Measuring Black Hole Masses in Nearby Galaxies with Laser Guide Star Adaptive Optics

Claire Max Anne Medling Mark Ammons UC Santa Cruz

Ric Davies Hauke Engel MPE-Garching

Image of NGC 6240: Bush et al. 2008

Outline

- Background on black hole mass measurements
- Examples of what's been done with AO to date
- Our own work, measuring black hole masses in NGC 6240, a collision between two disk galaxies
- Summary

Toolbox for Measuring BH Masses

- Many methods. None is universally applicable.
 - Individual stellar orbits (Galactic Center only)
 - Kinematics of masers rotating around a supermassive black hole
 - Spatially resolved Keplerian disk of stars or gas (e.g. spiral gals)
 - Full three-integral orbital modeling (early type galaxies)
 - Dynamically relaxed ellipticals, requires good understanding of stellar light/mass distribution
 - Reverberation mapping infers size of broad line region from time variability: unobscured AGNs
 - Inferring dynamics from width of various lines (H β , MgII, ...)
 - etc ...

What spatial resolution is needed, to see Keplerian orbits?

 To see Keplerian velocities, must be able to resolve the "Gravitational Sphere of Influence" of the black hole

$$R_g \sim \frac{GM_{BH}}{\sigma_*^2} \sim 1.1 \left(\frac{M_{BH}}{10^9 M_{\odot}}\right) \left(\frac{200 \ km/s}{\sigma_*}\right)^2 \ pc \sim 35 \left(\frac{M_{BH}}{10^9 M_{\odot}}\right)^{0.5} \ pc$$

using the M-σ relation

•
$$M_{\rm BH} = 10^9 \, \rm M_{\odot}$$
 $R_g \sim 35 \, \rm pc$

•
$$M_{\rm BH} = 10^8 \, {\rm M}_{\odot}$$
 $R_{\rm g} \sim 11 \, {\rm pc}$

•
$$M_{\rm BH} = 10^7 \, \rm M_{\odot}$$
 $R_{\rm g} \sim 3.5 \, \rm pc$

Some published AO-based black hole mass measurements in nearby galaxies

Galaxy	Method	Telescope	First author	Year
Cen A	stellar kinematics	VLT NACO	Häring- Neumayer	2006
NGC 1399	stellar kinematics	VLT NACO	Houghton	2006
NGC 3227	stellar kinematics	VLT SINFONI	Davies	2006
Cen A	gas kinematics	VLT SINFONI	Neumayer	2007
NGC 4486a	stellar kinematics	VLT SINFONI	Nowak	2007
9 Seyfert 1 galaxies	gas kinematics	Keck NIRSPEC	Hicks	2008
Fornax A	stellar kinematics	VLT SINFONI	Nowak	2008

NGC 6240: Merger of two gas-rich spiral galaxies

- A starburst galaxy (very intense star formation)
- Hosts 2 black holes, one from each galaxy

- Relatively nearby:~100 Mpc
- Double nucleus(2 hard x-ray sources)
- Tidal tails due to merger ("bow-tie")

Spitzer and Hubble Space Telescopes

NGC 6240: Merger of two gas-rich spiral galaxies

Seeing-limited visible image, Lick Observatory

Hubble Space Telescope 0.45 μ m, 0.81 μ m, H α

 $\begin{array}{c} \text{Near-infrared} \\ \text{2.2} \; \mu\text{m image,} \\ \text{Keck adaptive optics} \end{array}$

NGC 6240: Keck AO compared with HST NICMOS IR camera, K band

NIC2 camera, 2.2 μm

NIRC2 camera, 2.2 μm

"dots" is an unresolved star cluster

Ages 10-20 Myr

(Pollack et al. ApJ 2006)

Diffraction limit of 10m versus 2.4m telescope ⇒ 4X more angular resolution

Nonthermal radio sources indicate positions of black holes on Keck IR image

Map out stellar velocities using an imaging spectrograph: OSIRIS

- Might expect Keplerian motion of stars around black hole (spiral galaxies)
- Fit to models with black hole and stellar disk

A spectrum at every pixel OSIRIS PI: James Larkin, UCLA

Fit Velocities to Spectrum at Every Pixel

• Fit Gaussian-broadened template to CO absorption bandheads (2.3 - 2.4 μ m). Stellar features.

Velocity fields from IFU Spectra

spatial pixels

- Adaptive 2-d Voronoi binning to equalize S/N of each spectrum (Cappellari & Copin 2003)
 - Useful technique in velocity field observations; combine spectra spatially in an intelligent way
 - Each bin constructed to achieve a minimum S/N while maintaining compact bin size
- Target S/N is 20.

Velocity maps from OSIRIS and SINFONI

- Use smoother, lower spatial resolution SINFONI data to remove large-scale motions of the two colliding galaxies
- Result: clear signature of black hole

Residual Velocity Profile Shows Keplerian Stellar Orbits

Convolve Point Spread Function with Models to Compare with OSIRIS Data

Best-fit model

• $M_{BH} = 1.0^{+0.3}_{-0.2} \times 10^9 M_{sun}$, incl. = 75°, 30% Strehl

What parameters enter the fit?

•
$$M_{BH} = 1.0^{+0.3}_{-0.2} \times 10^9 M_{sun}$$

- 1σ and 3σ contours shown in green, varying over all PSF choices
- These errors take into account velocity fitting errors and PSF choice errors
- Errors not yet accounted for:
 - Template choice
 - Idealized thin Keplerian disk
 - Dynamical mass = mass enclosed in 17 pc

Comparing to Scaling Relations: Total Mass

- With 2MASS Ks
 photometry of total system, can put NGC 6240 on M_{BH}-L_{bulge} rel'n
- Good agreement suggests total mass may evolve into bulge

Plot: A. Graham 2007

Comparing to Scaling Relations: M-σ

Plot: Tremaine et al 2002

- Difficult to place on M_{BH} σ relation because bulge is not relaxed yet
- Hence σ varies based on where you measure it
- We see 150-300 km/s near south BH (may be low because our stars are young; recently formed in disk)
- Tecza et al. (2000) measure 236 km/s integrated over whole 0.8"x0.7" region

NGC 6240: Summary

- We have located the positions of the two black holes
- High spatial resolution of Keck adaptive optics allowed us to identify ~30 new nuclear star-forming clusters, ages 10-20 Myr. Formed in most recent encounter between the two galaxies.
- Spatially resolved spectroscopy at the diffraction limit: map stellar velocity structure around black hole
- South black hole mass is ~ 10⁹ M_☉
- The 2 black holes are still deeply embedded in dust, not (yet?) at stage where AGN feedback destroys or ejects the gas and dust.