

Multiple Asteroid Systems Search Programs and Studies with AO

Franck Marchis

SETI Institute & University of California Berkeley June 9 2009, AAS Conference Pasadena, CA, USA

Binary Asteroids A Family Portrait

MB Ida and Dactyl (Galileo 1993)

MB 90 Antiope (AO, 2001) Doublet MB 45 Eugenia & Petit-Prince (AO, 1998)

NEA 2000DP107 (2002, radar)

- ~172 are known (MB, NEA, Trojans, TNOs)
- ~80 can be visualized with AO, HST, or Radar
- ~20 observable with current NGS, ~20 with LGS on 8-10m class telescopes
- ⇒ Mass, density -> formation of solar system

Virtual Observatory Binary Asteroid Database (VOBAD)

VLT 8m-ESO
Paranal (Chile)

2000-2008

VOBAD

- AO ~1340 observations of 501 SSSBs
 34 NEAs, 402 MBAs, 62 Jupiter-Trojan,
 1 Centaur, 2 KBOs
- HST ~612 observations of 378 SSSBs
 1 NEA, 79 MBAs, 34 Jupiter-Trojan, 19
 Centaurs, 245 KBOs

2000-2001

Virtual Observatory Binary Asteroid Database (VOBAD)

Keck II 10-m Mauna Kea (Hawaii) 2002-2009

VOBAD

servations of 501 SSSBs MBAs, 62 Jupiter-Trojan, BOs

servations of 378 SSSBs As, 34 Jupiter-Trojan, 19 **KBOs**

The first triple asteroid system: 87 Sylvia

Composite images

S/2001 (87)1 - Romulus

- $D_1 = 18 \pm 4 \text{ km}$
- $a_1 = 1356 \pm 5 \text{ km} = 1/50 \text{ x R}_{hill}$
- $P_1 = 3.6496 \pm 0.0007$ days

S/2004 (87)1 - Remus

- $D_2 = 7 \pm 2 \text{ km}$
- $\bullet a_2 = 706 \pm 5 \text{ km} = 0.52 \text{ x } a_1$
- $P_2 = 1.3788 \pm 0.0007$ days
- -> coplanar, prograde and equatorial orbits
- -> damped by tidal effect
- -> precession of the inner moon observed due to oblateness (elongated shape) of the primary
- 5-body numerical simulation showed that the system is stable because of the oblateness of the primary (Winter et al., 2009)
- We discovered new triple systems (45 Eugenia in 2006, 3749
 Balam in 2007, and 216 Kleopatra in 2008)

Discovery of Triple Asteroid Systems

Triplicity rate in VOBAD: ~1%

S/2001 (87)1 - Romulus

- $D_1 = 18 \pm 4 \text{ km}$
- $a_1 = 1356 \pm 5 \text{ km} = 1/50 \text{ x R}_{\text{hill}}$
- $P_1 = 3.6496 \pm 0.0007$ days

S/2004 (87)1 - Remus

- $D_2 = 7 \pm 2 \text{ km}$
- $\bullet a_2 = 706 \pm 5 \text{ km} = 0.52 \text{ x } a_1$
- $P_2 = 1.3788 \pm 0.0007$ days

From reanalysis of Feb. 2004 VLT data 4 detections only (orbit is very preliminary...)

D_{"Princesse"} ~ 5-6 km

 $D_{Petit-Prince} = 7 \pm 3 \text{ km}$

Preliminary orbit: $a_2 = 0.49 \times a_1$

same relative ratio to (87) Sylvia moonlets

by design or coincidence?

Discovery of Triple Asteroid Systems

Triplicity rate in VOBAD: ~1%

S/2001 (87)1 - Romulus

- $D_1 = 18 \pm 4 \text{ km}$
- $a_1 = 1356 \pm 5 \text{ km} = 1/50 \text{ x R}_{hill}$
- $P_1 = 3.6496 \pm 0.0007$ days

S/2004 (87)1 - Remus

- $D_2 = 7 \pm 2 \text{ km}$
- $\bullet a_2 = 706 \pm 5 \text{ km} = 0.52 \text{ x } a_1$
- $P_2 = 1.3788 \pm 0.0007$ days

From reanalysis of Feb. 2004 VLT data 4 detections only (orbit is very preliminary...)

D_{"Princesse"} ~ 5-6 km

 $D_{Petit-Prince} = 7 \pm 3 \text{ km}$

Preliminary orbit: $a_2 = 0.49 \times a_1$

same relative ratio to (87) Sylvia moonlets

by design or coincidence?

Discovery of Triple Asteroid Systems

S/2001 (87)1 - Romulus

- $D_1 = 18 \pm 4 \text{ km}$
- $a_1 = 1356 \pm 5 \text{ km} = 1/50 \text{ x R}_{hill}$
- $P_1 = 3.6496 \pm 0.0007$ days

S/2004 (87)1 - Remus

- $D_2 = 7 \pm 2 \text{ km}$
- • $a_2 = 706 \pm 5 \text{ km} = 0.52 \text{ x } a_1$
- $P_2 = 1.3788 \pm 0.0007$ days

From reanalysis of Feb. 2004 VLT data 4 detections only (orbit is very preliminary...)

D_{"Princesse"} ~ 5-6 km

 $D_{Petit-Prince} = 7 \pm 3 \text{ km}$

Preliminary orbit: $a_2 = 0.49 \times a_1$

same relative ratio to (87) Sylvia moonlets

by design or coincidence?

Mass, Bulk Density & Porosity of 87 Sylvia

- From 3rd Kepler law \Rightarrow Mass=1.48 \times 10¹⁹ kg (Keplerian model + precession due to Sylvia primary oblateness)
- Shape and Size of the primary refined based on AO observations ellipsoid with a=192km, b=132 km, c=116 km

 \Rightarrow Bulk density = 1.2± 0.2 g/cm³

Porosity of 25-60% (C-type) CI-CM or CR-CV meteorite analogs? Rubble-pile internal structure of the primary

Circular, prograde, and equatorial orbits of the moonlets

Origin of the system?

216 Kleopatra: a new triple system

May 1999 with AO-ADONIS 3.6m

Two models

Hestroffer vs Ostro AO-3.6m vs Radar

September 2008 Simulation Keck

M-type asteroid Two 3 and 4 km moons discovered Preliminary orbits -> ρ =2.5-3.0 g/cm³

3D-shape model in construction

Formation of triple asteroid systems

A catastrophic impact produced the disruption of a parent asteroid, follow by gravitational reaccumulation

->Simulation by 3D particle hydrodynamics, then N-body code

•Outcome of the simulation:

- ✓ Irregular primary with rubble-pile structure $R_p \sim 100 \text{ km}$
- ✓ Small moonlet R_s ~ a few km close to the primary (3-6x R_p) describing a circular and equatorial orbit (due to damping by tidal effect)
- ✓ Multiple systems (less than 5%)

Binary asteroids in other populations?

AO systems are limited to $m_v = 13.5$ stars, so we can observe:

- Only 5% of the sky (in average)
- Only ~400 main-belt asteroids
- No Trojan, No NEAs, No TNOs (Kuiper Belt objects)

How can we observe Fainter/Further Objects (TNOs, NEAs, Trojan)?

- Improvement of AO systems (more sensitive, better quality)
- Appulse Observations
- Laser Guide Star (LGS) observations

Laser Guide Star and AO

© Laurie Hatch, Keck LGS seen in the dome

Keck Laser Guide Star Adaptive Optics System

- •Laser Guide Star AO commissioned in 2004-2005
- •Sodium dye laser creates a m_V~12 artificial star
- •Angular resolution ~ 0.060 arcsec on $m_V=17.5$ target
- •Comparable to Hubble Space Telescope (HST) in visible

Binary Trojan Asteroids?

Only two binary Trojan Asteroids are known

(617) Patroclus (P-type) a double similarly-sized binary discovered in 2001 by Merline et al. (2001). Mutual orbit from Keck LGS in Marchis et al. (2006) (624) Hektor (D-type) a large bilobated primary (D=210 km) and a 10-km moonlet discovered with Keck LGS AO (Marchis et al., 2006)

(624) Hektor $\rho_{Hektor} = 2.1 \pm 0.3 \text{ g/cm}^3$

(617) Patroclus $\rho_{\text{orbit}} = 0.8 \pm 0.2 \text{ g/cm}^3$

Binary Trojan Asteroids?

Only two binary Trojan Asteroids are known

(617) Patroclus (P-type) a double similarly-sized binary discovered in 2001 by Merline et al. (2001). Mutual orbit from Keck LGS in Marchis et al. (2006) (624) Hektor (D-type) a large bilobated primary (D=210 km) and a 10-km moonlet discovered with Keck LGS AO (Marchis et al., 2006)

(624) Hektor $\rho_{\text{Hektor}} = 2.1 \pm 0.3 \text{ g/cm}^3$

(617) Patroclus $\rho_{\text{orbit}} = 0.8 \pm 0.2 \text{ g/cm}^3$

Trojan Asteroids: a dual population?

 ρ (L4-Hektor) ~ 2-3 × ρ (L5-Patroclus)

617 Patroclus is a captured icy doublet asteroid ⇒ result of tidal splitting after a close encounter with Jupiter.

Tidal Splitting Simulation (Walsh & Richardson, 2005)

- •110,500 simulations
- •a \sim 5-10 x R_p
- $\bullet \Delta \text{mag} \sim 0.1 0.2$
- •e>0.1 (but e~0 by damping)

Catastrophic Disruption Simulation (Michel et al. 2000)

- ✓ Irregular primary with rubble-pile structure $R_p \sim 100 \text{ km}$
- ✓ Small moonlet R_s ~ a few km close to the primary (3-6 x R_p)

The Origin of Binary asteroid by comparative spectroscopy

if the moon and the asteroid formed from a parent body (catastrophic disruption or fission) they should have the same spectra. First attempt: 22 Kalliope and its satellite Linus

- Observations performed with Keck/OSIRIS IFU on March 25 2008
- data taken in Zbb, Jbb, Hbb, Kbb with R~3800
- First successful observations for (22) Kalliope, a binary asteroid with $\Delta m=3.7$ (Laver et al., 2009)

The Origin of Binary asteroid by comparative spectroscopy

Spectra are remarkably similar implying that the two bodies formed at the same time from the same material

Next Generation of AOs for Planetary Science

Future AO instruments

- Better angular resolution (Visible AO or larger aperture)
- Better sensitivity (high SR ~70-80%)
- Enhance sky coverage
- Imaging and spectroscopic observations

Conclusion: The Wedding Cake of the Multiple Asteroid Study

AO

LC

HST