
Introduction to Free Energy 
Methods



Why Do This?

• The free energy of a system is perhaps the most 
important thermodynamic quantity, and is usually 
taken as the Helmholtz or Gibb’s free energy

• Techniques to calculate the free energy (or 
relative free energy) of a system are very useful 
studying phase transitions, critical phenomena 
or other transformations

• We can never calculate absolute free energies 
(since we don’t have an appropriate reference 
state), however relative free energies can be 
found using several different computational 
techniques



Calculating Free Energies

• We know from statistical mechanics that we can 
calculate the free energy (here the Helmholtz 
free energy) by evaluating integrals like

where H is the Hamiltonian.

• In practice it is very difficult to evaluate such 
integrals using MC or MD since we do not 
adequately sample high energy regions

A = kBT ln
(∫∫

dpNdrN exp
[−βH(pN , rN )

])



ΔA = −kBT ln

(∫∫
dpNdrN exp

[−βHY (pN , rN )
]∫∫

dpNdrN exp [−βHX(pN , rN )]

)

Calculation of Free Energy Differences

• Although our simulation methods cannot 
give us absolute free energies, free energy 
differences are much more tractable

• Consider two states X and Y

• Since the free energy is a state function, 
the difference in energy between these 
two states is simply



ΔA = −kBT ln
(∫∫

dpNdrN exp [−βHY ] exp [βHX ] exp [−βHX ]∫∫
dpNdrN exp [−βHX ]

)

= −kBT ln
(∫∫

dpNdrN exp [−β(HY − HX)] exp [−βHX ]∫∫
dpNdrN exp [−βHX ]

)

Free Energy Differences

• If we multiply the numerator by the factor

we get

exp(βHX) exp(−βHX) ≡ 1



Free Energy Difference

• Since we are clever, we notice that this is 
nothing more than an ensemble average 
taken over the state X

• Equivalently we could write the reverse 
process

ΔA = −kBT ln〈exp [−β(HY − HX)〉X

ΔA = −kBT ln〈exp [−β(HX − HY )〉Y



Overlapping States

• In order to evaluate an ensemble average 
like

we could run a simulation either state X or 
Y and collect statistics

• Problems arise however when the states X 
and Y do not overlap such that simulating 
one state does a poor job of sampling the 
other

ΔA = −kBT ln〈exp [−β(HY − HX)〉X







Intermediate States

• If the energy difference between the two 
states is large 

we can introduce an intermediate state 
between X and Y

ΔA = A(Y ) − A(X)
= (A(Y ) − A(I)) + (A(I) − A(X))

= −kBT ln
[
Q(Y )
Q(I)

× Q(I)
Q(X)

]

|HX − HY | � kBT



Intermediate States

• We can obviously extend this treatment to 
include multiple intermediate states with 
increasing overlap

ΔA = A(Y ) − A(X)
= (A(Y ) − A(N)) + (A(N) − A(N − 1)) + · · ·
+ (A(2) − A(1)) + (A(1) − A(X))

= −kBT ln
[

Q(Y )
Q(N)

× Q(N)
Q(N − 1)

· · · Q(2)
Q(1)

× Q(1)
Q(X)

]



Intermediate States

• One key to this method is that 
intermediate states do not need to 
correspond to actual physical states 
(consider changing ethane to ethanol)

• Using molecular mechanics we can 
smoothly interpolate between these two 
states
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Implementation
• If we have an empirical force field (like we 

do in molecular mechanics) we can write 
all of the force field terms as a linear 
combination of the values for X and Y
– Bonds: k( ) = k(Y) + (1- )k(X)

   lo( ) = lo(Y) + (1- )lo(X)

– Angles: k ( ) = k (Y) + (1- )k (X)

    o( ) = o(Y) + (1- ) o(X)

– Charges:  q( ) = q(Y) + (1- )q(X)

– VDW:  ( ) = (Y) + (1- ) (X)
  ( ) = (Y) + (1- ) (X)

– etc.





ΔA(λi → λi+1) = kBT ln〈exp(−βΔHi)〉

Coupling Parameter

• As we change the coupling parameter  

from 0 to 1, we move from state X to Y

• At each intermediate step i we perform a 

simulation (Monte Carlo or MD) by first 
performing a short equilibration run (since 
our point of equilibrium has changed) and 
then a “production” run where we calculate 





Free Energy Perturbation
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Free energy perturbation example

• Oostenbrink C, van 
Gunsteren WF.  Proteins 54 

(2) 234-246, 2004.
• Poly-chlorinated biphenyl 

binding to estrogen receptor
• “Fast” FEP on 17 

compounds
• Good agreement with 

experiment
• Insight into structural and 

dynamic aspects of ligand 
binding



GROMOS ∆Gsolv in Water



AMOEBA Binding Free Energies
EF Hand:  Relative Ca  /Mg   Binding Affinity+2 +2

Wild Type:        ~10  x  (expt)
                      6.6 kcal/mol  (calc)

Glu -> Asp:       ~10 x  (expt)
                      1.3 kcal/mol  (calc)
                        

Trypsin-Benzamidine:  Absolute Binding Affinity

6.3 to 7.3 kcal/mol  (expt)

6.7 +/- 0.6 kcal/mol  (calc)

4

Pengyu Ren, U Texas



Thermodynamic Integration

• Instead of evaluating the difference in the 
free energy between subsequent states, 
we could also calculate the derivative of 
the Hamiltonian

• In this case, the free energy difference is 
the area under the curve

ΔA =
∫ λ=1

λ=0

〈
∂H

∂λ

〉
λ

dλ



Thermodynamic Intergration
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ΔA = −kBT
∑

ln 〈exp (−β [H(λi+1) − H(λi)])〉
� −kBT

∑
ln 〈1 − β [H(λi+1) − H(λi)]〉

�
∑

[H(λi+1) − H(λi)]

Slow Growth Method

• If the changes in the system are gradually 
made such that the Hamiltonian is nearly 
constant, we can expand the exponential 
and ln terms to get



More Reading

• Many references and papers that cover 
these topics.  In the texts for this class 
consider:

– Leach Chapter 11 (watch for errors!!)

– Frenkel & Smit Chapter 7



Umbrella Sampling and
Histogram Methods



The Sampling Problem

• By now you realize that the major problem in 
simulations is that of sampling

• We have an exact method of computing a 
partition function and associated thermodynamic 
quantities, however this is dependent on us 
accurately sampling the entire conformational 
space

• In general (i.e. the way most people run 
simulations) MD simulations do not do an 
adequate jobs of sampling configurational space 
unless run for a very, very long time



Let’s Force the System to Sample

• The basic idea behind Umbrella Sampling 
is that we can bias or force the system to 
sample a particular region(s) (based on 
some reaction coordinate)

• If we were interested in the free energy 
difference between two systems X and Y, 
we should sample the conformational 
space associated with both conformations



Free Energy Perturbation

• Recall from our discussion of FEP that the free energy 
difference between two systems can be expressed as

or equivalently

ΔU = −kBT ln
(∫∫

drN exp [−βUY ]∫∫
drN exp [−βUx]

)

〈exp(−βΔU)〉X =
∫∫

drN exp [−βUY ]∫∫
drN exp [−βUx]



A New Weight Function

• In order to sample both X and Y spaces, we now 
introduce a new weight function (rN) to replace the 

Boltzmann factor

which using our shorthand notation becomes

〈exp(−βΔU)〉X =
∫∫

drNπ(rN ) exp [−βUY ] /π(rN )∫∫
drNπ(rN ) exp [−βUx] /π(rN )

〈exp(−βΔU)〉X =
〈exp(−βUY )/π(rN )〉π
〈exp(−βUX)/π(rN )〉π



Umbrella Sampling Considerations

• In order that both the numerator and 
denominator are non-zero, the weight function 
(rN)  should have considerable overlap between 

the spaces of X and Y

• This property gives rise to the name Umbrella 
Sampling

• Although it appears we could sample the entire 
space with a single choice of (rN), this is not 

optimal.  It is still best to perform several 
sampling runs using overlapping windows



Choosing a Weight Function

• In order for Umbrella Sampling to work well we need to 
make a good choice for (rN) – it is not know a priori

• A common choice is to make the biasing potential 
quadratic

so that the biasing potential is simply

U ′(rN ) = U(rN ) + W (rN )
= U(rN ) + kw(rN − rN

o )2

π(rN ) = exp
[−βU ′(rN )

]



Weighted Histogram Analysis 
Method (WHAM)

• Umbrella Sampling is valid in theory, but the 
implementation is often difficult since the 
“windows” of overlap must be carefully chosen to 
minimize the error (since the errors from the 
individual simulations add quadratically)

• WHAM is a useful method for combining sets of 
simulations with different biasing potentials in a 
manner such that the unbiased potential of 
mean force (PMF) can be found



  
 
 Periodic Box Simulation 
 (alanine dipeptide and 
 206 water molecules) 
  
  Stochastic Dynamics 

(576 trajectories of 
200 picoseconds each) 
 
Free Energies via 
Umbrella Sampling 
and 2D-WHAM: 
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Conformational Populations
               Alpha   Pass  Beta    Other
  

Amber ff94      68      5    26    1
Amber ff99      77    10    13    1
CHARMM27      46      2    52    0
OPLS-AA       13       9    75    3
OPLS-AA/L      23      8    65    4  

SCCDFTB (Amber)    27    16    48    9
SCCDFTB  (CHARMM)    33    14    48    4
SCCDFTB  (CEDAR)    27    12    61    0

AMOEBA (Polar Water)    29    16    54    1
AMOEBA (Fixed Water)    32    13    54    1



Examples and Further Reading

• Leach has some details on Umbrella 
Sampling in Ch. 11

• Frenkel & Smit discusses Umbrella 
Sampling and WHAM (disguised as the 
self-consistent histogram method) in Ch. 7

• There are many papers using these 
methods.  (See Ron Levy paper that uses 
both techniques)



Jarzynski’s Method














