Agenda

What does SAT mean ?

Why is SAT successful ?

The SAT4J project

SAT4J : what about efficiency ?

Pseudo Boolean Problems

Constraint Satisfaction Problems

MAXSAT

Conclusion and future directions

MAXSAT and the optimization framework

I Can use a linear search to solve optimization problems :

1. Find a solution
2. Evaluate its cost function
3. Add a new constraint to limit the search to better solutions
4. Repeat until no more solutions : latest one is optimal

I Allow solving MAXSAT by adding one selector variable per
clause

I MAXSAT solver submitted to the first MAXSAT evaluation

I Results where pretty bad for MAXSAT (underlying SAT solver
might not be appropriate). Binary Search and Linear Search
solvers based on zChaff confirmed those bad results.

I Good results on one class of benchmarks in the weighted
MAX-SAT category.

66/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Agenda

What does SAT mean ?

Why is SAT successful ?

The SAT4J project

SAT4J : what about efficiency ?

Pseudo Boolean Problems

Constraint Satisfaction Problems

MAXSAT

Conclusion and future directions

Conclusion

I SAT4J is a mature library of SAT solvers in Java

I The library allows easy integration of SAT technology into
Java programs

I Additional features are provided :
I Pseudo Boolean solving
I CSP to SAT translation
I Optimization framework

I SAT4J evolves with SAT technology : new state-of-the-art
features are integrated regularly.

68/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

Future directions

I Improving Pseudo Boolean Solving

I Allowing reasoning on new And-Inverter Graph input

I Allowing manipulation of CSP constraints without grounding
them

I Adding some MiniSAT 2.0 preprocessing techniques

I Improving user documentation and tutorials

I Separation of core SAT/PB/CSP code in next major release
2.0

I Release 1.7 is the first community driven release of SAT4J :
more user-oriented features expected in the future

I Grid/Distributed Computing (Ibis and ProActive)

69/69 From SAT to SAT4J Sophia Antipolis - December 4th , 2006

	What does SAT mean?
	Why is SAT successful?
	The SAT4J project
	SAT4J: what about efficiency?
	Pseudo Boolean Problems
	Constraint Satisfaction Problems
	MAXSAT
	Conclusion and future directions

