Ptolemy's Theorem

Ptolemy's Theorem is a relation in Euclidean geometry between the four sides and two diagonals of a **cyclic quadrilateral** (i.e., a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus).

If the quadrilateral is given with its four vertices *A*, *B*, *C*, and *D* in order, then the theorem states that:

 $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |AD|$

This relation may be verbally expressed as follows:

If a quadrilateral is inscribed in a circle then the sum of the products of its two pairs of opposite sides is equal to the product of its diagonals.

Proof

Geometric proof of Ptolemy's Theorem

- 1. Let ABCD be a cyclic quadrilateral.
- 2. Note that on the chord BC, the inscribed angles $\angle BAC = \angle BDC$, and on AB, $\angle ADB = \angle ACB$.
- 3. Construct K on AC such that $\angle ABK = \angle CBD$;

[Note that: $\angle ABK + \angle CBK = \angle ABC = \angle CBD + \angle ABD \implies \angle CBK = \angle ABD.$]

4. Now, by common angles $\triangle ABK$ is similar to $\triangle DBC$, and likewise $\triangle KBC \sim \triangle ABD$.

5. Thus, $\frac{|AK|}{|AB|} = \frac{|DC|}{|DB|}$ and $\frac{|KC|}{|BC|} = \frac{|AD|}{|BD|}$ due to the similarities noted above:

[
$$\triangle ABK \sim \triangle DBC$$
 and $\triangle KBC \sim \triangle ABD$]

1. So $|AK| \cdot |DB| = |AB| \cdot |DC|$, and $|KC| \cdot |BD| = |BC| \cdot |AD|$;

- 2. Adding, $|AK| \cdot |DB| + |KC| \cdot |BD| = |AB| \cdot |DC| + |BC| \cdot |AD|$;
- 3. Equivalently, $(|AK| + |KC|) \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |AD|$;
- 4. But |AK| + |KC| = |AC|, so
- 5. $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$; Q.E.D.

Some Corollaries to Ptolemy's Theorem

CORROLARY 1:

Given an equilateral triangle $\triangle ABC$ inscribed in a circle and a point Q on the circle.

Then the distance from point Q to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

In the figure, it follows that

$$q = p + r$$

CORROLARY 2:

In any regular pentagon the ratio of the length of a diagonal to the length of a side is the golden ratio, ϕ .

In the figure, it follows that

$$\varphi = \frac{b}{a}$$

