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Chapter 1 STERN-GERLACH EXPERIMENTS 

It was not a dark and stormy night when Otto Stern and Walther Gerlach 

performed their now famous experiment in 1922.  The Stern-Gerlach experiment 

demonstrated that measurements on microscopic or quantum particles are not always as 

certain as we might expect.  Quantum particles behave as mysteriously as Erwin's 

socks—sometimes forgetting what we have already measured.  Erwin's adventure with 

the mystery socks is farfetched because you know that everyday objects do not behave 

like his socks.  If you observe a sock to be black, it remains black no matter what other 

properties of the sock you observe.  However, the Stern-Gerlach experiment goes against 

these ideas.  Microscopic or quantum particles do not behave like the classical objects of 

your everyday experience.  The act of observing a quantum particle affects its measurable 

properties in a way that is foreign to our classical experience. 

In these first three chapters, we focus on the Stern-Gerlach experiment because it 

is a conceptually simple experiment that demonstrates many basic principles of quantum 

mechanics.  We discuss a variety of experimental results and the quantum theory that has 

been developed to predict those results.  The mathematical formalism of quantum 

mechanics is based upon six postulates that we will introduce as we develop the 

theoretical framework.  (A complete list of these postulates is in Section 1.5.)  We use the 

Stern-Gerlach experiment to learn about quantum mechanics theory for two primary 

reasons: (1) It demonstrates how quantum mechanics works in principle by illustrating 

the postulates of quantum mechanics, and (2) It demonstrates how quantum mechanics 

works in practice through the use of Dirac notation and matrix mechanics to solve 

problems.  By using a simple example, we can focus on the principles and the new 

mathematics, rather than having the complexity of the physics obscure these new aspects. 

1.1 Stern-Gerlach experiment 

In 1922 Otto Stern and Walther Gerlach performed a seminal experiment in the 

history of quantum mechanics.  In its simplest form, the experiment consists of an oven 

that produces a beam of neutral atoms, a region of space with an inhomogeneous 

magnetic field, and a detector for the atoms, as depicted in Fig. 1.1.  Stern and Gerlach 

used a beam of silver atoms and found that the beam was split into two in its passage 

through the magnetic field.  One beam was deflected upwards and one downwards in 

relation to the direction of the magnetic field gradient. 

To understand why this result is so at odds with our classical expectations, we 

must first analyze the experiment classically.  The results of the experiment suggest an 

interaction between a neutral particle and a magnetic field.  We expect such an 

interaction if the particle possesses a magnetic moment µ .  The potential energy of this 

interaction is 
 
E = !µiB , which results in a force 

 
F = ! µiB( ) .  In the Stern-Gerlach 

experiment, the magnetic field gradient is primarily in the z-direction, and 
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Figure 1.1    Stern-Gerlach experiment to measure the spin component of neutral particles along 

the z-axis.  The magnetic cross-section at right shows the inhomogeneous field used in the experiment. 

the resulting z-component of the force is 
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This force is perpendicular to the direction of motion and deflects the beam in proportion 

to the component of the magnetic moment in the direction of the magnetic field gradient. 

Now consider how to understand the origin of the atom's magnetic moment from 

a classical viewpoint.  The atom consists of charged particles, which, if in motion, can 

produce loops of current that give rise to magnetic moments.  A loop of area A and 

current I produces a magnetic moment 

 µ = IA  (1.2) 

in MKS units.  If this loop of current arises from a charge q traveling at speed v in a circle 

of radius r, then 

 

µ =
q

2!r v
!r
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qrv
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=
q

2m
L

, (1.3) 

where L = mrv is the orbital angular momentum of the particle.  In the same way that the 

earth revolves around the sun and rotates around its own axis, we can also imagine a 

charged particle in an atom having orbital angular momentum L and a new property, 

the intrinsic angular momentum, which we label S  and call spin.  The intrinsic angular 

momentum also creates current loops, so we expect a similar relation between the 

magnetic moment µ  and S.  The exact calculation involves an integral over the charge 
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distribution, which we will not do.  We simply assume that we can relate the magnetic 

moment to the intrinsic angular momentum in the same fashion as Eq. (1.3), giving 

 µ = g
q

2m
S , (1.4) 

where the dimensionless gyroscopic ratio g contains the details of that integral. 

A silver atom has 47 electrons, 47 protons, and 60 or 62 neutrons (for the most 

common isotopes).  The magnetic moments depend on the inverse of the particle mass, so 

we expect the heavy protons and neutrons (! 2000 me) to have little effect on the 

magnetic moment of the atom and so we neglect them.  From your study of the periodic 

table in chemistry, you recall that silver has an electronic configuration 

1s
22s

22p
63s

23p
64s

23d
104p

64d
105s

1, which means that there is only the lone 5s electron 

outside of the closed shells.  The electrons in the closed shells can be represented by a 

spherically symmetric cloud with no orbital or intrinsic angular momentum 

(unfortunately we are injecting some quantum mechanical knowledge of atomic physics 

into this classical discussion).  That leaves the lone 5s electron as a contributor to the 

magnetic moment of the atom as a whole.  An electron in an s state has no orbital angular 

momentum, but it does have spin.  Hence the magnetic moment of this electron, and 

therefore of the entire neutral silver atom, is 

 µ = !g
e

2m
e

S , (1.5) 

where e is the magnitude of the electron charge.  The classical force on the atom can now 

be written as 

 Fz ! "g
e

2me

Sz
#Bz

#z
. (1.6) 

The deflection of the beam in the Stern-Gerlach experiment is thus a measure of the 

component (or projection) Sz of the spin along the z-axis, which is the orientation of the 

magnetic field gradient. 

If we assume that the 5s electron of each atom has the same magnitude S  of the 

intrinsic angular momentum or spin, then classically we would write the z-component as 

S
z
= S cos! , where ! is the angle between the z-axis and the direction of the spin S.  In 

the thermal environment of the oven, we expect a random distribution of spin directions 

and hence all possible angles !.  Thus we expect some continuous distribution (the details 

are not important) of spin components from S
z
= ! S  to S

z
= + S , which would yield a 

continuous spread in deflections of the silver atomic beam.  Rather, the experimental 

result that Stern and Gerlach observed was that there are only two deflections, indicating 

that there are only two possible values of the z-component of the electron spin.  The 

magnitudes of these deflections are consistent with values of the spin component of 

 
 

S
z
= ±
!

2
, (1.7) 



 Chap. 1  Stern-Gerlach Experiments 

 

8/10/10 

1-4

where  !  is Planck's constant h divided by 2! and has the numerical value 

 
 

! = 1.0546 !10
"34
J #s

=!6.5821!10
"16
eV #s

. (1.8) 

This result of the Stern-Gerlach experiment is evidence of the quantization of the 

electron's spin angular momentum component along an axis.  This quantization is at odds 

with our classical expectations for this measurement.  The factor of 1/2 in Eq. (1.7) leads 

us to refer to this as a spin 1/2 system. 

In this example, we have chosen the z-axis along which to measure the spin 

component, but there is nothing special about this direction in space.  We could have 

chosen any other axis and we would have obtained the same results. 

Now that we know the fine details of the Stern-Gerlach experiment, we simplify 

the experiment for the rest of our discussions by focusing on the essential features.  A 

simplified schematic representation of the experiment is shown in Fig. 1.2, which depicts 

an oven that produces the beam of atoms, a Stern-Gerlach device with two output ports 

for the two possible values of the spin component, and two counters to detect the atoms 

leaving the output ports of the Stern-Gerlach device.  The Stern-Gerlach device is labeled 

with the axis along which the magnetic field is oriented.  The up and down arrows 

indicate the two possible measurement results for the device; they correspond 

respectively to the results 
 
S
z
= ±! 2  in the case where the field is oriented along the 

z-axis.  There are only two possible results in this case, so they are generally referred to 

as spin up and spin down.  The physical quantity that is measured, S
z
 in this case, is 

called an observable.  In our detailed discussion of the experiment above, we chose the 

field gradient in such a manner that the spin up states were deflected upwards.  In this 

new simplification, the deflection itself is not an important issue.  We simply label the 

output port with the desired state and count the particles leaving that port.  The Stern-

Gerlach device sorts (or filters or selects or analyzes) the incoming particles into the two 

possible outputs 
 
S
z
= ±! 2  in the same way that Erwin sorted his socks according to 

color or length.  We follow convention and refer to a Stern-Gerlach device as an 

analyzer. 

In Fig. 1.2, the input and output beams are labeled with a new symbol called a 

ket.  We use the ket +  as a mathematical representation of the quantum state of the 

atoms that exit the upper port corresponding to 
 
S
z
= +! 2 .  The lower output beam is 

labeled with the ket ! , which corresponds to 
 
S
z
= !! 2 , and the input beam is labeled  

 

Z
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50

|+〉

|−〉

|y〉

 

Figure 1.2    Simplified schematic of the Stern-Gerlach experiment, depicting a source of atoms, a 

Stern-Gerlach analyzer, and two counters. 
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with the more generic ket ! .  The kets are simple labels for the quantum states.  They 

are used in mathematical expressions and they represent all the information that we can 

know about the state.  This ket notation was developed by Paul A. M. Dirac and is central 

to the approach to quantum mechanics that we take in this text.  We will discuss the 

mathematics of these kets in full detail later.  With regard to notation, you will find many 

different ways of writing the same ket.  The symbol within the ket brackets is any simple 

label to distinguish the ket from other different kets.  For example, the kets + , 
 
+! 2 , 

 
S
z
= +! 2 , +ẑ , and !  are all equivalent ways of writing the same thing, which in 

this case signifies that we have measured the z-component of the spin and found it to be 

+! 2  or spin up.  Though we may label these kets in different ways, they all refer to the 

same physical state and so they all behave the same mathematically.  The symbol ±  

kets refers to both the +  and !  kets.  The first postulate of quantum mechanics tells 

us that kets in general describe the quantum state mathematically and that they contain all 

the information that we can know about the state.  We denote a general ket as ! . 

 

Postulate 1 

The state of a quantum mechanical system, including all the 

information you can know about it, is represented mathematically by a 

normalized ket ! . 

 

We have chosen the particular simplified schematic representation of Stern-

Gerlach experiments shown in Fig. 1.2 because it is the same representation used in the 

SPINS software program that you may use to simulate these experiments.  The SPINS 

program allows you to perform all the experiments described in this text.  This software 

is freely available, as detailed in section 1.8.  In the SPINS program, the components are 

connected with simple lines to represent the paths the atoms take.  The directions and 

magnitudes of deflections of the beams in the program are not relevant.  That is, whether 

the spin up output beam is drawn as deflected upwards, or downwards, or not at all is not 

relevant.  The labeling on the output port is enough to tell us what that state is.  Thus the 

extra ket label +  on the spin up output beam in Fig. 1.2 is redundant and will be 

dropped soon. 

The SPINS program permits alignment of Stern-Gerlach analyzing devices along 

all three axes and also at any angle ! measured from the x-axis in the x-y plane.  This 

would appear to be difficult, if not impossible, given that the atomic beam in Fig. 1.1 is 

directed along the y-axis, making it unclear how to align the magnet in the y-direction and 

measure a deflection.  In our depiction and discussion of Stern-Gerlach experiments, we 

ignore this technical complication. 

In the SPINS program, as in real Stern-Gerlach experiments, the numbers of 

atoms detected in particular states can be predicted by probability rules that we will 

discuss later.  To simplify our schematic depictions of Stern-Gerlach experiments, the 

numbers shown for detected atoms are those obtained by using the calculated 

probabilities without any regard to possible statistical uncertainties.  That is, if the 

theoretically predicted probabilities of two measurement possibilities are each 50%, then 
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our schematics will display equal numbers for those two possibilities, whereas in a real 

experiment, statistical uncertainties might yield a 55%/45% split in one experiment and a 

47%/53% split in another, etc.  The SPINS program simulations are designed to give 

statistical uncertainties and so you will need to perform enough experiments to convince 

yourself that you have a sufficiently good estimate of the probability (see SPINS Lab 1 

for more information on statistics). 

Now let's consider a series of simple Stern-Gerlach experiments with slight 

variations that help to illustrate the main features of quantum mechanics.  We first 

describe the experiments and their results and draw some qualitative conclusions about 

the nature of quantum mechanics.  Then we introduce the formal mathematics of the ket 

notation and show how it can be used to predict the results of each of the experiments. 

1.1.1 Experiment 1 

The first experiment is shown in Fig. 1.3 and consists of a source of atoms, two 

Stern-Gerlach analyzers both aligned along the z-axis, and counters for the output ports of 

the analyzers.  The atomic beam coming into the 1st Stern-Gerlach analyzer is split into 

two beams at the output, just like the original experiment.  Now instead of counting the 

atoms in the upper output beam, the spin component is measured again by directing those 

atoms into the 2nd Stern-Gerlach analyzer.  The result of this experiment is that no atoms 

are ever detected coming out of the lower output port of the 2nd Stern-Gerlach analyzer.  

All atoms that are output from the upper port of the 1st analyzer also pass through the 

upper port of the 2nd analyzer.  Thus we say that when the 1st Stern-Gerlach analyzer 

measures an atom to have a z-component of spin 
 
S
z
= +! 2 , then the 2nd analyzer also 

measures S
z
= +! 2  for that atom.  This result is not surprising, but sets the stages for 

results of experiments to follow. 

Though both Stern-Gerlach analyzers in Experiment 1 are identical, they play 

different roles in this experiment.  The 1st analyzer prepares the beam in a particular 

quantum state ( + ) and the 2nd analyzer measures the resultant beam, so we often refer 

to the 1st analyzer as a state preparation device.  By preparing the state with the 1st 

analyzer, the details of the source of atoms can be ignored.  Thus our main focus in 

Experiment 1 is what happens at the 2nd analyzer, because we know that any atom 

entering the 2nd analyzer is represented by the +  ket prepared by the 1st analyzer.  All 

the experiments we will describe employ a 1st analyzer as a state preparation device,  

 

|+〉
|+〉

|−〉
|−〉
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Figure 1.3    Experiment 1 measures the spin component along the z-axis twice in succession. 
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though the SPINS program has a feature where the state of the atoms coming from the 

oven is determined but unknown and the user can perform experiments to determine the 

unknown state using only one analyzer in the experiment. 

1.1.2 Experiment 2 

The second experiment is shown in Fig. 1.4 and is identical to Experiment 1 

except that the 2nd Stern-Gerlach analyzer has been rotated by 90 to be aligned with the 

x-axis.  Now the 2nd analyzer measures the spin component along the x-axis rather the 

z-axis.  Atoms input to the 2nd analyzer are still represented by the ket +  because the 1st 

analyzer is unchanged.  The result of this experiment is that atoms appear at both possible 

output ports of the analyzer.  Atoms leaving the upper port of the analyzer have been 

measured to have 
 
S
x
= +! 2  and atoms leaving the lower port have 

 
S
x
= !! 2 .  On 

average, each of these ports has 50% of the atoms that left the upper port of the 1st 

analyzer.  As shown in Fig. 1.4, the output states of the 2nd analyzer have new labels +
x
 

and !
x
, where the x subscript denotes that the spin component has been measured along 

the x-axis.  We assume that if no subscript is present on the quantum ket (e.g., + ), then 

the spin component is along the z-axis.  This use of the z-axis as the default is a common 

convention throughout our work and also in much of physics. 

A few items are noteworthy about this experiment.  First, we notice that there are 

still only two possible outputs of the 2nd Stern-Gerlach analyzer.  The fact that it is 

aligned along a different axis doesn't affect the fact that we only get two possible results 

for the case of a spin 1/2 particle.  Second, it turns out that the results of this experiment 

would be unchanged if we used the lower port of the polarizer.  That is, atoms entering 

the analyzer in state !  would also result in half the atoms in each of the ±
x
output 

ports.  Finally, we cannot predict which of the 2nd analyzer output ports any particular 

atom will come out.  This can be demonstrated in actual experiments by recording the 

individual counts out of each port.  The arrival sequences at any counter are completely 

random.  We can only say that there is a 50% probability that an atom from the 2nd 

analyzer will exit the upper analyzer port and a 50% probability that it will exit the lower 

port.  The random arrival of atoms at the detectors can be seen clearly in the SPINS 

program simulations. 

This probabilistic nature is at the heart of quantum mechanics.  One might be 

tempted to say that we just don't know enough about the system to predict which port the  
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Figure 1.4    Experiment 2 measures the spin component along the z-axis and then along the 

x-axis. 
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atom will exit.  That is to say, there may be some other variables, of which we are 

ignorant, that would allow us to predict the results.  Such a viewpoint is known as a local 

hidden variable theory.  John Bell proved that such theories are not compatible with the 

experimental results of quantum mechanics.  The conclusion to draw from this is that 

even though quantum mechanics is a probabilistic theory, it is a complete description of 

reality.  We will have more to say about this in Chap. 4. 

Note that the 50% probability referred to above is the probability that an atom 

input to the 2nd analyzer exits one particular output port.  It is not the probability for an 

atom to pass through the whole system of Stern-Gerlach analyzers.  It turns out that the 

results of this experiment (the 50/50 split at the 2nd analyzer) are the same for any 

combination of two orthogonal axes of the 1st and 2nd analyzers. 

1.1.3 Experiment 3 

Experiment 3, shown in Fig. 1.5, extends Experiment 2 by adding a 3rd Stern-

Gerlach analyzer aligned along the z-axis.  Atoms entering the 3rd analyzer have been 

measured by the 1st Stern-Gerlach analyzer to have spin component up along the z-axis, 

and by the 2nd analyzer to have spin component up along the x-axis.  The 3rd analyzer then 

measures how many atoms have spin component up or down along the z-axis.  

Classically, one would expect that the final measurement would yield the result spin up 

along the z-axis, because that was measured at the 1st analyzer.  That is to say: classically 

the first 2 analyzers tell us that the atoms have 
 
S
z
= +! 2  and 

 
S
x
= +! 2 , so the third 

measurement must yield S
z
= +! 2 .  But that doesn't happen, as Erwin learned with his 

quantum socks in the Prologue.  The quantum mechanical result is that the atoms are split 

with 50% probability into each output port at the 3rd analyzer.  Thus the last two 

analyzers behave like the two analyzers of Experiment 2 (except with the order reversed), 

and the fact that there was an initial measurement that yielded S
z
= +! 2  is somehow 

forgotten or erased. 

This result demonstrates another key feature of quantum mechanics: a 

measurement disturbs the system.  The 2nd analyzer has disturbed the system such that the 

spin component along the z-axis does not have a unique value, even though we measured 

it with the 1st analyzer.  Erwin saw this when he sorted, or measured, his socks by color 

and then by length.  When he looked, or measured, a third time, he found that the color he 

had measured originally was now random—the socks had forgotten about the first  
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Figure 1.5    Experiment 3 measures the spin component three times in succession. 
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measurement.  One might ask: Can I be more clever in designing the experiment such 

that I don't disturb the system?  The short answer is no.  There is a fundamental 

incompatibility in trying to measure the spin component of the atom along two different 

directions.  So we say that Sx and Sz are incompatible observables.  We cannot know the 

measured values of both simultaneously.  The state of the system can be represented by 

the ket 
 
+ = S

z
= +! 2  or by the ket 

 
+

x
= S

x
= +! 2 , but it cannot be represented by 

a ket 
 
S
z
= +! 2,S

x
= +! 2  that specifies values of both components.  Having said this, 

it should be said that not all pairs of quantum mechanical observables are incompatible.  

It is possible to do some experiments without disturbing some of the other aspects of the 

system.  And we will see in Chap. 2.4 that whether two observables are compatible or not 

is very important in how we analyze a quantum mechanical system. 

Not being able to measure both the Sz and Sx spin components is clearly distinct 

from the classical case where we can measure all three components of the spin vector, 

which tells us which direction the spin is pointing.  In quantum mechanics, the 

incompatibility of the spin components means that we cannot know which direction the 

spin is pointing.  So when we say "the spin is up," we really mean only that the spin 

component along that one axis is up (vs. down).  The quantum mechanical spin vector 

cannot be said to be pointing in any given direction.  As is often the case, we must check 

our classical intuition at the door of quantum mechanics. 

1.1.4 Experiment 4 

Experiment 4 is depicted in Fig. 1.6 and is a slight variation on Experiment 3.  

Before we get into the details, note a few changes in the schematic drawings.  As 

promised, we have dropped the ket labels on the beams because they are redundant.  We 

have deleted the counters on all but the last analyzer and instead simply block the 

unwanted beams and give the average number of atoms passing from one analyzer to the 

next. Note also that in Experiment 4c two output beams are combined as input to the 

following analyzer.  This is simple in principle and in the SPINS program, but can be 

difficult in practice.  The recombination of the beams must be done properly so as to 

avoid "disturbing" the beams.  If you care to read more about this problem, see 

Feynman's Lectures on Physics, volume 3.  We will have more to say about the 

"disturbance" later in Chap. 2.2.  For now we simply assume that the beams can be 

recombined in the proper manner. 

Experiment 4a is identical to Experiment 3.  In Experiment 4b, the upper beam of 

the 2nd analyzer is blocked and the lower beam is sent to the 3rd analyzer.  In Experiment 

4c, both beams are combined with our new method and sent to the 3rd  analyzer.  It should 

be clear from our previous experiments that Experiment 4b has the same results as 

Experiment 4a.  We now ask about the results of Experiment 4c.  If we were to use 

classical probability analysis, then Experiment 4a would indicate that the probability for 

an atom leaving the 1st analyzer to take the upper path through the 2nd  analyzer and then 

exit through the upper port of the 3rd analyzer is 25%, where we are now referring to the 

total probability for those two steps.  Likewise, Experiment 4b would indicate that the 

probability total to take the lower path through the 2nd  analyzer and exit through the 
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Figure 1.6    Experiment 4 measures the spin component three times in succession and uses 

(a and b) one or (c) two beams from the 2nd analyzer. 

upper port of the 3rd analyzer is also 25%.  Hence the total probability to exit from the 

upper port of the 3rd analyzer when both paths are available, which is Experiment 4c, 

would be 50%, and likewise for the exit from the lower port. 

However, the quantum mechanical result in Experiment 4c is that all the atoms 

exit the upper port of the 3rd analyzer and none exits the lower port.  The atoms now 

appear to "remember" that they were initially measured to have spin up along the z-axis.  

By combining the two beams from the 2nd analyzer, we have avoided the quantum 

mechanical disturbance that was evident in Experiments 3, 4a, and 4b.  The result is now 

the same as Experiment 1, which means it is as if the 2nd analyzer is not there. 

To see how odd this is, look carefully at what happens at the lower port of the 3rd 

analyzer.  In this discussion, we refer to percentages of atoms leaving the 1st analyzer, 

because that analyzer is the same in all three experiments.  In Experiments 4a and 4b, 

50% of the atoms are blocked after the middle analyzer and 25% of the atoms exit the 

lower port of the 3rd analyzer.  In Experiment 4c, 100% of the atoms pass from the 2nd 

analyzer to the 3rd analyzer, yet fewer atoms come out of the lower port.  In fact, no 

atoms make it through the lower port!  So we have a situation where allowing more ways 

or paths to reach a counter results in fewer counts.  Classical probability theory cannot 

explain this aspect of quantum mechanics.  It is as if you opened a second window in a 

room to get more sunlight and the room went dark! 
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Figure 1.7    (a) Young's double slit interference experiment and (b) resultant intensity patterns 

observed on the screen, demonstrating single-slit diffraction and double-slit interference. 

 

However, you may already know of a way to explain this effect.  Imagine a 

procedure whereby combining two effects leads to cancellation rather than enhancement.  

The concept of wave interference, especially in optics, comes to mind.  In the Young's 

double-slit experiment, light waves pass through two narrow slits and create an 

interference pattern on a distant screen, as shown in Fig. 1.7.  Either slit by itself 

produces a nearly uniform illumination of the screen, but the two slits combined produce 

bright and dark interference fringes, as shown in Fig. 1.7(b).  We explain this by adding 

together the electric field vectors of the light from the two slits, then squaring the 

resultant vector to find the light intensity.  We say that we add the amplitudes and then 

square the total amplitude to find the resultant intensity.  See Section 6.6 or an optics 

textbook for more details about this experiment. 

We follow a similar prescription in quantum mechanics.  We add together 

amplitudes and then take the square to find the resultant probability, which opens the 

door to interference effects.  Before we discuss quantum mechanical interference, we 

must explain what we mean by an amplitude in quantum mechanics and how we calculate 

it. 

1.2 Quantum State Vectors 

Postulate 1 of quantum mechanics stipulates that kets are to be used for a 

mathematical description of a quantum mechanical system.  These kets are abstract 

entities that obey many of the rules you know about ordinary spatial vectors.  Hence they 

are called quantum state vectors.  As we will show in Example 1.3, these vectors must 

employ complex numbers in order to properly describe quantum mechanical systems.  

Quantum state vectors are part of a vector space whose dimensionality is determined by 

the physics of the system at hand.  In the Stern-Gerlach example, the two possible results 

for a spin component measurement dictate that the vector space has only two dimensions.  
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That makes this problem mathematically as simple as it can be, which is why we have 

chosen to study it.  Because the quantum state vectors are abstract, it is hard to say much 

about what they are, other than how they behave mathematically and how they lead to 

physical predictions. 

In the two-dimensional vector space of a spin 1/2 system, the two kets ±  form a 

basis, just like the unit vectors î , ĵ , and k̂  form a basis for describing vectors in 

three-dimensional space.  However, the analogy we want to make with these spatial 

vectors is only mathematical, not physical.  The spatial unit vectors have three important 

mathematical properties that are characteristic of a basis: the basis vectors î , ĵ , and k̂  

are normalized, orthogonal, and complete.  Spatial vectors are normalized if their 

magnitudes are unity and they are orthogonal if they are geometrically perpendicular to 

each other.  The basis is complete if any general vector in the space can be written as a 

linear superposition of the basis vectors.  These properties of spatial basis vectors can be 

summarized as follows: 

 

 

îi î = ĵi ĵ = k̂ik̂ = 1        !!!!normalization

îi ĵ = îik̂ = ĵik̂ = 0       !!!!!orthogonality

A = a
x
î + a

y
ĵ+ a

z
k̂           completeness

, (1.9) 

where A  is a general vector.  Note that the dot product, also called the scalar product, 

is central to the description of these properties. 

Continuing the mathematical analogy between spatial vectors and abstract 

vectors, we require that these same properties (at least conceptually) apply to quantum 

mechanical basis vectors.  For the Sz measurement, there are only two possible results, 

corresponding to the states +  and ! , so these two states comprise a complete set of 

basis vectors.  This basis is known as the Sz basis.  We focus on this basis for now and 

refer to other possible basis sets later.  The completeness of the basis kets ±  implies 

that a general quantum state vector !  is a linear combination of the two basis kets: 

 ! = a + + b " , (1.10) 

where a and b are complex scalar numbers multiplying each ket.  This addition of two 

kets yields another ket in the same abstract space.  The complex scalar can appear either 

before or after the ket without affecting the mathematical properties of the ket 

(i.e., a + = + a ).  It is customary to use the Greek letter !  (psi) for a general quantum 

state.  You may have seen ! x( )  used before as a quantum mechanical wave function.  

However, the state vector or ket !  is not a wave function.  Kets do not have any spatial 

dependence as wave functions do.  We will study wave functions in Chap. 5. 

To discuss orthogonality and normalization (known together as orthonormality) 

we must first define scalar products as they apply to these new kets.  As we said above, 

the machinery of quantum mechanics requires the use of complex numbers.  You may 

have seen other fields of physics use complex numbers.  For example, sinusoidal 

oscillations can be described using the complex exponential ei!t  rather than cos(!t).  

However, in such cases, the complex numbers are not required, but are rather a 
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convenience to make the mathematics easier.  When using complex notation to describe 

classical vectors like electric and magnetic fields, the definition of the dot product is 

generalized slightly such that one of the vectors is complex conjugated.  A similar 

approach is taken in quantum mechanics.  The analog to the complex conjugated vector 

of classical physics is called a bra in the Dirac notation of quantum mechanics.  Thus 

corresponding to a general ket ! , there is a bra, or bra vector, which is written as ! .  

If a general ket !  is specified as ! = a + + b " , then the corresponding bra !  is 

defined as 

 ! = a
*
+ + b

*
" , (1.11) 

where the basis bras +  and !  correspond to the basis kets +  and ! , respectively, 

and the coefficients a and b have been complex conjugated. 

The scalar product in quantum mechanics is defined as the product of a bra and a 

ket taken in the proper order—bra first, then ket second: 

 bra( ) ket( )  (1.12) 

When the bra and ket are combined together in this manner we get a bracket (bra ket)—a 

little physics humor—that is written in shorthand as 

 bra ket  (1.13) 

Thus, given the basis kets +  and ! , one inner product, for example, is written as 

 +( ) !( ) = + !  (1.14) 

and so on.  Note that we have eliminated the extra vertical bar in the middle.  The scalar 

product in quantum mechanics is generally referred to as an inner product or a 

projection. 

So, how do we calculate the inner product + + ?  We do it the same way we 

calculate the dot product  îi î .  We define it to be unity because we like basis vectors to be 

unit vectors.  There is a little more to it than that because in quantum mechanics (as we 

will see shortly) using normalized basis vectors is more rooted in physics than in our 

personal preferences for mathematical cleanliness.  But for all practical purposes, if 

someone presents a set of basis vectors to you, you can probably assume that they are 

normalized.  So the normalization of the spin-! basis vectors is expressed in this new 

notation as + + = 1  and ! ! = 1 . 

Now, what about orthogonality?  The spatial unit vectors î , ĵ , and k̂  used for 

spatial vectors are orthogonal to each other because they are at 90 with respect to each 

other.  That orthogonality is expressed mathematically in the dot products 

 
îi ĵ = îik̂ = ĵik̂ = 0 .  For the spin basis kets +  and ! , there is no spatial geometry 

involved.  Rather, the spin basis kets +  and !  are orthogonal in the mathematical 

sense, which we express with the inner product as + ! = 0 .  Again, we do not prove to 

you that these basis vectors are orthogonal, but we assume that a well-behaved basis set 

obeys orthogonality.  Though there is no geometry in this property for quantum 
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mechanical basis vectors, the fundamental idea of orthogonality is the same, so we use 

the same language—if a general vector "points" in the direction of a basis vector, then 

there is no component in the "direction" of the other unit vectors. 

In summary, the properties of normalization, orthogonality, and completeness can 

be expressed in the case of a two-state spin-!  quantum system as: 

 

+ + = 1

! ! = 1

"
#
$

%$
               normalization

+ ! = 0

! + = 0

"
#
$

%$
               orthogonality

& = a + + b !       !!completeness

. (1.15) 

Note that a product of kets (e.g., + + ) or a similar product of bras (e.g., + + ) is 

meaningless in this new notation, while a product of a ket and a bra in the "wrong" order 

(e.g., + + ) has a meaning that we will define in Chap. 2.2.3.  Equations (1.15) are 

sufficient to define how the basis kets behave mathematically.  Note that the inner 

product is defined using a bra and a ket, though it is common to refer to the inner product 

of two kets, where it is understood that one is converted to a bra first.  The order does 

matter, as we will see shortly. 

Using this new notation, we can learn a little more about general quantum states 

and derive some expressions that will be useful later.  Consider the general state vector 

! = a + + b " .  Take the inner product of this ket with the bra +  and obtain  

 

+ ! = + !!! a + !!+!!b "( )
= + a + !!+!! + b "

= a + + !!+!!b + "

= a

, (1.16) 

using the properties that inner products are distributive and that scalars can be moved 

freely through bras or kets.  Likewise, you can show that ! " = b .  Hence the 

coefficients multiplying the basis kets are simply the inner products or projections of the 

general state !  along each basis ket, albeit in an abstract complex vector space, rather 

than the concrete three-dimensional space of normal vectors.  Using these results, we 

rewrite the general state as 

 

! = a + !+!b "

= + a!+! " b

= + + !{ }!+! " " !{ }

, (1.17) 

where the rearrangement of the 2nd equation again uses the property that scalars 

(e.g., a = + ! ) can be moved through bras or kets. 
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For a general state vector ! = a + + b "  we defined the corresponding bra to 

be ! = a
*
+ + b

*
" .  Thus, the inner product of the state !  with the basis ket +  

taken in the reverse order compared to Eq. (1.16) yields 

 

! + = + a
*
+ !!+!! " b

*
+

= a
*
+ + !!+!!b

*
" +

= a
*

. (1.18) 

Thus we see that an inner product with the states reversed results in a complex 

conjugation of the inner product: 

 + ! = ! +
*

. (1.19) 

This important property holds for any inner product.  For example, the inner product of 

two general states is 

 ! " = " !
*

. (1.20) 

Now we come to a new mathematical aspect of quantum vectors that differs from 

the use of vectors in classical mechanics.  The rules of quantum mechanics (postulate 1) 

require that all state vectors describing a quantum system be normalized, not just the 

basis kets.  This is clearly different from ordinary spatial vectors, where the length or 

magnitude of a vector means something and only the unit vectors î , ĵ , and k̂  are 

normalized to unity.  This new rule means that in the quantum mechanical state space 

only the direction—in an abstract sense—is important.  If we apply this normalization 

requirement to a general state ! , then we obtain 

 

! ! = a
*
+ + b

*
"{ } a + + b "{ } = 1

# a
*
a + + + a

*
b + " + b

*
a " + + b

*
b " " = 1

# a
*
a + b

*
b = 1

# a
2

+ b
2

= 1

, (1.21) 

or using the expressions for the coefficients obtained above, 

 + !
2

+ " !
2

= 1 . (1.22) 

 

Example 1.1 

Normalize the vector ! = C 1 + + 2i "( ) .  The complex constant C is often 

referred to as the normalization constant. 

To normalize ! , we set the inner product of the vector with itself equal to unity 

and then solve for C—note the requisite complex conjugations 
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1= ! !

= C
*
1 + " 2i "{ }C 1 + + 2i "{ }

= C
*
C 1 + + " 2i + " + 2i " + + 4 " "{ }

= 5 C
2

# C =
1

5

, (1.23) 

The overall phase of the normalization constant is not physically meaningful (HW), so 

we follow the standard convention and choose it to be real and positive.  This yields 

C = 1 5 .  The normalized quantum state vector is then 

 ! =
1

5
1 + + 2i "( ) , (1.24) 

 

Now comes the crucial element of quantum mechanics.  We postulate that each 

term in the sum of Eq. (1.22) is equal to the probability that the quantum state described 

by the ket !  is measured to be in the corresponding basis state.  Thus 

 
  
!
Sz =+! 2

= + !
2

 (1.25) 

is the probability that the state !  is found to be in the state +  when a measurement of 

Sz is made, meaning that the result 
 
S
z
= +! 2  is obtained.  Likewise, 

 
  
!
Sz =!! 2

= ! "
2

 (1.26) 

is the probability that the measurement yields the result 
 
S
z
= !! 2 .  The subscript on the 

probability indicates the measured value.  For the spin component measurements, we will 

usually abbreviate this to, for example, 
 
!
+

 for a 
 
S
z
= +! 2  result or 

 
!
! y  for a 

 
Sy = !! 2  

measurement. 

We now have a prescription for predicting the outcomes of the experiments we 

have been discussing.  For example, the experiment shown in Fig. 1.8 has the state 

! = +  prepared by the 1st Stern-Gerlach device and then input to the 2nd Stern-Gerlach 

device aligned along the z-axis.  Therefore the probabilities of measuring the input state 

! = +  to have the two output values are as shown.  Because the spin-1/2 system has 

only two possible measurement results, these two probabilities must sum to unity—there 

 

|+〉
|+〉

|−〉

ZZ
50

0

!+=|〈+|+〉|2=1

!−=|〈−|+〉|2=0
 

Figure 1.8   Probabilities of spin component measurements. 
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is a 100% probability of recording some value in the experiment.  This basic rule of 

probabilities is why the rules of quantum mechanics require that all state vectors be 

properly normalized before they are used in any calculation of probabilities.  The 

experimental predictions shown in Fig. 1.8 are an example of the 4th postulate of quantum 

mechanics, which is presented below. 

 

Postulate 4 (Spin-1/2 system) 

The probability of obtaining the value 
 
±! 2  in a measurement of the 

observable Sz on a system in the state !  is 

 
!
±
= ± !

2

, 

where ±  is the basis ket of Sz corresponding to the result 
 
±! 2 . 

 

This is labeled as the 4th postulate because we have written this postulate using the 

language of the spin-1/2 system, while the general statement of the 4th postulate presented 

in section 1.5 requires the 2nd and 3rd postulates of section 2.1.  A general spin component 

measurement is shown in Fig. 1.9, along with a histogram that compactly summarizes the 

measurement results. 

Because the quantum mechanical probability is found by squaring an inner 

product, we refer to an inner product, + !  for example, as a probability amplitude or 

sometimes just an amplitude; much like a classical wave intensity is found by squaring 

the wave amplitude.  Note that the convention is to put the input or initial state on the 

right and the output or final state on the left: out in , so one would read from right to 

left in describing a problem.  Because the probability involves the complex square of the 

amplitude, and out in = in out
*

, this convention is not critical for calculating 

probabilities.  Nonetheless, it is the accepted practice and is important in situations where 

several amplitudes are combined. 

Armed with these new quantum mechanical rules and tools, let's continue to 

analyze the experiments discussed earlier.  Using the experimental results and the new 

rules we have introduced, we can learn more about the mathematical behavior of the kets 

and the relationships among them.  We will focus on the first two experiments for now 

and return to the others in the next chapter. 

|y〉
|+〉

|−〉

Z
!+=|〈+|y〉|2

!−=|〈−|y〉|2

a) b)

- —
2

—
2

Sz

1

!

!-

!+

 

Figure 1.9    (a) Spin component measurement for a general input state and (b) histogram of 

measurement results. 
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1.2.1 Analysis of Experiment 1 

In Experiment 1, the 1st Stern-Gerlach analyzer prepared the system in the +  

state and the 2nd analyzer later measured this state to be in the +  state and not in the !  

state.  The results of the experiment are summarized in the histogram in Fig. 1.10.  We 

can use the 4th postulate to predict the results of this experiment.  We take the inner 

product of the input state +  with each of the possible output basis states +  and ! .  

Because we know that the basis states are normalized and orthogonal, we calculate the 

probabilities to be 

 
!
+
= + +

2

= 1

!
!
= ! +

2

= 0

. (1.27) 

These predictions agree exactly with the histogram of experimental results shown in 

Fig. 1.10.  A +  state is always measured to have 
 
S
z
= +! 2 . 

- —
2

—
2

Sz

1

!

!-

!+†yin\ = †+\

 

Figure 1.10   Histogram of Sz spin component measurements for experiment 1 with !
in

= + . 

1.2.2 Analysis of Experiment 2 

In Experiment 2, the 1st Stern-Gerlach analyzer prepared the system in the +  

state and the 2nd analyzer performed a measurement of the spin component along the 

x-axis, finding 50% probabilities for each of the two possible states +
x
 and !

x
, as 

shown in the histogram in Fig. 1.11(a).  For this experiment, we cannot predict the results 

of the measurements, because we do not yet have enough information about how the 

states +
x
 and !

x
 behave mathematically.  Rather, we will use the results of the 

experiment to determine these states.  Recalling that the experimental results would be 

the same if the 1st analyzer prepared the system to be in the !  state (see Fig. 1.11(b)), 

we have four results for the two experiments: 

 

 

!
1,+ x

=
x
+ +

2

=
1

2

!
1,! x

=
x
! +

2

=
1

2

!
2,+ x

=
x
+ !

2

=
1

2

!
2,! x

=
x
! !

2

=
1

2

 (1.28) 
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Figure 1.11    Histograms of Sx spin component measurements for experiment 2 for different input 

states (a) !
in

= +  and (b) !
in

= " . 

Because the kets +  and !  form a complete basis, the kets describing the Sx 

measurement, +
x
 and !

x
, can be written in terms of them.  We do not yet know the 

specific coefficients of the ±
x
 states, so we use general expressions 

 
+

x
= a + + b !

!
x
= c + + d !

, (1.29) 

and now our task is to use the results of Experiment 2 to determine the coefficients a, b, 

c, and d.  The first measured probability in Eqn. (1.28) is  

 
 
!
1,+ x

=
x
+ +

2

=
1

2
 (1.30) 

Using the general expression for +
x
 in Eqn. (1.29), we calculate the probability that the 

+  input state is measured to be in the +
x
 output state, i.e., to have 

 
S
x
= +! 2 : 

 

 

!
1,+ x

=
x
+ +

2

= a
*
+ + b

*
!{ } +

2

= a
*
2

= a
2

 (1.31) 

where we convert the +
x
 ket to a bra 

x
+  in order to calculate the inner product.  

Equating the experimental result in Eqn. (1.30) and the prediction in Eqn. (1.31), we find  

 a
2

=
1

2
 (1.32) 

Similarly, one can calculate the other three probabilities to arrive at b
2

= c
2

= d
2

=
1

2
.  

(HW)  Because each coefficient is complex, each has an amplitude and phase.  However, 

the overall phase of a quantum state vector is not physically meaningful (see problem 

1.3).  Only the relative phase between different components of the state vector is 

physically measurable.  Hence, we are free to choose one coefficient of each vector to be 

real and positive without any loss of generality.  This allows us to write the desired states 

as 
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+

x
=

1

2
+ + e

i! "#$ %&

"
x
=

1

2
+ + e

i' "#$ %&
, (1.33) 

where !  and !  are relative phases that we have yet to determine.  Note that these states 

are already normalized because we used all of the experimental results, which reflect the 

fact that the probability for all possible results of an experiment must sum to unity. 

We have used all the experimental results from Experiment 2, but the ±
x
 kets 

are still not determined.  We need some more information.  If we perform Experiment 1 

with both analyzers aligned along the x-axis, the results will be as you expect—all +
x
 

states from the 1st analyzer will be measured to have S
x
= +! 2  at the 2nd analyzer, i.e., 

all atoms exit in the +
x
 state and none in the !

x
.  The probability calculations for this 

experiment are 

 
!
+ x
=

x
+ +

x

2

= 1

!
! x
=

x
! +

x

2

= 0

, (1.34) 

which tell us mathematically that the ±
x
 states are orthonormal to each other, just like 

the ±  states.  This also implies that the ±
x
 kets form a basis, the Sx basis, which you 

might expect because they correspond to the distinct results of a different spin component 

measurement.  The general expressions we used for the ±
x
 kets are already normalized, 

but are not yet orthogonal.  That is the new piece of information we need.  The 

orthogonality condition leads to 

 

x
! +

x
= 0

1

2
+ + e

! i" !#$ %&
1

2
+ + e

i' !#$ %& = 0

1

2
1+ e

i '!"( )#$ %& = 0

e
i '!"( )

= !1

e
i'
= !ei"

. (1.35) 

where the complex conjugation of the second coefficient of the 
x
!  bra should be noted. 

We now have an equation relating the remaining coefficients !  and ", but need 

some more information to determine their values.  Unfortunately, there is no more 

information to be obtained, so we are free to choose the value of the phase !.    This 

freedom comes from the fact that we have required only that the x-axis be perpendicular 

to the z-axis, which limits the x-axis only to a plane rather than to a unique direction.  We 

follow convention here and choose the phase ! = 0.  Thus we can express the Sx basis 

kets in terms of the Sz basis kets as 

 
+

x
=

1

2
+ + !"# $%

!
x
=

1

2
+ ! !"# $%

. (1.36) 
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We generally use the Sz basis as the preferred basis for writing general states, but 

we could use any basis we choose.  If we were to use the Sx basis, then we could write the 

±  kets as general states in terms of the ±
x
 kets.  This can be done by solving 

Eqs. (1.36) for the ±  kets, yielding 

 
+ =

1

2
+

x
+ !

x
"# $%

! =
1

2
+

x
! !

x
"# $%

. (1.37) 

With respect to the measurements performed in Experiment 2, Eqn. (1.37) tells us 

that the +  state is a combination of the states +
x
 and !

x
.  The coefficients tell us 

that there is a 50% probability for measuring the spin component to be up along the 

x-axis, and likewise for the down possibility, which is in agreement with the histogram of 

measurements shown in Fig. 1.11(a).  We must now take a moment to describe carefully 

what a combinations of states, such as in Eqns. (1.36) and (1.37), is and what it is not. 

1.2.3 Superposition states 

A general spin-1/2 state vector !  can be expressed as a combination of the 

basis kets +  and !  

 ! = a + + b " . (1.38) 

We refer to such a combination of states as a superposition state.  To understand the 

importance of a quantum mechanical superposition state, consider the particular state 

 ! = 1

2
+ !+! "( ) . (1.39) 

and measurements on this state, as shown in Fig. 1.12(a).  Note that the state !  is none 

other than the state +
x
 that we found in Eqn. (1.36), so we already know what the 

measurement results are.  If we measure the spin component along the x-axis for this 

state, then we record the result 
 
S
x
= +! 2  with 100% probability (Experiment 1 with 

both analyzers along the x-axis).  If we measure the spin component along the orthogonal 

z-axis, then we record the two results S
z
= ±! 2  with 50% probability each 

(Experiment 2 with the 1st and 2nd analyzers along the x– and z-axes, respectively).  Based 

upon this second set of results, one might be tempted to consider the state !  as 

describing a beam that contains a mixture of atoms with 50% of the atoms in the +  

state and 50% in the !  state.  Such a state is called a mixed state, and is very different 

from a superposition state. 

To clarify the difference between a mixed state and a superposition state, let's 

carefully examine the results of experiments on the proposed mixed state beam, as shown 

in Fig. 1.12(b).  If we measure the spin component along the z-axis, then each atom in the 

+  state yields the result 
 
S
z
= +! 2  with 100% certainty and each atom in the !  state 

yields the result 
 
S
z
= !! 2  with 100% certainty.  The net result is that 50% of the atoms 

yield S
z
= +! 2  and 50% yield S

z
= !! 2 .  This is exactly the same result as that 

obtained with all atoms in the +
x
 state, as seen in Fig. 1.12(a).  If we instead measure 

the spin component along the x-axis, then each atom in the +  state yields the two 
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results 
 
S
x
= ±! 2  with 50% probability each (Experiment 2 with the 1st and 2nd analyzers 

along the z- and x-axes, respectively).  The atoms in the !  state yield the same results.  

The net result is that 50% of the atoms yield 
 
S
x
= +! 2  and 50% yield 

 
S
x
= !! 2 .  This 

is in stark contrast to the results of Experiment 1, which tells us that once we have 

prepared the state to be +
x
, then subsequent measurements yield 

 
S
x
= +! 2  with 

certainty, as seen in Fig. 1.12(a). 

 

Z
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Figure 1.12   (a) Superposition state measurements and (b) mixed state measurements. 

 

Hence we must conclude that the system described by the ! = +
x
 state is not a 

mixed state with some atoms in the +  state and some in the !  state.  Rather, each 

atom in the +
x
 beam is in a state that itself is a superposition of the +  and !  states.  

A superposition state is often called a coherent superposition because the relative phase 

of the two terms is important.  For example, if the input beam were in the !
x
 state, then 
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there would be a relative minus sign between the two coefficients, which would result in 

an 
 
S
x
= !! 2  measurement but would not affect the Sz measurement. 

We will not have any further need to speak of mixed states, so any combination of 

states we use is a superposition state.  Note that we cannot even write down a ket 

describing a mixed state.  So, if someone gives you a quantum state written as a ket, then 

it must be a superposition state and not a mixed state.  The random option in the SPINS 

program produces a mixed state, while the unknown states are all superposition states. 

 

Example 1.2 

Consider the input state 

 !
in

= 3 + + 4 " . (1.40) 

Normalize this state vector and find the probabilities of measuring the spin component 

along the z-axis to be 
 
S
z
= ±! 2 . 

To normalize this state, introduce an overall complex multiplicative factor and 

solve for this factor by imposing the normalization condition: 

 

!
in

= C 3 + + 4 "#$ %&

!
in
!

in
= 1

C
*
3 + + 4 "#$ %&{ } C 3 + + 4 "#$ %&{ } = 1

C
*
C 9 + + +12 + " +12 " + +16 " "#$ %& = 1

C
*
C 25[ ] = 1

C
2

=
1

25

, (1.41) 

Because an overall phase is physically meaningless, we choose C to be real and positive: 

C = 1 5 .  Hence the normalized input state is 

 !
in

=
3

5
+ +

4

5
" . (1.42) 

The probability of measuring 
 
S
z
= +! 2  is 

 

 

!
+
= + !

in

2

= +
3

5
+ +

4

5
"#$ %&

2

=
3

5
+ + +

4

5
+ "

2

=
3

5

2

=
9

25

 (1.43) 

The probability of measuring 
 
S
z
= !! 2  is 
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!! = ! "
in

2

= ! 3

5
+ +

4

5
!#$ %&

2

=
3

5
! + +

4

5
! !

2

=
4

5

2

=
16

25

 (1.44) 

Note that the two probabilities add to unity, which indicates that we normalized the input 

state properly.  A histogram of the predicted measurement results is shown in Fig. 1.13. 

- —
2

—
2

Sz

1

!

!-

!+

†yin\ = †+\ + †-\3
5

4
5

 

Figure 1.13    Histogram of Sz spin component measurements. 

 

1.3 Matrix notation 

Up to this point, we have defined kets mathematically in terms of their inner 

products with other kets.  Thus in the general case we write a ket as 

 ! = + ! ! + !!+!! " ! ! " , (1.45) 

or in a specific case, we write 

 
+

x
= + +

x
! + !!+!! ! +

x
! !

=
1

2
+ +

1

2
!

. (1.46) 

In both of these cases, we have chosen to write the kets in terms of the +  and !  basis 

kets.  If we agree on that choice of basis as a convention, then the two coefficients + +
x
 

and ! +
x
 uniquely specify the quantum state, and we can simplify the notation by using 

those just numbers.  Thus, we represent a ket as a column vector containing the two 

coefficients that multiply each basis ket.  For example, we represent +
x
 as 

 +
x
!

1

2

1

2

!

"
#
#

$

%
&
&

, (1.47) 

where we have used the new symbol  !  to signify "is represented by", and it is 

understood that we are using the +  and !  basis or the Sz basis.  We cannot say that 

the ket equals the column vector, because the ket is an abstract vector in the state space 
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and the column vector is just two complex numbers.  If we were to choose a different 

basis for representing the vector, then the complex coefficients would be different even 

though the vector is unchanged.  We need to have a convention for the ordering of the 

amplitudes in the column vector.  The standard convention is to put the spin up amplitude 

first (at the top).  Thus the representation of the !
x
 state (Eqn. (1.37)) is 

 !
x
!

1

2

! 1

2

"

#
$
$

%

&
'
'

(!! +

(!! !
. (1.48) 

where we have explicitly labeled the rows according to their corresponding basis kets. 

Using this convention, it should be clear that the basis kets themselves are written as 

 

+ !
1

0

!

"#
$

%&

' ! 0

1

!

"#
$

%&

. (1.49) 

This demonstrates the important feature that basis kets are unit vectors when written in 

their own basis. 

This new way of expressing a ket simply as the collection of coefficients that 

multiply the basis kets is referred to as a representation.  Because we have assumed the 

Sz kets as the basis kets, this is called the Sz representation.  It is always true that basis 

kets have the simple form shown in Eq. (1.49) when written in their own representation.  

A general ket !  is written as 

 

 

! !

+ !

" !

#

$
%
%

&

'
(
(

. (1.50) 

This use of matrix notation simplifies the mathematics of bras and kets.  The advantage is 

not so evident for the simple 2-dimensional state space of spin-1/2 systems, but it is very 

evident for larger dimensional problems.  This notation is indispensable when using 

computers to calculate quantum mechanical results.  For example, the SPINS program 

employs matrix calculations coded in the Java computer language to simulate the Stern-

Gerlach experiments using the same probability rules you are learning here. 

We saw earlier (Eqn. (1.11)) that the coefficients of a bra are the complex 

conjugates of the coefficients of the corresponding ket.  We also know that an inner 

product of a bra and a ket yields a single complex number.  In order for the matrix rules 

of multiplication to be used, a bra must be represented by a row vector, with the entries 

being the coefficients ordered in the same sense as for the ket.  For example, if we use the 

general ket 

 ! = a + + b " , (1.51) 

which is represented as 
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! !
a

b

"

#$
%

&'
, (1.52) 

then the corresponding bra 

 ! = a
*
+ + b

*
"  (1.53) 

is represented by a row vector as 

 
 
! ! a

*
b
*( ) . (1.54) 

The rules of matrix algebra can then be applied to find an inner product.  For example, 

 
! ! = a

*
b
*( ) a

b

"

#$
%

&'

= a
2

+ b
2

. (1.55) 

So a bra is represented by a row vector that is the complex conjugate and transpose of the 

column vector representing the corresponding ket. 

 

Example 1.3: 

To get some practice using this new matrix notation, and to learn some more 

about the spin-1/2 system, use the results of Experiment 2 to determine the Sy basis kets 

using the matrix approach instead of the Dirac bra-ket approach. 

Consider Experiment 2 in the case where the 2nd Stern-Gerlach analyzer is aligned 

along the y-axis.  We said before that the results are the same as in the case shown in 

Fig. 1.4.  Thus we have 

 

 

!
1,+ y

=
y
+ +

2

=
1

2

!
1,! y

=
y
! +

2

=
1

2

!
2,+ y

=
y
+ !

2

=
1

2

!
2,! y

=
y
! !

2

=
1

2

. (1.56) 

as depicted in the histograms of Fig. 1.14. 

These results allows us to determine the kets ±
y
 corresponding to the spin 

component up and down along the y-axis.  The argument and calculation proceeds 

exactly as it did earlier for the ±
x
 states up until the point (Eqn. (1.35)) where we 

arbitrarily choose the phase ! to be zero.  Having done that for the ±
x
 states, we are no 

longer free to make that same choice for the ±
y
 states.  Thus we use Eqn. (1.35) to 

write the ±
y
 states as 
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Figure 1.14    Histograms of Sy spin component measurements for input states (a) !
in

= +  

and (b) !
in

= " . 
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y
=

1

2
+ " ei! "#$ %& !

1

2
 

1

"ei!
'

()
*
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 (1.57) 

To determine the phase !, we use some more information at our disposal.  Experiment 2 

could be performed with the 1st Stern-Gerlach analyzer aligned along the x-axis and the 

2nd analyzer along the y-axis.  Again the results would be identical (50% at each output 

port), yielding 

 
 
!
+ y
=

y
+ +

x

2

=
1

2
 (1.58) 

as one of the measured quantities.  Now use matrix algebra to calculate this: 

 

y
+ +

x
= 1

2
1 e

! i"( ) 1

2
 

1

1

#

$%
&

'(

= 1

2
1+ e

! i"( )

y
+ +

x

2

= 1

2
1+ e

! i"( ) 1

2
1+ e

i"( )

= 1

4
1+ e

i"
+ e

! i"
+1( )

= 1

2
1+ cos"( ) = 1

2

 (1.59) 

This result requires that cos! = 0, or that ! = ±" 2 .  The two choices for the phase 

correspond to the two possibilities for the direction of the y-axis relative to the already 

determined x- and z-axes.  The choice ! = +" 2  can be shown to correspond to a 

right-handed coordinate system, which is the standard convention, so we choose that 

phase.  We thus represent the ±
y
 kets as 
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1

2
 

1

i

!

"#
$

%&

'
y
!

1

2
 

1

'i
!

"#
$

%&

 (1.60) 

Note that the imaginary components of these kets are required.  They are not merely a 

mathematical convenience as one sees in classical mechanics.  In general, quantum 

mechanical state vectors have complex coefficients.  But this does not mean that the 

results of physical measurements are complex.   On the contrary, we always calculate a 

measurement probability using a complex square, so all quantum mechanics predictions 

of probabilities are real. 

 

1.4 General Quantum Systems 

The machinery we have developed for spin-1/2 systems can be generalized to 

other quantum systems.  For example, if an observable A yields quantized measurement 

results an for some finite range of n, then we generalize the schematic depiction of a 

Stern-Gerlach measurement to a measurement of the observable A, as shown in Fig. 1.15.  

The observable A labels the measurement device and the possible results a1, a2, a3, etc. 

label the output ports.  The basis kets corresponding to the results an are then a
n

.  The 

mathematical rules about kets in this general case are 

 

a
i
a
j
= !

ij
               !!!!!!orthonormality

" = a
i
" ! a

i

i

#       completeness
 (1.61) 

where we use the Kronecker delta 

 !
ij
=

0

1

i " j

i = j

#
$
%

&%
 (1.62) 

to express the orthonormality condition compactly.  In this case, the generalization of 

postulate 4 says that the probability of a measurement of one of the possible results an is 

 
 
!
a
n

= a
n
!

in

2

 (1.63) 

A
|a1〉

|a2〉

|a3〉

|ψin〉 a2
a1

a3

 

Figure 1.15    Generic depiction of the quantum mechanical measurement of observable A. 
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Example 1.4. 

Imagine a quantum system with an observable A that has three possible 

measurement results: a1, a2, and a3.  The three kets a
1

, a
2

, and a
3

 corresponding to 

these possible results form a complete orthonormal basis.  The system is prepared in the 

state 

 ! = 2 a
1
" 3 a

2
+ 4i a

3
 (1.64) 

Calculate the probabilities of all possible measurement results of the observable A. 

The state vector in Eqn. (1.64) is not normalized, so we must normalize it before 

calculating probabilities.  Introducing a complex normalization constant C, we find 

 

1= ! !

= C
*
2 a

1
" 3 a

2
" 4i a

3( )C 2 a
1
" 3 a

2
+ 4i a

3( )

= C
2

4 a
1
a
1
" 6 a

1
a
2
+ 8i a

1
a
3{

!!!!!!!!!!!"6 a
2
a
1
+ 9 a

2
a
2
"12i a

2
a
3

!!!!!!!!!!!"8i a
3
a
1
+12i a

3
a
2
+16 a

3
a
3 }

= C
2

4 + 9 +16{ } = C
2

29

#C =
1

29

 (1.65) 

The normalized state is 

 ! =
1

29
2 a

1
" 3 a

2
+ 4i a

3( )  (1.66) 

The probabilities of measuring the results a1, a2, and a3 are 

 

 

!
a1
= a

1
!

2

= a
1

1

29
2 a

1
" 3 a

2
+ 4i a

3{ }
2

=
1

29
2 a

1
a
1
" 3 a

1
a
2
+ 4i a

1
a
3

2

=
4

29

!
a2
= a

2
!

2

= a
2

1

29
2 a

1
" 3 a

2
+ 4i a

3{ }
2

=
9

29

!
a3
= a

3
!

2

= a
3

1

29
2 a

1
" 3 a

2
+ 4i a

3{ }
2

=
16

29

 (1.67) 

A schematic of this experiment is shown in Fig. 1.16(a) and a histogram of the predicted 

probabilities is shown in Fig. 1.16(b). 
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Figure 1.16     (a) Schematic diagram of the measurement of observable A and (b) histogram of 

the predicted measurement probabilities. 

 

1.5 Postulates 

We have introduced two of the postulates of quantum mechanics in this chapter.  

The postulates of quantum mechanics dictate how to treat a quantum mechanical system 

mathematically and how to interpret the mathematics to learn about the physical system 

in question.  These postulates cannot be proven, but they have been successfully tested by 

many experiments, and so we accept them as an accurate way to describe quantum 

mechanical systems.  New results could force us to reevaluate these postulates at some 

later time.  All six postulates are listed below to give you an idea where we are headed 

and a framework into which you can place the new concepts as we confront them. 

Postulates of Quantum Mechanics 

1. The state of a quantum mechanical system, including all the information 

you can know about it, is represented mathematically by a normalized ket 

! . 

2. A physical observable is represented mathematically by an operator A that 

acts on kets. 

3. The only possible result of a measurement of an observable is one of the 

eigenvalues an of the corresponding operator A. 

4. The probability of obtaining the eigenvalue an in a measurement of the 

observable A on the system in the state !  is 

 
 
!
a
n

= a
n
!

2

,  

where a
n

 is the normalized eigenvector of A corresponding to the 

eigenvalue an. 

5. After a measurement of A that yields the result an, the quantum system is 

in a new state that is the normalized projection of the original system ket 

onto the ket (or kets) corresponding to the result of the measurement: 

 !" =
P
n
"

" P
n
"

. 
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6. The time evolution of a quantum system is determined by the Hamiltonian 

or total energy operator H(t) through the Schrödinger equation 

 i!
d

dt
! t( ) = H t( ) ! t( ) . 

As you read these postulates for the first time, you will undoubtedly encounter 

new terms and concepts.  Rather than explain them all here, the plan of this text is to 

continue to explain them through their manifestation in the Stern-Gerlach spin-1/2 

experiment.  We have chosen this example because it is inherently quantum mechanical 

and forces us to break away from reliance on classical intuition or concepts.  Moreover, 

this simple example is a paradigm for many other quantum mechanical systems.  By 

studying it in detail, we can appreciate much of the richness of quantum mechanics. 

1.6 Summary 

Through the Stern-Gerlach experiment we have learned several key concepts 

about quantum mechanics in this chapter. 

•  Quantum mechanics is probabilistic. 

We cannot predict the results of experiments precisely.  We can predict 

only the probability that a certain result is obtained in a measurement. 

•  Spin measurements are quantized. 

The possible results of a spin component measurement are quantized.  

Only these discrete values are measured. 

•  Quantum measurements disturb the system. 

Measuring one physical observable can "destroy" information about other 

observables. 

We have learned how to describe the state of a quantum mechanical system 

mathematically using a ket, which represents all the information we can know about that 

state.  The kets +  and !  result when the spin component Sz along the z-axis is 

measured to be up or down, respectively.  These kets form an orthonormal basis, which 

we denote by the inner products 

 

+ + = 1

! ! = 1

+ ! = 0

 (1.68) 

The basis is also complete, which means that it can be used to express all possible kets as 

superposition states 

 ! = a + + b " . (1.69) 

For spin component measurements, the kets corresponding to spin up or down 

along the three Cartesian axes are 
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2
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! !!!!!!! !
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y
=
1

2
+ ! i !"# $%

 (1.70) 

We also found it useful to introduce a matrix notation for calculations.  In this matrix 

language the kets in Eqn. (1.70) are represented by 
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$
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$
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 (1.71) 

The most important tool we have learned so far is the probability postulate 

(postulate 4).  To calculate the probability that a measurement on an input state !
in

 will 

yield a particular result, for example S
z
= ! 2 , we complex square the inner product of 

the input state with the ket corresponding to the measured result, +  in this case: 

 
 
!
+
= + !

in

2

 (1.72) 

This is generalized to other systems where a measurement yields a particular result an 

corresponding to the ket a
n

 as: 

 
 
!
a
n

= a
n
!

in

2

 (1.73) 

1.7 Problems 

1.1 Consider the following state vectors: 

 

!
1
= 3 + + 4 "

!
2
= + + 2i "

!
3
= 3 + " e

i# 3
"

 

 a) Normalize each state vector. 

 b) For each state vector, calculate the probability that the spin component is up 

or down along each of the three Cartesian axes.  Use bra-ket notation for the 

entire calculation. 

 c) Write each normalized state in matrix notation. 

 d) Repeat part (b) using matrix notation for the entire calculation. 
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1.2 Consider the three quantum states: 

 

!
1
=
1

3
+ + i

2

3
"

!
2
=
1

5
+ "

2

5
"

!
3
=
1

2
+ +

e
i# 4

2
"

 

 Use bra-ket notation (not matrix notation) to solve the following problems.  Note 

that + + = 1 , ! ! = 1 , and + ! = 0 . 

 a) For each of the !
i

 above, find the normalized vector !
i

 that is orthogonal 

to it. 

 b) Calculate the inner products ! i
!

j  for i and j = 1, 2, 3. 

1.3 Show that a change in the overall phase of a quantum state vector does not change 
the probability of obtaining a particular result in a measurement.  To do this, 

consider how the probability is affected by changing the state !  to the state 

e
i! " . 

1.4 Show by explicit bra-ket calculations using the states in Eqn. (1.29) that the four 

experimental results in Eqn. (1.28) lead to the results b
2

= c
2

= d
2

=
1

2
. 

1.5 A beam of spin-! particles is prepared in the state 

 ! =
2

13
+ + i

3

13
"  

 a) What are the possible results of a measurement of the spin component Sz, and 

with what probabilities would they occur? 

 b) What are the possible results of a measurement of the spin component Sx, and 

with what probabilities would they occur? 

 c) Plot histograms of the predicted measurement results from parts (a) and (b). 

1.6 A beam of spin-! particles is prepared in the state 

 ! =
2

13
+

x
+ i

3

13
"

x
 

 a) What are the possible results of a measurement of the spin component Sz, and 

with what probabilities would they occur? 
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 b) What are the possible results of a measurement of the spin component Sx, and 

with what probabilities would they occur? 

 c) Plot histograms of the predicted measurement results from parts (a) and (b). 

1.7 A classical coin is thrown in the air and lands on the ground, where a 

measurement is made of its state. 

 a) What are the possible results of this measurement? 

 b) What are the predicted probabilities for these possible outcomes? 

 c) Plot a histogram of the predicted measurement results. 

1.8 A classical cubical die is thrown onto a table and comes to rest, where a 

measurement is made of its state. 

 a) What are the possible results of this measurement? 

 b) What are the predicted probabilities for these possible outcomes? 

 c) Plot a histogram of the predicted measurement results. 

1.9 A pair of dice (classical cubes) are thrown onto a table and come to rest, where a 

measurement is made of the state of the system (i.e., the sum of the two die). 

 a) What are the possible results of this measurement? 

 b) What are the predicted probabilities for these possible outcomes? 

 c) Plot a histogram of the predicted measurement results. 

1.10 Consider the three quantum states: 

 

!
1
=
4

5
+ + i

3

5
"

!
2
=
4

5
+ " i

3

5
"

!
3
= "

4

5
+ + i

3

5
"

 

 a) For each of the !
i

 above, calculate the probabilities of spin component 

measurements along the x-, y-, and z-axes. 

 b) Use your results from (a) to comment on the importance of the overall phase 

and of the relative phases of the quantum state vector. 

1.11 A spin-! particle is prepared in the state 

 ! =
3

34
+ + i

5

34
"  
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 a) What are the possible results of a measurement of the spin component Sz, and 

with what probabilities would they occur? 

 b) Suppose that the Sz measurement on the particle yields the result S
z
= !! 2 .  

Subsequent to that result a second measurement is performed to measure the 

spin component Sx.  What are the possible results of that measurement, and 

with what probabilities would they occur? 

 c) Draw a schematic diagram depicting the successive measurements in parts (a) 

and (b). 

1.12 Consider a quantum system with an observable A that has three possible 

measurement results: a1, a2, and a3.  Write down the orthogonality, normalization, 

and completeness relations for the three kets comprising the basis corresponding 

to the possible results of the A measurement. 

1.13 Consider a quantum system with an observable A that has three possible 

measurement results: a1, a2, and a3.  

 a) Write down the three kets a
1

, a
2

, and a
3

 corresponding to these possible 

results using matrix notation. 

 b) The system is prepared in the state 

 ! = 1 a
1
" 2 a

2
+ 5 a

3
 

  Write this state in matrix notation and calculate the probabilities of all 

possible measurement results of the observable A.  Plot a histogram of the 

predicted measurement results. 

 c) In a different experiment, the system is prepared in the state 

 ! = 2 a
1
+ 3i a

2
 

  Write this state in matrix notation and calculate the probabilities of all 

possible measurement results of the observable A.  Plot a histogram of the 

predicted measurement results. 

1.14 Consider a quantum system in which the energy E is measured and there are four 

possible measurement results: 2 eV, 4 eV, 7 eV, and 9 eV. 

 a) The system is prepared in the state 

 ! =
1

39
3 2!eV " i 4 !eV + 2e

i# 7
7!eV + 5 9!eV{ }  

  Calculate the probabilities of all possible measurement results of the energy E. 

Plot a histogram of the predicted measurement results. 
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1.15 Consider a quantum system described by a basis a
1

, a
2

, and a
3

.  The system 

is initially in a state 

 !
i
=

i

3
a
1
+

2

3
a
2

. 

 Find the probability that the system is measured to be in the final state 

 ! f =
1+ i

3
a
1
+
1

6
a
2
+
1

6
a
3

. 

1.16 The spin components of a beam of atoms prepared in the state !
in

 are measured 

and the following experimental probabilities are obtained: 

 

 

!
+
=

1

2
!
+ x
=

3

4
!
+ y
= 0.067

!
!
=

1

2
!
! x
=

1

4
!
! y
= 0.933

 

 From the experimental data, determine the input state. 

1.17 In part (1) of SPINS Lab #2, you measured the probabilities of all the possible 

spin components for each of the unknown initial states !
i

 (i = 1, 2, 3, 4).  Using 

your data from that lab, find the unknown states !
1

, !
2

, !
3

 and !
4

.  

Express each of the unknown states as a linear superposition of the Sz basis states 

+  and ! .  For each state, use your result to calculate the theoretical values of 

the probabilities for each component measurement and compare these theoretical 

predictions with your experimental results. 

 

1.8 Resources 

1.8.1 Activities 

SPINS:  A software program to simulate Stern-Gerlach spin experiments. The Java 

software runs on all platforms and can be downloaded in two forms: 

 Open Source Physics framework 

 www.physics.oregonstate.edu/~mcintyre/ph425/spins/index_SPINS_OSP.html 

 or 

 Standalone Java 

 www.physics.oregonstate.edu/~mcintyre/ph425/spins 
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SPINS Lab 1: An introduction to successive Stern-Gerlach spin 1/2 measurements.  The 

randomness of measurements is demonstrated and students use statistical analysis 

to deduce probabilities from measurements. 

 www.physics.oregonstate.edu/portfolioswiki/doku.php?id=activities:main&file=s

pin1 

SPINS Lab 2: Students deduce unknown quantum state vectors from measurements of 

spin projections.  (part 3 requires material from Chap. 2 to do the calculations) 

 www.physics.oregonstate.edu/portfolioswiki/doku.php?id=activities:main&file=s

pin2 

A different simulation of the Stern-Gerlach experiment (somewhat Flashier): 

 phet.colorado.edu/simulations/sims.php?sim=SternGerlach_Experiment 

1.8.2 Further reading 

The history of the Stern-Gerlach experiment and how a bad cigar helped are chronicled in 

a Physics Today article: 

 B. Friedrich and D. Herschbach, "Stern and Gerlach: How a Bad Cigar Helped 

Reorient Atomic Physics," Phys. Today 56, 53-59 (2003).  

http://dx.doi.org/10.1063/1.1650229 

Nature has published a supplement on the milestones in spin physics.  An extensive 

timeline of historical events, review articles, and links to original articles are 

included. 

 Nature Phys. 4, S1-S43 (2008).   www.nature.com/milestones/spin 

The SPINS lab software is described in this pedagogical article: 
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