Ptolemy's Theorem

Ptolemy's Theorem is a relation in Euclidean geometry between the four sides and two diagonals of a cyclic quadrilateral (i.e., a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus).

If the quadrilateral is given with its four vertices A, B, C, and D in order, then the theorem states that:

$$
|\mathrm{AC}| \cdot|\mathrm{BD}|=|\mathrm{AB}| \cdot|\mathrm{CD}|+|\mathrm{BC}| \cdot|\mathrm{AD}|
$$

This relation may be verbally expressed as follows:
If a quadrilateral is inscribed in a circle then the sum of the products of its two pairs of opposite sides is equal to the product of its diagonals.

Proof
Geometric proof of Ptolemy's Theorem

1. Let $A B C D$ be a cyclic quadrilateral.
2. Note that on the chord BC , the inscribed angles $\angle \mathrm{BAC}=\angle \mathrm{BDC}$, and on $A B, \angle A D B=\angle A C B$.
3. Construct K on $A C$ such that $\angle A B K=\angle C B D$;
[Note that: $\angle \mathrm{ABK}+\angle \mathrm{CBK}=\angle \mathrm{ABC}=\angle \mathrm{CBD}+\angle \mathrm{ABD} \Rightarrow \angle \mathrm{CBK}=\angle \mathrm{ABD}$.]
4. Now, by common angles $\triangle A B K$ is similar to $\triangle D B C$, and likewise $\triangle K B C \sim \triangle A B D$.
5. Thus, $\frac{|A K|}{|A B|}=\frac{|D C|}{|D B|}$ and $\frac{|K C|}{|B C|}=\frac{|A D|}{|B D|}$ due to the similarities noted above:
[$\triangle \mathrm{ABK} \sim \triangle \mathrm{DBC}$ and $\triangle \mathrm{KBC} \sim \triangle \mathrm{ABD}$]
6. So $|A K| \cdot|D B|=|A B| \cdot|D C|$, and $|K C| \cdot|B D|=|B C| \cdot|A D|$;
7. Adding, $|\mathrm{AK}| \cdot|\mathrm{DB}|+|\mathrm{KC}| \cdot|\mathrm{BD}|=|\mathrm{AB}| \cdot|\mathrm{DC}|+|\mathrm{BC}| \cdot|\mathrm{AD}|$;
8. Equivalently, $(|A K|+|K C|) \cdot|B D|=|A B| \cdot|C D|+|B C| \cdot|A D|$;
9. But $|A K|+|K C|=|A C|$, so
10. $|A C| \cdot|B D|=|A B| \cdot|C D|+|B C| \cdot|D A| ; Q . E . D$.

Some Corollaries to Ptolemy's Theorem

CORROLARY 1:

Given an equilateral triangle $\triangle A B C$ inscribed in a circle and a point Q on the circle.
Then the distance from point Q to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

In the figure, it follows that

$$
q=p+r
$$

CORROLARY 2:

In any regular pentagon the ratio of the length of a diagonal to the length of a side is the golden ratio, φ.

In the figure, it follows that

$$
\varphi=\frac{b}{a}
$$

