
Journal of Machine Learning Research 12 (2011) 2825-2830 Submitted 3/11; Revised 8/11; Published 10/11

Scikit-learn: Machine Learning in Python

Fabian Pedregosa FABIAN .PEDREGOSA@INRIA .FR

Gaël Varoquaux GAEL.VAROQUAUX@NORMALESUP.ORG

Alexandre Gramfort ALEXANDRE .GRAMFORT@INRIA .FR

Vincent Michel VINCENT.MICHEL@LOGILAB .FR

Bertrand Thirion BERTRAND.THIRION@INRIA .FR

Parietal, INRIA Saclay
Neurospin, B̂at 145, CEA Saclay
91191 Gif sur Yvette – France

Olivier Grisel OLIVIER .GRISEL@ENSTA.FR

Nuxeo
20 rue Soleillet
75 020 Paris – France

Mathieu Blondel MBLONDEL@AI .CS.KOBE-U.AC.JP

Kobe University
1-1 Rokkodai, Nada
Kobe 657-8501 – Japan

Peter Prettenhofer PETER.PRETTENHOFER@GMAIL .COM

Bauhaus-Universiẗat Weimar
Bauhausstr. 11
99421 Weimar – Germany

Ron Weiss RONWEISS@GMAIL .COM

Google Inc
76 Ninth Avenue
New York, NY 10011 – USA

Vincent Dubourg VINCENT.DUBOURG@GMAIL .COM

Clermont Universit́e, IFMA, EA 3867, LaMI
BP 10448, 63000 Clermont-Ferrand – France

Jake Vanderplas VANDERPLAS@ASTRO.WASHINGTON.EDU

Astronomy Department
University of Washington, Box 351580
Seattle, WA 98195 – USA

Alexandre Passos ALEXANDRE .TP@GMAIL .COM

IESL Lab
UMass Amherst
Amherst MA 01002 – USA

David Cournapeau COURNAPE@GMAIL .COM

Enthought
21 J.J. Thompson Avenue
Cambridge, CB3 0FA – UK

c©2011 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, BertrandThirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot and́Edouard Duchesnay



PEDREGOSA, VAROQUAUX, GRAMFORT ET AL.

Matthieu Brucher MATTHIEU .BRUCHER@GMAIL .COM

Total SA, CSTJF
avenue Larribau
64000 Pau – France

Matthieu Perrot MATTHIEU .PERROT@CEA.FR

Édouard Duchesnay EDOUARD.DUCHESNAY@CEA.FR

LNAO
Neurospin, B̂at 145, CEA Saclay
91191 Gif sur Yvette – France

Editor: Mikio Braun

Abstract
Scikit-learnis a Python module integrating a wide range of state-of-the-art machine learning algo-
rithms for medium-scale supervised and unsupervised problems. This package focuses on bring-
ing machine learning to non-specialists using a general-purpose high-level language. Emphasis is
put on ease of use, performance, documentation, and API consistency. It has minimal dependen-
cies and is distributed under the simplified BSD license, encouraging its use in both academic
and commercial settings. Source code, binaries, and documentation can be downloaded from
http://scikit-learn.sourceforge.net.

Keywords: Python, supervised learning, unsupervised learning, model selection

1. Introduction

The Python programming language is establishing itself as one of the most popular languages for
scientific computing. Thanks to its high-level interactive nature and its maturingecosystem of sci-
entific libraries, it is an appealing choice for algorithmic development and exploratory data analysis
(Dubois, 2007; Milmann and Avaizis, 2011). Yet, as a general-purposelanguage, it is increasingly
used not only in academic settings but also in industry.

Scikit-learnharnesses this rich environment to provide state-of-the-art implementationsof many
well known machine learning algorithms, while maintaining an easy-to-use interface tightly inte-
grated with the Python language. This answers the growing need for statistical data analysis by
non-specialists in the software and web industries, as well as in fields outside of computer-science,
such as biology or physics.Scikit-learndiffers from other machine learning toolboxes in Python
for various reasons:i) it is distributed under the BSD licenseii) it incorporates compiled code for
efficiency, unlike MDP (Zito et al., 2008) and pybrain (Schaul et al., 2010), iii) it depends only on
numpy and scipy to facilitate easy distribution, unlike pymvpa (Hanke et al., 2009) that has optional
dependencies such as R and shogun, andiv) it focuses on imperative programming, unlike pybrain
which uses a data-flow framework. While the package is mostly written in Python, it incorporates
the C++ libraries LibSVM (Chang and Lin, 2001) and LibLinear (Fan et al.,2008) that provide ref-
erence implementations of SVMs and generalized linear models with compatible licenses. Binary
packages are available on a rich set of platforms including Windows and any POSIX platforms.

2826



SCIKIT-LEARN: MACHINE LEARNING IN PYTHON

Furthermore, thanks to its liberal license, it has been widely distributed as part of major free soft-
ware distributions such as Ubuntu, Debian, Mandriva, NetBSD and Macports and in commercial
distributions such as the “Enthought Python Distribution”.

2. Project Vision

Code quality. Rather than providing as many features as possible, the project’s goal has been to
provide solid implementations. Code quality is ensured with unit tests—as of release 0.8, test
coverage is 81%—and the use of static analysis tools such aspyflakes andpep8. Finally, we
strive to use consistent naming for the functions and parameters used throughout a strict adherence
to the Python coding guidelines and numpy style documentation.
BSD licensing.Most of the Python ecosystem is licensed with non-copyleft licenses. Whilesuch
policy is beneficial for adoption of these tools by commercial projects, it does impose some restric-
tions: we are unable to use some existing scientific code, such as the GSL.
Bare-bone design and API.To lower the barrier of entry, we avoid framework code and keep the
number of different objects to a minimum, relying on numpy arrays for data containers.
Community-driven development.We base our development on collaborative tools such as git, github
and public mailing lists. External contributions are welcome and encouraged.
Documentation. Scikit-learnprovides a∼300 page user guide including narrative documentation,
class references, a tutorial, installation instructions, as well as more than 60examples, some fea-
turing real-world applications. We try to minimize the use of machine-learning jargon, while main-
taining precision with regards to the algorithms employed.

3. Underlying Technologies

Numpy: the base data structure used for data and model parameters. Input data ispresented as
numpy arrays, thus integrating seamlessly with other scientific Python libraries. Numpy’s view-
based memory model limits copies, even when binding with compiled code (Van derWalt et al.,
2011). It also provides basic arithmetic operations.
Scipy: efficient algorithms for linear algebra, sparse matrix representation, special functions and
basic statistical functions.Scipyhas bindings for many Fortran-based standard numerical packages,
such as LAPACK. This is important for ease of installation and portability, as providing libraries
around Fortran code can prove challenging on various platforms.
Cython: a language for combining C in Python. Cython makes it easy to reach the performance
of compiled languages with Python-like syntax and high-level operations. It is also used to bind
compiled libraries, eliminating the boilerplate code of Python/C extensions.

4. Code Design

Objects specified by interface, not by inheritance.To facilitate the use of external objects with
scikit-learn, inheritance is not enforced; instead, code conventions provide a consistent interface.
The central object is anestimator, that implements afit method, accepting as arguments an input
data array and, optionally, an array of labels for supervised problems.Supervised estimators, such as
SVM classifiers, can implement apredict method. Some estimators, that we calltransformers,
for example, PCA, implement atransform method, returning modified input data. Estimators

2827



PEDREGOSA, VAROQUAUX, GRAMFORT ET AL.

scikit-learn mlpy pybrain pymvpa mdp shogun

Support Vector Classification 5.2 9.47 17.5 11.52 40.48 5.63
Lasso (LARS) 1.17 105.3 - 37.35 - -
Elastic Net 0.52 73.7 - 1.44 - -
k-Nearest Neighbors 0.57 1.41 - 0.56 0.58 1.36
PCA (9 components) 0.18 - - 8.93 0.47 0.33
k-Means (9 clusters) 1.34 0.79 ⋆ - 35.75 0.68
License BSD GPL BSD BSD BSD GPL

-: Not implemented. ⋆: Does not converge within 1 hour.

Table 1: Time in seconds on the Madelon data set for various machine learning libraries exposed
in Python: MLPy (Albanese et al., 2008), PyBrain (Schaul et al., 2010), pymvpa (Hanke
et al., 2009), MDP (Zito et al., 2008) and Shogun (Sonnenburg et al., 2010). For more
benchmarks seehttp://github.com/scikit-learn.

may also provide ascore method, which is an increasing evaluation of goodness of fit: a log-
likelihood, or a negated loss function. The other important object is thecross-validation iterator,
which provides pairs of train and test indices to split input data, for exampleK-fold, leave one out,
or stratified cross-validation.

Model selection. Scikit-learncan evaluate an estimator’s performance or select parameters using
cross-validation, optionally distributing the computation to several cores. This is accomplished by
wrapping an estimator in aGridSearchCV object, where the “CV” stands for “cross-validated”.
During the call tofit, it selects the parameters on a specified parameter grid, maximizing a score
(thescore method of the underlying estimator).predict, score, ortransform are then delegated
to the tuned estimator. This object can therefore be used transparently as any other estimator. Cross
validation can be made more efficient for certain estimators by exploiting specific properties, such
as warm restarts or regularization paths (Friedman et al., 2010). This is supported through special
objects, such as theLassoCV. Finally, aPipeline object can combine severaltransformers and
an estimator to create a combined estimator to, for example, apply dimension reduction before
fitting. It behaves as a standard estimator, andGridSearchCV therefore tune the parameters of all
steps.

5. High-level yet Efficient: Some Trade Offs

While scikit-learnfocuses on ease of use, and is mostly written in a high level language, carehas
been taken to maximize computational efficiency. In Table 1, we compare computation time for a
few algorithms implemented in the major machine learning toolkits accessible in Python.We use
the Madelon data set (Guyon et al., 2004), 4400 instances and 500 attributes, The data set is quite
large, but small enough for most algorithms to run.

SVM.While all of the packages compared call libsvm in the background, the performance ofscikit-
learn can be explained by two factors. First, our bindings avoid memory copies andhave up to
40% less overhead than the original libsvm Python bindings. Second, we patch libsvm to improve
efficiency on dense data, use a smaller memory footprint, and better use memory alignment and
pipelining capabilities of modern processors. This patched version also provides unique features,
such as setting weights for individual samples.

2828



SCIKIT-LEARN: MACHINE LEARNING IN PYTHON

LARS.Iteratively refining the residuals instead of recomputing them gives performance gains of
2–10 times over the reference R implementation (Hastie and Efron, 2004).Pymvpauses this imple-
mentation via the Rpy R bindings and pays a heavy price to memory copies.
Elastic Net.We benchmarked thescikit-learncoordinate descent implementations of Elastic Net. It
achieves the same order of performance as the highly optimized Fortran versionglmnet(Friedman
et al., 2010) on medium-scale problems, but performance on very large problems is limited since
we do not use the KKT conditions to define an active set.
kNN.The k-nearest neighbors classifier implementation constructs a ball tree (Omohundro, 1989)
of the samples, but uses a more efficient brute force search in large dimensions.
PCA.For medium to large data sets,scikit-learnprovides an implementation of a truncated PCA
based on random projections (Rokhlin et al., 2009).
k-means. scikit-learn’s k-means algorithm is implemented in pure Python. Its performance is lim-
ited by the fact that numpy’s array operations take multiple passes over data.

6. Conclusion

Scikit-learnexposes a wide variety of machine learning algorithms, both supervised andunsuper-
vised, using a consistent, task-oriented interface, thus enabling easy comparison of methods for a
given application. Since it relies on the scientific Python ecosystem, it can easily be integrated into
applications outside the traditional range of statistical data analysis. Importantly, the algorithms,
implemented in a high-level language, can be used as building blocks for approaches specific to
a use case, for example, in medical imaging (Michel et al., 2011). Future work includesonline
learning, to scale to large data sets.

References

D. Albanese, G. Merler, S.and Jurman, and R. Visintainer. MLPy: high-performance python pack-
age for predictive modeling. InNIPS, MLOSS Workshop, 2008.

C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines. http://www.csie.
ntu.edu.tw/cjlin/libsvm, 2001.

P.F. Dubois, editor.Python: Batteries Included, volume 9 ofComputing in Science & Engineering.
IEEE/AIP, May 2007.

R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR:a library for large linear
classification.The Journal of Machine Learning Research, 9:1871–1874, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent.Journal of Statistical Software, 33(1):1, 2010.

I Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror. Result analysis of theNIPS 2003 feature selection
challenge, 2004.

M. Hanke, Y.O. Halchenko, P.B. Sederberg, S.J. Hanson, J.V. Haxby, and S. Pollmann. PyMVPA:
A Python toolbox for multivariate pattern analysis of fMRI data.Neuroinformatics, 7(1):37–53,
2009.

2829



PEDREGOSA, VAROQUAUX, GRAMFORT ET AL.

T. Hastie and B. Efron. Least Angle Regression, Lasso and ForwardStagewise.http://cran.
r-project.org/web/packages/lars/lars.pdf, 2004.

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin, and B. Thirion. A supervised clustering
approach for fMRI-based inference of brain states.Patt Rec, page epub ahead of print, April
2011. doi: 10.1016/j.patcog.2011.04.006.

K.J. Milmann and M. Avaizis, editors.Scientific Python, volume 11 ofComputing in Science &
Engineering. IEEE/AIP, March 2011.

S.M. Omohundro. Five balltree construction algorithms. ICSI Technical Report TR-89-063, 1989.

V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component analysis.
SIAM Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2009.

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and J. Schmidhuber.
PyBrain.The Journal of Machine Learning Research, 11:743–746, 2010.

S. Sonnenburg, G. R̈atsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl,
and V. Franc. The SHOGUN machine learning toolbox.Journal of Machine Learning Research,
11:1799–1802, 2010.

S. Van der Walt, S.C Colbert, and G. Varoquaux. The NumPy array: A structure for efficient
numerical computation.Computing in Science and Engineering, 11, 2011.

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for data processing (MDP): A Python
data processing framework.Frontiers in Neuroinformatics, 2, 2008.

2830


