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1. Introduction: The idea of proof

This class will cover some of the mathematics, history, and philosophy of the so-
called foundational crisis in mathematics. Broadly speaking, mathematics in the
late nineteenth and early twentieth centuries was marked by an increased awareness
of “foundational issues,” prompted by a number of problems in the practice of
mathematics that had accumulated over the years. We will discuss a few examples
of some of these problems, and then discuss the three major schools of thought that
emerged to deal with them and provide a coherent philosophical and methodological
underpinning for mathematics.

So far, this is just a lot of big words, so let’s consider a single, specific idea –
the idea of a proof. The first mathematicians to be interested in the concept of
proof were the ancient Greeks, and probably the most famous to us are the mostly
geometric proofs contained in Euclid’s Elements, which is a sort of encyclopedia
or compendium of Greek geometric knowledge at the time. You have probably
seen Euclid-style geometry, because to some extent it is still taught in schools: lots
of angles and lines, questions about parallels and perpendiculars, etc. The main
elements of Greek proof are the inclusion of some axioms, which are basic statements
that you assume from the beginning, a diagram, labeling the figures involved, and
a deduction from axioms or previous propositions to a new proposition.

Here’s an example of an actual proof in Euclid. Claim: triangles which share
a base and are “in the same parallels” (i.e., the line through their other points
is parallel to the base) have equal area. To prove the claim, we draw two such
triangles, ABC and DBC. We extend the line AD to E and F, letting BE be drawn
parallel to AC and letting CF be drawn parallel to BD. Look at the parallelograms
EBCA and DBCF. They share a base BC and are in the same parallels, so by a
previous proposition in the Elements, they have equal area. The triangle ABC is
half of EBCA, and the triangle DBC is half of DBCF. Therefore ABC and DBC
also have the same area.

This may not be a particularly exciting proof, but it is typical: one relies on
earlier results to make incremental progress, and a diagram is included. It is im-
portant to emphasize that all of the proofs in the Elements are like this – even
proofs of results in what we would now call arithmetic! There is always a diagram,
and what we would call a “number” is actually always a length, or an area, or a
volume.

While arithmetic eventually became a study in its own right, separate from
geometry, the Greek idea that a geometric proof requires a diagram – a sort of
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visual check of correctness – persisted well into the nineteenth century.1 It was
not sufficient to start with precisely-defined structures and axioms and proceed in
a way that we would call “logically,” nor was it always necessary to do this if the
diagram was sufficiently convincing.

This framework only changed in the very late nineteenth century, and is perhaps
best exemplified by a dictum of Dedekind, as popularized by Hilbert: it should be
possible to replace the words “point,” “line,” and “plane” with the words “chair,”
“table,” and “beer mug” without any difficulty whatsoever. That is, diagrams and
geometric intuition should be eliminated from all proofs in geometry.2 This is the
way that mathematics, as modern mathematicians know it, is usually said to be
done, and it is important to recognize this change in the status of proof. It coheres
with what we will call the “formalist” philosophy, to be explained in greater detail
later.

I should also mention that most mathematics is not done with a mind towards
foundational issues. Mathematicians in their everyday lives do mathematics, not
philosophy. But during the foundational crisis, a large number of prominent math-
ematicians weighed in on philosophical issues that arose as the idea of proof devel-
oped, the range of mathematics expanded, and certain “problems” in mathematical
thought arose.

2. Problems

2.1. What is a function? The first “problem” we will highlight is that of the
nature of a function on the real line. So let’s start with an exercise: everyone come
up to the blackboard and write down, or draw, or notate in some way, any function
on the real line. I will too. Your function doesn’t have to be interesting, but it can
be if you want it to, and we’ll discuss the results.

The modern definition of a function on the real line is as an abstract map of
sets: we have a set of real numbers, and to each we assign another real number.
This is a function defined as a rule, which can be arbitrarily complicated, perhaps
so complicated that we can never even write down an explicit formula.

Let’s look at continuity a bit more closely. In the modern formulation, if we
have a function defined by a rule y = f(x), a function is continuous at a point x0

if for every ε > 0, there exists a δ > 0 such that for every x such that |x− x0| < δ,
we have |f(x) − f(x0)| < ε. If you haven’t seen this before, don’t worry about
it too much. It is the modern formulation (in the language of function-as-rule) of
the intuitive idea that continuity should mean that one can draw the graph of the
function without picking up one’s pencil or chalk.

So why do we even want to think about discontinuous functions? Well, there
are some rules that most people would think of as functions that are, in fact,
discontinuous. For example, consider the Heaviside step function θ, defined by

θ(x) =


0 if x < 0,
1
2 if x = 0,
1 if x > 0.

1For example, this kind of visual or intuitive thinking is claimed in Kant’s Critique of Pure

Reason to be necessary for the study of geometry.
2This is not to say that geometric intuition should be banished from mathematics – far from

it! The proof itself, however, should be verifiable independently of intuition, at least in theory.
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This is a perfectly simple thing to graph, and it has evident utility in physics,
for example: a switch is turned on, and suddenly there is current; the boundary
between one object and another can usually be considered discontinuous in this
way; etc. Therefore from the perspective of the nineteenth-century mathematician,
whose functions come from somewhere – number theory, or solutions to differential
equations, or physics, or chemistry – it seems perfectly natural to consider this sort
of rule to define a reasonable function.

If this is as complicated as things ever got, then there would probably have been
little controversy. Unfortunately (or fortunately, if you have a taste for this sort of
thing), things do get quite a bit more complicated. Consider the following rule:

f(x) =

{
1 if x is rational,
0 otherwise (i.e., if x is irrational).

If we try to draw a graph of this rule, we run into difficulties: in any interval, no
matter how small, this function takes on both the value 0 and the value 1, but
no other values (in fact, it takes on both of these values infinitely many times in
any interval). So our graph looks like a big jumble of points on the line y = 0,
and a big jumble of points on the line y = 1. But we shouldn’t just draw the
lines y = 0 and y = 1 either, because both jumbles have lots of holes. So here we
have an example of a rule (called the indicator function of the rational numbers,
or sometimes the Dirichlet function) that can’t be drawn nicely as a graph, and is
nowhere discontinuous (this last claim needs to be proved formally, but it is fairly
clear from our attempt to graph it: we need to lift up our pen at every point, in
some sense).

So does this rule define a “legitimate” function or not? In its favor: we have
given a perfectly explicit rule defining it, and the rule isn’t even particularly arbi-
trary – the distinction between rational and irrational numbers is of fundamental
importance. Counting against it: we can’t graph it very well, it is everywhere
discontinuous, and it doesn’t seem to have any physical significance (we certainly
won’t get this function as a solution to a differential equation, for instance).

Debates on the admissibility of this rule and similar ones3 as legitimate functions
were a preoccupation of mostly nineteenth-century mathematics. Even Weierstrass,
who is generally credited with putting the study of functions on a rigorous footing,
was not happy with these “pathological” examples. Nevertheless, the “function-as-
rule” approach emerged victorious, and modern mathematicians consider all of our

3As another important set of examples, assuming people know what differentiability means,
there exists functions that are everywhere continuous but nowhere differentiable. Graphs of such

functions tend to look like fractals, which are shapes that look similarly complicated no matter

how far you zoom in. For completeness’ sake, here is the first known example of such a function,
discovered by Weierstrass:

f(x) =

∞X
n=0

an cos(bnπx),

where 0 ≤ a ≤ 1, b is a positive odd integer, and ab > 1 + 3π/2. This is a primitive example of
a lacunary Fourier series; i.e., a Fourier series that omits more and more terms the further out
one goes. As a side note to this footnote, nowhere differentiable functions are actually “typical”
of continuous functions, in that if you define any reasonable way of picking randomly from the

set of all continuous functions, you are almost surely going to pick a nowhere differentiable one.
So in the modern idea of a function on the real line, these “pathological” functions are not so
pathological after all!
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examples as legitimate functions. As we will see, however, this apparent consensus
is not accepted by the intuitionists, who have their own idea of what a function on
the real line entails.

2.2. Bigger and bigger sets.

2.2.1. Sets and axioms. The obvious question to ask here is “what is a set”? What-
ever vague answer you are likely to give is probably pretty close to right mark –
most (though not all) modern set theories take the concept of “set” as undefined,
and then list the properties it should have, which are the axioms of set theory.

So for our purposes, a set is a collection of distinct objects. What sort of axioms
should sets obey? Well, there are a few stupid ones: sets are equal if they have the
same elements, and we want to be able to take unions of sets. There are some that
are slightly less obvious: given two sets A and B, we want to be able to consider
the set of sets A = {A,B} that has A and B as members. Along these lines, we
want to be able to consider the set of all subsets of a given set (this is called the
power set). And there are some more technical axioms that are usually taken that
I won’t mention at all.

There is one other axiom that I want to mention, though, which might seem like
the most obvious axiom of all. There are two basic ways of building sets, and we
want to be able to handle them both. One is just by listing elements: I specify a
set A = {1, 4, 5, 7} by writing down 1, 4, 5, and 7. Some sets are clearly too big
to be written down like this, however: consider the set of all pieces of furniture in
the world that are blue. Here we are specifying a set by writing down a property
(here, the property is “being a blue piece of furniture”), and we want an axiom to
ensure that this set exists, even though we have not written down every element of
it. In other words, given any property, we want to be able to consider the set of
all elements with this property. Call this the axiom of comprehension. It will be
important momentarily.

2.2.2. The size of sets. Now let’s talk about the size4 of sets. We say that two sets
are the same size if there exists a bijection between them; i.e., a function from one
to the other that is both one-to-one and onto. More concretely, if A and B are sets,
we say that they have the same size if there is a function f : A → B that “pairs
off” elements of A with elements of B so that every element of B, and hence A, has
exactly one partner (i.e., no elements are left out, and no elements are paired with
more than one element of A). For finite sets, this gives us the answer we expect:
one set is the same size as another if they have the same number of elements.

What about infinite sets? Using the above concepts, we can actually define an
infinite set to be a set that can be put in a bijection with a proper subset of itself,
where a proper subset means a subset not equal to the whole set. Let’s check
that this agrees with our intuition. If we have a finite set, say for example the set
A = {1, 2, 3}, then any bijection from A to a proper subset of itself, say for example
B = {1, 2}, will have to send 3 elements to 2 elements, and therefore cannot be one-
to-one.5 On the other hand, take a set like the natural numbers N = {1, 2, 3, . . .}

4The technical word for the size of a set – i.e., the word used in the mathematical literature –
is cardinality.

5In general, we will always have to send n elements to n − 1 elements, and in this situation
we will have to send two elements to the same place. This simple-sounding argument has a fancy
name: the Dirichlet pigeonhole principle.
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that our intuition says is infinite. Then the set C = {2, 3, 4, . . .} is a proper subset,
because it omits the element 1. Take the function f : N→ C that maps 1 to 2, 2 to
3, 3 to 4, and in general n to n+ 1 for each integer n. Then I claim f is a bijection:
every element of C is in the image of f , and no element of C gets mapped to more
than once. We have “paired off” the elements of N and C. Therefore according to
our definition, N is an infinite set (and according to our earlier definition, N and C
have the same size, which may be somewhat counterintuitive).

2.2.3. Diagonalization. In general, infinite sets can have many different sizes, which
may at first be surprising. Remember, according to our definition, this means
simply that there exist infinite sets with elements that cannot be “paired off” in
the way described above. The proof of this fact is a very clever argument first used
by Cantor – so clever that I would be amiss in omitting it from this discussion.
The method of proof is called the diagonalization argument, and we will use it to
prove that there is no bijection between the natural numbers N = {1, 2, 3, . . .} and
the real numbers R. Because the natural numbers are a subset of the real numbers,
this will prove that the set of real numbers has a larger size than the set of natural
numbers.

To do this, let’s go back to the definition of size – we need to prove that there
is no bijection f from N to R. How can we possibly prove a statement like this?
There are many, many possible maps N → R, and we have to show that none of
them work.

We will employ a proof by contradiction: assume that such a function f exists, a
derive a contradiction, showing that the original assumption must have been false
after all and no such f exists. So let’s assume that we have a bijection f : N→ R.
If we think about what a function from N is, we realize quickly that this is just a
list, indexed by the natural numbers in the way that lists usually are (starting at
1 and proceeding ad infinitum). So this given bijection is really a complete list of
real numbers, such that no real number is repeated.

We will now use the only fact about real numbers we need: every real number has
a decimal expansion.6 So we can write out our list with these decimal expansions,
and get a sort of infinite grid of digits. An example might be the following (obviously
incomplete):

1) 1.704105739 . . .

2) 0.241959904 . . .

3) 5.192850000 . . .

4) 1.000010010 . . .

5) 3.295801992 . . .

6) 0.001948292 . . .

...
. . .

Now do the following weird-sounding procedure: take the first digit after the decimal
place in the first element of the list, and add one. So in the above example we have
a 7, so we take 8 as our first number. Then take the second digit after the decimal

6Most people think of the decimal expansion as defining the real number system, and this

is not a totally unreasonable position to take for some purposes – for centuries, beginning with

Simon Stevin, even mathematicians used this “definition.”
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place in the second element of the list, and add one. In this case, 4 + 1 = 5. Then
take the third digit after the decimal place in the third element of the list and and
add one, here getting 2 + 1 = 3. The digits chosen in this procedure are underlined
in the above list. Proceed ad infinitum in the same way, taking the digits along
the diagonal (hence the name diagonalization) and adding one (if you come across
the digit 9, change it to 0). Then put all these digits together to form the decimal
expansion of a real number, which in our case is the following:

r = 0.853119 . . .

This is a perfectly reasonable real number that we have constructed. Therefore by
assumption, since our list is complete, it lies somewhere on our list; say it is the
nth entry. But now we run into a problem: r differs from the nth entry on the list
at the nth digit after the decimal place, by definition. That is, if the nth digit of
r is a 1, then the nth digit of the nth entry on the list is a 0, and so on. So r is
not the nth entry on the list after all!7 This contradiction shows that no bijection
N→ R exists.8

This proof can be adjusted appropriately to prove that no set is in bijection with
its power set (which, recall, is the set of all of its subsets). So Cantor’s diagonal-
ization argument, together with the aforementioned quite reasonable axiom that
power sets always exist, shows that no matter how big a set we have constructed,
there is always an even bigger one.9

2.2.4. The universe of sets. The point of all this is that innocuous-sounding axioms
for set theory can lead to the existence of some very, very large objects, objects
that we have no reasonable chance of ever seeing in “ordinary” mathematics. To a
turn-of-the-century mathematician worried about the foundations of mathematics,
this infinitely proliferating universe of sets that we have unleashed is at least mildly
disconcerting. All we wanted was an account of how sets work in “actual mathe-
matics,” like geometry or number theory or analysis, but we seem to have received
more than we bargained for.

If these were all the consequences of our reckless axiomatization, then so be it;
although we will meet a philosophy that rejects such objects later there seems to be

7If this is confusing, go through each possible n: r cannot be the first entry on the list because

it differs from that entry at the 1st decimal place, r cannot be the second entry on the list because
it differs from that entry at the 2nd decimal place, and so on for all entries on the list. Therefore
it is not on the list.

8I should confess here that there is one subtlety that needs to be addressed in this proof;

namely, the small nonuniqueness in decimal expansions exemplified by the equation

1.0000 . . . = 0.9999 . . .

It turns out this is the only kind of ambiguity that can occur, and it is not difficult to show that
our proof goes through regardless.

9There is at least one other method of proving this theorem, which is arguably conceptually
simpler, that essentially encodes the Liar’s Paradox (how can we assign a truth value to the

statement “this statement is false”?) to prove the nonexistence result. Extremely briefly: suppose

for contradiction that there exists a set X whose power set is enumerated by X; i.e., we have that
2X = {Ax : x ∈ X}. Consider the set Y = {x ∈ X : x /∈ Ax}, consisting of all elements of X
that are not contained in the subset of X that they enumerate. Since Y is a subset of X, we have

Ay = Y for some y ∈ X. But if y ∈ Y , we conclude that y /∈ Y , and if y /∈ Y then we conclude
that y ∈ Y , contradiction. This argument is suspiciously similar to Russell’s paradox, which we

will encounter soon.
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nothing so extraordinarily objectionable here. But there is a much larger problem
lurking in the background of any näıve set theory: an actual paradox.

2.2.5. Russell’s paradox. Russell’s paradox is easy to state but difficult at first to
internalize. We first note that there is nothing in our set theory that prevents
sets from containing other sets; in fact, the existence of the power set relies on
the admissibility of this construction. We can go one step further and note that
there is nothing preventing us from considering the possibility of sets that contain
themselves as elements.10 So let’s jump in with both feet and define the set S to be
the set of all sets that do not contain themselves. So the set {1} is such a set and
hence is an element of S, and the set of all living presidents of the United States is
an element of S, and the power set of the natural numbers is an element of S (its
elements are all subsets of N, none of which are equal to the power set of N itself).
In fact, pretty much any set you would think of is in S, so S is a pretty large set
indeed. No matter; it’s a weird definition, but so far so good.

Here’s the problem. Is S an element of itself? I don’t know, so let’s check. If
S is an element of itself, then, since S is defined as the set of all sets that do not
contain themselves, S does not lie in S. But then S is an element of itself after all,
so that can’t be right. If S is not an element of itself, then, since S is defined as
the set of all sets that do not contain themselves, S does lie in S. But then S is an
element of itself after all, so that can’t be right either. But these are the only two
possibilities! Either a set is a member of itself, or it isn’t. Therefore we arrive at
a genuine contradiction in our set theory.11 Russell’s paradox is, in fact, deserving
of the name “paradox.”

We’ll see later how to resolve this, but I do want to stress now that we will have
to give something up – there is no way around Russell’s paradox other than by
changing or restricting our assumptions. We cannot get around it by cleverness, as
it is a valid deduction from our näıve conceptions of set theory.

2.3. The ambiguity of language. Here’s a paradox that’s a bit more direct than
Russell’s. Consider the infinitude of natural numbers N = {1, 2, 3, . . .}. Since
the English language has only a finite number of words and symbols, there are
only finitely many possible phrases with twelve or fewer words. Some of these
phrases may define natural numbers: for example, the phrase “the smallest natural
number” certainly specifies the number 1, and the phrase “ten plus ten plus ten
plus ten” defines the number 40. However, since there are only finitely many such
phrases (with twelve or fewer words, remember), and there are infinitely many
natural numbers, there must be some natural numbers that cannot be defined in
an English phrase of twelve or fewer words. Let N be the smallest such natural
number.12

What’s wrong with N? Well, the phrase “the smallest natural number not
definable in twelve or fewer words” has only eleven words! So we have, in fact,

10It’s not important at the moment that such sets actually exist, just that we are able to talk

about this property as a possibility.
11If this paragraph doesn’t make sense on a first reading, don’t worry. This is genuinely

confusing.
12There is a subtle issue here: how do we know that there is a smallest such number? There

certainly does not exist a largest such number, for instance. The reason is something called
the well-ordering of the natural numbers, which asserts that every set of natural numbers has a

smallest element. This property is not difficult to prove by induction.
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defined N in twelve or fewer words. So this is a contradiction. This line of reasoning
is known as Berry’s paradox, after a librarian at Oxford who apparently suggested
something like it to Bertrand Russell (the namesake of Russell’s paradox, above).

Philosophically, how can we resolve this statement? In contrast to Russell’s
paradox, there is really only one reasonable way to proceed. For now we’ll leave it
as a mystery.

2.4. Choice. The axiom of choice is, informally speaking, the following reasonable-
sounding statement: given any set of nonempty sets, we can make a selection of
exactly one object from each set. For example, in a proof we might be faced with a
very large set of nonempty subsets of the real numbers, and for some construction
we might want to select one real number from each of them. The axiom of choice
asserts that we can do this.

To many people, this is an utterly reasonable statement, even if we have to
take it as an axiom.13 Furthermore, it turns out to be really helpful, especially in
analysis. It was used even by nineteenth-century mathematicians, usually implicitly.
Essentially all of functional analysis depends on it. Various useful facts in algebra,
including the existence of algebraic closures of fields and the existence of bases in
arbitrary vector spaces, depend on it. If none of these statements are meaningful,
that’s all right: the point is that in addition to being reasonable-sounding, it’s also
useful.

So what’s the catch? Don’t worry; this time we won’t come up with a paradox.
In fact, it has been proven that if the axioms of set theory are consistent (i.e.,
paradox-free) without the axiom of choice, then they are consistent with the axiom
of choice as well, so using it won’t lead to any problems we haven’t already encoun-
tered. The problem here is not that we get contradictory results, it is that we get
counterintuitive results. The most famous of these is the Banach-Tarski theorem,
which asserts that there is a method of decomposing a solid ball into finitely many
non-overlapping subsets, which can be reassembled by translations and rotations
into two solid balls, each of the same volume as the original ball. This, clearly, vi-
olates our intuition about how volume should work, although it should be pointed
out that the non-overlapping subsets in question are very complicated and in fact
do not possess a well-defined volume themselves.14

As with the other “problems” above, we will return to the axiom of choice once we
have met some of the competing philosophies of mathematics in the early twentieth
century.

13We do need to take it as an axiom, because it turns out to be logically independent of the

other standard axioms of set theory.
14Another commonly cited counterintuitive consequence of the axiom of choice which is slightly

more complicated to explain is the well-ordering principle, which states that every set can be put

in a well-order. Briefly, a well-order on a set S is a total order (i.e., a relation ≤ that obeys all the
usual axioms for the relation ≤ on the real numbers: reflexivity, antisymmetry, transitivity, and

totality, the property that a ≤ b or b ≤ a) such that every nonempty subset has a least element.
For example, the natural numbers are well-ordered. This is considered very counterintuitive

because some sets are very, very large indeed, and a well-ordering is a very restrictive relation.

For example, what would a well-ordering on the real numbers look like? The answer is that we
can’t actually write down a rule for one; coming up with such a rule would involve infinitely many

arbitrary choices. All we “know” (assuming the axiom of choice) is that one must exist.
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3. Philosophies

3.1. Logicism.

3.1.1. Logic. What is logic? As a subject, the study of logic goes back to Aristotle,
but in a more “modern” formulation we can answer this by saying something like
the following: we have some symbols like P and Q, which represent arbitrary
propositions like “it is raining today” or “one plus one equals two,” and we want
to write down formal rules for manipulating them to get true statements. So for
example, if we are given that P is true and P implies Q (written P =⇒ Q) is
true, then our logic should be able to, purely formally, tell us that Q is true. If we
are given that “P and Q” (written P & Q) is true, we should be able to derive that
Q is true. Essentially, logic should formalize what words like “and” and “or” and
“implies” mean, and the axioms of the formalization should be self-evident or even
tautological.

This is a bit abstract, so let’s get more specific. Let P be the proposition “it is
raining today” and let Q be the proposition “I have my umbrella.” Suppose that
we are given that P and P =⇒ Q. Then it is an axiom of our logical system –
called modus ponens, although the name is not terribly important – that we can
conclude that Q is true. Translated into English: if it is raining today, and if we
know that if it is raining today then I have my umbrella, then we can conclude that
I have my umbrella. Obvious stuff! But it is precisely the strength of logic that our
axioms are so obvious: the idea is that we take only extremely simple, self-evident
axioms, and perhaps at the end of the day get something highly nontrivial.

The aim of logicism is to reduce all of mathematics to such logical trivialities.
Mathematics, then, becomes a part of logic, and can be expressed entirely in terms
of pure relations among concepts, just like our formal manipulation of P s and Qs
above.

For what follows, we’ll need a few more logical concepts. We introduce variables,
like x, y, and z, and let propositions depend on them. For example, P (x) could
stand for “x is red.” The use of variables in propositions also allows us to consider
sets; P (x) can equally well represent the set of all red things. Then we allow the
use of the phrases “for all” and “there exists” to express sentences like “for all x, x
is red” (meaning, of course, “all things are red”), and “there exists an x such that
x is red” (meaning “there exists a red thing”). We also have a concept of equality.
We fix the following notation as short-hand for the phrases:15

& and
∨ or
¬ not
=⇒ implies
∀ for all
∃ there exists
= equals

15There is actually no need to include all of the following notations. For example, A =⇒ B
turns out to be the same as (¬A) ∨B under the usual axioms, so we don’t need an =⇒ symbol.

But it’s convenient to include anyway.
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Like the axioms that relate to &, =⇒ , and so on, there are simple axioms that
govern the use of ∀, ∃, and =, but we won’t need to know specifically what they
are.

3.1.2. The concept of twoness. With this background, let’s look at how a logicist
would define the number two. Remember, in the logicist philosophy, all of mathe-
matics should be reducible to logic, so we should certainly at least be able to define
things like the natural numbers. In this conception, “having two elements” is a
property that sets (i.e., propositions with one variable) can have, so we define the
number two as a property of propositions with one variable, as follows:

2(P ) = (∃x)(∃y)[P (x)&P (y)&x 6= y&∀z(P (z) =⇒ z = x ∨ z = y)].

It’s not worth getting too worked up over the details of this formula if you don’t
have the inclination, but in English what we are saying is something like “we say P
has two elements if there exist distinct elements x and y such that P (x) and P (y),
but for every other element z we have that P (z) is false.” This is undoubtedly
complicated and a bit silly-seeming, but the point is that everything does work
out: all of the relational properties of the number “two” are captured by the above
definition.16

Just as we can define the number “two,” we define the other natural numbers.
Though I’m not going to write it out, we can also define the operation of addition,
from which one can express various other important concepts: multiplication of
natural numbers, whether a number is prime, and so on. And when one has con-
structed the natural numbers, one can construct the rational numbers, and then
(via a clever construction of Dedekind, which I will not go into) the real numbers.
Everything is constructed, ultimately, from logic.

3.1.3. Logicism and its problems. Of course, things didn’t turn out so simply. The
first logicist program, carried out by Frege in the late nineteenth century, suffered
the fatal blow of Russell’s paradox and had to be severely modified (more on this
later). The next major attempt, carried out by Russell and Whitehead in their
famous Principia Mathematica, avoided these problems, but at the cost of elegance.

At a more fundamental level, these programs quickly seemed to overstep the
bounds of logic itself. Recall that the goal of the logicist program was to reduce
all of mathematics to “pure relations between concepts;” i.e., logic. As more and
more axioms were introduced, it became harder and harder to argue that the entire
formal system was really a part of logic at all.

For instance, to construct the set of natural numbers as a totality, not just one
by one, it turns out to be necessary to include the axiom that there exists an
infinite set. It is very difficult to argue that this so-called “axiom of infinity” is
a logical axiom! In fact, Russell and Whitehead did not even take this approach,
choosing instead to write all the theorems that depended on the axiom of infinity
as conditional statements (e.g. Theorem: If the axiom of infinity is true, then
so-and-so is true). At the very least, this approach is awkward.

Furthermore, although we’ve sketched how to construct most of mathematics
from logic, there’s a lot more to mathematics than that: we also need to reduce

16Perhaps we should not have expected a cleaner definition anyway, given that our logic was
purposely designed to be as simple-minded as possible. The idea is that it should be possible to

reduce mathematics all the way to logic, not that it should be easy.
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mathematical proof to logic! And there are some fundamental difficulties with this.
Even the notion of iterating an operation an arbitrary finite number of times, which
is absolutely necessary for mathematical induction and proof in general, seems to
have only a tenuous relationship to “pure relations among concepts.” The axiom of
choice, which we have already discussed, runs into the same issue. These problems,
together with further philosophical issues with Principia Mathematica,17 led to a
general abandonment of logicism in the early 20th century.18

3.2. Intuitionism.

3.2.1. Philosophical background. Intuitionism was the name for a radically new way
of viewing the foundations of mathematics, largely conceived and popularized by
L.E.J. Brouwer, a Dutch topologist. His ideas were diverse and somwhat difficult to
summarize, but here’s a brief summary anyway. Brouwer’s metaphysical philosophy
views individual consciousness as the only source of knowledge. Mathematical
objects, like numbers, do not exist outside of human thought – there is no “Platonic
realm” of pure ideas that mathematicians access and discover, only conscious mental
constructions that create those objects. The most basic of these objects are the
natural numbers themselves.19

Unlike logicism, therefore, intuitionism takes natural numbers as the foundation
of mathematics. Somewhat like logicism, intuitionism is constructive. In fact, in
the intuitionist framework, to prove something is to offer a mental construction
of it. Such constructions are not formalized, because they cannot be formalized –
they are the product of intuition. Truth itself is a subjective concept, and can be
verified only by intuition.

3.2.2. Mathematical implications. The effect of this philosophy on mathematics is
profound and, at least when first encountered, somewhat unsettling. We first dis-
card essentially all of set theory, because the intuitionists thought our intuition for
how sets behave comes solely from the study of finite sets, and it would not be
permissible to arbitrarily extend this intuition to infinite sets as well. If we use
logic at all, it is in a subsidiary role: instead of mathematics founded on logic, our
logic is founded on mathematics and mathematical intuition.

Most worryingly, we are forced to abandon all non-constructive mathematics.
What does this mean? Recall that to the intuitionist, a proof is a mental construc-
tion. If your “proof” proceeds by assuming the opposite of what you are trying to
prove and derives a contradiction,20 you have not provided a construction at all!
Thus the intuitionist would not accept your result as mathematically sound. As
another way of stating this, there are some instances in which the intuitionist would
reject the principle of the excluded middle, which states that a proposition is either

17Examples of these involve the dropping of the axiom of reducibility in the 2nd edition,
which apparently made it impossible to define the real number system, and arguments over the
admissibility of so-called “impredicative” definitions. I will not describe these technical points

further.
18This is, of course, an absurd oversimplification. There is, for example, a “neo-logicist” school

in mathematical philosophy even today, although many of the fundamental problems still remain.
19In the words of Leopold Kronecker, a pre-intuitionist mathematician, “God made natural

numbers; all else is the work of man.”
20We have encountered this type of proof before, in the form of Cantor’s diagonalization

argument, though in this case it is not really necessary.
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true or false. A statement can be intuitionistically neither, and will continue to be
so until a construction is put forth either for its confirmation or its refutation.21

To clarify this issue, let’s consider two examples: one in which the principle of
the excluded middle does hold in the intuitionistic framework, and one in which
it does not. For our first example, take Euclid’s ancient proof of the infinitude of
the prime numbers. The proof proceeds something like this: assume that there are
only finitely many prime numbers, p1, p2, . . . , pn. Consider the number

N = p1 · p2 · . . . · pn + 1.

Now N is greater than all of the pi, so it is not prime itself. Therefore some prime
factor divides it, which must be one of the pi; without loss of generality, assume
p1 divides N . Then since p1 also obviously divides p1 · p2 · . . . · pn, it divides the
difference

N − p1 · p2 · . . . · pn = 1.

But this is absurd; no prime number divides 1. This proof appears to be a proof by
contradiction, and therefore intuitionistically inadmissible. In fact, it is perfectly
valid, providing we rephrase things appropriately! We cannot meaningfully speak
of an infinite set in intuitionistic mathematics,22 but we can translate it to the
statement “for every finite set of primes, there exists another prime not in the set.”
To prove this in an intuitionistic framework, we have to construct this prime, which
we do in essentially the same way as before: given our finite set {p1, p2, . . . , pn},
construct N = p1 · . . . · pn + 1. If N is prime, then we’re done, and otherwise
factor it into primes (a perfectly valid, algorithmic construction). For the same
reason as before, none of the pi can be factors of N , so in writing down its prime
factorization we will find a prime number not in the given set. Euclid’s proof,
therefore, is intuitionistically valid.

For the second example – where the intuitionists would reject the principle of
excluded middle – consider any as-yet-unproven statement in mathematics. For
definitiveness, let’s look at Goldbach’s conjecture, which is the statement that ev-
ery even integer greater than two can be written as the sum of two primes. This
conjecture has not yet been proved and no counterexample has been found, despite
extensive computer searches. Therefore, since we have no proof and no counterex-
ample, Goldbach’s conjecture is neither true nor false to the intuitionist. In other
words, the principle of the excluded middle does not hold for Goldbach’s conjec-
ture. Note in particular that mathematics, as practiced by the intuitionists, is
rooted in the actual mathematical practice of a particular time. The truth value
of statements can change, because to be true is to have a proof, and proofs are
constructed at a particular point in time; to be false is to have a counterexample,
and counterexamples are found at a particular point in time.

3.3. Formalism.

21If this seems absurd, consider that to the intuitionist truth and falsehood have different
meanings than in “standard” mathematics. For something to be true intuitionistically, it means

that there is a proof (i.e., a construction); for something to be false intuitionistically, it means
there is a refutation (also a construction).

22Actually, this is not quite accurate – different intuitionists have different positions with

respect to infinite objects. Brouwer distinguished between the “potential infinite” (a procedure
consisting of and unending series of steps, like counting) and the “actual infinite” (an actual
infinite set, like N), allowing the former and disallowing the latter.
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3.3.1. “Rescuing” classical mathematics. Formalism is now our third major school
in the philosophy philosophy of mathematics. In its most essentialist form, for-
malism holds that mathematics and logic are the result of formal manipulations of
more or less arbitrary sets of axioms. Like in logicism, formalism proceeds by for-
mal manipulations. In logicism, however, we start with something “at the bottom”
– namely, the supposedly self-evident manipulations of formal logic. In formalism,
we get to choose the axioms to suit our own purposes, and results do not have
inherent meaning until we give them an interpretation. At its most banal level,
mathematics is a “game” played with symbols.23

Recall that the natural numbers are constructed out of logic in the logicist pro-
gram and taken as a basic intuition in the intuitionist program. In formalism, by
contrast, to define the natural numbers we write down a set of axioms that seem
to capture all of their properties, and then try to show that everything we can
“classically” prove about the natural numbers can be proven starting with these
axioms. In the case of the natural numbers, the axioms that are generally taken go
by the name of Peano arithmetic. I will not go into any detail about these axioms;
for our purposes it suffices to know that they exist and have stood the test of time.

Historically, the formalist program is most associated with the mathematician
David Hilbert. It was, in a large part, a reaction to the intuitionists – the formalists
wished to preserve as much of “classical mathematics” as possible, including set
theory and Weierstrass-style analysis on the real numbers, while still giving an
unobjectionably rigorous foundation to mathematics.

Here’s an example of the type of reasoning that the intuitionists would reject
and the formalists wanted to save. Define the quantity εm to be equal to zero if
2m is the sum of two prime numbers, and 1 otherwise. Let f be a function on the
interval [0, 1] of real numbers, defined so that it is linear on the three pieces [0, 1/3],
[1/3, 2/3], and [2/3, 1], and the value of the function at those three points is given
by

f(0) = −1, f(1/3) = −
∞∑

n=1

ε2n

2n
, f(2/3) =

∞∑
n=1

ε2n−1

2n
, f(1) = 1.

Since we have defined f to be piecewise linear, it is certainly continuous, so because
f(1/3) ≤ 0 ≤ f(2/3) the intermediate value theorem of real analysis shows that f
has a root in [1/3, 2/3]. Where is this root, exactly? Well, we don’t know! In fact,
we can’t estimate it any more closely than we already have without knowing a case
of Goldbach’s conjecture: for example, if we knew that f(1/3) 6= 0, then ε2n = 1
for some n, which means that there is a counterexample to Goldbach’s conjecture
for some n divisible by 4. Similarly, if we knew that f(2/3) 6= 0, then ε2n−1 = 1 for
some n, which means that there is a counterexample to Goldbach’s conjecture for
some n divisible by 2 but not by 4. Similarly, if we have some counterexample, we
know that these are not zeroes. Since we do not, as of 2013, know whether there is
exist any counterexamples to Goldbach’s conjecture, we cannot pin down a root of
f to within an error smaller than 1/6: we just know that at least one exists.

What have we shown? This function is certainly a bit contrived, for the purposes
of exposition, but we get a real payoff for it: if we were intuitionists, then asserting
the existence of a root for f would mean that we have constructed such a root,

23I am deliberately overstating things here. In fact, Hilbert himself, the most famous formalist,

believed that mathematics contained real meaning: some choices of rules for our symbolic “games”
are more meaningful than others. But this reduction is useful to keep in mind.
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which means in particular we can pin it down to arbitrary accuracy. But we cannot
do that right now, so we have a problem. The only way out is to realize that the
intermediate value theorem – a basic, uncontroversial theorem of ordinary single-
variable calculus – is not valid intuitionistically!24 One can see, therefore, some
glimmer of what has to be discarded in intuitionistic mathematics, and why the
formalists wanted to be able to preserve as valid this kind of non-constructive
existence proof.

3.3.2. Hilbert’s program. In order to satisfy the demands of the intuitionists and
keep using the traditional tools of mathematics (such as infinite sets and non-
constructive proofs), Hilbert proposed a search for a complete and consistent foun-
dation to mathematics. Such a foundation would consist of a finite set of axioms
and a finite set of uncontroversial deductive rules. Then one would find a proof
that the system itself was both consistent (could not be used to derive any con-
tradictions or paradoxes) and complete (all true statements could be proved in the
formalism). Furthermore, these proofs of consistency and completeness should con-
sist only of “finitistic” reasoning which would be acceptable to intuitionists as well
as mainstream mathematicians.

If this were accomplished, then intuitionism would be shown to be unnecessary, as
the usual reasoning of classical mathematics would be shown to be intuitionistically
valid. The well-foundedness of a complicated system (mathematics) would rest
on the well-foundedness of an uncontroversial simple system (finitistic reasoning,
as employed in the metamathematical consistency and completeness proofs), thus
justifying use of the complicated system.

Half of this goal – the reduction of all mathematics to formal axiomatic systems
– was essentially provided by the logicist program. The metamathematics, however,
soon ran into insurmountable difficulties.

3.3.3. Gödel and the end of Hilbert’s program. Hilbert’s program was convincingly
derailed in 1931, when the logicist Kurt Gödel published his famous First Incom-
pleteness Theorem. In nontechnical language, the theorem used clever metamath-
ematical tricks to prove that any finitely axiomatized theory that is strong enough
to express the elementary arithmetic of the natural numbers can never be both
consistent and complete. In particular, if (as most people believe) basic arithmetic
is consistent, then there exist statements expressible in the given theory that are
true without being provable in the theory.

Gödel’s proof is worth studying, although we will not go into any details here. We
will simply note that the upshot of the incompleteness theorem is that Hilbert’s
program is doomed to failure: we will never be able to use a weaker system to
prove the consistency of a stronger, so long as both systems can express elementary
arithmetic.

4. Clash and aftermath

Now that we have seen a quick overview of the competing philosophies, we will
make a brief historical digression and then return to our original problems to see
what these philosophies bring to bear.

24There is an “intuitionistic intermediate value theorem,” but it is weaker and takes the form
of an approximation statement.
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4.1. Historical digression: Hilbert and Brouwer. In 1920, Mathematische
Annalen was the leading journal in mathematics, and both David Hilbert (the
formalist) and L.E.J. Brouwer (the intuitionist) held positions on its board. Hilbert,
due to his greater age and cumulative influence in mathematics, often acted as a de
facto editor-in-chief, and a majority of the board generally supported him. But by
1920, Hilbert was ill, and at the same time began to feel threatened by Brouwer’s
intuitionism, which he had come to believe was a threat to mathematics itself.
Hilbert acted by circulating a letter to the other editors of the Annalen, seeking to
have Brouwer removed from the board. Although Hilbert enjoyed general support,
the conflict became acrimonious, especially when Brouwer discovered the plan and
intervened energetically on his own behalf. Einstein, perhaps the most famous
member of the board, stated that he wanted no part in Hilbert’s plan and stayed
out of the fray. The mathematician Carathéodory, who was a friend of Brouwer
though not an intuitionist, tried and failed to mediate on his behalf. Ultimately,
however, Hilbert and his supporters managed to dissolve the board and form it
anew, minus Brouwer and Carathéodory.

This episode is certainly the most famous of the foundational crisis in mathemat-
ics, and if nothing else exemplified the growing dominance of formalist philosophy
in mathematical practice.

4.2. Back to our problems. It is now time to return to our original problems,
both to see what the three discussed philosophical approaches have to say about
them and to see how most mathematicians today view them.

Our first problem, recall, was about the nature of functions on the real line.
Of course, before we can discuss functions on the real line, we have to discuss the
real line itself. The logicist approach to the real numbers, as we have seen, is to
construct them as a set, starting with some basic axioms (the formalists largely
copied the logicists’ approach here). The only natural definition of a function on
the real line, then, is as an arbitrary map from the set of real numbers to the set of
real numbers: that is, the “modern” definition. The logicists and formalists accept
nowhere continuous functions as readily as they accept smooth functions.

The intuitionists’ approach is very interesting, although it would take us too far
afield to discuss in any reasonable level of detail. Recall that as intuitionists it
makes no sense for us to discuss infinite sets; thus, any effort to discuss the real
line as a set of points is a non-starter.25 Instead, arbitrary sets of real numbers
are replaced by concepts called spreads and species, which are much more firmly
connected to the natural numbers (the source of all intuition in mathematics). A
spread is sort of like sequence of natural numbers given by an effective rule. A
function on the real line is then defined to be an assignment of values to a spread.

25In this respect, the intuitionist approach mimics Aristotle, who thought that the idea that a

continuum was comprised of points was ridiculous. As far as I am aware, the first mathematician
to posit the correspondence between a set of numbers and a continuum was Descartes, the founder

of analytic geometry.
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Interestingly, by using this approach we get a totally different concept of function
than the logicists and formalists. For example, it is a theorem in intuitionistic math-
ematics that all functions are continuous!26 We have banished the nastiest functions
from our arsenal. Unfortunately, we have also banished some not-so-nasty functions,
including the aforementioned Heaviside step function θ. Intuitionistic analysis is
fiendishly difficult, and is one of the major reasons that few mathematicians have
ever become intuitionists.

Now let’s move on to set theory. The intuitionist response to the problems of
Cantor and Russell and Berry is simple: we give up set theory. So that’s that.
The logicist approach to Russell’s paradox, as given by Russell himself in Principia
Mathematica, is to give up our ability to allow sets to be members of themselves.
In practice, what this means is that we must set up a type theory : to each set,
we attach a label (its type) explaining whether it is a set of bare elements, or a
set of sets, or a set of set of sets, and so on, and we only allow sets of one type
to be elements of sets of the next larger type. This certainly gets rid of Russell’s
paradox, but it has two disadvantages: first, it adds another layer of complication
to set theory (bringing it still further from basic predicate logic), and second, it is
sometimes useful to consider sets of mixed type (for example, the set {1, {2, 3}}).

In contrast, the formalist approach – which also happens to be the current widely-
accepted approach – is to modify the axiom of comprehension. Recall that the
axiom of comprehension states, essentially, that given any property, we can create
the set of all objects that possess that property. It is used in an essential way in
Russell’s paradox. We now modify it to the axiom of restricted comprehension,
which states that given any property, we can create the set of all objects that are
elements of any given set. In other words, we can turn properties into sets, provided
we first restrict ourselves to elements that all lie in one big set. It is easy to see
that Russell’s paradox dissolves, for we can no longer form the “set” S of all sets
that do not contain themselves – we have not restricted our universe to a set first.
In this framework, we can use Russell-like arguments to show that S is not a set,
and that there can be no “set of all sets.” With restricted comprehension, some
things are just too big to include in our set theory.

The resolution of Berry’s paradox centers around the ambiguities relating to
the word “definable.” In short, definability is not, and cannot be, a mathematical
concept. We dissolve the paradox only by formalizing our language. Within a
given formalized language, it is possible to express something like definability only
by going outside the language. The semantic ambiguities of English, which is not
formalized and therefore has no such restriction on the use of the word “definable,”
are what lead to the paradox.

Finally, I should mention the status of the axiom of choice. Modern mathemati-
cians now regularly accept it, although in most fields of study (analysis possibly
excluded) it is considered in good taste to note when it is being used. The Banach-
Tarski paradox and the well-ordering principle are considered counterintuitive but
acceptable results, given the axiom of choice’s utility in much of mathematics. In
fact, although the usual form of the axiom of choice is generally considered to be

26In fact, uniformly continuous. In extremely vague terms, the reason is that we can never

specify the input with perfect accuracy using only finitely many natural numbers, and therefore
in order for a function to make sense the output had better not depend very heavily on a precise

specification.
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intuitionistically unacceptable, there are restricted forms that are accepted by some
intuitionists.

4.3. Where do we stand today? Most modern mathematicians, it should be
admitted, do not give much mind to foundational issues. This can either be inter-
preted as a tacit acceptance of formalism, which as we have seen has be default
become the dominant approach (the failure of Hilbert’s program notwithstanding),
or as a dismissal of the relevance or importance of philosophy in general. It is still,
however, worth tracing the strands of the other two philosophies to the present day.

After the rise of formalism and its assimilation of logicist methods, the school of
logicism has largely faded away, save for a small school of neo-logicist philosophers
who have attempted to ground as much mathematics as possible in quasi-logical
axioms such as Hume’s principle.27

Intuitionism, though consistently somewhat marginalized in mathematics, has
enjoyed a continuous school of thought to the present day, via logicians like Arend
Heyting, who introduced a formalization of intuitionistic reasoning,28 and Errett
Bishop, who developed constructive analysis far beyond Brouwer’s work. Addi-
tionally, there are several related schools of thought, e.g., finitism, which rejects
any construction that cannot be derived in finitely many steps starting from the
natural numbers. The fact that intuitionism does not seek to give a foundation
to mathematics as it is commonly practiced, but rather asserts how mathematics
should be practiced, has consistently hindered its appeal.

Although the triad of logicism, intuitionism, and formalism serves reasonably
well to explain the diversity of philosophical thought in the early part of the twen-
tieth century, many other strands have emerged since, including structuralism,
fictionalism, various forms of empiricism, and various forms of realism (Platonism).
In the last few decades, there has been somewhat of a shift in focus among many
philosophers, giving up the search for mathematical foundations and instead trying
to understand “mathematics as it is actually done.”
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